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Trust Is Risk:
A Decentralized Financial Trust Platform
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Abstract. Reputation in centralized systems uses stars and review-
based trust. Such systems require manual intervention and secrecy to
avoid manipulation. In autonomous and open source decentralized sys-
tems this luxury is not available. Previous peer-to-peer reputation sys-
tems do not allow for financial arguments pertaining to reputation. We
propose a concrete Sybil-resilient decentralized reputation system where
direct trust is defined as lines-of-credit using bitcoin’s 1-of-2 multisig.
We introduce a new model for bitcoin wallets in which user coins are
split among trusted associates. Indirect trust is subsequently defined
transitively. This enables formal game theoretic arguments pertaining
to risk analysis. We prove that risk and max flows are equivalent in our
model. Our system allows for concrete financial decisions on the mone-
tary amount a pseudonymous party can be trusted with. Through algo-
rithmic trust redistribution, the risk incurred from making a purchase
from a pseudonymous party in this manner remains invariant.

Keywords: decentralized - trust - web-of-trust - bitcoin - multisig - line-
of-credit - trust-as-risk - flow - reputation
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1 Introduction

Modern online marketplaces can be roughly categorized as centralized and
decentralized. Two major examples of each category are ebay and Open-
Bazaar. The common denominator of established online marketplaces is
that the reputation of each vendor and client is either expressed in the
form of stars and user-generated reviews that are viewable by the whole
network, or not expressed at all inside the marketplace and instead is
entirely built on word-of-mouth or other out-of-band means.

Our goal is to create a decentralized marketplace where the trust each
user gives to the rest of the users is quantifiable, measurable and express-
able in monetary terms. The central concept used throughout this paper
is that trust is equivalent to risk, or the proposition that Alice’s trust to
another user Bob is defined to be the mazimum sum of money that Alice
can lose when Bob is free to choose any strategy he wants. To flesh out this
concept, we will use lines of credit as proposed by Washington Sanchez
[1], not to be confused with the synonymous financial product. Joining
the network will be done by explicitly entrusting a certain amount of
money to another user, say Bob. If Bob has already entrusted an amount
of money to a third user, Charlie, then we indirectly trust Charlie since if
the latter wished to play unfairly, he could have already stolen the money
entrusted to him by Bob. Thus we can engage in economic interaction
with Charlie. The currency used is Bitcoin [2].

-0 OGO
Fig.1: A trusts C 10B Fig.2: A trusts C 53

We thus propose a new kind of wallet where coins are not stored locally,
but are placed in 1-of-2 multisigs, a bitcoin construction that permits any
one of two pre-designated users to spend the coins contained therein [3].
We will use the notation 1/{Alice, Bob} to represent a 1-of-2 multisig
that can be spent by either Alice or Bob.

Our approach changes the user experience in a subtle but drastic way.
A user no more has to base her trust towards a store on stars, ratings
or other dubious and non-quantifiable trust metrics. She can simply con-
sult her wallet to decide whether the store is trustworthy and, if so, up
to what value. This system works as follows: Initially Alice migrates her
funds from P2PKH addresses in the UTXO [3] to 1-of-2 multisig addresses
shared with friends she comfortably trusts. We call this direct trust. Our


http://www.ebay.com
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system is agnostic to the means players use to determine who is trust-
worthy for these direct 1-of-2 deposits.

Suppose that Alice is viewing the item listings of vendor Charlie.
Instead of C'harlie’s stars, Alice will see a positive value that is calculated
by her wallet and represents the maximum monetary value that Alice can
safely use to complete a purchase from Charlie. We examine exactly how
this value is calculated in Trust Flow theorem (2). This monetary value
reported by our system maintains the desired security property that, if
Alice makes this purchase, then she is exposed to no more risk than she
was willing to expose herself towards her friends. We prove this result in
the Risk Invariance theorem (3). Obviously it will not be safe for Alice
to buy anything from Charlie or any other vendor if she has entrusted
no value to any other player.

We see that in TrustIsRisk the money is not invested at the time of
the purchase and directly to the vendor, but at an earlier point in time
and only to parties that are trustworthy for out-of-band reasons. The fact
that this system can function in a completely decentralized fashion will
become clear in the following sections. We prove this result in the Sybil
Resilience theorem (5).

There are several incentives for a user to join this network. First of
all, she can have access to a store that is otherwise inaccessible. More-
over, two friends can formalize their mutual trust by entrusting the same
amount to each other. A large company that casually subcontracts other
companies to complete various tasks can express its trust towards them
using this method. A government can choose to entrust its citizens with
money and confront them using a corresponding legal arsenal if they make
irresponsible use of this trust. A bank can provide loans as outgoing and
manage savings as incoming trust and thus has a unique opportunity of
expressing in a formal and absolute way its credence by publishing its in-
coming and outgoing trust. Last but not least, the network can be viewed
as a possible field for investment and speculation since it constitutes a
completely new area for financial activity.

It is worth noting that the same physical person can maintain multiple
pseudonymous identities in the same trust network and that multiple
independent trust networks for different purposes can coexist. On the
other hand, the same pseudonymous identity can be used to establish
trust in different contexts.



2 The Trust Graph

We now engage in the formal description of the proposed system, accom-
panied by helpful examples.

Definition 1 (Graph). TrustlsRisk is represented by a sequence of di-
rected weighted graphs (G;) where G; = (V},&;),j € N. Also, since the
graphs are weighted, there exists a sequence of weight functions (cj) with
Cj . Ej — RT.

The nodes represent the players, the edges represent the existing direct
trusts and the weights represent the amount of value attached to the
corresponding direct trust. As we will see, the game evolves in turns. The
subscript of the graph represents the corresponding turn.

Definition 2 (Players). The set V; =V (G;) is the set of all players in
the network, otherwise understood as the set of all pseudonymous identi-
ties.

Each node has a corresponding non-negative number that represents
its capital. A node’s capital is the total value that the node possesses
exclusively and nobody else can spend.

Definition 3 (Capital). The initial capital of A, Capa,, is defined as
the total value that belongs to A and exists in P2PKH in the UTXO at
the beginning of the game.

The capital of A is subsequently modified only during her turns, ac-
cording to her actions. A rational player would like to maximize her cap-
ital in the long term. We also define a player’s assets:

Definition 4 (Assets). Sum of A’s capital and outgoing trust.
Aspj=Capaj+outy; (1)

We consider the outgoing trust of a player as part of her assets. The
formal definition of direct trust follows:

Definition 5 (Direct Trust). Direct trust from A to B at the end of
turn j, DTra_p,j, is defined as the total amount of value that exists in
1/{A, B} multisigs in the UTXO in the end of turn j, where the money
is deposited by A.

¢j(A,B), if(AB)e€g;

0, else

DTT'A_>B’J‘ = { (2)
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This definition agrees with the title of this paper and coincides with
the intuition and experimental results of [4] that the trust Alice shows to
Bob in real-world social networks corresponds with the extent of danger
in which Alice is ready to expose herself to in order to help Bob. An
example graph with its corresponding transactions in the UTXO can be
seen below.

5B () 5B
A\ 1/{A,C}
6B o) 6B N
@\B\, A 2 1/{AD}
6 2
®<B 3 1083 () 108
503 ¢ CE]
108
@ 3B () 3B
c I CeBr
23 () 213
D 2/ 1/{D,B}

Fig.3: TrustlsRisk Game Graph and Equivalent Bitcoin UTXO

Any algorithm that has access to the graph G; has implicitly access to
all direct trusts of this graph. We use the notation N (A) to refer to the
nodes directly trusted by A and N~ (A) for the nodes that directly trust
A. We also use the notation in4 ;, out 4 ; to refer to the total incoming and
outgoing direct trust respectively. For a reference of common definitions,
see the Appendix.

3 Evolution of Trust

Definition 6 (Turns). The game we are describing is turn-based. In
each turn j exactly one player A € V, A = Player (j), chooses one or
more actions from the following two kinds:
Steal(yp, B): Steal value yg from B € N~ (A)
DTrp_aj-1. Then:

-1 where 0 < yp <

DTrg.a;=DIrg,aj-1—YB

Add(yg, B): Add value yg to B € V, where —DTrs_,p j—1 < yp. Then:

DTrapj=DTra.pj1+ys

11



When yg < 0, we say that A reduces her trust to B by —yg. When yg > 0,
we say that A increases her trust to B by yg. If DTra_p j—1 = 0, then
we say that A starts directly trusting B. If player A chooses no action in
her turn, we say that she passes her turn. Also, let Yst, Yoqq be the total
value to be stolen and added respectively by A in her turn, j. For a turn
to be feasible, it must hold that

Yodd — Yst < Capaj—1 . (3)
The capital is updated in every turn:
Capaj = Capaj—1+ Yst — Yaaa -

Moreover, player A is not allowed to choose two actions of the same
kind against the same player in one turn. The set of actions the player
makes in turn j is denoted by Turn;. The new graph that emerges by
applying the actions on G;_1 is Gj.

We use prev (j) and next (j) to denote the previous and next turn
respectively played by Player(j). A formal definition can be found in the
Appendix.

Definition 7 (Damage). Let j be a turn such that Player (j) = A.
Damagea,j = out g prey(j) — 0utaj—1 (4)

We say that A has been stolen value Damage j between prev (j) and j.
We omit turn subscripts if they are implied from the context.

Definition 8 (History). We define History, H = (H;), as the sequence
of all tuples containing the sets of actions and the corresponding player.

H; = (Player (j) , Turn;) (5)
Knowledge of the initial graph Gy and the history amount to full

comprehension of the evolution of the game. Building on the example of
figure 3, we can see the resulting graph when D plays

Turny; = {Steal (1, A), Add (4,C)} . (6)

12



Fig.4: Game Graph after Turn; (6) on the Graph of figure 3

In the form presented here, TrustIsRisk is controlled by an algorithm that
chooses a player, receives the turn that this player wishes to play and, if
this turn is valid, executes it. These steps are repeated indefinitely. We
assume players are chosen in a way that, after her turn, a player will
eventually play again later.

TrustIsRisk Game
j=20
while (True)
it
v ﬁ Vj
Turn = vStrategy(Gy, v, (H)l".j_l)
(G, Capyj, Hj) = executeTurn(G;_1, v, Cap,j—1, Turn)
executeTurn() checks the validity of Turn and substitutes it with an

empty turn if invalid. Subsequently, it creates the new graph G; and
updates the history accordingly. For the routine code, see the Appendix.

4 Trust Transitivity

In this section we define some strategies and show the corresponding al-
gorithms. Then we define the Transitive Game that represents the worst-
case scenario for an honest player when another player decides to depart
from the network with her money and all the money entrusted to her.

Definition 9 (Idle Strategy). A player A is said to follow the idle
strategy if she passes in her turn.

Idle Strategy
Input : initial graph Gp, player A, history (}01”4—1
Output : T'urn;
idleStrategy(Gy, A, H)
return ()

The inputs and outputs are identical to those of idleStrategy() for the
rest of the strategies, thus we avoid repeating them.

13
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Definition 10 (Evil Strategy). A player A is said to follow the evil
strategy if she steals all incoming direct trust and nullifies her outgoing
direct trust in her turn.

evilStrategy(Gop, A, H)
Steals = U {Steal(DTry—aj-1,v)}
UEN—(A)J-_1
Adds = U {Add(=DTr g0 -1,v)}
vENT(A);_,
Turn; = Steals U Adds
return(Turn;)

Definition 11 (Conservative Strategy). Player A is said to follow
the conservative strateqy if she replenishes the value she lost since the
previous turn, Damage, by stealing from others that trust her as much
as she can up to Damagea and she takes no other action.

consStrategy(Go, A, H)
Damage = outa prey(j) — outa,j—1
if (Damage > 0)

if (Damage >= ing;j_1)

Turn; = U {Steal (DTry—aj-1,v)}
vENT(A);_4
else
y = SelectSteal(Gj, A, Damage) #y = {y,:v € N~ (4); ;}
Turn; = U {Steal (y,,v)}
vENT(A);_4
else
Turnj = 0
return(Turn;)

SelectSteal() returns y, with v € N~ (A), ; such that

Z Yo = Damagea; AVv € N~ (A);_1,y0 < DTrya,5-1 - (7)

vENT(A);_4

Each conservative player can arbitrarily define how SelectSteal() dis-
tributes the Steal () actions each time she calls the function, as long as
(7) is respected.

As we can see, the definition covers a multitude of options for the
conservative player, since in case 0 < Damageas; < ingj—1 she can
choose to distribute the Steal () actions in any way she chooses.

14



The rationale behind this strategy arises from a real-world common
situation. Suppose there are a client, an intermediary and a producer. The
client entrusts some value to the intermediary so that the latter can buy
the desired product from the producer and deliver it to the client. The
intermediary in turn entrusts an equal value to the producer, who needs
the value upfront to be able to complete the production process. However
the producer eventually does not give the product neither reimburses the
value, due to bankruptcy or decision to exit the market with an unfair
benefit. The intermediary can choose either to reimburse the client and
suffer the loss, or refuse to return the money and lose the client’s trust.
The latter choice for the intermediary is exactly the conservative strategy.
It is used throughout this work as a strategy for all the intermediary
players because it models effectively the worst-case scenario that a client
can face after an evil player decides to steal everything she can and the
rest of the players do not engage in evil activity. Even if some of the
rest of the players decide to reduce their outgoing trust as well, this will
inhibit some possible damage to them, thus further guarding the client
from damage.

We continue with a very useful possible evolution of the game, the
Transitive Game. In turn 0, there is already a network in place. All players
apart from A and E follow the conservative strategy. Furthermore, the set
of players is not modified throughout the Transitive Game, thus we can
refer to V; for any turn j as V. Moreover, each conservative player can be
in one of three states: Happy, Angry or Sad. Happy players have 0 loss,
Angry players have positive loss and positive incoming trust, thus are
able to replenish their loss at least in part and Sad players have positive
loss, but 0 incoming trust, thus they cannot replenish the loss. These
conventions will hold whenever we use the Transitive Game.

Transitive Game
Input : graph Gy, A €V idle player, F €V evil player
Angry = Sad = () ; Happy = V\ {4, E}
for (we V\{E}D
Loss, = 0
j=20
while (True)
j4=1
v &V {4}
Turn; = vStrategy(Go, v, (H); ;1)
executeTurn(G;_1, Cap,j_1, Turn;)

15



10 for (action € Turn;)

11 action match do

12 case Steal(y,w) do

13 exchange = y

14 Loss,, += exchange

15 if (v '= FE)

16 Loss, -= exchange

17 if (w '= A)

18 Happy = Happy \ {w}
19 if (z'nmj == Q)

20 Sad = Sad U {w}

21 else

22 Angry = Angry U {w}
23 if (w '= E)

24 Angry = Angry \ {v}

25 if (Loss, > 0)

26 Sad = Sad U {v} #in,; should be zero
27 if (Loss, == 0)

28 Happy = Happy U {v}

An example execution follows:

Gi

e L Angry a 0L Happy

Happy Ga Sad gs

Fig.5: Turns of a TransitiveGame(Gy, A, E)

Let jo be the first turn on which F is chosen to play. Until then, all
players will pass their turn since nothing has been stolen yet (see the

16



Appendix (theorem 11) for a formal proof of this simple fact). Moreover,
let v = Player(j) and j' = prev(j). The Transitive Game generates
turns:

Turn; = U {Steal (yw,w)} , (8)
wWEN™(v);_4

where

Z Y = min (in, j_1, Damage, ;)
wEN™(v);_4

We see that if Damage, ; =0, then Turn; = (.

From the definition of Damage, ; and knowing that no strategy in
this case can increase any direct trust, we see that Damage, ; > 0. Also,
we can see that Loss,; > 0 because if Loss,; < 0, then v has stolen
more value than she has been stolen, thus she would not be following the
conservative strategy.

5 Trust Flow

Everything is in place to define the indirect trust, or simply trust, from
one player to another.

Definition 12 (Indirect Trust). The indirect trust from A to B after
turn j is defined as the maximum possible value that can be stolen from
A after turn j in the setting of TransitiveGame(G;,A,B).

ItisTrap > DTrs_p. The next theorem shows that Tr4_, g is finite.

Theorem 1 (Trust Convergence Theorem).
Consider a Transitive Game. There exists a turn such that all subsequent
turns are empty:

35" Vi >4 Turn; =0 .

Proof Sketch. If the game didn’t converge, the Steal () actions would
continue forever without reduction of the amount stolen over time, thus
they would reach infinity. However this is impossible, since there exists
only finite total trust. O

Full proofs of all theorems and lemmas can be found in the Appendix.
In the setting of TransitiveGame(G, A, F), we make use of the nota-
tion Losss = Lossa j, where j is a turn that the game has converged. It
is important to note that Loss,4 is not the same for repeated executions
of this kind of game, since the order in which players are chosen may

17



differ between executions and the conservative players are free to choose
which incoming trusts they will steal and how much from each.

Let G be a weighted directed graph. We will investigate the maximum
flow on this graph. For an introduction to the maximum flow problem see
[5] p. 708. Considering each edge’s capacity as its weight, a flow assign-
ment X = [x,,]yxy with a source A and a sink B is valid when:

V(v,w) € &, Ty < Cypyw and (9)

Vv e V\ {4, B}, Z Ty = Z Tow - (10)
weNT(v) weN~ (v)
We do not suppose any skew symmetry in X. The flow valueis Y x4y,
vENT(A)
which is proven to beequal to Y.  x,p. There exists an algorithm that
veEN—(B)
returns the maximum possible flow from A to B, namely MaxFlow (A, B).
This algorithm evidently needs full knowledge of the graph. The fastest
version of this algorithm runs in O (|V||€]) time [6]. We refer to the flow
value of MaxFlow (A, B) as maxFlow (A, B).
We will now introduce two lemmas that will be used to prove the one
of the central results of this work, the Trust Flow theorem.

Lemma 1 (MaxFlows Are Transitive Games).

Let G be a game graph, let A,E € V and MaxFlow (A, E) the maz-
imum flow from A to E executed on G. There exists an execution of
TransitiveGame (G, A, E) such that

mazFlow (A, E) < Lossa .

Proof Sketch. The desired execution of TransitiveGame () will con-
tain all flows from the MaxzFlow (A, E) as equivalent Steal () actions.
The players will play in turns, moving from E back to A. Each player will
steal from his predecessors as much as was stolen from her. The flows and
the conservative strategy share the property that the total input is equal
to the total output. ]

Lemma 2 (Transitive Games Are Flows).
Let H =TransitiveGame (G, A, E) for some game graph G and A, E € V.
There exists a valid flow X = {xyy}yxy on Gy such that

Z Tay = Lossy .
veY

18



Proof Sketch. If we exclude the sad players from the game, the Steal ()
actions that remain constitute a valid flow from A to E. O

Theorem 2 (Trust Flow Theorem).
Let G be a game graph and A, E € V. It holds that

Trasg =maxFlow (A, E)

Proof. From lemma (1) we see that there exists an execution of the Tran-
sitive Game such that Lossg > mazFlow (A, E). Since Tra_,p is the
maximum loss that A can suffer after the convergence of the Transitive
Game, we see that

Tra-g > maxFlow (A, E) . (11)

Moreover, there exists an execution of the Transitive Game such that
Trap = Losss. From lemma (2), this execution corresponds to a flow.
Thus

Trag < maxFlow (A, E) . (12)

The theorem follows from (11) and (12). O

We note that the maxFlow is the same in the following two cases:
When a player chooses the evil strategy and when the same player chooses
a variation of the evil strategy where she does not nullify her outgoing
direct trust.

Here we see another important theorem that gives the basis for risk-
invariant transactions between different, possibly unknown, parties.

Theorem 3 (Risk Invariance Theorem). Let G game graph, A, B €
V and [ the desired value to be transferred from A to B, withl < Tra_p.
Let also G' with the same nodes as G such that

Vo e V' \{A},\Vw € V', DT7r_,,, = DTry_ -

VW
Furthermore, suppose that there exists an assignment for the outgoing
trust of A, DTr';_,,, such that
Tr'y g =Tra,p—1 . (13)

Let another game graph, G”, be identical to G' except for the following
change:

It then holds that
Tr;'l_)B =Tra_.p .

19



Proof. The two graphs G’ and G” differ only on the weight of the edge
(A, B), which is larger by [ in G”. Thus the two MaxFlows will choose
the same flow, except for (A4, B), where it will be 2/} 5 = 2/45 + L. O

It is intuitively obvious that it is possible for A to reduce her out-
going direct trust in a manner that achieves (13), since maxFlow (A, B)
is continuous with respect to A’s outgoing direct trusts. We leave this
calculation as part of further research.

6 Sybil Resilience

One of the primary aims of this system is to mitigate the danger for Sybil
attacks [7] whilst maintaining fully decentralized autonomy.
Here we extend the definition of indirect trust to many players.

Definition 13 (Indirect Trust to Multiple Players). The indirect
trust from player A to a set of players, S CV is defined as the mazximum
possible value that can be stolen from A if all players in S follow the evil
strategy, A follows the idle strategy and everyone else (V\ (S U{A})) fol-
lows the conservative strategy. More formally, let choices be the different
actions between which the conservative players can choose, then

Trassj = max  |outaj —outy ;] (14)
’ j':3'>j,choices ’ ’

We now extend Trust Flow theorem (2) to many players.

Theorem 4 (Multi-Player Trust Flow).
Let S CV and T auxiliary player such that VB € S, DTrp_,p = oo. It
holds that

VAeV\ S, Trass = maxFlow (A, T)

Proof. If T chooses the evil strategy and all players in .S play according to
the conservative strategy, they will have to steal all their incoming direct
trust since they have suffered an infinite loss, thus they will act in a way
identical to following the evil strategy as far as MaxFlow is concerned.
The theorem follows thus from the Trust Flow theorem. ]

We now define several useful notions to tackle the problem of Sybil
attacks. Let Eve be a possible attacker.

Definition 14 (Corrupted Set). Let G be a game graph and let Eve
have a set of players B C V corrupted, so that she fully controls their
outgoing direct trusts to any player in V and can also steal all incoming
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direct trust to players in B. We call this the corrupted set. The players
B are considered to be legitimate before the corruption, thus they may be
directly trusted by any player in V.

Definition 15 (Sybil Set). Let G be a game graph. Since participation
in the network does not require any kind of registration, Eve can create
any number of players. We will call the set of these players C, or Sybil
set. Moreover, Eve can arbitrarily set the direct trusts of any player in C
to any player and can also steal all incoming direct trust to players in C.
Howewver, players C can be directly trusted only by players B UC but not
by players V \ (BUC), where B is a set of players corrupted by Eve.

Definition 16 (Collusion). Let G be a game graph. Let B C V be a
corrupted set and C C 'V be a Sybil set, both controlled by Fve. The tuple
(B,C) is called a collusion and is entirely controlled by a single entity in
the physical world. From a game theoretic point of view, players V\ (BUC)
perceive the collusion as independent players with a distinct strategy each,
whereas in reality they are all subject to a single strategy dictated by the
controlling entity, Eve.

Y
N
Fig.6: Collusion

Theorem 5 (Sybil Resilience).
Let G be a game graph and (B,C) be a collusion of players on G. It holds
that

Traspuec=Tra-s -
Proof Sketch. The incoming trust to B U C cannot be higher than the

incoming trust to B since C has no incoming trust from players outside
the collusion. O

We have proven that controlling |C| is irrelevant for Eve, thus Sybil attacks
are meaningless.
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7 Risk Invariance Algorithms

We will now focus our discussion on the act of a riskless purchase. Ac-
cording to the Risk Invariance theorem (3), if Alice wants to buy some-
thing that costs [ from the vendor Bob, she should first find a new
distribution of her outgoing direct trust such that mazFlow' (A, B) =
mazFlow (A, B) — | and then entrust [ to Bob. The theorem then en-
sures that the initial risk is equal to the final. In the following section we
discuss several algorithms that calculate possible new distributions for
Alice’s outgoing trust.

Let A € V source, B € V sink. For the following, we suppose that
Turn;_q has just finished and A = Player (j) is currently deciding Turn;.
We use the following notation:

C capacity configuration with ca, = DTy j_1
C' capacity configuration with ¢4, = DTr A—sv,j

We will use the following notation for clarity:

X = MazFlowg,_, (A, B
{ arFlowg, , (A, B) , for some MaxFlow execution

X" = MaxFlowg, (A, B)

F = mazFlowg,_, (A, B)
F' = maxzFlowg, (A, B)

Any subscripts or superscripts applied to X and F refer to the capacity
configuration with the exact same subscripts and superscripts.

Furthermore, we suppose an arbitrary ordering of the members of
Nt (A). We set n=|N" (A4)|. Thus

NT(A) = {v1,...,0.}

We use these subscripts to refer to the respective capacities (a.k.a. direct
trusts) and flows. Thus

Ti = TAv; >

where ¢ € [n]
Ci = CAv;

Definition 17 (Trust Reduction).
Trust Reduction on neighbour i is defined as 6; = ¢; — ¢}

Flow Reduction on neigbour i is defined as A; = x; — c}.
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We will also use the standard notation for 1-norm and co-norm:

[10:[11 = Zéi

110] |00 = max di

Theorem 6 (Saturation Theorem).
(Vi € [n],c; <x;) = (Vi € [n],x] =)
Proof. From the flow definition we know that
Vi € [n],x] < ¢ . (15)
In turn j — 1, there exists some valid flow Y such that
Vi€ [n],y; =

n

with a flow value ) y;, which can be created as follows: We start from
i=1

X and for each (A, v;) edge we reduce the flow along paths starting from

this edge for a total reduction of z; — ¢, on all those paths. Y is also

obviously valid for turn j and, since all capacities ¢, are saturated, there

can be no more outgoing flow from the source, thus Y is a maximum flow

in Qj. O

Theorem 7 (Trust Transfer Theorem).
Let V € [0, F]. We create a C' where

Vi € [n],¢; <z and
n
dd=F-V.
1=1

It then holds that F' = F — V.

Proof. From the Saturation theorem (6) we can see that z = ¢. It holds
that
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Definition 18 (Restricted Flow).
Let i € [n]. Let Fa,_.p be z; when:

¢ =c; and
Vk € [n]\ {i}, ¢, =0 .

This definition can be rephrased equivalently as follows:
Let v e Nt (A). Let Fa,.p be 'y, when:

cyp = Cav and
Vw e N1t (A)\ {v}, 4 =0 .

Let L C [n]. Let Fa,p be Y x} when:
i€L

Vie L,c, =c; and
Vie[n]\Lc,=0.

The latter definition can be rephrased equivalently as follows:

Let SC NT (A). Let Fa,_p be > 'y, when:
vES

Vv € S, cy, = cay and
Yo e NT(A)\ S,dy, =0 .

The choice of the definition will depend on whether K in Fa,_p is a
node, an index or a set of nodes or indices.

Lemma 3 (Flow Limit Lemma).
Vi € [’I’L],CEZ < FAZ-%B

Proof. Suppose a flow where 3i € [n] : x; > Fa,_p. If for any k # i we
choose ¢, < ¢, then z > x;. We set the new capacities as follows:

Vk #i,ci, = 0 and
C;- =C; .
Then for X’ we will have
Vk # i, 2} = 0 and
T =,
which is also a valid flow for G;_1 and thus by definition
Fap=2a,=x;>Fa_p ,

which is a contradiction. Thus the proposition holds. O
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Theorem 8 (Trust Saving Theorem).
Suppose some i € [n] and two alternative capacities configurations, say
C} and C% such that

¢ i=Fasp
0/2,1' =G
Vk € [n] \ {1}7011,1@ = Clz,k .
Then F| = Fy.

Proof. From the Flow Limit lemma (3) we know that z; < F'4,_,p, thus
we can see that any increase in ¢, beyond Fy4,_,p will not influence x; and
subsequently will not incur any change on the rest of the flows. ]

Theorem 9 (Invariable Trust Reduction with Naive Algorithms).

IfVi € [n],c, < xy, then ||4;||1 and ||Ai||1 are independent of ), c,.

Proof. Since Vi € [n],¢; < z;, by applying the Saturation theorem (6)

we see that z} = ¢, thus §; = ¢; — z} and A; = z; — z;. We know that
n

> a, =F —V, so we have

i=1

n

[16:]]1 = Z@ :Z(Ci_«l?;) = Zci — F+V and
=1 =1

i=1
n n n
[ Ail[1 :ZAi 22(331—962) :Za:i—F+V )
i=1 =1 i=1
thus [|0;]1, || Ai||1 are independent from 2 and . O

Until now MaxFlow has been viewed purely as an algorithm. This
algorithm is not guaranteed to always return the same flow when executed
muliple times on the same graph. However, the corresponding flow value,
maxFlow, is always the same. Thus maxFlow can be also viewed as a
function from a matrix of capacities to a non-negative real number. Under
this perspective, we prove the following theorem. Let C be the family of
all capacity matrices C' = [cyuw]v(g)xV(g)-

Theorem 10 (maxFlow Continuity).

Suppose a directed weighted graph with a source A, a drain B and a
capacity configuration C € C. Let also p € N U {oc}. The function
mazxFlow : C — R is continuous with respect to the || - ||, norm.
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Proof Sketch. An infinitesimal modification to any capacity leads to a
no more than infinitesimal modification to the total maxFlow. ]

Here we show three naive algorithms for calculating new direct trusts

so as to maintain invariable risk when paying a trusted party. Let F' =
n

> x;. To prove the correctness of the algorithms, it suffices to prove that
i=1

Vi € [n],c; < z; and (16)

Xn:cng—V. (17)

i=1
Proofs of correctness and complexity can be found in the Appendix.

First Come First Served Trust Transfer
Input : old flows x;, value V
Output : new capacities ¢
fefs((z;), V)
n = length(z;)

n
Feyr = F = Z Ty
=1

if (F < V)
return(l)
for (i =1 to n)
=z
i=1
while (Feyr > F - V)
reduce = min(x;, Feyr — (F - V))

Feur = Feur — reduce
/

¢; = x; — reduce
i+=1
n
return( {J {¢,})
i=1

This algorithm simply chooses to nullify all outgoing trust to one player
after another in the order they are given at the input, until the desired
indirect trust is achieved. The complexity of this algorithm is O (n).
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Absolute Equality Trust Transfer ( ||4;|| minimizer)
Input : old flows z;, value V

Output : new capacities ¢
abs ((x;), V)

n = length(z;)
n

Four = F = ) o
i=1

if (F < V)
return(l)
X = preprocess(z;)
empty = 0
reduction = 0O
while (Feyr > F - V)
(i, X) = popMin(X)
Forov = Feur — (n - empty)*(x; - reduction)
if (Fproy > F - V)
reduction = x4
empty += 1
Feur = Fprov
else

aux = reduction

Fcur - (F - V)
n - empty

Feur == (n - empty)*(reduction - aux)

#lines 17 & 19 can be replaced by break. In this

#case, the loop (line 9) can become while (TRUE).
for (¢ = 1 to n)

reduction +=

¢, = max(0, x; - reduction)
n
/
return(L{{q})
1=

The function preprocess(z;) returns a data structure X containing
the set of flows (x;), such that the corresponding function popMin(X) is
able to repeatedly return a tuple consisiting of the index of the minimum
element and a new data structure missing exactly the minimum element.

Examples of such pairs of functions are:

{preprocess = quickSort
and

popMin = (x1, X\ z1)

{preprocess = FibonacciHeap

popMin = (find-min(X),delete-min(X))
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In the general case, the complexity of the algorithm abs is proven to be
O (preprocess)+0O (n) O (popMin). In both specific cases, the complexity
is O (nlogn). This algorithm also minimizes the ||A;|| norm for the
specific set of old flows x; given as input. A proof of this fact can be
found in the Appendix.

Proportional Equality Trust Transfer
Input : old flows z;, value V
Output : new capacities ¢
prop((z;), V)
n = length(z;)

n
F = Z X;
i=1
if (F < V)
return(l)

for (i = 1 to n)

/o Vv
c, = x; — F*:ci

return( 6 {dDH
i=1

We can see that this algorithm is simpler than the previous two. The
complexity of this algorithm is proven to be O (n).

Naive algorithms result in ¢, < z;, thus according to the Invariability
Theorem (9), ||d;]]1 is invariable for any of the possible results C’ of
these algorithms and the resulting norm is not necessarily the minimum.
The following algorithms concentrate on finding a configuration C’ that
achieves I’ = F — V while minimizing two ¢; norms, ||d;||c and [|5;]]1.
We start with the ||;||occ minimizer.

|10i||cc minimizer
Input : old capacities ¢;, source A, drain B, value V, €1, €9
Output : new capacities ¢
dinfmin(c;, V, €1, €2)
n = length(c;)
F = maxFlow(A, B, C)
if (F < V)
return(l)
if ((e7 € 0) or (e9 < 0) or (F -V - ¢ <0) or
(F-V+ ¢ >F))
return(l)
Omaz = max(C)
0* = BinSearch(0, dyazs F - V, n, A, B, C, €1, €3)
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for (i = 1 to n)

¢, = max(0, ¢ - &%)

return( G {D
i=1

Since trust should be considered as a continuous unit and binary search
bisects the interval containing the solution on each recursive call, inclu-
sion of the e-parameters in BinSearch is necessary for the algorithm to
complete in a finite number of steps.

Binary Search Function for ||d;||oc minimizer
Input : bot, top, F’, n, source A, drain B, capacities C,
€1, €2
OQutput : ¢*
BinSearch(bot, top, F’, n, C, €1, €3)
if (bot == top)
return(bot)

else

mid = EQBA%APQE
for (i = 1 to n)
¢, = max(0, ¢ - mid)
if (maxFlow(A, B, C’) < F’ - ¢1)
return(BinSearch(bot, mid, F’, n, A, B, C, €1, €))
else if (maxFlow(A, B, C’) > F’ + ¢9)
return(BinSearch(mid, top, F’, n, A, B, C, €1, €))
else

return(mid)

max (0, ¢; — 9). We define maxFlow (6) = maxFlow (A, B,C") = F' and
MazFlow (6) = X'. Conventions similar to F, X and C hold for F’, X’

and ¢ as far as subscripts are concerned.

Let § € {O, Jnax {cz}] Furthermore, let C’ such that Vi € [n],c =
<i<n

Lemma 4 (maxFlow Monotonicity).

It holds that Vo € {0, max {cl}] such that maxFlow (§) < F, the func-
<i<n

tion maxFlow (9) is strictly decreasing with respect to §.

Proof Sketch. Proof by contradiction is utilised: If we suppose that
mazFlow (0) is not always strictly decreasing, then we can find a flow for
a specific 6 which is larger than the expected maxFlow. ]
From the previous lemma we deduce that, given a V' € (0, F'), if we deter-
mine a § such that maxFlow (§) = F —V, this § is unique. Furthermore,
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it is

. — R R S . A —
1165 ]| o0 11;1%%51 1%1%Xn (¢i —¢) lrgiagxn(cZ max (0,¢; —0)) =0 .

It is proven that the two algorithms work as expected, that is an invoca-
tion of dinfmin with valid inputs returns a capacity C’ that yields the
desired maxFlow and minimizes ||0;||oc. The complexity of BinSearch

is O <(maxFlow +n) log, (tOp_bOt)) and the complexity of dinfmin is

€1+e€2

@) ((maxFlow + n) log, ( Smaz ))

€1+€2

We will now concentrate on finding a capacity configuration C’ such
n

that F/ = F — V and that minimizes > (¢; — ¢}) = [|0;]|1 as well. We
i=1

7

treat the flow problem as a linear programming problem. Next we see the
formulation of the problem in this form, along with a breakdown of each
relevant matrix and vector. In matrix form, the maximum flow problem
can be seen as:

AX < B
max CX

Where:

| / /
X—[cn...clj...cln

n
fio iy fin

n

/ / / n
il ’ij"' in
T
! / !/
nl--- nj...fnn:|

X:<n2—|—n)x1
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F—V]T

B:(n®+2n—1)x1
C=1[0...01...10...0]
n n n(n-l1)
C:1x (n2 —i—n)
A is implied by the following constraints.
A: (n2+2n—1> X (n2+n>

Let n = |V|, A represented by 1 and B by n. The constraints are:

Vj € [n], ¢y < ey (n constraints)
Vjeln], fi; —c; <0 (n constraints)
Vie [n]\{1},V5 € [n], fij < cij (n? — n constraints)
Vi e [n]\ {1,n}, Z I = Z fii (n — 2 constraints) (18)
Jj€ln] Jj€[n]
Z fi; = F =V (1 constraint)
j€ln]
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The constraints are n? + 2n — 1 in total. The special constraints are:

\V/] € [n])c/lj Z

0
i 0

v

The desired optimization is

max Z f{j .

J€[n]

We would like to find a solution that, except for maximizing the flow,
also minimizes ||d;||1 at the same time. More precisely, we would like to
optimize

min Z (cav — ay)

veY

as well. Since we wish to optimize with regards to two objective functions,
we approach the problem as follows: Initially, we ignore the minimization
and derive the dual of the previous problem with respect to the max-
imisation. We then substitute the two problems’ optimisations with an
additional constraint that equates the two objective functions. Due to the
Strong Duality theorem of linear programming [32], this equality can be
achieved only by the common optimal solution of the two problems. Next
we treat the combination of constraints and variables of the primal and
the dual problem, along with the newly introduced constraint and the
previously ignored ||d;||; minimisation as a new linear problem. For every
j € [n], the solution to this problem contains a c’lj. These capacities will
comprise the new configuration that player A requires.

We will now describe the dual problem in detail. In matrix form, the
dual problem can be seen as:

ATY > (CT
min BTY
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Where AT, BT and CT are known and

Y =[ye11 - .. Yelj -+ - Yeln

n

Yfe1l - - - Yfelj -+ - Yfeln

n

Ysfcil -+ - Yfcij - - - Yfein

Yfenl - - -Yfeng - - - Yfenn
Yr2---Yfi- - Yfin—1) YF)T

n—2
Y (n2—|—2n—1) x 1

The constraints of the dual problem are:

Vj € [n], Yelj — Yfe1i > 0 (n constraints)
Yfe11 +yr > 1 (1 constraint)
Vi e )\ {1,n},yfa; —ys; + yr > 1 (n — 2 constraints)
Yfein +yr > 1 (1 constraint)
Vi€ [n]\{1,n}, Yfeit + Ypi > 0 (n — 2 constraints)
Vi, j € R\ {1,n}, Yreij + yri — yg; > 0 (n® — 4n + 4 constraints)
Vi € [n]\{1,n}, Yfein + Ygi > 0 (n — 2 constraints)
Yfen1 > 0 (1 constraint)
Vj € [n]\ {1,n}, Yfenj — Ygi = 0 (n — 2 constraints)
Yfenn > 0 (1 constraint)

The constraints are n? 4+ n in total. The special constraints are:
Vi€ [n], yea; >0
Vi, j € [n], Yseij 2 0
Vie [n]\{l,n}, ypn€eR
yr €R

The desired optimization is

min{ S oeyyeri+ Y. > CiYseij + (F=V) ?JF} :

i€l i€[n] j€[n]
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Everything is now in place to define the linear problem whose solution
C' yields maxFlow (C") = F — V and minimizes ||d;||oo. The constraints
are (18) and (19) supplemented with a constraint that equates the two
problems’ optimality functions:

Y= cuye+ Do D ciype + (F—V)yr

j€[n] J€[n] i€[n] j€[n]

The desired optimisation is

: /
min Z (Clj — Clj) .

J€[n]

The final linear program consists of 2n? + 2n — 1 variables and 2n? + 2n
constraints. There exist a variety of algorithms that solve linear programs,
such as simplex and ellipsoid algorithm. The ellipsoid algorithm requires
polynomial time in the worst-case scenario, but for practical purposes
algorithms of the simplex category seem to exhibit better behavior [8].

With this we have successfully delivered our promise for a Sybil-
resilient decentralized financial trust system with invariant risk when
making purchases, supplemented with a set of algorithms that calculate
new trust such that risk is really kept invariant on a purchase.

8 Related Work

Trust is a wide topic that exhibits very interesting properties and can
be defined in several, often competing manners. Here we will present
briefly several alternative approaches that have been followed in pursuit
of a satisfactory model of trust and another tightly related and equally
elusive concept, reputation.

The topic of trust has been repeatedly attacked with several ap-
proaches: Purely cryptographic infrastructure where trust is rather bi-
nary and transitivity is not possible is explored in PGP [9]. A transitive
web-of-trust for fighting spam is explored in Freenet [10]. Other systems
require central trusted third parties, such as PKI [11] and Bazaar [12],
or, in the case of BFT, authenticated membership [13].

Mui and Halberstadt [14] have proposed an elaborate model based on
the triptych "trust, reciprocity, reputation”, where reciprocal actions of
an agent A generate a corresponding reputation, which in turn influences
other agents’ trust to A. Trusting A inspires other agents to reciprocate,
thus completing the cycle. In this model, actions are limited to cooperate
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and defect, reciprocity and reputation between two agents are real num-
bers in [0, 1], the latter also depending on the context of interest. Lastly
trust is derived as a mean value based on the agent’s reputation and the
known history. The variables are connected using the Beta distribution
from statistics.

This model has little resemblance with Trust Is Risk not only in the
formalities, but mainly in the approach taken. Trust Is Risk proposes a
new financial game, whereas [14] attempts to model and predict all kinds
of conceivable trust. Trust Is Risk does not use statistics nor scales trust
to [0,1] and thus can provide strong results, such as the Risk Invariance
theorem.

One relevant proposal is [20] which proposes a set of definitions and
mathematical manipulations pertaining to trust, essentially providing the
core for other integrated trust and reputation systems. Once more the
Beta distribution is used to model the expected behavior of others, a
fact that results in two major drawbacks. First of all, each agent’s ac-
tions are confined to exactly two options, a constraint not applicable to
real-world applications. Secondly, expecting people to act according to
a certain distribution function is inviting them to trick and circumvent
this assumption for personal gain. Furthermore, Sybil attacks are not ad-
dressed. Lastly, the system proposed has a centralized structure, however
its core components could also function in a decentralized manner.

FIRE [15] constitutes another attempt to tackle trust, this time in
a practical setting. FIRE aims to create a decentralized rating system
for services provided. It essentially calculates trust as "the sum of all
the available ratings weighted by the rating relevance and normalized to
the range of [—1,1]." This setup needs two very disputable assumptions:
Firstly that "[a]gents are willing to share their experiences with others"
and secondly that "[a]gents are honest in exchanging information with
one another." One side effect of the above assumptions is that FIRE is
susceptible to Sybil attacks. Trust Is Risk does not make these assump-
tions, but can function even when each player follows any strategy she
desires.

CORE [16] proposes a reputation protocol for MANET to avoid non
collaboration of nodes. It uses the terms trust and reputation almost in-
terchangeably. It is designed in a manner such that reputation in several
different settings can be expressed through it, for example it can be ap-
plied and improve network speeds on the DSR Route Discovery function
and the Packet Forwarding function.
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No results relating to Sybil attacks are derived, thus Sybil attacks
may be possible, albeit pointless, since this protocol refers to setups with-
out other incentives other than reducing the time for completing various
jobs. The trust model required in such settings is considerably simpler
and rigorous results are not as necessary for the system to function at a
satisfactory level and to improve on similar systems without reputation.

[18] delivers a protocol that claims to cover the reputation needs of
MAS, or Multi Agent Systems. The setting of the problem is an open
environment where each agent can freely come and go, retaining her rep-
utation in the process. The context of the reputation should be decided
according to the needs of each particular distributed task. The reputa-
tion data itself is also distributed with the use of a DHT and agents
are uniquely identifiable. The system keeps track of all transactions to
avoid ratings that do not correspond to a transaction. Furthermore, all
transactions must be rated. Platform reputation is also implemented to
differentiate between end users and software platforms built for users.
Each agent’s credentials must be signed by at least one more agent apart
from the original one. A layered implementation is used to abstract from
the communication details and the backend complexity to the frontend
interface.

Since no hard restrictions are placed on reputation form, scale and
metric, the system retains a context agnostic stance that puts the burden
of avoiding whitewashing and other attacks on those that will implement
and use [18] as a reputation mechanism for specific distributed tasks.
Some simple attacks are discussed and specific countermeasures are pro-
posed. For example, agent cooperation is rather fruitless since each pair
of agents can have only one rating and this single rating does not weigh
much. However, Sybil attacks are not even discussed and there are no
privacy considerations: all ratings are public and traceable. Staying true
to the context agnostic nature of this project, no concrete definitions of
reputation or trust are given.

The same problem is attacked in [19], where a middleware trust man-
agement system consisting of several protocols is introduced to provide
a decentralized, self-organized way for reducing or even eliminating mali-
cious and dishonest behavior by peers. No user intervention is one of the
design goals, another one being resilience against peers’ collusions. Trust
from Alice to Bob is defined as the probability with which Bob will act
in Alice’s desired manner, as calculated by Alice. Bob’s reputation is de-
fined as the sum of all ratings he has received, one rating for each object
he has offered. This definition results in a unique, global reputation for
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each peer. Bob’s reputation is stored by all his neighbors. For Bob to be
deemed trustworthy by Alice as far as a certain object is concerned, Bob’s
reputation must exceed a trust threshold chosen by Alice specifically for
this kind of object. A protocol similar to IP is used for routing object re-
quests. A certain peer reputation is itself assigned more confidence when
more peers respond with this particular reputation. This policy encour-
ages peers to remain connected and makes dishonest reputation reporting
riskier.

Several simple attacks such as reputation altering are explored and
mitigated with various measures. One attack that is only partially avoided
is the situation where Eve chooses to have only colluding neighbors that
report falsely high reputation values for Eve. The confidence value pro-
posed earlier does not mitigate this attack, since Fve is in principle not
discouraged from creating an arbitrarily large number of fake peers, thus
reinforcing her forged positive reputation even more. SybilGuard [37] is
proposed as a possible remedy for this type of attacks.

Pace [21] promises to provide a trust management model that can be
readily incorporated in decentralized applications that use event-based
software architectures. The model concentrates on the internal architec-
ture of each node of the network. Trust relationships between digital, not
physical, identities are considered. Internal knowledge and perceptions
of each node are carefully separated from externally reported informa-
tion. The four layers of the internal architecture are the communication
layer consisting of the protocol handler, the communication manager and
the signature manager, the information layer consisting of the internal
information and the external information component, the trust layer is
comprised of the key manager, the credential manager and the trust man-
ager and finally the application layer, which consists of the application
trust rules component and the application’s subarchitecture itself. All the
components are implicitly trusted, except for the communication layer,
because it relays external, possibly untrusted messages. These messages
require an explicit trust value. Several simple attacks such as imperson-
ation are mitigated with cryptographic and other commonly used con-
structs. Fraudulent actions however must be discovered and highlighted
at the application layer, thus once more the burden of solving the more
complex trust issues is handed over to each specific use case of this general
infrastructure. Bootstrapping new users’ trust is accomplished through
out-of-band means. According to [21], successful prototype implementa-
tions of Decentralized Auctioning, of Common Operational Picture and
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of Decentralized File Sharing have been developed using the proposed
architecture.

[22] proposes a decentralized hierarchical structure where the most
trusted peer is the root of the network. Data routing is decided based
on the structure of the network, which in turn is connected to the trust
value of each peer. A global trust scheme arises from this setup. This
system concentrates on supporting a decentralized network of content
distribution, thus no financial trust is discussed. A trust value of a peer
is comprised of two numbers: [T'V], which represents the number of feed-
backs this peer has received and {T'V'}, which represents the trust value
associated to the peer. After a new feedback is given, [T'V] is incremented
by 1 and {T'V'} is set to be the mean of all feedbacks, including the new
one. It is pointed out that old feedbacks may have to be eliminated in or-
der to maintain a satisfactory level of weight for the new feedbacks. Each
new peer is assigned a set of trust managers chosen by her parent peer.
The set of trust managers contains more than 1 peer to ostensibly avoid
peer collusion and is considered to be unknown to the new peer, or to any
other peer except for the parent peer. The parent peer is expected to ran-
domly choose trust managers. Knowledge of the approximate neighbour-
hood of the trust managers is proposed to protect the anonymity of the
trust managers and in the same time avoid broadcasts when requesting
trust information. The details of requesting, sending, signing and updat-
ing trust for a specific peer are discussed and some experimental setups
are assessed with mostly encouraging results.

This architecture is not suitable for Trust Is Risk because of the hier-
archical structure that provides a small set of peers the ability to cause
major network partitions. Furthermore, it does not provide any hard proof
for Sybil resilience or resistance to other kinds of attacks.

[24] is a formal attempt to quantify trust over identity. In this work,
trust from Alice to Bob is represented by a percentage that expresses
the level of confidence Alice has that Bob will only sign public PGP
keys whose corresponding private keys are rightly and uniquely owned
by the person stated in the public key. This is a special use case for
trust, much like financial trust which is a largely unrelated kind of trust.
This type of trust has some transitive properties that are derived from
statistical models and do not have a connection with the concept of flow.
One drawback of such a design is that there is no single indirect trust
measure and as a consequence there are no strong results such as the
Trust Flow theorem, but each user must experiment and choose one or
more trust metrics of her liking based on subjective factors.
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A practical solution for determining chains of trust over PGP is [25].
This project has a simple web interface that takes a start and an end
public key and returns trust paths from the first to the second consisting
of a chain of PGP signatures of public keys freely available on public
keyservers. It is up to the user to decide how much trust a particular chain
inspires. This project shows how a previously end-to-end construction
with no transitive properties such as PGP can be used as basis for a
network with transitive properties.

Yet another proposal is Open Reputation [17]. This project provides
a general framework for rating generation and dissemination in the era of
IoT. Reputers attribute reputation to reputees and make them available
through their own reputation. Reputees are rated with certain reputes
over predefined virtues. For example, the reputer Alice can create a repute
of 98 over the virtue "speed" that is defined as an integer between 1 and
100 for a reputee washing machine she bought. Alice will publish this
repute along with her own reputation.

[17] Does not provide any kind of Sybil resilience, nor does it diverge
from the often revisited theme where reputation is projected on an arbi-
trary bounded scale. This model may serve well under the assumption of
honest reputers, but can be tricked if selfish motives require so.

[23] design an ambitious framework that claims to cover all needs of de-
centralized trust models based on reputation. It consists of the 4C’s: Con-
tent, Communication, Computation and Counteraction. Content refers to
the agents’ network structure (hierarchical, nested, etc.), the representa-
tion of the reputation (discrete, continuous, etc.), the context of the rep-
utation (financial, medical, etc.) and the period of validity of the reputa-
tion. Communication refers to the protocol used to collect and transmit
information (hierarchical or ad-hoc, etc.), to the allowed hop count of
information and to the actual content of the messages exchanged, possi-
bly of many different types (informational, revocation, confirmation, etc.)
Computation engages with the mathematical and design details of trust
derivation, such as whether a simple average of recommendations is used,
how to combine external information with personal experience and how
the period of validity influences the computation. Lastly counteraction
expresses the particular model’s method of feedback dissemination, with
two methods being proposed, namely active and passive dissemination.
An XML specification is proposed for all the aforementioned aspects of
the desired trust and reputation system.

It is currently unclear whether our model can be expressed in the
terms of [23]. More importantly, there is little insight into whether the
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task of expressing it in such terms will be a valuable asset for Trust Is
Risk.

[4] applies the MaxFlow algorithm into real-world situations of infor-
mal contract enforcement and money borrowing schemes. Their approach
combines the algorithmic and sociological aspects of the issue in a produc-
tive way and their results constitute a strong confirmation of the validity
of our assumption that trust is risk. More precisely, they show that money
borrowing between residents in an area of Peru can be correctly predicted
by deriving direct trust from the time residents spend together and cal-
culating indirect trust with the MaxFlow algorithm. Their results show
that our central design choice corresponds to real-world trust dynamics.
The one important difference of their model with ours is that the graphs
used in [4] are directionless because of the way direct trust is derived,
thus making their case a special case of the Trust Is Risk graph, where
all direct trust is obligatorily mutual and equal.

In [34] it is stated that "willingness to take risks may be one of the
few characteristics common to all trust situations" and [35] cites the same
passage, adding "Trust is not taking risk per se, but rather it is a will-
ingness to take risk." These observations corroborate our choice to define
trust as risk.

[35] proposes a concrete model for trust that incorporates several no-
tions. For example, trust from agent A to agent B is a factor of A’s
Propensity and B’s Ability, Benevolence and Integrity. Once more, the
target of [35] is different from ours in that [35] attempts to explain the in-
ner workings of trust, whereas we define trust as risk and build a financial
game atop of this assumption.

[33] constitutes a thorough and highly informative overview of trust
and reputation systems up to the time of writing. Flow models are briefly
discussed, however our case is not covered.

Bartercast [36] uses the maximum flow algorithm in an innovative
way to calculate trust towards unknown BitTorrent peers. MaxFlow us-
age there closely resembles to ours, however the abscence of a blockchain
leaves room for sybil attacks. Nevertheless, simulation results show that
freeriders that selfishly take advantage of the network obtain a progres-
sively worse reputation, a fact that strengthens our reliance on MaxFlow
as a suitable algorithm for trust calculation.

Bazaar [12] proposes an encanhement to existing centralized market-
places where subjective trust is calculated using the MaxFlow algorithm.
The bootstrapping process of the network is extremely similar to how
players join the Trust Is Risk network. However, their approach contains
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a weak point in the way new trust is calculated after each transaction.
Furthermore, trust between parties is commutative because non-directed
graphs are used. This may be viewed as a crucial restriction for Bazaar.
Nevertheless, inclusion of this system as an additional fraud detection
system would probably decrease fraud cases and as a result insurance
fees would diminish and customer satisfaction would increase.

Beaver [26] proposes an integrated decentralized marketplace solution
that provides all the functionality of eBay or other centralized market-
places. Up to one public review per transaction is permitted and user
ratings are globally calculated and not subjective. On the downside, ad-
hoc fees must be attached to several reputation generating actions to de-
ter fraudulent merchants from arbitrarily improving their ratings through
Sybil or other attacks. Our system promises to automate and integrate
several comparable parts of Beaver in a more intuitive system with less
hand-tuned parameters and arbitrary fees that, while discouraging fraud-
ulent action, they also reduce vendors’ and customers’ desire to partici-
pate.

A very different direction is chosen by [29], where an economy based
on personal IOUs is proposed. According to this scheme, a payment from
Alice to Bob can be completed by Alice offering some of her IOUs. If
Bob trusts her, that is a valuable enough payment for him. Otherwise
they can find a chain of trust, comprised by other intermediary agents,
the first of which trusts Alice and is trusted by the second and so on
until the last one trusts the second last and is trusted by Bob. This model
of economy has some interesting implications, namely that conventional
currency is simply viewed as government IOUs and checks as bank IOUs.
Unfortunately, this proposal was made prior to the advent of bitcoin and
thus had no concrete basis to be built upon, leaving room for malicious
intermediary nodes to fake or disclose contradictory trust amounts to
different parties. Furthermore, the distributed nature of the system and
its resemblance to contemporary bank relations could sharply increase the
time needed for a simple transaction, because active agreement of many
intermediate parties would be required.

[28] proposes a system closely related to ours, the mechanics of which
are very similar to Trust Is Risk. The work is accomplished in a more eco-
nomic vein, considering the dynamics that arise from charging a premium
for the references (essentially direct trust) parties provide. Trust in itself
is not strictly defined, it is just suggested that references be given only to
trusted parties. Since this work came before the advent of blockchains, it
relies on the honesty of parties to stay true to the references they have
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published, given that these references are a type of insurance. The as-
sumption of honesty for most of the players in the long term is backed by
the positive social result such a behavior would yield. Long term stabi-
lization of the network and maximum gains for parties can be achieved if
there are no fraudulent players. One further implication of the lack of a
blockchain is that for every failed transaction a potentially great amount
of time may be needed for the defrauded party to collect insurance money.
Furthermore, a relatively small number of intermediate players refusing to
return the insured money can result in the defrauded party losing money,
thus very complex investment strategies are required to minimize risk
while maintaining gains.

[27] describes and analyzes the OpenBazaar infrastructure. As Trust Is
Risk can be a natural extension of OpenBazaar, the aforementioned work
provides valuable insight on how closely related decentralized marketplace
systems function. More precisely, its game theoretic analysis constitutes a
basis for the future corresponding analysis of our work and the elaborate
attacks described and mitigated solve a range of problems that could arise
in Trust Is Risk. However, the concept of trust is not rigorously defined
in [27], thus Trust Is Risk fills that vacuum in an elegant manner.

The discussion in Synereo [31] does not revolve around trust, but it
aims to describe a decentralized social network. As a result, trust is not
rigorously defined, but reputation is and its measure is called Reo. Risking
oversimplification, we could say that the posts of users flow through the
network like current flows through cables. Some charge dissipates for ev-
ery node that receives the post until no charge is left. A user may pay with
AMPs to help her post travel further. AMP is social capital created by previ-
ous popular posts the user has generated. Furthermore, content viewable
by Alice is personalized through her engagement with other users. Alice’s
engagement with Bob is a measure of her amount of time/energy spent
on Bob’s posts. For example, engagement increases when Alice reads and
likes a post by Bob. Bob’s Reo is another factor that determines how
high Bob’s posts will be placed in Alice’s stream. Bob’s Reo as viewed by
Alice is calculated as the mean engagement of Alice’s community with
Bob’s posts. Putting it all together, current is calculated as the product
of charge, AMPs, engagement and Reo.

While [31] does not qualify as a pure trust model, it undoubtedly
contains a host of interesting ideas and approaches on decentralized rep-
utation and mathematical manipulation of arbitrarily many independent
event and content generators. It also belongs in the same extended family
of ideas as Trust Is Risk in that it attempts to definitively port to the
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decentralized setting a popular service that currently exists only through
centralized solutions, namely the service of social networking.

Freenet [10] proposes a decentralized platform for secure, deniable
file storage and retrieval. Files and file identifiers are hashed and files
themselves are additionally encrypted and stored reduntantly in all nodes
that receive them, whether said nodes initiated the file request or not. An
efficient routing protocol similar to IP is used and a Least Recently Used
protocol is used for file retention.

While not directly related with the concept of trust, Freenet is an
interesting example of a functional decentralized system that provides
specific positive properties and can be trusted as a system from its users,
requiring little to no trust between users themselves.

A similar property is exhibited by Bitcoin [2] which assures the exis-
tence of a currency with no central issuing authority where users do not
have to trust anyone else, just the infrastructure itself. More precisely, the
advent of blockchains put the parties that would otherwise be able to forge
coins in a situation where they compete amongst themselves to generate a
valid block, which will in turn be verified by everybody else. This circum-
vents elegantly the need for trust to any external party and confines trust
to each one’s local machine. This is a reasonable trust to demand, since
everyone can read and understand [2] and furthermore verify their clients
execute the correct code, or even develop their own implementation of
the protocol. What Bitcoin achieves is a trustless consensus.

Consensus is a problem loosely related to trust and its best expression
is in [13] as the problem of the Byzantine generals, who want to reach
a common agreement (e.g. attack or retreat) in the presence of faulty,
malicious and dishonest parties who can report inconsistent values to
different generals or fail to reply whatsoever. A strong result achieved in
[13] and put into revolutionary use in Bitcoin is that in the presence of
unforgeable signatures, the honest generals can achieve a consensus no
matter how many generals are corrupted.

9 Further Research

While our trust network can form a basis for risk-invariant transactions
in a pseudonymous and decentralized setting, more research is required
to achieve other desirable properties. Some directions for future research
are outlined below.

If Alice trusts Bob enough to make a purchase from him, she should
not directly pay him the value of the good because then she will increase
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her trust towards Bob. She first has to reduce her outgoing direct trust
in a manner such that the supposition (13) of Risk Invariance theorem
is satisfied. The methods Alice can use to recalculate her outgoing trust
will be discussed in a future paper.

The current description of TrustIsRisk refers to a static setting where
the game evolves in turns. In each turn only one user changes the state
of the network and the game is controlled by a central algorithm, the
TrustIsRisk Game. In the dynamic setting, users should be able to play
simultaneously, freely join, depart or disconnect temporarily from the
network.

Our network evaluates indirect trust by computing the max flow in the
graph of lines-of-credit. In order to do that, complete information about
the network is required. However, disclosing the network topology may
be undesirable, as it subverts the identity of the participants even when
participants are treated pseudonymously, as deanonymisation techniques
can be used [30]. To avoid such issues, exploring the ability to calculate
flows in a zero knowledge fashion may be desirable. However, performing
network queries in zero knowledge may allow an adversary to extract
topological information. More research is required to establish how flows
can be calculated effectively in zero knowledge and what bounds exist in
regards to information revealed in such fashion.

Our game theoretic analysis is simple. An interesting analysis would
involve modelling repeated purchases with the respective edge updates on
the trust graph and treating trust on the network as part of the utility
function.

We are proposing a concrete financial game and not a theoretical
concept. Thus its implementation as a wallet on any blockchain will be
most welcome.

A simulation or actual implementation of TrustIsRisk, combined with
analysis of the resulting dynamics can yield interesting experimental re-
sults. Subsequently, our trust network can be used in other applications,
such as decentralized social networks [31].

1-of-2 multisigs correspond intuitively to simple directed weighted
graphs. However it can be interesting to explore the trust relations that
can arise by using other types of multisig, such as 1-of-3, as vessel for
multi-party trust schemes. Our results do not necessarily hold for other
multisigs and the simple relations now represented by directed weighted
graphs have to be revised under a new kind of representation.
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Appendix

1 Common Notation
Definition 19 (Neighbourhood).

1. Let Nt (A)j be the set of players B that A directly trusts with any
positive value at the end of turn j. More formally,

N*(A);={BeV;:Dlra.p; >0} . (20)
Nt (A)j is called out neighbourhood of A on turn j. Let S CV;. Then

NT(S), = | Nt (4), . (21)
AeS

2. Let N™ (A)j be the set of players B that directly trust A with any
positive value at the end of turn j. More formally,

N~ (A)j ={Be¢ Vi :DIrp_a; > 0} . (22)
N~ (A)j is called in neighbourhood of A on turn j. Let S CV;. Then
N-(S),=UN"(), . (23)

AeS

3. Let N(A)j be the set of players B that either directly trust or are
directly trusted by A with any positive value at the end of turn j.
More formally,

N(A);=N"(A),;UN"(4); . (24)
N (A)j is called neighbourhood of A on turn j. Let S C V;. Then
N(S); =NT(S);UN(S); . (25)
Definition 20 (Total Incoming/Outgoing Trust).

inaj= Y DTrya; (26)
vENT(A);

outaj= Y. DTra; (27)
vENT(A),

We consider the outgoing trust of a player as part of her assets.
Here we add some concrete Turn; examples. Let A = Player(j).
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Turn; =
2.
Turnj = {Steal (y, B) , Add (w, B)} ,
given that
0<y<DITrpsaj-1AN—DTrap;1 <wAw-—y<Caps;_1 .
3.
Turn; = {Steal (z, B) , Add (y,C) , Add (w, D)} ,
given that
0<z<DITrpsaj1N—DTracj1<yAN
N=DITraspj1 <wAy+w—ax<Capaj—1 .
4.

Turn; = {Steal (x, B) , Steal (y, B)}

is not a valid turn because it contains two Steal () actions against the
same player. If

0<zANO0<yAzx+y<DIlrp,aj-1 ,
the correct alternative would be
Turn; = {Steal (x +y,B)} .

Definition 21 (Previous/Next Turn). Let j € N a turn with Player (j)
= A. We define prev (j),next (j) as the previous and next turn that A is
chosen to play respectively. If j is the first turn that A plays, prev (j) = 0.
More formally, if

P ={keN:k<jA Player (k)= A} and

N ={keN:k>jA Player (k) = A} ,
then we define prev (j) ,next (j) as follows:

reo = {0 T 23)
next (j) = min N (29)

next (j) is always well defined with the assumption that after each turn
eventually everybody plays.
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2 Proofs, Lemmas and Theorems

Lemma 5 (Loss Equivalent to Damage).
Consider a Transitive Game. Let j € N and v = Player (j) such that v
s following the conservative strategy. It holds that

min (in,,j, Loss, j) = min (in, ;, Damage, ;)

Proof.
Case 1: Let v € Happy;—1. Then

1. v € Happy; because Turn; = (),

2. Loss, j = 0 because otherwise v ¢ Happy;,

3. Damage, ; = 0, or else any reduction in direct trust to v would in-
crease equally Loss, ; (line 14), which cannot be decreased again but
during an Angry player’s turn (line 16).

4. invyj >0

Thus
min (iny, j, Loss, ;) = min (in, j, Damage, j) =0 .

Case 2: Let v € Sad;_1. Then

1. v € Sad; because Turnj =0,
2. iny; = 0 (line 25),
3. Damage, ; > 0\ Loss, j > 0.

Thus
min (in,, j, Loss, j) = min (in, ;, Damage, ;) =0 .

If v € Angry;—1 then the same argument as in cases 1 and 2 hold when
v € Happy; and v € Sad; respectively if we ignore the argument (1).
Thus the theorem holds in every case. O

Proof of Theorem 1: Trust Convergence

First of all, after turn jo player E will always pass her turn because she
has already nullified her incoming and outgoing direct trusts in Turn,,
the evil strategy does not contain any case where direct trust is increased
or where the evil player starts directly trusting another player and the
other players do not follow a strategy in which they can choose to Add ()
trust to E. The same holds for player A because she follows the idle
strategy. As far as the rest of the players are concerned, consider the
Transitive Game. As we can see from lines 3 and 14 - 16, it is

V7, Z Loss, = ing j,—1 -
vEV;
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In other words, the total loss is constant and equal to the total value
stolen by E. Also, as we can see in lines 1 and 26, which are the only
lines where the Sad set is modified, once a player enters the Sad set,
it is impossible to exit from this set. Also, we can see that players in
Sad U Happy always pass their turn. We will now show that eventually
the Angry set will be empty, or equivalently that eventually every player
will pass their turn. Suppose that it is possible to have an infinite amount
of turns in which players do not choose to pass. We know that the number
of nodes is finite, thus this is possible only if

35" :Vj > j',|Angry; U Happy;| = ¢ > 0 A Angry; #0 .

This statement is valid because the total number of angry and happy
players cannot increase because no player leaves the Sad set and if it were
to be decreased, it would eventually reach 0. Since Angry; # 0, a player
v that will not pass her turn will eventually be chosen to play. According
to the Transitive Game, v will either deplete her incoming trust and enter
the Sad set (line 26), which is contradicting |Angry; U Happy;| = ¢, or
will steal enough value to enter the Happy set, that is v will achieve
Loss, j = 0. Suppose that she has stolen m players. They, in their turn,
will steal total value at least equal to the value stolen by v (since they
cannot go sad, as explained above). However, this means that, since the
total value being stolen will never be reduced and the turns this will
happen are infinite, the players must steal an infinite amount of value,
which is impossible because the direct trusts are finite in number and in
value. More precisely, let j; be a turn in which a conservative player is
chosen and
VjieN,DTrj= > DTry u; -
w,w' eV

Also, without loss of generality, suppose that
VJ > jl,OutAJ' = OutA,jl .

In Turnj,, v steals
m

St:Zyi )

i=1
We will show using induction that

Vn € N, Hjn eN: DTTjn < DTT'jl_l —nSt .
Base case: It holds that

DTT‘jl == DTT‘]'I,1 — St .
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Eventually there is a turn jo when every player in N~ (v);—1 will have
played. Then it holds that

l)T?‘j2 S DTT‘jl — St = DTT‘jl_l — 25t y

since all players in N~ (v);—1 follow the conservative strategy, except for
A, who will not have been stolen anything due to the supposition.
Induction hypothesis: Suppose that

dk > 1:jx > jr—1 > j1 = DTr;, < DTr;, , — St .

Induction step: There exists a subset of the Angry players, S, that
have been stolen at least value St in total between the turns ji_1 and jg,
thus there exists a turn ji; such that all players in S will have played
and thus

DTT‘jk+1 S DTT‘jk — St .

We have proven by induction that
Vn € N,3j, € N: DTTjn < DTle_l —nSt .

However
DTle_l >0ASt>0,

thus
In' e N:n/'St > DT?"jlfl = DTTj"/ <0 .

We have a contradiction because
Vw,w' € V,Vj € N, DTry_yyj >0 ,

thus eventually Angry = () and everybody passes. O

Proof of Lemma 1: MaxFlows Are Transitive Games

We suppose that the turn of G is 0. In other words, G = Gy. Let X =
{Zyw}vxy be the flows returned by MaxFlow (A, E). For any graph G
there exists a MaxFlow that is a DAG. We can easily prove this using the
Flow Decomposition theorem [32], which states that each flow can be seen
as a finite set of paths from A to F and cycles, each having a certain flow.
We execute MaxFlow (A, E) and we apply the aforementioned theorem.
The cycles do not influence the maxFlow (A, E), thus we can remove
these flows. The resulting flow is a MaxFlow (A, E) without cycles, thus
it is a DAG. Topologically sorting this DAG, we obtain a total order
of its nodes such that V nodes v,w € V : v < w = Zyy = 0 [5]. Put
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differently, there is no flow from larger to smaller nodes. E is maximum
since it is the sink and thus has no outgoing flow to any node and A
is minimum since it is the source and thus has no incoming flow from
any node. The desired execution of Transitive Game will choose players
following the total order inversely, starting from player E. We observe

that Yo € V \ {4, £}, Z Two = Y Tow < mazFlow (A, E) < ingy.
weY
Player E will follow a mod1ﬁed evil strategy where she steals value equal

to her total incoming flow, not her total incoming trust. Let jo be the
first turn when A is chosen to play. We will show using strong induction
that there exists a set of valid actions for each player according to their
respective strategy such that at the end of each turn j the corresponding
player v = Player (j) will have stolen value x,, from each in-neighbour
w.

Base case: In turn 1, F steals value equal to > x,g, following the
weY
modified evil strategy.

Turn; = U {Steal (xyg,v)}
veN—(E),

Induction hypothesis: Let k € [j2 —2]. We suppose that Vi € [k], there
exists a valid set of actions, Turn;, performed by v = Player (i) such
that v steals from each player w value equal to Xy .

Vi € [k], Turn; = U {Steal (zwo, w)}
wEN~(v),_4

Induction step: Let j = k + 1,v = Player (j). Since all the players
that are greater than v in the total order have already played and all of
them have stolen value equal to their incoming flow, we deduce that v
has been stolen value equal to > Ty Since it is the first time v

wWENT(v);_,
plays, Vw € N~ (U)j_1 DTy j—1 = DTTy—s0,0 > Ty, thus v is able
to choose the following turn:

Turn; = U {Steal (xyn,w)}
weEN~ (v)j71

Moreover, this turn satisfies the conservative strategy since

2. Tw= D, T

wEN*(U)jf1 wENﬂL(fu)ji1
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Thus T'urn; is a valid turn for the conservative player v.

We have proven that in the end of turn jo — 1, player E and all the
conservative players will have stolen value exactly equal to their total
incoming flow, thus A will have been stolen value equal to her outgoing
flow, which is maxFlow(A, E). Since there remains no Angry player, ja
is a convergence turn, thus Lossy j, = Lossy. We can also see that if &/
had chosen the original evil strategy, the described actions would still be
valid only by supplementing them with additional Steal () actions, thus
Loss 4 would further increase. This proves the theorem. O

Proof of Lemma 2: Transitive Games Are Flows

Let Sad, Happy, Angry be as defined in the Transitive Game. Let G’ be
a directed weighted graph based on G with an auxiliary source. Let also
j1 be a turn when the Transitive Game has converged. More precisely, G’
is defined as follows:

Vi =Vu{T}
E=EU{(T,A)}U{(T,v):v € Sadj, }
V(v,w) € €, ¢y, = DTry—wo — DTy j

r vw

Vv € Sad;,, ¢p, = dpy = 00

O .| Coeuw

_ g Y,

Fig.7: Graph G’, derived from G with Auxiliary Source T
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In the figure above, S is the set of sad players. We observe that Yv € V,
Y. Cw=
weN~(v)"\{T}
= Y (DTryseo— DTry ;) =

weN—(v)\{T} (30)
= Z DTTva,O - Z DT"’va,jfl =
weN~(v)"\{T'} weN= (v)"\{T}

=Ny — 1Ny j;
and

weN+(v)\{T}
= Y (DTryswo— DTresw,) =

weN+(v) \{T} (31)
= Z DTTU‘)'LU’O - Z DTT’U*)’U),_]’*I =
weN+(v)\{T} weNT(v)"\{T}

= outyg — Outyj, -

We can suppose that
VjeN,ing; =0, (32)

since if we find a valid flow under this assumption, the flow will still be
valid for the original graph.

Next we try to calculate MaxFlow (T, E) = X’ on graph G’. We observe
that a flow in which it holds that Vv, w € V,z,,, = ¢,,, can be valid for
the following reasons:

- Yo,w eV, z,,, <cdc, (Capacity flow requirement (9) Ve € &)

— Since Vv € Sadj, U{A}, ), = oo, requirement (9) holds for any flow
@/, > 0.

— Let v € V'\ (Sad;j, U{T, A, E}). According to the conservative strat-
egy and since v ¢ Sadj,, it holds that

outy, g — outy j; = 1My — Ny jp -

Combining this observation with (30) and (31), we have that

2: / _2:/
va_ va'

wey’ wey’

(Flow Conservation requirement (10) Yo € V' \ (Sad;, U{T, A, E'}))
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— Let v € Sadj,. Since v is sad, we know that
outy, g — outy j; > 1My — 1Ny jp -
Since ¢, = 0o, we can set
xh, = (outy o — outy j,) — (iny,0 — iy j;)

In this way, we have

Z T, = outy o — outy, j, and
wey’

! / / . .
Z Loy = Z Cywp Ty = My,0 — My 5y +
weV’ weV\{T}

+(outy o — outy j,) — (1Ny,0 — iy j,) = outy g — outy j, -

2: ! _2: /
wi_ xwv'

wey’ wey’

(Requirement 10 Vv € Sady, )
— Since ¢4, = 00, we can set

/ o /
Tra = Z LAy >
vey’

thus

thus from (32) we have
Z ‘/L‘i}A = Z x;}z} :
veV’ veV’

(Requirement 10 for A)

We saw that for all nodes, the necessary properties for a flow to be valid
hold and thus X’ is a valid flow for G. Moreover, this flow is equal to
maxFlow(T, E) because all incoming flows to E are saturated. Also we
observe that

Z Ty, = Z hy = outag —outaj, = Lossa . (33)
vey’ veY’

We define another graph, G”, based on G'.
V” — V/

93



E(G") = E(G")\{(T,v) : v € Sad,}
Ve € E(G"),cl = ¢

e~ “e

If we execute MazFlow(T, E) on the graph G”, we will obtain a flow X"

in which

Z x%v:x&/’A: Z miilv .

veV” veV”

The outgoing flow from A in X” will remain the same as in X’ for two
reasons: Firstly, using the Flow Decomposition theorem [32] and deleting
the paths that contain edges (T, v) : v # A, we obtain a flow configuration

where the total outgoing flow from A remains invariant, 3 thus
1 /
> Tz D Ty
veV”’ veV!

Secondly, we have

Z CZXU: EC%UZ Zx%v

veV” vey’ veV’ " /
) S ) 2 = Z Tpy < Z TAv -
= Av = o Av veY” vey’

Thus we conclude that
Yo, = ) @y
veY” veY’

Let X = X"\ {(T, A)}. Observe that
Z .%'/Av = Z TAy -
veY” veY

This flow is valid on graph G because

VeEE,CGZCg .

Thus there exists a valid flow for each execution of the Transitive Game

such that

n (34) ; (33)
Zfou: Z LAy = Z Ty, = Lossayj

veY veY” veY’

which is the flow X.

3 We thank Kyriakos Axiotis for his insights on the Flow Decomposition theorem.
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Theorem 11 (Conservative World Theorem).
If everybody follows the conservative strategy, nobody steals any amount
from anybody.

Proof. Let H be the game history where all players are conservative and
suppose there are some Steal () actions taking place. Then let H' be the
subsequence of turns each containing at least one Steal () action. This
subsequence is evidently nonempty, thus it must have a first element.
The player corresponding to that turn, A, has chosen a Steal () action
and no previous player has chosen such an action. However, player A
follows the conservative strategy, which is a contradiction. O

Proof of Theorem 5: Sybil Resilience
Let G1 be a game graph defined as follows:

V1=VU{T1} ,

E=EU{(v,T1):veBUC} ,
Vo, w € Vi \ {T1}, DTr} ., = DTry s
VUEZS’UC,DTr})_,T1 =00 ,

where DT'r,_,, is the direct trust from v to w in G and DTr} ., is the
direct trust from v to w in Gy.

Let also G2 be the induced graph that results from G; if we remove the
Sybil set, C. We rename 77 to T and define £ =V \ (BUC) as the set of
legitimate players to facilitate comprehension.

4 N\

o0
5 @
(LB G

N G J

Fig.8: Graphs G; and Gy

According to theorem (4),

Traspoe = maxFlowy (A, Th) ANTrag = maxFlows (A, Ty) . (35)
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We will show that the MaxFlow of each of the two graphs can be used
to construct a valid flow of equal value for the other graph. The flow
X1 = MazFlow (A, T1) can be used to construct a valid flow of equal
value for the second graph if we set

Yv € Vo \ B,Vw € Vg,aj‘vmg = Tyw,1 >

Yv € B,xUTQ,Q = Z LToyw,1
wGNr(v)

Yo, w € B, Tyw2 =0 .

Therefore
mazxFlow; (A, T1) < maxFlows (A, Ts)

Likewise, the flow Xy = MazFlow(A,Ts) is a valid flow for G; because
Go is an induced subgraph of G;. Therefore

mazFlowy (A, T1) > maxFlows (A, T5)
We conclude that
mazxFlow (A, T1) = maxFlow (A, Ts) (36)

thus from (35) and (36) the theorem holds. O

Proof of Theorem 10: maxFlow Continuity
Let Cy € C. We want to prove that

Ve>0,30>0:0<||C—-Chllp <d=|F—Fy| <e .
We will prove it by contradiction. Suppose that
Je>0:¥6>0,0<||C—=Collp <d=|F—Fy| >e€ .

Let v1,u; € V (G). Let C such that

€

2

V(’U,’U,) € E(g) \ {(Ulaul)}ycvu = Co,vu -

Coiu; = COvyuy +

Due to the construction, for § = € we have

0<||C—Coll, < . (37)

96



Any valid flow for Cy is also valid for C, thus
Fy<F . (38)
Also, it is obvious by the way that C' was constructed that
F<Fy+ g (39)
From (38) we have Fy < F + §, which, in combination with (39), gives
€
|F — FO‘ § 5 < € s

which, together with (37) contradicts our supposition. Thus maz Flow is
continuous on Cjy. Since Cy is arbitrary, the result holds for all Cy € C,
thus max Flow is continuous with respect to ||-||, for any p € NU{oco}. O

Proof of correctness for algorithm fcfs
We will first show that at the end of the execution, i < n+1. Suppose that
n

¢ > n+1 on line 14. This means that Fr,, , exists and Fiypp, = F'=> o =

0 < F —V since, according to the condition on line 4, F' — V 210.1 This
means however that the while loop on line 9 will break, thus Fry, ni1
cannot exist and ¢ = n + 1 on line 14, which is a contradiction, thus
the first proposition holds. We can also note that, even if i = n + 1 at
the end of the execution, the while loop will break right after the last
incrementation, thus the algorithm will never try to read or write the
nonexistent objects p41,¢,41-

We will now show that Vi € [n], ¢, < z;, as per the requirement (16).
Let i € [n]. In line 7 we can see that ¢, = z; and the only other occurence
of ¢, is in line 12 where it is never increased (reduce > 0), thus we see
that the requirement (16) is satisfied.

We will finally show that En: ¢, = F — V. From line 3 we see that

i=1
Feurp = F. Let i € [n] such that Fey,; exists. If Fryr; < F — V), then
Feur,i+1 does not exist because the while loop (line 9) breaks after cal-
culating Fry,;. Else

Fcur,i—l—l = Fcur,i — min (.%'Z'+1, Fcur,i — F 4+ V) . (lines 10- 11)

If $i € [n] : min (2, Fayri1 — (F = V)) = curi—1 — (F'—=V), then
Vi € [n],min(x;, Feyrs — (F —V)) = x;, thus from line 12 it will be
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Vi € [n],c, = 0 and from line 11, Fi,,,, = 0. However, we have

min (mna Fcu’r,n—l - (F - V)) 7é Fcur,n—l - (F - V) N
Fcur,n—l = Tn

Sz <z,—(F-V)=F<V

which is a contradiction, since if this were the case the algorithm would
have failed on lines 4 - 5. Thus

Jdi € [n] : min (':UZ'+1) Fcur,i - (F - V)) = Fcur,i - (F - V)

That is the only i € [n] such that Fiy, i1 = F —V, so
i—1
VO <k < iaFcur,k = Fcur,k—l - Tk = Fcur,i =F - Zxk .
k=1

Furthermore, since Feyrit1 = F =V, it is

i—1
G =%ig1 —Foni+F—V=2,—F+> a,+F -V =
k=1
i
:>C/Z+1:Zxk_v 5
k=1
Vk <i,cj, =0 and
Vk>i+1,0;€:$k .
In total, we have
n % n n n
ZC;C:Z.T]{;_V_'_ Z $k:Zxk—V:>Zc§€:F—V )
k=1 k=1 k=i+1 k=1 k=1
Thus the requirement (17) is satisfied. O

Complexity of algorithm fcfs

Since 7 is incremented by 1 on every iteration of the while loop (line 13)
and ¢ < n 4+ 1 at the end of the execution, the complexity of the while
loop is O (n) in the worst case. The complexity of lines 4 - 5 and 8 is
O (1) and the complexity of lines 2 - 3, 6 - 7 and 14 is O (n), thus the
total complexity of algorithm 7 is O (n). O
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Note that we choose to calculate the complexity of the length()
function as O (n). Whereas this complexity is implementation-dependent,
even with the most naive approaches it cannot be higher than O (n),
thus we use this worst-case complexity in our analysis to cover all cases.
This approach is implicitly used in all subsequent complexity analyses,
but since all complexities are greater than O (n), this approach does not
influence them.

Proof of correctness for algorithm abs

First of all, we can note that, if Fp.o, < F — V in line 12, then the
execution will enter the else clause of line 16. Therefore, in line 19, F_,,
will get the value F' — V', as we can see by executing the lines 17 - 19 by
hand. This in turn means that the loop in line 9 will break right after
the else clause is executed. Furthermore, the assignment in line 15 in
combination with the truth of the statement Fj.., > F' — V in line 12
shows that, if the execution enters the if clause of line 12, then the loop of
line 9 will be executed at least once more. These two observations amount
to the fact that the else clause will be executed exactly one time and
afterwards the while loop will break.

We use the notation Fi,,o, reductiong and emptyg to refer to the
initial values of the corresponding variables, as set in lines 3, 8 and 7
respectively. Furthermore, the notation empty;, reduction;, Fe,; and i;
is used to refer to the values of the corresponding variables after the j-th
iteration of the while loop. i; is chosen in line 10. From lines 11, 13, 15, 12
and 17 to 19 we see that

Forovjy, Fprovj > F -V
Fcur,j = { prov.) proed , Where

F—‘/, Fprov,jSF_V

Forovj = Feurj—1 — (n — empty;_1) (xij — xij71> ,j>1land x;, =0 .

It is worth noting that the maximum number of iterations is n, or else
J < n. This holds because, if we suppose that Fi,, 1 exists, it is

Fowrn >F =V >0 (40)
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However, we can easily see that in this case

j=1
n n n—1
=D wi, =y (n= (= D)ai, + Y (n—j)w,
Jj=1 j=1 j=1
n n—1
=Y ai, = Y = (= 1) = (n— ey, — (n— (0= 1) i, =
Jj=1 j=1
n n—1
= Zx% B L Lip, = 0 ’
7j=1 j=1

which is a contradiction to (40), thus Fy;. n4+1 does not exist and j < n.
This means that popMin() will never fail.

We will now show that Vj € [n], empty; < n. At line 7, it is emptyy =
0 < n. empty is again modified in line 14, where it is incremented by
at most 1 at each iteration of the while loop (line 9). As we saw above,
the iterations cannot exceed n and empty is not incremented in the last
iteration which consists of the else clause, thus Vj € [n],empty; < n.

Next, we will show that Vi € [n],¢; < wx;, as per the requirement
(16). From line 23, we see that it suffices to prove that reduction > 0.
In line 8, reduction is initialized to 0. In line 13, reduction is set to x;,
which is always a non-negative value. The last line where reduction is
modified is 18. In this line, it is Fiy > F — V or else the while loop
would have broken before beginning this iteration and n > empty as we
previously saw. Thus the non-negative variable reduction is increased and
the resulting value is always positive.

We will finally show that . ¢, = F — V, which satisfies the require-
i=1
ment (17). Let k,0 < k < n be such that at the end of the execution

Vi < ke, =0AY) > ke, >0 .
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The following holds:

n
ZC;]' = Z C;:j = Z (:Eij - Teductionk.H) =

j=1 j=k+1 j=k+1
L F, —(F=-V
Z <$ij . <xzk + cur,k (k )))
j=k+1 e
k
n Fcur,ﬂ - ZZ (n - (l - 1)) (‘ril - ‘Til—l) -F+V
=1
P g n—k
k—1
n F->n—-1l+1z,+ > (n—x;;, —F+V
Z wij — | Ziy, + =1 l;l
j=k+1 "o

Z Ty — (n—k)xi, — Z—k (—Zwil —(n—k+1)x, —i—V)
j =1
k—1
Z Ty, — (n — k) x;, +inj +n—k+1)x, -V
j=1
j=1
thus the desired property holds. O

Complexity of algorithm abs

Lines 4 - 5, 7 - 8 and 11 - 19 have a complexity of O (1). Lines 2 - 3
and 22 - 24 have a complexity of O (n). The while loop of line 9 is
repeated at most n times, as we saw in the proof of correctness. Thus the
total complexity is

O (preprocess) + O (n) O (popMin) .
If the flows are first sorted, it would be

O (preprocess) = O (quicksort) = O (nlogn) and
O (popMin) =0 (1) ,
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amounting to a total complexity of O (nlogn). In the case a Fibonacci
heap is used, it is
O (preprocess) = O (FibonacciHeap) = O (n) and
O (popMin) = O (find-min) 4+ O (delete-min) = O (logn) ,

thus the total complexity is again O (nlogn). O

Proof that algorithm abs minimizes ||4;||~
Let reduction be the final value of the corresponding variable. It holds

that
Vi € [n]:d,>0,4; = reduction ,

Vi€ [n]:d,=0,4; =x; and
Vi € [n] : ¢} = 0, reduction > x; ,

thus we deduce that

) — Y — .
|| Ailloo 1%1?3)(71 (aiz Cz) reduction .

With the capacity configuration C’ resulting from abs(), it holds that
n

> ¢, = F—V. Suppose that there exists a configuration C; that maintains
i=1

that property:

ZCLZ‘ =F-V (41)
i=1
and furthermore
[|A1i]loc = b < reduction . (42)

Then it must be
Vi € [TL],ALZ' <b=Vie [TL],CLZ‘ >x;—b .

Without loss of generality, suppose that x; are sorted in ascending order.

Then

3k € [n]u {0} : VZ: <K,z < Teductz:on
Vi > k', x; > reduction
Vi<ky,x <b

and Jk; € [n] U {0} : Z‘_ 1,Zi <
Vi > ki, 2 > b

Since b < reduction, it is kqy < k’. It is:

Vi € [k‘l] ,0< Cl,i < z; and
Vie [n]\[k],zi—b<ciy <.

62



Let all c1; assume the smallest possible value according to the above
restriction. Then

Vi€ [K']\ [k1],2z; > b and (43)
ch,i = Z (l’z — b) > Z (l‘l — b) (>)
i=1 i=k1+1 i=k'+1

n n

> Z (x; — reduction) = Zc; =F-V .
i=k'+1 i=1

We see that even with the minimum possible C; configuration, the hy-

pothesis (41) is violated, thus the existence of C; is a contradiction. We

have thus proven the proposition. O

Proof of correctness for algorithm prop
We will first show that Vi € [n], ¢, < x;. Let i € [n]. According to line 7,
which is the only line where ¢, is modified, it is

Vv Vv
! L . = . -
G = Ti — Ll = T (1 F) . (44)

Since 0 <V < F, it is
1% Vv
— <1 <l——x<1. 4
0<5<1=0<1-5< (45)

From (44) and (45), along with the fact that x; > 0, it is straightforward
to see that ¢, < x;, thus the requirement (16) is satisfied.
n

We will now show that Y- ¢; = F — V. At the end of the execution it

i=1
is
=F
n n V n V n ;xz
ZcézZ(azi—xO:in—me = F-V,
i=1 =1 =1 =1
thus the requirement (17) is satisfied. O

Complexity of algorithm prop
The complexity of lines 2 - 3, 6 - 7 and 8 is O (n) and the complexity of
lines 4 - 5 is O (1), thus the total complexity of the algorithm is O (n). O

Proof of Lemma 4: maxFlow Monotonicity
Supppose that

361,02 : 81 < 69 AmazFlow (01) < maxFlow (§2) < F .
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We choose X/, X4 such that
Vien|, o) ; <ziAay; <z

This is always possible because we can derive the maximum flows X{ and
X/ starting with X and reducing the flow along paths beginning from
edges with capacities c/LZ- < x; and 0'271- < x; respectively, until the flows
become valid.

Define MinCut (§) as the minimum cut set of the MaxFlow () con-
figuration. Let

S;={i€n]:v; € Nt (A) N MinCut (6;)},7 € {1,2} .

It holds that Sj # 0. Suppose that S; = (). Since F' > Fj, there exists a
path from A to B on G with positive flow not used, thus X7 is not the
maximum flow, which is a contradiction. Thus S; # 0,7 € {1,2} .
Moreover, it holds that Sy C Sa, since Vi € [n],c5; < c},;. More
precisely, it is
Vie[n]:ch; >0,ch; <cpy -

Every node in the MinCut (6;) is saturated, thus
VZ S Sl,x;',i = C;,i7j € {1, 2} .

Thus 25, < > 2§, and, since mazFlow(d;) < maxFlow(ds2), we
€S i€S1
conclude that for X7, X3 it is > a5, > > ;. However, since
iG[’n]\S1 ’iG[n]\S1
x; ; < x;,j € {1,2}, the configuration X" such that

Vie Sy, x =y,
Vi € [n]\ Sy, 2] = ;UIQZ

is a valid flow configuration for C] and then

Fi > a4+ > al=> a1+ Y  abh;>maxFlow(s) ,
€S i€[n]\S1 €S 1€[n]\S1

which is a contradiction because F| = mazFlow (§1) by the hypothe-
sis. Thus maxFlow (61) > maxFlow (d2) and, since 01,02 were chosen
arbitrarily with the restriction §; < d2, we deduce that the proposition
holds. O
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We will now prove that BinSearch returns the desired 0* when we
provide it with an appropriate interval as input.

Proof of correctness for algorithm BinSearch
Suppose that

[F' — €1, F' + €3] C [maxFlow (top) ,maz Flow (bot)]
We will prove that
mazFlow (6*) € [F' — €1, F' + ]

First of all, we should note that if an invocation of BinSearch returns
without calling BinSearch again (line 3 or 13), its return value will be
equal to the return value of the initial invocation of BinSearch, as we can
see on lines 9 and 11, where the return value of the invoked BinSearch is
returned without any modification. The case where BinSearch is called
recursively is analyzed next:

If mazFlow (%) < F’' — ¢ (line 8) then, by the maxFlow mono-
tonicity lemma, 6* € [bot, W). As we see on line 9, the interval

(W, top} is discarded when the next BinSearch is recursively called.
Since F' + ea < mazFlow (bot), we have

top + bot

[F'—e1, F' + e C [maa:Flow ( 5

) ,mazFlow (bot)}
and the length of the available interval is divided by 2.
Similarly, if mazFlow (W) > F' + ey (line 10) then, by the

maxFlow monotonicity lemma, it holds that §* € (L;“th, top} . According

t top+bot
’ 2

to line 11, the interval [bo ) is discarded when the next BinSearch

is recursively called. Since F' — €¢; > maxFlow (top), we have

top + bot)]

[F'— e, F' +e] C {maxFlow (top) , mazFlow ( 5

and the length of the available interval is divided by 2.
As we saw, it holds that

[F' — €1, F' + €3] C [mazFlow (top) ,mazFlow (bot)]
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in every recursive call and top — bot is divided by 2 in every call. It is
|[F" — €1, F' + ea]| = €1 + ea. Let botg, topy the input values given to the
initial invocation of BinSearch, bot;,top; the input values given to the
Jj-th recursive call of BinSearch and len; = |[bot;,top;]| = top; — bot;.
We have

tOpj_l — botj_l

Vj > 0,len; = top; — bot; =

2
. topg — boty
Vj > 0,len; = —
We understand that in the worst case
. topg — boty . topg — boty
leni=€e1+e =2 = ———— = j =log),(———
! ! 2 €1+ €2 J gal €1+ €2

Also, as we saw earlier, 6* is always in the available interval, thus it holds
that
mazFlow (6°) € [F' — e, F' + €]

Complexity of algorithm BinSearch
Lines 2 - 3 have complexity O (1), lines 6 - 7 have complexity O (n),

lines 8 - 13 have complexity O (maxFlow) + O (BinSearch). As we saw

top—bot
€1+€2
recursive calls of BinSearch. Thus the function BinSearch has worst-case

top — bot
O ((maxFlow + n)log, <0p+0>>
€1+ €

in the proof of correctness for BinSearch, we need at most log, (

complexity

Proof of correctness for algorithm dinfmin
Let C' = dinfmin(c;, V, €1, €3). We will show that

F' e [F—V—Gl,F—V+62] .
We can easily see that

mazFlow (0) = F and

i€[n]

mazFlow (max{cﬁ) =0,
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thus 6* € O,mz[n]c{ci} . From the proof of correctness for BinSearch,
€N

we know that mazFlow (6*) € [F —V — €1, F — V + €3], given that €7, €2
are chosen so that FF —V —e¢; > 0, F —V + e < F, so as to satisfy the
condition [F' — €1, F' 4+ €3] C [maxzFlow (top) ,maxFlow (bot)]. The last
condition is always met due to lines 6 - 8. O

Complexity of algorithm dinfmin
The complexity of lines 4 - 5 and 6 - 8 is O (1), the complexity of
lines 2, 3, 9, 11 - 12 and 13 is O (n) and the complexity of line 10 is

O (BinSearch) = O ((maxFlow + n)log, (5’"” )), thus the total com-

€1+€2

plexity of dinfmin is O ((maa;Flow + n)logy ( maz )) ]

€1+€2

3 Algorithms

This algorithm calls the necessary functions to prepare the new graph.

Execute Turn
Input : old graph G;_i, player A€ V;_1, old capital
Capaj—1, TentativeTurn
Output : new graph G;, new capital Cap,;, new history H;
executeTurn(G;_1, A, Capaj_1, TentativeTurn)
(Turn;, NewCap) = validateTurn(G;_i, A, Capaj—1,
TentativeTurn)
return(commitTurn(G;_1, A, Turn;, NewCap))

The following algorithm validates that the tentative turn produced by
the strategy respects the rules imposed on turns. If the turn is invalid, an
empty turn is returned.

Validate Turn
Input : old G,_1, player A€ V;_1, old Capaj—1, Turn
Output : Twrnj, new Capa;
validateTurn(G;_1, A, Capaj_1, Turn)

Yo = Yoqa = O

Stolen = Added = 0

for (action € Turn)

action match do
case Steal(y,w) do
if (y > DTry—aj-1 or y < 0 or w € Stolen)
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return((), Capaj_1)
else
Ys¢ +=y
Stolen = StolenU {w}
case Add(y,w) do
if (y < -DTra—y,j—1 or w € Added)
return((), Capaj—1)
else
Yoda +='y
Added = Added U {w}
if (Yaaqa - Yst > Capaj-1)
return((), Capaj—1)
else
return(Turn, Capaj—1 + Y — Yadd)

Finally, this algorithm applies the turn to the old graph and returns the
new graph, along with the updated capital and history.

Commit Turn
Input : old G,_i, player A€ V;_1, NewCap, Turn;
Output : new Gj, new Capa;, new H;
commitTurn(G;_i, A, NewCap, Turn;)
for ((v, w) €&))
DTTU—)w,j = DTTU—HU,j—l
for (action € Turn;)
action match do
case Steal(y,w) do
DTrya; = DIrysa;—1—Y
case Add(y,w) do
DTrasw; = DIraswj—1+Y
Capa; = NewCap; H; = (A, Turn;)
return(G;, Capaj, H;)

It is straightforward to verify the compatibility of the previous algorithms
with the corresponding definitions.
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