\documentclass[a4paper]{article} % \usepackage[margin=1.25in]{geometry} \usepackage[inner=2.0cm,outer=2.0cm,top=2.5cm,bottom=2.5cm]{geometry} % \usepackage{ctex} \usepackage{color} \usepackage{graphicx} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage{bm} \usepackage{hyperref} \usepackage{multirow} \usepackage{mathtools} \usepackage{enumerate} \newcommand{\homework}[5]{ \pagestyle{myheadings} \thispagestyle{plain} \newpage \setcounter{page}{1} \noindent \begin{center} \framebox{ \vbox{\vspace{2mm} \hbox to 6.28in { {\bf Optimization Methods \hfill #2} } \vspace{6mm} \hbox to 6.28in { {\Large \hfill #1 \hfill} } \vspace{6mm} \hbox to 6.28in { {\it Instructor: {\rm #3} \hfill Name: {\rm #4}, StudentId: {\rm #5}}} \vspace{2mm}} } \end{center} % \markboth{#4 -- #1}{#4 -- #1} \vspace*{4mm} } \newenvironment{solution} {\color{blue} \paragraph{Solution.}} {\newline \qed} \begin{document} %- Write your name and id here \homework{Homework 1}{Fall 2021}{Lijun Zhang}{Student name}{Student id} \paragraph{Notice} \begin{itemize} \item The submission email is: \textbf{zhangzhenyao@lamda.nju.edu.cn}. \item Please use the provided \LaTeX{} file as a template. \item If you are not familiar with \LaTeX{}, you can also use Word to generate a \textbf{PDF} file. \end{itemize} \paragraph{Problem 1: Inequalities} ~\\ \noindent Let $x\in\mathbb{R}^n,y\in\mathbb{R}^n$, where $n$ is a positive integer. Let $\|\cdot\|$ denote the Euclidean norm. \begin{enumerate}[a)] \item Prove the triangle inequality $\|x+y\|\leq\|x\|+\|y\|$. \item Prove $\|x+y\|^2\leq(1+\epsilon)\|x\|^2+(1+\frac{1}{\epsilon})\|y\|^2$ for any $\epsilon>0$. \end{enumerate} \emph{Hint}: You may need the Young's inequality for products, i.e. if $a$ and $b$ are nonnegative real numbers and $p$ and $q$ are real numbers greater than 1 such that $1/p+1/q=1$, then $ab\leq\frac{a^p}{p}+\frac{b^q}{q}$. % \begin{solution} % Write your answer here. % \end{solution} \paragraph{Problem 2: Convex sets} ~\\ \begin{enumerate}[a)] \item Show that a polyhedron $P=\{x\in \mathbb{R}^n: Ax \leq b, A\in \mathbb{R}^{m\times n}, b\in\mathbb{R}^m\}$ is convex. \item Show that if $S\subseteq \mathbb{R}^n$ is convex, and $A \in \mathbb{R}^{m \times n}$, then $A(S) = \{ Ax : x \in S \}$, is convex. \item Show that if $S\subseteq \mathbb{R}^m$ is convex, and $A \in \mathbb{R}^{m \times n}$, then $A^{-1}(S) = \{ x : Ax \in S \}$, is convex. \end{enumerate} % \begin{solution} % Write your answer here. % \end{solution} \paragraph{Problem 3: Hyperplane} ~\\ \noindent What is the distance between two parallel hyperplanes, i.e.,$\{x|a^\top x=b\}$ and $\{x|a^\top x=c\}$ ? % \begin{solution} % Write your answer here. % \end{solution} \paragraph{Problem 4: Examples} ~\\ \noindent Let~$C \subseteq \mathbb{R}^n$~be the solution set of a quadratic inequality, \begin{center} $C = \{x \in \mathbb{R}^n|x^TAx + b^Tx + c \leqslant 0\}$ \end{center} with~$A \in \mathbb{S}^n$, $b \in \mathbb{R}^n$, and~$c \in \mathbb{R}$. \begin{enumerate}[a)] \item Show that~$C$~is convex if~$A \succeq 0$. \item Is the following statement true? The intersection of~$C$~and the hyperplane defined by~$g^Tx+h=0$~is convex if~$A+\lambda gg^T \succeq 0$~for some~$\lambda \in \mathbb{R}$. \end{enumerate} \paragraph{Problem 5: Generalized Inequalities} ~\\ \noindent Let~$K^*$~be the dual cone of a convex cone K. Prove the following, \begin{enumerate}[a)] \item $K^*$~is indeed a convex cone. \item $K_1 \subseteq K_2$~implies~$K^*_2 \subseteq K^*_1$. \end{enumerate} % \begin{solution} % Write your answer here. % \end{solution} \end{document}