ORWELL: Monitorization Platform for a 5G
Testbed

Alexandre Serras (97505), Gongalo Leal (98008), Pedro Duarte (97673), Vasco Regal (97636)
Projeto em Informdtica 2021/2022
DETI

Universidade de Aveiro
Aveiro, Portugal
Email: alexandreserras@ua.pt, goncalolealsilva@ua.pt, pedro.dld@ua.pt, vascoregal24@ua.pt

Abstract—S5G networks are fiercely developing and so are
the vertical applications of this technology. To develop new
5G applications, researchers need to test them. This necessity
led to the creation of 5G testbeds with state-of-the-art tech-
nology. These tests require a controlled environment, thus all
the infrastructure has to be monitored. This work discusses an
approach that complies with SGASP’s approach and centralizes
all the information on a unique database. Moreover, the proposed
methodologies were implemented in a proof of concept product
which demonstrates the potential of the proposed approach.

Index Terms—5G, Monitoring, Testbed, Prometheus, Grafana,
OSM, VNF

I. INTRODUCTION

Before embarking upon a full-scale project, researchers con-
duct pilot studies that evaluate feasibility, computational costs
and potential problems regarding their Network Applications
(NetApps). These tests are held in a controlled environment
over state-of-the-art infrastructure called testbed. 5G testbeds
offer complete 5G system functionalities such as a 5G Core
and 5G RAN. Besides the network infrastructure and since 5G
applications are deployed on virtual machines or containerized
environments based on the cloud, 5G testbeds provide sets of
servers that host several Virtual Network Functions. Allied
with all this infrastructure, a fully functional testbed also
grants a trustworthy CI/CD pipeline for NetApps deployment
on the test environment

The testing phase requires continuous monitoring of both,
the VNFs being tested and the network infrastructure. In order
to achieve quality results in the end of this phase, the testbed
must remain as a controlled environment maintaining the same
performance throughout the testing process. Assuming that the
testbed’s performance levels are stable, one can assume that
every performance variation detected during a NetApp test
was caused by malfunction on the VNF being tested. This
leads to the implementation of monitoring tools in the testbed
and in all the machines under test. However, most monitoring
solutions require direct access to the VNFs which may cause
some privacy issues and can bring some future issues regarding
the testing results, since it was accessed by someone other than
its developer.

II. PROPOSED MONITORING SYSTEM

This work presents new mechanisms and a toolset to mon-
itor a 5G testbed. The toolkit relies mostly on open-source
tools capable of monitoring VNFs, network’s performance and
security, system’s security liabilities and 5G infrastructure.
When compared to other state of the art projects such as
NetGraf [1]], Orwell presents an alternative architecture, which
brings an uniform access interface and data storage format.
This system considers VNFs as blackboxes, so all the metrics
are collected through a non-intrusive process.

A. Exporting Metrics

Because both VNFs and the network are monitored, multiple
approaches for different metrics are required.

Regarding VNF monitorization, as we can’t ever access
them, in the worst case scenario we have to collect metrics
through the Gnocchi API, which collects metrics via Open-
Stack (hypervisor). However, the quantity of metrics measured
through this tecnique is quite limited. On the other hand, dif-
ferent OS image were created with pre-configured exporters,
which allows a VNF to launch with a proper metric exporter
such as Telegraf or Prometheus’ Node Exporter running, which
allow the gathering of much more detailed metrics.

When it comes to network metrics, they will be collected
for both the network and the 5G core, for all network devices,
called slots, and network interfaces. PerfSonar, the tool used to
obtain network metrics was configured in two different VMs,
one running PerfSonar Toolkit, considered the main node, and
the other a PerfSonar Testpoint, which is a lighter version.
This setup is currently running inside of ITAv’s network, but
the objective is having nodes in different testbeds, enabling to
collect metrics about the connectivity between two physically
distant places. In the context of obtaining 5G core metrics,
requests to Huawei’s eSight API are made. However, this API
is not yet stable inside of ITAv and we were only able to collect
a small amount of metrics compared to our initial objective.

B. Middleware

This is the most crucial piece of our solution which is re-
sponsible for linking the data providers, metric exporters, with
the data storage, Prometheus. More than that, through its API,
it contains the required service discovery endpoints, directly



linked with the OSM, a PerfSonar endpoint for configuring
tests dinamically with new nodes and a couple informative
endpoints for checking running VNF’s details, such as the
available exporters. It is also responsible for orchestrating
Grafana, creating and updating user accounts, organizations
and dashboards in response to events.

C. Data Visualization

To see the metrics collected, Grafana queries Prometheus,
and presents the returned information in four separate dash-
boards: VNFs, perfsonar, eSight slots, and eSight interfaces,
and thus the various metrics gathered can be observed in the
corresponding dashboards without a mix of information.

D. Security Mechanisms

Suricata and Infection Monkey, two existing security tech-
nologies, were configured to assure the security of everything
that happens inside the testbed.

Suricata is a Network Security Monitoring application
that examines and processes network traffic using sets of
community-created and user-defined signatures.

Infection Monkey is a security tool to simulate network
exploits and report vulnerabilities.

Suricata :
Service

Discovery

Configs

Infection
Monkey

OSM

Collectors Translators

Message Broker

Fig. 1. System Architecture

III. WORKFLOW

The workflow of our final solution, currently implemented
inside of ITAv’s network, starts with the deployment of a
VNE. This action is done through the OSM service, where an
admin is able to configure the new machine with the intended
hardware resources and a base OS image which, as already
mentioned, should have a running metrics exporter by default.
As of now, we provided one image with a Telegraf instance
and another with a Prometheus’ Node Exporter but launching
a different image, even if it has no exporters running, will not
exclude the new VNF from our system’s flow, as we are also
able to gather metrics from Gnocchi, at the hypervisor level.

When the machine is running it is a matter of time until
it is detected by our Middleware’s service discovery, which
is linked with Prometheus, making every machine available
from of the OSM’s API appear in Prometheus’ targets. The
information that reaches this last tool is associated with a
url where it is expected that the VNF’s metrics will appear,
already translated, and always points to our Middleware’s
/metrics/<host> endpoint. Here we also introduce the concept

of virtual hosts, which are associated with static endpoints,
reserved for the metrics of specific services not related with
a unique host, namely network and 5G core metrics. Also at
this step, when the service discovery finds a new machine it
creates Grafana credentials for the registered responsible for
the VNF and generates a dashboard for tracking metrics.

The multiple exporters now running push their metrics
regularly to a Kafka topic reserved for the specific service
associated and soon a translator should read that message,
transform it to comply with Prometheus’ format and store it
in a Redis cache, inside of a list with the name of the data
origin. A request to the /metrics/<host> endpoint referred
earlier has the effect of retrieving all the metrics stored in
a specific Redis’ list and deleting it. The requests are done
frequently by Prometheus, which will read and store all the
metrics returned.

Finally, a user is now able to login into Grafana with his
credentials, access the created dashboard and visualize the
results. Users will also be able to receive alerts through Slack
when certain metrics meet certain condition(s).

IV. CONCLUSION

We were able to achieve most of our goals, monitoring
VNFs with different or no exporters installed without directly
accessing them, monitoring network metrics and monitoring
the 5G Core but, even more important, we were able to create
a fully modular system and develop strategies to facilitate
the easy integration of new metrics. To assure the testbed’s
security we configured security tools, Suricata and Infection
Money, and even created a Selenium-based API for Infection
Monkey, which was lacking and is fundamental for proper
automation of tasks. We did all this depending mostly on open-
source tools and created a few new tools which will be made
available for the community.

In this work we studied a large number of tools, technolo-
gies and concepts that were not familiar to any member of the
group and subsequently ran into many challenges which were
only surpassed due to the good dynamic and dedication of
every team member, including the advisors. As a group, we are
also excited about our contribution for the SGASP European
Project, which aims to boost the development process of 5G
applications.

Future work would include dealing with horizontal scali-
bility mechanisms, configuring Kafka and Redis as scalable
clusters and adding the ability to lauch new translators as
required, depending on the amount of messages that are left
to translate, improve our application’s initialization procedure
and developing a graphic interface for admins to analyze logs
and statistics of the system as a whole and interact with
specific components such as Grafana or Infection Monkey.

REFERENCES

[1] D. Kaur, B. Mohammed and M. Kiran, 2022. NetGraf: A Collaborative
Network Monitoring Stack for Network Experimental Testbeds. [online]
Arxiv.org. Available at: https://arxiv.org/pdf/2105.10326.pdf


https://arxiv.org/pdf/2105.10326.pdf

	Introduction
	Proposed Monitoring System
	Exporting Metrics
	Middleware
	Data Visualization
	Security Mechanisms

	Workflow
	Conclusion
	References

