Universidade de Aveiro

2022
Alexandre Serras ORWELL
Goncalo Leal Monitorization Platform for a 5G Testbed

Pedro Duarte
Vasco Regal

Keywords 5G, Monitoring, Testbed, Prometheus, Grafana, OSM, VNF.

Abstract 5G networks are fiercely developing and so are the vertical applications of this tech-
nology, such as Automotive, 4.0 Industry or Public Protection and Disaster Relief.
To develop new 5G applications, researchers need to test them. However, the
cost of 5G infrasctructure and the required expertise to assemble a fully functional
testbed may be a barrier that some cannot overcome. This led to the creation of
semi-public and public 5G testbeds with state-of-the-art technology which allow
NetApp developers to have access to the required infrastructure to test their ap-
plications without having to worry about allthe deployment process. These tests
require a controlled environment,thus all the infrastructure has to be monitored.
This work discusses an approach that complies with 5GASP directives and central-
izes all the information on a unique time-series database.Moreover, the proposed
methodologies were implemented in a proof-of-concept product, demonstrating the
potential of the proposed approach on a working testbed.

Contents

[Contents i
|[List of Figures| v
ik of Tablesd vi
ix
[(l__Introduction 1
[L.1 ~ 5th Generation Mobile Network (5G] testbed|. 1
|1.2 How Instituto de Telecomunicagoes de Aveiro (['TAvl)’s testbed works| 1
[1.37 5G Application & Services Experimentation and Certification Platform (EGASDP)) 1
L4 Motivation and Goalsl o oo 2

2 State Of The Artl 3
[2.1 ~ Monitoring and Controlling Research Experiments in Cloud Testbeds 1| 3
2.1.1 Advantages of Sonar| L 3

[2.2 Monitoring of a virtual infrastructure Testbed [2]| 4
[2.3 A Testbed Evaluation for a Privacy-Aware Monitoring System in Smart Home [3]| . . 4
2.3.1 Reduced network trafficf o oo o 4

2.3.2 Security and privacy| e 4

2.4 NetGrat: A Collaborative Network Monitoring Stack for Network Experimental |

| Testbeds 4] 4
24.1 Problems of NetGrafl 00 0L 5

|3 Conceptual Modelling] 7
BIProbleml . . o o 7
B2 Terminology| e 7
B2T Orwelll o oo 7

B22 Tntrusivel 7

B23 Non-Intrusivel 7

[3.5 Requirements|

Procedure and Implementation|

4.1 System Architecture|.o
4. 1.1 OSMI. . . . e

4.1.3 Message Broker| oo

4.1.5 Host Configs|
4.1.6 Cache Metrics Storage| L o
4.1.7 Storage and Visualization| o0
1.8 Security]o . e e e e
[4.2 Host Configs Databasel

[4.7 Orwell Application Programming Interface (API)|

4.7.2 Discovering Services| Lo Lo

4.7.3 Metric fetching| Lo

.74 Management|
4.7.5 Background tasks|. o

[4.8 Service Discovery| e

[4.9 Orwell Management Platform|

ii

© o 0o oo

[5.1 Virtual Network Function (VNE|) Metrics Exporters|

p.1.2 Prometheus Node Exporter|

5.1.3 elegraf]

5.4 ecurity|.

6.2 Pull Requests and Code

6.4 Repositories|

6.5 Deployment|

6.5.1 Deployment tutoriall o oo

6.5.2 pipelines

6.6 One Touch Deployment|

31
31
31
31
32
32
33
33
33
34
34
34

37
37
37
37
37
38
39
40
40
40

41

43

iii

List of Figures

2.1 Somnar Architecturel. L 3
2.2 NetGraf’s Architecturel 4
[3.1 Use Cases Diagram| e 8
[4.1 System Architecture| L e 11
4.2 Relational Database Schemal oo o 16
[4.3 Suricata alert dashboard example| 0oL 26
[4.4 Suricata event dashboard example 1| 0oL o 26
[4.5 Suricata event dashboard example 2| o oo oo 27
4.6 Suricata Slack channell. oo 27
47 Grafana Slack channell o oL 29
b1 Gnocchi Dashboard| o L 31
[0.2 Node Exporter Dashboard| oo 32
[5.3 Telegrat Dashboard| 32
b4 PerfSonar Dashboardl 33
[5.5 eSight Interface Dashboard| 33
[0.6 eSight Slot Dashboard|. 33
[6.7 Running the monkey from thelAPI. 34
[5.8 Infection Monkey detecting machines| 0o oL 35
[0.9 Breaching Report| 35
[6.1 Proot of Concept Deployment| 0. 38

List of Tables

e | BILC BRI "
BEGASP __1[5G Application & Services |

xperimentation and Certification |

Glossary

[JavaScript Object Notation|
MAE Mobile Automation Engine
[Management and Orchestration]
NetApp | [Network Application|

1API | [Application Programming Interface|
ICI | |Continuous Integration|

ICD | |Continuous Delivery|

ICD | |Continuous Deployment|

INSM | INetwork Security Monitoring|
OS [|Operating System|
OSM | |Open Source MANO|

CPU Central Processing Unit SD Service Discovery
CRUD Create, Read, Update and Delete SNMP Simple Network Management Protocol
CSV Comma-separated Values RAM Random Access Memory
[ETST____] [European Telecommunications | (RAN | [Radio Access Networkl

[Standards Tnstitute [REST] |Representational State Transfer|
GUI Graphical User Interface [TCP_____ | [Mransmission Control Protocoll
HTTP Hypertext Transfer Protocol VIM Virtual Infrastructure Manager
IDS [|Intrusion Detection System| VM | Virtual Machinel
IPS | |Intrusion Prevention System]| Wirtual Network Functionl
MTAv] [Instituto de Telecomunicacoes de Aveiro] XML Extensible Markup Language

ix

CHAPTER

Introduction

1.1 [EG TESTBED

Before embarking upon a full-scale project, researchers conduct pilot studies that evaluate feasibility,
computational costs and potential problems regarding their Network Application. These tests are held in
a controlled environment over state-of-the-art infrastructure called testbed. testbeds offer complete
system functionalities such as a [EG] Core and EG] Radio Access Network. Besides the network infrastructure
and since applications are deployed on virtual machines or containerized environments based on the cloud,
B testbeds provide sets of servers that host several W NEk. Allied with all this infrastructure, a fully functional
testbed also grants a trustworthy Continuous Integration (CIl)/Continuous Deployment (CD) pipeline for
Network Applications (NetAppk) deployment on the test environment.

1.2 How [TAVIS TESTBED WORKS

As described above, applications are deployed through Virtual Machines (VMk)s, which means [TAvIs
testbed infrasctructure is, pragmatically, a cluster allied with state-of-the-art [EG] Systems provided by Huaweﬂ
In order to maintain and manage this cluster [[TAY] uses OpenStackEl as their Virtual Infrastructure Manager.
Moving deeper into [5Gl requirements, the management and orchestration tool used is Open Source MANO
and to control all the B3] related infrastructure [TAvl uses Huawei’s eSightﬂ and Mm [[TAy also provides a
well-defined and maintained [CI/ICDI pipeline that validates and delivers the results to the developers.

1.3 BGASP

bGASPlis a European project that aims at creating a European testbed to shorten the idea-to-market
process. This project was born from an alliance between Public and Private entities. The main goal of this
project is to create a fully automated and self-service testbed in order to allow the development and testing
of new built using [EG] Network Function Virtualization (NIFV)) based reference architecture. One of
the main objectives of BGASPlis providing [CI/ICDI pipelines for these innovative [NetApphk. Monitoring is an
important piece of any [CI/ICD] pipeline thus the necessity of developing a monitoring tool for this testbed
emerged. This document will discuss a monitoring solution that could be integrated in EGASPIs [CI/ICDI
pipeline. Since this project brings together various entities, the need arose to create standards for all the tools

developed and used. For monitoring tools the standards are Prometheuﬂ for data storage and querying, and

"https://e.huawei.com/en/

https://www.openstack.org/
3https://e.huawei.com/en/products/software/mgmt-sys/esight
*https://www.huawei.com/en/news,/2018,/11/auto-driving-mobile-network-solution-mae
Shttps://prometheus.io/

Grafanaﬂ for data visualization.

1.4 MOTIVATION AND GOALS

The motivation behind the development of this project was to, through the use of existing tools, prove that
we can develop a monitoring tool that relies on a toolset to monitor a application testbed. Besides this,
network’s performance and security monitoring, system’s security liabilities detection and 5G infrastructure
monitoring tools should also be addressed.

In the end, this tool shoul follow some directives:

¢ Be non intrusive - There are already some solutions for monitoring testbeds. However, in order to
make developers trust the testbed and test results, the less interference in the tests, the better.

¢« Transparency - Another key point mentioned is that, regardless of the toolkit used, the information

must be available through an uniform access interface that offers all the information in a unique format.

e« Open Source - A big part of this project relies on open source tools, so this project must give back
to the community what the community has given it. Besides, BGASP] aims to speed up the research

process offering tools to test new [EGl applications, so this project must follow the same purpose.

¢ Modularity - Testbeds’ infrastructures have big and complex architectures, sometimes with several
system admins and more than one project on the same infrastructure. For that reason, this project must
be as divisible as possible, so system admins can choose only what makes sense in their reality. Another
advantage of having a modular and a micro-service oriented architecture is the possibility of adapting

some modules without having to study all the code.

Shttps://grafana.com/

CHAPTER

State Of The Art

In order to understand the problem we wanted to solve and how to solve it, we searched for information
on the topic and selected a few papers on the subject. In this section, we will present a summary of these

papers along with some advantages or disadvantages of the solution proposed on them.

2.1 MONITORING AND CONTROLLING RESEARCH EXPERIMENTS IN CLOUD TESTBEDS [1]

Sonar, is a synchronous system to simplify the monitoring of a cloud testbed infrastructure which was
designed for cloud testbed monitoring. It log traces, times series data for long periods of time, distributes and
automatically installs on destination servers. In addition to storing metric readings, Sonar has the capability of
storing application logs.

Sonar offers a simple interface to access both live and historical monitoring data.

v

CHMDB

Sensor Memory l

N e
I—P

SansorHub Colleclor ———"%] HBasze

Sansor CPU T Contrallar

v

Figure 2.1: Sonar Architecture

2.1.1 Advantages of Sonar

e Allows for a flexible monitoring of timeseries and application log data without extensive configurations

of the type of sensors and hosts that support cloud short-lived [V Mk
e There is no need to reduce the number of samples or continuously delete data.
« Basic access to data by processing [CSV] files.
e Large amount of data can be processed by MapReducers

o Flexibility and horizontal scalability

2.2 MONITORING OF A VIRTUAL INFRASTRUCTURE TESTBED |[2]

This paper presents a distributed [NMP] based monitoring tool called SBLOMARS that uses JAVA-sockets
and [XMT] files, capable of effectively monitor virtual testbeds. Its a very standard and generalized tool, with
auto-configurable resource scheduling algorithms capable of adapting to network and resource constraints and
offers easy data exporting functionalities for 3rd party systems. Each node in the system runs an instance of
the tool. All nodes query a system agent responsible for finding and identifying the nodes in the network. The

main advantages of this method are the scalibility properties.

2.3 A TESTBED EVALUATION FOR A PRIVACY-AWARE MONITORING SYSTEM IN SMART HOME 3]

This paper suggests a monitoring system for smart homes. The challenge is to collect data from different
sensors in the network while trying to reduce energy consumption and the number of packages sent and keeping

the privacy of those packages in mind.

2.3.1 Reduced network traffic

The implementation follows a threshold-oriented methodology - packages are not sent periodically, they
are sent when the difference between the current value and the last sent exceeds a predefined value. This
allowed more than 90% reduction in sent packages while still preserving an acceptable accuracy (95%). Another

concern is data compression, which they implemented with a wavelet compression algorithm.

2.3.2 Security and privacy

Three encryption algorithms were tested - AES, RC5 and Skipjack. AES was by far the most energy-efficient
algorithm, while RC5 had the least ROM/RAM usage. AES was also considered the most secure option and

was chosen for the implementation.

2.4 NETGRAF: A COLLABORATIVE NETWORK MONITORING STACK FOR NETWORK EXPERIMENTAL
TESTBEDS [4]

NetGraf is a network monitoring stack that uses open-source tools to monitor, collect, aggregate and
display metrics. The data is shown on a single Grafana dashboard. This solution has its focus on network
metrics instead of [V M] or [V NEFk metrics, nevertheless it was one of our main monitoring system examples.

This solution is divided in three main modules: Network and Application, Data Collection and Aggregation

and Visualization. These are easily identified by looking at the architecture on [2.2

MSIN MASNET MaSELIm : \‘]l
| PROMETHEUS t
} J |
|
o |
NTOPNG & i |
), - |
INFLUXDB |
NETDATA - "/
: GRAFANA
PEOONAR POSTGRESQL | | pata
) | sources
e |
|
R26.194.108.264 120.114.108.48 129.154.108.280 1' ZABBIX :
Teuss Sie [CHETACE)) = |
Network I Data Collection and Aggregation | Visualization

Figure 2.2: NetGraf’s Architecture

2.4.1 Problems of NetGraf

The information stored by NetGraf is not centralized as it has 4 different databases and therefore we
do not have a centralized [AP]l from where we can obtain metrics. Instead, we have some metrics available
in Prometheus, others in the [APIl and others available from Zabbix. In the future, the decision of having
several data sources in different formats may be a liability if, for example, someone decides to change the data

visualization tool.

CHAPTER

Conceptual Modelling

This chapter provides further information regarding the reasoning behind the development and the problem
addressed by this project. The terminology used through this document and the project’s requirements are

also described in this section.

3.1 PROBLEM

As[BEGl approaches a very high maturity level, testing and validation of [EG] solutions has become of utmost
importance, creating a need for well-structured testing environments where the [CI/ICD] pipeline is one of the
main pieces.

To guarantee the quality of the running tests we need to be constantly monitoring every aspect that
can interfere with them, such as the network and the infrastructure status, as well as monitoring the
application itself through the [VNETs behavior since their variation could be caused by a malfunction on the
system being tested. Given that the addressed testbed is open to anyone who wants to test their
some security measures should be considered to prevent attacks from the inside and to assure that no tests are
affected by outside attacks.

3.2 TERMINOLOGY

3.2.1 Orwell

Orwell is the name of the solution created. Throughout this document, the solution may be addressed as
Orwell.

3.2.2 Intrusive

The process of directly accessing a [VNE to collect metrics from it, is deemed intrusive in Orwell’s context.

3.2.3 Non-Intrusive

In the context of Orwell, when we gather the metrics of a [VNE] without having to input them, the solution
is called non-intrusive, and these are the ones we plan to adopt at work.
3.3 ACTORS

After a careful analysis of the scope of this project two actors were identified. These actors are enumerated

and described below:

. Developer: Represents the person that wants to deploy the in the testbed. He wants
to know if his [NetApp|is successfully deployed and how it is performing.

o [TAWs System Admin: Represents the person responsible for [TAv] ’s systems, which include the
testbed. He would like to know how the [VNIk are performing. This can be done via our Grafana
dashboard. He would also like to receive an alert when one of the NIk starts to behave abnormally.

3.4 Usk CASES

In this section we will take a closer look at the use cases for Orwell. A diagram is provided along with

some notes on each use case.

Consult Metrics

Consult Alerts

NetApp
Developer

IT's System
Admin

Configure the
System

Figure 3.1: Use Cases Diagram

o Consult Metrics - both actors are able to perform this action. However, a developer is only
able to consult metrics related to its VNE| while the system admin can consult metrics associated with
any [VNE] with the network or the infrastructure.

o Consult Alerts - the system has several alerts, being them related to a [VNIVs status, the network or
security alerts. The system admin has access to all these alerts via Slackﬂ

e Configure the System - the system admin can consult and change configurations through Orwell’s
dashboard.

3.5 REQUIREMENTS

3.5.1 Functional
o Collect the metrics of the machines and the network, including [EGl metrics
« Mandatory use of Prometheus and Grafana (EGASP] directives)
e Send security related reports to the System Admin

o Send alerts to the System Admin when one of the [V NEk starts to behave abnormally

"https://slack.com/

3.5.2 Non-Functional

Scalability
The system has to be easily scalable to deal with possible demand changes, in order to dynamically

alter its performance.
Modularity
The system’s architecture must be micro-service oriented, allowing to alter a module without having
to alter the others.
High availability
A monitoring system cannot fail or the whole infrastructure may be compromised.
Fasy integration of new metrics collectors

The main goal of the project is developing a toolkit, however this toolkit may not fit all purposes.

Therefore, the integration of new tools must be straightforward.

CHAPTER

Procedure and Implementation

4.1 SYSTEM ARCHITECTURE

Looking at the system architecture figure [f.I] Orwell shows various components, each of which serves a
distinct purpose in the final solution.

Suricata Host

Configs Service

Discovery
Infection
Monkey

OSM

Collectors Translators

=

Message Broker Cache
Metrics Storage

Figure 4.1: System Architecture

Our system has a micro-services architecture, based in several independent modules that work together.
We wanted to create a system where the information was centralized in a unique format and stored in a unique
database cluster.

4.1.1 OSM

Open Source MANO (KISM) is an open—sourceMmanagement and orchestration tool. This Management
and Orchestration (MANQ)) is aligned with the standards upheld by the European Telecommunications
Standards Institute (ETSI). A is the responsible for managing and orchestrating [EGl network slices,
in other words, it is responsible for dynamic management such as initiating, terminating and monitoring a
network slice and its [V NEk for the purpose of scaling or auto-healing in real-time.

It will be utilized by the solution to determine which [VNIk are active and must be monitored.

11

4.1.2 Collectors

In this subsection some tools and mechanisms involved in the metrics collection process will be addressed.

Operating System Image

An Operating System (OS) image is a file that contains the executable and any data files that might
be related to the programs. The imaging software tool starts by capturing the image, which is then
deployed to systems as and when required.

The images created run Ubuntu 20.04 by default with one of our metrics exporters configured.

Prometheus’ Node Exporter E|

Prometheus’ Node exporter is one of the exporters made available from the Prometheus’ community, as
well as the only used from that list. It gathers many useful metrics for monitorization of a regular machine,
such as [CPU] [RAM] or disk usage, network metrics and information about running processes.

It was built by modules, so it can be configured to only collect the metrics we are interested in.

Telegraf E|

Telegaf is a time-series database. It was created to store time series data with a very flexible data model.
Similar to Prometheus’ Node Exporter, it allows the extraction of [RAM] disk, and other metrics from a
machine, but metrics gathering process is different from Node Exporter’s method. This tool as out-of-the-box

integration with Kafka, making sending metrics through it an easy process.

Gnocchi E| Gnocchi is a time-series database which was created to store time series data with a very
flexible data model, which is used by OpenStack as its default database, where it stores Virtual Machines’
metrics.

In ITAv’s OpenStack, Gnocchi always has data related to every machine (VMs and VNFs) running on
the stack, but the metrics available are limited in quantity and quality, since the time interval reaches some
hours between metrics sometimes. Nevertheless, when the OS image is unknown or does not have any collector

associated with it, we use Gnocchi to be able to present some metrics related to every VNF.

PerfSonar E

PerfSonar is used for network testing. It can be installed in any machine, making it a measurement node
and afterwards we can specify which tests we want to perform between the available nodes. Tests include
generic ones such as speed or latency but there are also more specific options such as testing Amazon Web
Services’ S3 connectivity.

It comes with many different installation options, from which we selected PerfSonar Toolkit and PerfSonar
Testpoint. The first one works as the main node, offering a scheduler [API which allows us to configure the
tests dynamically, and an archival [APIl which allows us to read test results. The testpoint is a lighter version

which we install in any other required machine, enabling it to be a target for the tests.

eSight]

eSight is Huawei’s Operations and Maintenance system which [[TAv] uses, since all the hardware is provided
by Huawei, to manage the [EG] Core and Radio Access Network (RAN]), consulting information about the state
of the network devices like routers or switches and information about the [RAN like what is going through each

antenna.

"https://github.com /prometheus/node. xporter

https:/ /www.influxdata.com /time-series-platform/telegraf/
3https://gnocchi.osci.io/index.html
“https://www.perfsonar.net/
Shttps://e.huawei.com/en/products/software/mgmt-sys/esight

12

However, to this date, this platform is not yet fully functional inside of [TAvland we ran into some problems,
as features provided in the platform’s graphical interface are not available through the [APIl and vice versa.
Huawei’s documentation was also misleading, claiming to have features, such as direct access to network devices’
metrics, that could not be accessed.

In the end, we were not able to collect any [RAN] metrics, but we did collect a few from the EG] core which

allowed us to present a proof of concept.

4.1.3 Message Broker

A message broker is a software that allows services and applications to interact via messages. These
messages should follow a specific protocol, so that the communicating ends understand each other, but the
format of a message is not relevant for the broker. It has three basic and fundamental notions: Producers,
Topics and Consumers.

In our context, a message broker is in charge of storing the metrics provided by a collector, arranged by topics

depending on the associated exporter. A translator is then in charge of requesting messages from a specific topic.

Kafka E
Apache Kafka is a distributed publish-subscribe messaging system that handles data from many source
systems and makes it available in real time to destination systems. Kafka facilitates the asynchronous data

exchange between processes, applications and servers.

4.1.4 Middleware

Our middleware is the most important module of the system, because it makes everything communicate
and work as it should. All metrics have to go through our middleware before being exported to Prometheus.

This allows us to easily change our storage location and/or system.

[APT

Our [AP]T] provides all the information needed to monitorize the system and acts as an orchestrator for all
the components in the system. From all the packages used in the development of this [API] there are two that
we would like to highlight:

o Fast [API["] - FastAPI is an open-source Python framework to quickly develop [APIk. It is known for its
fast performance allied with a very intuitive and quick flow of developemnt. This framework also follows
the Open [API] Standard and offers great support for JavaScript Object Notation ([ISON]) Schemas and

Typing, generating automatic endpoint documentation.

o SQL Alchemy EI- SQL Alchemy is a Python toolkit to create Object Relational Mappings, a process
where SQL Alchemy maps relational databases’ entities to python classes, allowing for an object oriented
manipulation of database records. In addition, SQL Alchemy offers an engine class, which creates an
abstraction layer on all database operations. With this in mind, once the data model is created, records

can quickly be manipulated simply using Python methods and objects.

Translators
They interact with the message broker to retrieve metrics from a certain topic, translate them into

Prometheus format, and transmit the translated metrics to the system’s cache.

Shttps://kafka.apache.org/
"https://fastapi.tiangolo.com/
Shttps://www.sqlalchemy.org/

13

4.1.5 Host Configs

This database will be used to record information about the [VNEE that will be monitored by the system,
such as the metrics collector installed in their Image.

PostgresSQL E|
PostgreSQL is a relational database, also open-source, which allows the persistence of data in tables. It

has a strong reputation due to performance and availability features.

4.1.6 Cache Metrics Storage

Metrics that have previously been translated are stored here until Prometheus consumes them, after which

they are deleted.

Redis [
Redis is an open-source NoSQL in-memory database, providing a set of structures to store data. Redis

offers high availability, fast reads and great horizontal scaling making it a great tool for a cache service.

4.1.7 Storage and Visualization

Prometheus

It is an open-source project which is able to store metrics in a time-series database and exposes querying
interfaces for easy integration.

One of its most helpful characteristics is the extensive list of exporters that it provides for using without
effort with Prometheus. Those include exporters for hardware metrics, message broker metrics, [T LP| server
metrics and many others.

This tool comes from the functional requirements and is responsible for storing and querying all the
metrics of our project. It comes with many useful functionalities, such as service discovery of metric exporters
and configuration of alerts via many popular options such as email or Slack. The service discovery functionality
allows to dynamically determine which [NEk or networks should be monitored, instead of hard-coding the

addresses of all the collectors in the configuration file.

Grafana

Grafana is also an open-source platform that allows users to visualize metrics from different sources, such
as Prometheus, allowing the creation of custom monitoring dashboards. It offers a wide diversity of elements
such as line and bar charts, gauges, or simple numbers and the possibility to create queries to common data
sources so as to select the data that will be represented. More than its rich graphical interface, it also comes
with an extensive [APIl making it easy to automate any action that can be done manually.

Through this tool, Orwell users are able to interact with the metrics collected as well as creating alerts,

based on threshold values, for popular services such as email, Slack, Kafka and custom webhooks.

4.1.8 Security

Suricata E

Suricata is a Network Security Monitoring (NSMI) application that examines and processes network traffic
using sets of community-created and user-defined signatures (also known as rules).

Suricata runs as a passive Intrusion Detection System ([DS) by default, scanning for abnormal activity on
a server or network. It will produce and log alarms to be investigated further. It may also be set up as an
active Intrusion Prevention System Intrusion Prevention System ([PS)), logging, alerting, and entirely blocking

network traffic that fits particular rules which are classified into four types:

https:/ /www.postgresql.org/
Ohttps://redis.io/
"https://suricata.io/

14

o alert - writes in the log file what happened and what package created a certain alert
e pass - specifies packages that do not need to be inspected by Suricata

e reject - resets the transmitted Transmission Control Protocol (TCP)) packet and discards it (only in [PS]

mode)

o drop - immediately interrupts packet processing, generates an alarm and times out the [TCPl connection
(only in [PS mode)

This tool will be used to monitor the network from a security point of view.

ElasticSearch [7]

Elasticsearch is a distributed, free and open search and analytics engine for all types of data, including
textual, numerical, geospatial, structured, and unstructured.

ElasticSearch is a server that handles queries and returns data objects, allows to save, search,
and analyze enormous amounts of data in real time and provides results in milliseconds. It stores and searches
data using document-based frameworks and Representational State Transfer (REST)) [APIk so documents are

the fundamental unit.

Kibana E

Kibana is a tool for viewing ElasticSearch that provides various graphs in real time from Suricata’s data.

Infection Monkey E

Infection Monkey is yet another secuirty tool, developed by Guadicore to simulate network exploits and
report vulnerabilities. To use this tool, an Infection Monkey server must be setup in a node of the target
network, with access to a MongoDB Database.

To interact with the tool, a Web application is used. Infection Monkey provides an highly customizable
environment, allowing tests to be run with a wide range of different exploits, configurable dictionary attacks
and even precise victim selection. Once running in "Island" mode, Infection Monkey will keep propagating
from discovered machines (starting on the server where the instance is running) and will eventually generate a
report of the results. There is also support for import and export of configurations.

Infection Monkey is used to find flaws and unsafe situations inside the testbed.

2https://www.elastic.co/
Bhttps://www.elastic.co/kibana/
Mhttps://www.guardicore.com/infectionmonkey /

15

4.2 HosT CONFIGS DATABASE

To keep track of the status of the targets being monitored by the system, Orwell’s middleware persists
hosts, names of images and collectors data in a PostgreSQL database. This allows Orwell to make queries
regarding which [OS] Images are being used by which hosts and which collectors are installed in said images.
This database contains critical information for a wide range of scenarios in the [RESTIAPI like, for example,
finding Hosts that do not have an installed exporter and therefore rely on Gnocchi Puller or to keep an updated
persisted list of the targets found by [OSMl

4.2.1 Domain Model

The relational schema follows the model presented in Figure [£2]

Collector

Image_Collector

Collector Type
Host State

Figure 4.2: Relational Database Schema

For the hosts, which is the table containing information on the system’s monitoring targets, the ip adresses
and hostnames are stored, along with a field to keep track of the machine’s state (active or not). Orwell’s
service discovery provides a list with the active ones, inactive hosts cannot be monitored.

Collectors have a target and port fields, which are used for pull collectors, so our system knows where to
fetch the metrics from. For the context of this project no pull collectors were used, but the system could easily
integrate this option.

As for images, only a name is assigned to better identify the image’s contents.

With the assossiations schemed in the figure [f.2] it is assured that given an host, the system can identify

which image the machine is running, and which collectors are available for metric harvesting.

16

4.3 METRIC COLLECTORS

Orwell integrates various types of metrics, therefore, different approaches will be required for each type of
metric that is intended to be obtained. For metrics of a [VNE] these will be obtained through images, and
it was for these metrics that the initial phase of the Orwell project was directed. After being able to collect
metrics using the described method, a backup plan had to be considered in case a image did not have any
metrics exporter. The solution for this problem is based on collecting metrics at the hypervisor level which
contains a Gnocchi service collecting metrics from every machine. After this collection was completed, we went
on to collecting network metrics using the Perfsonar, and lastly, the metrics of the [EG] network, which were
collected via Huawei’s eSight [APIl

4.3.1 How metrics are collected

Images

As stated in the purpose of our study, NIk are designed to be seen as blackboxes and so should not be
accessed to collect metrics from them.

One solution is to configure images that will be associated to the [/NEk and, because we are working
at the operating system level, we can acquire metrics from a [N without having to know the machine’s
credentials to access it.

These linked images are actually Ubuntu 20.04, to which we just added the installation of a metrics
gathering tool, which was set up as a service of that image and will always be running while that [VNF]is
active.

Two images were then created and in the next subsections we will explain in detail how they are

developed.

Prometheus’ Node exporter

To collect metrics with Prometheus’ node exporter, an image was created with the tool installed. When
running, we can query the node exporter’s [APIl via [TTTPl to fetch the machine’s metrics.

With a simple Python script, the /metrics resource of the [APIlis consumed in intervals of 15 seconds. The
metrics returned are then pushed to the Kafka broker, to be later handled by the other Orwell components.

To automate this worfklow and give it a one touch deployment behaviour, the image is provided with a file
containing the address of the core’s Kafka Service Discovery endpoint, which will be used to point our Python
script to the Kafka bootstrap server. Finally, a service was created to setup the node exporter and run the
Python script. This service runs when the image boots, allowing Orwell to begin monitoring the [VNE] with no

necessary manual configurations.

Telegraf

Initially, Telegraf was installed on an image that only contained Ubuntu.

After installing Telegraf, we proceeded to the configuration section of the Telegraf.conf file, where we
defined all of the metrics that we wanted to collect in the inputs, and then the output, which in this case will
be sending to our Kafka the metrics that Telegraf will be able to obtain, for which we injected the location of
Kafka in the config file that was passed as an environment variable.

Then, because we already had the metrics to send to Kafka, we needed to configure the Telegraf service in
the image [OSfs systemctl, which was as simple as creating a .sh file that launched Telegraf and calling the .sh
file from the Telegraf service established.

Because the service was already configured and ready to use, it was just necessary to activate it and set it
to enable so that once the image rebooted, it was instantly performed in the boot options. As a result, we
produced an image with Telegraf that allows us to retrieve metrics from any [VNE] without having to enter

it, which was our goal.

Gnocchi and OpenStack

17

Gnocchi is a time-series database which was created to store time series data with a very flexible data
model, which is used by OpenStack as its default database, where it stores Virtual Machines’ metrics.

In ITAv’s OpenStack, Gnocchi always has data related to every machine (VMs and VNFs) running on
the stack, but the metrics available are limited in quantity and quality, since the time interval reaches some
hours between metrics sometimes. Nevertheless, when the OS image is unknown or does not have any collector

associated with it, we use Gnocchi to be able to present some metrics related to every VNF.

PerfSonar toolkit and testpoints
Metrics from PerfSonar tests can be stored in many different places, being the most common one the
archival service that comes with PerfSonar, esmond. Our collector interacts with the [APIl from that service so

as to gather the latest metrics across all the tests running and publish them in our Kafka.

eSight

metrics are collected through an[AP]l developed by Huawei called eSight. This [APT provides information
about the BG] network interfaces and its devices. However, since the necessary infrastructure is still not in
place, some of the methods are not available.

To collect metrics from this [API] we need to gather a list of all the interfaces and devices we want to
monitor. Then, we need to create tasks for each one of them. These tasks only perform some measurements, so,
if, for instance, we want to know the receiving and the sending rate of all the interfaces we have to create two
different tasks for each interface. After creating the tasks we have to wait until the system is ready to export
metrics which takes up to 20 minutes. After getting the metrics, these are sent to Kafka, so the respective
translator can deal with them.

We developed an exporter that runs as a cron job every day. As the gathering of these metrics may have
an impact on test results we were not allowed to collect metrics continuously. However, the code is
ready for this scenario and all it takes is the change of a line of code which is flagged on the code.

eSight Constraints

Considering that eSight is not yet totally functional we had a lot of challenges through the development of
the exporter for this [APIl

o time between tests - we had to wait 20 minutes for the tasks setup every time we wanted to test our

exporter which made the development process much more time consuming

e devices’ metrics are not available through the [AP]l - devices’ metrics are only available through the user
interface which did not fit the purpose of this project. To bypass this restriction we collect metrics from
the components of each device. Nonetheless, there are only seven tasks available for the components

which limited the results

« BARAN]infrastructure has no monitoring - EGI[RAN] enables metrics collection for each antenna indi-
vidually. This is undoubtedly important to understand the system’s behavior and the [EGl infrastructure

status. However, since these were not available we could only gather information related to B3l Core

18

4.4 MESSAGE BROKER

In this work, metric collectors are the broker’s producers, sending metrics regularly from various sources,
ranging from [VNE] to network metrics, which must be distinguished in the message broker, and that is where
the topics come into play. The consumers are the translators, which are usually associated with a unique Kafka

topic, a unique collector service.

19

4.5 PYTHON PACKAGE

Our work was focused on a well-defined subset of tools that met our requirements but, because of the

modularity of our solution, any message that can be exported to our message broker and afterwards translated

to Prometheus format can be integrated into our system. Collecting and publishing metrics to Kafka is a

process too much dependant of the interfaces that a specific tool provides for us to facilitate, but the translation

of a message to Prometheus format, which could be considered a very error-prone step and lead to hours of

debugging, could be made more transparent. For that, we created a Python module and published it to PyPI.

With the help of this module, a developer has the only responsibility of creating a single function that

receives a message (according to what was sent to Kafka) and returns a list of Metric objects. Under the hood,

the module deals with the Kafka connection, transforms the Metric objects into valid Prometheus format and

publishes the result to Redis, making it available for the middleware to use.

Example of a very simple translator:

from orwell import Metric, Runner

The translator function should be able to receive multiple lines

of the desired service output and return a list of Metric objects

def translate (lines: str) —> list[Metric]:

metrics = [line.split(',') for line in lines.split('\n')]
return [Metric (metric, value, { 'host': host }) for host, metric, value in
translator = Runner(translate)

translator.run()

20

metrics |

4.6 METRICS TRANSLATORS

As previously said, translators are those who will consume messages from the message broker and whose
primary function is to translate metrics.

As required for this project, all metrics must be in a single format, which is the Prometheus format, thus
every metric that reaches a translator must be transformed so that we can centralize metrics’ storage.

The translators are Python Kafka consumers able to translate metrics from one specific format to
Prometheus format, which is easier when using the developed Python package. When the message broker
receives new metrics, the translators translate them and forward them to the next component, which in this
case is the system’s Cache.

Since the Grafana dashboard will be the same for all [VNEK’ metrics provided by the different collectors,
the translators for Node exporter, Telegraf, and Gnocchi are responsible for generating metrics in a uniform
format. This is a very complex task, since different collectors generate different metrics in different ways which

will have to be manipulated to meet this uniform format.

4.6.1 Prometheus’ Node Exporter

This translator will be responsible for reading messages from the prometheus topic of Kafka, and because
the node exporter is already in the prometheus format, the code required to conduct the translation will be

minimal.

4.6.2 Telegraf

This translator will be responsible for reading messages from the telegraf topic of Kafka. As previously
stated, in addition to translating the metrics into Prometheus format, it was also required going through all of
the metrics to see if we already had a direct translation for the compatible name or if we had to create a new

one.

4.6.3 Gnocchi

This translator will be responsible for reading messages from the gnocchi topic of Kafka. As the previous
translator, metrics had to be manipulated to follow the format defined previously.
4.6.4 PerfSonar

This translator will be responsible for reading messages from the perf topic of Kafka. Since PerfSonar has

its own Grafana dashboard, the translation process did not require any large transformation.

4.6.5 eSight

Interfaces
This translator will be responsible for reading messages from the esight_interface topic of Kafka. Since

eSight interfaces has its own Grafana dashboard, the translation process did not require any name transformation.
Slots

This translator will be responsible for reading messages from the esight slot topic of Kafka. Since eSight

slots has its own Grafana dashboard, the translation process did not require any name transformation.

21

4.7 OrweLL [AP]

Orwell’s middleware [RESTI[APT] offers a range of resources to both orchestrate and manipulate the system’s
modules. It can be broken down in categories providing different functionalities for the entities they interact

with. In this section we present the structure of the [API] and the previously mentioned categories.

4.7.1 Structure

The [APIl is structured in a set of folders, each containing code for different layers of the application,

providing uncoupled micro Python modules. The current version’s file tree is presented below:

|-—— app

|-——— cache

| |-—— __init___ .py

| |-—— redis.py

|-——— config

| |-——— cors.py

| |-——— docs.py

| |——— ___init___.py

| |-—— settings.py

|-—— data

l—— db

| |-——— conn.py

| | —— __init__ .py

|-—— __init__ .py

|-—— models
|-——— associations.py
|-——— collector__image .py

|-——— collector .py

|-——— host.py
|-——— host__state.py
|-——— image.py
|——— ___init__ .py
|-——— postgres.py
|-——— schemas

|
|
|
| |-——— collector__type.py
|
|
|
|

|
|
|
|
|
\
|
|
|
|
\
|
|
|
|
‘ |-—— associations.py

‘ |-——— collector .py

‘ |-——— collector__type.py
‘ |-——— host.py

‘ |-——— image . py

‘ |——— ___init___ .py

‘ |——7 response.py

|-—— gnocchi

‘ \——— gnocchi__exceptions.py
‘ |-——— gnocchi__puller.py
|——— ___init__ .py

|-—— main. py

|——— osm

‘ \——— osm__adapter. py

\ \——7 osm__exceptions.py

|-——— routers

22

|-——— collectors.py
|——— db__helper.py
|-——— hosts.py

|

\

\

\ |-——— images.py
\ |——— ___init___.py

\ |-—— metrics.py

| |-—— service_discovery .py
|——— Dockerfile

|-——— requirements . txt

4.7.2 Discovering Services

/service__discovery/targets

To find the targets Orwell should be monitoring, the list of currently active hosts stored in the database
(persisted from the parallel [OSMs[APT] calls) can be accessed in this resource. Mainly consumed by Prometheus
to fetch its targets. The response given by this endpoint follows the Prometheus standard.

/service__discovery /kafka
The endpoint returns the address of Kafka’s bootstrap server. This is useful to dynamically configure
both our Images, pointing the collectors where to publish the metrics and our Translators, to consume and

translate the messages.

4.7.3 Metric fetching
/metrics/id
Prometheus consumes directly from these endpoint to store in its database. The [AP]] fetches the already

translated metrics from the Redis cache, populated by the Translators.

4.7.4 Management

/images/*

/collectors/*

/hosts/*

All functionalities are provided to images and collectors, allowing the manipulation of both entities.
This is mainly consumed by a Web App where we can associate or modify collectors in the Images or list

which collectors each Host is using.

4.7.5 Background tasks

In addition to providing these resources, Orwell’s [AP]l is also responsible for both [OSM] service discovery
and metric pulling from the Gnocchi collector. These tasks are implemented on parallel threads (launched on

the [APTl initialization) which periodically consume from external services.

23

4.8 SERVICE DISCOVERY

Orwell has two different service discovery services, one configured in Orwell’s core and another in Prometheus.

This section will describe both of them and their role on this solution.

4.8.1 Orwell

Orwell Service Discovery is a custom made service discovery mechanism that queries targets every 30
seconds. returns information about every active VNI such as the OS image running on the [VNFl This
information is stored in our hosts config database and is used to inform the Gnocchi Puller about the VNEk
without a monitoring tool installed on the OS Image. The list of active NIk returned by is compared
to the active [/NEk in the database and the ones that do not belong to the [OSMfs list are marked as inactive.
The list of active VNI is available through Orwell [API] at /service_discovery/targets.

4.8.2 Prometheus

Prometheus allows the configuration of a service discovery service instead of hard-coding the addresses of
all the collectors in the configuration file. There are many built-in integrations such as getting addresses from
OpenStack, but for our use-case we required a more personalized option, integrating it with our own [T LP]
endpoint, which has the only requirement of following a well-defined structure. After starting, Prometheus
will start reading the configured endpoint every minute, by default, and collecting the metrics in the specified

addresses. In this case, all the addresses point to different endpoints of our middleware.

4.9 ORWELL MANAGEMENT PLATFORM

For components like collectors, images and hosts to be managed in a more accessible and efficient way,
Orwell provides an Angular Web App.

The main functionalities consist in creating, updating and deleting components and their respective
relations, providing a dynamic interface to execute operations such as defining collectors for an image or change
an host’s current image. The app consumes from the middleware’s [RESTI[API both to fetch and persist data.

Although used mainly as a development utility, new features can easily be added to provide more
functionalities, like information on active translators and tools to deploy new ones, monitor and orchestrate

active components and statistics about the system.

24

4.10 SECURITY AND ALARMISTIC

4.10.1 Suricata

Suricata must be configured in a[VM]that should be the network entrypoint, all traffic has to travel through
it both to enter and depart the network, so that packets can be evaluated. For our implementation we did not
have authorization to make such a configuration inside of the [[TAW's network and therefore we were not able
to configure a fully working Suricata instance, but only monitoring the packages which were destined for it.

Said instance was configured in IPS mode to be able to block suspicious packets. When a packet arrives it
is verified to which configured rules this packet belongs, and depending on that categorization there are four
possible behaviours which are alert, drop, pass and reject. A packet can, technically, belong to more than one
rule, in which case the drop operation has priority.

As seen in the listing a rule always has a sid, which is the rule’s id (highlighted in the figure). The first
word in the rule identifies the type of rule (an alert), followed by the protocol it will operate on (ip) and the
assessment location: source and destination (any for both, in this case). When a rule is violated, an entry in
the log file will display the message set in the msg variable and an alarm will be triggered anytime a privilege
check command is given. The violation of a rule implies that someone with root rights within the computer is
utilizing these privileges in a wrong way and may be trying to exploit further vulnerabilities. The alarm is
registered in the log file, as shown in the listing To show the alert related to this event a grep by sid was

performed just to make the screenshot easier.

Listing 4.1: Some Java code

alert ip any any —> any any (msg:"GPL_ATTACK RESPONSE id check returned root";
content: "uid=0|28|root|29|"; classtype:bad—unknown; sid:2100498; rev:7;
metadata:created__at 2010_09_23, updated_at 2010_09_23;)

Listing 4.2: Suricata example of Logs

grep 2100498 /var/log/suricata/fast.log

05/25/2022—12:47:22.660800 [*x] [1:2100498:7] GPL ATTACK RESPONSE id check
returned root [#x] [Classification: Potentially Bad Traffic] [Priority: 2] {TCP}
18.66.122.20:80 —> 10.0.12.84:38998

05/25/2022 —13:43:41.924165 [+x] [1:2100498:7] GPL ATTACK RESPONSE id check
returned root [#x] [Classification: Potentially Bad Traffic] [Priority: 2] {TCP}
18.161.97.95:80 —> 10.0.12.84:45062

05/25/2022—18:09:03.890624 [*=*] [1:2100498:7] GPL ATTACK RESPONSE id check
returned root [#x] [Classification: Potentially Bad Traffic] [Priority: 2] {TCP}
18.161.97.120:80 — 10.0.12.84:33444

05/25/2022—18:22:46.154957 [*x%] [1:2100498:7] GPL ATTACK RESPONSE id check
returned root [+x] [Classification: Potentially Bad Traffic] [Priority: 2] {TCP}
18.161.97.57:80 —> 10.0.12.84:53978

05/25/2022 —18:23:57.773508 [##] [1:2100498:7] GPL ATTACK RESPONSE id check
returned root [#x] [Classification: Potentially Bad Traffic] [Priority: 2] {TCP}
18.161.97.21:80 —> 10.0.12.84:42742

Because the same packet in one network might not be critical and in another might be crucial, the rules
that were specified in Orwell are all alert only, and it is up to whomever uses the solution to update the rules
file for their use case.

In our system, all suricata logs are passed to elasticsearch, which then sends them to Kibana. Kibana’s
dashboards can be accessed by searching for "type:dashboard suricata" in the search bar. There will be found

two Suricata dashboards:

25

o Alert dashboard

= . Dashboard [Filebeat Suricata] Alert Overview .~ Full screen Share Clone & Edit
SURICATA Events | Alerts [AlertSignature ~ Alert Category ~ Count -
Top Alerting Hosts [Filebeat Suricata] SURICATA STREAM Packet ... Generic Protocol Command ... 8,600
900 ® testbed-monitoring-v.. ¥ gURICATA HTTP unableto.. Generic Protocol Command ... 3,066
Ei SURICATA TLS invalid recor... ~ Generic Protocol Command ... 1,682
‘é BD SURICATA TLS invalid recor... Generic Protocol Command ... 1,682
° ET INFO Observed DNS Que... Potentially Bad Traffic 190
ET POLICY GNU/Linux APT ... Not Suspicious Traffic 119
2022-06-07 00:00 SURICATA Applayer Detect ... Generic Protocol Command ... 68
- @timestamp per 3 hours ET POLICY Outbound Multip... Misc activity 21
Alerts - Top Source Countries [Filebeat ... Alerts - Top Destination Countries [Filebeat ... SURICATA STREAM excessi... Generic Protocol Command ... 12
SURICATAHTTP too many ... Generic Protocol Command ... &
&y Export & Export
Source Count... ¥ Count ~ Source Country ~ Count ~
PT 1,708 PT 1,880
GB 71
us 48

Figure 4.3: Suricata alert dashboard example

As shown in the figure [£:3] on this dashboard we can see how many times alerts were sent for each of the
rules, the time of they day they occurred, and which countries were the source and destination of the packets

that triggered those alerts.

o Event dashboard

SURICWTIA Events | Alerts 196,479
I

Fvents
Activity Types over Time [Filebeat Suricata]

® ssh H
@ smb H
® snmp H
£ ® smtp H
8 e tis H
® krbs H
® flow H
I == ® anomaly §
6-09 00:00 ® dns H
N ® http H
= @timestamp per 3 hours o fileinfo

@ testbed-monitoring-v..

Count

Figure 4.4: Suricata event dashboard example 1

As shown in the figures [.4[F] this dashboard displays the events that occurred, with further insights on
the associated activities and the hosts that created these events. It is also possible to see when each event
occurred as well as which ip addresses, ports and transport layers were used.

The configured rules were associated with different priority values, which can range from 1 to 4. So that
alerts could be better monitored we created a Slack workspace with four channels, one for each priority and
configured alarmistic via webwooks.

The logs are then separated into the slack channels, [{:6] and logs will be transmitted to slack all day long,
allowing the network manager to have a cleaner and more structured manner of monitoring everything that
happens on the network.

26

= . Dashboard [Filebeat Suricata] Events Overview .~ Full screen Share Clone & Edit

Events [Filebeat Suricata]

196452 documents
Time .. host.name suricata.eve.flow_id network.transport source.ip source.port ination.ip ination.port

> Jun 9, 2022 @ 22:42:25.245 testbed-monito 20892088443817696 tep 127.8.8.1 52286 127.6.0.1 9288
ring-vm-4

> Jun 9, 2022 @ 22:42:25.245 testbed-monito 2092068443817696 tep 127.8.8.1 52286 127.8.8.1 92688
ring-vm-4

> Jun 9, 2822 @ 22:42:25.234 testbed-monito 2092068443817696 tep 127.8.8.1 52286 127.8.8.1 92688
ring-vm-4

> Jun 9, 20922 @ 22:42:25.234 testbed-monito 2892860443817696 tep 127.8.8.1 52286 127.8.8.1 9288
ring-vm-4

> Jun 9, 20822 @ 22:42:24.428 testbed-monito 1315827273741991 tcp 172.16.18.14 56278 10.8.12.84 5681
ring-vm-4

> Jun 9, 2022 @ 22:42:24.428 testbed-monito 1315827273741991 tep 19.8.12.84 5681 172.16.18.14 56278
ring-vm-4

> Jun 9, 2022 @ 22:42:24.123 testbed-monito 28928808443817696 tep 127.8.8.1 52286 127.6.0.1 9288
ring-vm-4

Figure 4.5: Suricata event dashboard example 2

ORWELL_SURICA... #severity_2 v

Friday, May 27th
@ concalolealsiiva 1

4 joine

@ suricatabo
) | FreshLogs

T POLICY curl User-

pted Information

Start a live, voice-only

huddle in any channel or DM
Brainstorm, make decisions, or
just catch up with whoever's
online.

Learn more;

Figure 4.6: Suricata Slack channel

4.10.2 Infection Monkey

Infection Monkey is an open-source network breaching simulation tool which can be used to test and find

flaws and exploits on defined targets.

Infection Monkey in Orwell

In Orwell’s context, Infenction Monkey is able to detect vulnerabilities in services running on the [VNEk or
exploitable configurations, situations that compromise not only the testbed but the whole network. For testing
purposes, an Infection Monkey server was setup on a closed subnet of the network with vulnerable nodes. The
tool successfully identified and cracked the target nodes, proving it could be easily deployed on the testbed to
generate reports for the administrator and/or netapp developers.
This service will be mainly used to give NetApp developers a report on the stability of his application.

REST

Since no [AP]l is provided for this service, to make Infection Monkey’s usage an automated process, an

27

[AP]l was developed using the FasfAPIl framework to interact with the web app via Selenium. In addition to
providing easier access to the functionalities of the tool, since our [APIl was conceived as a standalone project,
it can be quickly integrated in different contexts with a package release on PyPI.

The [APIl allows running simulations imported from config files, abort all current tests and list which
configurations are available. In its current state, there is no authentication to access the instance, which should
be a concern when used on untrusted networks.

As an open source project, it can easily be contributed to provide features to match many other use cases.
Thanks to the modularity of the development, an open source contributor could easily just create a new method
on our Selenium setup abstracted main class to meet their use case.

28

4.11 DATA STORAGE AND VISUALIZATION
This layer of our application is composed by Prometheus (storage) and Grafana (visualization).

4.11.1 Prometheus

Prometheus is initialized with a custom configuration file that enables service discovery with our middle-

ware’s address.

4.11.2 Grafana

Grafana does not start with any customization as the idea is that the user would never need to customize
it as all the configuration is automated when required by our middleware. Taking advantage of its extensive
[APIl we are able to create accounts and dashboards, as well as dealing with authorization, abstracting all the
customization features from the end-user, making it deeply connected with our system.

So as to facilitate metrics’ monitorization, we’ve also configured Slack notifications with a few demonstrative

examples, which are visible in Figure [4.7]

ORWELL_SURICA... ¥ @ # alarmistics -

B
E Grafana Alert's A%

Figure 4.7: Grafana Slack channel

29

CHAPTER

Results and Discussion

5.1 [VNE] METRICS EXPORTERS

Metrics from running [VNFk were successfully collected and translated using the three different collectors -
Gnocchi, Telegraf and Node Exporter. In fact, for a developer, it is completely transparent which technology is

being used to monitor his environment as the metrics from the three tools appear in the exact same dashboard.

5.1.1 Gnocchi

Starting with our worst result, Gnocchi is the exporter with the fewer metrics available. It is still a very
important part of our solution because that data comes directly from the hypervisor, allowing us to gather the

minimum metrics whether the [VNI¥s image has an exporter running or not.

83 General /VNFs v &

Host: 10.0.13.43 v O Gitob

Quick CPU / Mem / Disk
CPU Busy * SysLoad (5m avg) ¥ Sys Load (15m avg) ‘ RAM Used : SWAP Used : Root FS Used CPU Cores : Uptime
1 N/A

\ RootfsTo * RAMTotal * SWAP Total

| |
106i8 16i8 N/A

Basic CPU / Mem / Net / Disk

CPU Basic i Memory Basic

080 1200

Network Traffic Basic : Disk Space Used Basic

Figure 5.1: Gnocchi Dashboard

5.1.2 Prometheus Node Exporter

The dashboard used was adapted from a template for this exporter and, therefore, it is not a surprise that

it behaved perfectly. We are able to flawlessly fill the whole dashboard with updated metrics across all the

Grafana panels.

31

wrce default v o s v fost: 10.0.13.57 GitHub (7 Grafana

v Quick CPU / Mem / Disk

CPU Busy ¥ sysLoad (5mavg) i Sysload(15mavg) * P SWAPUsed * RootFSUsed ! cPucores * Uptime

1 3.9 day

* RootFS To * RAM Total ¥ SWAP Total

1068 981 MiB 0B
~ Basic CPU / Mem / Net / Disk

CPU Basic v Memory Basic

Network Traffic Basic

Figure 5.2: Node Exporter Dashboard

5.1.3 Telegraf

This exporter was probably the most challenging as, with the proper configuration, it allows us to collect
all the required metrics and, therefore, we had an enormous amount of translations to make. We also succeeded

in this case, presenting a complete dashboard with all the metrics that Node Exporter was also able to provide.

neral / VNFs ¥ o
wce default v us v st 10, - GitHub (] Grafana
v Quick CPU / Mem / Disk

CPU Busy ¥ sysLoad (5mavg) ' Sysload(15mavg) * RAM Used P SWAPUsed * RootFSUsed cPucores * Uptime

1 3.9 day

! RootFSTo.. ' RAMTotal ¥ SWAP Total

1068 981 MiB 0B
~ Basic CPU / Mem / Net / Disk

CPU Basic y Memory Basic

usy IRQs - Bus

Network Traffic Basic : Disk Space Used Basic

Figure 5.3: Telegraf Dashboard

5.2 NETWORK METRICS

PerfSonar was integrated into our system in multiple layers. Starting from the middleware [API] an
endpoint was implement so as to automatically set up tests with a specified node, as well as configuring
Grafana’s dashboard so as to add given addresses to the available variables. It is then possible to consult the
metrics resultant from those configured tests in a Grafana dashboard, thanks to an external service that reads
PerfSonar’s [AP]] every ten minutes and publishes them to Kafka, to a topic where the corespondent translator
will be listening.

We also provided easy initialization scripts, one for Toolkit and other for Testpoint so as to achieve the
expected one-touch deployment. Both start a docker container and run the required configuration commands

and it is even provided a template for the NTP configuration, which is required to run the tests.

32

83 General /PerfSonar ¢ &
Machine69 v destinati

v General View

Packet Loss Rate Time Error Estimates Packet Duplicates Packet Reorders

255 0

0

~ Detailed Information

Throuput Latency

600MB
400 MB

200M8

Figure 5.4: PerfSonar Dashboard

5.3 [EG] CorE METRICS

The collection of metrics for the EG] core was a slow process, mostly associated with the quality of the
data source, as already explained. Another imposed limitation was the time that we were allowed to gather
data. The required [AP]Ilis part of the whole [5Gl infrastructure and there was a preoccupation with the possible
interference of frequent requests to said [API] in the running tests. Therefore, we are only collecting two hours
of metrics daily, from midnight to 2 am. Despite all that, we were able to provide relevant metrics for both EGJ

interfaces and slots through two separate Grafana dashboards.

5.3.1 Interfaces

88 General / eSight Interface ¢ o8
interface GigabitEthernet0/1/23 v

Receive Interface Send Interface

16 1645 1700 1715 17:30 45 1900 1915 19:30

— GigabitEthernet0/1/2

Figure 5.5: eSight Interface Dashboard

5.3.2 Slots

88 General / eSight Slot ¥ o3

Memory usage Cpu usage

Figure 5.6: eSight Slot Dashboard

33

5.4 SECURITY

Security implementations in our work, being a sensible topic, were both limited by what we were allowed
to do from the [TAv] administration. In both cases we were able to achieve solutions that only lacked proper

network configuration to work as expected.

5.4.1 Suricata

We were able to achieve a fully-configured Suricata instance, with alarmistic via Slack webhooks. As also
mentioned before, we were not allowed to install this solution in an actual network entrypoint, leaving us with
the notification of the packets addressed to our [V Ml

5.4.2 Infection Monkey

Infection monkey was also left ready for deployment, with an extra Selenium [API] given the lack of a
proper built-in [APIl The created interface allows starting tests with a single request as seen in Figure[5.7]
which is an important step for automating the interaction with this tool. Our limitation in this case was that
we were not allowed to run penetration tests around the whole network and therefore were limited to a different
virtual network, where we only had a sample of machines. The results of this simulation (network 10.0.11.0/24)
are presented in Figures [£.8 and [5.9]

< C @ & 100131813

JSON Raw Data Headers

Save Copy Collapse All Expand Al Filte

Monkey Island Running

Figure 5.7: Running the monkey from the [AP]l

34

@ Custom

1. Run Monkey

3. Security Reports

D Start Over

Configuration

Logs

Powered by
ﬂ' Guardicore

[Documentation

License
Infection Monkey Version:

@ Custom

1. Run Monkey

2. Infection Map

) Start Over

Configuration

Logs

Powered by
ﬂ Guardicore

[Documentation
License
Infection Monkey Version:
1.13.0+dev

Legend: Exploit== | Scan

Tunne| ==

A

3%

_— Monkeyis, ~ open5gs-source-ui8 © 10.0.13.181

Ubuntu-4ubuntu®.3 : 100.0.11

Island Communication

100.8.11.118 using the VSFTPDExploiter exploiter.
11/06/2022 1
100.0.11.11@ using the WeblLogicExploiter exploiter.

31 openSgs-source-ul8: Monkey failed exploiting

31 openSgs-source-ul8: Monkey failed exploiting

100.0.11.110 using the Log4ShellExploiter exploiter.

unknowm - 100.0.112

Monkey
Telemetry

O Kill All
Monkeys

Ubuntu-4ubuntu0.3 :

100.0.11.110
Operating Linux
System
P 100.0.11.110
Addresses
Services tcp-22: ssh
Accessible Monkeylsland -
From open5gs-source-ul8

110.0.13.181

EXPLOIT TIMELINE
[61/65]

6/11/2022, 3:20:30 PM
Monkeylsland - open5gs-source-
u18:10.0.13.181
ShellShockExploiter

R/11/2022 32030 PM

Figure 5.8: Infection Monkey detecting machines

Security report

Zero trust report

Read More...

The Network from the Monkey's Eyes

The Monkey discovered [4 machines and successfully breached [of them.

ATT&CK report

50% of scanned machines exploited

From the attacker's point of view, the network looks like this:

Legend: Exploit == | Scan

Tunne| ==

Island Communication

unknown 7100.8,11.2

‘host-100-0-11-213fopenstackiocal; 1000 11 213

.

host-100-0-11-110.openstacklocal

Figure 5.9:

Breaching Report

.

a‘w open5gs-source-uld ; 10.0.13.181

Ransomware report

35

CHAPTER

Orwell Monitoring System

6.1 BACKLOG

Our backlog was built over the ClickU;E] platform, where we are able to define the tasks on weekly sprints,
assign that task to one of the developers, estimate the effort of given task in sprint points and measure the
time that it took to complete given task.

Taking advantage of their [API] we were also able to automate updates of the backlog in our website.

6.2 PuLL REQUESTS AND CODE REVIEW

For source control, GitHulf] repositories were setup, containing the code for the wide range of Orwell’s
components. These can be accessed on the organization’s page.

Our pull request policy required one code review by someone who did not develop any of the commited
additions. Since various independent components were being built simultaneous, this policy allowed the team
to always make sure everyone was on the same page, preemptively detecting and fixing situations which could

raise issues or incompatibilities in the future.

6.3 GIT WORKFLOW

In the terms of workflows and branching strategy, a similar approach was taken in the whole development
process. Each repository has its main branch, where the production’s version’s source code resides. To
work on new functionalities, feature oriented branching was used, where branches would follow the naming
feature/<feature__name>. After reviewing, the feature is integrated in the production environment. To
handle bugs and fixes to already implemented features, a branch was created with the fix prefix, with the
format fix/<feature__name>>.

Branching allowed the team to always work with a production ready solution without congestioning parallel

component developments.

6.4 REPOSITORIES

Organization: https://github.com/OrwellMonitoring

"https://clickup.com/
https://github.com/

37

https://github.com/OrwellMonitoring

core middleware

translators

https://github.com/OrwellMonitoring/orwell-translators

translator python package

https://github.com/OrwellMonitoring/orwell-python-package

storage visualization

https://github.com/OrwellMonitoring/orwell-storage-visualization

manager WebApp

https://github.com/OrwellMonitoring /orwell-manager

boot services

https://github.com/OrwellMonitoring/orwell-boot-services

infection monkey REST API

https://github.com/OrwellMonitoring/infection-monkey-api

suricata configs

https://github.com/OrwellMonitoring/suricata__config

perfsonar utils

https://github.com/OrwellMonitoring /perfsonar-utils

eSight connector

https://github.com/OrwellMonitoring/esight _connector

documentation

https://github.com/OrwellMonitoring/orwell-documentation

6.5 DEPLOYMENT

Orwell’s proof of concept deployment relies on containerizing services using Docker and launching them as

modules aggregated by Docker Compose which will run in any host in the network. This allows a very flexible,

configurable environment offering a great degree of scalibility and simple component migration. The modules

provided in the final solution are:

o Middleware (core API, PostgreSQL, Redis and Kafka)

e Storage Visualization (Prometheus and Grafana)

o Translator Pack (one container of each developed translator)

¢ Management Plataform (Angular Web App)

In addition to these modules, other external services were deployed throughout the network like for example

the aforementioned Infection Monkey and Suricata instances.

The final deployment follows the diagram on Figure [6.1]

Collectors

PORT 443

Perfsonar
TestPoint .

@

Translators

eSight
interface
translaorg @
nUnon

node
exporter m

gnocchi
translator

%

PORT 443

Perfsonar
Toolkit

telgraf
translator

%

%

Middleware
PORT 5432

Postgres Storage Visualization

m
mmm
{ID (I (0 00 @
i PORT 9090

PORT 9092 Prometheus

PORT 8008 0
HTTP mmm
Rafe FastAPI

{ID (I (0 00 @
PORT 3000

PORT 6379

Grafana

Redis

PORT 5000 PORT 3000
Infection
Monkey

APl m

%

Infection
Monkey g

%

Suricata

Figure 6.1: Proof of Concept Deployment

38

https://github.com/OrwellMonitoring/orwell-core

6.5.1 Deployment tutorial

Thanks to Orwell’s modularity, besides a few required pieces, most of the components are optional, allowing
users to pick what matches their use cases.
The environments of the modules are documented on the documentation website (

https://orwellmonitoring.github.io/documentation/)

Middleware

Orwell’s deployment entrypoint should always be the Middleware. As mentioned before, this component
aggregates tools to integrate all other modules, such as the REST [APIl and the message broker which are
containerized in a docker-compose file.

Requirements:
o docker
o docker-compose

Run command:
$ docker—compose up —build

Storage Visualization
To store and view the collected metrics, we provide a compose with a Prometheus and Grafana instance,

as well as a prometheus.yml configuration file where the url to the middleware’s service discovery should be

updated.

Requirements:
o docker
o docker-compose

Run command:
$ docker—compose up —build

Translators

Once the system can collect and store data, depending on which exporters the targets are running,
translators should be setup to make the bridge between the exporters and the cache where Prometheus will
fetch its metrics. Again, we provide a compose with a pack of translators implementing the translation of the
services on [TAWs testbed.

Requirements:
o docker
o docker-compose

Run command:
$ docker—compose up —build

As mentioned before, new translators are easily created and containerized. The Dockerfile provided in the

repository can be used as a template to dockerize these components.

Infection Monkey + [APT]

Infection Monkey is fully optional. After setting up an IM server (Guadicore official tutorial), simulations
can be immediately ran based on configurations by interacting with the Web App.

Requirements:

o« MongoDB database

Starting the Monkey instance depends from the installation method used. Since we opted for the docker

version, after extracting the tar file, the run command is:

39

https://orwellmonitoring.github.io/documentation/
https://www.guardicore.com/infectionmonkey/docs/setup/

$ docker run —tty —interactive —mname monkey—island \

—network=host guardicore/monkey—island:v1.13.0

The[AP]l can also be deployed to make this service’s usage easier. In this compose, two services are created:

the [APIl to accept requests and a Chrome driver container to use with selenium. Requirements:
o docker
o docker-compose
o Infection Monkey server

Run command:
$ docker—compose up —build

Suricata
Since Suricata’s setup requires the installation and configuration of other external services, the extent of
this process would miss the scope of this section. For more information on this topic, a full detailed guide can

be found at our documentation

Perfsonar

PerfSonar util’s repository contains a init folder with two bash scripts, one for setting up PerfSonar Toolkit
and the other to set up PerfSonat Testpoint, both in a docker container.

As mentioned, the Toolkit version is considered the main node and the tests with the Testpoint nodes
need to be configured through a request to our Middleware. In the middleware there is also a configuration file
which can be editted so as to customize the relevant tests to be scheduled when this endpoint is called.

PerfSonar tests will only run if the two participant nodes are synchronized through NTP and, therefore,
we also include a ntp.conf file in the utils repository which will be included in the containers on start up.

Requirements:
o docker

o Orwell’s PerfSonar utils

6.5.2 [CI/[CDI pipelines

For continuous delivery, when necessary, services were auto deployed when the main branch changed, using
Github agents setup on the machines for their respective hosts. This pipeline allowed faster development cycles

and quickly get the system running the latest version.

6.6 ONE ToucH DEPLOYMENT

Due to the containerization of the modules, Orwell’s deployment can be as easy as creating containers on
the desired hosts. This process could also easily be automated with simple scripts.

Since our system has some optional features and really customizable environments, we give users the
freedom to really configure the application to meet requirements assuring a full production-ready deploy with,

for example, a single docker-compose command.

6.7 DOCUMENTATION WEBSITE

Considering that Orwell is an open-source project and that every system admin should be able to use
this system and adapt it to meet the requirements, we created a documentation website, which is available at
https://orwellmonitoring.github.io/documentation/. There we provide vital information about all the
modules of the system and give examples of how to configure them. This website is built using Docussauruﬂ
allowing us to write documentation through markdown files and, since we do not need a database and a

backend, we can easily deploy this website in Github pages.

3https://docusaurus.io/

40

https://orwellmonitoring.github.io/documentation/security/suricata/
https://github.com/OrwellMonitoring/perfsonar-utils
https://orwellmonitoring.github.io/documentation/

CHAPTER

Conclusion

The main goal of this project was the development of a toolset to monitor a [5Gl testbed. This toolset should
include tools capable of monitoring the [V NEkK, the network and all the infrastructure. The monitoring
process should not need to access the [VNFEL, since they are private applications belonging to the
developers during the testing phase. Thus, we treated all the [/ NEk as blackboxes which we could not access.

Looking at the list of objectives purposed for this project, it is safe to say that we met most of them
including some extras, even though some were limited due to reasons that do not concern the group. We
developed a toolset with more than one tool for [V NE] monitoring, including a preventive one that collects
metrics through the hypervisor, tools to measure the performance and assure the safety of the network, a
security validation tool and a infrastructure monitoring tool. While working with these tools we developed
some new ones that we are happy to share with the community through our open-source toolkit, under the
GNU General Public License v3.0|GPL)].

Due to the modularity of this system’s architecture, Orwell can be adapted to meet different use cases and
needs which allows this project to be useful outside its scope. We have also made a strong contribution to the
European Project which aims to boost the development process of [EG] applications.

Throughout the development of this project we had to deal with a lot of challenges. These were only
surpassed due to the good dynamic and dedication of every team member, including the advisors. This being
said, this project was a valuable experience for all of us in many levels, since we had to develop something
completely new to us, along with technologies no member had experience with, turning the process in a set of
challenges that we had to pass.

Although the goals were met for the scope of this proof of concept, there are a few features and tweaks
that require planning and implementation, both at the functionality and scalibility level.

First, since our context had a very limited number of targets to monitor, horizontal scalibility was not
really a concern while developing. In a real, production environment, the Kafka broker and Redis cache should
be deployed in scalable clusters to meet the testbed’s rate of metric collection without losing performance.

The same applies to our translators. Ideally, the system should be able to deploy translators dynamically
when necessary. This should be a trivial orchestration task, as launching a translator is as simple as running a
container.

For an even easier setup of Orwell, a config based install script would be created. In this script, the user
would indicate, in the configuration file, the components and respective environments and in what hosts they
should be deployed. Our script would then clone the repositories accordingly and bootstrap each module.

Finnaly, we wanted to create a with the goal of displaying the state of Orwell in real time. This
application, designed for network admins, would function as a hub to access every other Orwell resource
(Grafana dashboards, Grafana alerts, Suricata alerts, Infection Monkey reports). In addition to this, the state

of the components would also be presented, allowing access to logs and statistics.

41

2]

[GPL]

References

A. Wolke and D. Srivastav, “Monitoring and controlling research experiments in cloud testbeds,” in
2013 IEEE Sixth International Conference on Cloud Computing, 2013, pp. 962-963. DOI: [10.1109/
CLOUD.2013.97.

E. Magana, A. Astorga, J. Serrat, and R. Valle, “Monitoring of a virtual infrastructure testbed,” in
2009 IEEE Latin-American Conference on Communications, 2009, pp. 1-6. DOI: [10.1109/LATINCOM|
2009.5305030.

A. Wolke and D. Srivastav, “Monitoring and controlling research experiments in cloud testbeds,” in
2018 IEEE Sixth International Conference on Cloud Computing, 2013, pp. 962-963. DOI: [10.1109/
CLOUD.2013.97.

D. Kaur, B. Mohammed, and M. Kiran, “Netgraf: A collaborative network monitoring stack for
network experimental testbeds,” CoRR, vol. abs/2105.10326, 2021. arXiv: 2105.10326. [Online].
Available: https://arxiv.org/abs/2105.10326.

Gnu general public license, version 3, Free Software Foundation, Jun. 14, 2022. [Online]. Available:
http://www.gnu.org/licenses/gpl.html.

43

https://doi.org/10.1109/CLOUD.2013.97
https://doi.org/10.1109/CLOUD.2013.97
https://doi.org/10.1109/LATINCOM.2009.5305030
https://doi.org/10.1109/LATINCOM.2009.5305030
https://doi.org/10.1109/CLOUD.2013.97
https://doi.org/10.1109/CLOUD.2013.97
https://arxiv.org/abs/2105.10326
https://arxiv.org/abs/2105.10326
http://www.gnu.org/licenses/gpl.html

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	5g testbed
	How it's testbed works
	5gasp
	Motivation and Goals

	State Of The Art
	Monitoring and Controlling Research Experiments in Cloud Testbeds sonar
	Advantages of Sonar

	Monitoring of a virtual infrastructure Testbed monitoringvirtual
	A Testbed Evaluation for a Privacy-Aware Monitoring System in Smart Home testbedevaluation
	Reduced network traffic
	Security and privacy

	NetGraf: A Collaborative Network Monitoring Stack for Network Experimental Testbeds netgraf
	Problems of NetGraf

	Conceptual Modelling
	Problem
	Terminology
	Orwell
	Intrusive
	Non-Intrusive

	Actors
	Use Cases
	Requirements
	Functional
	Non-Functional

	Procedure and Implementation
	System Architecture
	OSM
	Collectors
	Message Broker
	Middleware
	Host Configs
	Cache Metrics Storage
	Storage and Visualization
	Security

	Host Configs Database
	Domain Model

	Metric Collectors
	How metrics are collected

	Message broker
	Python Package
	Metrics Translators
	Prometheus' Node Exporter
	Telegraf
	Gnocchi
	PerfSonar
	eSight

	Orwell api
	Structure
	Discovering Services
	Metric fetching
	Management
	Background tasks

	Service Discovery
	Orwell SD
	Prometheus SD

	Orwell Management Platform
	Security and Alarmistic
	Suricata
	Infection Monkey

	Data Storage and Visualization
	Prometheus
	Grafana

	Results and Discussion
	vnf Metrics Exporters
	Gnocchi
	Prometheus Node Exporter
	Telegraf

	Network Metrics
	5g Core Metrics
	Interfaces
	Slots

	Security
	Suricata
	Infection Monkey

	Orwell Monitoring System
	Backlog
	Pull Requests and Code Review
	Git Workflow
	Repositories
	Deployment
	Deployment tutorial
	CI/CD pipelines

	One Touch Deployment
	Documentation Website

	Conclusion
	References

