The
MDL

Programming Language

S. W. Galley and Greg Pfister

Laboratory for Computer Science

Massachusetts Institute of Technology

Massachusetts 02139

2 The MDL Programming Language

Abstract

The MDIL programming language began existence in late 1970 (under the name Muddle) as a
successor to Lisp (Moon, 1974), a candidate vehicle for the Dynamic Modeling System, and a possible
base for implementation of Planner (Iewitt, 1969). The original design goals included an
interactive integrated environment for programming, debugging, loading, and editing: ease in
learning and use: facilities for structured, modular, shared programs; extensibility of syntax, data
types and operatars: data-type checking for debugging and optional data-type declarations for
compiled ef ficiency: assaciative storage, coroutining, and graphics. Along the way to reaching those
goals, it devcioped flexible input/output (including the ARPA Network), and flexible interrupt and
signal handling. It now serves as a base for sofiware prototyping, research, development, education,
and implementation of the majority of programs at MIT-DMS: a library of sharable modules, a
caherent user interface, special rescarch projects, autonomous daemons, ete.

This document was originally intended to be a simple low-level introduction to MDL. It has,
however, acquired a case of elephantiasis and now amounts fo a discursive description of the whole
interpreter. as realized in MDL release numbers 55 (ITS version) and 105 (Tenex and Tops-20
versions), (Significant changes from the previous edition are marked in the margin.) A low-level
introduction may still be had by restricting one’s attention to specially-marked sections only. The
scope of the dociment is confined as much as possible to the interpreter itself. Other adjuncts
(compiler. assembler. pre-loaded user programs, library) are mentioned as little as possible, despite
their value in promnting the language seen by a user from "basic survival” to "comfortable living™.
Indeed, MD1 conld not fulfill the above design goals without the compiler, assembler, structure
editor, control-stack printer, context printer, pretty-printer, dynamic loader, and library system - all
of which are not part of the interpreter but programs written in MDL and symbiotic with one
another. Further information on these adjuncts can be found in Lebling's (1979) documnent.

KEY WORDS: MDL
Muddle
Programming Languages

{¢) Copyright 1979 Massachusetis Institute of Technology. All rights reserved.

The MDL Programming Language 3

Acknowledgements

I was not a member of the original group which labored for two years in the design and initial
implementation of Muddle: that group was composed principally of Gerald Sussman, Carl Hewitt,
Chiris Reeve, Dave Cressey, and later Bruce Daniels. I would therefore like to take this opportunity
to thank my Muddle mentors, chiefly Chris Reeve and Bruce Daniels, for remaining civil through
several months of verbal badgering. I believe that I learned more than " just another programming
language” in learning Muddle, and 1 am grateful for this opportunity to pass on some of that
knowledge. What I cannot pass on is the knowledge gained by using Muddle as a system; that I can
only ask you to share.

For editing the content of this document and correcting some misconceptions, I would like to thank
Chris Reeve, Bruce Daniels and especially Gerald Sussiman, one of whose good ideas I finally did use.

Greg Pfister
December 15, 1972

Since Greg left the fold, T have taken up the banner and updated his document. The main sources
for small revisions have been the on-line file of changes to MDL, for which credit goes to Neal
Ryan as well as Reeve and Daniels, and the set of on-line abstracts for interpreter Subroutines,
contributed by unnamed members of the Programming Technology Division. Some new sections
were written almost entirely by others: Dave Lebling wrote chapter 14 and appendix 3, Jim Michener
section 14.3, Reeve chapler 19 and appendix 1, Daniels and Reeve appendix 2, Brian Berkowitz
section 22.7, Tak To section 17.2.2, and Ryan section 17.1.3. Sue Pitkin did the tedious task
of marking phrases in the manuscript for indexing. Pitts Jarvis and Jack Haverty advised on the
use of PUB and the XGP. Many PTD people commented helpfully on a draft version.

My task has been to impose some uniformity and structure on these diverse sources (so that the
result sounds less like a dozen hackers typing at a dozen terminals for a dozen days) and to en joy
some of the ricliness of MDL from the inside. I especially thank Chris Reeve ("the oracle”) for the
patience to answer questions and resolve doubts, as he no doubt has done innumerable times before.

S. W. Galley
May 23, 1979

This work was supported by the Advanced Research Projects Agency of the Departinent of Defense
and was monitored by the Office of Naval Research under contract N00014-75-C-0661.

This document was prepared using the PUB system (originally from the Stanford Artificial

Intelligeuce Laboratory) and printed on the Xerox Graphics Printer of the M.LT. Artificial
Intelligence Laborator

4 The MDL Programming Language

Foreword

Trying to explain MDL to an uninitiate is somewhat like trying to untie a Gordian knot. Whatever
topic one chooses to discuss first, full discussion of it appears to imply discussion of everything
else. What follows is a discursive presentation of MDL in an order apparently requiring the fewest
forward references. 1t is not perfect in that regard: however, if you are patient and willing to

accept a few, stated things as "magic” until they can be explained better, you will probably not have
too many problems understanding what is going on.

There are no "practice probiems™ you are assumed to be learning MDL for some purpose, and your
work in achieving that purpose will be more useful and motivated than artificial problems. In

several cases, the examples contain illustrations of important points which are not covered in the
text. Ignore examples at your peril.

This document does not assume knowledge of any specific programming language on the your part.
However, "computational literacy” is assumed: you should have written at least one program before.
Also, very little familiarity is assumed with the interactive time-sharing operating systems under
which MDL runs -- ITS, Tenex, and Tops-20 —- namely just file and user naming conventions.

MNotation:

Sections marked [I] are recommended for an uninitiate’s first reading, in lieu of a separate

introduction or primer for MDL. [On first reading, text within brackets like these should be
ignored.]

Most specifically indicated examples herein are composed of pairs of lines. The first line of a pair,
the input, always ends in $ (which is how the ASCII character ESC is represented, and which always
represents itl. The second line is the result of MDL's groveling over the first. If you were to type
all the first lines at MDL, it would respond with all the second lines. (More exactly, the "first line"

is one or more objects in MDL followed by §, and the “second line” is everything up to the next
"first line".)

Anything which is written in the MDL language or which is typed on a computer terminal appears
herein in a gothic font, as in ROOT. A metasyntactic variable -- something to be replaced in actual
use by something else -- appears as radix:fix, in an italic font; often the variable will have both a
meaning and a data type (as here). but sometimes one of those will be omitted, for obvious reasons.

An ellipsis (...) indicates that something uninteresting has been omitted. The character © means

that the following character is to be “"controllified™ it is usually typed by holding down a terminal’s
CTRL key and striking the other key.

] e ——

PpEm————— SR LS

P

The MDL Programming Language

Page

16
20
27
30
35
43
52
7l
78
89
98
116
120
124
138
146
152
159
163
169
177
192
201
204

List of Chapters

Name

l. Basic Interaction

2. Read, Evaluate, and Print
3. Builr-in Functions

4. Values of Atoms

5 Simple Functions

6. Dara Types

7. Structured Ob jects

8. Truth

9. Functions

10. Looping

L. Input/Output

2. Locatives

I13. Association (Propertics)
I4. Trata-type Declarations
I5. Lexical Rincking

16. Errors, Frames, clc.

I7. Macro-nperations

[8. Machine Wards and Birs
19. Compiled Programs

20. Cornutines

21 Interrupts

22. Storage Management
23. MDL as a System Process
24. Efficiency and Tastefulness

Page

16
16
16
I8
18

20
20
20
21
22
22
2
22
23
24
24
24
25
26

27
27
27
28
28
29

30
30
30
30
31
31
32
32
32

33
33

The MDL Programming Language

List of Sections

Sectinon

Chapter L Basic Interaction
1.1 Loading MDL [I]
1.2 Typing [1]
1.3 Loading a File [I]
1.4 Errors -- Simple Considerations [1]

Chapter 2. Read, FEvaluate, and Print
2.1 General [1]
2.2 Philosophy (TYPEs) [1]
2.3 Example (TYPE FIX) [1]
2.4 Example (TYPE TLOAT) [I]
2.5 Example (TYPE ATOM, PNAME) (1]
2.6 F1¥es, FLOATSs, and ATOMs versus READ: Specifics
2.6.1 READ and F I¥ed-point Numbers
2.6.2 BEAD and PRINT versus FLOATing-point Numbers
2.6.3 READ and PFNANES
2.6.3.1 Non-PHAHEs
2.6.53.2 Examples
7.6.5.5 \ (Backslash} in ATOMs
2.6.5.4 Examples of Awful ATOMs

Chapter 5. Built-in Functions
3.1 Representation [1]
1.2 Evaluation [1]
3.3 Built-in Functions (TYPE SUBR, TYPE FSUBR) [1]
3.4 Examples {+ and FIX; Arithmetic) [1]
3.5 Arithonetic: Details

Chapter -1. Values of Atoms
4.1 General [1]
4.2 Global Values
4.2.1 SETG [1]
4.2.2 GVAL [I]
4.2.3 Note on SUBRs and FSUBRs
4.2 GUNASS]IGN
4.5 Local Values
4.5.1 SUT [1]
4.3.2 LVAL [1]
4.3.3 UNASSIGN
4.4 VALUE

List of Sections

e e e

The MDL Progranming Language

35 Chapter 5. Simple Functions
35 5.1 General [1]

35 5.2 Representation [1]

36 5.3 Application of FUNCTIONs; Binding [1]

39 5.4 Defining FUNCTIONs (FUNCTION and DEFINE) [1]
40 5.5 Examples (Comments) [1]

43 Chapter 6. Data Types

43 6.1 Genceral [1]

43 6.2 Printed Representation [1]

44 6.3 SUBRs Related to TYPEs

44 6.3.1 TYPE [1)

44 6.53.2 PRIMTYPE [I]

45 6.3.3 TYPEPRIM [1]

45 6.3.4 CHTYPE [I]

46 6.4 Morc SUBRs Related to TYPEs

46 6.4.1 ALLTYPES

46 6.4.2 VALID-TYPE?

46 6.4.3 NEWTYPE

48 6.4.4 PRINTTYPE, EVALTYPE and APPLYTYPE
52 Chapter 7. Structured Ob jects

52 7.1 Manipulation

52 7.1.1 LENGTH [1]

52 7.1.2 NTH 1]

52 7.1.3 REST [1]

53 7.1.4 PUT [1]

53 7.1.5 GET

53 7.1.6 APPLYing a FIX[I]

54 7.1.7 SUBSTRUC

54 7.2 Representation of Basic Structures
54 7.2.1 LIST [1)

54 7.2.2 VECTOR [1)

54 7.2.3 UVECTOR [1]

55 7.2.4 STRING [1]

55 7.2.5 BYTES

55 7.2.6 TEMPLATE

55 7.3 Evaluation of Basic Structures [I]
55 7.4 Examples [1]

56 7.5 Generation of Rasic Structures

a6 7.5.1 Direct Representation [1]

56 7.5.2 QUOTE [1)

57 7.5.3 LIST, VECTOR, UVECTOR, and STRING (the SUBRs) [1]
57 7.5.4 ILI1ST, IVECTOR, IUVECTOR, and ISTRING [1]
58 7.5.5 FORM and IFQRM

List of Sections

59
59
59
59
60
60
60
60
60
61
63
63
63
64

65
65
65
65
65
66
66
66
67
67
68
69
69
69
70

7l
71
71
71
72
73
74
75
75
76
76
77

78

7.6 Unique Properties of Primitive TYPEs

76.1 LIST (the PRIMTYPE) [1]
7.6.1.1 PUTREST [1]
7.6.1.2 CONS
7.6.2 "Array” PRIMTYPEs [1]
7.6.2.1 BACK [1]
7.6.2.2 TOP [1]
7.6.3 "Vector” PRIMTYPEs
7.6.3.1 GROW
7.6.3.2 SORT
7.6.4 VECTOR (the PRIMTYPE) [1]
7.6.5 UVECTOR (the PRIMTYPE) [I]
7.6.5.1 UTYPE [1]
7.6.5.2 CHUTYPE [1]
7.6.6 STRING (the PRIMTYPE) and CHARACTER [1]
7.6.6.1 ASCII [1]
7.6.6.2 PARSE [1]
7.6.6.3 LPARSE [1]
7.6.6.4 UNPARSE [1]
7.6.7 BYTES
7.6.8 TEMPLATE

7.7 SEGHENTs [1]

7.7.1 Representation [1]
7.7.2 Evaluation [I]

7.7.3 Examples [I]

7.7.4 Note on Efficiency [I]
7.7.5 SEGMENTs in FORMs [I]

7.8 Self-referencing Structures

7.8.1 Self-subset
7.8.2 Self-element

Chapter 8. Truth
8.1 Truth Values [1]
8.2 Predicates [1]

8.2.1 Arithmetic (1]

8.2.2 Equality and Membership [1]
8.2.5 Bonlean Operators [1]

8.2.4 Object Properties [1]

8.3 COND [1]

8.3.1 Examples [1)

8.4 Shorteuts with Conditionals

8.4.1 AND and OR as Short CONDs
8.4.2 Embedded Unconditionals

Chapter 9. Functions

List of Sections

The MDL Programming Language

The MDL Prngramming Language

78 2.1 "OPTIONAL" [1]
79 9.2 TUPLEs
7 0.2.1 "TUPLE™ and TUPLE (the TYPE) [I]
80 022 TUPLE {the SUBR) and ITUPLE
Rl 9.3 "AUX" [1]
82 9.4 QUOTEd arguments
82 9.5 "ARGS"
83 0.6 "CALL"
83 9.7 EVAL and "BIND"®
84 9.7.1 Local Values versus ENVIRONMENTs
84 9.8 ACTIVATION, "NAMC", "ACT", AGAIN, and RETURN [1]
Bb 9.9 Argnment List Summary
88 210 APPLY [1]
88 9.11 CLOSURE
, 89 Chapter 10. Looping
89 10.1 PROG and REPEAT [1]
89 10.1.1 Basic EVALuation [I1]
90 10.1.2 AGATN and RETURN in PROG and REPEAT [I]
90 10,17 Examples [1]
a1 10.2 MAPF and MAPR: Basies [I]
92 10.2.1 MAPK [1]
92 10.2.2 MAPR [1]
92 10.2.3 Examples [1]
94 10.3 More on MAPF and MAPR
‘I 94 10.3.1 MAPRCT
95 10.5.2 MAPSTOP
95 10.3.3 MAPLEAVE
95 10.3.1 Only two arguments
96 10.5.5 STACKFORM
96 10.4 GO and TAG
97 10.5 Looping versus Recursion
38 Chapier 11 Input/Ourput
98 LI Conversion 1O
98 LLLT Tnpwt
99 [LLLT READ
99 11.1.L.2 REARCIIR
99 H.LLS NEXICHR
99 L2 OQuiput
90 1LL2.1 PRINT
99 11.1.2.2 PRIN]
100 1L1.2.3 PRINC
l 100 11.1.2.4 TERPRI
160 11.1.2.5 CRLF
List of Sections

10 The MDL Programming Language

100 11.1.2.6 FLATSIZE

10} 11.2 CHARNTL (the TYPE)

101 11.2.1 OPEN

102 11.2.2 OPEN-NR

102 11.2.3 CHANNEL (the SUBR)
103 11.2.4 FILE-EXISTS?

103 11.2.5 CLOSE

103 11.2.6 CHANLIST

103 11.2.7 TNCHAN and OUTCIIAN
104 11.2.8 Contents of CHANHELS
104 11.2.8.1 Omput CHANNELs
105 11.2.8.2 Input CHANKELS
105 11.3 Tnd-of-File "Routine”
106 1.4 Imaged 1/0

106 .41 Input

106 i1.4.1.1 READB

106 11.4.1.2 READSTRING
106 11.4.2 Owtput

106 11.4.2.1 PRINTB

106 11.4.2.2 PRINTSTRING
107 11.4.2.5 THAGE

107 1.5 Dumped 1/O

107 11.5.1 Output: GC-DUNP
107 11.5.2 Input: GC-READ
108 11.6 SAVE Files

108 11.G.1 SAVE

109 11.6.2 RESTORE

109 11.7 Other 1O Functions
109 11.7.1 LOAD

110 11.7.2 FLOAD

1o 11.7.53 SHAHE

110 }1.7.-4 ACCESS

o 11.7.5 FILE-LENGTH

11 11.7.6 FILECOPY

11 11.7.7 RESET

il 11.7.8 BUI QUT

11! 11.7.9 REHAHE

112 I1.& Terminal CHARNELs

113 11.5.1 ECHOPAIR

113 }1.8.2 TTIYECHO

113 I.83 1Yl

i13 1.9 Internal CHANNELs

114 11,10 The "NET® Device: the ARPA Network
115 11101 NETSTAITE

115 11.10.2 NETACC

e ——— e —

List of Sections

The MDL Programming Language

115

116
116
116
17
17
17
117
118
118
118
119

120
120
120
120
120
121
121
121
121
123

124
125
128
130
131
131
131
132
132
133
134
134
134
134
135
135
136

138
138

11.10.3 NETS

Chapter 12. Locatives

12.1 Obtaining Locatives
12.1.1 LLOC
12.1.2 GLOC
12.1.3 AT
12.1.4 GETPL and GETL

12.2 LOCATIVE?

12.3 Using Locatives
12.5.1 IN
12.3.2 SETLOC

12.4 Note on Locatives

Chapter 13. Association (Properties)

13.1 Asseciative Storage

13.1.1 PUTPROP

15.1.2 PUT

13.1.3 Removing Associations
13.2 Associative Relrieval

13.2.1 GETPROP

13.2.2 GET
3.3 Examples of Association
13.4 Examining Associations

Chapter 14. Data-type Declarations
I4.1 Patterns
14.2 Examples
14.3 The DECL Syntax
14.4 Good DECLs
14.5 Global DECLs
14.5.1 GDECL and MANIFEST

14.5.2 MANIFEST? and UNMANIFEST

14.5.3 GBOUND?

14.6 NEWTYPE (again)

14.7 Controlling DECL Checking
14.7.1 DECL-CHECK

14.7.2 SPECIAL-CHECK and SPECIAL-MODE
14.7.3 GET-DECL and PUT-DECL

14.7.4 DECL?
4.8 OFFSET
14.9 The RSUBR DECL

Chapter 15. Lexical Blocking
15.1 Basic Considerations

List of Sections

11

12

139
139
140
140
140
141
141
142
142
142
143
143
143
143
143
144
144
144

146
146
147
147
148
148
148
148
148
150
150
150
151
151

152
152
152
153
153
153
155
156
156
156
157

15.2 OBLISTs
15.2.1 OBLIST Names
15.2.2 MOBLIST
15.2.3 OBLIST?
15.3 READ and OBLISTs
I5.4 PRINT and OBLISTs
15.5 Initial State
15.6 BLOCK and ENDBLOCK
|5.7 SUBRs Associated with Lexical Blocking
15.7.1 READ {again)
15.7.2 PARSE and LPARSE (again)
15.7.3 LOOKUP
15.7.4 ATOM
15.7.5 REMOVE
15.7.6 TNSERT
15.7.7 PNAHME
15.7.8 SPNAME
15.8 Example: Another Solution to the INC Problem

Chapter 16. Errors, Frames, etc.

16.1 LISTEN

16.2 ERROR

16.3 FRAME (the TYPE)
16.3.1 ARGS
16.3.2 FUNCT
16.3.3 FRAME (the SUBR)
16.3.4 Examples

16.4 ERRET

16.5 RETRY

16.6 UNWIND

16.7 Control-G (*G)

16.8 Control-5 (*5)

16.9 OVERFLOW

Chapter 17. Macro-operations
17.1 READ Macros
17.1.1 % and %%
17.1.2 LIKK
17.1.3 Program-defined Macro-characters
17.1.3.1 READ (finally)
17.1.5.2 Examples
17.1.5.3 PARSE and LPARSE (finally)
17.2 EVAL Macros
17.2:.1 DEFMAC and EXPAND
17.2.2 Example

List of Sections

The MDL Programming Language

The MDL Programming Language

159 Chapter 18. Machine Words and Bits
159 I8.1 WORDs

160 18.2 BITS

160 I8.3 GETBITS

161 I8.4 PUTBITS

161 I18.5 Bitwise Boolean Operations

162 I8.6 Bitwise Shifting Operations

163 Chapter 19. Compiled Programs

163 19.1 RSUBR (the TYPE)

163 19.2 The Reference Vector
164 19.3 RSUBR Linking

164 19.4 Pure and Impure Code
165 19.5 TYPE-C and TYPE-W
165 19.6 RSUBR (the SUBR)

166 19.7 RSUBR-ENTRY

166 19.8 RSUBRs in Files

167 19.9 Fixups

169 Chapter 20. Coroutines

169 20.1 PROCESS (the TYPE)

170 20.2 STATE of a PROCESS

170 20.3 PROCESS (the SUBR)

170 20.4 RCSUME

171 20.5 Switching PROCESSes

171 20.5.1 Starting Up a New PROCESS
171 20.5.2 Top-level Return

172 20.5.3 Symmetric RESUMEing
173 20.6 Example

173 20.7 Other Coroutining Features
173 20.7.1 BREAK-5EQ

174 20.7.2 MAIN

174 20.7.3 ME

174 20.7.4 RESUMER

174 20.7.5 SUICIDE

175 20.7.6 1STEP

175 20.7.7 FREE-RUN

175 20.8 Sneakiness with PROCESSes
176 20.9 Final Notes

177 Chapter 21. Interrupts

177 21.1 Definitions of Terms
178 21.2 EVENT
179 21.3 HAKDLER (the SUBR)

179 21.4 OFF

List of Sections

ke The MDL Programming Language

180 ?1.5 IHEADER and HANDLER (the TYPEs)

180 21.5.1 INEADER

181 21.5.2 HANDLER

181 21.6 Other SUBRs

182 21.7 Priorities and Interrupt Levels
182 21.7.1 Interrupt Processing

183 21.7.2 INT-LEVEL

183 21.7.3 DISHISS

184 21.8 Specific Interrupts

184 21.8.1 "CHAR™ reccived

185 21.8.2 "CHAR"™ wanted

185 21.8.3 "CHAR" for new line

186 21.8.4 "eC"

186 21.8.5 "DIVERT-AGC"®

187 21.8.6 "CLOCK"

187 21.8.7 "BLOCKED"

187 21.8.8 "UNBLOCKED"

187 21.8.9 "READ" and "WRITE"

I88 21.8.10 *SYSDOWN*®

188 21.8.11 "ERROR™

189 21.8.12 *IPC"

189 21.8.13 "INFERIOR®

189 21.8.14 "RUNT® and "REALT™

189 21.8.15 "Dangerous” Interrupts
190 21.9 User-Defined Interrupts (INTERRUPT)
191 2110 Waiting for Interrupts

191 21.10.1 HANG

191 21.10.2 SLEEP

192 Chapter 22. Storage Management

192 22.1 Movable Garbage-collected Storage
193 22.1.1 Stacks and Other Internal Vectors
194 22.2 Immovable Storage

194 22.2.1 Garbage-collected: FREEZE
194 22.2.2 Non-garbage-collected: STORAGE (the PRIMTYPE)
194 22.3 Other Storage

195 22.4 Garbage Collection: Details
195 22.5 GC

196 22.6 BLOAT

198 22.7 BLOAT-STAT

199 22.8 GC-HON

199 22.9 Related Subroutines

199 22.9.1 SUBSTITUTE

199 22.9.2 PURIFY

List of Sections

——

The MDL Programming Language

201
201
201
202
202
202
203
203
203
203
204
204
205
207
208
208
208

209
209

211

258
260
265
266
267

271

Chapter 25 MDL as a System Process
253.1 TIME
23.2 Names
23.3 Exits
234 Inter-process Communication
253001 SERD and SEND-WAIT
23.4.2 The "IPC" Interrupt
23.4.3 IPC-OFF
25401 1PC-0ON
23.4.5 DEMSIG

Chapter 24, Ffficiency and Tastefulness
24.1 Ffficiency

2111 Example
24.2 Creating a LIST in Forward Order

24.3 Read-only Free Variables

24.41 Glnhal and Local Values

245 Making Offsets for Arrays

24.6 Tables

24.7 Nesting
Appendix 1. A Look Inside
Appendix 2. Predefined Subroutines
Appendix 3. Predefined Types
Appendix 4. Error Messages
Appendix 5. Initial Settings
References

Topic Index

Name Index

List of Sections

15

16 The MDL Programming Language

Chapter 1. Basic Interaction

The purpnse of this chapter is to provide you with that minimal amount of information needed to
experiment with MDL while reading this document. It is strongly recommended that you do
experiment, especially upon reaching chapter 5 (Simple Functions).

I.1. Loading MDL {l]

First, catch your rabhit. Somehow get the interpreter running - the program in the file SYS:TS MDL
in the 1TS version or SYS:MDL.SAV in the Tenex version or SYS:MDL.EXE in the Tops-20 version.
The interpreier will first type out some news relating to MDL, if any, then type

LISTEMING-AT-LEVEL 1 PROCESS 1

and then wait for you to type something.

The program which you are now running is an interpreter for the language MDL. All it knows how
to do is interprel MDL expressions. There is no special "command language™ you communicate
with the program -- make it do things for you -- by actually typing legal MDL expressions, which it

then interprets. Fverything you can do at a terminal can be done in a program, and vice versa, in
exactly the same way.

The program will be referred to as just "MDL" {or “the interpreter”) from here on. There is no
ambiguity, since the program is just an incarnation of the concept "MDL".

1.2. Typing (1]

Typing a character at MDL normally just causes that character to be echoed (printed on Yyour

terminal) and remembered in a buffer. The only characters for which this is normally not true act
as follows:

Typing § {ESC) causes MDL to echo dollar-sign and causes the contents of the buffer (the characters

1-12 Basie Interaction

e e ——

The MDL Programming Language 17

which you've typed) to be interpreted as an expression(s) in MDL. When this interpretation is done,
the result will be printed and MDL will wait for more typing. ESC will be represented by the glyph
$ in this document.

Typing the rubout character (DEL in the ITS and Tops-20 versions, control-A i1 the Tenex version)
causes the last character in the buffer -- the one most recently typed -- to be thrown away (deleted).
If you now immediately type another rubout, once again the last character is deleted -- namely, the
second most recently typed. Ete. The character deleted is echoed, so you can see what you're doing.
On some “display” terminals, rubout will "echo” by causing the deleted character to disappear. If no
characters are in the buffer, rubout echoes as carriage-return line-feed.

Typing "€ (control-atsign) deletes everything you have typed since the last $, and prints a carriage-
return line-feed.

Typing “0 (control-D) causes the current input buffer to be typed back out at you. This allows you
to see what you really have, without the confusing re-echoed characters produced by rubout,

Typing “L (control-L) produces the same effect as typing °D, except that, if your terminal is a
"display” terminal (for example, IMLAC, ARDS, Datapoint), it first clears the screen.

Typing “G (control-G) causes MDL to stop whatever it is doing and act as if an error had occurred
(section L4). ~G is generally most useful for temporary interruptions to check the progress of a

computation. “G is "reversible” -- that is, it does not destroy any of the “state” of the computation it
interrupts. To "undo” a *G, type the characters

<ERRET T>%

(This is discussed more fully far below, in section 16.4.)

Typing *5 (control-S) causes MDL to throw away what it is currently doing and return to a normal
“listening” state. (In the Tenex and Tops-20 versions, ~0 also should have the same effect.) “S is

generally most useful for aborting infinite loops and similar terrible things. ~S destroys whatever
Is going on, and so it is not reversible.

Most expressions in MDL include "brackets" (generically neant) that must be correctly paired and
nested. If you end your typing with the pair of characters 1§ (exclamation-point ESC), all currently
unpaired brackers (but not double-quotes, which bracket strings of characters) will automatically be
paired and interpretation will start. Without the ', MDL will just sit there waiting for you to pair
them. If you have improperly nested parentheses, brackets, etc., within the expression you typed, an
error will occur, and MDL will tell you what is wrong.

Once the brackets are properly paired, MDL will immediately echo carriage-return and line-feed, and
the next thing it prints will be the result of the evaluation. Thus, if a plain § is not so echoed, you

1.2 Basic Interaction

18 The MDL Programming Language

have some expression unclosed. In that case, if you have not typed any characters beyond the §,
you can usually rub out the $ and other characters back to the beginning of the unclosed expression.

Otherwise, what you have typed is beyond the help of rubout and ~@; if you want to abort it, use
8-

MDL accepts and distinguishes between upper and lower case. All "built-in functions” must be
referenced in upper case.

1.3. Loading a File [I]

If you have a program in MDL that you have written as an ASCII file on some device, you can
“load” it by typing

<FLOAD file>}

where file is the name of the file, in standard operating-system syntax, enclosed in "s (double-
quotes). Omitted parts of the file naine are taken by default from the file name "DSK: INPUT >*

(in the ITS version) or "DSK: INPUT.MUD" (in the Tenex and Tops-20 versions) in the current disk
directory.

Once you type §, MDL will process the text in the file (including FLOADs) exactly as if you had
typed it on a terminal and followed it with $, except that "values” produced by the computations
are not printed. When MDL is finished processing the file, it will print "DONE".

When MDL starts running, it will FLOAD the file *MUDDLE INIT* (ITS version) or "MUDDLE.INIT®
(Tenex and Tops-20 versions), if it exists.

l.4. Errors -- Simple Considerations [1]

When MDL decides for some reason that something is wrong, the standard sequence of evaluation is
interrupted and an error function is called. This produces the following terminal output:

*ERROR=

offen-hyphenated-reason
function-in-which-error-occurred
LISTENING-AT-LEVEL integer PROCESS integer

You can now interact with MDL as usual, typing expressions and having them evaluated. There
exist facilities (built-in functions) allowing you to find out what went wrong, restart, or abandon
whatever was going on. In particular, you can recover from an error — that is, undo everything but

1.2-14 Basic Interaction

The MDL Programming Language 19

side effects and return to the initial typing phase - by typing the following first line, to which
MDL will respond with the second line:

(ERRET>%
LISTENING-AT-LEVEL 1 PROCESS 1

If you type the following first line while still in the error state (before <ERRET>), MDL will print, as

shown, the arguments (or “parameters” or "inputs” or “independent wvariables”) which gave
indigestion to the unhappy function:

CARGS <{FRAME <FRAME>>>$
[arguments to unhappy function]

This will be explained by and by.

1.4 Basic Interaction

2 The MDL Programming Language

Chapter 2. Read, Evaluate, and Print

2.1. General 1]

Once you type & and all brackets are correctly paired and nested, the current contents of the input
buffer go through processing by three functions successively: first READ, which passes its output to
EVAL ("evaluate”). which passes its output to PRINT, whose output is typed on the terminal.

[Actually. the scquence is more like READ, CRLF, EVAL, PRIN1, CRLF (explained in chapter 11)

MDL gives you a carriage-return line-feed when the READ is complete, that is, when all brackets are
paired.]

Functionally,
READ: printable representations --» MDL ob jects
EVAL: MDL ob jects --» MDL ob jects
PRINT: MDL objects --> printable representations
That is, READ takes ASCII text, such as is typed in at a terminal, and creates the MDL ob jects

represented by that text. PRINT takes MDL ob jects, creates ASCII text representations of them, and

types them out. EVAL, which is the really important one, performs transformations on MDL
ob jects.

2.2. Philosophy (TYPCs) [1]

In a general sense. when you are interacting with MDL, you are dealing with a world inhabited only
by a particular set of ob jects: MDL ob jects.

MDL objects are best considered as abstract entities with abstract properties. The properties of a
particular MDL object depend upon the class of MDL objects to which it belongs. This class is the

2-22 Read, Evaluate, and Print

™o w

it !

ht:l-— =

The MDL Programming Language 21

TYPE of the MDL ob jeet. Every MDL object has a TYPE, and every TYPE has its own peculiarities.
There are many different TYPEs in MDL: they will gradually be introduced below, but in the
meantime here is a representative sample: SUBR (the TYPE of READ, EVAL and PRINT), FSUBR, LIST,

VECTOR, FORM, FUNCTION, etc. Since every object has a TYPE, one often abbreviates "an ob ject of
TYPE type” by saying "a type".

The laws of the MDL world are defined by EVAL. In a very real sense, EVAL is the only MDL ob ject
which "acts”, which "does something”. In "acting”, EVAL is always "following the directions” of some
MDL object. Every MDL object should be looked upon as supplying a set of directions to EVAL;
what these directions are depends heavily on the TYPE of the MDL ob ject.

Since EVAL is so ever-present, an abbreviation is in order: “evaluates to something” or "EVALs to
somefhing” should be taken as an abbreviation for “when given to EVAL, causes EVAL to return
something”.

As abstract entitics, MDL objects are, of course, not "visible". There is, however, a standard way of
representing abstract MDL objects in the real world. The standard way of representing any given
TYPE of MDL object will be given below when the TYPE is introduced. These standard
representations are what READ understands, and what PRINT produces.

2.3. Example (TYPE FIX)[1]

1%
1

The following has occurred:

First, READ recognized the character 1 as the representation for an object of TYPE FIX, in particular
the one which corresponds to the integer one. (FIX means integer, because the decimal point is
understood always to be in a fixed position: at the right-hand end.) READ built the MDL ob ject
corresponding to the decimal representation typed, and returned it.

Then EVAL noted that its input was of TYPE FIX. An object of TYPE FIX evaluates to itself, so
EVAL returned its input undisturbed.

Then PRINT saw that its input was of TYPE FIX, and printed on the terminal the decimal character
representation of the corresponding integer.

22-23 Read, Evaluate, and Print

22 The MDL Programming Language

2.4. Example (TYPE FLOAT) [1]

1.0%
1.0

What went on was entircly analogous to the preceding example, except that the MDL ob ject was of
TYPE FLOAT. (FLOAT means a real number (of limited precision), because the decimal point can float
around to any convenient position: an internal exponent part tells where it "really” belongs.)

2.5. Example (TYPE ATOM, PNAME) [1]

GCORGLS
GEORGE

This time a lot more happened.

READ noted that what was typed had no special meaning, and therefore assumed that it was the
representation of an identifier, that is, an object of TYPE ATOM. ("Atom" means more or less
indivisible.) READ therefore attempted to look up the representation in a table it keeps for such
purposes [a LIST of OBLISTs, available as the local value of the ATOM OBLIST]. If READ finds an
ATOM in its table corresponding to the representation, that ATOM is returned as READ's value. If READ
Fails in Inoking up, it creates a new ATOM, puts it in the table with the representation read [INSERT
into <1 .OBLIST> usually), and returns the new ATOM. Nothing which could in any way be
referenced as a legal "value™ is attached to the new ATOM. The initially-typed representation of an

ATOM becomes its PNAME, meaning its name for PRINT. One often abbreviates “ob ject of TYPE ATOM
with PNAME name” by saying "ATOM name",

EVAL, given an ATOM, returned just that ATOM.

PRINT, given an ATOM, typed out its PNAME.

At the end of this chapter, the question "what is a legal PNAME™ will be considered. Further on, the
methods used 1o attach values to ATOMs will be described.

2.6. FIXes, FLOATs, and ATOMs versus READ: Specifics

2.6.1. READ and FIXed-point Numbers

READ considers any grouping of characters which are solely digits to be a FIX, and the radix of the

2.4 -26.1 Read, Evaluate, and Print

E H O = D3 T n

—ma

The MDL Programming Language 23

representation is decimal by default. A - (hyphen) immediately preceding such a grouping
represents a negative FIX. The largest FIX representable on the PDP-10 is two to the 35th power
minus one, or 34 359 738 367 (decimal): the smallest is one less than the negative of that number. If
you atfempt fo type in a FIX outside that range, READ converts it to a FLOAT; if a program you
write attempts to produce a FIX outside that range, an overflow error will occur (unless it is

- disabled).

The radix nsed by READ and PRINT is changeable by the user: however, there are two formats for

representations of FIXes which cause READ to use a specified radix independent of the current one.
These are as follows:

(1) If a group of digits is immediately followed by a period (.), READ interprets that group as

the decimal representation of a FIX., For example, 10. is always interpreted by READ as the
decimal representation of ten.

(2) If a group of digits is immediately enclosed on both sides by asterisks (%), READ interprets

that group as the octal representation of a FIX. For example, *10% is always interpreted by
READ as the octal representation of eight.

2.6.2. READ and PRINT versus FLOATing-point Numbers

PRINT can produce, and READ can understand, two different formats for objects of TYPE FLOAT.

The first is "decimal-point” notation, the second is “scientific” notation. Decimal radix is always
used for representations of FLOATSs.

“Decimal-point” notation for a FLOAT consists of an arbitrarily long string of digits containing one

- {period) which is followed by at least one digit. READ will mnake a FLOAT out of any such ob ject,
with a limit of precision of one part in 2 to the 27th power.

"Seientific” notation consists of:

(1) a number,

(2} immediately followed by E or e (upper or lower case letter E),
(3) immediately followed by an exponent,

where a "number” is an arbitrarily long string of digits, with or without a decimal point (see
following notel and an ‘exponent” is up to two digits worth of FIX. This notation represents the
“number” to the ‘exponent” power of ten. Note: if the “number” as above would by itself be a FIX,
and if the "exponent” is positive, and if the result is within the allowed range of FIXes, then the

result will be a FIX. For example, READ understands 10E1 as 100 (a2 FIX), but 10E-1 as 1.0000000 (a
FLOAT),

The largest-magnitude FLOAT which can be handled without overflow is 1.7014118E+38 (decimal
radix). The smallcst-magnitude FLOAT which can be handled without underflow is .14693679E-38,

26.1-26.2 Read, Evaluate, and Print

24 The MDL Programming Language

2.6.3. READ and PNAMLCs

The question "what is a legal PNAME?" is actually not a reasonable one to ask: any non-empty string
of arbitrary characters can be the PNAME of an ATOM. However, some PNAMEs are easier to type to
READ than others. But even the question "what are easily typed PNAMEs®" is not too reasonable,
because: READ decides that a group of characters is a PNAME by default; if it can't possibly be
anything else, it’s a PNAME. So, the rules governing the specification of PNAMEs are messy, and best
expressed in terims of what is not a PNAME. For simplicity, you can just consider any uninterrupted
group of upper- and lower-case Ietters and (customarily) hyphens to be a PNAME; that will always
work. If you are neither a perfectionist nor a masochist, skip to the next chapter.

2.6.3.1. Non-PNAMLs

A group of characters is not a PNAME if:
(1) It represents a FLOAT or a FIX, as described above -- that is, it is composed wholly of digits,
or digits and a single . {period), or digits and a . and the letter E or e (with optional minus
signs in the right places).

(2) It begins with a . (period),

(3) It contains -- if typed interactively -- any of the characters which have special interactive
effects: “@, ~D, “L, "G, *5, “0, $(ESC), rubout.

(4) Tt contains a format character -- space, carriage-return, line-feed, form-feed, horizontal tab,
vertical 1ab.

(5) Tt contains a , (comma) or a # (number sign) or a (single quote) or a ; (semicolon) or a %
(percent sign).

(6) It contains any varicty of bracket -- (or Jor [or Jor <or >or { or jor ™.

In addition, the character \ (backslash) has a special interpretation, as mentioned below. Also, the

pair of characters ! - (exclamation-point hyphen) has an extremely special interpretation, which you
will reach at chapter I5.

The characters mentioned in cases 4 through 6 are "separators™ -- that is, they signal to READ that
whatever it was that the preceding characters represented, it's done now. They can also indicate the
start of a new ob ject’s representation (all the opening "brackets” do Jjust that).

2.6.3.2. Examples

The following examples are not in the "standard format™ of “fine typed in$ result printed”, because
they are not, in some cases, complete ob jects; hence, READ would continue waiting for the brackets to

2.6.3 - 2.6.3.2 Read, Evaluate, and Print

ge

ng
to
e,
be
ast
ed

¥s

ts,
us

¥YE

b,

he

u

at
ne

to

nt

A

The MDL Programming Language 25

be closed. In other cases, they will produce errors during EVALuation if other -- currently irrelevant
-- conditions are not met. Instead, the right-hand column will be used to state Just what READ
thought the input in the left-hand column really was.

ABCS an ATOM of PNAME ABC

abc} an ATOH of PNAME abc

ARBITRARILY-LONG-PNAMES an ATOM of PNAME ARBITRARILY-LONG-PNAME

1.23455 a FLOAT, PRINTed as 1.2345000

1.2.345% an ATOM of PNAME 1.2.345

A.or.B% an ATOM of PNAME A,or.B

.A.or.B% not an ATOM, but (as explained later) a FORM containing

an ATOM of PNAME A.or.B
MORE THAN ONES three ATOMs, with PNAMEs MORE, and THAN, and ONE

ab(cds an ATOM of PNAME ab, followed by the start of something
else (The something else will contain an ATOM of PNAME
beginning cd.)

12345A34% an ATOM of PNAME 12345A34 (If the A had been an E, the
ob ject would have been a FLOAT.)

2.6.3.3. \ (Backslash) in ATOMs

If you have a strange, uncontrollable compulsion to have what were referred to as "separators” above
as part of the MNAMEs of your ATOMs, you can do so by preceding them with the character \
(backslash). \ will also magically turn an otherwise normal FIX or FLOAT into an ATOM if it appears
amangst the digiis. In fact, backslash in front of any character changes it from something special
to "just annther characier” (including the character \), It is an escape character.

When PRINT confronts an ATOM which had to be backslashed in order to be an ATOM, it will
dutifully type out the required \s. They will not, however, necessarily be where you typed them;
they will instead be at those positions which will cause READ the least grief. For example, PRINT will

type out a PNAME which consists wholly of digits by first typing a \ and then typing the digits - no
WMatter where you originally typed the \ (or \s).

2.6.3.2-2633 Read, Evaluate, and Print

26 The MDL Programming Language

2.6.3.4. Examples of Awful ATOMs

The following examples illustrate the amount of insanity that can be perpetrated by using \. The
format of the examples is again non-standard, this time not because anything is unfinished or in
error, but becanse commenting is needed: PRINT doesn’t do it full justice.

ay one\ and\ a\ two} one ATOM, whose PNAME has four spaces in it

1234\567859% an ATOM of PNAME 123456789, which PRINTs as
4123456789

123\ § an ATOM of PNAME 123space, which PRINTs as \123\ ,

with a space on the end

ALY an ATOM whose PNAME is a single backslash

26.3.4 Read, Evaluate, and Print

R Y P —

e iR

ge

he
in

as

1t

_—

The MDL Programming Language 27

Chapter 8. Built-in Functions

3.1. Representation [I]

Up to this point, all the objects we have been concerned with have had no internal structure

discernible in MDL. While the characteristics of objects with internal structure differ greatly, the
way READ and PRINT handle them is uniform, to wit:

READ, when applicd to the representation of a structured ob ject, builds and returns an ob ject of

the indicated TYPE with elements formed by applying READ to each of their representations in
turmn.

PRINT, when applied to a structured object, produces a representation of the ob ject, with its
elements represented as PRINT applied to each of them in turn.

A MDL ob ject which is used to represent the application of a function to its arguments is an ob ject
of TYPE FORM. Its printed representation is

< func arg-1 arg-2 ... arg-N >

where func is an ob jeet which designates the function to be applied, and arg-. through arg-N are
objects which designate the arguments or “"actual parameters” or "inputs”. A FORM is just a

Structured ob jeet which is stored and can be manipulated like a LIST (its “primitive type" is LIST —

chapter 6). The application of the function to the arguments is done by EVAL. The usual meaning
of "function” (uncapitalized) in this document will be anything applicable to arguments.

3.2, Evaluation [I]

EVAL applied to a FORM acts as if following these directions:

First, examine the func (First element) of the FORM. If it is an ATOM, look at its "value” (global or
local, in that order -- see next chapter). If it is not an ATOM, EVAL it and look at the result of the

3.52 Built-in Functions

28 The MDL Programming Language

evaluation. If what you arc looking at is not something which can be applied to arguments,
complain (via the ERROR function). Otherwise, inspect what you are looking at and follow its

directions in evaluating or not evaluating the arguments (chapters 9 and 19) and then “apply the
Function” -- that is. EVAL the body of the ob ject gotten from func.

3.3. Built-in Functions (TYPE SUBR, TYPE FSUBR) [1]

The built-in functions of MDL come in two varieties: thase which have all their arguments EVALed
before operating on them (TYPE SUBR, for "subroutine”, pronounced “subber”) and those which have
none of their arguments EVALed (TYPE FSUBR, l|istcrri-.::|]I:,-r from Lisp (Moon, 1974), pronounced
“effsubber”). Collectively they will be called F/SUBRs, although that term is not meaningful to the
interpreter. See appendix 2 for a listing of all F/SUBRs and short descriptions. The term

“Subroutine” will be used herein to mean both F/SUBRs and compiled user programs (RSUBRs and
RSUBR-ENTRYs -- chapter 19).

Unless otherwise stated. every MDL built-in Subroutine mentioned is of TYPE SUBR. Also, when it

is stated that an argument of a SUBR must be of a particular TYPE, note that this means that EVAL
of whart is there must be of the particular TYPE.

Another convenient abbreviation which will be used is “the SUBR pname” in place of "the SUBR which

is initially the ‘value' of the ATOM of PNAME pname". "The FSUBR pname” will be used with a similar
meaning.

3.4. Examples (+ and FIX; Arithmetic) [I]

{+ 2 4 6>%
12

The SUBR + adds numbers, Most of the usual arithmetic functions are MDL SUBRs: +, -, %, /,
MIN, MAX, MOD, SIN, COS, ATAN, SQRT, LOG, EXP, ABS. (See appendix 2 for short descriptions
of these) All except MOD, which wants FIXes, are indifferent as to whether their arguments are

FLOAT or FIX or a mixture. In the last case, they exhibit "contagious FLOATing™ one argument of
TYPE FLOAT forces the result to be of TYPE FLOAT.

<FIX 1.0>$
1

The SUBR FIX explicitly returns a FIXed-point number corresponding to a FLOATing-point number.
FLOAT does the opposite.

{+ 5 <% 2 33»%

32-34 Built-in Functions

gE

s,
its
he

nd

it
AL

ch
ar

ns
re

of

Bf.

The MDL Programming Language 99

11

CSQRT <+ <% 3 3> <% 4 4558
5.0

<- 5 3 2>%

0

<- 5%

-5

CHIN 1 2.02%
1.0

</ 11 7 2.0>%
0.5

Note this last result: the division of two FIXes gives a FIX with truncation, not rounding, of the
remainder: the intermediate result remains a FIX until a FLOAT argument is encountered.

3.5. Arithmetic: Details

¥ = ® /L MIN, and MAX all take any number of arguments, doing the operation with the first
argument and the second, then with that result and the third argument, ete. If called with no
arguments, each returns the identity for its operation (0, 0, 1, 1, the greatest FLOAT, and the
least FLOAT, respectively): if called with one argument, each acts as if the identity and the argument
had been supplied. They all will cause an overflow or underflow error if any result, intermediate or

final. is ton large or tno small for the machine's capacity. (That error can be disabled, if necessary
-- section 16.9).

One arithmetic function that always requires some discussion is the pseudo-random-number
generator. MDI's is named RANDOM, and it always returns a FIX, uniformly distributed over the
whole range of FIXes. If RANDOM is never called with arguments, it always returns the exact same
sequence of numbers, for convenience in debugging. "Debugged” programs should give RANDOM two
arguments on the first call, which become the seeds for a new sequence. Popular choices of new

seeds are the nuinhers given by TIME (which see), possibly with bits modified (chapter 18). Example
("pick a number from one to ten”):

<+ 1 <MOD <RANDOM> 103>>%
4

34-35 Built-in Functions

30 The MDL Programming Language

Chapter 4. Values of Atoms

4.1. General [1]

There are two kinds of “value” which can be attached to an ATOM. An ATOM can have either, both, or
neither. They interact in no way (except that alternately referring to one and then the other is
inefFicient). These two values are referred to as the local value and the global value of an ATOM.
The terms “local® and "global” are relative to PROCESSes (chapter 20), not functions or programs.
The SUBRs which reference the local and global values of an ATOM, and some of the characteristics
of local versus global values, follow.

4.2. Global Values

4.2.1. SETG [i]
A global value can be assigned to an ATOM by the SUBR SETG ("set global®), as in
<SETG alom any>
where ster must EVAL to an ATOM, and any can EVAL to anything. EVAL of the second argument

becomes the global value of EVAL of the first argument. The value returned by the SETG is its
second argument, namely the new global value of alom.

Examples:

{SETG FOO <SETG BAR 500>>%
500

The above made the global values of both the ATON FOO and the ATOM BAR equal to the FIXed-point
number 500.

¢SETG BAR FOO0>%

4-421 Values of Atoms

o]

or

is
M.
15,

nt
its

nt

ms

The MDL Programming Language 31

FOO

That made the global value of the ATOM BAR equal to the ATOM F0O.

4.2.2. GVAL [1]
The SUBR GVAL ("global value®) is used to reference the global value of an ATON.

(GVAL afom>

returns as a value the global value of atom. If atom does not evaluate to an ATOM, or if the ATOM to
which it evaluates has no global value, an error occurs.

GVAL applicd to an ATOM anywhere, in any PROCESS, in any function, will return the same value.
Any SETG anywhere changes the global value for everybody. Global values are context-independent.

READ understands the character , (comma) as an abbreviation for an application of GVAL to

whatever follows it. PRINT always translates an application of GVAL into the comma format. The
following are absolutely equivalent:

, alom <GVAL atom>

Assuming the examples in section 4.2.1 were carried out in the order given, the following will
evaluate as indicated:

. FOO3%

200

<GVAL FOO>%
500

.BARS

FOO

++BARS

500

4.2.3. Note on SUBRs and FSUBRs
The initial GVALs of the ATOMs used to refer to MDL “built-in" Subroutines are the SUBRs and FSUBRs

WIlich. a-:lu:lI.I}' get applied when those ATOMs are referenced. If you don't like the way those
supplied routines work, you are perfectly free to SETG the ATOMs to your own versions.

421-423 Values of Atoms

32 The MDL Programming Language

4.2.4. GUNASSIGN

{GUNASSIGN atom2

("global unassign”) causes atom to have no assigned global value, whether or not it had one
previously. The storage used for the global value can become free for other uses.

4.3. Local Values

4.3.1. SET [1]

The SUBR SET is used to assign a local value to an ATOM. Applications of SET are of the form
{SET atom any?

SET returns EVAL of any just like SETG.

Examples:

{SET BAR <SET FOO 100>>3
100

Both BAR and FOO have been given local values equal to the FIXed-point number 100.

¢(SET FOO BAR>S
BAR

FOO has been given the Jocal value BAR.

Note that neither of the above did anything te any global values FOO and BAR might have had.

4.3.2. LVAL [1]

The SUBR used to extract the local value of an ATOM is named LVAL. As with GVAL, READ
understands an abbreviation for an application of LVAL: the character . (period), and PRINT
produces it. The following two representations are equivalent, and when EVAL operaies on the
corresponding MDL object, it returns the current Jocal value of atom:

{LVAL alom> .alom

424 -432 Values of Atoms

e

D
IT
e

The MDL Programming Language T

The local value of an ATOM is unique within a PROCESS. SETting an ATOM in one PROCESS has no
effect on its LVAL in another PROCESS, because each PROCESS has its own “control stack” (chapters

20 and 22).

Assume all of the previous examples in this chapter have been done. Then the following evaluate as
indicated:

.BARS

100

{LVAL BAR>%
100

.FOO%

BAR

. -FOOS

FOO

4.3.3. UNASSIGN
CUNASSIGN alom>

causes afom to have no assigned local value, whether or not it had one previously.

4.4. VALUE

VALUE is a SUBR which takes an ATOM as an argument, and then:

(1) if the ATOM has an LVAL, returns the LVAL:
(2) if the ATOM has no LVAL but has a GEVAL, returns the GVAL;
(3) if the ATOM has neither a GVAL nor an LVAL, calls the ERROR function.

This order of seeking a value is the opposite of that used when an ATOM is the first element of a
FORM. The latter will be called the G/LVAL, even though that name is not used in MDL.

Example:

CUNASSIGN A>S
A

<SETG A 1>%
1
<VALUE A>%
1
(SET A 2>%

432-44 Values of Atoms

34

2

{VALUE A>3
b4

,AS

1

4.4

The MDL Programming Language

Values of Atoms

—— LU

!
B R T

ns

The MDL Programming Language 35

Chapter 5. Simple Functions

5.1. General [1]

The MDL equivalent of a "program” (uncompiled) is an object of TYPE FUNCTION. Actually, full-

blown “programs” arc usually composcd of sets of FUNCTIONs, with most FUNCTIONs in the set acting
as "subprograms”,

A FUNCTION may be considered to be a SUBR or FSUBR which you yourself define. It is "run” by
using a FORM 1o apply it to arguments (for example, <function arg-1 arg-2 ...), and it always
‘returns” a single object. which is used as the value of the FORM that applied it. The single ob ject
may be ignored by whatever “ran” the FUNCTION -- equivalent to “returning no value” - or it may be
a structured object containing many objects -- equivalent to "returning many values”. MDL is an
“applicative” language. in contrast to "imperative” languages like Fortran. In MDL it is impossible

to return values through arguments in the normal case; they can be returned only as the value of the
FORM itself, or as side effects to structured ob jects or global values.

In this chapter a simple subset of the FUNCTIONs you can write is presented, namely FUNCTIONs
which "act like” SUBRs with a fixed number of arguments. While this class corresponds to about 907
of the FUHCTIONs ever written, you won't be able to do very much with them until you read further
and learn more about MDL's control and manipulatory machinery. However, all that machinery is
Just a bunch of SUBRs and FSUBRs, and you already know how to "use” them; you just need to be told
what they do. Once you have FUNCTIONs under your belt, you can immediately make use of
everything presented from this point on in this document. In fact, we recommend that you do so.

5.2. Representation [I]

A FUNCTION is just another data abject in MDL, of TYPE FUNCTION. It can be manipulated like any
other data object. PRINT represents a FUNCTION like this:

#FUNCTION (elements)

5-52 Simple Functions

36 The MDL Programming Language

that is, a number sign, the ATOM FUNCTION, a left parenthesis, each of the elements of the
FUNCTION, and a right parenthesis. Since PRINT represents FUNCTIONs like this, you can type them
in to READ this way. (But therc are a few TYPEs for which that implication is false.)

The elemenis of a FUNCTION can be "any number of anythings™ however, when you use a FUNCTION
(apply it with a FORM), EVAL will complain if the FUNCTION does not look like

#FUNCTION (act:atom argumentsdist decl bod ¥)

where act and dec/ are aptional (section 9.8 and chapter 14k body is at Jeast one MDL ob ject - any
old MDL ob ject: and, in this simple case, arguments is

(any number of ATOMs)

that is. something RFAD and PRINTed as: left parenthesis, any number - including zero - of ATOMs,
right parenthesis. (This is actually a normal MDL ob ject of TYPE LIST, containing only ATOMs.)

Thus, these FUNCTTONs will canse errors - but only when used:

#FUNCTION () == no argument LIST or body
#FUNCTION ((1) 2 7.3) == non-ATOM in argument LIST
#FUNCTION ((A B C D)) == no body

#FUNCTION (<+ 1 2> A C) == no argument LIST

These FUNCTIONs will never cause errors because of format:

AFUNCTION (() 1 2 3 4 5)

#FFUNCTION ((A) A)

YFUNCTION (()O)O)O)0 0)

#FUNCTION ({A B C D EE F 6 H HIYA) <+ .A HIYA>)
#FUNCTION ((Q) <SETG € <= .Q ,C>> <+ <MOD ,C 3> .QD)

and the last two actually do something which might be useful. (The first three are rather
pathological, but Jegal.)

5.3. Application of FUNCTIOMNs: RBinding [1]

FUNCTIONs. like SUBRs and FSUBRs, are applied using FORMs. So,

CEFUNCTION ((X) <= .X .X>») 538
£3

applied the indicated FUNCTION to 5 and returned 25.

52-53 Simple Functions

The MDL Programming Language 37

What EVAL does when applying a FUNCTION is the Following:
(1) Create a "world” in which the ATOMs of the argument LIST have been SET to the values
applicd fo the FUNCTION, and all other ATOMs have their original values. This is called
"binding".

-- In the above, this is a "world” in which X is SET to 5.

(2) In that new "world”, evaluate all the objects in the body of the FUNCTION, one after the
other. from firsl 1o Jast.

- In the above, this means evaluate <* X .X>in a "world” where X is SET 1o 5.

(3) Throw away the "world" created, and restore the LVALs of all ATOMs bound in this
application of the FUNCTION to their originals (if any). This is called “unbinding”.

-- In the above, this simply gives X back the local value, if any, that it had before binding.

(4) Return as a value the last value obtained when the FUNCTION' body was evaluated in step
(2).

- In the above, this means return 25 as the value.

The "world” mentioned above js actually an object of TYPE ENVIROMMENT. The fact that such

‘worlds” are separate from the FUNCTIONs which cause their generation means that all MDL
FUNCTIONs can be used recursively.

The only thing that is at all troublesome in this sequence is the effect of creating these new
“worlds”, in particular, the faet that the previous world is completely restored. This means that if,
inside a FUNCTTON, you SET one of its argument ATOMs to something, that new LVAL will not be
remembered when EVAL leaves the FUNCTION. However, if you SET an ATOM which is not in the
argument LIST (or SETG any ATOM) the new local (or global) value will be remembered. Examples:

<SET X 0>%
0

CFFUNCTION ((X) <SET X <= .X X2>) 538
23

4

0

53 Simple Functions

38 The MDL Programming Language

On the othier hand,

<SET Y 0>%

0

CEFUNCTION ((X) <SET Y <= X .X») 5%
25

.Y

25

By using PRINT as a SUBR, we can "see” that an argument's LVAL really is changed while EVALuating
the body of a FUNCTION:

C<SET X 53%
5
CAFUNCTION ((X) <PRINT .X> <+ .X 10>) 3>%
313
X%
5

The first number after the application FORM was typed out by the PRINT; the second is the value of
the application.

Remembering that LVALs of ATOMs not in argument LISTs are not changed, we can reference them
within FUNCTIONs, as in

CSET I 100>%
100

CFFUNCTION ((Y) </ .Z .Y>) 5%
20

ATOMs used like Z or Y in the ahove examples are referred to as "free variables”. The use of free
variables, while often quite convenient, is rather dangerous unless you know exactly how a
FUNCTION will always be used: if a FUNCTION containing free variables is used within a FUNCTION
within a FUNCTION within one of those FUNCTIONs might just happen to use your free variable
in its argument LIST, binding it to some unknown value and possibly causing your use of it to be
erroneous. Please note that "dangerous”, as used above, really means that it may be effectively

nnpossible (1) for other people to use your FUNCTIONs, and (2) for you to use your FUNCTIONs a
month (two weeks?) later.

5.3 Simple Functions

L J
{

B a m Z B n

T L i s e

rl.u_-_ S R I —— —

The MDL Programming Lalll.guage 39

5.4. Defining FUNCTIONs (FUNCTION and DEFINE) [I]

Obviously. typing #FUNCTION (...) all the time is neither reasonable nor adequate for many
purposes. Normally. you just want a FUNCTION to be the GVAL of some ATOM -- the way SUBRs and
FSUBRs are -- so ynu can use it repeatedly (and recursively). Note that you generally do not want a
FUNCTION ta be the LVAL of an ATOM; this has the same problems as free variables. (Of course, there
are always cases where you are being clever and want the ATOM to be re-bound. .. .)

One way to "name” a FUNCTION is

<SETG SQUARE #FUNCTION ((X) <% .X .X>)>%
FFUNCTION ((X) <* .X .X>)

So that

{SQUARE 5>%
23

<SQUARL 100>%
10000

Another way. which is somewhat cleaner in its typing:

CSETG SQUARE <FUNCTION (X) <% .X .X>>3§
#FFUNCTION ((X) <* .X .X>)

FUNCTION is an FSUBR which simply makes a FUNCTION out of its arguments and returns the created
FUNCTION.

This. however. is generally the best way:

<DEFINE SQUARE (X) <% .X .X>>$
SQUARE

. SQUARES

#FUNCTION ((X) <* .X .X>)

The last two lines inmediately above are just to prove that DEFINE did the “right thing".

DEFINE is an FSUBR which SETGs EVAL of its first argument to the FUNCTION it makes from the rest
of its arguments, and then returns EVAL of its first argument. DEFINE obviously requires the least
typing of the above methods, and is "best”™ from that standpoint. However, the real reason for using
DEFINE is the fnllowing: If EVAL of DEFINE's first argument already has a GVAL, DEFINE produces an
€rror. This helps 1o keep you from accidently redefining things — like MDL SUBRs and FSUBRs. The

SETG constructions should be used only when you really do want to redefine something. DEFINE will
be used in the rest of this document.

5.4 Simple Functions

40 The MDL Programming Language

[Actually. if it is abselutcly necessary 1o use DEFINE to "redefine” things, there is a "switch” which
can be used: if the LVAL of the ATOM REDEFINE is T (or anything not of TYPE FALSE), DEFINE will
produce no errors. The normal state can be restored by evaluating <SET REDEFINE <22. See
chapter 8.]

5.5. Examples (Comments) [1]

Using SQUARE as defined above:

¢DEFINE HYPOT (SIDE-1 SIDE-Z)

:"This is a comment. This FUNCTION finds the
length of the hypotenuse of a right triangle
of sides SIDE-1 and SIDE-2."

{SORT <+ <SQUARE .SIDE-1> {SQUARE SIDE-2>>>>%
HYPOT
{HYPOT 3 4>%
5.0

Note that carriage-returns, line-feeds, tabs, ete. are just separators, like spaces. A comment is any
single MDL ob ject which follows a ; (seinicolon). A comment can appear between any two MDL
objects. A comment is totally ignored by EVAL but remembered and associated by READ with the
place in the FUNCTION (or any other structured ob ject) where it appeared. (This will become clearer
after chapter 13) The “s (doublc-quotes) serve to make everything between them a single MDL
ob ject, whose TYPE is STRING (chapter 7). (SQRT is the SUBR which returns the square rool of its
argument. It always returns a FLOAT.)

A whimsical FUNCTION:

CDEFINE OME (THETA) ;"This FUNCTION always returns 1.7
¢+ {SQUARE <SIN .THETA>>
(SQUARE <COS .THETA>>32%
ONE
{ONE 5>}
0.99999994
{ONE 0.23>%
0.99999999

ONE always returns (approximately) one, since the sum of the squares of sin(x) and cos(x) is unity
for any x. (SIN and COS always return FLOATs, and each takes its argument in radians. ATAN
(arctangent) returns its value in radians, Any other trigonometric function can be compounded
from these three.)

54-55 Simple Functions

i ek —

?

Tt

an

rf

ge

ch
il

1y
IL
he
er
)L
ts

Ly
\N
ed

The MDL Programming Language

41

MDL doesn’t have a general "to the power™ SUBR, so let's define one using LOG and EXP (log base e,

and e to a power, respectivelys again, they return FLOATs),

{DEFINE ** (NUM PWR) <EXP <* .PWR <LOG .NUM>>3>§

xR 2203
4.0000001
(%R 5 3%
125.00000
CRE 25 0.523
2.0000001

Two FUNCTIONs which use a single global variable (Since the GVAL is used, it cannot be rebound.):

CDEFINE START () <SETG GV 0>%
START

CDEFINE STEP () <3ETG GV <+ ,BV 1%

STEP
(START>%
0
<STEP>%
1
CSTEP>S
é
STEP>S
3

START and STEP take no arguments, so their argument LISTs are empty.

An interesting, but pathological, FUNCTION:

SDEFINE INC (ATHM) <SET .ATHM <+ ..ATM 1}>>$

INC

{SET A 0>%
0

CINC AR>S

1

{INC A%
2

A%

2

%HC takes an ATOM as an argument, and SETs that ATOM to its current LVAL plus 1. Note that inside
NC, the ATOM ATM is SET to the ATOM which is its argument; thus ..ATM returns the LVAL of the

argument. However, there is a problem:

55

Simple Functions

T
|
42 The MDL Programming Language Tk
(SET ATH 0>%
0
(INC ATHM>S
XLRROR=
ARG-WRONG-TYPE
&
LISTENING-AT-LEVEL 2 PROCESS 1
{ARGS <FRAME <FRAME>»>$
LATM 1]
The error occurred because ATH was ATH, the argument to INC, and thus ..ATM was ATM also. We
really want the outermost . in ..ATH to be done in the "world" (ENVIRONMENT) which existed just 6.1
before INC was entered - and this definition of INC does both applications of LVAL in its own
“world”. Techniques for doing INC “correctly” will be covered below. Read on. A

m
th

It
P

B:

in

|

= -

5.5 Simple Functions

age

just

wn

The MDL Programming Language 43

Chapter 6. Data Types

6.1. Gencral [I]

A MDL ob ject consists of two parts: its TYPE and its "data part” (appendix 1). The interpretation of
the “data part” of an object depends of course on its TYPE. The structural organization of an ob ject,
that is, the way it is organized in storage, is referred to as its "primitive type". While there are
many different TYPCs of ob jects in MDL, there are fewer primitive types.

All structured objects in MDL are ordered sequences of elements. As such, there are SUBRs which
operate on all of them uniformly. as ordered sequences. On the other hand, the reason for having
different primitive types of structured objects is that there are useful qualities of structured ob jects
which are mutually incompatible. There are, therefore, SUBRs which do not work on all structured
ob jects: these SUBRs exist to take full advantage of those mutually incompatible qualities. The

most-commonly-used primitive types of structured objects are discussed in chapter 7, along with
those special SUBRs operating on them.

It is very easy to make a new MDL ob ject that differs from an old one only in TYPE, as long as the

primitive type is unchanged. It is relatively difficult to make a new structured object that differs
from an old one in primitive type, even if it has the same elements.

Before talking any more about structured ob jects, some infornation needs to be given about TYPEs
in general.

6.2. Printed Representation [I]

There are many TYPEs for which MDL has no specific representation. There aren't enough different
kinds of brackets. The representation used for TYPEs without any special representation is

#lvpe representation-as-if-it-were-its-primitive-t ype

READ will understand that formar for any TYPE, and PRINT will use it by default. This

6-62 Data Types

44 The MDL Programming Language

representational format will be referred to below as “# notation”. It was used above to represent
FUNCTIONs.

6.3. SUBRs Related 1o TYPEs

6.3.1. TYPE [I]

CTYPE any>

returns an ATOM whose PNAME corresponds to the TYPE of any. There is no TYPE "TYPE", To type a
TYPE (aren’t homonyms wonderful?), just type the appropriate ATOM, like FIX or FLOAT or ATOM etc.
However, in this doecument we will use the convention that a metasyntactic variable can have lype

for a "data type”: for example, foo:ype means that the TYPE of foo is ATOM, but the ATOM must be
something that the SUBR TYPE can return.

Examples:
<TYPE 1>§
FI1X
(TYPE 1.0>%
FLOAT
<TYPE +>3%
ATOM
<TYPE ,+>%
SLUER |
CTYPE GEORGE>%
ATOM

6.3.2. PRIMTYPE [1]

(PRIMTYPE any>

evaluates to the primitive type of any. The PRIMTYPE of any is an ATOM which also represents a

TYPE. The way an object can be manipulated depends solely upon its PRIMTYPE; the way it is
evalualed depends upon its TYPE. '

Examples:
{PRIMTYPE 1>%

WORD
(PRIMTYPE 1.0>%

6.2 - 632 Data Types

ge

nt

ra
tc.

be

is

1+

i e S T i

-

The MDL Prngramming Languagf 45

WORD

CPRIMTYPE ,+>%
WORD

CPRIMTYPE GEORGE>$
ATON

6.3.3. TYPEPRIM [I]

<TYPEPRIM type>

returns the PRIMTYPE of an ob ject whose TYPE is {ype. fype is, as usual, an ATOM used to designate a
TYPE.

Examples:

CTYPEPRIM FIX»S
WORD

<TYPEPRIM FLOATYS
WORD

<TYPEPRIM SUBR>S
WORD

<TYPEPRIM ATOM>S
ATOM

CTYPEPRIM FORM»S%
LIST

6.3.4. CHTYPE [1]

CCHTYPE z2ny type>

'f;:hangn type’) returns a new ob ject that has TYPE type and the same "data part” as any (appendix
I).

{CHTYPE (+ 2 Z2) FORM»S
+ 2 23

AN error is generated if the PRIMTYPE of any is not the same as the TYPEPRIM of lype. An error will
also bie generated if the attempted CHTYPE is dangerous and/or senseless, for example, CHTYPEing a
FIX to a SUBR. Unfortunately, there are few useful examples we can do at this point.

[CHT?PEing A FIX to a FLOAT or vice versa produces, in general, nonsense, since the bit formats for
FIXes and FLOATs are different. The SUBRs FIX and FLOAT convert between those formats. Useful

6.3.2 - 6.3.4 Data Types

46 The MDL Programming Language

obscurity: because of their internal representations on the PDP-10, <CHTYPE {MAX> FIX> gives the
least possible FIX, and analogously for HIN.]

Passing note: "# notation” is just an instruction to READ saying "READ the representation of the
PRIMTYPE normally and (literally) CHTYPE it to the specified TYPE". [Or, if the PRIMTYPE is
TEMPLATE, "apply the GVAL of the TYPE name (which should be a TEMPLATE constructor) te the given
elements of the PRIMTYPE TEMPLATE as arguments.”]

6.4. More SUERs Related 1o TYPEs

6.4.1. ALLTYPES
{ALLTYPES>

returns a VECTOR (chapter 7) containing just those ATOMs which can currently be returned by TYPE
or PRIMTYPE. This is the very "TYPE vector” (section 22.1) that the interpreter uses: look, but don't
touch. No examples: try it, or see appendix 3.

6.4.2. VALID-TYPE?
{VALID-TYPE? aftom>

returns #FALSE () if afom is not the name of a TYPE, and the same object that {TYPE-C atom?
(section [9.5) returns if it is.

6.4.3. NEWTYPE

MDL is a type-extensible language, in the sense that the programmer can invent new TYPEs and use
them in every way that the predefined TYPEs can be used. A program-defined TYPE is called a
NEWTYPE. New PRIMTYPEs cannot be invented except by changing the interpreter; thus the TYPEPRIN
of a NEMTYPE must he chasen from those already available. But the namne of a NEWTYPE (an ATOM of
course) can be clinsen freely -- so long as it does not conflict with an existing TYPE name. More
importantly. the program that defines a NEWTYPE can be included in a set of programs for

manipulating objects of the NEWTYPE in ways that are more meaningful than the predefined SUBRs
of MDI.

Typically an object of a NEWTYPE is a structure that is a model of some entity in the real world -- or

whatever world the program is concerned with — and the elements of the structure are models of
parts or aspects of the real-world entity. A NEWTYPE definition is a convenient way of formalizing

6.3.4 - 643 Data Types

R o e i —

b o |

Tl

th
If
Wi
to
ca

Pt

= s = b ON

=

£ A S o

i o T T T e TR |

uage

« the

the
E is
iven

TYPE
fon't

tom>

| use
ed a
PRIH
M of
vore

for
UBERs

= OF
Is of
zing

ypes

The MDL Programming Language 47

this correspondence. of writing it down for all to see and use rather than keeping it in your head.
If the defining sct of programs provides functions for manipulating the NEWTYPE objects in all
ways that are meaningful for the intended uses of the NEWTYPE, then any other program that wants
to use the NEWIYPE can call the wanipulation functions for all its needs, and it need never know or
care abour the internal details of the NEWTYPE objects. This technique is a standard way of
providing modularity and abstraction.

For examiple. suppote you wanted to deal with airline schedules. If you were to construct a set of
prograins that define and manipulate a NEWTYPE called FLIGHT, then you could make that set into a
standard package of programs and call on it to handle all information pertaining to scheduled
airline flights. Since all FLIGNTs would have the same quantity of information (more or less) and
you would want quick access to individual elements, you would not want the TYPEPRIM to be LIST.
Since the elements would be of various TYPEs, you would not want the TYPEPRIM to be UVECTOR --
nor its variations STRING or BYTES. The natural choice would be a TYPEPRIM of VECTOR (although
you conld gain space and lose time with TEMPLATE instead).

Now. the individual elements of a FLIGHT would, no doubt, have TYPEs and meanings that don't
change. The clements of a FLIGHT might be airline code, flight number, originating-airport code,
list of intermediate stops, destination-airport code, type of aircraft, days of operation, etc. Each and
every FLIGHT would have the airline code for its First element (say), the Flight number for its second,
and so on. It is natural to invent names (ATOMs) for these elements and always refer to the elements
by name. For example, you could ¢SETG AIRLINE 1> or <SETG AIRLINE <OFFSET 1 FLIGHT>> -
and in either case <MANIFEST ATRLINE> so the compiler can generate more efficient code. Then, if
the local value of F were a FLIGHT, <AIRLINE .F» would return the airline code, and <AIRLINE .F

AAZ> would set the airline code to AA. Once that is done, you can forget about which element comes
First: all you need 1o know are the names of the of fsets.

The next step is 1o notice that, outside the package of FLIGHT fumctions, no one needs to know
whether AIRLINE is just an offset or in fact a function of some kind. For example, the scheduled
duration of a flight might not be explicitly stored in a FLIGHT, just the scheduled times of
departure and arrival. But, if the package had the proper DURATION function for calculating the
duration, then the call <DURATION .F> could return the duration, no matter how it is found. In this
way the internal details of the package are conveniently hidden from view and abstracted away.

The form of NEWTYPE definition allows for the TYPEs of all components of a NEWTYPE to be declared
(chapter I1), for use both by a programimer while debugging programs that use the NEWTYPE and by
the compiler for generating faster code. It is very convenient to have the type declaration in the
NEWTYPE definition irtself, rather than replicating it everywhere the NEWTYPE is used. (If you think
Tllis declaration might be obtrusive while debugging the programs in the NEWTYPE package, when
Mconsistent improvements are being made to various programs, you can either disassociate any
declaration from the NCWTYPE or turn of f MDL type-checking completely. Actually this declaration
is typically more useful to a programmer during development than it is to the compiler.)

CNEWTYPE atom fyped

6.4.3 Data Types

R

48 The MDL Programming Language

; i
returns afom, alter causing it to become the representation of a brand-new TYPE whose PRIMTYPE is g
STYPEPRIM tveor>». What NEWTYPE acumliy does is make afom a Iegzl argument to CHTYPE and ¢

TYPEPRIM. (Note that names of new TYPEs can be blocked lexically to prevent collision with other |
names. just like any other ATOMs -- chapter 15) Objects of a NEWTYPE-created TYPE can be generated F
by creating an object of the appropriate PRIMTYPE and using CHTYPE. They will be PRINTed]
(initially). and can be directly typed in, by the use of “# notation” as described above. EVAL of any

ob ject wlhnse TYPE was created by NEWTYPE is initially the object itself, and, initially, you cannot i
APPLY something of a generated TYPE to arguments. But see below. /

Examples:

{NEWTYPE GARGLC FIX>% i
GARGLE '
{TYPEPRIM GARGLE>S 1
WORD

{SET A <CHTYPE 1 GARGLE>>3

#GARGLE =000000000001% :
{SET B #GARGLE 100>3 l
¥GARGLE *000000000144%=

{TYPE .DB>%

GARGLE

{PRIMTYPE .B>3

WORD

6.4.4. PRINTTYPE, EVALTYPE and APPLYTYPE

(PRINTTYPE type how>

{EVALTYPE {vpe how>

{APPLYTYPE lype how?
all return fype, after specifying how MDL is 1o dea] with it.
These three SUBRs can be used to make newly-generated TYPEs behave in arbitrary ways, or to
change the characteristics of standard MDL TYPEs. PRINTTYPE tells MDL how to print {ype,
EVALTYPE hiow to evaluate it. and APPLYTYPE how to apply it in a FORH.

how can be either a TYPE or something that can be applied to arguments.

If how is a TYPE, MDL will treat fype just like the TYPE given as how. how must have the same
TYPEPRIM as type.

If how is applicable, it will be used in the following way:

6.43 - 6.4.4 Data Types

age

Eis
and
her
ited
Ted

any
not

* 10
roe,

imne

'pes

The MDL Programming Language -

For PRINTTYPE, fow should take one argument: the ob ject being output. how should output
something without formatting (PRIN1-style) its result is ignored. (Note: how cannot use an output
SUBR on frow's own {) pe: endless recursion will result. OUTCHAN is bound during the application to
the CHANNEL in use. or to a pseude-internal channel for FLATSIZE -- chapter 11.) If how is the SUBR
PRINT, frpe will receive no special treatment in printing, that is, it will be printed as it was in an
initial MDL or immediately after its defining NEWTYPE.

For EVALTYPE, how should take one argument: the ob ject heing evaluated. The value returned by
how will be used as EVAL of the object. If how is the SUBR EVAL, type will receive no special
treatment in evaluation.

For APPLYTYPE, how should take at least one argument. The first argument will be the ob ject being
applied: the rest will be the objeers it was given as arguments. The result returned by how will be
used as the result of the application, If how is the SUBR APPLY, type will receive no special
treatment in application to arguments.

[f any of these SUDBRs is given only one argument, that is if how is omitted, it returns the currently

active how (a TYPL or an applicable object), or else #FALSE () if type is receiving no special
treatment in that operation,

Unfortunately. these examples are fully understandable only after you have read through chapter 11,

<DEFINE ROMAN-PRINT (NUMB)
<COND (<OR <L=7 .NUMB 0> <G? .NUMB 39995)

CPRINC <CHTYPE .NUMB TIME>})

(T

CRCPRINT </ .NUMB 1p00> "I[I\M]>

CRCPRINT </ .NUMB 100> YILINC IND AN

CRCPRINT </ .NUMB 10> ILINX L INCD>

CRCPRINT -NUMB FIDINT W XT3)008
ROMAN-PRINT

CDEFINE RCPRINT (MODN V)
CSET MODN <MOD .MODN 103>
CCOND (<==7 0 .MODND)
(¢==7 1 .MODN> <PRINC <1 .V>})
(<==7 2 .MODN> CPRINC <1 .V>> <PRINC <1 .V>>)
(¢==7 3 .MODN> <PRINC <1 .V>> <PRINC <1 .V>> <PRINC <1 D2)
(<==7 4 .MODN> <PRINC <1 .V>» <PRINC <2 .V)))
(<==7 5 .MODN> <PRINC <2 .V>)
(€==7 6 .MODN> <PRINC <2 .V>> <PRINC <1 .V>))
(C==7 7 .MODN> <PRINC <2 .V>> <PRINC <1 .V>> <PRINC <1 DY)
(¢==7 8 .MODN>
CPRINC <2 .5
CPRINC <1 .V

6.4.4 Data Types

The MDL Programming Language

CPRINC <1 .V>>
<PRINC <1 .V3>>)

(<==7 9 .MODN> <PRINC <1 .V>> {PRINC <3 .V>»)>>»$
RCPRINT

CPRINTTYPE TIME FIX> ;"fairly harmless but necessary here®$
TIME

<PRINTTYPE FIX ,ROMAN-PRINT) :*hee heg!"$

FIX

<+ 2 2>% ’
v

1984%

MCMLXXXIV

<PRINTTYPE FIX ,PRINT>S

FIX

CNEWTYPE GRITCH LIST> +"a new TYPE of PRIMTYPE LIST"S
GRITCH

CEVALTYPE GRITCH>$S i
#FALSE ()

CEVALTYPE GRITCH LIST> ;"evaluated like a LIST"S

GRITCH

CEVALTYPE GRITCH>S

LIST

FGRITCH (A <+ 1 2 3> 1<{SET A "ABC">) ;" Ilype in one.®"§

#GRITCH (A 6 '\A I\B \()

CNEWTYPE HARRY VECTOR> ;"a new TYPE of PRIMTYPE VECTOR"S
HARRY

CEVALTYPE HARRY #FUNCTION ((X) <1 .X»)>

: "When a HARRY is EVALed, return its first element."$
HARRY

SHARRY [1 2 3 478
1

{NEWTYPE WINNER LIST>» ;"a TYPE with funny application®}
WINHER

{APPLYTYPE WINNER>S

#FALSE ()

C{APPLYTYPE WINNER <FUNCTION (W ®TUPLE™ T) (!.¥W !.T)»$
WINNER

CAPPLYTYPE WINHNER>S

#TUNCTION ((W "TUPLE™ T) (!.W 1.T))

CEWINNER (A B C) <+ 1 2> q>8

(ABC3 q)

6.4.4 Data Types

} The MDL Programming Language 51

The following sequence makes MDL look just like Lisp. (This example is understandable only if
you know Lisp (Moon, 1974); it is included only because it is so beautiful.)

CEVALTYPE LIST FORM>S
: LIST
' ¢EVALTYPE ATOM ,LVAL>S
ATOM

So now:

(+# 1 2)8
3

(SET 'A 5)§
5

AS

5

To complete the job. of course, we would have to do some SETE's: car is 1, cdr is ,REST, and
lambda is ,FUNCTION. If you really do this example, you should "undo® it before continuing:

<EVALTYPE 'ATOM ,EVAL>S
ATOM
<EVALTYPE LIST ,EVAL>S
LIST

6.4.4 Data Types

52 The MDL Programming Language

Chapter 7. Structured Objects

This chapter discusses structured objects in general and the five basic structured PRIMTYPEs. [We
defer detailed discussion of the structured PRIMTYPEs TUPLE (section 9.2) and STORAGE (section
22.2.2).]

7.1. Manipulation

The following SUBRs operate uniformly on all structured objects and generate an error if not
applied to a structured object. Hereafter, strucfured represents a structured ob ject.

7.1.1. LENGTH [l
{LENGTH struclured>

evaluates to the number of elements in struclured.

7.1.2. NTH [I]
CNTH struclured fix>

evaluates to the fixth element of structured. An error occurs if fix is less than 1 or greater than
CLENGTH structured>. fix is optional, 1 by default.

7.1.3. REST [I]
CREST structured fix>
evaluates to sfruclured without its first fix elements. fix is optional, 1 by default.

Obscure but important side effect: REST actually returns sfructured "CHTYPEd™ (but not through

7-1.13 Structured Ob jects

ge

e

ot

s g

= o - ——

in

ey T 5 A

r-'I-_..--

The MDL Programming Language 53

application of CHTYPE) to its PRIMTYPE. For example, REST of a FORM is a LIST. REST with an
explicit second argument of 0 has no effect except for this TYPE change.

7.1.4. PUT [1]

{PUT structured fix anything-legal

first makes anything-lepal the fixth element of struclured, then evaluates to structured. an ything-legal
is anything which can legally be an element of structured; often, this is synonymous with “any MDL
ob ject”, but see below. An error occurs if fix is less than 1 or greater than <LENGTH structured>.

(PUT is actually more general than this -- chapter 13.)
7.1.5. GET

CGET structured find

evaluates the same as <NTH structured fix>. It is more general than NTH, however (chapter 13), and
is included here only for symmetry with PUT.

7.1.6. APPLYing a FIX [I]

EVAL understands the application of an object of TYPE FIX as a "shorthand”™ call to NTH or PUT,
depending on whether it is given one or two arguments, respectively [unless the APPLYTYPE of FIX is
changed]. That is, CVAL considers the following two to be identical:

Chix struclured)
NTH structured fixd

and these:

Chix structured object?
<PUT structured fix object

FH?wevn‘:r, the compiler (Lebling, 1979) cannot generate efficient code from the longer forms unless
1t 1s sure that fix is a FIX (section 9.10). The two constructs are not identical even to EVAL, if the
order of evaluation is significant: for example, these two:

CNTH .X <LENGTH <SET X .Y»» <KLENGTH <SET X .Y>»> .

are not identical.]

7.13- 716 Structured Ob jects

54 The MDL Programming Language

7.L.7. SUBSTRUC

SUBSTRUC ("substructure”) facilitates the construction of structures that are composed of sub-parts of
existing structures. A special case of this would be a “substring” function.

{SUBSTRUC from:structured resi:fix amount:fix tostruclured?

copies the first aniount elements of <REST from rest> into another object and returns the latter. All
arguments are optional exeept from, which must be of PRIMTYPE LIST, VECTOR, TUPLE (treated like
a VECTOR), STRING, BYTES, or UVECTOR. rest is 0 by default, and amount is all the elements by
default. fo. if given, receives the copied elements, starting at its beginning; it must be an ob ject
whose TYPE iy the PRIMTYPE of from {a VECTOR if from is a TUPLE). If fo is not given, a new ob ject is
returncd. of TYPE <PRIMTYPE from> {(a VECTOR if from is a TUPLE), which never shares with from.
The copying is done in one fell swoop, not an element at a time. Note: due to an implementation
restriction, if from is of PRIMTYPE LIST, it must not share any elements with fo.

7.2. Representation of Basic Structures

7.2.1. LIST [1]
(element-] elemeni-2 ... element-N)

represents a LIST of A elements.

7.2.2. VECTOR [I]
[element-] element-2 ... element-N]

represents a VECTOR of N elements. [A TUPLE is just like a VECTOR, but it lives on the control stack.]

7.2.3. UVECTOR [1]
'[element-1 element-2 ... element-N !]

represents a UVECTOR (uniferm vector) of N elements. The second ! {exclamation-point) is optional
for input. [A STORAGE is an archaic kind of UVECTOR that is not garbage-collected.]

7.0.7-7.23 Structured Ob jects

T

&
i

s of

All
like
Ject
:t is

rom.
tion

ck.]

wnal

o —

T

The MDL Preogramming Language i

7.2.4. STRING [I]

"rharaclers™

represents a STRING of ASCII text. A STRING containing the character *® (double-quote) is

represented by placing a \ (backslash) before the double-quote inside the STRING. A \ in 2 STRING
is represented by two consecutive backslashes.

7.2.5. BYTES
#n {element-1 element-2 ... element-N)

represents a string of N uniformiy-sized bytes of size n bits.

7.2.6. TEMPLATE
[element-1 element-2 ... element-N }

represents a TEMPLATE of N elements when output, not input -- when input, a # and a TYPE must
precede it.

7.3. Evaluation of Basic Structures [1]

This section and 1he next two deseribe how EVAL treats the basic structured TYPEs [in the absence of
any modifying EVALTYPE calls (section 6.4.4)).

EVAL of a STRING [or BYTES or TEMPLATE] is just the original ob ject.

EVAL acts exactly the same with LISTs, VECTORs, and UVECTORs: it generates a new object with

elements equal 10 EVAL of the elements it is given. This is one of the simplest means of
Constructing a structure. Ilowever, see section 7.7,

7.4. Examples [1]

(1 2 <+ 3 4>)8

(12 7)

<SET FOO [5 <- 3> <TYPE "ABC">1>$%
[5 -3 STRING]

<2 .FOO0>$

124-74 Structured Ob jects

56 The MDL Programming Language

=3

{TYPE <3 .FOO>>%

ATOM

{SET BAR !'[("meow") (.FOO0)]1>%
[("meow™) ([5 -3 STRING])!]
{LENGTH .BARX%

2

<REST <1 <2 .BAR»»>S

[-3 STRING]

[<SUBSTRUC <1 <2 .BAR»> 0 2>]%

[[5 -3]]

<PUT .FOO 1 SNEAKY> :“Watch out for .BAR !"$
[SHEAKY -3 STRING]

.BARS

‘[{"meow") ([SNEAKY -3 STRING])!]
¢SET FOO <REST <1 <1 .BAR>> 2>>%
" ow™
.BARS
I[{“meow™) ([SNEAKY -3 STRING])!]

7.5. Generation of Rasic Structures

Since LISTs. VECTORs, UVECTORs, and STRINGs [and BYTESes] are all generated in a fairly uniform

manner, mcthods of generating them will be covered together here. [TEMPLATEs cannot be generated
by the interpreter itself: see Lebling (1979).)

7.5.1. Direct Representation [I]

Since EVAL of a LIST, VECTOR, nr UVECTOR is a new LIST, VECTOR, or UVECTOR with elements which
are EVAL of the original clements. simply evaluating a representation of the object you want will
generate it. (Care must be taken when representing a UVECTOR that all elements have the same
TYPE.) This method of generation was exclusively used in the examples of section 7.4. Note that
new STRINGs [and BYTESes] will not be generated in this manner, since the contents of a STRING are
not interpreted or copicd by EVAL. The same is true of any other TYPE whose TYPEPRIM happens to

be LIST, VECTOR, or UVECTOR [again, assuming it neither has been EVALTYPEd nor has a built-in
EVALTYPE, as do FORM and SEGHMENT]

7.5.2. QUOTE [1]

QUOTE is an FSUBR of one argument which returns its argument unevaluated. READ and PRINT

7.4 -7.52 Structured Ob jects

orm
ited

ich
will
ime
hat
are
5 to
t-in

INT

rcls

e e

The MDL Programming Language 5y

understand the character ' (single-quote) as an abbreviation for a call to QUOTE, the way period and
comma work for LVAL and GVAL., Examples:

<+ 1 233
3

"+ 1 258
(+ | 27

Any LIST, VECTOR, or UVECTOR in a program that is constant and need not have its elements
evaluated should be represented directly and inside a call to QUOTE. This technique prevents the
structure from heing copied each time that portion of the program is executed. Examples hereafter

will adhere to this dictum. (Note: one should never modify a QUOTEd object. The compiler will one
day put it in read-only (pure) storage.)

7.5.3. LIST, VECTOR, UVECTOR, and STRING (the SUBRs) [I]

Each of the SUBRs LI1ST, VECTOR, UVECTOR, and STRING takes any number of arguments and
returns an object of the appropriate TYPE whose elements are EVAL of its arguments. There are

limitations on what the arguments 1o UVECTOR and STRING may EVAL to, due to the nature of the
ob jects generated. Sce sections 7.6.5 and 7.6.6.

LIST, VECTOR, and UVECTOR are generally used only in special cases, since Direct Representation
usually produces cexactly the same effect {in the absence of errors), and the intention is more
apparent. [Note: if .Lisa LIST, <LIST !.L> makes a copy of .L whereas (!.L) doesn't; see section
7.7.] STRING, on the other hand, produces effects very different from literal STRINGs.

Examples:

<LIST 1 <+ 2 3> ABC>S
(1 5 ABC)

(1 <+ 2 3> ABC)S

(1 5 ABC)

CSTRING "A" <2 "QWERT®> <REST "ABC"> “hello">§
"AWBChello"

"A <+ 2 3> (5)"3
"A {+ 2 3> (5)"

7.54. ILIST, IVECTOR, IUVECTOR, and ISTRING (1]

Each of the SUBRs ILIST, IVECTOR, IUVECTOR, and ISTRING ("implicit® or “iterated” whatever)
creates and returns an object of the obvious TYPE. The format of an application of any of them is

< Ithing number-of-elementsfix expression:any »

7.52-754 Structured Ob jects

58 The MDL Programming Language

where /fthing is one of TLIST, IVECTOR, IUVECTOR, or ISTRING. An object of LENGTH number-of-
elements is generated, whose elements are EVAL of expression.

expression is optional. When it is not specified, ILIST, IVECTOR, and IUVECTOR return ob jects
filled with objects of TYPE LOSE (PRIMTYPE WORD) as place holders, a TYPE which can be passed
around and have its TYPE checked, but otherwise is an illegal argument. If expression is not
specified in ISTRING, you get a STRING made up of “@ characters.

When espression is supplied as an argument, it is re-EVALuated each time a new element is

generated. (Actually, EVAL of expression is re-EVALuated, since all of these are SUBRs.) See the last
example for how this argument may be used.

[By the way. in a construct like {IUVECTOR 9 '.X>, even if the LVAL of X evaluates to itself, so that

the ' could be omitted without changing the result, the compiler is much happier with the ' in
place.]

TUVECTOR and ISTRING again have limitations on what expression may EVAL to; again, see sections
7.6.5 and 7.6.6.

Examples:

CILIST 5 638
(6 6 6 6 6)
{IVECTOR 2>%
[#LOSE =000000000000* #LOSE =000000000000%]

(SET A 00%
0

<IUVECTOR 9 '{3ET A

<+ LA 12338
I[123456789!')]

7.5.5. FORM and IFORM

Sometimes the need arises to create a FORM without EUALing it or making it the hnd:,r of a FUNCTION.

In such cases the SUBRs FORM and IFORM ("implicit form”) can be used (or QUOTE can be used). They
are entirely analogous to LIST and ILIST. Example:

CDEFINE INC-FORM (A)

{FORM SET .A <FORM + 1 <FORM LVAL .A>>>>§
INC-FORM

{INC-FORM FOO>%
<SET FOO <+ 1 .FOO>>

754 - 755 Structured Ob jects

e e) e —.#-

il i - =

T

m

ol

= T

uage
r-of-

lj_EEt-i
assed
i not

nt is
> Jast

 that

tions

"ION.
They

) jects

The MDL Progranuning Language £9

= 6. Unique Properties of Primitive TYPEs

*

7.6.1. LIST (the PRIMTYPE) [I]

An object of PRIMTYPE LIST may be considered as a “pointer chain” (appendix 1), Any MDL ob ject
may be an clement of a PRIMTYPE LIST. It is easy to add and remove elements of a PRIMTYPE

LIST, but the higher N is, the onger it takes to refer to the Nth element. The SUBRs which work
only on ob jects of PRIMTYPE LIST are these:

7.6.1.1. PUTREST [I]
CPUTREST headiprimtype-iist tail:primtype-listy

changes hesd s that <REST head> is tail (actually <CHTYPE tail LIST?), then evaluates to head. Note

that this actually changes headt it also changes anything having head as an element or a value. For
examp je:

¢SET BOW [<SET ARF (B W)>]>$
[(B W}]

CPUTREST .ARF '(3 4)>$

(B 3 4)

.BOWS

[(B 3 4)]

PUTREST is probably most often used to splice lists together. For example, given that .L is of
PRIMTYPE LIST, to leave the first m elements of it intact and take out the next n elements of it,
CPUTREST <REST .L <~ m 13> <REST .L <+ m n>>>. Specifically,

CSET NUMS (1 2 345678 9)>8
(12345678 09)

CPUTREST <REST .NUMS 3> <REST .NUMS 7)>§
(4 8 9)

-HUMS3

(1234829)

7.6.1.2. CONS

CCONS new list>

r'l:'nnatruci"} adds new to the front of lis!, without copying list, and returns the resulting LIST.
References 1o fist are not affected.

[Evaluaiing CCONS .E .LIST> is equivalent to evaluating (.E !.LIST) (section 7.7) but is less
Preferable 1a 1o compiler (Lebling, 1979).]

76-7.6.1.2 Structured Ob jects

e

|
60 The MDL Programming Language I

7.6.2. "Array” PRIMTYPEs [1]

VECTORs, UVCCTORs, and STRINGs [and BYTESes and TEMPLATEs] may be considered as “arrays"
(appendix 1). It is easy to refer to the Nth element irrespective of how large N is, and it is
relatively difficult 1o add and delete elements. The following SUBRs can be used only with an ob ject |

of PRIMTYPE VECTOR, UVECTOR, or STRING [or BYTES or TEMPLATE) (In this section array represents
an ob ject of such a PRIMTYPE.)

7.6.2.1. BACK [I]

{BACK array fix>

This is the npposite of REST. It evaluates to array, with fix elements put back ento its front end, l

and changed to its PRIMTYPE. fix is optional, 1 by default. If fix is greater than the number of
elements which have been RESTed off, an error occurs. Example:

CSET ZOP <REST '"![1 2 3 4] 3»§ i
1[4 '
{BACK .IOP 2>% 1
i[2 3 4!] f
{SET 5 <REST "Right is might." 15>>§% !
nm |
{BACK .5 6>%

"might."

7.6.2.2. TOP [1)

CTOP arrayd

"BACKs up all the way" -- that is, evaluates to array, with all the elements which have been RESTed
of f put back onte it, and changed to its PRIMTYPE. Example:

<{TOP .IOP>%
1[1 2 3 4]

e [B

7.6.3. "Vector” PRIMTYPEs

7.6.3.1. GROW
{GROW vu end:fix beg:fix?

adds/removes elements to/from either or both ends of vu, and returns the entire (TOPped) resultant
object. vu can be of PRIMTYPE VECTOR or UVECTOR. end specifies a lower bound for the number of

762-7831 Structured Ob jects |

Ty

EUage | The MDL Programming Language 61

elements 10 be added to the end of vui beg specifies the same for the beginning. A negative fix
specifies removal of clements. SEEInning.

rrays

ityi; The number of elements added to each respective end is end or beg increased to an integral multiple
b ject of X, where X is 32 for PRIMTYPE VECTOR and 64 for PRIMTYPE UVECTOR (1 produces 32 or 64; -1
esents produces 0). The clements added will be LOSEs if vu is of PRIMTYPE VECTOR, and "empty” whatever-

they-ares if vu is of PRIMTYPE UVECTOR. An "empty” object of PRIMTYPE WORD contains zero. An

"empty” object of any other PRIMTYPE has zero in its “value word" (appendix 1) and is not safe to
play with: it should be replaced via PUT.

Note that, if elements are added to the beginning of wu, previously-existing references to vu will
have to use TOP or BACK to get at the added elements.

ser of Caution: GROW is a very expensive operation; it requires a garbage collection (section 22.4) every

time it is used. [t should be reserved for very special circumstances, such as where the pattern of
shared elements is terribly important.

1 Example:

4 <SET A "I[17>8
I[11]

§ {GROW .A D0 1>§%
![unnnﬂuunnuuuuunuuuunn
nuuuuuuuuunuuununuuuuﬂ
BUBDDDDBHDEDDBHBDDUDDI!]
.A%

| '[11]

_ 7.6.3.2. SORT

ESTed

This SUBR will sort PRIMTYPEs VECTOR, UVECTOR and TUPLE (section 9.2). It works most
3 efficiently if the sort heys are of PRIMTYPE WORD, ATOM or STRING. However, the keys may be of
any TYPE, and SORT will still work. SORT acts on fixed-length records which consist of one or more
J contiguons elements in the structure being sorted. One element in the record is declared to be the

| sort key. Also, any number of additional structures can be rearranged based on how the main
Structure is sorted.

1. <SORT pred sl Il off s2 12 s3 13 ... sN IN)

where:

. Predis either (see chapter 8 for information about predicates)

ultant

ber of (I) TYPE FALSE, in which case the TYPEs of all the sort keys must be the same; they must be of
PRIMTYPC WORD, STRING or ATOM; and a radix-exchange sort is used; or

bjects 76.3.1-7635.2 Structured Ob jects

1

b The MDL Programming Language

(2) something applicable to two sort keys which returns TYPE FALSE if the first is not bigger
than the second, in which case a shell sort is used. For example ,G? sorts numbers in ascending
order, ,L7 in descending order. Note: if your pred is buggy, the SORT may never terminate.

sl ... sNarce the (PRIMTYPE) VECTORs, UVECTORs or TUPLEs being sorted, and s/ contains the sort
keys:

Il ... IN are the corresponding lengths of sort records (optional, one by default); and

off is the of (set from start of record to sort key l,'npiimul. zero by default).

SORT returns the sorted s/ as a value,

Note: the SUBR SORT calls the RSUBR (chapter 19) SORTX; if the RSUBR must be loaded, you may see
some output from the leader on your terminal.

Examples:

CS0RT <> <SET A <IUVECTOR 500 '<RANDOM>>>>$
H...!]

sorts a UVECTOR of random integers.

{SET V [1 MONEY 2 SHOW 3 READY 4 GOD>$
Fanced

(SORT <> .V 2 1>3

[4 GO 1 MONEY 3 READY 2 SHOW]

{S0RT ,L? .V 2358

[4 GO 3 READY 2 SHOW 1 MONEY]
-V§

[4 GO 3 READY 2 SHOW 1 MONEY]

(SORT <> 1[21436587]10 .8
1I[12345678!]

WV

[GO 4 READY 3 SHOW 2 HONEY 1]

The first sort was based on thie ATOMs' PNAMES, cunsid#.'ring records (o be two elements. The second

one sorted based on the FIXes. The third interchanged pairs of elements of each of its structured
arguments.

7632 Structured Ob jects

o am

7.6

("u

liIiEI

gger
:[ing

sort

mnd
red

The MDL Programming Language 63

7.6.4. VECTOR (the PRIMTYPE) [I]

Any MDL cbject may be an element of a PRIMTYPE VECTOR. A PRIMTYPE VECTOR takes two words
of storage more than an equivalent PRIMTYPE LIST, but takes it all in a contiguous chunk, whereas

a PRIMTYPE LIST may be physically spread out in storage (appendix 1). There are no SUBRs or
FSUBRs which operate 'DI]I_}" on PRIMTYPE VECTOR.

7.6.5. UVECTOR (the PRIMTYPE) [1]

The difference between PRIMTYPEs UVECTOR and VECTOR is that every element of a PRIMTYPE
UVECTOR must be of the same TYPE., A PRIMTYPE UVECTOR takes approximately half the storage of
a PRIMTYPE VECTOR or PRIMTYPE LIST and, like a PRIMTYPE VECTOR, takes it in a contiguous chunk
(appendix 1).

[Note: duc to an implementation restriction (appendix 1), PRIMTYPE STRINGs, BYTESes, LOCDs

(chapter 12), and ohjects on the control stack (chapter 22) may not be elements of PRIMTYPE
UVECTORs.]

The “same TYPE" restriction causes an equivalent restriction to apply to EVAL of the arguments to
either of the SUDRs UVECTOR or IUVECTOR. Note that attempting to say

I[1 .A!]

will cause READ to produce an error, since you're attempting to put a FORM and a FIX into the same
UVECTOR. On the other hand,

CUVECTOR 1 .A>
is legal, and will EVAL to the appropriate UVECTOR without error if .A EVALs to a TYPE FIX.
The f ollowing SUBRs work on PRIMTYPE UVECTORs alone.
7.6.5.1. UTYPE [1)

CUTYPE primtype-uvector)

(Cuniform 1ype’) evaluates to the TYPE of every element in its argument. Example:

UTYPE "I[A B C1>8
ATOM

764 -765.1 Structured Ob jects

64 The MDL Programming Language

7.6.5.2. CHUTYPE [I]
(CHUTYPE uwv:primiype-uvector lype)

("change uniform type”) changes the UTYPE of uv 1o fype, simultaneously changing the TYPE of all
elements of uv. and returns the new, changed, uv. This works only when the PRIMTYPE of the
elements of uv can remain the same through the whole procedure. (Exception: a uv of UTYPE LOSE
can be CHUTYPE 1o any fype (legal in a UVECTOR of course); the resulting elements are "empty”, as
for GROW.)

CHUTYPE actually changes vvi hence all references to that object will reflect the change. This is
quite dif ferent from CHTYPE.

Examples:

¢SET LOST <IUVECTOR 23>>$

'[#10SE *D00000000000% #LOSE %000000000000%!]
CUTYPE .LOST)S

LOSE

CCHUTYPE .LOST FORMDS

<> €]

.LOST

1<y <31]

<CHUTYPE .LOST LIST>S

HEE) ()]

7.6.6. STRING (the PRIMTYPE) and CHARACTER [I)

The best mental image of a PRIMTYPE STRING is a PRIMTYPE UVECTOR of CHARACTERs — where |

CHARACTER is the MDL TYPE for a single ASCII character. The representation of a CHARACTER, by
the way, is

' Nany-ASCII-characler

That is. the characters !\ (exclamation-point backslash) preceding a single ASCII character
represent the corresponding object of TYPE CHARACTER (PRIMTYPE WORD). (The characters !"
(exclamation-paint double-quote) preceding a character are also acceptable for inputting a
CHARACTER, for historical reasons.)

The SUBR ISTRING will produce an error if you give it an argument that produces a non-

CHARACTER. STRING can take either CHARACTERs or STRINGs.

There are no SURRs which uniquely manipulate PRINTYPE STRINGs, but some are particularly useful
in connection with them:

7652 - 7.6.6 Structured Ob jects

-

I
al

I
a1

[A
fc

i

Pl

re
[S

il

LF
L1
re

7.

UN
I'EI
[H
daci
(T

7.6

36
ST

l.'l-ig!

f all
the
LOSE

« &5

i5 is

here
» by

cter

E a
non-

eful

jects

The MDL Programming Language 5

=6.6.1. ASCII [1]

{ASCII fixv-or-characler>

If its argument is of TYPE FIX, ASCII evaluates to the CHARACTER with the 7-bit ASCII code of its
argument. Example: <ASCII 65> evaluates to !\A,

If its argument is of TYPE CHARACTER, ASCII evaluates to the FIXed-point number which is its
argument’s 7-bit ASCII code. Example: <ASCII '\1I> evaluates to 90.

[Actually. a FIX can be CHTYPEd to a CHARACTER (or vice versa) directly, but ASCII checks in the
former case that the I'IX is within the permissible range.]

7.6.6.2. PARSE [1]
CPARSE string radivdivy

PARSE applics 1o its argument READ's algorithm for converting ASCII representations to MDL
objects and returns the first object created. The remainder of sfring, after the first ob ject
represented. is ignored. radix (optional, ten by default) is used for converting any FIXes that occur.
[See also sections 15.7.2 and 17.1.3 for additional arguments.]

7.6.6.3. LPARSE [1]

LPARSE ("list parse”) is exactly like PARSE (above), except that it parses the entire siring and returns a
LIST of all objects created. If given an empty STRING or one containing only separators, LPARSE
returns an empty LIST, whercas PARSE gets an error.

7.6.6.4. UNPARSE [1]
CUNPARSE any radix:fixy

UNPARSE applies ta its argument PRINTs algorithm for converting MDL objects to ASCII
representations and returns a STRING which contains the CHARACTERs PRINT would have typed out.
[However, this STRING will hot contain any of the gratuitous carriage-returns PRINT adds to
dccommadate a CHANNEL's finite line-width (section 11.2.8).] radix (optional, ten by default) is
used for converting any FIXes that occur.

7.6.7. BYTES

A (PRINTYPE) BYTES is a string of uniformly-sized bytes. The bytes can be any size between 1 and
36 bits inclusive. A BYTES is similar in some ways to a UVECTOR of FIXes and in some ways to a
STRING of non-seven-bit bytes. The elements of a BYTES are always of TYPE FIX.

76.6.1-76.7 Structured Ob jects

66 The MDL Programming Language

The SUBRs BYTES and IBYTES are similar to STRING and ISTRING, respectively, except that each of
the former takes a first argument giving the size of the bytes in the generated BYTES. BYTES takes
one required argument which is a FIX specifying a byte size and any number of PRIMTYPE WORDs,
It returns an object of TYPE BYTES with that byte size containing the objects as elements. These

objects will be ANDBed with the appropriate mask of 1-bits to fit in the byte size. IBYTES takes two |

requircd [IXes and one optional argument, It uses the first FIX to specify the byte size and the
second to specify the number of elements. The third argument is repeatedly evaluated to generate
FIXes that become elements of the BYTES (if it is omitted, bytes filled with zeros are generated). The
analog to UTYPE is BYTE-SIZE. Examples:

<BYTES 3 <+ 2 2> 9 -1>%

#3 {41 7}
¢SET A 023
0

CIBYTES 3 9 "<SET A <+ A 1328
#3 (1 23456701)
{IBYTES 3 4>%

#3 {0 0 0 0}
{BYTE-SIZE <BYTES 1>>%
1

7.6.8. TEMPLATE

A TEMPLATE is similar 1o a PL/1 "structure” of one level: the elements are packed together and
reduced in size to save storage space, while an auxiliary internal data structure describes the
packing format and the elements’ real TYPEs (appendix 1. The interpreter itself is not able to create
objects of PRIMIYPE TEMPLATE (Lebling. 1979k however, it can apply the standard built-in
Subroutines to them. with the same effects as with other "arrays”.

7.7. SEGMENTs [1]

Objects of TYPE SEGHMENT (whnse TYPEPRIM is LIST) look very much like FORMs. SEGMENTs, however, |

undergo a non-standard evaluation designed to ease the construction of structured objects from
elements of other structured ob jects,

7.7.1. Representation [1]
The representation of an object of TYPE SEGMENT is the following:

\ & func arg-1 arg-2 ... arg-N 1

7.6.7-7.7.1 Structured Ob jects

—

lerate |
The

and
5 the
reate
ilt-in

'EYET,
from

Jects

The MDL Programming Language &7

where the second ! (exclamation-point) is optional, and func and arg-1 through arg-N are any legal

constituents of a FORM (that is, anything). The pointed brackets can be implicit, as in the period
and comima notation for LVAL and GVAL.

All of the following are SEGMENTs:

1<3 .FOO> '.FOO !,FOO

7.7.2. Evaluation [1]

A SEGMENT is evaluated in exactly the same manner as a FORM, with the following three exceptions:

(1) 1t had better be done inside an EVAL of a structure; otherwise an error occurs. (See special
case of FORMs in section 7.7.5.)

(2} It had better EVAL to a structured ob ject; otherwise an error occurs.

(3) What actually gets inserted into the structure being built are the elements of the structure
returned by the FORM-like evaluation.

7.7.3. Examples [I]

¢SET ZOP *![2 3 47>%
1I[2 3 41]

CSET ARF (B 3 4)>$

(B 3 4)

(.ARF !.ZOP)$

((B 34) 2 3 4)

I[1.Z0P !<REST .ARF>!]$
1{2 343 41]

{SET 5 "STRUNG.">$
"STRUNG."®

(!'.5)%
CINS IAT AR INU AN 1\G 1\.)

<SET NIL ()>$
()

[!.NIL]S

(]

771-773 Structured Ob jects

7.7.4. Note on Efficiency [I]

Most of the cases in which it is possible to use SEGMENTs require EVAL to generate an entire new
object. Naturally, this uses up both storage and time. However, there is one case which it is
possible to handle without copying, and EVAL uses it. When the structure being built is a PRIMTYPE
LIST, and the segment value of a PRIMTYPE LIST is the last (rightmost) element being concatenated,
that last PRINTYPE LIST is not copied. This case is similar to CONS and is the principle reason why
PRIMTYPE LIS5Ts have their structures more easily varied than PRIMTYPE VECTOR or UVECTOR.

Examples:

-ARF %
(B 3 4)

This does not copy ARF:

(1
(1

These doc

(1
(1
[1
[1
(1
(1

2 '.ARF)S$
2B 34)

| ARF 2)
B342)
2 V.ARF]
2B 34]

:"not last element®$

:"not PRIMTYPE LIST"S

The MDL Programming Language

Z '.ARF !'<REST "(1)>) :"still not Tast element"$

2B 34)

Note the following, which occurs because copying does not take place:

<SET DOG (A '.ARF)>%

(A B3 4)

<PUT .ARF 1 “"BOWOW®">%
("BOWOW" 3 4)

.DOG3

(A "BOWOW" 3 4)

CPUT .DOG 3 "WOOF">$
(A "BOWOW" "WOOF" 4)
-ARF 3

("BOWOW"™ "WOOF" 4)

Since ARF was not copied, it was literally part of DOG. Hence, when an element of ARF was changed,
DOG was changed. Similarly, when an element of DOG which ARF shared was changed, ARF was

chnn;ed 100,

7.1.4

Structured Ob jects

The MDL Programming Language -

27.5. SEGMENTs in FORMs [I]

When a SEGMENT appears as an element of a FORM, the effect is approximately the same as if the
elements of EVAL of the SEGMCNT were in the FORM. Example:

{SET A "![1 2 3 4]>%

(123 4]
e 1A 508
15

Note: the clements of the structure scgment-evaluated in a FORM are not re-evaluated if the thing

being applicd is a SUBR. Thus if .A were (1 2 <+ 3 4> 5), the above example would produce an
error: you can't add up FORMs.

You could perform the same summation of 5 and the elements of A by using

<EVAL <CHTYPE (+ !'.A 5) FORM>>

(Note that CVAL must be explicitly called as a SUBR; if it were not so called, you would just get the
FORM <+ 1 2 3 4 5> - not its "value") [However, the latter is more expensive both in time and in
storage: when you use the SEGMENT directly in the FORM, a new FORM is, in fact, not generated as it is
in the latter case. (The elements are put on “the control stack”™ with the other arguments.)

7.8. Self-referencing Structures

It is possible for a structured object to "contain” itself, cither as a subset or as an element, as an
element of a structured element, etc. Such an object cannot be PRINTed, because recursion begins
and never terminates. Warning: if you try the examples in this section with a live MDL, be sure

you know how to use "5 (section 1.2) to save PRINT from endless agony. (Certain constructs with
ATOMs can give PRINT similar trouble: see chapters 12 and 15.)

7.8.1. Self-subset
CPUTREST head:primlype-list tail:prim!ype-listy

If head is a subser of tad, that is, if <REST fail fix> is the same object as {REST head 0> for some fix,
then both head and tail will be "circular” (and thus self-referencing) after the PUTREST. Example:

<SET WALTZ (1 2 3)>8

(12 3)

CPUTREST <REST .WALTZ 2> .WALTZI>$
(3123123123123...

7.1.5 - 7.8.1 Structured Ob jects

70

The MDL Programming Language

7.8.2. Self-element

CPUT sl:stfructured fiv sZ:structured>

If s1 is the same object as s2, then it will "contain” itself (and thus be self-referencing) after the
PUT. Examples:

CSET S <LIST 1 2 3» +®"or VECTOR"S

(1 2 3)

CPUT .S 3 .58

(1 2(12012¢12...

¢SET b I[![]1]>8

Igighiy

CPUT .U 1 .U>3 !
Igigidigic] e

Test your reaction time or your terminal’s bracket-maker. Amaze your friends.

7.8.2 Structured Ob jects

The MDL Programming Language 7l

Chapter B. Truth

8.1. Truth Values [I

MDL represents "false” with an object of a particular TYPE: TYPE FALSE (unsurprisingly). TYPE
FALSE is structured: its PRIMTYPE is LIST. Thus, you can give reasons or excuses by making them
elements of a FALSE. (Again, EVALing a FALSE neither copies it nor EVALs its elements, so it is not
necessary to QUOTE a FALSE appearing in a program.) Ob jects of TYPE FALSE are represented in "#
notation’

#FALSE list-of-its-elements

The empty FORM evaluates to the empty FALSE:

1
PFFALSE ()

Anything which is not FALSE, is, reasonably enough, true. In this document the “data type” fa/se-
or-any in metasyntactic variables means that the only significant attribute of the object in that
context is whether its TYPE is FALSE or not,

8.2. Predicates [1]

There are numerous MDL F/SUBRs which can return a FALSE or a true. See appendix 2 to find
them all. Most return cither #FALSE () or the ATOM with PNAME T. (The latter is for historical
reasons, namely Lisp (Moon, 1974)) Some predicates which are meaningful now are described next.

8.2.1 Arithmetic [1]
<07 fix-or-float?
evaluates to T only if its argument is identically equal to 0 or 0.0,

8-821 Truth

72 The MDL Programming Language

<17 fix-or-floal>
evaluates to T only if its argument is identically equal to 1 or 1.0.

{G? nfix=-or=floal mfix-or=floaly

evaluates to T only if # is algebraically greater than m, L=7 is the Boolean complement of G7; that
is, it is T only if n is not algebraically greater than m.

<L? nidfiv-or-floal midix-or-float?

evaluates to T only if » is algebraically less than m. €=7 is the Boolean complement of L?.

8.2.2. Equality and Membership [I]

{==7 pliany é.‘?:any}

evaluates to T ouly if el is the same object as €2 (appendix 1), Two ob jects that look the same |
when PRINTed may not be ==7. Two FIXes of the same “value® are "the same object”; so are two

FLOATs of exactly the same “value”. Empty objects of PRIMTYPE LIST (and no other structured
PRIMTYPE) are ==7 if their TYPEs are the same. Example:

€==7 <(SET X "RANDOM STRING"> <TOP <REST .X 6>>>§

T i
¢==7 .X "RANDOM STRING">S :
#FALSE ()

N==7 is the Boolean complement of ==7,
<=7 el:any el:any>

evaluates to T il o/ and o2 have the same TYPE and arc structurally equal - that is, they "look the
same”, their printed representations are the same. =? is much slower than ==?. =7 should be used
only when its characteristics are necessary: they are not in any comparisons of unstructured ob jects. !

==7 and =7 always return the same value for FIXes, FLOATs, ATOMs, etc. (Mnemonically, ==17 tests for
“more equality” than =7; in fact, it tests for actual physical identity.)

Example, illustrating non-copying of a SEGHENT in Direct Representation of a LIST:

CSET A '] 2 3)58

o

(1 2°%)
<==7 A (1.A))S
T

g

<==? A <SET B <LIST !.A>»§

8.21-822 Truth

The MDL Programming Language 73

#FALSE ()
<=7 .A .B>S
r

N=7? is the Noolean complement of =7,

CMEMBER objecl:any struclured?

runs down structured from first to last element, comparing each element of struclured with object.
If it Finds an clement of structured which is =7 to object, it returns <REST structured i> (which is of
TYPE <PRINTYPC structured>), where the (isl)th element of structured is =7 to object, That is, the
first element of what it returns is the first clement of struetured that is =7 to object.

If no element of structured is =7 to object, MEMBER returns #FALSE ().

The scarch is more efficient if structured is of PRINTYPE VECTOR (or UVECTOR, if possible) than if it
is of PRIMTYPE LIST. As usual. if structured is constant, it should be QUOTEd.

If object and structured are of PRIMTYPE STRING [or BYTES), MEMBER does a substring search.
Example:

<HEMBER "PART" "SUM OF PARTS">S
"PARTS"

SMEMQ objrctiany structured?> ("“member quick”) is exactly the same as MEMBER, except that the
comparison lesi is ==7,

CSTRCOMP g 52
(string comparison”) can be given either two STRINGs or two ATOMs as arguments. In the latter case
the PNAMCs arc used. 1t actually isn't a predicate, since it can return three possible values: 0 if s/ is

=? to s2 1 if s/ sorts alphabetically after s2 and -1 if sl sorts alphabetically before s2,

"Alph:hﬂically" means, in this case, according to the numeric order of ASCII, with the standard
alphabetizing rules.

[A predicate suitable for an ascending SORT (which see) is <G7 <STRCOMP .ARG1 .ARG2> 0>.]

8.2.3. Boolean Operators [1)
CHOT efaleo-or-any)
evaluates 10 T only if e evaluates to a FALSE, and to #FALSE () otherwise.

SAND e/ e2 ... eN>

8.2.2-823 Truth

o The MDL Programming Language

AND is an FSUBR, Tr evaluates its arguments from first 1o last as they appear in the FORM. As soon
as one of them evaluates to a FALSE, it returns that FALSE, ignoring any remaining arguments. If
none of them evaluate to FALSE, it returns EVAL of its last argument, <AND> returns T. AND? is the
SUBR equivalent to AND, that is, all its arguments are evaluated before any of them is tested.

OR el e2 ... eN>

OR is an FSUDR, It evaluates its arguments from First to last as they appear in the FORM. As soon
as one of them evaluates to a non-FALSE, OR returns that non-FALSE value, ignoring any remaining

arguments. If this never occurs, it returns the last FALSE it saw. <OR> returns #FALSE (). ORT is
the SUBR equivalent to OR,

8.2.4. Ob ject Properties [1)
STYPE? any fype-1 ... lype-N3

evaluates to {ype-i only if <==7 type-i CTYPE any>> is true. It is faster and gives more information
than ORing tests for cach TYPE. If the test fails for all type-is, TYPET returns #FALSE ().

CAPPLICABLE? >

evaluates to T only if e is of a TYPE that can legally be applied to arguments in a FORM, that is, be
(EVAL of) the first element of a FORM being evaluated (appendix 3).

{MONAD? &>

evaluates to #FALSE () only if NTH and REST (with non-zero second argument) can be performed on

its argument without error, An unstructured or empty structured ob ject will cause HONAD? to return
TI

CSTRUCTURED? &>

evaluates to T only if e is a structured object. It is not the inverse of MONAD?, since each returns T

If its argument is an cmpty structure.

CEMPTY? struclured?

evaluates to T only if its argument, which must be a structured ob ject, has no elements.

CLENGTH? structured fixd

evaluates to CLONGTH strucluredd only if that is less than or equal to fix; otherwise, it evaluates to

#FALSE (). Mnemonically, you can think of the first two letters of LENGTH? as signifying the "less
than or equal to” sense of the test,

8.23-824 Tru

T 2

-
o
1
1

The MDL Progrannming Language 75

This SUBR was invented to use on lists, because MDL can determine their lengths only by stepping
along the list, counting the elements. If a program needs to know only how the length compares
with a given number, LENGTH? will tell without necessarily stepping all the way to the end of the
list, in contrast to LENGTH.

[If structured is a circular PRIMTYPE LIST, LENGTH? will return a value, whereas LENGTH will execute
forever, To sce if you can do <REST sfruclured <+ 1 fix>> without error, do the test <NOT <LENGTH?
structured fix>>.)

8.3. COND [I]

The MDL Subroutine which is most used for varying evaluation depending on a truth value is the
FSUBR COND ("conditional™). A call to COND has this format:

CCOND clause-l1dist ... clause=Ndist)

where N is at least one,

COND always returns the result of the last evaluation it performs. The following rules determine the
order of evaluations performed,

(1) Evaluate the first element of each clause (from first to last) until either 2 non-FALSE ob ject
results or the clauses are exhausted.

(2) If a non-FALSE object is found in (1), immediately evaluate the remaining elements (if any)
of that clause and ignore any remaining clauses,

In other words, COND goes walking down its clauses, EVALing the first element of each clause, looking
for a non-FALSE result. As soon as it finds a non-FALSE, it forgets about all the other clauses and
evaluates, in order, the other elements of the current clause and returns the last thing it evaluates.
If it can't find a non-FALSE, it returns the last FALSE it saw.

8.3.1. Examples [1]

<SET F '(1)0%
(1) |
CCOND (<EMPTY? .F> EMP) (<17 <LENGTH .F>> ONE)>$

ONE

CSET F ()28

()

CCOND (<EMPTY? .F> EMP) (<17 <LENGTH .F>> ONE)>$
EMP

824-831 Truth

76 The MDL Programming Language

CSET F '(1 2 3)28

(12 3)

{COND (<EMPTY? .F> EMP) (<17 <LENGTH .F>> ONE)>3

#FALSE ()

{COND (<LENGTH? .F 2> SMALL) (BIE)>S

BIG

¢DEFINE FACT (N) :"the standard recursive factorial®

CCOND (<07 .N> 1)
(ELSE <® .N <FACT <= .N 1222)2>§
FACT
{FACT 53§
120

~ 8.4. Shorteuts with Conditionals

8.4.1. AND and OR as Short CONDs
Since AND and OR are FSUBRs, they can be used as miniature CONDs. A construct of the form

¢AND pre-condilions aclion(s)}

{OR pre-exclusions action(s)>

will allow action(s) to be evaluated only if all the pre-condilions are true or only if all the pre-
exclusions are false, respectively. By nesting and using both AND and OR, fairly powerful constructs
can be inade. OF course, if aclionfs) are more than one thing, you must be careful that none but the
last returns false or true, respectively. Watch out especially for TERPRI (chapter 11). Examples:

CAND {ASSIGNED? FLAG> .FLAG <{FCN .ARG>>

..IFF"H FCN only if someone else has SET FLAG to true. (ASSIGNED? is true if its argument ATOM has
an LVAL.) No crror can occur in the testing of FLAG because of the order of evaluation,

CAND <SET C <OPEN "READ® "A FILE®>> <LOAD .C> <CLOSE .C>>

effectively FLOADs the file (chapter 11) without the possibility of getting an error if the file cannot
be opened.

'EI,II = ll"'-ll Tﬂ“h

The MDL Programming Language 77

8.4.2. Embedded Unconditionals

One of 1he disadvantages of COND is that there is no straightforward way to do things
unconditionally in between rests. One way around this problem is to insert a dummy clause that
never suicceeds, because its only LIST element is an AND that returns a FALSE for the test. Example:

CCOND (<07 N> <FO .N})
(<17 N> <F1 .ND)
(CAND <SET N <® 2 <FIX </ .N 255

: "Round .N down to even number.®
$3>)

(CLENGTH? .VEC .N> '[])
(T <REST .VEC <+ 1 .N>>))

A variation is to make the last AND argument into the test for the COND clause. (That is, the third
and fourth clauses in the above example can be combined.) OFf course, you must be careful that no
other AND argument evaluates to a FALSE: most Subroutines do not return a FALSE without a very

good reason for il. (A notable exception is TERPRI (which see).) Even safer is to use PROG (section
10.1) instead of AND.

Another variation is to increase the nesting with a new COND after the unconditional part. At least

this method docs not make the code appear to a human reader as though it does something other
than what it really does. The above example could be done this way:

<COND (<07 .N> <FO .N»)
(<17 N> <F1 .N})
(T
CSET N <= 2 <FIX </ .N 22
CCOND (<LENGTH? .VEC .N> '[))
(T <REST .VEC <+ 1 .N>>)>)>

B.4.2 Truth

8 The MDL Programming Language

Chapter 9. Functions

This chapter eould he named "fun and games with argument LISTs". Its purpose is to explain the
mare complicated things which can be done with FUNCTIONs, and this involves, basically, explaining
all the various tokens which can appear in the argument LIST of a FUNCTION, Topics are covered
in what is approximately an order of increasing complexity. This order has little to do with the
arder in which tolens ean actnally appear in an argument LIST, so what an argument LIST "looks
like™ overall gets rather lost in the shuffle. To alleviate this problem, section 9.9 is a summary of

everything that can go into an argument LIST, in the correct order. If you find yourself getting
lost, please refer 1n that smmmary.

9.1, "OPTIONAL" [I]

MDL provides very convenient means for allowing optional arguments, The STRING "OPTIONAL"®
(or "OPT" - they're totally equivalent) in the argument LIST allows the specification of optional

arguments with valoes to be assigned by default. The syntax of the "OPTIONAL® part of the
argument LIST is as follows:

"OPTIOHAL® al-1 al-2 ... a-N

First, there is the STRING "OPTIONAL". Then there is any number of either ATOMs or two-element
LISTs. intermixed. one per optional argument. The first element of each two-element LIST must be
an ATOM; this is the dummy variable. The second element is an arbitrary MDL expression. If there
are required arguments, they must come before the "OPTIONAL",

When EVAL is binding the variables of a FUNCTION and sees "OPTIONAL®, the following happens:

IT an explicit argument was given in the position of an optional one, the explicit argument is
bound to the corresponding dummy ATOM,

If there is nn explicil argument and the ATOM stands alone, that is, it is not the first element of
a twoselement LIST, that ATON becomes "bound”, but no local value is assigned to it [see below]}.
A local value can be assigned to it by using SET.

9.9l Functions

The MDL Programming Language 79

If there is no explicit argument and the ATOM is the first element of a two-element LIST, the
MDL expression in the LIST with the ATOM is evaluated and bound to the ATOM.

(Until an ATOM is assigned, any attempt to reference its LVAL will produce an error. The predicate
SUBRs BOUND? and ASSIGHCD? ean be used to check for such situations. BOUND? returns T if its
argument is currently bound via an argument LIST or has ever been SET while not bound via an
argument LIST. The latter kind of binding is called "top-level binding”, because it is done outside
all active argument-LIST binding, ASSIGNED? will return #FALSE () if its argument is either
unassigned or unbound. By the way, there are two predicates for global values similar to BOUND?
and ASSIGNED?, nawmely GBOUND? and GASSIGNED?. Each returns T only if its argument, which (as
in BOUND? and ASSIGNED?) must be an ATOM, has a global value "slot” (chapter 22) or a global value,
respectively.]

Example:

CDEFINE INC1 (A “OPTIONAL™ (N 1)) <SET .A <+ ..A NS

INC1

CSET B 035
0

CINC1 B>§

|

CINC1 B 533
6

Here we delined another (not quite working) increment FUNCTION. It now takes an optional
argument specifying how much to increment the ATOM it is given. If not given, the increment is 1.
Now, 1 is a pretty simple MDL expression: there is no reason why the optional argument cannot be
complicated -« for example, a call to a FUNCTION which reads a file on an 1/O device.

9.2. TUPLEs

9.2.1. *TUPLE"™ and TUPLE (the TYPE) [I]

There are also times when you want to be able to have an arbitrary number of arguments. You can
always do this by defining the FUNCTION as having a structure as its argument, with the arbitrary
number of argiiments as elements of the structure. This can, however, lead to inelegant-looking
FORMs and extra garbage to be collected. The STRING "TUPLE® appearing in the argument LIST

allows you to avoid that. It must follow explicit and optional dummy arguments (if there are any
of either) and must be followed by an ATOM,

The effect of "TUPLE" appearing in an argument LIST is the following: any arguments left in the

9.1-921 Functions

80 The MDL Programming Language

FORM, afrer satisfying explicit and optional arguments, are EVALed and made sequential elements of
an object of TYPC and PRIMTYPE TUPLE. The TUPLE is then bound to the ATOM following "TUPLE*

in the argument LIST. If there were no arguments left by the time the "TUPLE® was reached, an
empty TUPLE is bound to the ATOM.

An object of TYPE TUPLE is exaclly the same as a VECTOR except that a TUPLE is not held in
garbage-collecied storage. It is instead held with ATOM bindings in a control stack. This does not
affect manipulation of the TUPLE within the function generating it or any function called within
that one: it can be treated Just like a VECTOR. Note, however, that a TUPLE ceases to exist when the
Function which generated it returns, Returning a TUPLE as a value is a good way to generate an
error. (A copy of a TUPLE can easily be generated by segment-evaluating the TUPLE into something;
that copy can be returned) The predicate LEGAL? relurns FFALSE () if it is given a TUPLE

generated by an APPLICABLE ob ject which has already returned, and T if it is given a TUPLE which is
still "good”,

Example:

<DEFINE NTHARG (N "TUPLE" T)
:"Get all but first argument into T.®
CCOND (<==7 1 N> 1)
"IT N is 1, return lst arg, 1.a., .N,
f.e., 1. Note that <17 .N> would be
true even if N were 1.0."
(<L? CLENGTH .T> <SET N ¢~ .N 132>
#FALSE ("DUMMY"))
i"Check to see if there is an Nth arg,
and make N a good index into T while
you're at it.
If there isn't an Nth arg, complain.®
(ELSE <NTH .T .N>)>>

NTHARG, above. takes any number of arguments. Its first argument must be of TYPE FIX. It
returns EVAL of its Nth argument, if it has an Nth argument. If it doesn't, it returns #FALSE
("DUMMY"). (The FLSE is not absolutely necessary in the last clause, If the Nth argument is a
FALSE, the COND will return that FALSE.) Exercise for the reader: NTHARG will generate an error if
its first argument is not FIX, Where and why? (How about <NTHARG 1.5 2 3>?) Fix it

9.2.2. TUPLE (the SUBR) and ITUPLE

These SURRs are the same as VECTOR and IVECTOR, except that they build TUPLES (that is, vectors on
the control stack). They ean be used only at top level in an "OPTIONAL" list or “AUX" list (see
below). The elear advantage of TUPLE and ITUPLE ("implicit tuple” is in stur:ge—mumggmm:
efficiency. They produce no garbage, since they are flushed automatically upon function return.

9.2.1-822 Functions

=

The MDL Programming Language 81

Examples:

<DEFINE F (A B "AUX" (C <ITUPLE 10 3»)) ...>

creates a 10-clement TUPLE and SETs C to it,

<DEFINE H ("OPTIONAL®™ (A <ITUPLE 10 '<I>))

"AUX" (B {TUPLE '.A 1 2 3)))
.o

These are valid uses of TUPLE and ITUPLE. However, the following is not a valid use of TUPLE,
because it is not called at top level of the "AUX":

CDEFINE NO (A B "AUX™ (C <REST <TUPLE !.Ad»)) ...>

However, the desired effect could be achieved by

CDEFINE OK (A B "AUX™ (D <TUPLE !.A>) (C <REST .D>)) ...>

9.3. "AUX" [1]

"AUX" (or "EXTRA" -- they're totally equivalent) are STRINGs which, placed in an argument LIST,
serve to dynamically allocate temporary variables for the use of a Function.

"AUX" must appear in the argument LIST after any information about explicit arguments. It is
followed by ATOMs or two-clement LISTs as if it were "OPTIONAL". ATOMs in the two-element LISTs

are bound to EVAL of the sccond clement in the LIST. Atoms not in such LISTs are initially
unassigned: they are explicitly given "no" LVAL.

All binding specificd in an argument LIST is done sequentially from first to last, so initialization

expressions for "AUX" (or "OPTIONAL") can refer to objects which have just been bound. For
example, this works:

CDEFINE AUXEX ("TUPLE" T
"AUX" (A CLENGTH .T») (B <= 2 .A)))

I[.A .B]S
AUXEX _
CAUXEX 1 2 "FOO">$
103 6!

922-93 Functions

82 The MDL Programming Language

9.4. QUOTEd arguments

If an ATOM in an argument LIST which is to be bound to a required or optional argument is
surrounded by a call to QUOTE, that ATOM is bound to the unevaluated argument. Example:

(DEFINE 0Z (A 'B) (.A .B)>3

02
€Q2 <+ 1 2> <+ 1 2208
(3 <+ 1 23)

It is not often appropriate for a function to take its arguments unevaluated, because such a practice
makes i1 less wmodular and harder to maintain: it and the programs that call it tend to need to know
more about cach other, and a change in its argument structure would tend to require more changes
in the programs that call it. And, since few functions, in practice, do take unevaluated arguments,

users tend to assume that no functions do (except FSUBRs of course), and confusion inevitably
results.

9.5. "ARGS"

The indicator "ARGS" can appear in an argument LIST with precisely the same syntax as "TUPLE".

However, "ARGS" catises the ATOM following it 1o be bound to a LIST of the remaining unevaluated
nrgumc-nls.

"ARGS" dnes not cause any copying to take place. It simply gives you

C(REST applicationform fix)

with an appropriate fix. The TYPE change to LIST is a result of the REST. Since the LIST shares
all its elements with the original FORM, PUTs into the LIST will change the calling program,
however dangerous that may be,

Examples:

CDEFINE QIT (N "ARGS" L) <.N .L>>$
QIT

¢QIT 2 <+ 3 4> CLENGTH ,QALL> FOO>$
CLENGTII ,QALLY

COEFINE FUNCT1 ("ARGS" ARGL-AND-BODY)
{CHTYPE .ARGL-AND-BODY FUNCTION>>S

FUNCT]

{FUNCT1 (A B) <+ .A .B3>%

“FUNCTION ((A B) <+ .A .B})

94 .95 Functions

-

The MDL Programming Language 83

The last example is a perfectly valid equivalent of the FSUBR FUNCTION.

9.6. "CALL"

The indicator "CALL" is an ultimate "ARGS". If it appears in an argument LIST, it must be
Followed by an ATOM and must be the only thing used to gather arguments. "CALL" causes the ATOM
which follows it to become bound to the actual FORM that is being evaluated - that is, you get the

“function call” itself. Since "CALL® binds to the FORM itself, and not a copy, PUTs into that FORM will
change the calling code.

"CALL" exists as a Catch-22 for argument manipulation. If you can't do it with *CALL", it can't be
done,

9.7. EVAL and "BIND"

Obtaining unevaluated arguments, for example, via QUOTE and "ARGS", very often implies that you

wish to evaluate them at some point. You can do this by explicitly calling EVAL, which is a SUBR.
Example:

CSET F "¢+ 1 238
<+ 1 2>

{EVAL .F3$

3

EVAL can take a second argument, of TYPE ENVIRONMENT (or others, see section 20.8). An
ENVIRONMENT consists basically of a state of ATOM bindingsi it is the "world” mentioned in chapter 5.
Now, since binding changes the ENVIRONMENT, if you wish to use EVAL within a FUNCTION, you
probably want to get hold of the environment which existed before that FUNCTION's binding took
place. The indicator "BIND", which must, if it is used, be tle first thing in an argument LIST,
provides this information. It binds the ATOM immediately following it to the ENVIRONMENT existing
“at call time” -- that s, Just before any binding is done for its FUNCTION. Example:

¢SET A 038

0

CDEFINE WRONG ('B "AUX" (A 1)) <EVAL .B>>$

WRONG

CWRONG .A>S

1

CDEFINE RIGHT ("BIND" E 'B "AUX" (A 1)) <EVAL .B .E}§
RIGUT

95-97 Functions

84 The MDL Programming Language

CRIGHT .A>S
0

9.7.1. Local Values versus FNVIRONMENTs

SET, LVAL, VALUE, BOUND?, ASSIGNED?, and UNASSIGN all take a final optional argument which
has not previously heen mentioned: an ENVIRONMENT (or other TYPEs, see section 20.8). If this

argument is given. the SET or LVAL is done in the ENVIRONMENT specified. LVAL cannot be
abbreviated by . (period) if it is given an explicit second argument,

This feature is just what is needed to cure the INC bug mentioned in chapter 5. A “correct” INC can
be defined as follows:

<DCFINE INC ("BIND" OUTER ATM)
CSET .ATH <+ 1 <LVAL .ATM .OUTERY> .OUTER>>

9.8. ACTIVATION, "NAME™, "ACT", AGAIN, and RETURN [1]

EVALuation of a FUNCTION, after the argument LIST has been taken care of, normally consists of
EVALuating cach of the objects in the body in the order given, and returning the value of the last
thing EVAled. If you want to vary this sequence, you need to know, at least, where the FUNCTION
begins. Actually. EVAL normally hasn't the foggiest idea of where its current FUNCTION began.
“Where'd 1 start” information is bundled up with a TYPE called ACTIVATION. In "normal® FUNCTION

EVALuation. ACTIVATIONs are not gencrated: one can be generated, and bound to an ATOM, in either
of the two following ways:

(1) Put an ATOM immediately before the argument LIST. The ACTIVATION of the Function will
be bound to that ATOM.

(2) As the last thing in the argument LIST, insert either of the STRINGs "NAME® or YACT® and
follow it with an ATOM. The ATOM will be bound to the ACTIVATION of the Function.

In this document "Function” (capitalized) will designate anything that can generate an ACTIVATION;

besides TYPE FUNCTION, this class includes the FSUBRs PROG, BIND, and REPEAT, yet to be
discussed,

Each ACTIVATION refers explicitly to a particular evaluation of a Function. For example, if a

rectirsive FUNCTION generates an ACTIVATION, a new ACTIVATION referring explicitly to each
recursion siep is gencrated on every recursion,

Like TUPLEs, ACTIVATIONs are held in a control stack. Unlike TUPLEs, there is no way to get a copy

9.7 -98 Functions

The MDL Programming Language 85

of an ACTIVATION which can usefully be returned as a value. (This is a consequence of the fact that
ACTIVATIONs refer to evaluations; when the evaluation is finished, the ACTIVATION no longer exists.)

ACTIVATIONs can be tested, like TUPLEs, by LEGAL? for legality. They are used by the SUBRs AGAIN
and RETURN.

AGAIN can take one argument: an ACTIVATION. It means "start doing this again®, where “this" is
specified by the ACTIVATION. Specifically. AGAIN causes EVAL to return to where it started working

on the body of the Function in the evaluation specified by the ACTIVATION. The evaluation is not
redone completely: in particular, no re-binding (of arguments, "AUX* variables, etc.) is done.

RETURN can take two arguments: an arbitrary expression and an ACTIVATION, in that order. It
causes the Function evaluation whose ACTIVATION it is given to terminate and return EVAL of
RETURN's First argument. That is, RETURN means “quit doing this and return that”, where "this" is the
ACTIVATION -- its second argument - and "that” is the expression - its first argument. Example:

CDEFINE MY+ ("TUPLE®™ T ™AUX"™ (M 0) "NAME® NM)
CCOND (<EMPTY? .T> <RETURN .M .NM>)>
CSET M <+ N <1 .TO>»
<SET T <REST .T»
CAGAIN .NM)>>S

MY+

<MY+ 1 3 <LENGTH "FOO">>§

7

{MY+>§

0

Note: suppose an ACTIVATION of one Function (eall it F1) is passed to another Function (call it F2) -
for example. via an application of F2 within F1 with F1's ACTIVATION as an argument. If F2
RETURNs to F1's ACTIVATION, F2 and F1 terminate immediately, and F1 returns the RETURN's first
argument. This technique is suitable for error exits, AGAIN can clearly pull a similar trick. In the
following example, F1 computes the sum of F2 applied to each of its arguments; F2 computes the

product of the elements of its structured argument, but it aborts if it finds an element that is not a
number.

CDEFINE F1 ACT ("TUPLE™ T “AUX* (T1 .T))
CCOND (<NOT <EMPTY? .T1»
<PUT .T1 1 <F2 <1 .T1> .ACTH»>
<SET T1 <REST .TI>)
CAGAIN .ACT2)

 (ELSE <+ 1.T3)»8
Fl

9.8 Functions

86 The MDL Programming Language

<DEFINE F2 (S A "AUX® (S1 .S))
<REPEAT MY-ACT ((PRD 1))
CCOND (<NOT CEMPTY? .51
CCOND (<NOT <TYPE? <1 .S1> FIX FLOATY>
CRETURN #FALSE (“"NON-NUMBER®) .AY)
(ELSE <SET PRD <* .PRD <1 .S1>»>)>
¢SET S1 <REST .S1>))
(ELSE <RETURN .PRDY)>>S$
F2

<F1 "(1 2) "(3 4)>%
14

<F1 *(T 2) *(3 4)>3
#FALSE (*"MNON-NUMBER")

9.9. Areument List Summary

The following is a listing of all the various tokens which can appear in the argument LIST of a
FUNCTION, in the order in which they can occur. Short descriptions of their effects are included.
All of them are aptional -- that is, any of them (in any position) can be left out or included -- but

the order in which they appear must be that of this list. "QUOTEd ATON", "matching ob ject”, and "2
list” are defined below,

(1) "BIND"

must be followed by an ATOM. It binds that ATOM to the ENVIRONMENT which existed
when the FUNCTION was applied.

(2) ATOMs and QUOTEd ATOMs (any number)

are required arguments. QUOTEd ATOMs are bound to the matching object. ATOHs are

bound to EVAL of the matching object in the ENVIRONMENT existing when the FUNCTION
was applied.

(3) "OPTIONAL" or "OP1" (they're equivalent)

is followed by any number of ATOMs, QUOTEd ATOMs, or 2-lists, These are optional
arguments. If a matching object exists, an ATON - either standing alone or the first
element of a 2-list - is bound to EVAL of the object, performed in the ENVIRONMENT
existing when the FUNCTION was applied. A QUOTEd ATOM - alone or in a 2-list - is
bound to the matching object itself. If no such object exists, ATOMs and QUOTEd ATOMs
arc left unbound, and the first element of each 2.Jist is bound to EVAL of the
corresponding second element. (This EVAL is done in the new ENVIRONMENT of the
Function as it is being constructed.)

98-99 Functions

The MDL Programming Langunage 87

(4) "ARGS" (and not "TUPLE")
must be followed by an ATOM. The ATOM is bound to a LIST of all the remaining

arguments, unevaluated. (If there are no more arguments, the LIST is empty.) This

LIST is actually a REST of the FORM applying the FUNCTION. If "ARGS" appears in the
argument LIST, "TUPLE" should not appear.

(4) "TUPLE" (and not "ARGS")
musl be followed by an ATOM. The ATOM is bound to a TUPLE ("VECTOR on the control
stack”) of all the remaining arguments, evaluated in the environment existing when the

FUNCTION was applied. (If no arguments remain, the TUPLE is empty.) If "TUPLE®
appears in the argument LIST, "ARGS" should not appear.

(5) "AUX™ or "EXTRA" (they're equivalent)

ts Followed hy any number of ATOMs or 2-lists. These are auxiliary variables, bound
away from the previons environment for the use of this Function. ATOMs are bound in
the EHVIRONMENT of the Function, but they are unassigned: the first element of each 2-
list is both bound and assigned to EVAL of the corresponding second element. (This
EVAL is done in the new ENVIRONMENT of the Function as it is being constructed.)

(6) “"NAME" or “ACT* (they're equivalent)

must be followed by an ATOM. The ATOM is bound to the ACTIVATION of the current
evaluation of the Function,

ALSO -- in place of sections (2) (3) and (4), you can have

(2-3-4) "CALL"

which must be followed by an ATOM. The ATOM is bound to the FORM which caused
application of this FUNCTION.

The special terms used above mean this:

"QUOTEd ATOM" -- a two-clement FORM whose first element is the ATOM QUOTE, and whose second
element is any ATOM. (Can be typed -- and will be PRINTed - as 'afom.)

“Matching object” <« that clement of a FORM whose position in the FORM matches the position of a
required or aptional argument in an argument LIST,

"2-0ist” - a two-element LIST whose first element is an ATOM (or QUOTEd ATOM; see below) and whose
second clement can he anything but a SEGMENT. EVAL of the second element is assigned to a new
binding of the [irst clement (the ATOM) as the "value by default” in "OPTIONAL* or the “initial value®
in "AUX". In the case of "OPTIONAL", the first element of a 2-list can be a QUOTEd ATOM; in this

case, an argument which is supplied is not EVALed, but if it is not supplied the second element of
the LIST is EVALed and assigned 1o the ATOM.

9.9 Functions

88 The MDL Programming Language

9.10. APPLY [1]

Occasionally there is a valid reason for the first element of a FORM not to be an ATOM. For example,
the object 1o be applied 1o arguments may be chosen at run time, or it may depend on the
arguments in some way, While EVAL is perfectly happy in this case to EVALuate the first element
and go on from there, the eompiler (Lebling, 1979) can generate more efficient code if it knows
whether the result of the evaluation will (1) always be of TYPE FIX, (2) always be an applicable non-
FIX objeet that evaluates all its arguments, or (3) neither. The easiest way to tell the compiler if (1)
or (2} is true is 1o use the ATOH NTI (scction 7.1.2) or PUT (section 7.1.4) in case (1) or APPLY in case (2)

as the first element of the FORM. (Note: case (1) can compile into in-line code, but case (2) compiles
into a fully mediated call into the interpreter.)

CAPPLY object arg-l ... arg-N>»

evaluares object and all the arg-is and then applies the former to all the latter. An error occurs if

object evaluates to something not applicable, or to an FSUBR, or to a FUNCTION (or user Subroutine -
chapter 19) with "ARGS" or "CALL" or QUOTEJ arguments.

Example:
CAPPLY <NTH .ANALYZERS

CLENGTH <MEMQ <TYPE .ARG> .ARGTYPES>»>
+ARG?>

calls a Function to analyze .ARG. Which function is called depends on the TYPE of the argument;
this represents the idea of a dispatch rable.

9.11. CLOSURE

{CLOSURE funclion al ... aN>

where function is a FUNCTION, and 2/ through aV are any number of ATOMs, returns an object of
TYPE CLOSURE. This can be applied like any other function, but, whenever it is applied, the ATOMs
given in the call 10 CLOSURE are first bound to the VALUEs they had when the CLOSURE was
generated, then the function is applied as normal. This is a "poor man's funarg”,

A CLOSURE is useful when a FUNCTION must have state information remembered between calls to it,
especially in these two cases: when the LVALs of external state ATOMs might be compromised by other
programs, or when more than one distinct sequence of calls are active concurrently. Example of the
latter: each object of a structured NEWTYPE might have an associated CLOSURE that coughs up one
element at a time, remembering between calls how far it got. Often only one ATOM will be included

in the CLOSURE, with a value in the CLOSURE that is a structure containing all the relevant
information,

9.10 - 9.11 Functions

R—-—_ "‘1

The MDL Programming Language 89

Chapter 10. Looping

10.1. PROG and REPEAT [1]

PROG and REPEAT arc almost identical FSUBRs which make it possible to vary the order of EVALuation
arbitrarily -- that is. to have "jumps”. The syntax of PROG ("program”) is

SPROG acl:alom auxiist body)

where

acl is an optional ATOM, wlhich is bound to the ACTIVATION of the PROG.

Aux is a LIST which laoks exactly like that part of a FUNCTION's argument LIST which follows

alm "AUX", and serves exactly the same purpose. It is not optional. If you need no temporary
variables or "ACT", make it ().

body is a non-zero number of arbitrary MDL expressions.

The syntax of REPEAT is identical, except that, of course, REPEAT is the first element of the FORM,
not PROG.

10.1.1. Basic EVALuation [I]

Upon entering a PROG, an ACTIVATION is always generated. [f there is an ATOM in the right place,
the ACTIVATION is also bound to that ATOM, The variables in the aux (if any) are then bound as
indicated in the sux. All of the expressions in body are then EVALuated in their order of occurrence.

If nothing untoward happens, you leave the PROG upon evaluating the last expression in body,
returning the value of that last expression,

PROG thus provides a way to package together a group of things you wish to do, in a somewhat more

limited way than can be done with a FUNCTION. But PROGs are generally used for their other
properties.

10 - 10.1.1 Looping

90 The MDL Programming Language

REPEAT acts in all ways exactly like a PROG whose last expression is CAGAINY. The only way to leave
a REPEAT is to explicitly use RETURN (or GO with a TAG ~ section 10.4).

10.1.2. AGATN and RETURN in PROG and REPEAT [I)

Within a PROG or RCPEAT, you always have a defined ACTIVATION, whether you bind it to an ATON
or not. [In faet the interpreter binds it to the ATOM LPROG\ !-INTERRUPTS ("last PROG™). The FSUBR
BIND is identical to PROG except that BIND does not bind that ATOM, so that AGAIN and RETURN with
no ACTIVATION argument will not refer to it. This feature could be useful within MACROs.]

If AGAIN is used with no arguments, it uses the ACTIVATION of the closest surrounding PROG or
REPEAT within the current function (an error occurs if there is none) and re-starts the PROG or
REPEAT without rebinding the aux variables, just the way it works in a FUNCTION. With an

argument. it can of course re-start any Function (PROG or REPEAT or FUNCTION) within which it is
emhbedded at run time.

As with AGAIN, if RETURN is given no ACTIVATION argument, it uses the ACTIVATION of the closest
surrounding PROG or REPEAT within the current function and causes that PROG or REPEAT to
terminate and return RETURN's first argument, If RETURN is given mo arguments, it causes the
closest surrounding PROG or REPEAT to return the ATOM T. Also like AGAIN, it can, with an
ACTIVATION argument, terminate any Function within which it is embedded at run time.

10.1.3. Examples (1]

Examples of the use of PROG arc difficult to find, since it is almost never necessary, and it slows
down the interpreter (chapter 24). PROG can be useful as a point of return from the middle of a
computation. or inside a COND (which see), but we won't exemplify these uses. Instead, what follows
is an example of a typically poor use of PROG which has been observed among Lisp (Moon, 1974)
programmers using MDL. Then, the same thing is done using REPEAT. In both cases, the example

FUNCTION just adds up all its arguments and returns the sum, (The SUBR GO is discussed in section
10.4.)

:"Lisp style®
¢DEFINE MY+ ("TUPLE®™ TUP)
CPROG (SUM)
{SET SUM 0>
LP {COND (<EMPTY? .TUP> <RETURN .5UM>)>

(SET SUM <+ .SUM <1 .TUP>>>
{SET TUP <{REST .TUP>>
<GO LP>>>

10.1.1 - 10.1.3 Looping

o

i,
4

——

The MDL Programming Language U]

;"MDL style”
CDEFINE MY+ ("TUPLE"™ TUP)
CREPEAT ((SUM 0))

<COND (<EMPTY? .TUP> <RETURN .SUM>)»
CSET SUM <+ .SUM <1 .TUP>>
<SET TUP <REST .TUP>>»>

Of course. neither of the above is optimal MDL code for this problem, since MY+ can be written
using SEGMENT evaluation as

CDEFINE MY+ ("TUPLE"™ TUP) <+ !.TUPY>

There are, of course, lots of problems which can't be handled so simply, and lots of uses for REPEAT.

10.2. MAPF and MAPR: Basies [I1)

MAPF ("map First™) and MAPR ("map rest”) are two SUBRs which take care of a majority of cases which
require loops over data. The basic idea is the following:

Suppose you have a LIST (or other structure) of data, and you want to apply a particular function
to each element. That is exactly what MAPF does: you give it the function and the structure, and it
applies the function 1o each element of the structure, starting with the first.

On the. other hand, suppose you want to change each element of a structure according to a
particular algorithm. This can be done only with great pain using MAPF, since you don't have easy
access 1o the structure inside the functiont you have only the structure's elements. MAPR solves the
problem by applying a function to RESTs of a structure: first to <REST structure 0>, then to
SREST sfructure 1>, ete. Thus, the function can change the structure by changing i1s argument,
for example, by a <PUT argument 1 something?. Tt can even PUT a new element farther down the
structure, which will be seen by the function on subsequent applications,

Now suppose, in addition 1o applying a function to a structure, you want ta record the results - the
values returned by the function - in another structure. Both MAPF and MAPR can do this: they both
take an additional function as an argument, and, when the looping is over, apply the additional
function 1o all the results, and then reten the result of that application. Thus, if the additional

function is ,LIST, you get a LIST of the previous results: if it is ,VECTOR, you get a VECTOR of
results: ete.

Fimally, it might be the case that you really want to loop a function over more than one structure
simultaneously. For instance, consider creating a LIST whose elements are the element-by-element
sum of the contents of two other LISTs. Both MAPF and MAPR allow thisi you can, in fact, give each
of them any number of structures full of arguments for your looping function.

10.1.3 - 10,2 Looping

92 The MDL Programming Language

This was all mentioncd because MAPF and MAPR appear to be complex when seen baldly, due to the

fact that the argument descriptions must take into account the general case. Simpler, degenerate
cases are usually the ones used.

10.2.1. MAPF [I]
{MAPF finalf loopl sl s2 ..., sN>
where (after argument evaluation)
finalf is something applicable that evaluates all its arguments, or a FALSE;

loopf is samething applicable 1o N arguments that evaluates all its arguments; and
s through sN are structured ob jects (any TYPE)

does the following:

(1) First, it applics loopf 1o N arguments: the first element of each of the structures. Then it
RESTs each of the structures, and does the application again, looping until any of the structures
runs out of elements, Each of the values returned by locpf is recorded in a TUPLE.

(2) Then. it applics finalf to all the recorded values simultaneously, and returns the result of that
application, If finalf is a FALSE, the recorded values are "thrown away” (actually never recorded

in the first place) and the MAPF returns only the last value returned by loopf. If any of the si

structures is cmpty, so that /eopf is never invoked, finalf is applied to no arguments; if finalf is a
FALSC, MAPF returns #FALSE ().

10.2.2. MAPR [1]

{MAPR linall lcopl sl 32 ... shN?

acts just like MAPF, but, instead of applying loopf to NTHs of the structures - that is, <NTH s/ 13,
<NTH s/ 2>, cic. -~ it applics it to RESTs of the structures - that is, <REST s 0>, <REST s/ 15, etc

10.2.3. Examples [1)

Make the clement-wise sum of two LISTs:

(MAPF ,LIST .+ *(1 2 3 4) '(10 11 12 13)>%
(11 13 15 17)

10.2 - 10.2.3 Looping

.' The MDL Programming Language 93

'* Change a UVECTOR to contain double its values:
" CSET UV '1[5 6 7 8 9]>8
ﬁ I[56 78 9]
: <MAPR <>
g“ #FUNCTION ((L) <PUT .L 1 €= <1 .L» 2>3)
NS
{18!}
| UVS

'[10 12 14 16 18!]

Create a STRING lrom CIIARACTERs:

[
I CMAPF ,STRING 1 '[“MODELING" “DEVELOPMENT™ "LIBRARY"]>S

HHDLI‘I
| Sum the squares of the elements of a UVECTOR:
(MAPF .+ #FUNCTION ((N) <* .N N2) VI 4058
£9
| A parallel assignment FUNCTION (Note that the arguments to MAPF are of different lengths.):
CDEFINF PSET ("TUPLE"™ TUP)
_ {MAPF ¢»
{I JSET
I LTUP
CREST .TUP </ <LENGTH .TUP> 2)>»>§
PSET
H <PSET AB C 1 2 38
J
AS
1
| B3
b4
.C§
3

Note: it is casy to forget that finalf must evaluate its arguments, which precludes the use of an

FSUBR. It is primarily for this reason that the SUBRs AND? and OR? were invented, As an example,
the predicate =7 could have been defined this way:

10.2.3 Looping

“ The MDL Programming Language

CDEFINE =7 (A B)
(COND (CMONAD? .A> <==7 .A .B))
(CAND <NOT <MONAD? .B))
<==7 CTYPE ,A> <TYPE .B>>
<==7 CLENGTH .A> CLENGTH .B>>>
CHAPF L AND? ,=7 .A .BY)>>

[By the way, the following shows liow to construct a value that has the saine TYPE as an argument.

<DEFINE MAP=NOT (S)
CCOND (<MEMQ <PRIMTYPE .S> '"!I[LIST VECTOR UVECTOR STRING]>
CCHTYPE <MAPF ,<{PRIMTYPE .S>» ,NOT .S5>
CTYPE .5»>)»

It works hecause the ATOMs that name the common STRUCTURED PRIMTYPEs (LIST, VECTOR,
UVECTOR and STRING) have as GVALs the corresponding SUBRs to build objects of those TYPEs.)

10.3. More on MAPF and MAPR

CLEE= S

10.3.1, HAPRE

MAPRET is a SUBR that enables the foopf being used in a MAPR or MAPF (and lexically within it, that is,
not separated from it by a function call) to return from zero to any number of values as opposed to
Just one. For example, suppose a MAPF of the following form is used:

{MAPF ,LIST <FUNCTION (E) ...> ...>

Now suppose that the programmer wants to add no elements to the final LIST on some calls to the
FUNCTION and add many on other calls to the FUNCTION, To accomplish this, the FUNCTION simply
calls MAPRET with the clements it wants added to the LIST. More generally, MAPRET causes its
arguments to he added to the final TUPLE of arguments to which the finalf will be applied.

Warning: MAPRET is guaranteed to work only if it is called from an explicit FUNCTION which is the
second argument 1o a MAPF or MAPR. In other words, the second argument to MAPF or MAPR must be
FFUNCTION (...) or <FUNCTION ...> if MAPRET is to be used.

Example: the following returns a LIST of all the ATOMs in an OBLIST (chapter 15}

<DEFINE ATOMS (0OB)

<HAPF ,LIST
{FUNCTION (BKT) <MAPRET !.BKT>>

LOB>>

10.2.3 - 10.3.1 Looping

The MDL Programming Language 95

10.3.2. MAPSTOP

MAPSTOR is the same as MAPRET, except that, after adding its arguments, if any, to the final TUPLE,
it forces the application of finalf 10 occur, whether or not the structured objects have run out of
elements, Example: the following copies the first ten (or all) elements of its argument into a LIST:

CDEFINE FIRST-TEN (STRUC "AUX* (I 10))
{MAPF ,LIST
CFUNCTION (E)
CCOND (<07 <SET I <= .I 1>>> <MAPSTOP .E>)>
.E>
STRUC >

10.3.3. HAPLEAVE

MAPLEAVL is analagous to RETURN, except that it works in (lexically within) MAPF or MAPR instead of
PROG or REPEAT. It flushes the aceumulated TUPLE of results and returns its argument (optional, T
by default) as the value of the MAPF or MAPR. (It finds the MAPF/R that should return in the current

binding of the ATOM LMAP\ !-INTERRUPTS (“last map").) Example: the following finds and returns
the first non-zero element of its argument, or #FALSE () if there is none:

<DEFINE FIRST=NO (STRUC)
CMAPE ¢
<FUNCTION (X)

CCOND (<N==? .X 0> <MAPLEAVE .X>)»>
STRUC>)

10.3.4. Only two arguments

If MAPF or MAPR is given only twe arguments, the iteration funetion loopf is applied to no arguments
each fime. and the Ioaping continues indefinitely until a MAPLEAVE or MAPSTOP is invoked.
Example: the following returns a LIST of the integers from one less than its argument to zero.

<DEFINE LNUM (N)
CMAPF ,LIST
CFUNCTION ()
<COND (<07 CSET N <= .N 1>>> <HAPSTOP 0>)
(ELSE .N)»>>

One principle use of this form of MAPF/R involves processing input characters, in cases where you

don’t know lhiow many characters are going to arrive. The example below demonstrates this, using
SUBRs which are mare fully explained in chapter Il. Another example can be found in chapter 13.

10.3.2 - 1034 Looping

96 The MDL Programming Language

Example: the following FUNCTION reads characters from the current input channel until an § (ESC)
is read, and then returns what was read as one STRING. (The SUBR READCHR reads one character from

the input channel and returns it. NEXTCHR returns the next CHARACTER which READCHR will return —
chapter i1.)

<DEFINE RDSTR ()
CMAPF ,STRING

CFUNCTION () <COND (<NOT <==7 <NEXTCHR) <ASCII 27)>>
CREADCHR)
(T
CMAPSTOPY)3>3)$

RDSTR

¢PROG () <READCHR> ;"Flush the ESC ending this input.®
CRDSTR>>S
ABCIZ23<+ 3 455"ABC123<{+ 3 4)"

10.3.5. STACKFORM

The FSUBR STACKFORM is archaie, due to improvements in the implementation of MAPF/R, and it
should not be used in new prograis,

CSTACKFORM funclion arg pred?
i5 exactly equivalent to

CHAPRF funclion
(FUNCTION () <COND (pred arg) (T <MAPSTOP»)>>>

In fact MAPF/R is more powerful, because MAPRET, MAPSTOP, and MAPLEAVE provide flexibility not
available with STACKFORM.

10.4. GO and TAG

GO is provided in MDL for people who can't recover from a youthful experience with Basic, Fortran,
PL/T, ete. The SUBRs previously described in this chapter are much more tasteful for making good,
clean, “structured” programs, GO just bollixes things.

GO is a SUBR which allows you to break the normal order of evaluation and re-start just before any
top-level expression in a PROG or REPEAT. It can take two TYPEs of arguments: ATOM or TAG.

10.3.4 - 10.4 Looping

i

The MDL Programming Language 97

Given an ATOM, GO searches the body of the immediately surrounding PROG or REPEAT within the
current Function, starting after aux, for an oceurrence of that ATOM at the top level of body. (This

search is effectively a MCMO.) If it doesn't find the ATOM, an error occurs. If it does, evaluation is
resumed at the expression t'nlrnwiug the ATOM.

The SUBR TAG gencerates and returns objeets of TYPE TAG. This SUBR takes one argument: an ATOM
which would be a legal argument for a 60. An object of TYPE TAG contains sufficient information
to allow you 1o GO ta any top.level position in a PROG or REPEAT from within any funetion called
inside the PROG or REPEAT. GO with a TAG is vaguely like AGAIN with an ACTIVATION; it allows you
to “go back” te the middle of any PROG or REPEAT which called you, Also like ACTIVATIONs. TAGs

inte a PROG or RCPCAT can no longer be used after the PROG or REPEAT has returned. LEGAL? can be
used to see if a TAG is still valid,

10.5. Looping versus Recursion

Since any program in MDL can be ealled reciirsively, champions of "pure Lisp” (Moon, 1974) or
somesuch may be tempted to implement any repefitive algorithm using recursion. The advantage
of the lonping techniques deseribed in this chapter over recursion is that the overhead of calls is
eliminated. However, a long program (say, bigger than half a printed page) may be more difficult
to write itcratively than recursively and hence more difficult to maintain. A program whose
repetition is controlled by a structured oh jeet (for example, 'wali:ing a tree” to visit each monad in

the ob ject) often should use looping for covering one “level” of the structure and recursion to change
“levels”.

10.4 - 10.5 Looping

98 The MDL Programming Language

Chapter 11. Input/Output

The MDL interpreter can transmit information between an object in MDL and an external device
in three ways. Historically, the first way was to convert an object into a string of characters, or
vice versa. The transformation is nearly one-to-one (although some MDL objects, for example

TUPLEs. cannot be input in this way) and is similar in style to Fortran's formatted 1/O. It is what
READ and PRINT do, and it is the normal method for terminal 1JO.

The second way is used for the contents of MDL objects rather than the objects themselves. Here

an image of numbers or characters within an object is transmitted, similar in style to Fortran's
unformatted 1/0.

The third way is to dump an object in a clever format so that it can be reproduced exactly when
input the next time, Exact reproduction means that any sharing between structures or self-
reference is preserved: only the garbage collector itself can do 1/O in this way.

1L.1. Conversion 1/0

All conversion-1/O SUBRs in MDL take an optional argument which directs their attention to a
specific 1/0 channel. This section will describe SUBRs without their optional arguments. In this
situation, they all vefer 10 a particular channel by default, initially the terminal running the MDL.
When given an optional argument, that argument follows any arguments indicated here. Some of

these SUBRs also have additional optional arguments, relevant to conversion, discussion of which will
be deferred until later,

HLLL Input

All of the following input Subroutines, when directed at a terminal, hang until $ (ESC) is typed and
allow normal use of rubout, “D, “L and *@.

I - 1LL] Input/Output

e o

The MDL Programming Language 99

1LLLL READ

<READ?

This returns the entire MDL object whose character representation is next in the input stream.
Successive CRLADDS return successive objects. This is precisely the SUBR READ mentioned in chapter
2. See also sections 1.3, 15.7.1, and 17.1.3 for optional arguments.
1LLLE2. READCIR

<READCHR>

("read character”) returns the next CHARACTER in the input stream. Successive <READCHR)s return
successive CHARACTERs.

1L.1.1.3. NEXTCHR

CNEXTCHR>

("next character”) returns the CHARACTER which READCHR will return the next time READCHR is called.
Multiple <NEXTCHR>s, with no input operations between them, all return the same thing.

1LL2, Outpur

If an object 1o be output requires (or can tolerate) separators within it (for example, between the
elements in a structured object or after the TYPE name in "# notation”), these conversion-output
SUBRs will use a carriage-return/line-feed separator to prevent overflowing a line. Overflow is
detected in advance from elements of the CHANNEL in use (section 11.2.8).

ILL2.1. PRINT
CPRINT any>

This outputs, in order,
(1) a carriage-return line-feed,

(2) the character representation of EVAL of its argument (PRINT is a SUBR), and
(3) a space

and then returns EVAL of its argument. This is precisely the SUBR PRINT mentioned in chapter 2.

11.1.2.2. PRINI]
<PRINLY any>

outputs just the representation of, and returns, EVAL of any.

ILLLL - 11.1.2.2 Input/Output

100 The MDL Programming Language

11.1.2.3. PRINC
CPRINC any2
("print characters”) acts exactly like PRINI, except that '
(1) if its argument is a STRING or a CHARACTER, it suppresses the surrounding "s or initial !\
respectively: or,

(2) if irs argument is an ATOM, it suppresses any \s or OBLIST trailers (chapter 15) which would
otherwise bie necessary.

If PRINC's argument is a structure containing STRINGs, CHARACTERs, or ATOMs, the service mentioned
will be done for all of them, Ditto for the ATOM used to name the TYPE in “# notation”,

11.1.2.4. TERPRI

<TERPRI>
("terminate printing”) outputs a carriage-return line-feed and then returns #FFALSE ()!
11.1.2.5. CRLF

<CRLF>
("carriage-return line-feed”) outputs a carriage-return line-feed and then returns T.
11.1.2.6. FLATSIZE

CFLATSIZE any maxidix radix:dixd

docs not actually cause any output to occur and does not take a CHANNEL argument. Instead, it
compares mav with the number of characters PRIN] would take to print any. If max is less than the

number of characters needed (including the case where any is self-referencing), FLATSIZE returns
#FALSE (): otherwise, it returns the number of characters needed to PRIN1 any. radix (optional, ten
by default) is uscd for converting any FIXes that oceur.

This SUBR is especially useful in conjunction with (section 11.2.8) those elements of a CHANNEL
which specify the number of characters per output line and the current position on an output line.

iI.1.23 - 11126 Input/Output

—

The MDL Programming Language 101

11.2. CHANNEL (thie TYPE)

1/0 channels are dynamically assigned in MDL, and are represented by an object of TYPE CHANNEL,
which is of PRIMIYPE VECTOR. The format of a CHANNEL will be explained later, in section
1L.2.8. First, how to generate and use them.

11.2.1. OPEN
COPCN mode file-spec?
or
COPEN mode namel name2 device dir?

OPEN is a SUDR which creates and returns a CHANNEL. All its arguments must be of TYPE STRING,
and all are optional. The preceding statement is false when the device is "INT" or "NET"; see
sections 119 and 1L10. If the attempted opening of an operating-system 1/O channel fails, OPEN
returns #FALSE (reasomstring file-specsiring stalus:fix), where the reason and the status are
supplied by the operating system, and the file-spec is the standard name of the file (after any name
transformations by the operating system) that MDL was trying to open.

The choice of mode is usually determined by which SUBRs will be used on the CHANNEL, and whether

or not the device is a terminal. The following table tells which SUBRs can be used with which modes,
where OK indicates an allowed use:

“READ"™ "PRINT"™ "READB"™ "PRINTB" mode / SUBRs

"PRINTO"
OK Ok READ READCHR NEXTCHR READSTRING FILECOPY FILE~LENGTH
LOAD
0K OK* PRINT PRIN1 PRINC 1IMAGE CRLF TERPRI FILECOPY
PRINTSTRING BUFOUT NETS RENAME
OK READB GC-READ
OK PRINTB GC-DUMP
0K OK OK ACCESS
OK OK 0K Ok RESET
0K Ok ECHOPAIR
OK TTYECHO TYI

* PRINTing (or PRINling) an RSUBR (chapter 19) on a "PRINTB* or "PRINTO" CHANNEL has special
effects,

"PRINTB" differs From "PRINTO" in that the latter mode is used to update a *DSK" file without

copying it. "READB" and "PRINTB" are not used with terminals. “READ" is the mode used by
default,

1.2 - 1121 Input/Output

102 The MDL Programming Language

The next one 1o four arguments to OPEN specify the file involved. If only one STRING is used, it
can contain the entire speeification, according to standard operating-system syntax. Otherwise, the
string(s) are interpreted as follows:

rnamel is the First file name, that part to the left of the space (in the ITS version) or period (in the

Tenex and Tops-20 versions). The name used by default is <VALUE NM1>, if any, otherwise
"INPUT",

name2 is the seennd file name, that part to the right of the space (ITS) or period (Tenex and Tops-
20). The name used by defanlt is <VALUE NM2>, if any. otherwise ">* (ITS) or "MUD* and highest
version number (Tenex) or generation number (Tops-20).

device is the device name. The name used by default is {VALUE DEV>», if any, otherwise "DSK".
(Devices ahout which MDL has no special knowledge are assumed 1o behave like "DSK".)

dir is the disk-directory name. The name used by default is <VALUE SNM>», if any, otherwise the
“working-dircctory” name as defined by the operating system.

Examples:
COPEN "PRINT™ "TPL:"> opens a conversion-output CHANNEL to the TPL device.
COPEN "PRINT™ "DUMHY"™ "NAHES" "TPL") does the same,

COPEN "PRINT"™ "TPL"> opens a CHANNEL to the file DSK:TPL > (ITS version) or DSK:TPL.MUD
(Tenex and Tops-20 versions).

<OPEN "READ" "FOO" ">" "DSK" “GUEST"> opens a conversion-input CHANNEL to the given file.

COPEN "READ"™ "GUEST;FOO"> does the same in the ITS version.

11.2.2. OPCH-NR

OPEN-NR is the same as OPEN, except that the date and time of last reference of the opened file are
not changed,

11.2.3. CHANNEL (the SUBR)

CHANNEL is called exactly like OPEN, Lut it always returins an unopened CHANNEL, which can later be
opened by RESET (below) just as if it had once been open.

.21 - 1123 Input/Output

The MDL Programming Language 108

11.2.4. FILE-EXTSTS?

FILE-EXISTS7? tests for the existence of a file without creating a CHANNEL, which occupies about a
hundred machine words of storage. It takes file-name arguments just like OPEN (but no mode
argument) and returns cither T or #FALSE (reason:string statusifix), where the reason and the staltus
are supplied by the operating system. The date and time of last reference of the file are not
changed.

11.2.5. CLOSE

CCLOSE channal>

closes channol and returns its arguwment, with its "state” changed to “closed”, If channe! is for output,
all buffered output is written out first. No harm is done if channel is already CLOSEd.

11.2.6. CHANLIST

CCHANLIST?

returns a LIST whose elements are all the currently open CHANNELs. The first two elements are
usually ,INCHAN and ,QUTCHAN (see below). A CHANNEL not referenced by anything except
CCHANLIST> will be CLOSEW during garbage collection.

11,27, INCHAN and OUTCHAN

The channel used by default for input SUBRs is the local value of the ATOM INCHAN. The channel
used by default for output SUBRs is the local value of the ATOM QUTCHAN.

You can direet 1/0 to a CIANNCL by SETting INCHAN or OUTCHAN (remembering their old values
somewhere), or by giving the SUBR you wish to use an argument of TYPE CHANNEL. (These actually
have the same effect, because READ binds INCHAN to an explicit argument, and PRINT binds OUTCHAN

similarly. Thus the CHANNEL being used is available for READ macros (section 17.1) and PRINTTYPEs
(section 6.4.4))

By the way, a good trick for playing with INCHAN and OUTCHAN within a function is to use the ATOMs
INCHAN and OUTCHAN as "AUX" variables, re-binding their local values to the CHANNEL you want.
When you leave, of course, the old LVALs are restored (which is the whole point). The ATOMs must be
declared SPECIAL (chapter 14) for this trick to compile correctly,

INCHAN and QUTCHAN also have global valucs, initially the CHANNELs directed at the terminal running
MDL. Initially, INCHAN's and OUTCHAN's local and global values are the same.

11.24 - 11.2.7 Input/Output

104 The MDL Programming Language

1L2.8 Contents of CHANNELs

The contents of an object of TYPE CHANNEL are referred to by the I/O SUBRs each time such a SUBR
is used. I you change the contents of a CHANNEL (for example, with PUT), the next use of that
CHANNEL will be changed appropriately. Some elements of CHANNELs, however, should be played with
seldom, if ever, and only at your peril. These are marked below with an ¢ (asterisk). Caveat user,

There follows a table of the contents of a CHANNEL, the TYPE of each element, and an interpretation.
The format used is the following:

element-number: { vpe interprelation
11.2.8.1. Output CHAMNE Ls

The contents of a CHANNEL used for output are as follows:

-1: LIST transeript channcl(s) (see below)

0: varies device-dependent information

o I: FIX channel number (ITS) or [FN (Tenex and Tops-20), 0 for internal or closed
« 2: STRING mode

o 3: STRING First File name argument

& 4: STRING second file name argument
* 5: STRING device name argument

e 6: STRING directory name argument

e 7: STRING real First file name

¢ 8: STRING real second file name

« 9: STRING real device name

«10: STRING real directory name

ll: FIX various status hits

el2: FIX PDP-10 instruction used to do one 1/0 operation
13: FIX number of characters per line of output
I4: FIX current character position on a line

15: FIX numher of lines per page
16: FIX current line number on a page
17: FIX access pointer for file-oriented devices
18: FIX radix for FIX conversion
19: FIX sink for an internal CHANNEL

N.B.: The clements of a CHANNEL below number | are usually invisible but are obtainable via <NTH
CTOP channel> fix>, for some appropriate fi,

The transcript-channcls slot has this meaning: if this slot contains a LIST of CHANNELs, then
anything input or output on the original CHANNEL is output on these CHANNELs, Caution: do not use
a CHANNEL as its own transcript channel: you probably won't live to tell about it.

11.2.8 - 11.2.8.1 Input/Output

The MDL Programming Language 105

11.2.8.2. Input CHANNELS

The contents of the elements up 1o number 12 of a CHANNEL used for input are the same as that for

output. The remaining elements are as follows ((same) indicates that the use is the same as that for
output):

13: varies oh ject evaluated when end of file is reached
el4: FIX one "look-ahead” character, used by READ

el5: FIX PDP-10 instruction executed waiting for input
16: LIST fucuc of buffers for input from a terminal
§7: FIX access pointer for file-oriented devices (same)
I8: FIX radix for FIX conversion (same)

19: STRING buffer for input or source for internal CHANNEL

1L.3. End-of-File "Routine”

As mentinned above, an explicit CHANNEL is the first optional argument of all SUBRs used for
conversion /0. The second optional argument for conversion-input SUBRs is an “end-of-file
routine” -« that is, something for the input SUBR to EVAL and return, if it reaches the end of the file
it is reading. A rypical end-offile argument is a QUOTEd FORM which applies a function of yours.

The value of this argument used by default is a call to ERROR. Note: the CHANNEL has been CLOSEd
by the time this argument is evaluated.

Example: the following FUNCTION counts the occurrences of a character in a file, according to its
arguments. The file names, device, and directory are optional, with the usual names used by default,

COCTINE COUNT-CHAR
(CHAR "TUPLE"™ FILE "AUX™ (CNT 0) (CHN <OPEN "READ"™ !.FILE>))
¢COND (.CHN +"If CHN is FALSE, bad OPEN: return the FALSE

50 result can be tested by another FUNCTION.®
{REPEAT ()

CAND <==7 _CHAR <READCHR .CHN '<RETURN3>>
{SET CNT <+ 1 .CNT}>»>

1"Until EOF, keep reading and testing a character at a time."
.CNT ;"Then return the count.®)>>

11.2.82- 118 Input/Output

106 The MDL Programming Language

11.4. lmaged 1/O

IL4.1. Input
11.4.1.1. READB

CREADB buifer:uvector-or-slorage channel eof:any?
The charnel wust he open in "READB" mode. READB will read as many 36-bit binary words as
necessary 1o [(ill the buffer (whose UTYPE must be of PRIMTYPE WORD), unless it hits the end of file,
READE returns the mmmber of words actually read, as a FIXed-point number. This will normally be
the length of the buffer, unless the end of [ile was read, in which case it will be less, and only the

beginning of buffer will have been filled (SUBSTRUC may help). An attempt to READB again, after

buffer is not filled, will evaluate the end-of-file routine eof, which is optional, a call to ERROR by
defaulr.

11.4.1.2. READSTRING

CREADSTRING buffer:siring channel stopdix-or-siring eof?
is the STRING analog to READB, where buffer and eof are as in READB, and channel is any input
CHANNEL (. INCHAN by defanlt). stop tells when to stop inputting: if a FIX, read this many

CHARACTERs (Fill up buffer by default): if a STRING, stop reading if any CHARACTER in this STRING is
read (don’t include this CHARACTER in final STRING),

11.4.2. Qutput
11.4.2.1, PRINTB
CPRINTR bufferuveclor-or-storage channel)

This call writes the entire contents of the buffer into the specified channel open in "PRINTB® or
"PRINTO" mode. Ii returns buffer,

11.4.2.2. PRINTSTRING
CPRINTSTRING buffer:string channel count:fix?

is analogous to READSTRING. It outputs buffer on channel, either the whole thing or the first count
characters. and returns the number of characters output.

11.4 - 11.4.2.2 Input/Output

The MDL Programming Language 107

11.4.2.3. IMAGE

LIMAGE fix channel®

is a rather special-purpose SUBR. Wlen any conversion-output routine outputs an ASCII control
character (with speeial exceptions like carriage-returns, line-feeds, ete.), it actually outputs two
characters: = (circumflex), followed by the upper-case character which has been control-shifted.
IMAGE, nn the nther hand. always outputs the real thing: that ASCII character whose ASCII 7-bit
code is fiv. It is guaranieed not to give any gratuitous line-feeds or such. channel is optional,

QUTCHAN by default, and its slots for current character position (number 14) and current line
number (16) are not updated. IMAGE returns fiy.

1L.5. Dumped /O

11.5.1, Outpur: GC-DUMP
SGC-DUMP any prinfbichannel-or-false

dumps any on priath in a clever format so that GC-READ (below) can reproduce any exactly, including

sharing. any cannot live on the control stack, nor can it be of PRINTYPE PROCESS or LOCD or ASOC
(which see). any is returned as a value.

If printh is a CHAHNEL, it miust be open in "PRINTB" or "PRINTO" mode. If printb is a FALSE,
GC-DUMP instead returns a UVECTOR (of UTYPE PRIMTYPE WORD) that contains what it would have

output on a CHANNEL. This UVECTOR can be PRINTBed anywhere you desire, but, if it is changed in

any way, GC-READ will not be able to input it. Probably the only reason to get it is to check its
length hefore outpur,

Except for the miniature garbage collection required, GC-DUMP is about twice as fast as PRINT, but
the amouni of external starage used is two or three times as much.

11L5.2, Input: GC=READ
CGC-RCAD readbxchannel eof:any

returns one ob ject From the channel, which must be open in "READB" mode. The file must have been
produccd by GC-DUMP. eof is optional. GC-READ is about ten times faster than READ.

11423 - 11.5.2 Input/Output

108 The MDL Programming Language

11.6. SAVE Files

The entire state of MDL can be saved away in a file for later restoration: this is done with the SUBRs
SAVE and RESTORE. This is a very different form of 1/O from any mentioned up to now; the file
used contains an actual image of your MDL address space and is net, in general, “legible” to other
MDL routines. RESTORFing a SAVE file is much faster than re-READing the ob jects it contains.

Sinee a SAVE file does not contain all extant MDL ob jects, only the impure and PURIFYed (section
22.9.2) ones. a change to the interpreter has the result of making all previous SAVE files unusable.
To prevent errors from arising from this, the interpreter has a release number, which is incremented
whenever changes are installed. The current release number is printed out on initially starting up
the program and is available as the GVAL of the ATOM MUDDLE, This release number is written out
as the very first part of cach SAVE file. IF RESTORE attempts to re-load a SAVE file whose release
number is nol the same as the interpreter being used, an error is produced. If desired, the release
number of a SAVE file can be obtained by deing a READ of that file. Only that initial READ will
work: the rest of the file is not ASCII

11.6.1. SAVE
SAVL file-spec:siring ge?lalse-or-any»

or
CSAVE namel name? device dir gc?false-or-any?

saves the enlire siate of your MDL away in the file specified by its arguments, and then returns
"SAVED". All STRING arguments are optional, with "MUDDLE", "SAVE", "DSK", and <VALUE SNM>
used by default. ge? is optional and, if supplied and of TYPE FALSE, causes no garbage collection to
occur before SAVEing. (FSAVE is an alias for SAVE that may be seen in old programs.)

If, after restoring. RESTORE Finds that <VALUE SNM> is the null STRING ("*), it will ask the operating
system for the name of the "working directory” and call SNAME with the result. This mechanism is
handy for “public” SAVE files, which should not point the user at a particular disk directory.

In the ITS version, the file is actually written with the name _MUDS_ > and renamed to the
argument(s) only when complete, to prevent losing a previous SAVE file if a crash occurs. In the
Tenex and Tops-20 versions, version/generation numbers provide the same safety.

Example:

1.6 - 11.6.1 Input/Qutput

The MDL Programming Language 19

¢DEFINC SAVE-IT ("OPTIONAL"
(FILE "("PUBLIC® “SAVE™ "DSK" "GUEST"))
Hnuxu IS"E‘ lI}]
{SETUP>
<COND (<=7 "SAVED" <SAVE !.FILE>> ;"See below."
CCLEANUP>
"Saved.")
(T
{CRLF>
CPRINC "Amazing program at your service.")
CCRLF>
CSTART=RUNNING>)»>»

11.6.2. RESTORE
CRESTORE file-spec?
or

CRESTORE namel nameZ2 device dird

replaces the entire current state of your MDL with that SAVEd in the file specified. All arguments
are optional, with the same values used by default as by SAVE.

RESTORE completely replaces the contents of the MDL, including the state of execution existing
when the SAVE was done and the state of all open I/O CHANNELs. If a file which was open when the

SAVE was done does not exist when the RESTORE is done, a message to that effect will appear on the
terminal.

A RESTORE never returns (unless it gets an error): it causes a SAVE done some time ago to return
again (this time with the value "RESTORED"), even if the SAVE was done in the midst of running a
program. In the latter case, the program will continue its execution upon RESTOREation.

1L.7. Other 1/0 Functions

[L.7.1. LOAD

CLOAD rnpul:channel look-up?

eventually returns “DONE". First, however, it READs and EVALs every MDL object in the file pointed

1L6.1 - 11.7.1 Input/Output

1o The MDL Programming Language

to by input. and then CLOSEs input. Any occurrences of rubout, @, “D, “L, ete., in the file are
given no special meaning: they are simply ATOM constituents.

look=up is optional, used to specify a LIST of OBLISTs for the READ, .OBLIST is used by default
(chapter 15).

11.7.2. FLOAD
{FLOAD file-spec look-up?
or

CFLOAD name! nameZ device dir look-up)

("File load™) acts just like LOAD, except that it takes arguments (with values used by default) like
OPEN, OPCNs the CHANNEL itself for reading, and CLOSEs the CHANNEL when done. /ook-up is optional,
as in LOAD. If the OPEN fails, an error occurs, giving the reason for failure,

11.7.3. SNAME

CSNAME steing> ("system name”, a hangover from ITS) is identical in effect with <SETG SNM slring?,

that is, it causes string 10 become the dir argument used by default by all SUBRs which want file
specifications (in the absence of a local value for SNM). SNAME returns its argument.

CSNAMED is identical in effect with <GVAL SNM>, that is, it returns the current dir used by default,

I11.7.4. ACCESS

CACCESS channel fixd

returns channel, after making the next character or binary word (depending on the mode of channel,
which should not he "PRINT") which will be input from or output to channe! the (fixs1)st one from

the beginning of the file. channe/ must be open 1o a randomly accessible device ("DSK*, "USR",
etc.). A fiv of 0 positions channel at the beginning of the file.

11.7.5. FILE-LENGTH

CFILE-LENGTH inputichannel

returns a FIX, the length of the file open on input. This information is supplied by the operating

IL7.1 - 1L7.5 Input/Output

The MDL Programming Language 111

systeni. and it may not be available, for example, with the "NET" device (section 11.10). If input's
mode is "RCAD", the length is in characters (rounded up to a multiple of five) if "READB", in

binary words. 10 ACCESS is applicd to inpuf and this length or more, then the next input operation
will detect the end of file,

11.7.6. FTLECOPY

¢FILECOPY inpulichannel oulpul:ichannel)

copies characters Trom inpuf to output until the end of file on input (thus closing input) and returns
the number of characters copied. Both arguments are optional, with .INCHAN and .OUTCHAN used by
default, respectively. The operation is essentially a READSTRING - PRINTSTRING loop. Neither
CHANNLL necd be freshly OPCNed, and output need not be immediately CLOSEd. Restriction: internally

a <FILE-LENGTH input’ is done, which must succeed: thus FILECOPY might lose if inpuf Is a "NET®
CHANNEL .

11.7.7. RESET
CRESET channel?

returns channel after “resetting” it. Resetting a CHANNEL is like OPENing it afresh, with only the file-
name slots preserved. For an input CHANNEL, this means emptying all input buffers and, if it is a
CHANNCL to a file, doing an ACCESS to 0 on it. For an output CHANNEL, this means returning to the
beginning of the file -- which implies, if the mode is not "PRINTO", destroying any output done to
it so far. If the opening fails (for example, if the mode slot of channel says input, and if the file

specified in its real-name slots does not exist), RESET (like OPEN) returns #FALSE (reason:slring file-
spec:string status:fix).

11.7.8, BUFOUT
CBUFQUT eulputichannagl
causes all internal MDL buffers for oulpul to be written out and returns its argument. This is

helpful if the operating system or MDL is flaky and you want to attempt to minimize your losses.
The output may be padded with up to four extra spaces, if outpul's mode is "PRINT",

11.7.9. RENAME

RENAME is for renaming and deleting files. It takes three kinds of arguments:

(a) rwo file names. in cither single- or multi-STRING format, separated by the ATOM TO,
(b) one file name in either format, or

125 - 1179 Input/Qutput

i |

112 The MUL Programming Language

{c) & CHANKEL and a file name in either format (only in the ITS version).

Omitted Dile-name parte use tie same values by default as does OPEN. If the operation is successful,
RENAME verurns |, otherwise s FALSE (reason:string slatusdfix) .

In case (a) the file specificd by the first argument is renamed to the second argument. For example:
CRENAME "FUO 3" TO "BAR™> ;"Rename FOO 3 to BAR >."
In case (b) the single file name specifies a file to be deleted. For example:

<RENAME "FOO FOO DSK:HARRY;*> :*Delete file FOO FOO from
HARRY's direclory.”

In case (¢) the CHARNEL must be opeu in cither "PRINT® or "PRINTB" mode, and a rename while open

For writing is attemptled. The real-name slots in the CHANNEL are updated to reflect any successful
change,

11.8. Terminal CHANHELs

MDL bebaves like the ITS version of the text editor Teco with respect to typing in carriage-return,
in that i autmmatically adds a line-feed. In order to type in a lone carriage-return, a carriage-return
followed by a rubiout must be typed. Also PRINT, PRINI and PRINC do not automatically add a line-
feed when a carriage-return is output. This enables overstriking on a terminal that lacks

backspacing capability, 1t also means that what goes on a terminal and what goes in a file are
maore likely 1o ook the spme.

In the ITS version, MDL's primary terminal output channel (usually ,OUTCHAN) is normally net in
“display” mnde, except when PRINCiug a STRING., Thus errors will rarely occur when a user is
typing in texi eontaining display-mode control codes,

In the ITS version, MDL can start up without a terminal, give control of the terminal away to an
inferior aperating-system process or get it back while running. Doing a RESET on either of the
terminal channels causes MDL to find out if it now has the terminal; if it does, the terminal is
reopencd and the current screen size and device parameters are updated. If it doesn't have the

terminal. an internal flag is set, causing output to the terminal to be ignored and attempted input
trom the tertinal 1o make the opera.ing-systein process go to sleep.

In the oS veo on, thee are some poyaliarities associated with pseudo-terminals (*STY" and *STn"
devices). If the CHANNIL given to REZDCHR is open in "READ® mode to a pseudo-terminal, and if no
input is aviilable, READCHR cotuens -4, TYPE FIX. If the CHANNEL given to READSTRING is open in

"READ" mude to a pseudo-teciinal, ceiding wno stops if and when no more characters are available,
that is, when READCHR woula return =1,

76 - 118 Input/Output

The MDL Programming Language 113

11.8.1. ECHOPAIR
CECHOPALR ferminal-inichanne! terminal-out:channel

returns its Tirst argument, aftor making the two CHANNELs "know about each other” so that rubout,
"8, T and Toon fecmnal-m will cause the appropriate output on ferminal-out.
11.8,2, TTY[CHO
CTTYECHO ternunal-inpulxchannal pred?
turns the ccheang of typed characters on channe! of f or on, according to whether or not pred is of

TYPE FALSL, and veturns channel. It is useful in conjunction with TYI (below) for a program that
wants to do character input and echoing in its own Fashion.

11.8.3. TYI

CTYL ferminalainpulichannel s
returns ane CHARACTER from channe! (optional, . INCHAN by default) when it is typed, rather than
after § (ESC) is 1yped. as is the case with READCHR. The following example echos input characters

as their ASCIL values, until a carriage-return is typed:

“REPEAT ((FOD <TTYECHO .INCHAN <>3))

CAND <==? 13 <(PRINC <ASCII <TYI .INCHAN>>»>
CRETURN <TTYECHO .INCHAN T»»>»

LY, Internal CHANEL Ls

If the device specified in an OPEN is “INT", a CHANNEL is created which does not refer to any 1/O
device outside MDL. 1In this case. the mode must be “READ" or "PRINT", and there is another
argument, which must be a function.

For a "READ" CHANKLL, the function must 1ake no arguments. Whenever a CHARACTER is desired
from this CHANNCL, the function will be applied 10 no arguments and must return a CHARACTER,
This will aceur ance per call 10 READCHR using this CHANNEL, and several times per call to READ. In
the ITS version, the function can signal that its "end-of-file" has been reached by returning <CHTYPE
*777777000003% CHARACTER> (-1 in left half, control-C in right), which is the standard ITS end-of-
file signal. In the Tenex and Tops-20 versions, the function should return either that or <CHTYPE
*777777000032% CUARACTIRY (- and contral-Z), the latter being their standard end-of-file signal.

1L.8.1-11.9 Input/Output

4 The MDL Programming Language

For a "PRINI" CHANHEL, the function must take one argument, which will be a CHARACTER. It can
dispose of its argument in any way it pleases, The value returned by the function is ignored.

Example: <OPCH "PRINT® "INT:® ,FCN> opens an internal output CHANNEL with ,FCN as its
character-gnhbler.

11.10. The "Hi 1* Device: the ARPA Networ
The "NET* deviee is different in many ways from conventional devices. In the ITS version, it is
the only device hesides "INT® that does not take all strings as its arguments to OPEN, and it must

take an additional optional argument o specify the byie size of the socket. The format of a call to
open a neiwerk socher is

TOPEN madestring local-sockeldix foreign-sockeldix "NET® foreign-hoslidix byle-sizedfix?

where:

made is the mode of the desired CHANNEL. This must be either "READ", "PRINT®, "READB" or
"PRINIB".

local-sockel is the local socket number, If it is =1, the operating system will generate a unique

local socket number, If it is not, in the Tenex and Tops-20 versions, the socket number is
"fork-relative”.

foreign cachet is the Toreign socket number. IF it is =1, this is an OPEN for “listening”.
foreign=has! is the forcign host number, IT it is an OPEN for listening, this argument is ignored.

byte-wwe is the optional byte size. For "READ® or "PRINT" this must be either 7 (used by
default) or . For "READB"™ or "PRINTB", it can be any integer from 1 to 36 (used by default).

In the Tenex and Tops.20 versions, OPEN can instead be given a STRING argument of the form
"NET:...". In this case the local socket number can be "directory-relative”,

Like any other OPEN, cither a CHARNEL or a FALSE is returned. Once open, a network CHANNEL can
be used like any other CHANNEL, except that FILE-LENGTH, ACCESS, RENAME, etc., cannot be done.
The "argument” irst-name, seeond-name, and directory-name slots in the CHANNEL are used for local
socket, forcign soclel, and foreign host (as specified in the call to OPEN), respectively. The
corresponding “real” slots are used somewhat differently. If a channel is OPENed with local socket
=1, the "real” first-name slot will contain the unique socket number generated by the operating
system. If a listening soclot is OPENed, the Toreign socket and host numbers of the answering host

are stored in the “real” secoad-name and direciory-name slots of the CHANNEL when the Request For
Connection is received.

1.9 - 11.10 Input/Qutput

The MDIL Programming Language 115
An interrapt (chapter 21) can be associated with a "NET"-device CHANNEL, so that a program will
know that the CHARNCL has or needs data, according to its mode,

There also exist several special-purpose SUBRs for the "NET" device. These are described next.

11101 NEXSTALT
CHETSTATE nelworhk:channe!»
returns a UVECTOR of three FIXes. The first is the state of the connection, the second is a code

specifying why a conncction was closed, and the last is the number of bits available on the

connection for input. The meaning of the state and close codes are installation-dependent and so
are nol included here,

11.10.2, KETACC

CHETACT nelworkxehanne!

Accepis a connection 10 a sochet that is apen for listening and returns its argument. It will return a
FALSE if the connection is in the wrong state.

IL10.3. NETS

CHELS networlxhannet

returns its argument, after forcing any system-buffered network output to be sent. ITS normally
does this every half second anyway, Tenex and Tops-20 do not do it unless and until NETS is called.

RETS is similar 1o BUFOUT for normmal CHANNELs, except that even operating-system buffers are
empticd now

IO - 11103 Input/Output

116 The MDL Programming Language

Chapter 12, Locatives

There is in MDL a Facility for obtaining and working directly with objects which roughly

correspond to “pointers” in assembly language or "lvals” in BCPL or PAL. In MDL, these are

generically Finown as Incatives (from “location”) and are of several TYPEs, as mentioned below.

Locatives exist to provide ef ficient means for altering structures: direct replacement as opposed 1o
re-copying.

Locatives always vefer tn elements in structures. It is not possible to obtain a locative to something

(For example. an A10M) which is net part of any structure. It is possible to obtain a locative to any

clement in any strugrired oliject in MDL -- even to associations (chapter 13) and to the values of
ATOMs, structurings which are norinally “hidden®,

In the following. the ab ject occupying the structured position to which you have obtained a locative
will be referred 1o as the ob ject pointed to by the locative,

12.1. Obraining Loecatives

12.L.L1. LLOC

CLLOC alom ened

Feturns a Iocative (TYPE LOCD,

“locative to iDentifier”) to the LVAL of atom in env. If atom is not
bound in en .

Alh criar nccurs. env is optional, with the current ENVIRONMENT used by default. The
locative veturued by 1LOC is independent of future re-bindings of atom. That 15, IN (s¢e below) of

that lecative will veturn ihe same thing even if atom is re-bound 1o something else; SETLOC (see
below) wili uffeet ouly that particular binding of atom,

Since bindings ape kept on a stack (tra la), any attempt to use a Jocative 1o an LVAL which has

become unbound will fereh up an error. (It breaks Just like a TUPLE....) LEGAL? cam, once again,

be used 1o see if a LOCD is valid. Caution: ¢SET A <LLOC ASS creates a self-reference and can make
PRINT very unhappy.

12 - 12.1.] Locatives

The MDL Programming Language 117

12.1.2. GLOC

{GLOC alom pred>

returns a locative (1YPE LOCD) to the GVAL of afom. If atom has no GVAL slot, an error occurs, unless
pred (optional) is yiven and not FALSE, in which case a slot is created (chapter 22). Caution: (SETG
A £GLOC A>> creates a self-reference and can make PRINT very unhappy.

12.1.3. AT

AL alructured Nitix-or-offsel)

returnns a locative 1o the Vih element in struelured. N is optional, 1 by default. The exact TYPE of
the lacative returnced depends on the PRINTYPE of sfructuredt LOCL for LIST, LOCV for VECTOR, LOCU
for UVLCIOK, LOCS for SIRING, LOCB for BYTES, LOCT for TEMPLATE, and LOCA for TUPLE. If W is
greater than <LEHNGTH structured> or less than 1, or an OFFSET with a Pattern that doesn't match

structured, an error occurs, The locative is unaffected by applications of REST, BACK, TOP, GROW,
ete. ta afeuctura.d,

12.1.4. GETPL and GETL
CGETPL demiany indicator:any defaull:any?

returns a locative (TYPL LOCAS) to the association of item under indicator. (See chapter 13 for

information about associations,) If no such association exists, GETPL returns EVAL of defau/l. default
is optional, fFALSE () by defaulr,

GETPL corresponds 1o GETPROP amongst the association machinery. There also exists GETL, which

carrespaiids 1o GET, returning either a LOCAS or a locative to the indicatorth clement of a structured
ttem. GETL is like AT if tfem is a structure and indicalor is a FIX or OFFSET, and like GETPL if not.

12.2. LOCATIVL?

This SUBR is a predicate that tells whether or not its argument is a locative. It is cheaper than
CHEMQ <PRIMIYPE argd> '"I[LOCD LOCI ...D>.

1212 - 122 Locatives

118 The MDL Programming Language

12.3. Using L.ocatives

The following two SUBRs provide the means for working with locatives. They are independent of

the specific TYPL of the locative. The notation locative indicates anything which could be returned
by LLOC, GLOC, AT, GETPL or GETL.

12.3.1. IN
CIN localive)

returns the object to which locative points. The only way you can get an error using IN is when
focalive poinls 1o an LVAL which has become unbound from-an ATOM. This is the same as the

problem in referencing TUPLEs as mentioned in section 9.2, and it can be avoided by first testing
CLEGAL? locd>.

Example:

CSET A 133

1

CIN <LLOC A3>§
1

12.3.2. SETLOC

{SETLOC lacalive any)

returns any. after having made any the contents of that position in a structure pointed to by
focative. The structure itself is not otherwise disturbed. An error occurs if focalive is to a non-

LEGAL? LVAL or il you try to put an object of the wrong TYPE into a PRIMTYPE UVECTOR, STRING,
BYTES. or TEMPLATE.

Example:

¢SET A (1 2 3)2%

(12 3)

{SCETLOC <AT .A 2> HI>§
H1

A%

(1 HI 3)

12.9 - 12.3.2 Locatives

The MDL Programming Language 119

12.4. Note nn Locatives

You may have noticed that locatives are, strictly speaking, unnecessary: you can do everything

locatives allow by appropriate use of, for example, SET, LVAL, PUT, NTH, ete. What locatives
provide is generality,

animl!}u how you obtained a locative is irrelevant to SETLOC and IN; thus the same program can
play with GVALs, LVALs, ob jects in explicit structures, etc., without being bothered by what function
it should use to do so, This is particularly true with respeet to locatives to LVALs: the fact that they

are independent of changes in binding can save a lot of fooling around with EVAL and
ENVIRONMENTS.

12.4 Locatives

120 The MDL Programming Language

Chapter 18. Association (Properties)

There is an "associative™ data storage and retrieval system embedded in MDL which allows the

construction of dara structures with arbitrary selectors. It is used via the SUBRs described in this
chapier.

13.1. Associalive Siorage

13.1.1. PUTPROP
CPUTPROP item:any indicator:any value:anyd

("put property”) returns item, having associated value with item under the indicator indicalor.

13.1.2. PUT
SPUT dem:any indicatorzany value:any)
is identical 1o PUTPROP, except that, if item is structured and indicator is of TYPE FIX or OFFSET, it

does <SETLOC <AT ifem indicatord value>. 1In other words, an element with an integral selector is

stored in the structure itself, instead of in association space. PUT (like AT) will get an error if
indicator is out of range: PUTPROP will not,

13.1.3. Remioving Assaciatinns

If PUTPROP is used without its value argument, it removes any association existing between its item
argument and its indicafor argument. If an association did exist, using PUTPROP in this way returns
the value which was associated. If no association existed, it returns #FALSE ().

PUT, with arguments which refer to association, can be used in the same way.

13-13.1.3 Association (Properties)

The MDI. Programming Language 121

If either item or indicalor cease to exist (that is, no one was pointing to them, so they were garbage-
collectedd). and no locatives to the assnciation exist, then the association between them ceases to exist
(is gnrhag!-rnllnclrﬂ],

13.2, Associative Retrieval

13.2.1. GETPROP
CGETPROP iltem:any indicator:any expianyd

("get property”) returns the value associated with item under indicator, if any. If there is no such
association, GETPROP returns EVAL of exp (that is, exp gets EVALed both at call time and later).

exp is optional. If not given, GETPROP returns #FALSE () if it cannot return a value.

Note: item and indicalor in GETPROP must be the same MDL ob jects used to establish the association;
that is. they must be ==7 1o the objects used by PUTPROP or PUT.

13.2.2. GET
CGET flemiany indicator:any exp:anyd

is the inverse of PUT, using NTI or GETPROP depending on the test outlined in section 13.12. exp is
optional and used as in GETPROP.

13.3. Examples of Association

CSET L *(1 23 4) '
(1234)

<PUT L FOO "L is a list.">$
(1234)

<GET .L FOO>$

"l. 1s a 1ist."

<PUTPROP L 3 *1[4A]>S
(1234)

<GCTPROP .L 35§

if4:]

<GET .L 3)$

3

1303133 Association (Properties)

122 The MDL Programming Language

<SET N 0>3%

0

<PUT .N .L "list on a zero">}
0

<GET .N "(1 2 3 4)>%

PFALSE ()

The last example failed because READ generated a new LIST - not the one which is L's LVAL.
However,

<GET 0 .L>%
*1ist on a zero®

works because <==7 N 0) is true.

To associate something with the Nth position in a structure, as opposed to its Nth element, associate
it with <RLCST struclure N-13, as in the following:

<PUT <REST .L 2> PERCENT 0.3>%

(3 4)

¢GET €2 .L> PERCENT>S
*TALSE ()

CGET <REST .L 2> PERCENT>S
0.30000000

Remember comments?

<SET N "I[ABC ;"third element” D E]>S
IfTABCDE!]

CGF1 <REST .N 2> COMMENT>$

"third clement®

The " in the <SCT N ... > is to keep EVAL from generating a new UVECTOR ("Direct
Representation”), which would not have the comment on it (and which would be a necdless
duplicatel. A "top-level” comment -- one attached to the entire object returned by READ - is PUT on
the CHANNLL in use, since there is no position in any structure for it. If no top-level comment
follows the ob jeet, RTAD removes the value (SPUT ehannel COMMENTY): so anybody that wants to see a
top-level conunent must look for it alter each READ,

If you need tn have a siructure with selectors in more than one dimension (for example, a sparse
matrix that does not deserve 1o be linearized), associations can be cascaded to aclieve the desired
result. In effect an extra level of association maps two indicators into one. For example, to
associale value with flem under indicator-1 and indicalor-2 simultaneously:

CPUTPROP indicalor-1 indicator-2 T)

13.3 Association (Properties)

The MDL Programming Language : 123

CPUTPROP item <GLTPL indicator-1 indicator-2% value)

13.4. Examining Assnciations

Associations (created by PUT and PUTPROP) are chained together in a doubly-linked list, internal to
MDL. The arder of associations in the chain is their order of creation, newest first. There are
several SUBRs Tor examining the chain of associations. ASSOCIATIONS returns the first association
in the chain, or #FALSE () if there are none, NEXT takes an association as an argument and returns
the next association in the chain, or #FALSE () if there are no more. ITEM, INDICATOR and AVALUE
all take an awnciation as an argument and return the item, indicator and value, respectively,
Associatinns print as

fASOC (ilem indicalor value)

(sic: only one 5). Example: the following gathers all the existing associations into a LIST.

<PROG ({A CASSOCIATIONS)))
CCOND (<NOT .A> *())
(1 (.A '<HMAPF ,LIST
CFUNCTION () <COND (<SET A <NEXT .A>> .A)
(T <MAPSTOP)>>>))>>

13.3 - 134 Association (Properties)

124 The MDL Programming Language

Chapter 14. Data-type Declarations

In MDL. it is possible to declare the permissible range of "types” and/or structures that an ATOM's
values or a function’s arguments or value may have. This is done using a special TYPE, the DECL
("declaration”). A DECL is of PRIMTYPE LIST but has a complicated internal structure. DECLs are

used by the interpreter to find TYPE errors in function calling and by the compiler to generate more
efficient code.

There are two kinds of DECLs. The first kind of DECL is the most common. It is called the ATOM
DECL and is used most commonly to specify the type/structure of the LVALs of the ATOMs in the
argument LIST of a FUNCTION or aux L1ST of a PROG or REPEAT. This DECL has the form:

PDCCL (atomsdist Patlern ...)

where the pairing of a LIST of ATOMs and a "Pattern” can be repeated indefinitely. This declares the
ATOMs in a fist to be of the type/siructure specified in the following Paltern. The special ATOM
VALUL, il wr appears, declares the result of a FUNCTION call or PROG or REPEAT evaluation to satisfy
the Pattern specified. An ATOM DLCL is useful in only one place: immediately following the
argument LIST of a FUNCTION, PROG or REPEAT. 1t normally includes ATOMs in the argument LIST
and ATOHs whose LVALs are otherwise used in the Function body.

The second Lind of DECL is rarely seen by the casual MDL user, except in appendix 2. It is called
the RSUBR DECL. 1t is used to specify the type/siructure of the arguments and result of an RSUBR or
RSUBR-ENTRY (chapter 19), It is of the following form:

*DECL ("VALUE"™ Paltern Pallern ...)

where the STRING "VALUE" precedes the speeification of the type/structure of the value of the call to
the RSURR, and the remaining Patterns specify the arguments to the RSUBR in order. The full

specification of 1he RSUBR DECL will be given in section 14.9. The RSUBR DECL is useful in only
one place: as an clement of an RSUBR or RSUBR=ENTRY.

14 Data-type Declarations

The MDL Programming Language 128

14.1. Patterns

The simplest possible Pattern is to say that a value is exactly some other ob ject, by giving that
ob ject, QUOTCA. For example. to declare that a variable is a particular ATON:

#DECL ((X) 'T)
declares that . X is always the ATOM T. When variables are DECLed as "being” some other ob ject in
this way. the test used is =?, and not ==7. The distinction is usually not important, since ATOMs,

which are most conpmonly used in this construction, are ==7 to each other if =7 anyway.

It is more common to want to specify that a value must be of a given TYPE. This is done with the
simplest now-specific Pattern, a TYPE name, For example,

#DECL ((X) FIX (Y) FLOAT)

declares .X to be of TYPE FIX, and .Y of TYPE FLOAT. In addition to the names of all of the built-
in and created TYPEs, such as FIX, FLOAT and LIST, a few “compound” type names are allowed:

ANY allows any TYPE,

STRUCTURED allows any structured TYPE, such as LIST, VECTOR, FALSE, CHANNEL, ete
(appendix 3),

LOCATIVE allows any locative TYPE, such as are returned by LLOC, GLOC, AT, and so on
(chapter 12),

APPLICABLE allows any applicable TYPE, such as FUNCTION, SUBR, FIX(!), etc. (appendix 3).
Any other ATOM can be used to stand for a more complex construct, if an association is
established on thar ATOM and the ATOM DECL. A common example is to <PUT NUMBER DECL
"COR FIX FLOAT>> (see below), so that NUMBER can be used as a “compound type name”.

The single TYPE name can be generalized slightly. allowing anything of a given PRIMTYPE, using
the following construetinn:

#DECL ((X) <PRINTYPE WORD> (Y) <PRIMTYPE LIST})

This construction consists of a two.clement FORM, where the first element is the ATOM PRIMTYPE,
ald the second the name of a primitive type.

The next step is to specify the clements of a structure. This is done in the simplest way as follows:

< slruclureddyvpe Pallern Paltern ...»

14.1 Data-type Declarations

126 The MDL Programming Language

where there is a one-1o-one correspondence between the Patlerns and the elements of the structure.
For example:

#DECL ((X) <VECTOR FIX FLOAT>)

declares .X tn be a VECTOR having at least two clements, the first of which is a FIX and the second a
FLOAT. It is often convenient to allow additional elements, so that only the elements being used in
the local neighborhood of the DECL need 1o be declared. To disallow additional elements, a SEGMENT
is used instead of a TORM {the “excl-cd” brackets make it look more emphatic). For example:

#DECL ((X) !<VECTOR FIX FLOAT>)

deelares X to be a VECTOR having exactly two elements, the first of which is a FIX and the second a
FLOAT. Note that the Patterps given for elements can be any legal Pattern:

PrDECL ((X) <VECTOR <VECTOR FIX FLOAT>> (Y) <<PRIMTYPE LIST)> LIST>)
declares .X to he a VECTOR containing another VECTOR of at least two elements, and .Y to be of
PRIMTYPE LIST, comtaining a LIST. In the case of a BYTES, the individual elements cannot be
declared (they must be FIXes anyway), only the size and number of the bytes:

fOECL ((B) <BYTES 7 3>)
declares .0 to be a BYTES with BYTE-SIZE 7 and at least three elements.

It is possible 1o say that some number of elements of a structure satisfy a given Pattern (or
sequence of Patterns). This is called an "NTH construction”,

[Aumber:fix Pattern Pattern ...]

states that the sequence of Palferns which is REST of the VECTOR is repeated the number of times
given. For example:

#DECL ((X) <VECTOR [3 FIX] FLOAT> (Y) <LIST [3 FIX FLOAT]>)
.X is declarcd to contain three FIXes and a FLOAT, perhaps followed by other elements. .Y is
declared to repeat the sequence FIX-FLOAT three times. Note that there may be more repetitions of
the sequence in .Y (but not in . %) the DECL specifies only the first six elements.

For indefinite repetition, the same consteuction is used, but, instead of the number of repetitions of

the sequence of Patterns, the ATOM REST is given. This allows any number of repetitions, from zero
on up. For example:

#DCCL ((X) <VECTOR [REST FIX]> (Y) <LIST [3 FIX] [REST FIX]>

14.1 Data-type Declarations

The MDL Programming Language 127

A "REST construction” can contain any number of Patterns, just like an NTH construction:
#OCCL ((X) <VECTOR [REST FIX FLOAT LIST]>)

declares that X is a VECTOR wherein the sequence FIX-FLOAT=LIST repeats indefinitely. It does not
declare that <LENGTH X2 is an even multiple of three: the VECTOR can end at any point.

A variation on RIST is OPT (or OPTIONAL), which is similar to REST except that the construction is
ceanned onee at most instead of indefinitely, and further undeclared elements can follow. For
example:

#DECL ((X) <VFCTOR [OPT FIX]?)

declares that .X is a VECTOR which is empty or whose first element is a FIX. Only a REST
constrictini can follow an "0PT construciion”,

Note that the RLST constrietion st always be the last element of the structure declaration, since it
gives a Pattern for the rest of the structure. Thus, the REST construction is different from all others

in that it has an unlimited range. No matter how many times the Pattern it gives is RESTed off of
the structure, the remainder of the steucture still has that Pattern,

This exhausts the possible single Patterns that can be given in a declaration. However, there is also
a compound Pattern defined. 1t allows specification of several possible Patterns for one value:

OR Pallern Pallern ... 2

Any non-compound Pattern can be included as one of the clements of the compound Pattern.
Finally, compound Patterns can be used as Patterns for elements of structures, and so on.

#ODECL ((X) <OR FIX FLOAT>
(Y) <OR FIX <UVECTOR [RCST <OR FIX FLOAT>]3>)

The OR construction can be extended to any level of ridiculousness, but the higher the level of
complexity and compoundedness the less likely the compiler will find the DECL useful,

At the highest Jevel, any Pattern at top level in an ATOM DECL can be enclosed in the construction

£ specially atom Pallern

which explicitly declares the specialty of the ATON(s) in the preceding LIST. specialfy can be either
SPECIAL or UNSPECIAL. Specialty is important only when the program is to be compiled. The word
comes from the conteol stack, which is called “special” in Lisp (Moon, 1974) because the garbage
collector finds ohjeets on it and modifies their internal pointers when storage is compacted. (An
internal stack is used within the interpreter and is not accessible to programs - section 22.1) In

14.1 Data-type Declarations

128 The MDL Programming Language

an interpreted program all focal values are initially SPECIAL, because all bindings are put on the
control stack (but see SPCCIAL=MODE below). When the program is compiled, only values declared
SPECIAL {which may or may not be the declaration used by default) remain in bindings on the
coitrol stack, All others are taken care of simply by storing ob jects on the control stack: the ATOMs
invelved are not needed and are not created on loading. So, a program that SETs an ATOM's local
value for anather program to pick up must declare that ATOM to be SPECIAL. If it docsn't, the ATOM's
binding will go away during compiling, and the program that needs to refer to the ATOM will cither
get a no-value creor or refer to an erroneous binding, Usually only ATOMs which have the opposite
specialty from that of the current SPECTAL=HODE are explicitly declared. The usual SPECIAL-HODE is
UNSPECTAL, so typically only SPLCIAL declarations use this construction:

#DECL ((ACT) <SPECIAL ACTIVATION>)

explicitly declares ACT ta he SPECTAL.

Most well-written, modular programs get all their information from their arguments and from
GVALs. and thus they rarely use SPECTAL ATOMs, excepl perhaps for ACTIVATIONs and the ATOMs
whese [VAIs MIH uses by default: INCHAN, QUTCHAN, OBLIST, DEV, SNM, NHI, NM2. OUTCHAN is
a special case: the eompiler thinks thar all conversion-output SUBRs are called with an explicit
CHANNLL argument, whether or not the program being compiled thinks so. For example, <CRLF> is
compiled as though it were <CRLF ,QUTCHAN>. So you may use (or see) the binding (OUTCHAN
LOUTCHAN) inm an argument | 18T, however odd that may appear, because that -« coupled with the
usual UNSPECIAL declaration by default .. makes only one reference to the current binding of
OUTCHAN anel stuffs the result in a slot on the stack for use within the Function.

14.2. Examples
*DECL ((Q) <OR VECTOR CHANNELY)
declares .Q 10 be cither a VECTOR or a CHANNEL.
#DECL ({P Q R §) <PRIMTYPE LIST))
declares .P, .Q, .R, and .S all 1o be of PRIMTYPE LIST.
PRECL ((F) <FORM [3 ANYI>)
declares .7 1o be a FORM whose length is at least three, containing objects of any old TYPE,
#DECL ((LL) <<PRINTYPE LIST> [4 <LIST [REST FIX1>1>)

declares .LL to e of PRINTYPE LIST, and to have at least four elements, each of which are LISTs of
unspecificd leugth (possibly empry) containing F1IXes.

14.1 - 14.2 Data-type Declarations

- .fl_‘ht MDL Peogramming T anguage 129

AP ((VV) €UTCIOR TIX ATOH CHARACTCRY)

declares VWV 1o e a VICTOR with at least three elements. Those elements are, in order, of TYPE FIX,
ATOM, and CHARACTIR,

s

sPECL (LI €LIST ATOM [REST FLOATID)

declares L1E10 he a DIST whese first element is an ATOM and the rest of whose elements are FLOATS.
1t alse says that (L1Eis at least ane element long,

fNCCL ((T00) <LIST [REST 'T FIX]»)

declares 100 10 he a LIST whose add-positioned elements are the ATOM T and whose even-positioned
elements are [1Xes,

CHAPR <>
CLUNCTION (X)
#DECL ((X) <VECTOR [1 FIX]»)
PuT X 1 0
000

declares X 10 e a VECTOR containing at least one TIX. The more resirictive [REST FIX] would take
excessive checbing time by the interpreter, becanse the REST of the VECTOR would be checked on
each itrvation of the WAL, T this case lioth DECHs are equally powerful, because checking the first
element of all the RESTs of a structure eventually checks all the elements. Alsn, since the FUNCTION
refers only 1o the Liest element of X, this is as much declaration as the compiler can effectively use.
(F this VECTOR always contains only FI¥es, it should be a UVECTOR instead, for space efficiency.
Then a [REST HIXT DECE would make the interpreter chieek only the UTYPE. If the FIXes cover a
small non-negative ange, then a BYTES might be even hetter, with a DECL of <BYTES n 0>.)

CMTTHE TACT (W)
SECE ((N)Y <INSPECTAL FIXY)
CCOHD (€07 H> 1) (ELSE €= H <FACT <= .N 133»»)»

declares N tn e of TYPT T1X and UNSPECIAL, This specialty declaration ensures that, independent
of SPECTAL-HODE duving compiling, N gets compiled into a fast control-stack reference.

<CPROG ((1 (0))
HIECE ((L VALUE) <UNSPECTAL <LIST [REST FIX1>>
(N) CUNSPLCIAL FIX))
CCOND (€07 N> CRETURN .L>)»
CSCT L <+ N <1 L3 L.
CSLT N <= LN 133

14.2 Data-type Declarations

130

The MDL Programming Language

‘The above declares L and N 1o be UNSPECIAL, says that .Nis a FIX, and says that .L, along with
the value returned, is a LIST of any length composed entirely of FIXes.

14.3. The DECL Syntax

This section gives quasi-INF productions for the MDL DECL symax. In the following table MDL ,'
type-specificrs are distinguished in this Wy,

dec]

decliprs ::

atlist

pattern :

pat

unit

struc
bstruc

elts

opt

L
L=

L
.=

L]
r =

FOLCL (deelprs)

(i#L11sL) pattern | decliprs declprs

atom | atem atlist

pat | <UNSPECIAL pat) | <SPECIAL pat)

unit | <OR unit ... unitl

lvpe | <PRIMTYPE lyped | alom | ‘any
| ANY | STRUCTURED | LOCATIVE | APPLICABLE
| <struec altsd | <<OR strue ... struc? elts)

| '<struc eltsd | 1<<OR struc ... struc) elts)
| <bstruc fix> | <bstruc fix fix)
| <bstrue fix fixs

slructured-type | <PRIMTYPE structured-type)
BYTES | <PRIMTYPC RYTES)

pal | pat elts

| [fix pat ... pat]

| [fiv pat ... pat] elts

| [opt pat ... pat] | [REST pat ... pat]
| [opt pat ... pat] [REST pat ... pat]

OPT | OPTTONAL

14.2 - 14.3

Data-type Declarations

The MDL Programming Language 131

14.4. Good DECLs

There are some rules of thumb concerning "good™ DECLs. A “good” DECL is one that is minimally
of fensive 10 the DECL-checking mechanism and the compiler, but that gives the maximum amount
of information. It is.simple to state what gives offense to the compiler and DECL-checking
mechanisim: conmplexity. For example, a large compound DECL like:

*DECL ((X) <OR FIX LIST UVECTOR FALSEY)

is a DECL that the compiler will find totally useless. It might as well be ANY. The more involved
the OR, the Juss information the compiler will find useful in it. For example, if the function takes
<OR LIST VECTOR UVCCTORY, maybe you should really say STRUCTURED. Also, a very general DECL
indicates a very general progran, which is not likely to be efficient when compiled (of course there
is a trade-nfl herel. Narrowing the DECL to one PRIMTYPE gives a great gain in compiled efficiency,
to one TYPE still more.

Another situation to be avoided is the ordinary large DCCL, even if it is perfectly straightforward.
If you have created a strueture which has a very specific DECL and is used all over your code, it
might be better as a NEWTYPE (see below). The advantage of a NEWTYPE over a large explicit DECL is
twofold. First, the entire structure must be checked only when it is created, that is, CHTYPEd from
its PRIMTYPE. As a full DECL, it is checked completely on entering each function and on each
reassigninent of ATOMs DECLed to be it. Second, the amount of storage saved in the DECLs of

FUNCTIONs and so on is large, not to mention the effort of typing in and keeping up to date several
instances of the full DCCL.

14.5. Global (ircls

14.5.1. GDECL. and MANIFEST

There are two ways to declare GVALs for the DECL-checking mechanisn. These are through the
FSUBR GDECL ("global declaration”) and the SUBR MANIFEST.

CGDECL atomeidist Pattern ,..D

GDECL allows the type/structure of global values to be declared in much the saine way as local
values. Example:

CGDECL (X) FIX (Y) <LIST FIX»

declares X to be a FIX, and ,Y to be a LIST containing at least one FIX.

CMANIFEST alom atom ...»

14.4 - 14,51 Data-type Declarations

132 The MDL Programming Language ,

MANIFEST takes as arguments ATOMs whose GVALs are declared to be constants. It is used most
commonly 1o indicate that eertain ATOMs are the names of of fsets in structures, For example: '

<SE1G X 1>
CHANIFEST X2

allows the compiler to confidently open-compile applications of X (getting the first element of a
structurel, knowing that X will not change, Any sort of object ean be a MANIFEST value: if it does
ot get embedded in the compiled code, it is included in the RSUBR's "reference vector”, for fast
access, Tlowever, as a general rule, structured abjects should not be made MANIFEST: the SETG will
survive in the compiled version (for the use of new uncompiled programs), but uses of GVAL will
instead refer 10 a distinet copy of the object in each RSUBR that does a GVAL. A structured ob ject

should insiead be GDECLed.
An attempt to SETG a MANITFST ATOM will cause an error, unless either:
(1) the ATOM was previously globally unassigned;

(2) the old value is ==7 to the new value: or
(3) .REDLT INE is not FALSE.

14.5.2. MANIFEST? and UNMANIFEST
CHMANIFESTT atom)

returns Til atom is MANIFEST, #FALSE () otherwise.
CUNMANIFEST atom alom ...»

removes the HANITLST of the global value of each of its arguments so that the value can be changed.

14.5.3. GBOUND?

CGROUND? atomd

("globally bound>) returns T if afom has a global value slot (that is, if it has ever been SETGed,
MANIFEST, GDECLed, or GLOCed (chapter 12) with a true sccond arguiment), FFALSE () otherwise.

1451 - 1453 Data-type Declarations

The MDL Programming Language 133

14.6. NEWTYPL (again)

NEWTYPE gives the progrannmer another way to DECL objects. The third (and optional) argument of
NEWTYPE is a QUOTED P'attern. I given, it will be saved as the value of an association (chapter 13)
using the name of the HCWTYPE as the item and the ATOM DCCL as the indicator, and it will be used to
check any object that is about to be CHUTYPED to the NEWTYPE. For example:

CHEWTYPC COMPLECX-NUMBER VECTOR '<<PRIMTYPE VECTOR> FLOAT FLOAT 2>
creates a new TYPE, with irs first two elements declared to be FLOAYs. If later someone types:

MCOMPLEX-HUMBER [1.0 2]

an error will result (the second element is not a FLOAT), The Pattern can be replaced by doing

another NCWTYPD for the same TYPE, or by putting a new value in the association. Further
examples:

CHEWTYPE FOO LIST '¢CPRIMTYPE LIST> FIX FLOAT [REST ATOM]>>
causes FO0« ro contain a F'IX and a FLOAT and any number of ATOMs.

CHEWTYPE BAR LIST?
<SET A #BAR (#DAR () 1 1.2 GRITCH)?
CHEWTYPE BAR LIST *<CPRIMTYPE LIST> BAR [REST FIX FLOAT ATOM]>>

This is an example of a recursively DECLed TYPE. Note that <1 .AY does not satisfy the DECL,

because it is empty, but it was CHTYPED before the DECL was associated with BAR. Now, even
CCHTYPE <1 .A> <TYPE <1 .A>>> will cause an error.

In each of these examples, the <CPRIMTYPE ...3 ...> construction was used, in order to permit
CHTYPEing an ohject into itself. See what happens otherwise:

CNEWTYPE 0OPS LIST '<LIST ATOM FLOAT»>S
00I's

CSET A <CHTYPE (E 2.71B28) OOPS)>3
*OOPS (E 2.71828)

Now <CHTYPE .A 0OPS> will cause an error, Unfortunately, you must

CCHTYPE <CHTYPE .A LIST> 0OPS>S
FOOPS (£ 2.71828)

14.6 Data-type Declarations

134 The MDL Programming Language

14.7. Controlling DECL Checking

There are several SURRs and FSUBRs in MDL that are used to contro)l and interact with the DECL-
chuking mechanisiu.,

14.7.1. DFCL=CHICK

This entire complex cheehing mechanism ean get in the way during debugging. As a result, the

most eommonly ueed DECL-oriented SUBR is DECL-CHECK. It is used to enable and disable the entire
DECL-checking mechanism,

CDECL-CHECK false-or-any?

If its single argument is non-FALSE, DECL checking is turned on: if it is FALSE, DECL checking Is

turned off. The previous state is returned as a value. If no argument is given, DECL-CHECK returns
the current state, In an initial MDL DECL checking is on.

When DECI checling is on, the DECL of an ATOM is checked each time it is SET, the arguments and
results of calls 1o FUNCTIONs, RSUBRs, and RSUBR-ENTRYs are checked, and the values returned by
PROG and REPCAT are checked, The same is done for SETGs and, in particular, attempts to change
MANIFEST glahal values. Attempts to CITYPE an object to a NEWTYPE (if the NEWTYPE has the
optional DECL) are also cheched. When DECL checking is off, none of these checks is performed.

14.7.2, SPFCTAL=CHECK and SPECIAL-MODE
(SPECIAL=CHECK fafze=or=any>

controls whether or not SPECIAL checking is performed at run time by the interpreter. It is initially
of f. Failure 1o declare an ATOM to be SPECTAL when it should be will produce buggy compiled code.

CSPCCIAL=NODE specialty:alom?

sets the declaration nsed by defauli (for ATOMs not declared either way) and returns the previous such

declaration, or the current such declaration if no argument is given. The initial declaration used by
default is UNSPCCTAL.

14.7.3. GET-DLCL and PUT-DECL

GET-DECL and PUI=DECL are used to examine and change the current DECL (of either the global or
the local value) of an ATOH.

{GET-DOCL locdy

14.7- 1473 Data-type Declarations

The MDL Programming Language 135

returns the DECL Pattern (if any, otherwise FFALSE () associated with the global of local value slot
of an ATOH. For example:

<PROG (X)
FDECL ((X) <OR FIX FLOATY)

CGET-DECL <LLOC X»>
voud

would return <OR FIX FLOAT> as the result of the application of GET-DECL. Note that because of
the use of LLOC (or GLOC, for global values) the ATOM being examined must be bound: otherwise you

will get an error! This ean be gotten around by testing first with BOUND? (or GBOUND?, or by giving
GLOC a second argument which is not FALSE),

If the slot Leing examined is the global slot and thie value is MANIFEST, then the ATOM MANIFEST is
returned. 1T the value heing examined is noi DCCLed, #FALSE () is returned.

CPUT-DECL Jocd Pallernd

makes Fattorn he the DECL for the value and returus focd. If <DECL=CHECK> is true, the current value
must satisfy the new Pattern, PUT-DECL is normally used in debugging, to change the DECL of an

ob ject to correspond 1o changes in the program. Note that it is not legal to PUT-DECL a "Pattern” of
MANIFEST or #FALSE ().

14.7.4. DECL?
CDECL? any Palternd
specifically chiecks any against Pallern. For example:

CDECL? '[1 2 3] '<VECTOR [REST FIX]>>%

T
CDECL? '[1 2.0 3.0] '<VECTOR [REST FIX]»>$
"IALSE ()

14.8. OrFsry

An OFFSET is esseutially a FIX with a Pattern attached, considered as an APPLICABLE rather than a
"umber, An OFFSET allows a program to speeify the type of structure that its FIX applies to,
OFFSETs, like DECIS - Al used properly . can make debugging considerably easier; they will
Eventually also help the compiler Generate more efficient code,

14.7,3 - 14.8 Data-type Declarations

136 The MDL Programming Language

The SUBR OFFSET 1akes two arguments, a FIX and a Pattern, and returns an object of TYPE and
PRIMTYPL OFFSCT. Aw OFTSET, like a FIX, may be given as an argument to NTH or PUT and may be
applied 1o arguments. The enly difference is that the STRUCTURED argumment must match the
Pattern comained in the OFFSET, or an error will result. Thus:

CSLTG OO <OFFSET 1 "CCHANNEL FIX>>3§
“COFTSET 1 "CCHANNCL FIX>)

CFOO |, THCHANDS

1

Cro0 <ROOT>>S

*FRROR=

ARG-WRONG=TYPE

NTH

LISTCRING-AT-LCVLL 2 PROCESS 1

Note: when the eompiler gets around 1o understanding OFFSETs, it will not do the right thing with

them unless they are MANIFEST. Since there's no good reason not to MANIFEST them, this isn't a
problem,

The SUBR INDEX, given an OFFSET, returns its FIX:

<INDNEX ,F00>%
]

GET=DECL of an OIFSCT returns the associated Pattern: PUT-DECL of an OFFSET and a Pattern returns
a new OFFSET with the same INDEX as the argument, but with a new Pattern:

CGET-DECL ,FOD>$

CCHANNEL FIX)

CPUT-DICL 100 OBLISTYS
WC<OFFSET 1 OBLIST)

+ FOO0%

ACOTTSET 1 "<CHANNEL FIX>>

An OFFSET is not a struclured ob ject, as this example should make clear.

14.9. The RSUBR DECL

The RSUBR DICL is similar to the ATOM DECL, except that the declarations are of argument positions

and value rather than of specilic ATOMs. Patterns can be preceded by STRINGs which further
describe the argument (or value),

14.8 - 149 Data-type Declarations

The MDL Programming Language 137
The simplest RSURR DECL is for an RSUBR or RSUBR-ENTRY (chapter 19) which has all of its
arguments evaluated and returns a DECLed value. For example:

FDECL ("VALUE"™ FIX FIX FLOAT)

declares that there are two arguments, a FIX and a FLOAT, and a result which is 2 FIX. While the
STRING "VALUE" is nol constrained to appear at the front of the DECL, it does appear there by

custom. It need not appear at all, if the result is not to be declared, but (again by custom) in this
case it is nenally declared ANY.

If any arguments are optional, the STRING "OPTIONAL* (or "OPT™) is placed before the Pattern for
the First optional argument:

PDECL ("VALUE® FIX FIX "OPTIONAL"™ FLOAT)
If any of the arguments is not to be evaluated, it is preceded by the STRING *QUOTE":
#DECL ("VALUE™ FIX "QUOTE" FORM)

declares one argumcent, which is not EVALed.

If the arguments are to be evaluated and gathered into a TUPLE, the Pattern for it is preceded by
the STRING "TUPLE":

“DECL ("VALUE™ FIX “TUPLE®™ <TUPLE [REST FIX1>)

If the arguments are to be unevaluated and gathered into a LIST, of if the calling FORH is the only
“argument”, the Pattern is preceded by the appropriate STRING:

FDECL ("VALUE™ FIX "ARGS" LIST)

#DECL ("VALUC®™ FIX “CALL® <PRIMTYPE LIST))

In every case the special indicator STRING is followed by a Pattern which describes the argument,
even though it may sometimes produce faiely ludicrous results, since the Pattern for ® TUPLE® always
must be a TUME; for "ARGS", a LIST; and for "CALL", a FORM or SEGHMENT.

14.9 Data-type Declarations

138 The MDL Programming Language

Chapter 15. Lexical Blocking

Lexical, or s1atic, hincking is another means of preventing identificr collisions in MDL. (The first
was dynamic blocking - hinding and ENVIRONMENTSs.) By using a subset of the MDL lexical
blocking Ffacilities, the "block structure” of such languages as Algol, PL/I, SAIL, ete., can be
simulated, should you wish 1o do so.

15.1. Basic Considerations
e e —— R s,

Since what follows appears to be rather complex, a short discussion of the basic problem lexical
blocking solves amd MDL's basic solution will be given first.

ATOMs are identifiers. It is thus essential that whenever you type an ATOM, READ should respond
with the unique idemifier you wish to designate. The problem is that it is unreasonable to expect
the PNAHEs of all ATOls to be unique. When you use an ATOM A in a program, do you mean the A

you typed two minutes ago, the A you used in another one of your programs, or the A used by some
library program?

Dynamic blncking (pushing down of LVALs) solves many such problems. However, tliere are soine
which it does not <olve - such as state variables {(whether impure or pure). Major problems with a
system having only dynamie blocking usnally arise only when attempts are made to share large
numbers of significant programs among many people.

The solution used in MDL. is hasically as follows: READ must maintain at least one table of ATOMs to
guarantee any uniqueness. So, MDL allows many such tables and makes it easy for the user to
specify which one is wanted. Such a table is an object of TYPE OBLIST ("object list™). All the
complication which follows arises out of a desire to provide a powerful, easily used method of
working with OGLISTs. with reasonable values used by default.

15 . 15.] Lexical Blocking

The MDI. Programming Language 139

15.2. OBLISTs

An OBLIST is of FRINTYPE UVECTOR with UTYPE LIST; the LISTs hold ATOMs. (The ATOMs are ordered

hj" a llﬂ'l]l "n{”"l{ Ol "l'l'."ll" F"AHEL! Eaﬂh LIET il, a hlﬁlun; h“ﬂkﬂ.} wlllt f‘ﬂ“ﬂ“i I.I illfﬂl’llllliﬂn
‘about OBLISTs as siich.

15.2.1. OBLIST Nanics

Every normally constituted OBLIST has a name. The name of an 0BLIST is an ATOM associated with
the OBLIST under the indicator OBLIST. Thus.

SGLIPROM ohiist ODLIST>

CGLT obizt QORLIST?
returns the name of obiis!,

Similarly, every name of an OBLIST is associated with its OBLIST, again under the indicator
OBLIST, so that

CGETPROP oblist-name:atom OBLIST)

<GLT oblisf-name:atom OBLIST)

returns the OBLIST whose name is oblisl=name.

Sinee there is nothing special about the association of OBLISTs and their names, the name of an
OBLIST can be changed by use of PUTPROP, both on the OBLIST and its name. It is not wise to

change the OBLIST association withou changing the name association, since you are likely to
confuse RCAD and PRINT terribly,

You can alse use PUT or PUTPROP fo remove the association between an OBLIST and its name
completely. If you want the 0BLIST 10 go away (be garbage collected). and you want to keep its
hame around. this must be done: otherwise the association will foree it to stay, even if there are no
other refecences to it, (IT you have no references to cither the name or the OBLIST (an ATOM --
including a TVPE nanie - [oints fo its OBLIST) both of them « and their association - will go away
Without your having to remove the assacialion, of course.) It is not recommended that you remove
the name of an OBLIST witheut having it go away, since then ATOMs in that OBLIST will PRINT the
same as if they were in no ODLIST == which is defeating the purpose of this whole exercise.

152 - 15.2.1 Lexical Blocking

140 The MDL Programming Language

15.2.2. HOBL1S1

CMOBLTST alom fixd

("make olilist™) ereates and retnrns a new 0BLIST, containing no ATOMs, whose name is alom, unless
there already exists an OBLIST of that name, in which case it returns the existing 0BLIST. fix is the
size of the OBLIST created -- the number of hashing buckets. fix is optional (ignored if the OBLIST

already exists). 13 hy default. If specified, fix should be a prime number, since that allows the
hashing 1o work better.

15.2.3. OBL1IST1?

COBLIST? alom)

returns #FALSE () if alom is wot in any OBLIST. If atom is in an OBLIST, it returns that OBLIST.

15.3. READ and 0BL1STs

READ can he explicitly told to lnok up an ATOH in a particular OBLIST by giving the ATOM a trailer.

A trailer consists of the characters !- (exclamation-point dash) following the ATOM, immediately
followed by the name of the OBLIST. For exaniple,

Al =00
specifies the unique A101 of PNAME A which is in the OBLIST whose name is the ATOM 08.

Note that the name of the 0BLIST must follow the ! - with no separators (like space, tab, carriage-

return, eic). There is a name used hy default (section 15.5) which types out and is typed in as
! =separalor.

Trailers can bie used rrr.ursivfly:

B!-A!-0B

specifies the unique ATON of PHNAME B which is in the OBLIST whose name is the unique ATOM of

PNAME A which is in the OBLIST whose name is 08. (Whew!) The repetition is terminated via the
look-up and insertion deseribed below.

IF an ATOM with a given PNAME is not found in the OBLIST specificd by a trailer, a new ATOM with
that PNAME is created and inserted inte that OBLIST,

If an OBLIST whose name is given in a trailer docs not exist, READ creates one, of length 13 buckets,

15.2.2 - 15.3 Lexical Blocking

The MDL Programming Language 141

If trailec notation is not used (the "normal® case), and for an ATOM that terminates a trailer, READ
laoks up the PFHAUE of the ATOM in a LIST of OBLISTs, the LVAL of the ATOM OBLIST by default. This
fook-up starts with <1 ,OBLISTY and continues until .OBLIST is exhausted. If the ATOM is not
found, READ wsually inserts it into <1 ,0BLISTY. (It is possible 1o force READ to use a different

clement of the LIST of OBLISTs for new insertions. If the ATOM DEFAULT is in that LIST, the
OBLIST following that ATOM will be used.) :

15.4. PRINT and OB1 1518

When PRINT is given an ATON 1o output, it outputs as little of the trailer as is necessary to specify
the ATON uninuely to RECAD. “That is, if the ATOM is the first ATOM of that PNAME which READ would
find in its normal lonkaip in the current .OBLIST, no trailer is output. Otherwise, !~ is output and
the nawe of the OBLIST is recursively PRINIed.

Warning: there are obseure cases, which do not occur in normal practice, for which the PRINT trailer
recursion «ocs unt terminate. For instance, if an ATOM must have a trailer printed, and the name of

the OBLIST is an ATOM in that very same OBLIST, death. Any similar circular case will also give
PRINT a hiernia.

I15.5. Initial State

In an initial MDL, ,OBL1ST contains two OBL1STs. <1 .OBLIST) initially contains no ATOMs, and <2
LOBLIST> cantains all the ATOMs whose GVALs are SUBRs or FSUBRs, as well as OBLIST, DEFAULT, T,
ete. It is difficult 10 lnse wack of the latter: the specific trailer !-separator will always cause

reference to that ORLTST. In addition, the SUBR ROOT, which takes no arguments, always returns
that OBLIST.

The name of <ROOTY is ROOT; this ATOM is in CROOT)> and would cause infinite PRINT recursion were

it not for the use of l-separator, The name of the initial <1 ,0BLISTY is INITIAL (really
INITIAL!=),

The ATOM OBLIST alsn hias a GVAL. vOBLIST is inirially the same as ,OBLIST; however, ,0BLIST is

not affected by the SUBRs used 1o manipulate the OBLIST structure. It is instead used only wlhen
errors necur,

In the case of an erior, the current ,OBLIST is checked to sce if it is “reasonable” - that is, contains
hothing af the wronyg 1YPF. (It is reasonable. but not standard, for 0BLIST to be a single OBLIST
instead of & LIST of them.) If it is reasanable, that value stays current. Otherwise, OBLIST is SET to
+OBLIST. Note that changes made to the OBLISTs on +OBLIST = for example, new ATOMs added --
Femain. If even ,ORLTST is wnreasonable, OBLIST is SCT and SETGed to its initial value. <ERRET>
(section 16.1) always assumes that ,0BLIST is unreasonable,

153 - 15.5 Lexical Blocking

142 The MDL Programming Language

Three other OBL1STs exist in a virgin MDL: their names and purposes are as follows:
ERRORS! - contains ATOHs whose PNAMEs are used as error messages. It is returned by <ERRORS>.

INTERRUPTIS!= is wused Dby the interrupt system (section 20.5.1), It is returned by
CINTERRUPTS>.

MUDDLE! = is used infrequently by the interpreter when loading compiled programs to fix up
references to Incations within the interpreter.

-

The pre-lnading of compiled programs may create other OBLISTs in an initialized MDL (Lebling,
1979).

15.6. BLOCK amid_ENDIL OCK

These SUBRs arc analogous to begin and end in Algol, eic, in the way they manipulate static
blocking (and in no other way),

CBLOCK leoh-upiisi-of-oblists>

returns its argument after “pushing” the current LVAL of the ATOM OBLIST and making its argument
the current LVAL. Yeu usually want <ROOT> to be an element of look-up, normally its last.

CENDBLOCK »
“pops” the LVAL of the ATOM OBLIST and returns the resultant LIST of OBLISTS.

Note that this "pushing” and “popping” of ,0BLIST is entirely independent of functional
application, hinding. etc.

15.7. SUBRs Associated with Lexical Blocking

I5.7.1. RLAD (again)
SREAD channe! cof-rouline look-up?

This is a Tuller call 1o RCAD, fook-up is an OBLIST or a LIST of them, used as stated in section 15.3
to look up ATOMs and insert them in OBL1STs. If it is wot specified, .OBLIST is used. See also
sections ILLLL 113, and 17.1.3 for other arguments.

15.5 - 15.7.1 Lexical Blocking

The MDL I'ragramming Language 143

15.7.2. PARSE and LPARSE (again)
CPARSE string radivilix look-upd

as was previously mentioned, applics READ's algorithm to string and returns the first MDL ob ject
resulting. This includes looking up prospective ATOMs on look-up, if given, or .0BLIST. LPARSE can
be called in the same way. See also sections 7.6.6.2 and 17.1.3 for oiher arguments.

15.7.3. LOOKUP
CLOOKUP =lring oblisty

returns the ATOI of PNAME string in the OBLIST oblist, if there is such an ATOM; otherwise, it returns

#FALSE (). If slein: would PARSE into an ATOM anyway, LOOKUP is Faster, although it looks in only
one OBLIST instead of a LIST of them,

15.7.4. ATON

CATOM stringd

creates and returns a spanking new ATOM of PNAME string which is guaranteed not to be on any
OBLIST.

An ATOM which is nol o any OBLIST is PRINTed with a trailer of !-#FALSE ().

I15.7.5. REMOVE,
CREMOVE string oblisty

remaves the ATOH of PNAME string from oblist and returns that ATOM. If there is no such ATOM,
REMOVE returns ¢FALSE (). Also,

CREHOVE atom)

Femoves afouw from its OBLISY, if it is on one. It returins atom if it was on an OBLIST: otherwise it
returns fFALSE (),

15.7.G. INSERT

CINSERT string-or-atom oblistd

15.7.2 - 15.7.6 Lexical Blocking

144 The MDL Programming Language

creates an ATON ol PHAHF <fring, inserts it into oblist and returns it. If there is already an ATOM with
the same PHAME as alom in oblist, an error oceurs. The standard way lo avoid the error and always
get your alom is

COR <LOOKUP sliriny oblisty <INSERT string obiisi>)
As with REHOVE, TNSERT can also take an ATOM as its first argument; this ATOM must not be on any
OBLIST -« it must have been RCHOVEd, or just created by ATOM -- else an error occurs, The OBLIST

argument is pever optional. If you would like the new ATOM to live in the OBLIST that READ would
have chosen, you can (PARSE siring instead.

15.7.7. PHAHE

{PHAME alom>»

returns a STRING (newly created) which is atom's PHAME (“printed name”). If trailers are not nceded,
PNAME is much faster than UNPARSE on atom. (In fact UNPARSE has to go all the way through the
PRINT algorithm twice, the first time fo sce how long a STRING is needed.)

15.7.8. SPHAME

SPNAME ("shared printed name”) is identical 10 PNAME, except that the STRING it returns shares
storage wilth ~flom (appendix 1) which is more efficient if the STRING will not be modified. PUTting
into such a STRING will cause an error,

15.8. Example: Another Solution 1o the INC Problem

What follows is an example of the way OBLISTs are “normally” used to provide “externally
available™ ATONs and “local” ATOMs which are not so readily available externally. Lebling (1979)
describes a sysiematic way to accomplish the same thing and more.

(MOBLLST INCO 1>

;"Create an OBLIST Lo hold your external symbols.
Its name is IHCO!=-INITIAL!- .®

INC!=-1NCO

;"Put your external symbols into that OBLIST.
If you have many, just write them successively."”

1576 - 15.8 Lexical Blocking

The MDL Programming Language 145

<BLOCK (<MOBLIST INCI!-INCO 1> <GET INCO OBLIST> <ROOT)>)>
v'Greale a Jocal OBLIST, naming it INCI!-INCO, and set up .OBLIST for
reading in your program. The OBLIST INCO is included in the BLOCK so
that as your external symhols are used, they will be found in the
right place. HNole that the ATOM INCO is not 1in any OBLIST of the

BLOCK; therefore, trailer notation of |-INCO will not work within the
current BLOCK-ENNDBLOCK pair.®

¢DEFINE INC i"INC is found in the INCO OBLIST."

(A) i"A is not found and is therefore put into INCI by READ."
AECL ((VALUE A) <OR FIX FLOAT})

CSET A <+ .A 1D :"A11 other ATOMs are found in the ROOT."™
CENDDLOCK >

This example is rather trivial, but it contains all the issues, of which there are three.
The first idea is that you should ercate 1wo OBLISTs, one 1o hold ATOMs which are to be known to

other users (18C0), and the other to hold internal ATOMs which are not normally of interest to others
(INCI). The case aliove has one ATON in eacli category.

Second, INCO is explicitly used without trailers so that surrounding BLOCKs and ENDBLOCKs will have
an effect on it. Thus INCO will be in the OBLIST desired by the user: INC will be in INCO, and the
user can reler 1o it by saying INC!-TNCO; INCI will also be in INCO, and can be referred to in the

same wayt finally, A is really A'=INCI!-INCO. The point of all this is to siructure the nesting of
OBLISTs.

Finally, if for some reason (like saving storage space) you wish to throw INCI away, you can follow
the ENDBLOCK with

(REHOVE "TNCI® <GET INCO OBLIST)>>

and thus remove all references to it. The ability to do such pruning is one reason for structuring
OBLIST references.

Note that, even after removing INCI, you ean “get A back” - that is, be able to type it in - by
saying something of the form

SINSERT <1 <1 ,THC!=INCO>> <1 .OBLIST>)

thereby grabbing A out of the structure of INC and re-inserting it into an OBLIST. However, this
resurrects the name collision caused by <INC!-INCO A).

15.8 Lexical Blocking

146 The MDL Programming Language

Chapter 18. Errors, Frames, eto,

16.1. LISTEH

This SUBR takes any number of arguments. It first checks the LVALs of INCHAN, OUTCHAN, and
OBLIST for reasonability and terminal usability, In each case, if the value is unreasonable, the ATOM
is rebound to the correspanding GVAL, if reasonable, or to an invented reasonable value. LISTEN

then does CTTYECHO .INCHAN T> and <ECHOPAIR .INCHAN .OUTCHAN>. Next, it PRINTs its
arguments, then PRINTs

LISTENING-AT-LEVEL / PROCESS p

where / is an integer (FIX) which is incremented each time LISTEN is called recursively, and p is an
integer identifying the PROCESS (chapter 20) in which the LISTEN was EVALed. LISTEN then does
CAPPLY <VALUE RCP>>, if there is one, and if it is APPLICABLE. If not, it applies the SUBR REP

(without making a new FRAME -- see below). This SUBR drops into an infinite READ-EVAL-PRINT loop,
which can be left via ERRET (section 16.4),

The standard LISTEN loop has two features for getting a handle on objects that you have typed in
and MDL has typed out. If the ATOM L-INS has a local value that is a LIST, LISTEN will keep
recent inputs (what READ returns) in it, most recent First. Similarly, if the ATOM L-0UTS has a local
value that is a LIST, LISTEN will keep recent outputs (what EVAL returns) in it, most recent first,
The keeping is done hefore the PRINTing. so that *S does not defeat its purpose. The user can
decide how much to keep around by setting the length of each LIST. Even if L-OUTS is mot used,

the atom LAST-OUT is always SET to the last object returned by EVAL in the standard LISTEN loop.
Example:

<SET L-INS (NEWEST NEWER NEW))$

(NEWEST NEWER NEW)

.L-INSS

(.L-INS NEWEST NEWER)

<SET FOO 69)%

69 ’
<SET FIXIT <2 .L-INSD) :"grab the last input"s$

<SET FOO 69>

16 - 16.1 Errors, Frames, etc.

The MDL Programming Language 147

L-INSS
(.L=TNS <SCT FIXIT <2 .L-INS)> <SET FOO 693)
<PUT .FIXIT 3 105)%

<SET FOO 105>

<CVAL .FIXIT>S

105

L=1HSS

(.L=INS <EVAL .FIXITY <PUT .FIXIT 3 1053)
.ro0s

105

16.2. £RROR

This SUDBR is the same as LISTEN, except that (1) it generates an interrupt (chapter 21), if enabled,
and (2) it PRINTs *FRROR* helore PRINTing its arguments.

When any SUBR or FSUBR detects an anomalous condition (for example, its arguments are of the
wrong TYPLL it calls CRROR with at least {wo arguments, ineluding:

(1) an ATON whase PNAME describes the problem, norimally from the OBLIST ERRORS ! - (appendix
.

(2) the ATOH that wames the SUBR or FSUBR, and
(3) any other information of interest,
and then returns whatever the eall 1o ERROR returns. Exception: a few (for example DEFINE) will

take further action thai depends on the value returned. This non-standard action is specified in the
error message (ficst ERROR argument),

16.3. FRAME (the TYPE)

A FRAME is the oliject placed on a PROCESS's control stack (chapter 20) whenever a SUBR, FSUBR,
RSUBR, or RSUER-LNIRY (chapter 19) is applied. (These objects are herein collectively called
"Subroutine") It contains information describing what was applied, plus a TUPLE whose elements
are the arguments tn the Subroutine applied. If any of the Subroutine’s arguments are to be
evaluated. they will have heen by the time the FRAME is generated.

A FRAME is an anomalous TYPE in the following ways:

(1) It cannot bie typed in, It can be generated only by applying a Subroutine,

(2) It does ot type out in any standard format, but rather as #FRAHE followed by the PNAME of
the Subroutine applied,

I6.1 - 16.5 Errors, Frames, eic.

|'!"I

148 The MDL Programming Language

16.3.1. ARGS
CARCS frame)

(Carguments”) returns the argument TUPLE of frame.

16.3.2. FUNCT
CFUNCT framed

("function”) returns the ATOM whose G/LVAL is being applied in frame.

16.3.3. FRAML (the SURR)

CFRAME 1ramed

returns the FRANC stacked hefore frame or, if there is none, it will generate an error. The oldest
(lowest) FRAML that can be returned without error has a FUNCT of TOPLEVEL. If called with no
arguments, FRAME returns the topmost FRAME used in an application of ERROR or LISTEN, which was I
bound by the interpreter to the ATOM LERRY !-INTERRUPTS (“last error®),

16.3.4. Examples

Say you have gotten an error. You can Hew type at ERROR's LISTEN loop and get things EVALed.
For example,

STUNCT <FRAMLCH>>%

[RROR

CEUNCT <FRAME <FRAME>>>$

the ~namc--m’-Hw-Eubrmm‘n:-wh:'ch-cmrd-f RROR:alom
CARGS <FRAME <FRAME)>»>$

the=argcuments-lo-the-Subr ouline-which-called-E RROR:tuple

16.4. ERRET
CERRET any frame)
This SUBR ("errar retuen®) (1) causes the control stack to be stripped down to the level of frame, and

(2) then returns any, The net result is that the application which generated frame is forced to return

16.3.1 - 16.4 Errors, Frames, ete.

The MDL I'rogramming Language 149

any. Additional side effects that would have happened in the absence of an error may not have
happencd,

The second argument to ERRET is optional, by default the FRAME of the last invocation of ERROR or
LISTEN.

If ERREL is called with no arguments, it drops you all the way down to the bottom of the contro}
stack - before the lovel-d LISTEN loop - and then calls LISTEN. As always, LISTEN first ensures that
MDL is receplive, _

Examples:
" 3 <+ a 12§

*ERROR®

ARG-WIONG~ TYPE

*

| TSTENING-AT-LCVEL 2 PROCESS 1
CARGS <FRAME <FRAME>>)>$

[a 1]
<CRRCT 5% +"This causes the + to return 5.*
15 :"Finally returned by the ="

Note that when you are in a call to ERROR, the most recent set of bindings is still in effect. This
means that you can examine values of dunnny variables while still in the error state. For example,

COEFINE F (A "AUX" (B *a string"))
fDECL ((VALUE) LIST (A) STRUCTURED (B) STRING)

(.0 <RCST .A 23) :"Return this LIST." >$
F

SF '(1)>%

*[RROR®

OUT-0F -BOUNDS

REST

LISTENING-AT-LCVEL 2 PROCESS 1

A%

(1)

BE

"a string"

CERRLCT '(5)> ; "Make the RCST return (5)."%
("a string" (5))

16.4 Errors, Frames, ete.

150 The MDL Programming Language

16.5. REIRY

CRETRY framed>

causes the contral stack 10 he stripped down Just beyond frame, and then causes the Subroutine call
that generated f7.0me 1o be done again. frame is optional, by default the FRAHE of the last invocation
of ERROR or LISTEN. RETRY differs from AGAIN in that (1) it is not intended to be used in programs;
(2) it can rerpy Any old frame (any Subroutine call), whereas AGAIN requires an ACTIVATION (PROG or
REPEAT or ACT*): and (3) if it retries the [VAL of a FORM that makes an ACTIVATION, it will cause
rebinding in the argumient LIST, thus duplicating side effects.

16.6. UNWIND

L

UNWIND is an [SUER that t1akes two ATElments, usually FORMs. It EVALs the first one, and, if the EVAL
returis normally, the value of the FVAL call is the value of UNWIND. If, however, during the EVAL a
non-local return attempts 1o return below the UNNIND FRAME in the control stack, the second
argument is CVALed, i1y value is ignored. and the non-local return is completed. The second
argument is evaluared in the enviconment that was present when the call to UNWIND was made. This
facility is wseful ror cleaning up dara bases that are in inconsistent states and for closing

femporary CHANNELs 1hat may be left around, FLOAD sets Up an UNWIND to close its CHANNEL if the
user attemipts to CRRET withou Finishing the FLOAD. Example:

<DEFINE CLEAN ACT ("AUX" (C <OPEN "READ® ™A FILE®}))
FDECL ((C) <OR CHANNEL FALSE> ey
CCOND (.C
CUNWIND <PROG () ... {CLOSE .C)»»
CCLOSE .C>>)»)

16.7. Control.G; (*6)

Typing contral.G; (76, <ASCIT 7)) at MDL causes it to act Just as if an error had occurred in
whatever was currently heing done. You can then examine the values of variables as above,
continue by applying ERRET to one argument (which is ignored), RETRY a FRAME Jower on the contro
stack, or flush cverything by applying ERRET 1o no arguiments. :

16,5 - 16.7 Errors, Frames, ete.

ety

The MDL Programming Language 151

16.8. Contral-S (*5)

Typing conirnl-§ ("5, <ASCII 195) at MDL causes it to stop what is happening and return to the

FRAME .LERR\ !=-INTERRUPTS, r:tanlng the ATOM T. (In the Tenex and Tops-20 versions, “0 also
has the same offeet,)

16.9. OVCRILOW

COVERFILOW false-or-any)

There is one crror that can be disabled: numeric overflow and underflow caused by the arithmetie
SUBRs (+, =, *, /). The SUBR OVERFLOW takes one argument: if it is of TYPE FALSE,
underfoverflow errors are disabled: otherwise they are enabled. The initial state is enabled.
OVERFLOW returns T or #FALSE (), reflecting the previous state. Calling it with no argument
returins the current state.

16.8 - 16.9 Errors, Frames, etc.

152 The MDL Programming Language i

Chapter 17. Macro-operations

17.1. READ Macros

1711 % and %%

The tokens % and %% are interpreted by READ in such a way as to give a "macro” capability to MDL
similar to I'L/I's. -

Wihenever READ encounters a single ¥ - anywhere, at any depth of recursion - jt immediately,
without looking at the rest of the input. evaluates the ob ject following the X. The result of that
evaluation is used by READ in place of the object following the %. That is, % means “don't really
READ this, use FVAI of it instead.” % is often used in files in front of calls to ASCII, BITS (which
see). erc.. although when the FUNCTION is compiled the compiler will do the evaluation if the
arguments are constant, Also seen is %.INCHAN, read as the CHANNEL in use during LOAD or FLOAD;
For example, <PUT %.INCIAN 18 8) causcs Succeeding FIXes 1o be read as octal.

Whenever READ encounters %X, it likewise immediately evaluates the ob ject following the %X.

However, it completely ignores the result of that evaluation. Side effects of that evaluation remain,
of course.

Example:

<DEFINC SETUP () <SET A 0>>%

SETUP
<DEFINE NXT () <SET A <+ .A 1228
HXT
[AXCSETUPY> RCNXTY %CNXT) (RACSETUPY) %CNXTD]S
(12()1] -
|
.

17 - 1711 Macro-operations I

The MDL Programming Language 153

17.1.2, LINK
CLINK exp:any steing oblist)

ereates an object of TYPE LINK, PRIMTYPE ATOM., A LINK looks vaguely like an ATOM; it has a
PHAML (the <trng argument), resides in an OBLIST (the oblist argument) and has a "value” (the exp
argument). A LINK has the strange property that, whenever it is encountered by READ (that is, its
PNAME is read, just like an ATOM, possibly with OBLIST trailers), READ substitutes the LINK's “value”

for the LIBK tmmediately. The effect of READing a LINK's PNAME is exactly the same as the effect of
reading its "value”,

The oblsl argument is optional, <1 .OBLIST) by default. LINK returns its first argument. The
LINK is created via TNSERT, so an error results if there is already an ATOM or LINK in oblist with the
same PHANL .

The primary wee of LINKs is in interactive work with MDL: expressions which are commonly used,

but annoyingly long to type, can be “linked” to PHAMEs which are shorter. The standard example is
the following:

CLINK '<ERRET> "~E" <ROOT})

which links the ATOM of PNAME “E in the ROOT OBLIST to the expression <ERRET>,

17.L.3. Program-lefined Macro-characters

During READing from an input CHANNEL or PARSEing a STRING, any character can be made to have
a special meaning. A character can cause an arbitrary routine to be invoked, which can then return
any number of clemcnts 1o be put into the object being built by READ, PARSE, or LPARSE.
Translation of characters is also possible, This facility was designed for those persons who want te
se MDIL READ 1o 1o large parts of their input but have to modify its actions for some areas: for

example. one might want to treat left and right parentlieses as tokens, rather than as delimiters
indicating a LIST,

I7.L.3.1, READ (Finally)

Assaciated with RICAD is an ATOM, RCAD-TABLE!-, whose Jocal value, if any, must be a VECTOR of
elements, one for each eharacter up 1o and including all characters to be treated specially. Each
element indicates, if not 0, the action to be taken upon READ's encounter with that character, A
stmilar VECTOR, the local value of PARSE=TABLEI-, if any, is used to find the action 1o take for
characters enconntered when PARSE or LPARSE is applied to a STRING,

These 1ables can have up 1o 256 elements, one for each ASCII character and one for each possible
exclamation-point/ASCl-character pair. In MDL. the exclamation-point is used as a method of

1702 - 17.1.3.1 Macro-operations

154 The MDL Programming Language

expanding the ASCH character set, and an exclamation-point/character pair is treated as one logical
character when no reading a STRING,

The clement corresponding to a character is NTH fable <+ 1 <ASCII ehar>>>. The element
corresponding 1o an exclamation-point/ASCIl-character pair is <NTH fable <+ 129 <ASCII char>>>,

The table can e shorter than 256 elements, in which case it is treated as if it were 256 long with 0
elements beyond ity actual length,

An element of the tabiles must satisfy one of the following DECL Patterns:
"0 indlicates that no special action is 10 be 1aken when this character is encountered.

CHARACTE R indicates that the encountered character is to be translated into the given CHARACTER
whenever it appears, exeept when as an object of TYPE CHARACTER, or in a STRING, or
immediately following a \,

FIX indicates thar the character is to be given the same treatment as the character with the
ASCIT value of the F1X. This allows you to cause other characters to be treated in the same
way as A-Z for example, The same exceptions apply as for a CHARACTER,

CLIST FIX3 indicates the same thing, except that the character does not by itsclf cause a break,

Therefove, if it occurs when reading an ATOM or number, it will be treated as part of that ATOM
or nwimhber,

APPLICAREL (1o one argument) indicates that the character is to be a break character. Whenever
i encountered, the reading of the current object is finished, and the corresponding element
of the table is APPLYed 1o the ASCGI CHARACTER. (1f READ is called during the application, the
end-of-file slor of the CHANNCL temporarily contains a special kind of ACTIVATION (TYPE
REARA) sn that end-ol-file can he signalled properly to the original READ. Isn't that
wonderful? The value returnied is taken 1o be what was read, unless an ob ject of TYPE SPLICE
is returned, 0 soc the elements of this ol ject, which is of PRINTYPE LIST, are spliced in at the
point where MDL is reading. An empty SPLICE allows one to return nothing. If a structured
object is not heing built, and a SPLICE is returned, elements after the first will be ignored. A
SPLICE during reading is similar 1o a SEGMENT during evaluating, except that, in some sense, a
SPLICE says “expand me”, whereas the structure containing a SEGHENT says "I will expand you".,

CLIST ARPLICARLEY indicates the same thing, except that the character does not by itself cause

a break. Therefore, if it nceurs when reading an ATOM or number, it will be treated as part of
that ATOH or number,

READ takes an additienal optional argument, which is what to use instead of the local value of the
ATOM RCAD=TABLE as the VECTOR of read-macro characters. If this argument is supplied, READ-TABLE

is rebound o it within the call to READ, READ takes from zero to four arguments. The fullest call to
READ is thus

17.1.3.1 Macro-operations

The MDL Programming Language

CREAD channe! cof=routine look-up read-lable:vectord

The other arguments are explained in sections 1LLLL 113, and 15.7.1.

ERROR and LISTEN rebind READ=TABLE 1o the GVAL of READ=-TABLE, if any, else UNASSIGN it.

17.1.3.2, Examples
Examples of each of the different kinds of entries in macro tables:

CSCT RCAD-TABLE <IVECTOR 256 0)>>%
Eessld

SPUT .READ-TABLE <+ 1 <ASCII I\a)) A
+ "CHARACTER: translate a to A."S§

abch

Abe

]

CPUT CREAD=TABLE <+ 1 <ASCII PARD> CASCII I\A»
- "FIX: make % just a norma) ASCII character."$
A%DCS
AVEBC
CPUT ,RCAD-TABLE <+ 1 <ASCII Y. 2> (<ASCII 1N 2)
i "CLIST FIX>: make comma no longer a break
character, but sti11 special if at a break."$
[.++]
ADRS
A\, B
i "That was an AT0M wilh PHAME A,B "
'.BS

.0
"That was the FORM <GVAL B> ,*

CPUT .READ-TABLE <+ 1 <ASCII A¥H}

FTUNCTION ((X) <LIST COLON CREAD22)>

"APPLICADLE: make a new thing 1ike (€ and [."§

[ona]
B:A
i
(COLON A)
:::FO03
(COLOW (COLON (COLON F0O)))

17.1.3.1- 17,182

Macro-operations

156 The MDL Programming Language

<PUT .RCAD-TABLE <+ 1 CASCIT 1\:)>
"(#FUNCTION ((X) <LIST coLon CREADD>))>
i "CLIST APPLICABLES: like above, but not a break

now,"$
[...]
H:ins
B:A _;'_.-.
P Thal was an ATOM, _
:2:700%

(COLON (COLON (COLON F00)))

17.1.5.3. PARSE and LPARSE (Finally)
CPARSE string radin look-up parse-lablevertor look-aheadichar acler>

is the Tullest call 16 PARSE . PARSC ean take from zero (o five arguments. If PARSE is given ne
ATgUIMeEnt it retiins the first ob jeet parsed from fhe Incal value of the STRING PARSE-STRING and ;
additionally SF1s paRSt -STRING 10 the STRING having those CHARACTERs Which were parsed RESTed ’
off. If PARSE is given a STRING 1a parse, the ATOM PARSE-STRING is rebound to the STRING within

that call. It the porce tabte Argument is given to PARSE, PARSE-TABLE is rebound (o it within that
call ta PARSI . Finally, PARSE can 1ake 2 fooh-ahead CHARACTER, which is freated as if it were

logically concatenared 10 the front of the string being parsed, Other arguments are described in
sections 7.6.6.2 and 15.7.2.

LPARSE is exactly like PARSE, except that it tries to parse the whole STRING, returning a LIST of
the ob jects created,

17.2. EVAL Macroy

An CVAL macrn Provides the convenience of a FUNCTION without the overhead of calling, SPECIALs,

ete. in the cotpiled version, A special-purpose function that is called often by FUNCTIONs that will
be compiled is 3 good candidate for an EVAL maero.

17.2.1. DEFMAC and I XPARD "

DEFMAC ("deline macro™ s symactically exactly the same as DEFINE. However, instead of crealing a

FUNCTTON, DITHAC creares a MACRO. A MACRO is of PRIMTYPE LIST and in fact has a FUNCTION (or 3
ather APPLICARI L IYPE) as i1s single element,
A MACRO can itself be Applicd to arguments, A MACRO is applied in a funny way. however: it js . I
<
17.13.2 - 17.2.1 Macro-operations

The MDIL. Programming Language 157

EVALed twice. The first CVAL causes the MACRO's clement to be applied to the MACRO's arguments,
Whatever that application returns (usually another FORM) is also EVALed. The result of the second
EVALuation is the vesult of applying the HACRO. EXPAND is used to perform the first EVAL without
the second.

To aveid eomplications, the first EVAL (by EXPAND, to create the ohject to be EVALed the second time
around) is done inoa top-devel enviromuent. The result of this policy is that two syntactically
identical invocations of a MACRO always return the same expansion to be EVALed in the second step.
The First TVAL gruerates two exrea TRAMEs: one for a call to EXPAND, and one for a call to EVAL the
MACRO application in a 1op-level environment,

Example:

COFFHAC INC (ATH "OPTIONAL® (N 1))
*DECL ((VALUE) FORM (ATM) ATOM (N) <OR FIX FLOAT>)
CFORM SCT .ATM <FORM + <FORM LVAL .ATH> .N3>>$

THEC

» LHCS

fIACRO (#FUNCTION ((ATM “OPTIONAL" (N 1 T

KSCT X 135

I

CINC X%

Z

X3

Fy

CEXPALD '"<1INC %>>$

CSET X ¢+ % 1%

Perhaps the imention is elearer if PARSE and % are used:
CDCFHAC INC (ATH "OPTIONAL" (N 1))
FNECL {...)
CPARSE “CSET WLATH <+ %.ATH %.03%3)
MACROs really exhibit their advantages when they are compiled. The compiler will simply cause the

first CVALuation to occur (via CXPAND) and compile the result. The single element of a compiled
MACRO is an RSUBR or RSUBR=ENTRY.

17.2.2, Example

Suppose you want 1o change the following simple FUNCTION to a MACRO:

COEFINE DOURLE (X) #DECL ((X) FIX) <+ .X .X>)

1720 - 17.2.2 Macro-operitions

158 The MDL Programming Language

You may be tempred to write:
COEFMAC DOUDBLE (X) #DECL ((X) FIX) <FORM + .X .X>>
This MACRO works, but only when the Arginment does not use temporary bindings. Consider

COEFING TRIPLE (Y) <+ .Y <DOUBLE .Y>>)

If this FUNCTION i applied, the top-level binding of Y is used, not the binding just created by the
application. Compilation of this FUNCTION would probably fail, because the compiler probably
would have no top-ievel binding for Y. Well, how about

COEFHAC DOUBLE ('X) <FORM + .X X% ;"The DECL has to go."

Now this is more like the ariginal FUNCTION, beeause no longer is the argument evaluated and the
result evaluated again, And TRIPLE works. But now consider

CDEFTHE INC-AND-DOUBLE (Y) <DOUBLE CSET Y <+ 1 Y29

You might hope tha

CINC-AND-DOUBLE 1> -» <DOUBLE <SET Y <+ 1 1>»
=2 <DOUBLC 2>
=2 %+ 2 2
=3 4

But. when DOUBLE is applied 1o that FORM, the argument is QUOTEM, so:
CINC-AND-DOUBLE 1> ~> <DOUBLE ¢SET ¥ <+ 1 .Y3)>
=2 CFORM + CSET ¥ <+ 1 Y>> <SET ¥ <1 .Y>»)

=2 <+ 2 3
=> 5

So. since the evaluation of DOUBLE'S arguiment has a side effect, you should ensure that the
evaluation is done exactly once, say by FORM:

CDEFMAC DOUBLE ('ANY)
CFORM PROG ((X .ANY)) #DECL ((X) FIX) '$+ X X33

As a banus, the DECL ean once more be used.

This example is intended 10 show that writing good MACROs is a little trickier than writing good
FUNCTIONs. But the effort may be worthwhile if the compiled program must be speedy.

17.2.2 Macro-operations

Y

The MDIL. Programming Language 159

Chapter 18, Machine Words and Bits

The MDL facility for dealing witl uninterpreted machine words and bits involves two data TYPEs:
WORD and BITS. A WORD is simply an uninterpreted machine word, while a BITS is a “pointer” to a

set of hits within a WORD, Operating on WORDs is usually done only when compiled programs are
used (chapter 19),

18.1. WORDs

A WORD in MDL is & PDP-10 machine word of 36 bits. A WORD always PRINTs in "# format”, and its
contents are always printed in octal (henee preceded and followed by *). Examples:

#WORD © "all 0s"§
"HORD *000000000000%

“WORN *2000" ;"one bit 1"§
#WORD *000000002000%

HWORD =025252525262 s"every other bit 1"$
"WORD =L2525250257252x

WORD s its own PRINTYPE; it is also the PRINTYPE of FIX, FLOAT, CHARACTER, and any other TYPE
which can it its data intn ane machine word,

A WORD cannol lie an argument to +, -, or indeed any SUBRs except for CHTYPE, GETBITS, PUTBITS
and several bit-manipulating functions, all to Le described below., Thus any arithmetic bit
manipulation must he done by CHTYPLing a WORD to FIX, doing the arithmetie, and then CHTYPEing
back to WORL. Tlnwever, bit manipulation can be done without CHTYPEing the thing to be played
with to a WORD, so long as it is of PRIMTYPE WORD; the result of the manipulation will be of the
same TYPC as the original objeet or can be CHTYPEM 1o it

18- 181 Machine Words and Bits

|60 The MDL Programming Language

18,2 BITS

An object of TYPE DITS is of PRIMTYPE WORD, and PRINTs just like a WORD. The internal form of a
BITS is precisely that of a PDP-10 "byte pointer™, which is, in fact, just what a BITS is.

For purposes of explaining what a BI1S is, assume that the bits in a WORD are numbered from right
to left, with the rightmost hit numbered 0 and the lefumost numbered 35, as in

da 34 33 ... 210
(This is not the "standard” ordering: the "standard” one goes from left to right.)
A BITS is most eonveniently created via the SUBR BITS:

CBITS wealh:fis rig-edgedix?

returns a BLHIS which “poinis 10" a set of hits width wide, with rightmost bit right-edge. Both
arguments muast he of TYPE FIX, and the second is optional, 0 by default.

Examples: the indicated application of BITS returns an object of TYPE BITS which points to the
indicated set of hits in a WORD;

<BITS 73 39 . 76 ... 0

<BITS 4 18> 3% ... 222120101817 ... 0

<BIIS 30> 39 ... 0

183. GE1BI1S
CGETRITS fromiprinl ype-word bils)

where /ron is an ob jeet of PRINTYPE WORD, returns a new object whose TYPE is WORD. This ob ject is
constructed in the following way: the set of bits in from pointed to by bits is copied into the new
ab ject, right-ad justed, that is, lined up against the right end (bit number 0) of the new object. All
thase hits of the new object which are not copied are set to zero. [n other words, GETBITS takes bits

from an arbitrary plice in frem and puts them at the right end of a new object. The from argument
to GETBITS is not alfected.

Examples:

182 - 183 Machine Words and Bits

The MDL Programming Language 161

CGETBITS <WORD %777777777777% <BITS 3)>%
YHWORD *000000000007*

CGLTRTTS *012315670123* <BITS 6 18))>%
#“WORD *000000000045=

T

CPUTRITS fowprimtype-weord bils from:priml ype-word?

where fo and from are of PRIMTYPE WORD, returns a copy of to, modified as follows: the set of bits

in fe which are pointed to by bits are replaced by the appropriate number of rightmost bits copied

from from (optional. 0 by default). In other words: PUTBITS takes bits from the right end of from

and stuffs thew jnto an arhitrary position in a copy of fo. None of the arguments to PUTBITS is
affected.

Ex:mp les:

CPUTBLIS #WORD %7777777717771% ¢BITS 6 3223
PWORD *777777777007x

CIUTRITS #WORD *66G777000111% ¢BITS 5 155 FWORD =123%>%
AWORD *G66776300111=

<PUTBITS #WORD 2765432107654 <BITS 18335
"WORD *7G5432000000%

18.5. Bitwise Boolcan Operations

Each of the SUBRs ANDE, ORR, XORE, and CQUB takes arguments of PRIMTYPE WORD and returns a
WORD which is the bitwise Boolean "and”, inclusive "or”, exclusive "or", or “equivalence” (inverse of
exelusive "or”l, respectively, of its arguments, Each takes any mumber of arguments. If no
argument is given, a WORD witl all bits of f (ORB and XORB) or on (ANDB and EQUB) is returned. 1f
only one argument is given, it is returned unchanged but CHTYPEd to a WORD. If more than two

arguments are given, the operator is applied to the first two, then applied to that result and the
third, ete. Be sure not 1o confuse AND and OR with ANDB and ORB.

183 - 185 Machine Words and Bits

e The MDL Programming La nguage

18.6. Ditwise Shifting Operations

SLSH fronuprindt ype-word amount:fixd

FeturFns & new WORD containing the bits in from, shifted the number of bits specified by amount (mod
256, says the hardware), Zero bits are brought in at the end being vacated: bits shifted out at the
other end are Inst. I amount is positive, shifting is 1o the lefy: if amount is negative, shifting is to
the right. Examples:

CISH 8 63§
#WORD *00000000)000%
CLSI 8 -6)%
*WORD *000000000000*

CROT frompr it ypo-werd amounifix

Feturns a new WORN containing the hits in from, ratated the number of bits specificd by amount (mod
256, says the hardware) Ratation is a cyclic hitwise shify where bits shifted out at one end are put
back in at ithe other. If amoun Is positive, rotation is to the lefts if amount is negative, rotation is to
the right. Examples:

CROT 8 nis
#WORD *000000001000"
<ROT 8 -65%
#WORD *100000000000%

18.6 Machine Words and Bits

The MDL Programming Language 163

Chapter 19. Compiled Programs

19.1. RSUBR (the TYPE)

RSUBRs (“relncatable subroutines”) are machine-language programs written to run in the MDL
enviromment. They are usually produced by the MDL assembler (often from output produced by the
compiler) although this is not necessary. All RSUBRs have two components: the "reference vector™
and the “cnde vector™, In some cases the code vector is in pure storage. There is also a set of
"fixups” associated with every RSUBR, although it may not be available in the running MDL.

19.2. The Reference Veetor

An RSUBR is basically a VECTOR that has been CHTYPEd to TYPE RSUBR via the SUBR RSUBR (see

below). This ex-VECTOR is the refercnee vector. The first three elements of the reference vector have
predefined meanings:

The first element is of TYPE CODE or PCODE and is the impure or j:rurn code vector respectively.
The sccond clement is an ATOM and specifies the name of the RSUBR.

The third element is of TYPE DECL and declares the type/structure of the RSUBR's arguments and
result.

The rest of the clements of the reference veetor are objects in garbage-collected storage that the
RSUBR needs ta reforence and any impure slots that the RSUBR needs to use,

When the RSUBR is running. one of the PDP-10 accumulators (with symbolic name R) is always
pointing to the reference vector, to perinit rapid access to the various eleinents.

19192 Compiled Programs

164 The MDL Programming Language

19.3. RSUBR Linkin
== OUUR Linking

RSUBRs can eall Any APPLICABLE ohject, all jn 2 uniformv manner. In general, a call to an F/SUBR is
linked up ay assembly/compile time so ha the calling instruction (UUO) points directly at the code
in the interpreter for fhe FISUBR. However, the locations of most other APPLICABLEs are not
known a1 assembly feompile time, Therefore, the calling UUO is set Up to point at a slot in the
reference vector (by indexing off dccumulator R). This slot initially contains the ATOM whose
G/LVAL is the calley ob ject. The calling mechanism (UUQ handler) causes control 1o be tra nsferred
1o the called ol ject and, depending on the state of the RSUBR-link flag, the ATOM will be replaced by
its G/LVALL (If the call is of the “quick™ variety, the called RSUBR or RSUBR-ENTRY will be CHTYPEd
[0 a QUICK-RSUBR or QUICK-ENTRY, respectively, before replacement.) Regardiess of the RSUBR-link
flag's state, calls 1o FURCTIONs are never permanently linked. A call to a fon-Subroutine generates
AN extra TRANE, whose FUNCT js the dummy ATOM CALLER.

RSUBRs are linked tngether for faster execution, but linking may not be desirable if the RSUBRs are
being debngged, ang various revisions are being re-loaded. A linkeg call will forever after Eo to the
same code, regardless of (e current G/LVAL of the called ATOM. Thus, while lesting RSUBRs, you
may want to disable linking, by calling the RSUBR-LINK SUgR with a FALSE argument. Calling it
with a non-FALSE Arguiient enables linking thereafter. It returns the previous state of the link flag,
cither T or #rALSE (). Calling it with no Argument returns the current state.

19.4. Pure and Linpure Code

The first element of Al RSUBR is the code vector, of TYPE CODE or PCODE. TYPE CODE is of
PRIMTYPE UVECTOR, and the UTYPE should be of PRIMTYPE WORD. The code vector is simply a block
of words thar are the instriictions whiel, comprise the RSUBR. Since the code vector is stored Just
like a standard UVECTOR, it will be moved araund by the garbage collector, Therefore, all RSUBR
code is required 1o le location-insensitive, Tie compiler guarantees the Iuﬂtinn-inumitivil}r of its
output, The assembler helps 10 make the code location-insensitive by defining all labels as offsets
relative to the heginning of the code vector and causing instructions that refer to labels 1o index
automatieally of f 1the PRP-10 Accumulator symbolically named M. M, Jike R, is set up by the UUO
handler, but | Points to the code vector instead of the reference vector. The code vector of an
RSUBR can be frozen (Hsing the FREEZE SUBR) to prevent it from moving during debugging by DDT
in the superiar Aperating-system process.

If the firs element of an RSUBR is of TYPE PCODE ("pure code”), the code vector of the RSUBR is pure
and sharable. TYPE PCODE s of PRIMTYPE WORD. The left half of the word specifies an offset into
an internal table of [ure RSUDRs, and the right half specifies an of fset into the block of code where
this RSUBR starts. The PCODE prints out as;

#CPCODE name:string offseldixd

193 - 19.4 Compiled Programs

3 Hm!._ﬁk!" —

S BT el

The MDL Programming Language 165

where name names the entry in the user’s pure-RSUBR table, and offset is the offset. (Obviously,
PCODE is also the wme of a SUBR, which generates a pure code vector.) Pure RSUERs may also move
around, Lut only by being included in MDL's page map art different places. Once again M can be
used exactly as liefore 1o da lacation-independent address referencing. Individual pure code vectors
can be “wnmapped” (marked as heing not in primary storage but in their original pure-code disk
files) if the space in storage allocated for pure code is exhansted. An unmapped RSUBR is mapped in
again whenever needed. All pure RSUBRs are unmapped before a SAVE file is written, so that the
code is not duplicated on disk. A purified RSUBR must use RGLOC ("relative GLOC") instead of GLOC.
RGLOC praduces objects of TYPE LOCR instead of LOCD,

19.5. TYPE-C and TYPE-V

In order (o handle user NCWTYPCs reasonably, the internal TYPE codes for them have to be able to be
dif ferent from one MDL run to another, Therefore, references to the TYPE codes must be in the
reference veetor vather than the eode vector. To lielp handle this problem, two TYPEs exist, TYPE-C
("type code”) and TYPE-W ("type word"), both of PRIMTYPE WORD. They print as:

UCTIYPE=-C lype primtypeiatom)
RCTYPE=W (ype primlype:atom?

The SURR TYPE-C produces an internal TYPE code for the fype, and TYPE=W produces a prolotype
"TYPE word” (appendix 1) for an object of that TYPE. The primiype argument is optional, included
only as a check against the call 1o NEWTYPE. TYPE-W can also take a third argument, of PRIMTYPE
WORD, whonse right half is included in the generated "TYPE word”. If fype is not a valid TYPE, a
NEWTYPT is autowmatically done,

To be complete, a similar SUBR and TYPE should be mentioned here.
CPRINTYPT-C Fyped
produces an internal "storage allocation cnde” (appendix 1) for the type. The value is of TYPE

PRIMTYPL-C, PRINTYPE WORD. In alwost all cases the SUBR TYPEPRIM gives just as much

information, except in the case of TCMPLATCs: all TYPEs of TEMPLATEs have the same TYPEPRIM, but
they all have dif ferent PRIMTYPE=Cs.

19.6. RSUBR (the SUBR)
CRSURR [rode name decl ref ref ...]>

CHTYPEs its argument to an RSUBR, after checking it for legality, RSUBR is rarely called other than

19.4 - 19.6 Compiled Programs

166 The MDL Programming Language
in the MDL Assembler (Lebling. 1979). It can be used if changes must be made to an RSUBR that are
prohibited by MDL's built-in safety mechanisms, For example, if the GVAL of name is an RSUBR -

CSET FIXIT <CHTYPE ,name VECTORD>S
[...]

++«(ehanges to FIXITY...

(SETG name <RSUBR FIKITH>S
#RSUBR [...]

19.7. RSURR-ENTRY

RSUBRs can have multiple entry points. An RSUBR-ENTRY ean be applied to arguments exactly like
an RSUBR,

C{RSUBR-ENTRY [rsubr-or-atom name:alom decl] offset:fix)

returns the VECTOR argument CHTYPEG 10 an RSUBR-ENTRY into the rsubr at the specified offsel, If
the RSUBR-ENTRY is to have a DECL (RSUBR style), it should come as shown.

CENTRY-LOC rsubr-enlry>

("entry location”) returns the offset into the RSUBR of this entry.

19.8. RSUBRs in Files

There are three kinds of files that can contain RSUBRs, identified by second names BINARY, NBIN
and FBIN. Therc is nothing magic about these fames, but they are used by convention,

A BINARY file is a completely ASCII file containing complete impure RSUBRs in character
representation. Even a code vector appears as #CODE followed by a UVECTOR of PRIMTYPE WORDs.
BINARY files are gencerally slow to load, because of all the parsing that must be done.

An NBIN file contains a mixture of ASCII characters and binary code, The start of a binary
portion is signalled 1o READ by the character control-C, so naive readers of an NBIN file on ITS may
incorrectly assume that it ends before any binary code appears. An NBIN file cannot be edited with

& Lext editor. An RSUBR is written in NBIN format by being PRINTed on a "PRINTB™ CHANNEL. The
RSUBRs in NBIN files are no purified either.

196 - 19.8 Compiled Programs

't

The MDL Programming Language 167

An FBIN file is actually part of a triad of files. The FBIN file(s) itself is the impure part of a
collection of purified RSURRs. It is simply ASCII and can be edited at will. (Exception: in the ITS
and Tops-20 versions, the first object in the file should not be removed or changed in any way, lest
a "grim reaper” program for FBIN files think that the other files in the triad are obsolete and delete
them.) The pure code itsell resides (in the ITS and Tops-20 versions) in a special large file that
contains all curvently-used pure code, or (in the Tenex version) in a file in a special disk directory
with first name the same as the name argument to PCODE for the RSUBR. The pure-code file is page-
mapped directly into MDL storage in read-only mode. 1t can be unmapped when the pure storage
must be reclaimed, and it can be mapped at a different storage address when pure storage must be

compacted. There is also a "fixup” file (see below) or portion of a file associated with the FBIN to
round out the triad.

An initial MDL can have pure RSUBRs in it that were "loaded” during the initialization procedure.

The files are not page-mapped in until they are actually needed. The “Imﬂlng' has other side
effects. such as the creation of OBLISTs (chapter I15). Exactly what is pre-loaded is outside the scope
of this document.

19.9. Fixups

The purpose of "fixups” is to correct references in the RSUBR to parts of the interpreter that change
from one release of MDL to the next. The reason the fixups contain a release number is so that

they can be completely ignored when an RSUBR is loaded into the same release of MDL as that from
which it was last written out.

There are three forms of fixups, corresponding to the three kinds of RSI.IIHII files. ASCII RSUBRs,

found in BINARY files, have ASCII fixups. The fixups are contained in a LIST that has the
following format:

(MDL-releaso:fix
name:atom valuedix (usedix usedix ...)
namealom valuediv (usediv usedix ...)

ves)

The fixups in NBIN files and the fixup files associated with FBIN files are in a fast internal format
that looks like a UVECTOR of PRIMTYPE WORDs,

Fixups are usually discarded after they are used during the loading procedure, However, if, while
reading a BINARY or NBIN file the ATOM KEEP-FIXUPS!~ has 2 non-FALSE LVAL, the fixups will be
kept. via an association between the RSUBR and the ATOM RSUBR. It should be noted that, besides
correcting the code, the fixups themselves are corrected when KEEP-FIXUPS is bound and true. Also,

the assembler and compiler make the same association when they first create an RSUBR, so that it
can be written out with its fixups.

19.8-19.9 Compiled Programs

168 The MDL Programming Language

In the case of pure RSUBRs (FBIN files), things are a little different. If a pure-code file exists for
this release of MDL. it is used immediately, and the fixups are completely ignored. If a pure-code
file for this release docsn't exist, the fixup file is used to create a new copy of the file from an old
one. and also a new revision of the fixup file is created to go with the new pure.code file. This all
goes on automatically behind the user's back.

19.9 Compiled Programs

=T e

it Y

[

- —

The MDL Programming Language 169

Chapter 20. Coroutines

This chapter purports to explain the coroutine primitives of MDL. It does make some attempt to

explain coroutines as such, but only as required to specify the primitives, If you are unfamiliar
with the basic cancepts, confusion will probably reign.

A coroutine in MDL is implemented by an ob ject of TYPE PROCESS. In this manual, this use of the

word “process” is distinguished by capitalization from its normal use of denoting an operating-
system process (which various systems call a process. job, fork, task, ete.),

MDL's built-in coroutine primitives do not include a “time-sharing system"., Only one PROCESS is
ever running al a time, and control is passed back and forth between PROCESSes on a coroutine-like
basis. The primitives are sufficiont, however, to allow the writing of a "time-sharing system” in
MDL, with the additional use of the MDL interrupt primitives. This has, in fact, been done.

20.1. PROCESS (the 1YPE)

A PROCESS is an abject which contains the "current state” of a computation. This includes the
LVALs of ATOMs ("hindings”), "depth” of functional application, and “position” within the application
of each applicd function. Some of the things which are not part of any specific PROCESS are the
GVALs of ATOMs. assaciations (ASOCs), and the contents of OBLISTs. GVALs (with OBLISTs) are a chief
means of communication and sharing between PROCESSes (all PROCESSes can refer to the SUBR which

is the GVAL of +, for instance). Note that an LVAL in one PROCESS cannot easily be directly
referenced from another PROCESS.

A PROCESS PRINTs as #PROCESS p. whcre p is a FIX which uniquely identifies the PROCESS; p is the
"PROCESS number” typed out by LISTEN. A PROCESS cannot be read in by READ.

The term “run a PROCESS" will be used below to mean “perform some computation, using the
PROCESS to record the intermediate states of that computation”.

N.B.: A PROCESS is a rather Jarge ob ject; creating one will often cause a garbage collection.

20 - 20.1 Coroutines

170 The MDL Programming Language

20.2. STATE of a PROCESS

<STATE process)

returns an ATOM (in the ROOT OBLIST) which indicates the "state” of the PROCESS process. The ATOMs
which STATE can return, and their meanings, are as follows:

RUNABLE (sic) -- process has pever ever been rup,

RUNNING -- process is currently ru nning, that is, it did the application of STATE.
RESUMABLE -~ process has been Fun, is not currently Funning, and can run again,
DEAD -. Process has been run, but it can 1Ot run again; it has “terminated™.

In addition, an interrupt (chapter 21) can be enabled to detect the time at which a PROCESS becomes

"blocked” (waiting for terminal input) or "unblocked" (terminal input arrived). (The STATE BLOCKED
has not been implemented,)

20.3. PROCESS (the SUBR)

CPROCESS starter wapplicable

creates and returns a new PROCESS but does hol run it} the STATE of the returned PROCESS is
RUNABLE (sie).

starter is something applicable 1o One argument, which must be evaluated, starfer is used both in

starting and “terminating” a PROCESS. In particular, if the slarter of a PROCESS ever returns a
value, that PROCESS becomes DEAD,

20.4. RESUME

The SUBR RESUME is used 10 cause a coimputation to start or to continue running in another
PROCESS. An application of RESUME looks ike this:

CRESUME rotvalian Y procosed

where retval is the “returned valye" (sce below) of the PROCESS that does the RESUME, and process is
the PROCESS to be started or continued,

20.2 - 20.4 Coroutines

The MDL Programming Language 171

The process arguinent to RESUME is optional, by default the last PROCESS, if any, to RESUME the
PROCESS in which this RESUME is applied. If and when the current PROCESS is later RESUMEd by
another PROCESS, that RESUME's refval is returned as the value of this RESUHE .

20.5. Switching PROCESSes

———

20.5.1. Starting Up a New PROCESS

Let us say that we are running in some PROCESS, and that this original PROCESS is the GVAL of PO.
Somewhere, we have evaluated

<SETG P1 <PROCESS ,STARTER)>>

where ,STARTLR is some appropriate function. Now, in ,P0, we evaluate
<RESUME .A ,P1>

and the following happens:

(1) In ,PO the arguments of the RESUME are evaluated: that is, we get that LVAL of A which is
current in ,P0 and the GVAL of P1,

(2) The STATE of PO is changed to RESUMABLE and ,PO is "frozen” right where it is, in the
middle of the RESUME .

(3) The STATE of ,P1 is changed to RUNNING, and ,STARTER is applied to ,P0's LVAL of A in
+Pl. Pl now continues on its way, evaluating the body of ,STARTER.

The .A in the RESUME could have been anything, of course. The important point is that, whatever it
is, it is evaluated in ,Po0.

What happens next depends, of course, on what +STARTER does,

20.5.2, Top-level Return

Let us initially assume that ,STARTER does nothing relating to PROCESSes, but instead simply
Feturns a value -- say starval, What happens when ,STARTER returns is this:

(1) The STATE of ,P1 is changed to DEAD. ,P1 can never again be RESUMEG.

20.4 - 20.5.2 Coroutines

172 The MDL Programming Language

(2) The last PROCESS to RESUME Pl is found, namely ,P0, and its STATE is changed 1o
RUNNING.

(3) starval is returned in ,P0 as the value of the original RESUME, and , PO continues where it
left off.

Allin all, this simple case looks Just like an elaborate version of applying ,STARTER to .A in , PO,

20.5.3. Symmetrie RESUMEing

Now suppose that while still in +P1 the following is evaluated, either in »STARTER or in something
called by ,STARTER:

C(RESUME .BAR ,Pp>
This is what happens:
(1) The arguments of the RESUME are ¢valuated jn ,pPl.

(2) The STATE of ,P] is changed to RESUMABLE, and ,P1 is "frozen” right in the middie of the
RESUME .

(3) The STATE of ,P0 is changed to RUNNING, and ,P1's LVAL of BAR is returned as the value of
PO's original RESUME. PO then continues right where it left off.

This is the Interesting case, because ,P0 can now do another RESUME of ,P1; this will "turn of f”
PO, pass a value to ,P] and “turn on” ,P1. ,P1 can now again RESUME ,P0, which can RESUME
+P1 back again, ete. ad hauseans. with everything done in a perfectly symmetric manner. This can
obviously also be done with 1hree or more PROCESSes in the same manner.

Note how this differs from normal functional application: you cannot “return” from a function

without destroying the state that Function is in. The whole point of PROCESSes is that you can
“return” (RESUME), remembering your state, and later continue where you left off,

20.6. Example

20.5.2 - 20.6 Coroutines

- .-f_:_:._,_ DL Programming Language 178

.#Initially, we are in LISTEN in some PROCESS."
¢DCFINE SUM3 (A)
#DECL ((A) <OR FIX FLOAT>)
¢REPEAT ((5 .A))
#DECL ((S) <OR FIX FLOAT>)
¢SET 5 <+ .5 {RESUME "GOT 1">>>
¢SET § <+ .5 <RESUME "GOT 2">»
{SET 5 {RESUME .5>>»>%
SUM3
:"SUM3, used as the startup function of another PROCESS,
gets RESUMEd with numbers. It returns the sum of the last
three numbers 1L was given every third RESUME.®
¢SETG SUMUP <PROCESS ,5UM3>>3
#PROCESS 2
:"Now we start SUMUP and give SUM3 its three numbers.®
¢RESUME § ,SUMUP>3
"GOT 1"
CRESUME 1 ,SUMUP>S
*60T ¢
¢RESUME 2 ,SUMUP>3
8

~ Just as a note, by taking advantage of MDL's order of evaluation, SUM3 could have been written as:
{DEFINE SUM3 (A)
CREPEAT ((S .A))

#DECL ((A S) <OR FIX FLOAT>)
(SET 5 <RESUME <+ .S <RESUME "GOT 1"> <RESUME "GOT 2">>>>>>

20.7. Other Coroutining Features

20.7.1. BREAK-SEQ

CBREAK=5LQ any process?
("break evaluation sequence”) returns process, which must be RESUMABLE, after having modified it
_ 50 that when it is next RESUMEG, it will first evaluate any and then do an absolutely normal RESUME;
the value returned by any is thrown away, and the value given by the RESUME is used normally.
If a PROCESS is BREAK-SEQed more than once between RESUMES, all of the anys BREAK-SEQed onto it
will be remembered and evaluated when the RESUME is finally done. The anys will be evaluated in

20.6 - 20.7.1 Coroutines

174 The MDL Programming Language

“last<in first.out” order. The FRAME generated by EVALing more than one any will have as its FUNCT
the dummy ATOM BREAKER.

20.7.2. MAIN

When you initially start up MDL, the PROCESS in which you are running is slightly “special® in
these two ways:

(1) Any attempt to cause it to become DEAD will be met with an error,

(2) <MAIN> always returns that PROCESS.

The PROCESS number of <MAIN> is always 1. The initial GVAL of THIS-PROCESS is what MAIN always
returns, #PROCESS 1.

20.7.3. ME

(ME>

returns the PROCESS in which it is evaluated. The LVAL of THIS=-PROCESS in a RUNABLE (new)
PROCESS is what ME always returns.

20.7.4. RESUMER
{RESUHER process>

returns the PROCESS which last RESUMEd process. If no PROCESS has ever RESUMEd process, it returns

#FALSE (). process is optional, <ME> by default, Note that {MAIN> does not ever have any resumer.
Example:

{PROG ((R <RESUMER})) ;"not effective in <HAIN>*®
#DECL ((R) <OR PROCESS FALSE>)
C{AND .R

(=27 {(STATE .R> RESUMABLE>
CRESUME T .R»2>

20.7.5. SUICIDE

CSUICIDE relval process?

20.7.1 - 20.7.5 Coroutines

" The MDL Programming Language 7%

acts just like RESUME, but clobbers the PROCESS (which cannot be {MAIN?) in which it is evaluated to
the STATE DEAD.

20.7.6. 1STEP

{1STEP process>
returns process, after putting it into “single-step mode”,

A PROCESS in single-step mode, whenever RESUMED, runs only until an application of EVAL in it
begins or Finishes. At that point in time, the PROCESS that did the 1STEP is RESUMEd, with a retval
which is a TUPLE. [If an application of EVAL just began, the TUPLE contains the ATOM EVLIN and

the arguments to EVAL. I an application of EVAL just finished, the TUPLE contains the ATOM
EVLOUT and the result of the evaluation.

process will reimain in single-step mode until FREE-RUN (below) is applied to it. Until then, it will
stop beflore and after each EVAL in it. Exception: if it is RESUMEd from an EVLIN break with a refval
of TYPE DISMISS (PRIMTYPE ATOM), it will leave single-step mode only until the current call to

EVAL is about to return. Thus lower-level EVALs are skipped over without leaving the mode, The
usefulness of this mode in debugging is obvious.

20.7.7. FREE-RUN

CFREE-RUN process>

takes its argument out of single-step mode. Only the PROCESS that put process into single-step
mode can take it out of the mode: if another PROCESS tries, FREE=RUN returns a FALSE.

20.8. Sneakiness with PROCESSes

FRAMEs, ENVIRONMENTs, TAGs, and ACTIVATIONs are specific to the PROCESS which created them, and
each "knows its own father”. Any SUBR which takes these objects as arguments can take one which

was gencrated by any PROCESS, no matter where the SUBR is really applied. This provides a rather
sneaky means of crossing between PROCESSes. The various cases are as follows:

ECI RETURN, AGAIN, and ERRET, given arguments which lie in another PROCESS, each effectively
“restarts” the PROCESS of its argument and acts as if it were evaluated over there. If the PROCESS in
which it was executed is later RESUMEM, it returns a value just like RESUME!

SET, UNASSIGN, BOUND?, ASSIGNED?, LVAL, VALUE, and LLOC, given optional ENVIRONMENT

20.7.5 - 20.8 Coroutines

176 The MDL Programming Language

arguments which lic in anotlier PROCESS, will gleefully change, or return, the local valyes of ATOMs
in the other PROCESS. The eptional argument can equally well be 3 PROCESS, FRAME, of
ACTIVATION in another PROCESS; in those cases, each uses the ENVIRONMENT which is current in the
Place specified,

FRAME, ARGS, and FUNCT will be g§lad to return the FRAMEs, argument TUPLEs, and applied
Subroutine names of anotler PROCESS, If one is given 3 PROCESS ﬁnr:fuding CME>) as an argument
instead of 3 FRAME, it returns all or the appropriate part of tje lopmost FRAME on that PROCESS's
control stack.,

If EVAL is applied in PROCESS P1 with an ENVIRONMENT argument from a PROCESS P2, it will do the
evaluation in Pl but witl P2’s ENVIRONMENT (). That is, the other PROCESS's LVALs, ete. will be used,
but (1) any Dew FRAMCs needed in the course of the evaluation will pe created in P1; and (2) Pl will
be RUNNING .. por po. Note the following: if the EyaL in Pl Eventually causes a RESUME of P2, P2
could f Unctionally retury 1o below the point where the ENVIRONMENT used in Pl is defined; a RESUME
of P1 at this Point would cause ay error due to an invalid ENVIRONMENT. (Once again, LEGAL? can
be used to foresta)| this.)

20.9. Final Natos

() A RESUMABLE PROCESS can be used in place of ap ENVIRONMENT in ANy application. The
“eurrent” ENVIRONMENT of 1o PROCESS is effectively used.

(2) FRAMEs and ENVIRONMENTs can be CHTYPEd arbitrarily to one another, or an ACTIVATION can be
works", Historically, these different TYPEs were first used
with different SUBRs - FRAME witly ERRET, ENVIRONMENT with LVAL, ACTIVATION with RETURN ~

(3) Bugs in Mmulti-PROCESS Programs usually exhibit g degree of subtlety and nastiness otherwise
unknown to the human mind. 1If when attempting to work with multiple PROCESSes You begin to
feel that you are rapidiy going insane, You are in good company,

208 - 209 Coroutines

The MDL Programming Language 177

Chapter 21. Interrupts

~~ The MDL interrupt-handling facilities provide the ability to say the following: whenever lhil

aﬁ:m occurs, stop whatever is being done at the time and perform "this :ntiun : when "this action”™

4 :li finished, continte with whatever was originally being done. “This event” can be things like the

¢ typing of a character at a ferminal, a time interval ending, a PROCESS becoming blocked, or a

- program-dcfined and -gencrated “event”. "This action” is the application of a specified APPLICABLE

~ ohject to arguments provided by the MDL interrupt system. The sets of events and actions can be

ey changed in extremely flexible ways, which accounts for both the variety of SUBRs and arguments,

~and the rich interweaving of the topics in this chapter. Interrupt handling is a kind of parallel

- processing: a program can be divided into a "main-level” part and one or more interrupt handlers
that execute only when conditions are ripe.

2L.1. Definitions of Terms

An interrupt is not an object in MDL, but rather a class of events, for example, “ticks” of a clock,
garbage collections, the typing of a character at a terminal, ete.

An interrupt is said occur when one of the events in its class takes place.

An external interrupt is one whose oceurrences are signaled to MDL by the operating system, for
example, "ticks” of a clock. An internal interrupt is one whose occurrences are detected by MDL
itself, for example, garbage collections, MDL can arrange for the operating system not to signal

occurrences of an external interrupt to it: then, as far as MDL is concerned, that interrupt does not
occur,

Each interrupt has a name which is either a STRING (for example, *6C*, "CHAR®, "WRITE") or an
| ATOM with thar PNANE in a special OBLIST, named INTERRUPTS!- . (This OBLIST is returned by
1 CINTERRUPTS>.) Certain names must always be further specified by a CHANNEL or a LOCATIVE to
tell which interrupt by that name is meant.

i When an intereupt occurs, the interpreter looks for an association on the interrupt's name. If there

Is an association, its AVALUE should be an IHEADER, which heads a list of actions to be performed.
In each IHEADER is the name of the interrupt with which the IHEADER is or was associated.

21 « 211 Interrupts

178 The MDL Programming Language

In each THEADER is an element telling whether it is disabled. If an THEADER is disabled, then none of
its actions is performed, The opposite of disabled is enabled. It is sometimes useful to disable an
THEADER temporarily, but Femoving its association with the interrupt’s name is better than long-

term disabling. There are SUDRs for creating an IHEADER, associating it with an interrupt, and later
removing the association,

In each IHFADER js a priority, a FIX greater than 0 which specifies the interrupt's “importance”,
The processing of 2 higher-priority (larger-numbered) interrupt will supersede the processing of a
lower-priority (smaller-numbered) intercupt until the high-priority interrupt has been handled.

In each THEADER is a (possibly empry) list of HANDLERs. (This list is not a MDL LIST.) Each

HANDLER corresponds to an action 1o perforin. There are SUBRs for creating a HANDLER, adding it to
an IHEADCR's list, and later removing it.

In each HANDLER is a function that we will eall a handler (in lower case), despite possible confusion,
because that is really the best name for it An action consists of applying a handler to arguments
supplied by the interrupt system. The number and meaning of the arguments depend on the name

of the interrupt. In cach HANDLER is an element telling in which PROCESS the action should be
performed. '

21.2. EVENT
CEVENT name priority which)

creates and returns an enabled IHEADER with no HANOLERs. The name may be an ATOM in the
INTERRUPTS OBLIST or a STRING: if i1 is 4 STRING, EVENT does a LOOKUP or INSERT in

CINTERRUPTS>. If there already is an IHEADER associated with name, EVENT just returns it, ignoring
the given priority,

which must be given only for certain names:

It must be a CHANNEL if and only if name is "CHAR" (or CHAR! ~INTERRUPTS). In this case it is
the input CHANNEL from the (pseudo-)terminal or Network socket whose received characters will
cause the interrupt to oceur, or the output CHANNEL to the pseudo-terminal or Network socket

whose desired characters will cause the interrupt to occur. (See below. Pseudo-terminals are not
available in the Tenex and Tops-20 versions.)

The Argument must be a LOCATIVE if and only if name is "READ* (or READ! -INTERRUPTS) or

"WRITE" {or WRITE!-INTERRUPTS). In this case it specifies an object to be "monitored” for
usage by (interpreted) MDL programs (section 21.8.9)

If the intereupt is external, MDL arranges for the operating system to signal its occurrences.

2L1- 212 Interrupts

e =

¥
e MDL Programming Language 179

.

-

®
nil
L

* 91.3. HANDLER (the SUBR

N ¢HANDLER iheader applicable process)

S tes a HANDLER, adds it to the front of iheader's HANDLER list (first action to be performed), and
~ ceturns it as a value. applicable may be any APPLICABLE object that takes the proper number of

~ arguments. (None of the arguments can be QUOTEd: they must all be evaluated at call time.) process
- is the PROCESS in which the handler will be applied, by default whatever PROCESS was running when
 the interrupt occurred,

 The value returned by the handler is ignored, unless it is of TYPE DISMISS (PRIMTYPE ATOM), in
which case none of the remaining actions in the list will be performed.

 The processing of an interrupt's actions can terminate prematurely if a handler calls the SUBR
 DISMISS (sce below).

21.4. OFF

COFF iheader?

removes the association between iheader and the name of its interrupt, and then disables iheader and
returns it. (An error occurs if there is no association.) If the interrupt is external, MDL arranges for
. the operating system not to signal its occurrences.

COFF name which?»

finds the IHEADER associated with name and proceeds as above, returning the IHEADER. which must

be given nnly for certain names, as for EVENT. Caution: if you <OFF "CHAR™ ,INCHAN>, MDL will
become deaf.

COFF hamdler

i returis handler after removing it from its list of actions. There is no effect on any other HANDLERs
‘ in the list,
| i Now that you know how 1o remove IHEADERs and HANDLERs from their normal places, you need to

\ know how to put them back:
LEVENT ihcader 2
i If iheader was previously disabled or disassociated from its name, EVENT will associate and enable it.

<HANDLER iheader handler)

21.3-214 Interrupts

180 The MDL Programming Language

If handler was previously removed from its list, HANDLER will add it to the front of iheader's list of
actions. Note that process cannot be specified.

21.5. THEADER and HANDLER (the TYPEs)

Both these TYPEs are of PRIMTYPE VECTOR, but they do not PRINT that way, since they are self-
referencing. lnstead they PRINT as

#type mosl-inleresting-element

The contents of IHEADERs and HANDLERs can be changed by PUT, and the new values will then
determine the behavior of MDL.

Before describing the elements of these TYPEs in detail, here are a picture and a Pattern, both
purporting to show liow they look:

#IHEADER [name:atom or which

disabled?

Memrmmmmaaas ? PHANDLER [®=ccecemna=s ? #HANDLER [#HANDLER []

Priority] {-c-==meecces. ® e -R
applicable | applicable
process] {==cccaay process)

<IHEADER <OR ATOM CHANNEL LOCATIVE>
COR '#LOSE 0 '#LOSE -1

CHANDLER HANDLER <OR HANDLER IHEADER} APPLICABLE PROCESS>
FIX>

21.5.1. THEADER
The elements of an TICADER are as follows:
(I} name of interrupt (ATOM, or CHANNEL if the name is "CHAR"™, or LOCATIVE if the name is
"READ"™ or "WRITE")
(2) non-zero if and only if disabled
(3) First HANDLER, if any, else a zero-length HANDLER
(4) priority
If you lose track of an THEADER, you can get it via the association:

For "CHAR" interrupts, <GET channel INTERRUPT) returns the IHEADER or #FALSE () If there is

214 - 2151 Interrupts

The MDL Programiming Language 181

no association: <EVENT "CHAR® 0 channel> returns the IHEADER, creating it if there is no
association,

For "READ" interrupits, <GET focalive READ!=INTERRUPTS) returns the IHEADER or #FALSE () if

there is no association: <CVENT "READ" 0 /ocalive) returns the THEADER, creating it if there is
no association,

For "WRITE" imterrupts, <GET focative WRITE!-INTERRUPTS> returns the IHEADER or #FALSE ()
if there is no associations <CVENT "WRITE" 0 locative® returns the IHEADER, creating it if there
i$ NO assaciation,

Otherwise, the THEADER is PUT on the name ATOM with the indicator INTERRUPT. Thus, for
example, <GET CLOCK!-INTERRUPTS INTERRUPT> returns the IHEADER for the clock interrupt or

#FALSE () if there is no association: <EVENT "CLOCK"™ 0% returns the IHEADER, creating it if
there is no association,

21.5.2. HANDLER

A HANDLER specifics a particular action for a particular interrupt. The elements of a HANDLER are as
follows:

(1) mext HANDLER if any, else a zero-lengih HANDLER

(2) previous IIANDLLR or the THEADCR (Thus the HANDLERs of a given interrupt form a “doubly-
linked list” chaining between each other and back to the IHEADER .}

(3) handler to be applied (anything APPLICABLE that evaluates its arguments -- the application
is done not by APPLY but by RUNINT, which can take a PROCESS argunent: see next line)

(4) PROCESS in which the handler will be applied, or #PROCESS 0, meaning whatever PROCESS
was running when the interrupt oceurred (In the former case, RUNINT is applied to the handler
and its arguwiments in the currently running PROCESS, which causes an APPLY in the PROCESS
stored in the HANDLER, which PROCESS must be RESUMABLE. The running PROCESS becomes

RESUMABLE, and the stored PROCESS becomes RUNNING, but no other PROCESS variables (for
example RESUMECR) are changed.)

2L.6. Other SUBRs

{ON name applicable priorily:fix process which?

is equivalent to

21.5.1 - 21.6 Interrupts

182 The MDL Programming Language
CHANDLER <EVENT name priority whichy
applicable process)

ON is a combination of EVENT and HANDLER: it creates (or finds) the THEADER, associates and enables
it, adds a HANDLER to the front of the list (first to e performed), and returns the HANDLER.

CDISABLE theader>

is effectively <PUT iheader 2 #LOSE =15, Actually the TYPE LOSE is umimportant, but the -1
signifies that iheader is disabled.

CENABILE iheader)

is effectively <PUT iheader 2 #LOSE 0). Actually the TYPE LOSE is unimportant, but the 0
signifies that iheader is enabled.

217, Priorities and Interrupt Levels

At any given time there is a defined intercupt level. This is a FIX which determines which
interrupts can really “interrupt”™ <« that is, cause the eurrent processing to be suspended while their
wants are satisfied. Normal, non-interrupt programs operate at an interrupt level of 0 (zero). An
interrupt is processed at an interrupt level equal to the interrupt's priority.

21.7.1. |I'|1frrtl|;ﬂ Frm'.maillg

Interrupts “actually™ occur only at well-defined points in time: during a call to a Subroutine, or at
critical places within Subroutines (for example, during each iteration of MAPF on a LIST, which

may be circular), or while a PROCESS is "BLOCKED" (see below). No interrupts can occur during
garbage collection,

What actually bappens when an enabled interrupt occurs is that the priority of the interrupt is
compared with the current interrupt level, and the following is done:

If the priority is greater than the current interrupt level, the current processing is "frozen in its
tracks” and processing of the action(s) specified for that interrupt begins,

If the priority is less than or equal 1o the current interrupt level, the interrupt occurrence is fueued

- that is, the fact that it occurred is saved away for processing when the interrupt level becomes low
enouglh.

When the processing of an interrupt’s actions is completed, MDL usually (I) “acts as if" the

21.6 - 21.7.1 Interrupts

“The MDL Programming Language 183

|
L
= i

J jously-existing interrupt level is restored, and processing continues on what was left off
4

~ (perhaps for no time durationk and (2) "acts as if" any queued interrupt occurrences actually
accurred right then, in their original order of occurrence.

™
-l'-l"

o
]
=g

|
¥

21.7.2. INT-LEVEL
e
The SUBR INT-LEVEL is used to examiie and change the current interrupt level directly.

]

<INT-LEVEL>

simply returns the current interrupt level,

B i

SINT-LEVEL fix>
changes the interrupt level to its argument and returns the previously-existing interrupt level.

If INT-LEVEL lowers the interrupt level, it does not “really” return until all queued occurrences of
interrupts of priority higher than the target priority have been processed,

Setting the INT-LEVEL extremely high (for example, <INT-LEVEL <CHTYPE ¢MIN> FIX>D) effectively
disables all interrupts (but nccurrences of enabled interrupts will still be queued),

If LISTEN or ERROR is called when the INT-LEVEL is not zero, then the typeout will be

LISTENTNG-AT=LEVEL / PROCESS p INT-LEVEL /

21.7.3. DISMISS

DISMISS permits a handler to return an arbitrary value for an arbitrary ACTIVATION at an arbitrary
interrupt level. The call is as follows:

CDISMISS value:any aclivation int-leveldivy

where only the value is required. If aclivation is omitted, return is to the place interrupted from, and
value is ignored. If int-level is omitted, the INT=LEVEL prior to the current interrupt is restored.

N
ry

20.7.1 - 21.7.3 Interrupts

v e R — e

184 The MDL Programming Language

21.8. Specific Interrupts

Descriptions of the characteristics of particular "built-in" MDL interrupts follow. Each is named by
its STRING name. Expeet this list 1o be incomplete yesterday.

"CHAR" is currently the mosi complex built-in interrupt, because it serves duty in several ways.
These different ways will be described in several different sections. All ways are concerned with
characters or wmachine words that arrive or depart at unpredictable times, because MDL is
communicating with a person or another processor. Each "CHAR" IHEADER has a CHANNEL for the
element that names the iterrupt, and the mode of the CHANNEL tells what kinds of "CHAR®
interrupts occir to be handled through that THEADER.
() I the CHANNEL is for input, "CHAR™ oceurs every time an “interesting” character (see below)
Is received from the CHANNEL's real terminal, or any character is received from the
CHANKEL's pseada-terminal, or a character or word is received from the CHANNEL's Network
sockel, or indeed (in 1he ITS version) the operating system generates an interrupt for any
reason,

(2) IF the CHANNEL is for outpur to a pscudo-terminal or Network socket, "CHAR" occurs every
time a character or word is wanted.,
(3) IF the CHANNEL is for output to a terminal, "CHAR" oceurs every time a line-feed character is

ouEput or (in the ITS version) the operating system generates a screen-full interrupt for
the terminal,

21.8.1. "CHAR" recerived

A handler for an input "CHAR" interrupt on a real terminal must take two arguments: the
CHARACTER which was typed. and the CHANNEL on which it was Lyped.

In the ITS version, the “interesting” characters are those "enabled for interrupts” on a real terminal,
namely “@ through G, “K through ~_, and DEL (that is, ASCII codes 0.7, 13-37, and 177 octal).

In the Tenex and Tops-20 versions, the operating system can be told which characters typed on a
terminal should cause this interrupt to ocecur, by calling the SUBR ACTIVATE-CHARS with a STRING
arguiment containing those characters (1o more than six, all with ASCII codes Jess than 33 octal). If

called with no argument, ACTIVATE-CHARS returns a STRING containing the characters that currently
interrupt. Initially, only *6, *5, and *0 interrupt.

An initial MDL already has "CHAR" enabled on , INCHAN with priority 8 (eight), the SUBR QUITTER
for a handier, to run in #PROCESS 0 (the running PROCESSE this is how ~G and *S are processed. In
addition, every time a new CHANNEL is OPENed in "READ" mode to a terminal, a similar IHEADER and
HANDLER are associated with that new CHANNEL automatically. These automatically-generated
THEADERs and HANDLERs use the standard machinery, and they can be DISABLEd or OFFed at will.

However, the THEADCR for , INCHAN should not be OFFed: MDL knows that § is typed only by an
interrupt!

21.8 - 21.4.1 Interrupts

Bl =2

The MDL Programming Language 185

Example: the following causes the given nessage to be printed out whenever a ~Y is typed on

. INCHAN:
<SET H <HANDLER <GET .,INCHAN INTERRUPT>
#FUNCTION ((CHAR CHAN)
#DECL ((VALUE) ANY (CHAR) CHARACTER (CHAN) CHANNEL)
CAND <=27 _CHAR 1*Y>
CPRINC " [Some of my best friends are *¥s.] "8

FHANDLER #FUNCTION ((CHAR CHAN) Y
<+ 2 7Y [Some of my best friends are V5.) D%
4

COFF .H>%
#HANDLER #FUNCTION (...)

Naote that eccurrences of "CHAR" do not wait

for the § to be typed, and the interrupting character is
omitted from the input stream.

A "CHAR™ interrupt can also be associated with an input CHANNEL open to a Network socket ("NET"
device). A handler gets applied to a NETSTATE array (which see) and the CHANNEL .

In the ITS version, a "CHAR" interrupt can also be
pseudo-terminal ("STY" device and friends). An
input. These interrupts are sef up in exactly the

handler gets applied to anly one argument,
Tenex and Tops-20 versions.

associated with an input CHANNEL open to a
interrupt occurs when a character is available for

saime way as real-terminal interrupts, except that a
the CHANNEL . Pseudo-terminals are not available in the

For any other flavor of ITS channel interrupt,

a handler gets applied to only one argument, the
CHANNEL .

21.8.2. "CHAR" wanted

A "CHAR™ interrupt can be associated With an output CHANNEL open to a Network socket ("NET*™

device). A handler gets applied to a NETSTATE array (which see) and the CHANNEL .

In the ITS version, a "CHAR® interrupt can also be associated with an output CHANNEL open to a
Pseudo-terminal ("STY" device and friends). An interrupt occurs when the program at the other end

Needs a character (and the aperating-system buffer is emptyl. A handler gets applied to one
argument, the CHANNEL . Pseudo-terminals are not available in the Tenex and Tops-20 versions.

21.8.3, "CHAR" for new line

A handler for an Output "CHAR" interrupt on a real terminal must take one or two arguments (using

21.8.1 - 21,83 Interrupts

186 The MDL Programming Language

"OPTIONAL" or "TUPLE"): if two arguments are supplied by the interrupt system, they are the line
number (FIX) and the CUANNEL, respectively, and the interrupt is for a line-feed: if only one
argument is supplied {only in the ITS version), it is the CHANNEL, and the interrupt is for a full
terminal screen. Note: the supplied line number comes from the CHANNEL, and it may not be
accurate if the program alters it in subtle ways, for example, via IMAGE calls or special control
characters. (The program can compensate by PUTting the proper line number into the CHANNEL .)

21.8.4. "GC"

"GC" accurs just after every garbage collection, Enabling this interrupt is the only way a program
can know that a garbage collection has occurred. A handler for "6C" takes three arguments. The

first is a FLOAT indicating the number of scconds the garbage collection took. The second argument
is a FIX indicating the causc of the garbage collection, as follows (chapter 22):

0. Program called GC.

I. Mavable starage was exhausted.

2. Control stack averllowed.

3. Top-level LVALs overflowed.

4. GVAL vector overflowed,

5. TYPE vector nverflowed,

6. Immovable garhage-collected storage was exhausted.
7. Inmternal stack overflowed.

8, Both eontrol and internal stacks overflowed (rare).
9. Pure storage was exhausted.

10. Second, exhaustive garbage collection occurred.

The third argument is an ATOM indicating what initiated the garbage collection: GC-READ, BLOAT,
GROW, LIST, VECTOR, SET, SETG, FREEZE, GC, NEWTYPE, PURIFY, PURE-PAGE-LOADER (pure
storage was exhausted), or INTERRUPT=-HANDLER (stack overflow, unfortunately).

21.8.5. "DIVERT-AGC™

"DIVERT-AGC" ("Automatic Garbage Collection”) occurs just before a deferrable garbage collection
that is needed beeanse of exhausted movable garbage-collected storage. Enabling this interrupt is
the only way a program can know that a garbage collection is about to occur. A handler takes two
argiments: a FIX telling the number of machine words needed and an ATOM telling what initiated
the garbage collectinn (see above). If it wishes, a handler can try to prevent a garbage collection by
calling BLOAT with the FIX argument. If the pending request for garbage-collected storage cannot

then be satisfied, a garbage collection occurs anyway. AGC-FLAG is SET to T while the handler is
running, so that new storage requests do not try to cause a garbage collection.

2183 - 2185 Interrupts

=

P

: e MDI. Programiming Language 187

L
-'_-d-.. .

91.8.6. "CLOCK"

ock"”, when enabled, occurs every half second (the ITS "slow-clock” tick). It is not available in
‘the Tenex and Tops-20 versions. It wanis handlers which take no arguments. Example:

¢ON "CLOCK"™ <FUNCTION () <PRINC "TICK ">> 1)

l‘.'a.'r. "RLOCKED"

;ﬁLﬂEI-'.E D" occurs whenever any PROCESS (not only the PROCESS which may be in a HANDLER) starts
: ":iting for terminal inputt that is, an occurrence indicates that somewhere, somebody did a READ,
~ READCHR, NEXICHR, 1YI, ete. to a terminal. A handler for a "BLOCKED" interrupt should take one
argument, namely the PROCESS which started waiting (which will also be the PROCESS in which the
‘handler runs, if no specific one is in the HANDLER),

Example: the following will cause MDL to acquire a ® prompting character.

{ON "BLOCKED" #FUNCTION ((IGNORE) <PRINC !*>) 5>

~ 21.8.8. "UNBLOCKED"

- "UNBLOCKLD" occurs whenever a § (ESC) is typed on a terminal if a program was hanging and
~ Waiting for input, or when a TYI call (which see) is satisfied. A handler takes one argument: the
~ CHANNEL via which the $ or character is input.

21.89. "READ" and "WRITE"

“READ" and "WRITE" are associated with read or write references to MDL objects. These interrupts
are often called “monitors”, and enabling the interrupt is often called "monitoring”™ the associated
Object. A “read reference” to an ATOM's Jocal value includes applying BOUND? or ASSIGNED? to the
ATOM; similarly for a global value and GASSIGNED?. If the INT-LEVEL is too high when "READ" or
MWRITE™ occurs, an crror occurs, because occurrences of these interrupts cannot be queued,

Monitors are set up with EVENT or ON, using a locative to the ob ject being monitored as the extra
which argument, just as a CHANNEL is given for "CHAR". A handler for "READ" takes two arguments:
the locative and the FRAME of the function application that makes the reference. A handler for
"WRITE" takes three arguments: the locative, the new value, and the FRAME. For example:

CSET A (1 2 3)0%
(12 3)

CSET B <AT .A 230§
FLOCL 2

21.86 - 21.8.9 Interrupts

188 The MDL Programming Language

<ON "WRITE" ¢FUNCTION (OBJ VAL FRM)
#DECL ((VALUE VAL) ANY (0BJ) LOCATIVE (FRM) FRAME)
CCRLF>
CPRINC "Program changed ")
{PRIN] .O0BJ>
{PRINC * to ">
CPRIN1 .VAL>
CPRINC * wia ">
{PRIN]1 .FRM>
CCRLF >>
40 .B>8
#HANDI FR #FUNCTION (...)
¢l .A 10>%
(10 2 3)
<2 .A 20>%
Program changed #LOCL 2 to 20 via #FRAME PUT
(10 20 3)
COFF "WRITE" .B>}
ATHLADER #LOCL 20

21.8.10. "SYSDOWN"

"SYSDOWN" accurs when a system-going-down or system-revived signal is received from ITS. It is
not available in the Tenex and Tops-20 versions, If no IHEADER is associated and enabled, a

warning is printed on the terminal. A handler takes one argument: a FIX giving the number of
thirtieths of a second until the shutdown (-1 for a reprieve).

21.8.11. "ERROR"

In an effort to simplify error handling by programs, MDL has a facility allowing errors to be
handled like interrupts. SETGing ERROR to a user function is a distasteful method, not safe if any
bugs are aronnd, An "CRROR™ interrupt wants a handler that takes any number of arguments, via
"TUPLE". When an error occurs, handlers are applied to the FRAME of the ERROR call and the TUPLE
of ERROR arguments. If a given handler "takes care of the error”, it can ERRET with a value from the

ERROR FRAME, after having done <INT=LEVEL 0>, If no handler takes care of the error, it falls into
the normal CRROR,

If an error oceurs at an INT=LEVEL greater than or equal to that of the "ERROR" interrupt, real
ERROR will be called. because "ERROR" interrupts cannot be queued.

21.8.9 - 21.8.11 Interrupts

The MDL Programming Language 189

21.8.12. "IPC"

“IPC" occurs when a message is received on the ITS IPC device (chapter 23). It is not available in
the Tenex and Tops-20 versions,

21.8.13. "INFERIOR"

"INFERTOR™ occurs when an inferior 1TS process interrupts the MDL process. It is not available in

the Tenex and Tops-20 versions, A handler takes one argument: a FIX between 0 and 7 inclusive,
telling which inferior process is interrupting,

21814, "RUNT™ and "REALT"
These are not available in the Tenex and Tops-20 versions.

"RUNT", if enabled, occurs once, N seconds of MDL running time (CPU time) after calling
CRUNTIMER Nfix-or-float>, which returns its argument. A handler takes no arguments. If RUNTIMER
is called with no argument, it returns a FIX, the number of run-time seconds left until the interrupt
occurs, ar ¥FALSE () if the interrupt is not going te occur,

"REALT", if enabled. occurs every N seconds of real-world time after calling <REALTIMER N:fix-or-
float>, which returns its argument, A haundler takes no arguments. <REALTIMER 0> tells the
operating system nol to generate real-time interrupts, If REALTIMER is called with no argument, it
returns a FIX, the number of real-time seconds given in the most recent call to REALTIMER with an
argument, or #FALSE () if REALTIMER has not been called.

2L8.15. "Dangerous” Interrupts

"MPV™ ("memory-protection violation") occurs if MDL tries to refer to a storage address not in its
address space. "PURE"™ nccurs if MDL tries to alter read-only storage. "ILOPR" occurs if MDL
executes an illegal instruction ("operator”). "PARITY" occurs if the CPU detects a parity error in
MDL's address space. All of these require a handler that takes one argument: the address (TYPE
WORD) following the instruction that was being executed at the time.

"I0OC" occurs if MDL tries to tleal illegally with an 1/0O channel. A handler must take two

arguments: a three-clement FALSE like one that OPEN might return, and the CHANNEL that got the
error.

Ideally. these interrupts should never oceur. In fact, in the Tenex and Tops-20 versions, these
interrupts always go to the superior operating-system process instead of to MDL. In the ITS
version, if and when a "dangerous” interrupt does occur:

21.8.12 - 21.8.15 Interrupts

190 The MDL Prograinming Language

If no THEADER is associated with the interrupt, then the interrupt goes to the superior
OPErating-sysiem process.

If an INCADER is associated but disabled, the error DANGEROUS=INTERRUPT=NOT=HANDLED occurs
(FILE-SYSTCM~-ERROR lor "10C").

If an THEADER is associated and enabled, but the INT-LEVEL is too high, the error ATTEMPT-TO-
DEFER=UNDEFERABLE-INTERRUPT occurs.

21.9. User-Defined Interrupts (INTERRUPT)

If the interrupt name given to EVENT or ON is not one of the standard predefined interrupts of MDL,
they will gleefully create an ATOM in <INTERRUPTSY and an associated IHEADER anyway, making the
assumption that you are setting up a "program-defined” interrupt,

Programedefined interrupts are made to occur by applying the SUBR INTERRUPT, as in

CINTERRUPT name argl ... arghd

where name is a STRING, ATOM or TIEADER, and argl through argh are the arguments wanted by the
handlers for thie interrupt.

If the intercupt specificd by INTERRUPT is enabled, INTERRUPT returns T; otherwise it returns

#FALSE (). ANl the nsual priority and queucing rules hold, so that even if INTERRUPT returns T, it
is possible that nothing “really happened” (yet).

INTERRUPT can alsn be used to cause “artificial® occurrences of standard predefined MDL interrupts.

Making a program-defined Hiterrupt oceur is similar to calling a handler directly, but there are
differences. The value returned by a handler is ignored, so side effects must be used in order to
communnicate information back 1o the caller, other than whether any handler ran or will run, One
good use for a program.defined interrupt is to use the priority and queueing machinery of INT-
LEVEL tea control the execution of functions that must not run concurrently. For example, if a
"CHAR" handler just deposits characters in a buffer, then a function to process the buffered
characters should probably run at a higher priority level - to prevent unpredictable changes to the
buffer during the processing -- and it is natural to invoke the processing with INTERRUPT,

In more exotic applications, INTERRUPT can signal a condition to be handled by an unknown
number of independent and “nameless” functions. The functions are "nameless” because the caller
doesn't know their names, only the name of the interrupt. This programming style is modular and
event-driven, and it is one way of implementing “heuristic” algorithms. In addition, each HANDLER
has a PROCESS in which to run its handler, and so the different handlers for a given condition ean

do their thing in different environments quite easily, with less explicit control than when using
RESUME.

21.8.15 - 21.9 Interrupts

=

The MDL Programming Language 191

21.10. Waiting for Interrupis

21.10.1, HANG

CHANG pred>

suspends execution, interruptibly, without consuming any CPU time, potentially forever. HANG is
handy for a program that cannot do anyihing until an interrupt occurs. If the optional pred is
given. it is evaluated every time an interrupt occurs and is dismissed back into the HANG; if the

resllt of evaluation is not FALSE, HANG unhangs and returns it as a value. If pred is not given,
there had better be a named ACTIVATION somewhere to which a handler can return.

21.10.2. SLEEP

CSLEEP fimedin-or-floal pred)

suspends execution, interruptibly, without consuming any CPU time, for time seconds, where time is
non-negative, and then returns T. pred is the same as for HANG.

20,10 - 21.10.2 Interrupts

192 The MDL Programming Language

Chapter 22, Storage Management

The reason this chapter cames so late in this document is that, except for special cases, MDL
programs have their storage needs handled automatically. There is usually no need even to consider
storage manageiment, except as it affects cfficiency (chapter 24). This chapter gives some

explanation of why this is so, and covers those special means by which a program can assume
control of storage management.

The MDI. address space is divided into five parts, which are usually called

(1Y movable garbage-collected space,

(2) immovable space (botl; garbage-collected and not),
(3) wser pure/page space,

(4} pure-RSUBR mapping space, and
(5) internal storage.

Internal storage necupies hoth the highest and lowest addresses in the address space, and its size
never changes as MDL executes, The other Spaces can vary in size according to the needs of the
executing program. Generally the interpreter allocates a coiitiguous set of addresses for each space,

and each space gradually fills up as new 0b jects are created and as disk files are mapped in. The
action taken when a space hecomes Tull varies, as discussed below,

22.1. Movable Garbage-collected Storage

Most storage nsed explicitly by MDL programs is obtained from a pool of free storage managed by

a "garhage collccror”, Storage is obrained from this pool by the SUBRs which construct ob jects,

When such a SUBR finds that the pool of available storage is exhausted, it automatically calls the
garbage collector,

The garbage eollector has two algorithms available to jt: the “copying” algorithm, which is used by
default, and the “mark-sweep” algorithm, Actually. one often speaks of two separate garbage
collectors. the "copying” one and the “mark-sweep” one, because each is an independent module that

is mapped in 1o the interpreter’s internal storage from disk only during garbage collection. For
simpliciry. this document speaks of "the" garbage collector, which has two algorithims.

2221 Storage Management

The MDL Programming Language 193

The garbage collectar examines the storage pool and marks all the objects there, separating them
into (wo g¢lasses: those which cannotl possibly be referenced by a program, and those which can,
The “copying” algorithn then copies the latter into one compact section of the pool, and the
remainder of the pool is made available for newly constructed objects, The "mark-sweep” algorithm,
instead. puts all ohjects in the former class (garbage) into “free lists”, where the ob ject-construction
SUBRs can Tind them and re-use their storage.

If the request for more storage still eannot be satisfied from reclaimed storage, the garbage collector
will attempt to obtain more total storage from the operating system under which MDL runs. (Also,
if there is a yross superfluity of storage space, the garbage collector will politely return some

storage 16 the aperating system.) Only when the total system resources are exhausted will you
finally lose.

Thus, if you just “forget about™ an object, that is, lose all possible means of referencing it, its
storage arca is antomatically reclaimed. "Objeet” in this context includes that stack-structured
storage space used in PROCESSes for functional application.

22.1.1. Stacks and Qther Internal Vectors

Control stacks are used in MDL to control the changes in environment caused by calling and
binding. Lach active PROCESS has its own control stack. On this stack are stored LVALs for ATOMs;
PRIMTYPE TUPLEs, which arc otherwise like VECTORs: PRIMTYPE FRAMEs, which are generated by
calling Subroutinest and ACTIVATIONs, which are generated by calling FUNCTIONs with named
ACTIVATIONs. PROG, and REPEAT. TAG and LLOC can make TAGs and LOCDs (respectively) that refer to
a specific place on a specific control stack, (LEGAL? returns T if and only if the portion of the
control stack in which its argument is found or to which its argument refers is still active, or if its
argument coesn’t care about the control stack. The garbage collector may change a non-LEGAL?
object to TYPE TLLEGAL hefore reclaiming it.) As the word “stack” implies, things can be put on it
and removed from it at only one end, called the top. It has a maximum size (or depth), and

attempting to put tao many things on it will cause overflow. A stack is stored like a VECTOR, and
it must be GROWn if and when it overflows.

A control stack is actually two stacks in one, One section is used for “top-level” LVALs -- those SET
While the ATON is not bound by any active Function’s argument LIST or Subroutine’s SPECIAL
binding - and ihe other section is used for everything else. Either section can overflow, of course.

The top-level-LVAL section is below the other one, so that a top-level LVAL will be found only if the
ATOM is not currently bound elsewhere, namely in the other section.

MDL also has an internal siack, used for calling and temporary storage within the interpreter and
compiled programs. It 1oo is stored like a VECTOR and can overflow, There are other internal
vectors that can overflow: the “global vector” holds pairs ("slots”) of ATOMs and corresponding GVALs
f"glnhnlly bound™ or GBROUND? means that the ATOM in question is in this vector, whether or not it

currently has a global value) and the "TYPE vector” holds TYPE names (predefined and NEWTYPEs) and
how they are 1o be treated.

22.1 - 22.11 Storage Management

194 The MDL Programming Language

22,2, lmmovable Storage

22.2.1. Garbage-collected: FREEZE

In very special cireumstances, such as debugging RSUBRs, you may need to prevent an object from
being moved by the garbage collector, FREEZE takes one argument, of PRIMTYPE VECTOR, UVECTOR,
STRING, BYTES or TUPLE. It copies iis Argument into non-moving garbage-collected space. FREEZE

returns the copy CHTYPED to jts PRIMTYPE, except in the case of a TUPLE, which is changed to a
VECTOR.,

22.2.2. Non-garbage-collected: STORAGE (the PRIMTYPE)
An object of PRIMTYPE STORAGE is really a frozen UVECTOR whose UTYPE is of PRIMTYPE WORD, but

it is always pointed 1o by something internal to MDL and thus is never garbage-collectible. The use
of FREEZE is always preferable, except when for historical reasons a STORAGE is hecessary,

22.3. Other Storage

User pure/page space serves two purposes. First, when a user program PURIFYs (see below) MDL
objects, they are copied into this space. Second, so-called hand-crafted RSUBRs (assembled but not

compiled) ean eall an the interpreter to map pages of disk files into this space for arbitrary
purposes,

Pure-RSUBR mapping space is used by the interpreter o dynamically map pages of pure compiled
programs inte and aut of the MDL address space. Pure code can refer to impure storage through
the “transfer vector”, another internal veetor. This space is the most vulnerable to being compressed
in size by the long-term growth of other spaces.

Internal storage has Loy pure and impure parts. The interpreter program itself is pure and
sharable, while impure starage is used for internal pointers, counters, and flags, for example,
pointers to the boundaries of other spaces. In the pure part of this Space are most of the ATOMs in
an initial MDL, along with their OBLIST buckets (LISTs) and GVAL slots (a pure extension of the

global vector), where possible. A SET or SETG of a pure ATOM automatically impurifies the ATOM and
as much of its OBLIST bucket as needs 1o be impure.

222-223 Storage Management

The MDL Programming Language 195

99 4. Garbage Collection: Details

When either of the garbage-collected spaces (movable or immovable) becomes full, MDL goes
through the following procedure:

() A "DIVERT-AGC" interrupt occurs if the garbage collection can be deferred temporarily by

shifting boundaries between storage spaces slightly. The interrupt handler may postpone a garbage
collection by moving boundaries itself with a call to BLOAT (below),

(2) The garbage collector hegins execution. The “copying” algorithm creates an inferior operating-
system process (named AGC in the ITS version) whose address space is used to hold the new copies of
non-garhage ohjecis. MDL gains access to the inferior's address space through two pages ("frontier”
and "window") in its internal space that are shared with the inferior. If the garbage collection
occurred hecanse movable garbage-collected space was exhausted, then the "mark-sweep” algorithm
might be used instead (see below), and no inferior process is ereated.

(3) The garbage callector marks all ohjects that can possibly be referenced hereafter. It begins with
the <MAINS PROCESS and the eurrently running PROCESS <ME>, considered as vectors containing the
control stacks. objrct pointers in live registers, ete. Every object in these "PROCESS vectors” is
marked “accessible”, and every element of these ob jects (bindings, ete.). and so on recursively. The
“copying” algorithin moves objects into the inferior process's address space as it marks them.

(4) If the garbage collection is "exhaustive” -- which is possible only in the "eopying” algorithm -
then both the chain of associations and top-level local/global bindings are examined thoroughly,

which takes more time but is more likely to uncover garbage therein. In a normal garbage
collection these constructs are not treated specially.

(5) Finally, the "mark-sweep” algorithin sweeps through the storage space, adding unmarked ob jects
to the internal free lists for Jater re-use. The "copying” algorithm maps the inferior process's

address space info MDL's own, replacing old garbagey storage with the new compact storage, and
the inferior process is destroyed.

CGC menifix exhPfalse-or-any ms-freq:fixd

causes the garbage collector to run and returns the total number of words of storage reclaimed, All

of its arguments are optionalk if they are not supplied, a call to GC simply causes a ":npj'ing""
garbage collection.

If min is explicitly supplied as an argument, a garbage-collection parameter is changed permanently
before the garbage collector runs. min is the smallest number of words of “free” (unclaimed,

22.4 - 22.5 : Storage Management

196 The MDL Programming Language

available for use) movable garbage-collected storage the garbage collector will be satisfied with
having afrer it is done cach time. Initially it is 8192 words. If the total amount of reclaimed
starage is less than min, the garbage collector will ask tlie operating system for enough storage (in
1024-word blocks) 1o make it up. N.B.: the system may be incivil enough not to grant the request: in
that case, the garbage collector will be content with what it has, unless that is not enough to satisfy
4 pending request for storage. Then it will inform you that it is losing. A large min will result in
fewer total garbage eolloctions, but they will rake longer since the total quantity of storage to be
dealt with will generally be larger. Smaller mins result in shorter, more frequent garbage collections.

exh? tells whether or not this garbage collection should be "exhaustive”, It is optional, a FALSE by
default. The difference between normal and exhaustive “copying” garbage collections is whether
cerfain kinds of storage that require complicated treatment (for exainple, associations) are reclaimed.
Al exhaustive garbage collection occurs every eighth time that the “eopying” algorithm is used, or

when GC is called with this Argliment true, or when a normal garbage collection cannot satisfy the
Storage request,

ma-freq gives the number of times the “mark-sweep” algorithm should be used hereafter for every
time the normal “copying” algorithm is used. Civing 0 for ms-freq means never 1o use the “mark-
sweep” algorithm, and giving <CHTYPE <MIN> FIX> means (effectively) always to use it. The "mark-
sweep” algorithimn uses considerably less processor time than the “copying” algorithm, but it never
shrinks the frecstorage pool, and in faet the pool can become fragmented. The “mark-sweep”
algorithm could be useful in 2 program system (such as the compiler) where the size of the pool
rarely changes, but ob jects are created and thrown away conlinuously,

22.6. BLOAT

BLOAT is used 1a cause a ‘emporary expansion of the available storage space with or without
changing the garhage-collecting parameters. BLOAT is particularly useful for avoiding unnecessary
garbage collections when loading a large file, It will cause (at most) one garbage collection, at the
end of which the available storage will be at least the amount specified in the call to BLOAT.
(Unless, of course, the aperating system is eranky and will not provide the storage. Then you will
get an error. <ERRET 1> from this error will cause the BLOAT to return 1, which usually Just causes

you to lose at a later time - unless the operating system feels nicer when the storage is absolutely
necessary.)

A call to BLOAT Innks like this:

CBLOAT fre stk lel gib typ sto pstk
min plcl pglb plyp imp pur dpstk dstkd

where all arguments on the first line above are FIX, optional (0 by default), and indicate the
following:

22.5 - 22.6 Storage Management

The MDL Programming Language 197

fret number of words of free movable storage desired (for LISTs, VECTORs, ATOMs, etc.)

sthi nmumber of words of free control-stack space desired (for functional applications and
binding of ATOMs)

fels nuwinber of new top-level LVALs for which to leave space (SETs of ATOMs which are not
currently bound)

glb: mumber of new GVALs for which to leave space (in the global vector)
fyps munber of new TYPE definitions for which to leave space (in the TYPE vector)
sfo: mumber of words of immovable garbage-collected storage desired

pefie number of words of free internal-stack space desired (for READing large STRINGs, and
calling routines within the interpreter and compiled programs)

Arguments on the second line above are also FIX and optional, but they set garbage-collection
parameters permanently, as follows:

mite: as for GC

picl: number of slots for LVALs added when the space for top-level LVALs is expanded (initially
64)

pglbi number of slots for GVALs added when the global vector is grown (initially 64)
pty pi nimber of slots for TYPCs added when the TYPE vector is grown {iniliall;,r 32)

imps wwmber of words of immovable garbage-collected storage added when it is expanded
(initially 1024)

puri number of words reserved for pure compiled programs, if possible (initially 0)

dpstk: mnst desirable size for the internal stack, to prevent repeated shrinking and GROWing
(initially 512)

dstk: most desirable size for the control stack (initially 4096)

BLOAT returns the actual number of words of free movable garbage-collected storage available when
it is done,

22,6 Storage Management

198 The MDL Programming Language

22.7. BLOAT-STAT

BLOAT-STAT can be used with BLOAT to “tune® the garbage collector to particular program
requirements,

CBLOAT-=STAT length-2 wveelord

Fills the verctor with information about the state of storage of MDL. The argument should be a
UVECTOR of length 27 and UTYPE FIX. If BLOAT-STAT does not get an argument, it will provide its
own UVECTOR. “I'he information returned is as follows: the first 8 elements indicate the number of

garbage callections that are attributable 1o certain causes, and the other 19 give information 2bout
certain areas of storage. In detail;

L. numiher of garbage eollections caused by exhaustion of movable garbage-collected storage
2. ditte by overflow of cantral stack(s)

3. ditto by overflow of top-level-LVAL section of control stack(s)

4. ditto by overflow of global vector

5. ditto by overllow of TYPE vector

6. ditto by exhaustion of inmevable garbage-collected storage

7. ditto by oveeflow of internal stack

8. ditto by overflow of both stacks at the same time (rare}

9. number of words o movahle storage
10. number of words of jovalile storage used since last BLOAT=STAT
L maximumm nuniber of words of movable storage ever existing

12, number of words of movalile storage used sinee MDL began running
I3. maximum size of eontenl stack

L4, mumber of words on control stack in use

15, maximum size of control stack(s) ever reached

16, niinher of slnts for top-level LVALS

I7. number of top-level LVALs existing

I8, number of slots For GYALS in global vector

19. number of GVALs existing

20. number of slors for TYPEs in TYPE vector

2L number of TYPEs existing

22, number of wards of iminovable garbage-collected storage
23, number of words of innmavable storage unused

24. size of largest unnsed contiguous immovable-storage block
25. number of words on internal stack

26. number of words on internal stack in use

27. maximum size of internal stack ever reached

22.7 Storage Management

The MDL Programming Language 199

22.8. GC-MON

e
i —

{GC-MON pred?
("garbage-colleetor monitor”) determines whether or not the interpreter will hereafter print
information on the rterminal when a garbage collection starts and finishes, according to whether or

not its arguient is true. 11 returns the previous state. Calling it with no argument returns the
current stale. The initial state is false,

When typing is enabled, the "copying” garbage collector prints, when it starts:
GIN reason subr-thal-caused:atom
and, when it Finishes:

GOUT seconds-needed

The "mark-sweep” garbage collector prints MSGIN and HSGOUT instead of GIN and GOUT,

22.9. Related Subrontines

Two SUBRs, deseribed next, use on ly part of the garbage-collector algorithm, in order to find all
pointers to an object. GC-DUMP and GC-READ, as their names imply, also use part in order to
translate between MDL ob jects and binary representations thereof.

22.9.1. SUBSTITUTE
CSUBSTITUTE new:any old:any?

FEturns old, after cansing a miniature garbage collection to occur, during which all references to old
are changed so as (o refer to new. Neither argument can be of PRIMTYPE STRING or BYTES or LOCD
or live on the control stack, unless both are of the same PRIMTYPE. One TYPE name cannot be
substituted for another, One of the few legitimate uses for it is to substitute the “right” ATOM for
the “wrong™ one. after OBLISTs have been in the wrong state. This is more or less the way ATOMs are

impurified. Tt is also useful for unlinking RSUBRs. SUBSTITUTE returns old as a favor: unless you
hang onto o/d at that point, it will be garbage.

22.9.2, PURIFY

CPURIFY any=l ... any-N>

228 - 229.2 Storage Management

200 The MDL Programming Language

returns its last arguiment, after causing a miniature garbage collection that results in all the
arguments beeoming pure and sharable, and ignored afterward by the garbage collector. No
argment can live on the control stack or be of PRIMTYPE PROCESS or LOCD or ASOC. Sharing

between operating-system processes actually occurs after a SAVE, if and when the SAVE file is
RESTOREd.

22.9.2 Storage Management

M

{ The MDL Programming Language 201

Chapter 23. MDL as a System Process

This chapter treats MDL considered as executing in an operating-system process, and interactions
between MDL and other operating-systei processes. See also section 21.8.13.

23.1. TIME
TIME takes any number of arguments, which are evaluated but ignored, and returns a FLOAT giving
the number of seconds of CPU time the MDL process has used so far. TIME is often used in

machine-level debugging to examine the values of its arguments, by having MDL's superior process
(say, DDT) plant a breakpoint in the code for TIME.

23.2. Names

CUNAME »

Feturns a STRING which is the "user name” of MDL’s process. This is the "uname” process-control
variable in the ITS version and the logged-in directory in the Tenex and Tops-20 versions.

CXUNAME »

FELUrns a STRING which is the "intended user name” of MDL's process. This is the "xuname" process-
control variable in the 1TS version and identical to <UNAME in the Tenex and Tops-20 versions.

CINAME »
Felurns a STRING which is the "job name” of MDL's process. This is the "jname” process-control
Yariable in the 1TS version and the SETNM ame in the Tenex and Tops-20 versions. The characters
h!'ﬂllg o the "sixbit” or "[:rillli‘ug" subset of ASCII, namely those between <ASCII %=40%> and
CASCIT ®137*> inclusive,

CXJINAME »

23 -23.2 MDL as a System Process

202 The MDL Programming Language

returns a ST1RING which is the "intended job name” of MDL's process, This is the "x jname” process-
cantrol variable in the ITS version and identical to CJNAMEY in the Tenex and Tops-20 versions.

23.3. Exits
CLOGOUT>

attempts to log out the process in which it is executed. It will succeed only if the MDL is the top-

level process, that is, it is running disowned or as a daemon. If it succeeds, it of course never
returns. If it does not, it returns #FALSE ().

<QUITS

causes ML to stop running, in an orderly manner. In the ITS version, it is equivalent to a
-LOGOUT 1, instruction. In the Tenex and Tops:20 versions, it is equivalent to a control-C signal,
and control passes 1o the superior process.

CVALRLT string-or-fixd

("value return”) seldom returns, It passes control back up the process tree to the superior of MDL,
Passing its argument as a message to that superior. If it does return, the value is #FALSE (). If the
argument is a STRING, it is passed to the superior as commands to be executed, via .VALUE in the
ITS version and RSCAN in the Tops-20 version. If the argument is a FIX, it is passed to the superior

as the “effective address” of a .BREAK 16, instruction in the ITS version and ignored in other
versions,

23.4. Inter-process Communication

All of the SUBRs in this section are available only in the ITS version,

The IPC (“inter-process communication”) device is treated as an /O device by ITS but not
explicitly so by MDL: that is, it is never OPENed, It allows MDL to communicate with other ITS
pracesses by means of sending and receiving messages, A process identifies itself as sender or

recipient of a message with an ordered pair of "sixbit" STRINGs, which are often but not always
CUNAMED and <INAME>. A message has a "body” and a "type”,

23.4.1. SEND and SEND-WAIT

CSEND othern! othern? body type mynamel myname2)

232 - 2341 MDL as a System Process

E The MDL Programming Language 208

CSEND-WAIT othern! othern2 body type mynamel myname2?

both send an 1PC Message 1o any process that is listening for it as othern] othernz, body must be
either a STRING, or a UVECTOR of objects of PRIMTYPE WORD. type is an optional FIX, 0 by default,
which is part of the information the other guy receives. The last two arguments are from whom the
message is to be sent. These are optional, and <UNAMED and <JNAMES respectively are used by

default, STND returns a FALSE if no one is listening, while SEND-WAIT hangs until someone wants it.
- Both return T if snmeone accepts the message.

23.4.2. The "TPC" Interrupt
When yaur MDL pracess receives an 1PG imessage, "IPC" occurs (chapter 21). A handler is called

with ecither {our or six arguments gleaned from the received message. body, lype, othernl, and

othernd are always supplied. myname! and myname2 are supplied only if they are not this process's
CUNAME > and <JINAME >,

There is a built-in ANDLER for the "Ipge interrupt, with a handler named IPC-HANDLER and 0 in the
PROCESS slot, The handler prints out on the terminal the bedy, whom it is from, the lype if not 0,

and whom it is to if not CUNAME> CINAMES. If the type is 1 and the body is a STRING, then, after
the message information is printed out. the STRING is PARSEd and EVALuated.

23.4.3. IPC-OFF

CIPC-OFF> stops all listening on the IPC device,

23.4.4. 1PC-ON
CIPC-ON mynamel mynamo2)

causes listening on the 1PC device as mynamel myname2. If no arguments are provided, listening is
on CUNAME> <JINAMEY. When a message arrives, "IPC" occurs.

MDL is initially listening as CUNAME> CINAMED with the built-in HANDLER set up on the "IPC®
interrupt with a priority of 1.

23.4.5. DEMSIG

CDEMSIG daeman:stringd

signals to ITS (directly, not via the IPC device) thal the daemon named by its argument should run
now. It returns T if the dacmon exists, #FFALSE () otherwise.

23.4.1-23.45 MDL as a System Process

204 The MDL Programming Language

Chapter 24, Lfficiency and Tastefulness

24.1. Efficiency

Actually, you wmake MDL. programs efficient by thinking hard about what they really make the
interpreter do, and making them do less, Some guidelines, in order of decreasing expense:

(1) Free storage is expensive,
(2) Calling functions is expensive,
(3) PROG and REPEAT are expensive, except when compiled,

Explanation:

(1) Unnecessary use of free storage (creating needless LISTs, VECTORs, UVECTORS, etc.) will cause the
garbage collector to riun more often. This is expensive! A fairly large MDL (for exainple, 60 000 36-
bit wards) can take ten seconds of PDP-10 CPU time for a garbage collection. Be especially wary of
constructions like (0). Every time that is evaluated, it creates a new one-eleinent LIST; it is too
easy to write such things when they aren't really necessary, Unless you are doing PUTs or PUTRESTs
on it, use '(0) instead.

(2) Sad. but 1rue. Also generally ignored. If you call a funetion only once, or if it is short (less than
one lincl you are much better off in specd if you substitute its body in by hand. On the other
hand. you may be mueh worse off in modilarity, There are techniques for combining several
FUNCTIONs into one RSUBR (with RSUBR-ENTRYs), either during or after compilation, and for
changing FUNCTIONs inie MACROS,

(3) PROG is almnst never necessary, given (a) "AUX" in FUNCTIONs: (b) the fact that FUNCTIONs can
contain any number of FORMs: (c) the fact that COND clauses can contain any number of FORMs: and
(d) the fact that new variables ean be generated and initialized by REPEAT. However, PROG may be

useful when an crror occurs, 1o establish bindings needed for cleaning things up or interacting with
a human,

The use of PROG may be sensible when the normal flow of control can be cut short by unusual
conditions, so that the program wants to RETURN before reaching the end of the PROG. Of course,

24-241 Efficiency and Tastefulness

= —

- 3

I
J
i

.

it
k

=1

“The MDL Programming Language 205

~ pested CONDs can accomplish the same end, but deep nesting nay tend to make the program
unreadable. For example:

¢PROG (TCMP)
COR <SFT TFMP COK-FOR-STEP-17)>
<RETURN ,TEMP)>
¢STEP-1)
€OR <SET TEMP <OK-FOR-STEP-27))
SRETURN ,TEMPY)
<STEP-2>>

could instead be written

(COND (<OK-FOR-STEP-17»
{STEP-1>
{COND (<OK-FOR-STCP-2%)
CSTEP-22)3)>

By the way, REPEAT is faster than GO in a PROG. The <60 x> FORM has to be separately interpreted,
right? In fact, if you organize things properly you very seldom need a GO; using GO is generally
- considered "had style”, but in some cases it's needed. Very few,

In many cases, a RCPEAT can be replaced with a MAPF or MAPR, or an ILIST, IVECTOR, ete. of the
form

CILIST .N '4SET X <+ .X 1»
which generates an N-element LIST of successive numbers starting at X+1,

~ Whether a program is interpreted or compiled, the first two considerations mentioned above hold:
- garbage collection and funetion calling remain expensive. Garbage collection is, clearly, exactly the

same. Fuuction calling is relatively more expensive. However, the compiler careth not whether you
Use REPEAT, GO, PROG, ILIST, MAPF, or whatnot: it all gets compiled into practically the same

thing. llowever, the REPEAT or PROG will be slower if it has an ACTIVATION that is SPECIAL or used
~ Other than by RCTURN or AGAIN,

24.L1, Example

~ There follows an example of a FUNCTION that does many things wrong. It is accompanied by
- COmmentary. and two better versions of the same thing. (This function actually occurred in
Practice. Needless to say. names are witliheld to proteet the guilty.)

Blunt comment: this is terrible. Its purpose is to output the characters needed by a graphics

24.1 - 24.1.1 Efficiency and Tastefulness

206 : The MDL Programming Language

terminal 1o draw lines connecting a set of points, The points are specified by two input lists: X

values and ¥ valies, The OUTput channel is the third argument. The actua) characters for each line
are retiirned in a 15T by the function TRANS,

<DEFINE PLOTVDSK (X Y CHN "AUx* L LIST)
CCOND (<NOT <==7 ¢SET L <LENGTH +XI2CLENGTH .Y> »
CERROR "LENGTHS NOT EQUAL">)>
CSET LIST (20)>
CREPEAT ((N 1))
<SET LIST (!.LIST ICTRANS <.N .%> C.N YD)
CCOND (<G? <SET N ¢+ .N 1>> .L5¢RETURN N>)» >
SREPEAT ((N 1) (L1 <LENGTH LIST}))
CPRINC <ASCII <.N ,LISTY> .CHN>
CCOND (<GP <SET N <+ .N 1D> .LI>
CRETURN "DONE"3)> >

Comments:
(I} LIST is only 'emporarily necessary. It is just created and then thrown away.

(2) Warse, the construei (1.LIST ICTRANS ...)) copies the previous elements of LIST every time it
is executoed!

(3) Indexing down the clements of LIST as in <.N .LIST) takes a long time, if the LIST is long. <3
»++2 OF <4 ... i not worth worrying about, but <10 ... is, and <100 ...> 1akes quite a while.
Even if the indexing were not phased out, the compiler would be happier with ¢NTH LIST .N>.

(4) The variable CHN is \imecessary if OUTCHAN is bound to the argument CHANNEL,

(5) It is tasteful to call ERROR in the same way that F/SUBRs do. This includes using an ATOM from
the ERRORS OBLIST (if one is appropriate) to tell what is wrong, and it includes identifying yourself,

So, do it this way:

24.11 Efficiency and Tastefulness

The MDI. Programming Language 207

CDEFINE PLOTVDSK (X Y OUTCHAN)
#DECL ((OUTCHAN) CSPECTAL CHANKEL »)
CCOND (<NOT ¢==7 CLENGTH .X> <LENGTH Y2

CERROR UEETGH-LEHETHS-DIFFEH!-ERR[}HE PLOTVDSK>) >
<PRINC CASCI1 203>

CREPEAT ()
CCOND (<EMPTY? .X> <RETURN "DONE*>)>
CREPEAT {(OL <TRANS <1 .X> <1 Y))
<PRINC <ASCII <1 .0L>»>
CCOND (CEMPTY? <SET OL <REST .0L>>

CRETURN>)>>
SSET X <REST .X>>

CSET Y CREST Y33

Of course. if you hnow how long is the LIST that TRANS returns, you can avoid using the inner
REPLAT loop and have explicit PRINCs for each element. This can be done even better by using

MAPF, as in the nexy version, which does exactly the same thing as the Previous one, but uses MAPF
to do the RESTing and the end conditional;

SDEFINC PLOTVDSK (X ¥ QUTCHAN)
*DECL ((OUTCHAN) CSPECTAL CHANNEL »)
<COND (<NOT ¢==7 CLENGTH ,X> <LENGTH .Y>5%

<ERROR UECTGR-LEHETHE.*DIFFEE!-ERH{HIE PLOTVDSK>)»
CPRINC <ASCII 203>
CHAPF <)

#FUNCTION ((XE YE)

<MAPF <> #FUNCTION ((T) <PRINC ¢<ASCII T22) <TRANS .XE YE>>)
X

Y
"DONE " »

carlier ones when adding a later one to the end. One way is 1o use MAPF or MAPR with a first
argiment of ,LIST: the elements are put on the control stack rather than in free storage, until the
Final call to L1IST, 5 you know how many elements there will be, you can put them on the control
stack yourself, in a TUPLE built for that purpose. Another way is used when REPEAT is necessary:

24.1.1 - 24.2 Efficiency and Tastefulness

r;!

208 The MDL Programming Language

SREPEAT ((FIRST (T)) (LAST -FIRST) .. .)
#OECL ((VALUE FIRST LAST) LIST ses)

€SET LAST <REST CPUTREST .LAST (-NEW)>»>

CRETURN <REST .FIRST>>
i

Here, .LAST Always points 10 e current last element of the LIST. Because of the order of
evaluation, the <SET LAST ++«2 could also be written CPUTREST .LAST <SET LAST (.NEW)>>.

24.3. Read-only Free Variables

If a Funcrion ses the value or 5 Free variable (C6VAL unmanifest:atom> or <LVAL special:atom3)
without changing it the compiled version may be more efficient if the value js assigned to a
dummy UNSPECTAL ATOM in the Function's "AUX" list. This is true because an UNSPECTAL ATOM gets
compiled ‘inta a o o the control stack, which is accessible very quickly. The trade-off s

probably worthwhile if A special is referenced more than onee, or if an unmanifest is referenced more
than twice, Example:

<DEFINE MAP-LOOKUP (THINGS "Ayx» (DB » DATA-BASE))

*DECL ((VALUE) VECTOR (THINGS DB) <UNSPECIAL CPRIMTYPE LIST>>)
MAPF ,VECTOR CFUNCTION (T) <MEMQ .T ,pB>> - THINGS »>

24.4. Glob . and Local Vajues

In the interproter 110 woquence X X X X is slower than ,X X .x .x because of interference
between the gyp| And LVAL mechanisims (appendix 1). Thus it I$ not good to use both the GVAL and
LVAL of the same ATOM Frequently, unjess references to the LVAL wil| be compiled away (made into

24,5, Making Offsers For Arrays

It is often the case hat you want to attach some meaning to each element of an array and refer to
an element independently of aqfier elements. Firstly, it js 5 good idea to use names (ATOMs) rather
than integers (FT¥es or even OFFSETs) for offsets into the array, to make future changes easier.
Secmuﬂy. it is a gond idea to ise the GVALs of the name ATOMs to remember the actual FIXes, so that
the ATOMs can be MANIFEST for the compiler's benefit, Thirdly, to establish the GVALs, both the

24.2.245 Efficiency and Tastefulness

e

The MDL Programming Language 209

interpreier and the compiler will be happier with <SET6 name offset> rather than <DEFINE name
("TUPLE™ T) <offset 1.T3>,

24.6. Tahles

There are several ways in MDL to store a table, that is, a collection of (names and) values that will

be searched. Unsurprisingly, choosing the best way is often dictated by the size of the table and/or
the nature of the (names and) values.

For a small table, the names and values can be put in (separate) structures - the choice of LIST or
arcay being determined by volatility and limitability - which are searched using MEMQ or MEMBER.
This methad is very space-efficient. If the table gets larger, and if the elements are completely
orderahle, a (uniform) vector can be used, kept sorted, and searched with a binary search.

For a large table, where reasonably efficient searches are required, a hashing scheme is probably
best. Two methods are available in MDL: associations and OBLISTs,

In the first method, PUTPROP and GETPROP are used, which are very fast. The number of hashing
buckets is fixed. Duplicates are eliminated by ==7 testing. If it is necessary to use =7 testing, or to

Find all the entries in the table, you can duplicate the table in a LIST or array, to be used only for
those purposes,

In the seeond methad, INSERT and LOOKUP on a specially-built OBLIST are used. (If the names are
not STRINGs, they can be converted to STRINGs using UNPARSE, which takes a little time) The
number of hashing buckets can be chosen for best efficiency. Duplicates are eliminated by =7
testing. MAPF/R can be used to find all the entries in the table.

24.7. Nesting

The beauty of deeply-nested contral structures in a single FUNCTION is definitely in the eye of the
beholder, (PPRINT, a pre-loaded RSUBR, finds them trying. However, the compiler often produces
better cade from them.) If you don't like excessive nesting, then you will agree that

CHET X ...)
<COND (<07 .X> ...} ...)

looks better than
CCOND (<07 <SET X ...> Lesd e

and that

24.5 - 247 Efficiency and Tastefulness

210

<REPEAT ...
{ﬂﬂﬂﬂ R
{l-i-
rhud

qul._:s better than

CREPEAT

LN

CCOND ..,

« CRETURN ...»)»

(.. <RETURN ...3)
(ELSE ...}>

VAbD

You can see

The MDL Programming Language

the nature of the choices. Nesting is still and all better than 60.

The MDL Programming Language 211

Appendix 1. A Look Inside

This appendin tells about the mapping between MDL objects and PDP-10 storage - in other words,
the way things ook “on the inside”. None of this information is essential to knowing how to
program in MDL, but it does give some reasons for capabilities and restrictions that otherwise you
have to memarize. “The notation and terminology get a little awkward in this discussion, because we
are in a twilight zone between the worlds of MDL ob jects and of bit patterns. In general the words
and phrases appearing in diagrams refer to bit patterns not MDL objects, A lower-case word (like
“tuple’) refers to the storage accupied by an ob ject of the corresponding PRIMTYPE (like TUPLE).

First some terminology needs discussion. The sine qua non of any MDL ob ject is a pair of 36-bit
computer words. In general, lists consist of pairs chained together by pointers (addresses), and

T vectors consist of contiguous blocks of pairs, ==7% essentially tests two pairs to see whether they
' contain the same hit patterns,

A The first (lower-addeessed) word of a pair is called the TYPE word, because it contains a numeric
TYPE code that represents the objeet’s TYPE. The second (higher-addressed) word of a pair is called
the value word, because it contains (part of or the beginning of) the "data part” of the object. The

of TYPE word (and somctimes the value word) is considered to be made of a left half and a right half.
| We will picture a pair like this:

| TYPE | I
s o oo e e e e I
| value |
1 where a vertical bar in the middle of a word means the word's halves are used independently. You

€an see that the TYPE code is confined to the left half of the TYPE word. (Half-)words are sometimes
subdivided into ficlds appropriate for the context: fields are also pictured as separated by vertical

bars, The right half of the TYPE word is used for different purposes depending on the TYPE of the
ob ject and actual Incation of the value.

| Actually the 18-hit TYPE Tield is further decoded, The high-order (leftmost) bit is the mark bit, used
exclusively by the garbage collector when it runs. The next two bits are monitor bits, used to cause
"READ" and "WRITE" interrupis on read and write references to the pair. The next bit is used to
differentiate between list elements and vector dope words. The next bit is unused but ecould be used

in the future for an "exccute” monitor. The remaining 13 bits specify the actual TYPE code. What
CHTYPE does is 1o capy the pair and put a new TYPE code in the new pair.

‘ Each dara TYPE (predefined and NEWTYPES) must belong to one of about 25 "storage allocation

classes” (roughly correspoiding to MDL PRIMTYPEs). These classes are characterized primarily by
the manner in which the garbage collector treats them. Some of these classes will now be described.

Appendix |

212 The MDL Programming Language

"One Word"

This class includes all data that are not pointers to some kind of structure, All external (program-
available) TYPEs in this class are of PRIMTYPE WORD. Example:

'---I---q-------'--.-l----—-. -------------

—.---.—---p---—-.----.a---—----.----.-.---.--.

"Two Word"

The membiers of this class are all I8-bit pointers to list elements, All external TYPEs in this class are
of PRIMTYPE LIST. Example:

mESe.E . CERRRESssescs .-

where pointer is a pointer to the first list element, If there are no elements, pointer is zero; thus
empty objects of PRINTYPE LIST are ==7 if their TYPEs are the saine,

"Two N Ward"

Members of this class are all “counting pointers® to blocks of two-word pairs. The right half of a
counting painter is an address, and the left half is the negative of the number of 36-bit words in the
block. (This farmat is tailored 1o the PDP-10 AOBJN instruction.) The humber of pairs in the block

(LENGTH) is haif that mumber, sinee each pair is two words. All external TYPEs in this class are of
PRIMTYPE VECTOR, Example: .

-.---q---h-----l.--p-.-h-.-d------- ---------

where length is the LENGIH of the VECTOR and pointer is the location of the start (the element
selected by an NTH argument of 1) of the VECTOR,

Appendix 1

The MDL Programming Language 213

"N Word”

This class is the same as the previous one, except that the block contains objects all of the same
TYPE withoul individual TYPC wards. The TYPE code for all the elements is in vector dope words,

which are at addresses just larger than the block itself. Thus, any object that carries information in
its TYPE word cannot go in the block: PRINTYPEs STRING, BYTES, TUPLE (and the corresponding

Jocatives LOCS, LOCB, LOCA) FRAME, and LOCD. All external TYPEs in this class are of PRIMTYPE
UVECTOR. Example:

where Tength is the LLNGTH of the UVECTOR and pointer points to the beginning of the UVECTOR.

"Byte String” and "Character String”

These two classes are almost identical. Dyte strings are byte pointers to strings of arbitrary-size
bytes. PRIMTYPE BYTES is the only member of this class. Character strings are byte pointers to
strings of ASCIL characters. PRIMTYPE STRING is the only member of this class. Both of these
classes cansist of a length and a PDP-10 byte pointer. In the case of character strings, the byte-size
field in the byrte pointer is always seven hits per byte (hence five bytes per word), Example:

L W I I O B O O e e e

where Tength is the LENGTH of the STRING (in bytes) and byte-pointer points to a byte just before
the beginning of the siring (an ILDB instruction is needed to get the first byte). A newly-created
STRING always has *010700% in the left half of byte-pointer. Unless the string was created by

SPNAMC, byte-pointer points to a uvector, where the elements (characters) of the STRING are stored,
packed rogether five to a word,

"Frame"

This class gives the user program a handle on its control and variable-reference structures. All
external TYPEs in this class are of PRIMTYPE FRAME. Three numbers are needed to designate a frame:

a unique I8-bit identifying number, a pointer to the frame's storage on a control stack, and a
pointer to the PROCESS associated with the frame. Example:

Appendix 1

214 The MDL Programming Language

where PROCCSS-pointer points to the dope words of a PROCESS vector, and unique-id is used for

validating (testing LEGAL?) the frame-pointer, which points to a frame for some Subroutine call
on the control stack,

"Tuple”

A tuple pointer is a ¢ounting pointer to a vector on the control stack. It may be a pointer to the
arguments to a Subroutine or a pointer generated by the "TUPLE® declaration in a FUNCTION. Like

ob jects in the previons ¢lass, these ob jects contain a unique identifying number used for validation.
PRIMTYPE TUPLE i the only member of this class, Example:

e e T MO W W OBE W OEOE B "™ OEE OB B BB OB B 8 88 S S

L L R B R R N R R R R R RE RS E N E L NN R

Other Storage Classes

The rest of the storage classes include strictly internal TYPEs and pointers to special kinds of lists
and vectors like Incatives, ATOMs and ASOCs. A pair for any LOCATIVE except a LOCD looks like a
pair for the correspanding structure, except of course that the TYPE is different. A LOCD pair looks
like a tuple pair and needs a word and a half for its value! the unique-1id refers to a binding on the

control stack or to the "global stack™ if zero. Thus LOCDs are in a sense “stack nhjtcts’ and are more
restricied than nihier locatives.

An OFFSET is stared with the INDEX in the right half of the value word and the Pattern in the left
half. Since the Pattern can be either an ATOM or a FORM, the left half actually points to a pair,
which points ta the actual Pattern. The Pattern ANY is recognized as a special case: the left-half
pointer is zero, and no pair is used. Thus, if you're making the production version of your program

and want to save some storage, you can do something like {3ETG FOO <PUT-DECL ,FOO ANY>> for
all OFFSETs,

Appendix |

The MDL Programming Language 215

Basic Data Structures

Lists

List clements are pairs linked together by the right halves of their first words. The list is
terminated by a zero in the right half of the last pair. For example the LIST (1 2 3) would look
like this:

| LIST | 0 |

l - = = s = I sssssssssss sSEssssssasas 2 SSSSSSSSSS=

| 0 | ===--- 3 FIX | =====n-] FIK | =======>] FIX | 0 |

------------- I B I B I
| 1| | & I3 |

The use of pointers to tie together elements explains why new elements can be added easily to a list,
how sharing and circularity work, ete. The links go in only one direction through the list, which is
why a list cannat be BACKed or TOPped: there's no way to find the RESTed elements.

Since some MDL values require a word and a half for the value in the pair, they do not fit directly
into list elements, This problem is solved by having "deferred pointers”. Instead of putting the
datum directly into the list element, a pointer to another pair is used as the value with the special

internal TYPC DCFLR, and the real datum is put in the deferred pair. For example the LIST (1
"hello® 3) would Inok like this:

EEEE

| LIST | 0 |

I - o I - - T L L T L T T T T T - -

| 0 | ==e==- Y FIX | =weanen | DEFER| == === =>] FIX | 0 |

- W R R I-ﬁ-ﬁ-ﬁ-—l I----I IIIIIi

I A | enmew] 3|

- - I
| STRING| 5[<-

| ===
|byto=pntr|

Appendix |

216 The MDL Programming Language

Vectors g

A vector is a black of contiguous words. More than one pair can point to the block, possibly at |
different places in the block: this is hew sharing occurs among vectors. Pointers that are different
arise from REST or GROW/BACK operations. The block is followed by two "dope words”, at addresses
Just larger than the largest address in the block. Dope words have the following format:

'I'-ll-I----l--l-------.-.-....,_---_.-__-_--.....-..-_.".-.-

The various ficlds have the following meanings:

type - The fourth bit from the left (the “vector bit", 40000 octal) is always one, to distinguish these
veclor dope words from a TYPE/value pair.

If the high-order bit is zero, then the vector is a UVECTOR, and the remaining bits specify the
uniform TYPE of the clements. CHUTYPE just puts a new TYPE code in this field. Each element

is limited to a one-word value: clearly PRIMTYPE STRINGs and BYTESes and stack ob jects can't
go in unilforim vectors,

If the high-order bit is one and the TYPE bits are zero, then this is a regular VECTOR.

If the high-arder bit is one and the TYPE bits are not all zero, then this is either an ATOM, a

PROCESS, an ASOC, or a TEMPLATE. The special internal format of these ob jects will be
described a little later in this appendix.

tength - The high-order bit is the mark bit, used by the garbage collector. The rest of this field
specifies the number of words in the block, including the dope waords. This differs from the

length given in pairs pointing 1o this vector, since such pairs may be the result of REST
operations.

grow -- This is actually two nine-bit fields. specifying either growth or shrinkage at both the high

and low ends of the vector. The fields are usually set only when a stack must be grown or
shrunk,

gc - This is used by the garbage collector to specify where this vector is moving during
colnpaction,

Examples (numbers in octalk the VECTOR [1 "bye* 37 looks like:

Appendix 1

The MDL Programming Language 217

- R s e e

| VECTOR | 0 |

I oW W I Ll R

| =6 | mmesseeeeesd| FIX | |

I 1 I

-..---#.‘---"----

| STRING | 3 |

| byte pointer |

Ll B e p——

| FIX | |
I - - - - - - - I
| 3 |
| 440000 | 0 |
| = = = ===« |
. 18 | |
The UVECTIOR ![=1 7 -4!] lonks like:

| UVECTOR | 0 |

' - - - - - - l Rl R B T, -

I -.3- I "h-----'lt-}l -1 I
| 7 I
| -4 |

| 400004FIX | 0 |

| 9 A

e e L]

Atoms

Internally, atoms are special vector-like objects. An atom contains a value cell (the first two words
of the block. filled in whenever the global or local value of the ATOM is referenced and is not already
there), an OBLIST pointer, and a print name (PNAME), in the following forinat:

Appendix |

218 The MDL Programming Language

O

I type I bindid |
| pointer-=to=value |
| pointer-to-0BLIST |
l print-name I
/ !
/ /
| {ASCIT with NUL padding on end)|
| ATOM | valid-type |
I I |
| lenath | [I

If the type ficld corresponds to TYPE UNBOUND, then the ATOM is Incally and globally unbound.
(This is different feom a pair, where the same TYPE UNBOUND is used to mean unassigned.) If it
corresponds tn TYPE LOCI (an internal TYPE), then the value cell points either to the global stack, if
bindid is zeto, or 1o a local control stack, if bindid is non-zero. The bindid field is used to verify
whether the local value pointed to by the value cell is valid in the current environment. The
pointer=to=0BLTST is either a counting pointer to an oblist (uvector), a positive offset into the
“transfer vector” (for pure ATOMs), or zero, meaning that this ATOM is not on an OBLIST. The valid-
type [icld tells whether or not the ATOM represents a TYPE and if so the code for that TYPE; grow
values are never needed for atoms.

Associations

Associalions are also special vector-like objects, The first six words of the block contain TYPE/value
pairs for the ITEM, INDICATOR and AVALUE of the ASOC. The next word contains forward and
backward pointers in the chain for that bucket of the association hash table. The last word
contains forward and backward pointers in the chain of all the associations.

Appendix |

The MDL Programming Language 219

| ITEM |

| - - - - [N O = = = m l

r | pair |
| INDICATOR |
— I ---------- - o I
| I pair |
' | AVALUE I
1 I - O O O = e s o o . - I
o | pair I
r rI ------------- mEESTEITEEREE NN .
| buckat=-chain pointers |

pg | association-chain pointers |
I ASOC | 0 |

[I T bR A . B I
i | 12 octal | gc I

PROCESSes

= A PROCESS vector looks exactly like a vector of TYPE/value pairs. It is different only in that the
1L

garbage collector treats it differently from a normal vector, and it contains extremely volatile
information when the PROCESS is RUNNING.

Templates

In a template, the number in the type field (left half of first dope word) identifies to which “storage
allocation class” this TENPLATE belongs. and it is used to find PDP-10 instructions in internal tables
(Frozen uvectors) for perf orming LENGTH, NTH, and PUT operations on any object of this TYPE.
The programs to build these tables are not part of the interpreter, but the interpreter does know how
1o use them properly. The compiler can put these instructions directly in compiled programs if a
TEMPLATE is never RESTed: otherwise it must let the interpreter discover the appropriate instruction,
The value word of a template pair contains, not a counting pointer, but the number of elements
that have been RESTed off in the left half and a pointer to the first dope word in the right half.

Appendix |

220 The MDL Programming Language

The Control Stack

Accumulators with symbolic names AB, T8, and TP are all pointers into the RUNNING PROCESS's
control stack. AB ("argument base”) is a pointer to the arguments to the Subroutine now being run.
It is set up by the Subroutine-call mediator, and its old value is always restored after a mediated
Subroutine call returns, T8 (“temporaries base”) points to the frame for the running Subroutine and
also serves as a stack base pointer. The T8 pointer is really all that is necessary to return from a
Subroutine -- given a value to return, for example by ERRET - since the frame specifies the entire

state of the calling routine, TP ("temporaries pointer”) is the actual stack pointer and always points
to the current top of the control stack,

Wihile we're on the subject of accumulators, we might as well be complete. Each accumulator
contains the value word of a pair, the corresponding TYPE words residing in the RUNNING PROCESS
vector. When a PROCESS is not RUNNING (or wlhen the garbage collector is running), the accumulator

contents are stored in the vector, so that the objects they point to look like elements of the PROCESS
and thus are not garbage.collectible,

Accumulators A, 8, €, D, [and 0 are used almost entircly as scratch accumulators, and they are
not saved or restored across Subroutine calls. OF course the interrupt machinery always saves these
and all other accumulators. A and B are used to return a pair as the value of a Subroutine call.
Other than thar special feature, they are just like the other scratch accumulators.

Mand R are used in running RSUBRs. M is always set up to point to the start of the RSUBR's code,
which is actually just a uniform vector of instructions. All Jumps and other references to the code
use M as an index register. This makes the code location-insensitive, which is necessary because the
code uvector will move around, R is set up to point to the vector of ob jects needed by the RSUBR.
This accumulator is necessary because ob jects in garbage-collected space can move around, but the
pointers to them in the reference vector are always at the same place relative to its beginning.

FRM is the internal frame pointer, used in compiled code to keep track of pending Subroutine calls
when the contral stack is heavily used. P is the internal-stack pointer, used primarily for internal
calls in the interpreter,

One of the nicest features of the MDL environment is the uniformity of the calling and returning
sefquence. All Subroutines - both built-in F/SUBRs and compiled RSUBR(-ENTRY)s - are called in
exactly the same way and return the same way. Arguments are always passed on the control stack
and results always end up in the same accumulators, For efficiency reasons, a lot of internal calls
within the interprerer circumvent the calling sequence, Ilowever, all calls made by the interpreter
when running user programs go through the standard calling sequence.

A Subroutine call is initiated by one of three UUOs (PDP-10 instructions executed by software
rather than hardware). MCALL ("MDL call') is used when the number of arguments is known at
assemble or compile time, and this number is less than 16. QCALL ("quick call”) may be used if, in
addition, an RSUBR(-ENTRY) is being called that ean be called "quickly” by virtue of its having

Appendix |

The MDL Programming Langunage 221

special information in its reference vector. ACALL (“accumulator call”) is used otherwise. The
general method of calling a Subroutine is to PUSH (a PDP-10 instruction) pairs representing the
arguments onto the control stack via TP and then either (1) MCALL or QCALL or (2) put the number of
arguments into an accumulator and ACALL. Upon return the ob ject returned by the Subroutine will
be in accumulators A and B, and the arguments will have been POPped off the control stack.

The call mediator stores the contents of P and TP and the address of the calling instruction in the
current frame (pointed to by TB) It also stores MDL's "binding pointer” to the topmost binding in
the conirel stack. (The hindings are linked together through the control stack so that searching
through them is more efficient than looking at every object on the stack.) This frame now specifies
the entire state of the caller when the call occurred, The mediator then builds a new frame on the
control stack and stores a pointer back to the caller's frame (the current contents of TB), a pointer to
the Subroutine being ealled, and the new contents of AB, which is a counting pointer to the
arguments and is computed from the infermation in the MCALL or QCALL instruction or the ACALL
accumulator. T8 is then set up to point to the new frame, and its left half is incremented by one,

making a new unique-id. The mediator then transfers control to the Subroutine.

A control stack frame has seven words as shown:

el e E L L R L LR e

| argument pointer |
| saved binding pointer |
G saved |
A aved 0|
| saved calling address |

The first three words are set up during the call to the Subroutine. The rest are filled in when this
routine calls anather Subroutine, The left half of T8 is incremented every time a Subroutine call
occurs and is used as the unique-1id for the frame, stored in frame and tuple pairs as mentioned
before. Obvioudly this 1d is not strictly uhique, since cach 256K calls it wraps around to zero. The
right half of 18 is always left pointing one word past the saved-calling-address word in the frame.
TP is also lefy pointing at that word, since that is the top of the control stack at Subroutine entry.
The arguments ta the called Subroutine are below the frame on the control stack (at lower storage
addresses). and the temporaries for the called Subroutine are above the frame (at higher storage
Addresses). These arguments and temporaries are just pairs stored on the control stack while needed;
they are all that remain of UNSPECIAL values in compiled programs.

Appendix |

292 The MDL Programming I.:ngiug:

The following figure shows what the control stack might look like after several Subroutine calls,

/ /
I l

L L -

The above figure shows the frames all linked together through the control stack (the “"execution
Path®). se that it is casy to return to the caller of a given Subroutine (ERRET or RETRY).

Subroutine exit is accomplished simply by the call mediator, which loads the right half of TB from

the previous frame pointer. restores the "binding pointer”, P, and TP, and transfers control back to
the instruction following the saved calling address.

Appendix |

o - = & m

The MDL Programming Language 293

Variable Bindings

All local AIOM values are kept on the control stack of the PROCESS to which they are local. As
described before, the atom contains a word that points to the value on the control stack. The

pointer is actually to a six-word "binding block™ on the control stack. Binding blocks have the
following format:

R e e = i il i

| BIND or UBIND | prev |
| pointer to ATOM |
| value I
IR !
| pair |
| dec] | unique=id |
| previous-binding I

where:

BIND means this is a binding for a SPECIAL ATOM (the only kind used by compiled programs),

and UBIND wmeans this is a binding for an UNSPECTAL ATOM -- for SPECIAL checking by the
interpreter:

prev points ta the closest previous binding block for any ATOM (the "access path” - UNWIND
ob jects are also linked in this chain)

decl points to a DECL associated with this binding, for SET{LOC) to check:
unique=id is used for validation of this block: and
previous=binding points to the closest previous binding for this ATOM (used in unbinding).

Bindings are generated by an internal subroutine called SPECBIND (name comes from SPECIAL). The
caller to SPECBIND PUSHes consecutive six-word blocks onto the control stack via TP before calling
SPECBIND. The first word of each block contains the TYPE code for ATOM in its left half and all
ones in its right half. SPECBIND uses this bit pattern to identify the binding blocks. SPECBIND's
caller also Fills in the next three words and leaves the last two words cinpty. SPECBIND Fills in the

rest and leaves the “binding pointer” pointing at the topmost binding on the control stack.
SPECBIND also stores a pointer to the current binding in the value cell of the atom.

Appendix |

224 The MDL Programming Language

Unbinding is acenmplished during Subroutine return, When the previous frame is being restored,
the call mediator chiecks to see if the saved “binding pointer” and the current one are different; if
they are. SPECSTORE is called. SPECSTORE runs through the binding blocks, restoring old value
pointers in atoms until the “binding pointer” is equal to the one saved in the frame.

Dhrimnt}- variable L-im!ing IS more complicated than this, because ATOMs can have both local and
global values and even different Incal values in dif ferent PROCESSes. The solution to all of these
additional problems lies in the bindid Field of the atom. Each PROCESS vector also contains a
current bindid. Whenever an ATOMs local value is desired, the RUNNING PROCESS's bindid is
checked against that of the atonn if they are the same, the atom points to the current value: if not,
the current PROCESS's control stack must be searched to find a binding block for this ATOM. This
binding scheme might he ealled “shallow binding”. The searching is facilitated by having all
binding blocks linked tagether. Referring to glabal variables is accomplished in a similar way,
using a VECTOR that is referred to as the ‘global stack™. The global stack has only an ATOM and a
value slot for cach variable, since glabal values never get rebound,

EVAL with respeet 10 a different environment causes some additional problems. Whenever this kind
of EVAL is done. a brand new bindid js generated, forcing all current local value cells of atoms to
appear invalid. Local values must now be oblained by searching the control stack, which is
inefficient campared 1n Just pulling them out of the atoms. (The greatest inefficiency occurs when
Al ATOMs LVAL is never used twice in a row in the same environment.) A special block is built on
the conirol stack and linked into the binding-block chain. This block is called a “skip block” or

enviromment splice”, and it diverts the "access path” 1o the new environment, causing searches to
become relative to this new environ ment,

Appendix |

e

The MDL Programming Language 9225
Appendix 2. Predefined Subroutines

The following is a very brief description of all the primitives (F/SUBRs) currently available in
MDL. These descriptions are in no way to be considered a definition of the effects or values
produced by the primitives. They just tey to be as complete and as accurate as is possible in a
single-statement description. However, because of the complexity of most primitives, many
important assumptions amd restrictions have been omitted. Even though all primitives return a

value. some descriptions mention only the side effects produced by a primitive, because these
primitives are most often used for this ef fect rather than the value,

A description is given in this format;

name (arguments)

decl :
English description

This format is intended 1o look like a FUNCTION definition, omitting the call to DEFINE and all
internal variables and eode. The name is just the ATOM that is used to refer to the primitive. The
names of the arguments are intended to be mnemonic or suggestive of their meanings. The dec! is a
FUNCTION-style DECL (chapter 14) for the primitive. In some cases the DECL may look unusual,
because it is intended to convey information 1o a person about the uses of arguments, not to convey
information to the MDL interpreter or compiler. For example, <OR FALSE ANY> is functionally
equivalent to ANY, Dut it indicates that only the "truth" of the argument is significant. Indeed, the
[OPT ...1 construction is often used illegally, with other elements following it: be warned that
MDL would not accept it. An argument is included in the same LIST with VALUE (the value of the

primitive) only if the argument is actually returned by the primitive as a value. In other words,
#DECL ((VALUE ARG) ...) implies <==7 ,VALUE .ARG>.

® ("TUPLE"™ FACTORS)
#DECL ((VAIUE) <OR FIX FLOATS

(FACTORS) <TUPLE [REST <OR FIX FLOAT)>]>)
multiplies all arguments together (arithmetic)

* ("TUPLE"™ TERMS)
#DECL ((VALUE) <OR FIX FLOAT)
(TERMS) <TUPLE [REST <OR FIX FLOAT>]>)
adds all arguments together (arithmetic)

Appendix 2

226

= ("OPTIONAL"™ MINUEND "TUPLE® SUBTRANENDS)
#DECL ((VALUE) <OR FIX FLOAT)
(MINUCHD) <OR FIX FLOAT)
(SURTRAITNDS) <TUPLE [REST <OR FIX FLOAT>]>)
subtracts other arguments from first argument (arithmetic)

/ ("OPTIONAL™ DIVIDCND "TUPLE® DIVISORS)
#DECL ((VALUF) <OR FIX FLOAT)
(DIVIDEND) <OR FIX FLOATY
(DIVISORS) <TUPLE [REST <OR FIX FLOAT>1>)
divides first argnment by other arguments (arithmetic)

07 (NUMBLR)
#DECL ((VALUC) <OR 'T '#FALSE ()>
(NUMBER) <OR FIX FLOAT)
tells whether a number is 7ern (predicare)

17 (NUMBLR)
#DECL ((VALULC) <OR *T "fFALSE ()»
(NUMBIR) <OR FIX FLOAT))
tells whether a number is one (predicate)

ISTEP (PROCECSS)
#DECL ((VALUE PROCESS) PROCESS)
causes a PROCESS 1o enter single-step mode

==7 (OBJICCT-1 oRarcr-2)
#DECL ((VALUF) <OR 'T '#FALSE ()>
(OBJECT-1 OBJECT=-2) ANY)
tells whetlier two abjoets are "exactly” equal (predicate)

=7 (OBJECT-] OBJECT=2)
#DECL ((VALUE) <OR 'T "#FALSE ()>
(OBJECT-1 OBJECT-2) ANY)
tells whethier twn ohjecis are “structurally” equal (predicate)

ABS (NUMBER)
#DECL ((VALUC) <OR TIX FLOATY
(RUNBFR) <OR FIX FIOAT>)
returns absolute value of 3 number (arithmetic)

ACCESS (CIHANNCL ACCESS-POINTER)
¥PDECL ((vALUF CHANNFL) CHANNEL
(ACCESS=POINTER) FIX)
$ets aceess pointer for next 1O transfer via a CHANNEL

Appendix 2

The MDL Programming Language

QRSP -

The MDL Programming Language

ACTIVATE-CHARS ("OPTIONAL" STRING)
#DECL ((VALUL STRING) STRING)

sets or retiins intecoupt characters for terminal typing (Tenex and Tops-20 versions only)

AGAIN ("OPTIOHAL" (ACTIVATION .LPROG\ !=INTERRUPTS))
#DECL ((VALUE) ANY
(ACTIVATTON) ACTIVATION)
resumes exceulion at the given ACTIVATION

ALLTYPES ()
#DECL ((VALUL) <VECTOR [REST ATOM]>)
returns the VECTOR of all type names

AND ("ARGS" ARGS)
#DECL ((VALUE) <OR FALSE ANY>
(ARGS) LIST)
computces logical "and” of truth-values, evaluated by the Subroutine

AND? ("TUPLE"™ TUPLE)
#DECL ((VALUE) <OR FALSE ANY>
(TUPLL) TUPLE)
computes logical “and” of truth-values, evaluated at call time

ANDB ("TUPLE"™ WORDS)
#DECL ((VAIUL) WORD

(WORDS) <TUPIE [REST <PRIMTYPE WORD>]>)
computes bitwise "and” of machine words

APPLICABLL? (OBJICT)
#DECL ((VALUE) <OR 'T '"#FALSE ()>
(OBJECT) ANY)
tells whether argument is applicable (predicate)

APPLY (APPLICABLE “TUPLE"™ ARGUMENTS)
FDECL ((VALUE) ANY

(APPLICABLE) APPLICABLE (ARGUMENTS) TUPLE)
applies first argument to the other arguments

APPLYTYPE (TYPE "OPTIONAL"™ HOW)
#DECL ((VALUC) <OR ATOM APPLICABLE '#FALSE ()>
(TYPE) ATOM (HOW) <OR ATOM APPLICABLE>)
specifies or returns how a data type is applied

Appendix 2

228 The MDL Programming Language

ARGS (CALL)
#DECL ((VALUE) TUPLE

(CALL) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns arguments of a given un-returned Subroutine call

ASCII (CODE-OR-CHARACTER) =
#DECL ((VALUE) <OR CHARACTER FIX> -

(CODE=OR-CHARACTCR) <OR TIX CHARACTERY) '
returns CHARACTER with given ASCII eode or vice versa e |

ASSIGNED? (ATOM "OPTIONAL" ENV)

#DECL ((VALUE) <OR 'T '#FALSE ()> -
(ATOM) ATOM (ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS) EJJ

tells whether an ATOM has a Iocal value (predicate) {
.

ASSOCIATIONS () I

#DECL ((VALUL) <OR ASOC '"WFALSE ()>)
returns the first objeet in the association chain

AT (STRUCTURED "OPTIONAL™ (N 1))

#DECL ((VALUF) LOCATIVE v
(STRUCTURED) STRUCTURED (N) <OR FIX OFFSET}) !

returns a Incative 1o the Nth element of a structure

ATAN (NUMDER)
YDECL ‘{UﬂLUE] FLOAT
(NUMBER) <OR FIX FLOAT))
Feturns arc fangent of a number {arithmeric)

ATOM (PHAME)
#DECL ((VALUL) ATOM
(PNAMF) STRING) . :
creates an ATOM with a given name

AVALUL (ASSOCIATION)
#DECL ((VALLE) ANY
(ASSOCIATION) ASOC)
returns the "value” field of an association =

Appendix 2

The MDL Programming Language 209

BACK (STRUCTURE "OPTIONAL" N)
#DECL ((VALUE) <OR VECTOR TUPLE UVECTOR STORAGE STRING BYTES TEMPLATE>
(N) FIX
(STRUCTURE) <OR <PRIMTYPE VECTOR> <{PRIMTYPE TUPLE>
(PRIMTYPE UVECTOR> <PRIMTYPE STORAGE>
(PRIMTYPE STRING> <PRIMTYPE BYTES
CPRIMTYPE TEMPLATE?>>)
replaces some elements removed from a non-list structure by RESTing and changes to primitive data

Iy pe

BIND ("ARGS"™ ARGS)
#DECL ((VALUE) ANY
(ARGS) <LIST [OPT ATOM] LIST [OPT DECL) ANY2)
exccutes scquential expressions without providing a bound ACTIVATION

BITS (WIDTH *OPTIONAL® (RIGHT=EDGE 0))
#DECL ((VALUL) BITS
(WIDTII RIGINT-EDGE) FIX)
creates a hit mask for PUTBITS and GETBITS

BLOAT ("OPTIONAL"

(FREC 0) (STACK 0) (LOCALS 0) (GLOBALS 0) (TYPES 0) (STORAGE 0) (P-STACK 0)
MIN GROW=-10CAL GROW-GLOBAL GROW-TYPE GROW-STORAGE PURE P-STACK-SIZE STACK-SIZE)
#DECL ((VALUE) FIX
(FREC STACK LOCALS GLOBALS TYPES STORAGE P-STACK MIN GROW-LOCAL GROW-GLOBAL

GROW-TYPE GROW-STORAGE PURE P-STACK-SIZE STACK-SIZE) FIX)
allocates extra storage temporarily

BLOAT-STAT ("OPTIONAL" STATS)

fDECL ((VALUF) <UVECTOR [27 FIX]>
(STATS) <UVECTOR [27 ANY]?)

gives garbage-collector and storage statistics

BLOCK (lOOK-1IP)
#DECL((VALUE LOOK-UF) <OR OBLIST <L1ST [REST <OR OBLIST 'DEFAULT>]>>)-
SETs OBLIST for looking up ATOMs during READing and PARSEing

BOUND? (ATOM "OP1IONAL" ENV)
#DECL ((VALUE) <OR 'T '#FALSE ()>

(ATOM) ATOM (ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS?)
tells whether an ATOM is locally bound (predicate)

Appendix 2

230

BREAK-SEQ (OBJICT PROCESS)
#DECL ((VALUF PROCESS) PROCESS
(OBJECT) ANY)
modilies exccution sequence of another PROCESS

BUFOUT ("OPTIONAL™ (CHANNEL ,OUTCHAN))
#DECL ((VALUE CHANNEL) CHANNEL)
writes out all internal MDL buffers for an output CHANNEL

BYTE-SIZE (BYILS)
#DECL ((VALUE) FIX
(BYTES) BYTES)
returns size of hytes in a bytestring

BYTES (SIZE "TUPLE" ELEMENTS)
#DECL ((VALUE) BYTES

(STZE) FIX (ELEMENTS) <TUPLE [REST FIX]>)
creates a byte-siring from explicit arguments

CHANLIST ()
#DECL ((VALUF) <LTST [RFST CIANNELT))
returns a LIST of eurrently open 1/O CHANNELSs

CHANNECL ("OPTTONAL"™ (MODE "READ™) "TUPLE"™ FILE=-NAME)

#DECL ((VAIUE) CHANNEL
(MODE) STRING (FILE-NAME) TUPLE)
creates an unopencd 1/O CHANNEL

CHTYPE (OHJECT T1YPE)
f#DECL ((VALUE) ANY
(OBJECT) ANY (TYPE) ATOM)
makes a new pair with a given data type from an old one

CHUTYPE (UVECTOR TYPE)
#DECL ((VALUL UVECTOR) <PRIMTYPE UVECTOR>
(TYPE) ATOM)

changes the data type of the elements of a uniform vector

CLOSE (CIANNCL)

#DECL ((VALUF CHANNEL) CHANNEL)
closes an 1/0 CHANNEL

Appendix 2

The MDL Programming Language

- ——— —

The MDL Programming Language

CLOSURE (FUNCTION "TUPLE"™ VARIABLES)
#DECL ((VALUE) CLOSURE

(FUNCTION) FUNCTION (VARIABLES) <TUPLE [REST ATOMI>)
"binds” the free variabiles of a FUNCTION to current values

COND ("ARGS" CLAUSES)
#DECL ((VALUL) ANY

(CLAUSES) CLIST <LIST <OR FALSE ANY>> [REST <LIST <OR FALSE ANY>>1>)
evaluates conditions and selected expression

CONS (NEW-ELLMLNT LIST)
#DECL ((VALUE) L1571

(HEW-ELEMENT) ANY (LIST) LIST)
adds an clement 1o the front of a LIST

COS (NUMBER)
#DECL ((VALULC) FLOAT
(HUMBER) <OR FIX FLOAT>)
returns cosine of a number (arithmetic)

. CRLF ("OPTIONAL™ (CHANNEL .OUTCHAN))
#OECL ((VALUL) 'T
. (CHANNEL) CHANNEL)
prints a carriage-return and line-feed via an output CHANNEL

N DECL=CHECK ("OPTIONAL®™ SWITCH)

| #DECL ((VALUE) <OR 'T '#FALSE ()>
k- (SWITCH) <OR FALSE ANY>)
- enables or disables type-declaration checking

DECL? (OBJECT PATIERN)
#DECL ((VALUE) <OR 'T '#FALSE ()>
(OBJECT) ANY (PATTERN) <OR ATOM FORM>)
tells whether an ob ject matches a type declaration (predicate)

DEFINE (‘'NAME "ARGS" ARGS)
#DECL ((VALUE) ATOM

(HAME) ANY (ARGS) <LIST [OPT ATOM) LIST [OPT DECL] ANY>)
sets the global value of an ATOM 1o a FUNCTION

| DEFMAC ('NAME "ARGS" ARGS)
= #DECL ((VAIUE) ATOM

(NAME) ANY (ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
sets the global value of an ATOM to a MACRO

Appendix 2

232 The MDL Programming Language

DEMSIG (HWANL)
#DECL ((VALUE) <OR 'T "#FALSE ()>
(NAME) STRING)
signals an ITS dacmoan

DISABLE (INTERRIIFT)
#DECL ((VALUE INTERRUPT) IHEADER)
disables an interrupi

DISMISS (VAL "OPTIONAL™ ACTIVATION INT-LEVEL)
#DECL ((VALULC VAL) ANY

(ACTIVATION) ACTIVATION (INT-LEVEL) FIX) a

dismisses an interrupt occurrence

ECHOPALR (1IN OUT)
#DECL ((VALUL IN) CHANHLCL
(OUTY CHANNEL)
coardinates 1/Q CHANNELs for echoing characters on rubout

= e —— —

EMPTY? (OBJECT)
#DECL ((VALUF) <OR 'T "#FALSE ()>
(OBJECT) STRUCTURED)
tells whether a structure has zero elements (predicate)

ENABLE (TNTERRUPT)
#DECL ((VALUE INTERRUPT) IHEADER)
enables an interrupt

ENDBLOCK ()

#DECL ((VALUE) <OR OBLIST <LIST [REST <OR QBLIST 'DEFAULT>]>>)
restores the .OBLIST that existed before corresponding call to BLOCK

ENTRY=LOC (ENTRY) }
#DECL ((VALUE) FIX |
(ENTRY) RSUBR-ENTRY) .

returns the of (set in the code vector of an RSUBR-ENTRY

EQVE ("TUPLE" WORDS) ’
#DECL ((VALUC) WORD
(WORDS) <TUPLE [REST <PRIMTYPE WORD)1>)
computes bitwise "equivalence” of machine words

Appendix 2

The MDL Programming Language 233

ERRET ("OPTIONAL" VAL (FRAME .LERR\ !=-INTERRUPTS))
#DECL ((VALUE) ANY
(VAL) ANY (FRAME) FRAME)
continues evaluation from the last ERROR or LISTEN or from a given FRAME

ERROR ("TUPLE"™ INFOQ)
#DECL ((VALUEC) ANY
(INFO) TUPLE)
stops and informs user of an error

ERRORS ()
#DECL ((VALUE) ORI IST)
returns the OBLIST where error messages are located

EVAL (ANY "OPTTONAL" ENV)
#DECL ((VALUE) ANY

(ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS))
evaluates an expression in a given environment

EVALTYPE (TYPE "OPTIONAL"™ HOW)
#DECL ((VALUE) <OR ATOM APPLICABLE '#FALSE ()>
(TYPL) ATOM (HOW) <OR ATOM APPLICABLE>)
specilfies ar returns how a data type is evaluated

EVENT (NAME "OPTIONAL"™ PRIORITY WHICH)
#DECL ((VALUE) IHEADER

(NAME) <OR STRING ATOM IHEADER> (PRIORITY) FIX (WHICH) <OR CHANNEL LOCATIVE>)
sets up an interrupt

EXP (NUMBLR)
#DECL ((VALUE) FLOAT
(NUMBER) <OR FIX FLOATY)
returns "¢ to the power of a number (arithmetic)

EXPAND (ANY)
#DECL ((VALUE) ARY
(ANY) ANY)
evaluates its argument (only once if a MACRO is invelved) in the top-level environment

FILE-EXISTS? ("TUPLE" FILE=-NAME)

#DECL ((VALUE) <OR 'T <FALSE STRING FIX>>
(FILE<NAMC) TUPLL)

tests for existence of a file (predicate)

Appendix 2

234 The MDL Programming Language

FILE-LENGTH (INCH)
#DECL ((VALUF) TTX
(INCH) CHANKEL)
returns the system-provided length of a file open on an input CHANNEL

FILECOPY ("OPTIONAL" (INCH ,INCHAN) (OUCH .OUTCHAN))
PDECL ((VALUE) FIX
(INCH OUCH) CHANNEL)
capics characters from one CHANNEL to another until end-of-file on the input CHANNEL

FIX (NHUMUER)
#DECL ((VALUE) FIX
(NUMBER) <OR TLOAT FIXD)
returns integer part of a number (arithmetic)

FLATSIZE (ANY MAX "OPTIONAL" (RADIX 10))
#DECL ((VALUC) <OR FIX '#FALSE ()>
(ANY) ANY (MAX RADIX) FIX)
returns number of characters needed to PRINI an object, if not greater than given maximum

FLOAD ("TUPLE™ FILL-HAME-AND~LOOK-UP)

#DECL ((VALUE) ""DONE"
(FILE-NAME-AND-LOOK-UP) TUPLE)

reads and evaluates all ab jeets in a file

FLOAT (NUMBER)
#DECL ((VALUE) FLOAT
(NUMDER) <OR FIX FLOATY)
returns (loating-point value of a number (arithmetic)

FORM ("TUPLE"™ ELEMENTS)
#DECL ((VALUL) TORH
(ELFHENTS) TUPLE)
creates a FORM from explicit arguments

FRAME ("OPTIONAL"™ (FRAME .LERR\ !-INTERRUPTS))
#DECL ((VALUL) I RAME

(FRAME) <OR FRAME ENVIRONMENT ACTIVATION PROCESS?)
returns a previous Subroutine call

FREE~RUN ({PROCISS)

#DECL ((VALUE) <OR PROCESS '#FALSE ()>
(PROCESS) PROCESS)

causes a PROCLSS to Jeave single-step mode

Appendix 2

The MDL Programming Language 235

FREEZE (STRUCTURE)
#DECL ({VALUL) <OR VECTOR UVECTOR STRING BYTESY
(STRUGTURE) <OR <PRIMTYPE VECTOR> <PRIMTYPE TUPLE>» <PRIMTYPE UVECTOR>
CPRIMTYPE STRING> <PRIMTYPE BYTES>>)
makes copy of argument in non-moving garbage-collected space

FUNCT (FRANC)
#DECL ((VALUL) ATOM
(FRAME) <OR FRAME ENVIRONMENT ACTIVATION PROCESS))
returns Subrowtine name of a given previous Subroutine call

FUNCTION ("ARGS" ARGS)
#DECL ((VALUE) FUNCTION
(ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY)
creates a TUNCTION

|

G=7 (NUMERER=-1 NUMBER-2)
#DECL ((VALUE) <OR 'T '#FALSE ()>
(NUHECR=-1 NUMBCR-2) <OR FIX FLOATX)
tells whether First argument is greater than or equal to second (predicate)

— <y

G? (NUMBCR-1 NUMBER-2)
#DECL ((VALUr) <€OR 'T '"#FALSE ()>
. (NUMBLH=1 NUMBER-2) <OR FIX FLOATY)
' tells whether first argument is greater than second (predicate)

GASSIGNLD? (ATOM)
#DECL ((VALUE) <OR 'T '4FALSE ()?
(ATOM) ATOM)
tells whether an ATOM has a global value (predicate)

GBOUND? (AT0M)
#DECL ((VALUE) <OR 'T '#FALSE ()>
(ATOIM) ATOM)
tells whether an ATOM ever had a global value (predicate)

TNY

GC ("OPTIONAL™ MIN (EXHAUSTIVE? <>) M5-FREQ)
#DECL ((VALULC) FIX
(MIN MS-TRIQ) FIX (EXHAUSTIVC?) <OR FALSE ANY>)
causes a garbage ceollection and changes garbage-collection parameters

GC-DUMP (ANY PRINTD)

#DECL ((VAMUF) <OR ANY <UVECTOR <PRIMTYPE WORD>>)
(ANY) ANY (PRINTB) <OR CHANNEL FALSE>)

dumps an objeet sn that it can be reproduced exactly

Appendix 2

216 The MDL Programming Language

GC=MON ("OPTIONAL"™ SWITCH)
PDECL ((VALULC) <OR 'T "#TALSE ()>
(SWITCH) <OR FALSE ANY)
turns garbage.coliection monitoring off or on

GC-READ (RCADD "OPTIONAL® (EOF -ROUTINE '<¢ERROR e ?))
#DECL ((VALUE) ANY

(READB) CHANNEL (EQF-ROUTINE) ANY)
inputs an ob jeet that was previously GC-DUMPed

GDECL ("ARGS" ARGS)
FDECL ((VALUE) ANY
(ARGS) <LIST [REST <LIST [REST ATOM]> <OR ATOM FORM>]>)
declares the type/structure of the global value of ATOMs

GET (ITEM INDICATOR "OPTIONAL" (IF-NONE ¢3))
FDECL ((VALULC) ANY

(1TFM) <OR STRUCTURED ANY> (INDICATOR) <OR FIX OFFSET ANY)» (IF-NONE) ANY)
does NTH or GE TPROP

GET-DECL (ATOM-OR-OFFSLT)
#DECL ((VAILIIF) <OR ATOM FORM "#FALSE ()>
(ATOM-OR-OFFSET) <OR LOCD OFFSET>)
gels the 1ype declaration for an ATOM's value or an OFFSET

GETBITS (FROM FI1ELD)
#DECL ((VALUE) WORD
(FROI) COR <PRIMTYPE WORDY ¢PRIMTYPE STORAGE) (FIELD) BITS)
returns a bit Cield of a machine word or STORAGE addross

GETL (ITEM INDICATOR "OPTIONAL® (IF=NOHE <))
#DECL ((VALUC) <OR LOCATIVE LOCAS ANY>

(ITEM) <OR STRUCTURED ANY> (INDICATOR) <OR FIX OFFSET ANY>» (IF-NONE) ANY)
does AT or GETPL

GETPL (ITCM INDICATOR "OPTIONAL®™ (IF-NONE <))
#PDECL ((VALUE) <OR LOCAS ANY>

(ITEM 1INDICATOR IF-NONE) ANY)
returns a Incative to an association

GETPROP (LTEM INDICATOR "OPTIONAL" (IF-NONE <))
#DECL ((VALUE) ANY

(ITEM INDICATOR IF-NONE) ANY)
returns the value associated with an item under an indicator

Appendix 2

The MDL Programming Language

GLOC (ATOM "OPTIONAL® (MAKE-SLOT <))
#DECL ((VALUE) LOCD

(ATOM) ATOM (MAKE-SLOT) <OR FALSE ANY>)
returns a locative to the global-value cell of an ATOM

GO (LABEL)
#DECL ((VALUE) ANY
(LABEL) <OR ATOM TAG))
goes to a label and continues evaluation from there

GROW (U/VECTOR END BEG)
¢#DECL ((VALUL) <OR <PRIMTYPE VECTOR> <PRINTYPE UVECTOR>>

(U/VECTOR) <OR <PRIMTYPE VECTOR> <PRIMTYPE UVECTOR>> (END BEG) FIX)
increases the size of a vector or uniform vector

GUNASSIGN (ATOM)
#DECL ((VALUE ATOM) ATOM)
causes an ATOM (o have no global value

GVAL (ATOM)
#DECL ((VALUE) ARY
(ATOM) ATOM)
returns the global value of an ATOM

HANDLER (IHEADER HANDLER "OPTIONAL®" (PROCESS #PROCESS 0))
#DECL ((VALUE) HANDLER

(THEADER) INEADER (HANDLER) <OR HANDLER APPLICABLE> (PROCESS) PROCESS)
creates an interrupl HANDLER

HANG ("OPTIONAL" (UNHANG <))
#DECL ((VALUE) ANY
(UNHANG) ANY)
does nothing, interruptibly, potentially forever

IBYTES (SIZE LENGTH “"OPTIONAL®" (ELEMENT 0))
#DECL ((VALUE) BYTES

(SIZE LENGTH) FIX (ELEMENT) ANY)
creates a byte-string from implicit arguments

IFORM (LENGTH "OPTIONAL" (ELEMENT #LOSE 0))
#DECL ((VALUE) FORM

(LENGTH) FIX (ELEMENT) ANY)
creates a FORM from implicit arguments

Appendix 2

287

238 The MDL Programming Language

ILIST (LENGTI "OPTIONAL® (ELEMENT #LOSE 0))
#DECL ((VALUE) LIST
(LENGTH) FIX (ELEMENT) ANY)
creates a LIST from implicit arguments

IMAGE (CODE "OPTIONAL™ (CHANNEL .OUTCHAN))
#DECL ((VALUE CODE) FIX
(CHANNEL) CHANNEL)
sends an image-mode character via an output CHANNEL

IN (POINTER)
#DECL ((VALUE) ANY
(POINTCR) LOCATIVE)
returns the object pointed to by a locative

INDEX (OFFSET)
fDECL ((VALUE) FIX
(OFFSET) OFFSET)
Fetches the integral part of an OFFSET

INDICATOR (ASSOCIATION)
#DECL ((VALUE) ANY

(ASSOCIATION) ASOC)
returns the "indicator” field of an association

INSERT (PNAME OBLIST)
#DECL ((VALUE) ATOM

(PNAME) <OR ATOM STRING> (OBLIST) OBLIST)
_ adds an ATOM to an OBLIST

INT=-LEVEL ("OPTIONAL®™ NEW-INT-LEVEL)
#DECL ((VALUE) FIX
(NEW-INT-LEVEL) FIX)
returns and/or sets current interrupt level

INTERRUPT (NAME "TUPLE®™ HANDLER-ARGS)
#DECL ((VALUE) <OR 'T '#FALSE ()>

(NAME) <OR STRING ATOM IHEADER)> (HANDLER-ARES) TUPLE)
causes an interrupt to oceur

INTERRUPTS ()
#DECL ((VALUE) OBLIST)
returns the OBLIST on which interrupt names are kept

Appendix 2

3

=érl—‘

11

-
—

-

h
",

The MDL Programming Language

IPC=HANDIER (RODY TYPE OTHER-NAME-1 OTHER-NAME-2
"OPTIONAL" (MY=NAME=1 <UNAME>) (MY-NAME-2 <JNAME>))
#DECL ((VALUE) 'T
(BODY) <OR STRING UVECTOR> (TYPE) FIX
(OTHER-NAME =1 OTIHER=NAME-2 MY-NAME-1 MY-NAME-2) STRING)
is the built-in handler for "IPC" (ITS version only)

IPC-OFF ()
#DECL. ((VALUL) *1)
stops all listening on the IPC device (ITS version only)

IPC-ON ("OPTTONAL™ (MY=NAME=1 <UNAME>) (MY-NAME=2 <JNAME>))
#DECL ((vaLLL) 'T
(MY-NAME-1 MY-HAME-2) STRING)
listens on the H'C deviee (I'T'S version only)

ISTORAGE (LENGTH "OPTJONAL"™ (ELEMENT #LOSE 0))
#DECL ((VALUE) STORAGE
(LCNGTH) FIX (CLEMCNT) ANY)
creates a non-garbage-colleeted STORAGE from implicit arguments (archaic)

ISTRING (LENGTH "OPTIONAL" (ELEMENT I\"@))
#DECL ((VALUL) STRING
(LENGTH) FIX (ELEMENT) ANY)
creates a character-string from implicit arguments

ITEM (ASSOCIATION)
#DECL ((VALUE) ANY
(ASSOCIATION) ASOC)
returns the “item” field of an association

ITUPLE (LENGTH "OPTTONAL®™ (ELEMENT #LOSE 0))
#DECL ((VALUE) TUPLE
(LENGTI) FIX (ELEMENT) ANY)
creates a TUPLE from implicit arguments

IUVECTOR (LENGTH "OPTIONAL"™ (ELEMENT #LOSE 0))
#DECL ((VALUL) UVCCTOR
(LENGTH) FIX (CLEMENT) ANY)
creates a UVECTOR fronn implicit arguments

IVECTOR (LCNGTII "OPTIONAL™ (CLEMENT #LOSE 0))
#OECL ((VALUE) VECIOR
(LENGTH) FIX (ELEMENT) ANY)
creates a VECTOR from implicit arguments

Appendix 2

289

240 The MDL Programming Language

JNAME ()
#DECL ((VALUL) STRING)
returns the " joh name” of MDL's process

L=? (NUMBER-1 HUMBER-2)
#DECL ((VALUE) <OR 'T '#FALSE ()2
(NUMBER-1 NUMBER=2) <OR FIX FLOAT>)
tells whether first argument is less than or equal to second (predicate)

L? (NUMBIR-1 NIMRIR-2)
#DECL ((VALUE) <OR 'T '#FALSE ()>
(NUMBER-1 NUMBER-2) <OR FIX FLOAT>)
tells whether Tirst argnient is less than second (predicate)

LEGAL? (STACK-0BJLCT)
#DECL ((VALUE) <OR 'T ‘#FALSE ()>
(STACK=OBJECT) ANY)

tells whether argument (which might live on the control stack) is still legal (predicate)

LENGTH (OBJECT)
#DECL ((VALUL) FIX
(ORJECT) STRUCTURED)
returns the number of elements in a structure

LENGTH? (OBJCCT MAX)
#DECL ((VALUL) <OR FIX "#FALSE ()>
(OBJECT) STRUCTURED (MAX) FIX)
tells whether length of structure is less than or equal to an integer (predicate)

LINK (EXI'R PNAME "OPTTONAL"™ {(OBLIST <1 .OBLIST>))
#DECL ((VALUE EXPR) ANY
(PNAME) STRING (OBLIST) OBLIST)
creates a symbolic LINK to any expression for READing

LIST ("TUPLE" ELEMEN1S)
#DECL ((VALUE) LIST
(CILTHENTS) TUPLE)
creates a L1ST from explicit arguments

LISTEN ("TUPLE" INFO)
#DECL ((VALUL) ANY
(INFO) TUPLE)
stops and informs user that MDL is listening

Appendix 2

LLOC (ATOM "OPTIONAL™ ENV)
#DECL ((VALUE) LOCD

(ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns a locative to the local-value cell of an ATOM

LOAD (CHANNEL “OPTIONAL® (LOOK-UP .OBLIST))
FDECL ((VALUE) '"DONE"

(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)
reads and evaluates all ob jects via an input CHANNEL :

LOCATIVE? (OBJECT)
#DECL ((VALUE) <OR 'T '#FALSE ()
(OBJECT) ANY)

tells whether an object is a locative (predicate)

LOG (NUMBLR)
#DECL ((VALUE) FLOAT
(NUMBER) <OR FIX FLOAT>)
returns natural logarithm of a number (arithmetic)

LOGOUT ()
#DECL ((VALUE) '#FALSE ())
logs out of the operating system (useful for background processes)

LOOKUP (PNAME OBLIST)
#DECL ((VALUE) <OR ATOM '#FALSE ()>

(PNAME) STRING (OBLIST) OBLIST)
returns an ATOM found on a given OBLIST

LPARSE ("OPTIONAL"

(STRING .PARSE-STRING) (RADIX 10) (LOOK-UP .OBLIST) PARSE-TABLE LOOK-AHEAD)
#DECL ((vAluULC) LIST

- (STRING) STRING (RADIX) FIX (PARSE-TABLE) VECTOR (LOOK-AHEAD) CHARACTER
(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)
returns a LIST of the objects parsed from a STRING (sections 7.6.6.3, 15.7.2, 17.1.8)

LSH (WORD AMOUNT)
#DECL ((VALUE) WORD
(WORD) <PRIMTYPE WORD> (AMOUNT) FIX)
shifts bits in a machine word

LVAL (ATOM "OPTIONAL®™ ENV)
PDECL ((VALUE) ANY

(ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>»)
returns the local value of an ATOM

Appendix 2

The MDL Programming Language 241

Lk

242 The MDL Programming Language

MAIN ()

F#DECL ((VALUE) PROCESS)
returns #PROCESS 1 (the main PROCESS)

MANIFEST ("TUPLE™ ATOMS)
FfOECL ((VALUE) 'T
(ATOMS) <TUPLE [REST ATOM]>)
declares the global values of ATOMs to be constant

MANIFEST? (ATOM)
FDECL ((VALUL) <OR 'T '"#FALSE ()» !
(ATOM) ATOM) |
tells whether the global value of an ATOM is constant (predicate) |

MAPF (FINAL-FCN LOOP-FCN "TUPLE®™ STRUCTURES)
#DECL ((VALUE) ANY

(FINAL-FCN) <OR APPLICABLE FALSE> (LOOP-FCN) APPLICABLE
(STRUCTURES) <TUPLE [REST STRUCTURED]>)
maps function onte clements of structures

MAPLEAVE (™OPTIONAL® (VAL T))
fDECL {
(VAL) ANY)
leaves the most recent MAPF/R with a value

MAPR (FINAL-FCN LOOP-FCN "TUPLE® STRUCTURES)
#DECL ((VALUE) ANY

(FINAL-FCN) <OR APPLICABLE FALSE) (LOOP-FCN) APPLICABLE
(STRUCTURES) <TUPLE [REST STRUCTURED]>)
maps function onto RESTs of structures

MAPRET ("TUPLE"™ ELEMENTS)
PODECL (

(ELCHENTS) TUPLE)
returns a variable number of ob jects to the current MAPF/R

MAPSTOP ("TUPLE™ ELEMENTS)
#DECL {(

(ELEMENTS) TUPLE)
MAPRETs. then stops looping of MAPF/R and causes application

MAX ("TUPLE®™ NUMBERS)
FDECL ((VALUE) <OR FIX FLOAT>

{NUMBERS) <TUPLE [REST <OR FIX FLOAT>]>)
returns the greatest of its arguments (arithmetic)

Appendix 2

The MDL Programming Language

ME ()
#DECI ((VAILLF) PROCESS)
returns the current PROCESS

MEMBER (OBJCCT STRUCTURE)
#DECL ((VALUE) <OR STRUCTURED '#FALSE ()>
(OBJECT) ANY (STRUCTURE) STRUCTURED)
tells whether an ob ject is “structurally” equal to some element of a structure (predicate)

MEMQ (OBJILCT STRUCTURE)
#DECL ((VALUE) <OR STRUCTURED '#FALSE ()>
(OBJECT) ANY (STRUCTURE) STRUCTURED)
tells whether an oh ject is "exactly” equal to some element of a structure (predicate)

MIN ("TUPLE" HUHBERS)
#DECL ((VALUL) <OR FIX FLOAT>
(NUMBIRS) <TUPLE [RCST <OR FIX FLOATY>1))
returns the least of its arguments (arithmetic)

MOBLIST (NAME "OPTIONAL®™ (LENGTH 13))
#DECL ((VALUI) OBLISY

(NAME) ATOM (LENGTH) FIX)
creates or gets an OBLIST

HOD (NUMBER MODUIUS)
#DECL ((VALUE) FIX
(NUMDER MODULUS) FIX)
returns munber-thearetic remainder (fixed-point residue) (arithmetic)

MONAD? (OBJECT)
FDECL ((VALUE) <OR 'T '#FALSE ()>
(OBJECT) ANY)

tells whether an ol ject is either unstructured or an emply structure (predicate)

N==? (OBJECT=1 OBJLCT-2)
#DECL. ((VALUT) <OR 'T '#FALSE ()>
(ORJECT-1 ORJECT-2) ANY)
tells whethier two ob jects are NOT "exactly” equal (predicate)

N=? (OBJFCT-]1 OBJECT-2)
#DECL ((VALUE) <OR 'T 'WFALSE ()>
(OBJECT=1 OBJECT=2) ANY)
tells whether two objects are NOT “structurally” equal (predicate)

Appendix 2

243

244 The MDL Programming Language

NETACC (CHANNEL)

PDECL ((VALUE) <OR CHANNEL '#FALSE ()>
(CHANNLL) CHANNCL)

accepts a network connection

NETS (CHANNEL)
#DECL ((VAILUL CUHANNEL) CHANNEL)
Forces operating-system network-CHANNEL buffer to be sent

NETSTATE (CHANNEL)
FDECL ((VALIIL) <UVTCTOR FIX FIX FIX>
(CHANHEL) CHANNEL)
returns state information for a network CHANNEL

4 |
|
|
|
I

NEWTYPE (WEW-TYPE OID-TYPE "OPTIONAL® PATTERN)
#DECL ((VALUE HEW-TYPE) ATOM

(OLD=TYPE) ATOM (PATTERN) COR ATOM FORM)) F
defines a new data type

NEXT (ASSOCIATION)
#DECL ((VALUE) <OR ASOC '#FALSE ()?
(ASSOCTIATION) ASOC)
returns the next ab ject in the association chain

NEXTCHR ("OPTIONAL" (CHANNEL .INCHAN) (EOF-ROUTINE '<ERROR vee2))

#DECL ((VALUF) <OR CHARACTER FIX)> -
(CHANNEL) CHANNEL (FOF-ROUTINE) ANY))

returns the character thar will next be read via an input CHANNEL

NOT (OBJICT)
#DECL ((VALUF) <OR 'T "#FALSE ()3
(OBJECT) <OR FALSE ANY))
computes Ingical "not” of a truth-value

NTH (STRUCTURLD "OPTIONAL® N)
FDECL ((VALUE) ANY
(N) <OR TIX OFFSET))
Fetches the Nth element of a structure

OBLIST? (ATOM)

#DECL ((VAIUT) <OR OBLIST "#FALSE ()
(ATOM) ATOM)

returns an ATOM's OBLIST or false if none (predicate)

Appendix 2

The MDL. Programming Langnage

OFF (INTERRUPT "OPTIONAL" WHICH)
#DECL ((VALUF) <OR NANDLER IHCADER '#FALSE ()2

245

(INTERRUPT) <OR HANDLER IMEADER STRING ATOM> (WHICH) <OR CHANNEL LOCATIVEY)

removes an interrupt HANDLER or destroys an interrupt

OFFSET (N PATTIRN)
#DECI. ((VALUE) OFFSET
(M) FIX (PATTERN) <OR ATOM FORM>)
creates an integer with attached type declaration

ON (NAME APPLICABLE PRIORITY “OPTIONAL" (PROCESS 0) WHICH)
#DECL ((VALUE) HANDLER
(NAME) COR STRING ATOM> (APPLICABLE) APPLICABLE (PRIORITY) FIX
(PROCLSS) <OR FIX PROCESS> (WHICH) <OR CHANNEL LOCATIVEY)
turns on an intercupt and ereates an interrupt HANDLER

OPEN ("OM TONAL" (MODE "READ™) “TUPLE" FILEC-NAME)
#DECL ((VALUL) <OR CHANNEL <FALSE STRING STRING FIX>>
(MODE) STRING (FILE-NAME) TUPLE)
creates and opens an /O CHANNEL

OPEN=NR ("OP'11OHAL" (MODE "READ™) "1UPLE™ FILE=NAME)
#DECL ((VALULC) <OR CHANNEL <FALSE STRING STRING FIX2>
(MODE) STRING (FILE-NAME) TUPLE)
creates and apens an 1/ CHANNEL without changing File's reference date

OR ("ARGS" ARGS)
#DECL ((VALUL) <OR FALSE ANY>
(ARGS) LIST)
computes logical inclusive “or” of truth-values, evaluated by the Subroutine

OR? (™TUPIL™ TUPLE)
#DECL ((VALUD) <OR FALSE ANY>
(TUPLE) TUPLE)
computes logical inclusive "or” of truth-values, evaluated at call time

ORB ("TUPLE"™ WORDS)
#DECL ((VALUE) WORD
(MORDS) <TUPLE [RCST <PRIMTYPE WORD>]>)
computes hitwise inclusive "or” of machine words

OVERFLOW (“OPTIONAL"™ SWITCH)
#DECL ((VALUL) <OR *T '#FALSE ()>
(SWITGH) <OR ANY FALSE>)
enables or disables overflow error (arithmetic)

Appendix 2

246

PARSE ("OPTIONAL"

The MDL Programming Language

(STRING .PARSE-STRING) (RADIX 10) (LOOK=-UP .OBLIST) PARSE-TABLE LOOK-AHEAD)

#DECL ((VAIUL) ANY

(STRING) STRING (RADTX) FIX (PARSE-TABLE) VECTOR (LOOK=-AHEAD) CHARACTER
(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)

parses a STRING intn an ob ject (sections 7.6.6.2, 15.7.2, 17.1.3)

PCODE (NAME OFFSET)
PDECL ((VALUE) PCODE
(MANF) STRING (OFFSET) FIX)
creates pointer (o pure RSUBR code

PNAME (ATOM)
#DECL. ((VAIUL) STRING
(A10K) ATOM)
returns the print-name of an ATON as a distinet copy

PRIMTYPE (OBJLCT)
FDECL ((VALLIL) ATOM
(OBJECT) ANY)
returns the primitive data type of an object

PRIMTYPE-C (TYPL)
#DECL ((VALUE) PRIMTYPE-C
(TYPC) ATOM)
gets a "storage allocation code” for a data 1ype

PRIN1 (OBJECT "OPTIONAL" (CHANNEL .OUTCHAN))
#DECL ((VALUE OBJECT) ANY

(CHANNEL) CHANNCL)
prints an ohject via an output CHANNEL

PRINC (OBJCCT “OPTIONAL"™ (CHANNEL .QUTCHAN))
#DECL ((WYAILUF ORIFCT) ANY
(CHANNEL) CHANNEL)

prints an object via an ouiput CHANNEL without STRING or CHARACTER brackets or ATOM trailers

PRINT (ORJECT "OP1IQNALY (CHANNEL ,OQUTCHAN))
#DECL ((VALUE OBJECT) ANY

(CHANNEL) CHANNEL)

prints an object via an output CHANNEL between new-line and space

Appendix 2

v

The MDL Programming Language 247

PRINTB (BUFFCR CHANNEL)

#DECL ((VALUE BUFFER) <<OR UVECTOR STORAGE> [REST <PRIMTYPE WORD}]>
(CHANNEL) CHANNEL)

writes binary information via an output CHANNEL

PRINTSTRING (BUFFER "OPTIONAL" (CHANNEL .OUTCHAN) (COUNT <LENGTH .EU?FEHH]
#OECL ((VALUE COUNT) FIX

(BUFFER) STRING (CHANNEL) CHANNEL)
writes contents of a STRING via an output CHANNEL

ﬂ

'

PRINTTYPE (TYPE "OPTIONAL"™ HOW)
#DECL ((VALULC) <OR ATOM APPLICABLE '#FALSE ()»

(TYPE) ATOM (HOW) <OR ATOM APPLICABLE))
! specifies or returns how a data type is printed

=

PROCESS (STARTUP)
#DECL ((VALUL) PROCESS
M (STARTUP) APPLICABLE)
creates a new PROCESS with given startup function

1 PROG ("ARGS" ARGS)
| #DECL ((VALUE) ANY

(ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
executes sequential expressions

PURIFY ("TUPLE"™ TUPLE)
#DECL ((VALUE) ANY

(TUPLE) TUPLE)
purifies ob jects for sharing by different operating-system processes

PUT (ITEM INDICATOR "OPTIONAL™ VAL)
#DECL ((VALUFE) ANY

(ITEM) <OR STRUCTURED ANY> (INDICATOR) <OR FIX OFFSET ANY> (VAL) ANY)
stores into structure or does PUTPROP

PUT-DECL (IDENTIFIER PATTERN)
- #DECL ((VALUE IDENTIFIER) <OR LOCD OFFSET)
H (PATTERN) <OR ATOM FORM>)
changes the type declaration for an ATOM's value or an OFFSET

PUTBITS (TO FIELD "OPTIONAL" (FROM 0))
PDECL ((VALUE) <PRIMTYPE WORD)

\ (TO FROM) <PRIMTYPE WORD) (FIELD) BITS)
sets a bit Field in a machine word

Appendix 2

248

PUTPROP (ITEM INDICATOR "OPTIONAL® VAL)
#DECL ((VALUE) ANY
(ITEM TNDICATOR VAL) ANY)

(dislassociates a value with an item under an indicator

PUTREST (MEAD TAIL)
FDECL ((VALUE HEAD) <PRIMTYPE LIST)
(TAIL) <PRIMTYPE LIST))
replaces the rest of a list

- QUIT ()

#DECL ((VALUE) '#FALSE ())
exits from MDL graccfully

QUITTER (WAS=TYPED CHANNEL)
#DECL ((VALUE WAS-TYPED) CHARACTER
(CHANNEL) CHANNEL)
is the interrupt handler for *6 and *S°quit features

QUOTE (“ARGS" ARGS)
FfDECL ((VALUE) ANY
(ARGS) LIST)

returns the first argument unevaluated

RANDOM ("OPTIONAL™ SEED-1 SEED-2)
PDECL ((VALUE) FIX
(SEED-1 SEED-2) FIX)

generates a uniform pseudo-random integer (arithmetic)

READ ("OPTIONAL"

The MDL Programming Language

(CHANNEL .INCHAN) (EOF-ROUTINE '<ERROR ...>) (LOOK-UP .OBLIST) READ~TABLE)

#DECL ((VALUE) ANY

(CHANNCL) CHANNEL (EOF-ROUTINE) ANY (READ-TABLE) VECTOR
(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)
reads one object via an input CHANNEL (sections ILLLL, 11.3, 15.7.1, 17.1.3)

READB (BUFFER CIANNEL "OPTIONAL®™ (EOF-ROUTINE '<ERROR ...»>))

#DECL ((VALUE) FIX

(BUFFER) <<OR UVECTOR STORAGE> [REST <PRIMTYPE WORD>1>

(CHANNEL) CHANNEL (EOF-ROUTINE) ANY)
reads binary information via an input CHANNEL

Appendix 2

The MDL Programming Language 249

READCHR ("OPTIONAL™ (CHANNEL .INCHAN) (EOF-ROUTINE '<ERROR ...>))
#DECL ((VALUE) <OR CHARACTER FIX)

"{ (CHANNEL) CHANNEL (EOF-ROUTINE) ANY)
reads one character via an input CHANNEL

READSTRING (BUFFER "OPTIONAL"™ (CHANNEL .INCHAN) (STOP <LENGTH .BUFFER})
(EOF-ROUTINE '<ERROR ...»))
#DECL ((VALUE) FIX

(BUFFER) STRING (CHANNEL) CHANNEL (STOP) <OR FIX STRING> (EOF-ROUTINE) ANY)
reads into a STRING via an input CHANNEL

| REALTIMER ("OPTIONAL®™ INTCRVAL)
#DECL ((VALUE) <OR FIX FLOAT '#FALSE ())
‘ (INTERVAL) <OR FIX FLOAT>)
sets or fetches interval for real-time interrupts (ITS version only)

REMOVE (PNAME "OPTIONAL®™ OBLIST)
#DECL ((VALUE) <OR ATOM '#FALSE ()»

(PNAME) <OR ATOM STRING> (OBLIST) OBLIST)
removes an ATOM from an OBLIST

RENAME ("TUPLE®" FILE-NAME/S)
#DECL ((VALUE) <OR 'T <FALSE STRING FIX>»

(FILE<HAME/S) <TUPLE <OR STRING CHANNEL>})
renames or deletes a disk file

REP ()
#DECL ((VALUE) ANY)
is the built-in function for READ-EVAL-PRINT loop

REPEAT ("ARGS™ ARGS)
#DECL ((VALUE) ANY

(ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
executes sequential expressions repeatedly

RESET (CHANNEL)

#DECL ((VALUE) <OR CHANNEL <FALSE STRING STRING FIX>>
(CHANNCL) CHANNEL)
reopens an I/O CHANNEL at its beginning

REST (STRUCTURED "OPTIONAL" (N 1))
#DECL ((VALUEC) STRUCTURED
(N) FIX)
removes the first N elements from a structure and changes to primitive data type

Appendix 2

250 The MDL Programming Language

RESTORE ("OPTIONAL"™ NAME-1 NAME-2 NAME-3 NAME-4)
#DECL ((VALUE) ""RESTORED"
(NAME-1 NAME-2 NAME-3 NAME-4) STRING)
restores MDL's state from a file

RESUME (VAL "OPTIONAL"™ (PROCESS CRESUMER)))
#DECL ((VALUE) ANY
(VAL) ANY (PROCESS) PROCESS)
transfers exccution to another PROCESS

RESUMER ("OPTIONAL® (PROCESS <ME>))
#DECL ((VALUE) <OR PROCESS '#FALSE ()>
(PROCESS) PROCESS)
returns the PROCESS that last resumed the given PROCESS

RETRY ("OPTIONAL® FRAME)
#DECL (
(FRAME) FRAME)
retries a previous Subroutine call, usually from the error level

RETURN ("OPTIONAL®™ (VAL T) (ACTIVATION .LPROG\ !-INTERRUPTS))
#DECL ((VALUE) ANY

(VAL) ANY (ACTIVATION) ACTIVATION)
leaves a PROG/REPEAT with a value

RGLOC (ATOM "OPTIONAL" (MAKE-SLOT ¢>))
#DECL ((VALUE) LOCR
(ATOM) ATOM (MAKE-SLOT) <OR FALSE ANY>)
returns a locative to the global-value cell of an ATOM for pure-program use

ROOT ()
#DECL ((VALUE) OBLIST)
returns the OBLIST containing names of primitives

ROT (WORD AMOUNT)
fDECL ((VALUE) WORD
(WORD) <PRIMTYPE WORD> (AMOUNT) FIX)
rotates bits in a machine word

RSUBR (CANDIDATE)
#DECL ((VALUE) RSUBR

(CANDIDATE) <VECTOR <OR CODE PCODE> ATOM DECL [REST ANY]>)
creates an RSUBR

Appendix 2

The MDL Programming Language 251

RSUBR=-ENTRY (CANDIDATE OFFSET)
#DECL ((VALUL) RSUDR-ENTRY
(CANDIDATE) <VLCTOR <OR ATOM RSUBR> ATOM DECL> (OFFSET) FIX)
adds an entry point to an RSURR

RSUBR-LINK ("OPTIONAL"™ SWITCH)
#DECL ((VALUL) <OR 'T '#FALSE ()>
(SWITCH) <OR FALSE ANY>)
enables or disables the automatic RSUBR linking feature

RUNINT ("TUPIL"™ TUPLE)
#DECL { (VALUE) ANY
(TUPLE) TUPLE)
applics interrupt handler (For internal use only)

RUNTIMER ("OPTIONAL"™ INTERVAL)
#DECL ((VALUE) <OR FIX FLOAT '#FALSE ()>
(INTCRVAL) <OR FIX FLOAT?)
sets or fetches interval for run-time interrupt (ITS version only)

SAVE ("TUPLE"™ FILE-NAME-AND-GC?)
FOCCL ((VvALUC) '"SAVED"
(FILE-NAME-AND-GC?) <TUPLE [OPT STRING] [OPT STRING]

[OPT STRING] [OPT STRING] [OPT <OR FALSE ANY>]>)
writes the entire state of MDL 1o a file

SEND (OTHER-NAME=1 OTHER-NAME-? BODY
"OPTIONAL" (TYPE 0) (MY-NAME=1 CUNAMEY) (MY-NAME-2 CJINAME)))
#DECL ((VALUE) <OR 'T '#FALSE ()>
(OTHER-NAME =1 OTHER-NAME-2 MY-NAME-1 MY-NAME-2) STRING (TYPE) FIX

(BODY) <OR STRING STORAGE <UVECTOR [REST <PRIMTYPE WORD>]>>)
sends an 1PC message (ITS version only)

SEND=WAIT (OTUI H=NAMI =1 OTICR-NAMC-2 BODY
"OPTIONAL™ (TYPE D) (MY-NAME-1 <UNAME>) (MY-NAME-2 <JNAME>))
#DECL ((VALUE) 'T
(OTHER-NAME-1 OTHER-NAME-2 MY-NAME-1 MY-NAME-2) STRING (TYPE) FIX
(BODY) <OR STRING STORAGE <UVECTOR [REST <{PRIMTYPE Hﬂﬂﬂ}]}}]
sends an IPC message and waits for it to be received (ITS version only)

SET (ATOM LVAL "OPTIONAL"™ ENV)
#DECL ((VALUF LVAL) ANY

(ATOM) ATOM (ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
changes the local value of an ATOM

Appendix 2

252 The MDL Programming Language

SETG (ATOM GVAL)
#DECL ({VAIUE GVAL) ANY
(ATOM) ATON)
changes the global value of an ATON

SETLOC (POINTER OBJECT)
#DECL ((VALUE OBJECT) ANY
" (POTNTER) LOCATIVE)
changes the cantents pointed to by a locative

SIN (HUMBER)
#DECL ((VALUL) FLOAT
(HUMBIR) <OR FIX FLOATY)
returns sine of a number {arithmetic)

SLEEP (<OR FIX FLOAT> "OPTIONAL"™ (UNHANG <>))
#DECL ((VALUE) ANY
(UNHANG) ANY)
does nothing, interruptibly, the given number of seconds

SHAME ("OPTTONAL"™ DIRECTORY)
#DECL ((VALUE DIRECTORY) STRING)
sets or returns thie dircetory name used by defaull for new 1/0 CHANNELs

SORT (PRED KEY-=STRUC "OPTIONAL" (RECORD-LENGTH 1) (KEY-OFFSET 0)
"TUPLE" OTHER=-STRUCS-AND-RECORD-LENGTHS)
#DECL ((VALUC KEY-STRUC) <OR <PRIMTYPE VECTOR» <PRIMTYPE TUPLE> <{PRIMTYPE UVECTOR>>
(PRED) <OR FALSE APPLICABLE> (RECORD-LENGTH KEY-OFFSET) FIX
(OTHER=STRUCS=AND-RECORN-LENGTHS)
CTUPLE [REST <OR <PRIMTYPE VECTORY <PRIMTYPE TUPLE> <PRIMTYPE UVECTOR>> FIX]>)
sorts clements of a structure and rearranges other structures

SPECIAL=CHLCK ("OPTIONAL"™ SWITCH)
#DECL ((VALUE) <OR 'T '#FALSE (})>
(SWITCII) <OR ANY FALSE?)
turns interpreter special-checking on or of f

SPECIAL-NODE ("OPTIONAL"™ SWITCH)
#DECL ((VALUC) <OR 'SPCCIAL 'UNSPECIALY
(SWI1TCH) <OR 'SPECIAL 'UNSPECIAL?)
sets specialty declaration used by default

Appendix 2

| e Wy g ey

.

ket
-

The MDL Programming Language

SPNAME (ATOM)
#DECL ((VALUE) STRING
(ATOM) ATOM)
returns the print-name of an ATOM by sharing it

SQRT (NUMDLR)
#DECL, ((VALLIL) FLOAT

(NUMBLR) <OR FIX FLOATY)
returns square rool of a number (arithmetic)

SQUOTA (S5YMROL)
#DECL ((VALUE) <OR F1X '#FALSE ()>
(SYMBOL) <PRIMTYPE WORD>)

gets the address of an internal interpreter symbol (for internal use only)

STACKFORM ("ARGS" ARGS)
#DECL ((VALUE) ANY
(ARGS) LIST)
applies a Tunction to stacked arguments (archaic)

STATE (PROCESS)
#DECL ((VALULC) ATOM

(PROCESS) PROCESS)
relurns a PROCESS's current state

STRCOMP (STRING-1 STRING-2)
#DECL ((VALUL) <OR '1 '0 '-1>
(STRING-1 STRING-2) <OR ATOM STRING>)
compares two character-strings or two print-names

STRING ("TUPLE" ELEMENTS)
#DECL ((VALUE) STRING

(ELCMCNTS) <TUPLE [REST <OR STRING CHARACTER>]>)
creates a character-string from explicit arguments

STRUCTURED? (OBJECT)

#DECL ((VALUC) <OR 'T '#FALSE ()>
(OBIFCT) ARY)

tells whether an object is structured (predicate)

SUBSTITUTE (NFW OLD)
#DECL ((VAIUE 0(D) ANY
(NEW) ANY)

substitutes one ob jeet for another in the entire address space

Appendix 2

253

254 The MDL Programming Language |

SUBSTRUC (FROM "OPTIONAL" (RCST 0) (AMOUNT <~ CLENGTH .OBJECT> .REST>) TO)
PDECL ((VALUE 10) <OR 1 1ST VECTOR UVECTOR STRING BYTES)
(FROM) <OR <PRIMTYPE LIST> <PRIMTYPE VECTOR> <PRIMTYPE TUPLE) |

CPRINTYPE UVECTOR> <PRIMTYPE STRING> <PRIMTYPE BYTES>>
(REST AMOUNT) F1x)
copies (part of) a structure into another

SUICIDE (VAL "OPTIONAL" (PROCESS <RESUMER>))
#DECL ((VALUL) ANY
(VAL) ANY (PROCESS) PROCESS)
causes the current PROCESS 1o die and resumes another

TAG {(LABLL)
#DECL ((VALUE) TAG
(LABEL) ATOM)
creates a TAG for use by GO

TERPRI ("OPTIONAL"™ (CHANNEL .OUTCHAN))
#DECL ((VALUE) ‘#FALSE ()
(CHANNIL) CHANNEL)
prints a carriage-return and line-feed via an output CHANNEL

TIME ("TUPLE"™ IGNORED)
#DECL ((VALUL) TLOAT
(IGNORED) TUPLE)
returns the clapsed execution time in seconds

TOP (STRUCTURF)
#DECL ((VALUL) <OR VECTOR TUPLE UVECTOR STORAGE STRING BYTES TEMPLATE>
(STRUCTURE) <OR <PRIMTYPE VECTOR> <PRIMTYPE TUPLE}
CPRIMNTYPE UVECTOR> <PRIMTYPE STORAGE»
CPRIMTYPE STRING> <PRIMTYPE BYTES> <PRIMTYPE TEMPLATE>>)
replaces all elements removed from a non-list structure by RESTing and changes to primitive data
ype

TTYECHO (CHANNEL SMITCH)
#DECL ((VALUE CHANNEL) CHANNEL
(SWITCH) <OR FALSE ANY))
turns echoing (of characters typed on a terminal) on or of f

TUPLE ("TUPLE"™ ELEMENTS)
#DECL ((VALULC) TUPLE
(ELFMENTS) TUPLE)
creates a TUPLE From explicit arguments

Appendix 2

The MDL Programming Language

TYI ("OPTIONAL" CHANNEL)
#DECL ((VALUC) CHARACTER
(CHANNEL) CHANNEL)
inputs a CHARACTER from a terminal immediately

TYPE (OBJICT)
#DECL ((VALUL) ATOM
(OBJECT) ANY)
returns the data type of an ob ject

TYPE=C (TYPF "OPTIONAL" PRIMTYPE]
#DECL ((VALUE) TYPE-C
(TYPE PRIMTYPE) ATOM)
makes a data-1ype cnde for pure-program use

TYPE-W (TYPE "OPTIONAL" PRIMTYPE RIGHT-HALF)
#DECL ((VALUL) TYPE-W

(TYPT PRIMTYPL) ATOM (RIGHT-HALF) <PRIMTYPE WORD>)
makes a data-type machine word for pure-program use

TYPE? (OBJECT “"TUPLE" TYPES)
FDECL ((VALUE) <OH ATOM '#FALSE ()»
(OBJECT) ANY (TYPES) <TUPLE ATOM [REST ATOM]>)
tells whether an ob ject’s data type is one of the given types (predicate)

TYPEPRIM (TYPL)
#DECL ((VALUE) ATOM
(TYPE)} ATOH)
returns a data type's primitive type

UNAME ()
#DECL ((VALUE) STRTNG)
returns thie "user name” of MDL's process

UNASSIGN (ATO!N "OPTIONAL" ENV)
#DECL ((VALUE ATOM) ATOM

(CHV) <OR FRAMC CNVIRONMENT ACTIVATION PROCESS?)
catises an ATOM 16 have oo local valiue

UNMANIFEST ("TUPLE"™ ATOMS)
#DECL ((vALUC) 'T
(ATOMS) <TUPLE [REST ATOM]>)
declares the global values of ATOMs nol to be conslants

Appendix 2

255

uifely

256 The MDL Programming Language

1y

UNPARSE (OBJECT "OPTIONAL™ RADIX)
#DECL ((VALUE) STRING
(OBJECT) ANY (RADIX) FIX) |
creates a STRING representation of an ob ject |

UNWIND (*NORMAL "CLEAN=UP)
#DECL ((VALUE) ANY
(NORMAL CLEAN-UP) ANY)
specifies cleaning-up during non-local return

UTYPE (UVLCTOR)
#DECL ((VALIL) ATOM
(UVECTOR) <PRIMTYPE UVECTOR>)
returns the data type of all clements of a uniform vector

UVECTOR ("TUPIE™ CLEMLNTS)
#DECL ((VALUE) UVECTOR
(ELEMENTS) TUPLE)
creates a UVECTOR (rom explicit arguments

VALID=-TYPE? (TYPE)
#DECL ((VALUE) <OR TYPE-C '#FALSE ()>
(TYPE) ATOM)
tells whether an ATOM is the name of a type (predicate)

VALRET (NCSSAGE)
#DECL ((VMLUL) '"#TALSE ()
(MESSAGE) <OR STRING FIX>)
passes a message lo the superior operating-system process

VALUE (AT0M "OPTIONAL"™ ENV)
#DECL ((VALUE) ANY

(ATOM) ATOM (ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS»)
returns the local or else the global value of an ATOM

VECTOR ("TUPLE"™ FLEMENTS)
#DECL ((VALUE) VECTOR
(CLCMENTS) TUPLE)
creates a VICTOR from explicit arguments

XJNAME ()
#DECL ((VALUC) STRING)
returns the “intended job name” of MDL's process

Appendix 2

The MDL Programming Langunage 257

XORB ("TUPLE" WORDS)
#DECL ((VALUE) WORD

(WORNS) <TUPILE [REST <PRIMTYPE WORD>]>)
compites hitwise exclusive "or” of machine words

XUNAME ()
#DECL ((VALUE) STRING)
returns the "intended user name” of MDL's process

Appendix 2

258 The MDL Programming Language
Appendix 3. Predefined Types
On these two pages is a table showing cach of MDL's predefined TYPEs, its primitive type if

dif ferent, aml various flags: 5 For STRUCTURED, E for EVALTYPE not QUOTE, and A for APPLICABLE.

X means that an object of that TYPE cannot be CHTYPEd to and hence cannot be READ in (if
attempted, a CAN'T-CHTYPE-TINTO erenr is usual),

B means that an ohject of that TYPE cannot be READ in (if attempted, a STORAGE-TYPES-DIFFER
error is usual), that instcad it is built by the interpreter or CHTYPEd to by a program, and that its
PRINTed representation makes it look as though its TYPEPRIM were different.

% means that an ob jeet of that TYPE is PRINTed using % notation and can be READ in only that way.

TYPE TYPEPRIM S EA comments

ACTIVATION FRANME X

ASOC B sictonly one S

ATOM

BITS WORD

BYTES S

CHANNEL VECTOR 5 X

CHARACTER WORD

CLOSURE LIST 5 A

CODE UVECTOR S

DECL LIST 5

DISMISS ATON can be returned by interrupt handler
ENVIRONMENT I RANME B

FALSE 1151 5

FIX WORD A

FLOAT WORD

FORM LIST S E

FRAME B

FSUBR WOILD A X

FUNCTION LIST 5 A

HANDLER VECTOR S X .

IHEADER VECTOR b X “interrupt header”

ILLEGAL WORD X Garbage collector may put this on non-LEGAL? ob ject.
INTERNAL INTCRNAL=-TYPE X should not be seen by programs
LINK ATOM ¥ for terminal shorthand

LIST S E

LOCA B locative (o TUPLE

Appendix 3

The MDIL. Programming Language 259
l
= LOCAS B locative to ASOC
4 LOCB B locative to BYTES
Ja; LOCD % locative 1o G/LVAL
LOCL B locative to LIST
LOCR % locative to GVAL in pure program
‘ LOCS G locative to STRING
LOCT B locative to TEMPLATE
LOCU B locative 1o UVECTOR
LOCV B locative to VECTOR
LOSE WORD a place holder
MACRO 1151 5 A
OBLIST UVECTOR 5 X
OFFSET OFFSET A%
PCODE WoRrn % “pure code”
PRIMTYPE-C WORD % "primtype code”
PROCESS B
QUICK-ENTRY VCCTOR S A% an RSUBR-ENTRY that has been QCALLed and RSUBR-
LINKed
QUICK-RSUBR VECTOR S5 A %/B an RSUBR that has been QCALLed and RSUBR~LINKed
, READA FRANE X in eof slot during recursive READ via READ-TABLE
! RSUCR VECTOR S A %/B if code veetor is puref/impure, respectively
RSUBR-ENTRY VECTOR S AR
| SEGMENT LIST S E
' SPLICE LIST 5 for returning many things via READ-TABLE
STORAGE 5 If possible, use FREEZE SUBR instead.
| STRING 5
SUBR WORD A X
TAG VECTOR S X for non-local GOs
TEMPLATE 5 B The interpreter itself can't build one. See Lebling (1979).
, TIME WORD used internally to identify FRAMEs
| TUPLE 3 B vector on the control stack
TYPE-C WORD % “type code”
lT'I"PE*-'J WORD % “type word”
UNBOUND WORD X value of unassigned but bound ATOM, as seen by locatives
| UVECTOR SE "uniform vector”
VECTOR S5 E
WORD

Appendix 3

i

260

The MDL Programming Language

Appendix 4. Error Messages

This is a list of all crror-naming ATOMs initially in the ERRORS OBLIST, in the left-hand column,
and appropriate examples or elucidations, where necessary, in the right-hand column.

ACCESS-FAILURE

ALREADY-DEF JNCD-ERRET-NON-FALSE~TO-REDEF INE

APPLY=OR-STACKTORM-OF -FSUBR

ARG-WRONG-TYPE
ARGUMENT-0UT=0F =RANGE

ATOM=ALREADY=THERE

ATOM-NOT-TYPE=NAMLC=0OR=-SPECIAL-SYMBOL
ATOM=ON=DTFFERENI-ORLIST
ATTEMPT=TO=PBREAK-OWN-SEQUENCE
ATTEMPT=-TO-CHANGE-MANIFEST-VARIABLE
ATTEMPT-TO-CLOSE=1TY=CHANNEL
ATTEMPT=TO=DEFFR=-UNDEFERABLE=-INTERRUPT

ATTEMPT-TO-GROW-VLCTOR~-TOO=MUCH
ATTEMP T = 10=MIING-ATOMS-PNAME
ATTEMP1=TO-MUNG=PURE=STRUCTURE
ATTEMPT-TO=-SUICIDE-TO-SELF
BAD-ARGUMCNT-LIST
BAD-ASCII-CHARACTER

BAD-BYTES-DECL
BAD=-CHANNE L
BAD-CLAUSE

BAD-DCCIARATION-LIST
BAD-DEFAULT=-00L IST=SPECIFICATION
BAD=-ENTRY-BLOCK

BAD-ENVIRONMENT
BAD-F 1XUPS
BAD=FUNARG
BAD-GC-READ-FILE

Appendix 4

ACCESS, RESTORE (Tenex and Tops-20
versions only)

First argument to APPLY, STACKFORM,
MAPF/R doesn't EVAL all its arguments,

(ASCIT 999>§ Second argument to NTH
or REST too big or small.

CINSERT "T® <ROOT>>$% <LINK 'T "T°
{ROOT>>%

DECL preblem

INSERT, LINK, REMOVE

CBREAK-SEQ T <ME>>%

(CLOSE , INCHAN>S

“Undeferable” interrupt (e.g. "ERROR*)
while INT-LEVEL is too high to handle it
GROW argument greater than <* 16 1024>
CPUT <SPNAME T> 1 I\T>$

attempt to write into pure page

(SUICIDE <ME>>}%

CGDECL ("HI") STRING>S

A character with wrong byte size or
ASCII code more than 177 octal has been
read (how?),

Argument to COND is non-LIST or empty
LIST.

DECL in bad form

bad use of DEFAULT in LIST of OBLISTs
RSUBR-ENTRY does not point to good
RSUBR.

CLOSURE in bad form

The MDL Programming Language 261

BAD-INPUT-BUFFER (for a CHANNEL)

BAD~=LINK CGUNASSIGN <CHTYPE link ATOM>>

! BAD-MACRO-TABLE -READ-TABLE or .PARSE-TABLE is mot a

vector.

BAD-OBLIST-OR-LIST-THEREOF Alleged look-up list is not of TYPE OBLIST
or LIST, :

BAD-PARSE~-STRING non-STRING argument to PARSE

BAD-PNAME attempt to output ATOM with missing or

zero-length PNAME
BAD-PRIMTYPEC

BAD-TEMPLATE-DATA
BAD-TYPE-CODE

| BAD-TYPE-NANE ATOM purports to be a TYPE but isn't.
BAD-TYPE-SPECIFICATION DECL problem
BAD-USE-OF-BYTE-STRING #35
BAD-USE-OF -MACRO
BAD-USE-OF -SQUIGGLY-BRACKETS (15
BAD-VECTOR Bad argument to RSUBR-ENTRY
BYTE-SIZE-BAD "NET" CHANNEL
CANT-CHTYPE-INTO CCHTYPE 1 SUBR>S
CANT=-FIND=-TEMPLATE attempt to GC-READ a structure containing
a TEMPLATE whose TYPE does not exist
CANT-OPEN-OUTPUT-FILE SAVE
CANT=-RETRY-ENTRY-GONE attempt to RETRY a call to an RSUBR-

ENTRY whose RSUBR cannot be found
CANT=SUBSTITUTE-WITH-STRING-OR-TUPLE-AND-OTHER <SUBSTITUTE "T" T>$

CAN\'T-PARSE CPARSE "">5 <PARSE ")">§
CHANNEL-CLOSED CREAD <CLOSE channel>>$
CONTROL=G? “G
COUNT=-GREATER-THAN-STRING-SIZE CPRINTSTRINE *" ,OUTCHAN 1>$
DANGEROUS - INTERRUPT~NOT~HANDLED (See section 21.8.15.) (ITS version only)
DATA-CANT-GO-IN-UNIFORM-VECTOR I["STRING*]S ![<FRAME>]S
DATA=-CAN\ 'T=GO=IN-STORAGE FREEZE ISTORAGE

DECL-ELEMENT-NOT-FORM-OR-ATON
DECL-VIOLATION

DEVICE-OR-SNAME-DIFFERS RENAME
ELEMENT=TYPE-NOT-ATOM-FORM-OR-VECTOR DECL problein
EMPTY-FORM=IN=DECL

EMPTY-OR/PRIMTYPE=-FORM COR> or <PRINTYPE> in DECL
EMPTY=-STRING CREADSTRING "">§
END-OF -F ILE

ERRET-TYPE-NAME~DESIRED

ERROR~-IN-COMPILED~CODE

FILE=-NOT=FOUND RESTORE
FILE~-SYSTEM-ERROR

Appendix 4

262

FIRST-ARG=WRONG-TYPE
FIRST-ELEMENT-OF-VECTOR-NOT-CODE
FIRST-VECTOR-ELEMENT-NOT-REST-OR-A-FIX
FRAME -NO- LONGER-EXISTS
HANDLER-ALREADY=-IN-USE
HAS-EMPTY-BODY

ILLEGAL

ILLEGAL=-ARGUMENT-DBLOCK

ILLEGAL-FRAME
ILLEGAL-LOCATIVE
ILLEGAL-SEGMENT

ILLEGAL=TENEX=F ILE=NAME
INT-DEVICE-WRONG=TYPE-EVALUATION-RESULT

INTERNAL-BACK-OR-TOP-OF -A-LIST
INTERNAL-INTERRUPT
INTERRUPT-UNAVAILABLE-ON-TENEX
ITS-CHANNFLS-FXUAUSTED

HEANINGLESS=PARAMETER=DECLARATION
MESSAGE=TOO-BIG
MUDDLE-VERSIONS-DIFFER
NEGATIVE-ARGUMENT
NIL-LIST-OF-0BLISTS
NO-FIXUP-FILE

NO-ITS5-CHANNELS~-FREE
NO-MORE-PAGES
NO-PROCESS5-TO-RESUME
NO=ROOM-AVATLABLE

NO-SAV-FILE

NO-STORAGE
NON=6=-BIT=-CHARACTER=IN=F ILE~-NAME
NON=-APPLICABLE=REP
NON=-APPLICABLE-TYPE
NON-ATOMIC-ARGUMENT
NON-ATOMIC-OBLIST-NAME
NON-DSK-DEVICE
NON-EVALUATEABLE-TYPE
NON-EXISTENT-TAG

The MDL Programming Language

RSUBR in bad form.
#DECL ((X) <LIST [FOOT>)
(unused)

CPFUNCTION ((X)) 133

attempt to PRINT a TUPLE that no longer
exists

Third and later arguments to MAPF/R
not STRUCTURED.

(Tenex and Tops-20 versions only)
function for "INT"™ input CHANNEL
returned non-CHARACTER.

in compiled code

(unused)

(Tenex and Tops-20 versions only)
Interpreter couldn't open an ITS 1/O
channel.

bad object in argument LIST of Function
IPC (ITS version only)

RESTORE (version = release)

<SET OBLIST '()> T§

MDL couldn’t find fixup file (section
19.9).

IPC-ON (ITS version only)

for pure-code mapping

COR <RESUMER> <RESUME>>S

MDL couldn't allocate a page to map in
pure code. ;

MDL couldn't find pure-code file (section
19.9).

No free storage available for GROW,

{VALUE REP> not APPLICABLE

TI=3%

(unused)
(unused)
(unused)

NON-STRUCTURED=ARG-TO-INTERNAL-PUT-REST-NTH-TOP-OR-BACK in compiled code

Appendix 4

The MDL Programming Language

NON=-TYPE-FOR-PRIMTYPE~ARG
NOT=A=TTY-TYPL-CHANNEL
NOT-HANDLED
NOT=IN-ARG-LIST

NOT=IN-MAP-FUNCTION

NOT=-IN=-PROG
NTH=BY-A-NEGATIVE-NUMBER
NTH-REST-PUT=-0UT-0Or -RANGE
HULL-5TR1HG

NUMBER-OUT-0F -RANGE
ON=AN=OBLIST=ALREADY

OuT-0r -BOUNDS

OVERFLOW

POL-OVERF LOW-BUFFER-EXHAUSTED

PROCESS=-NOT=RIE SUMABLE
PROCESS-HOT=RUNABRLE=OR-RESUHABLE
PURE-LOAD-FAILURE
READLCR=-SYNTAX-TRROR-CRRET-ANYTHING-TO=GO=-ON
RSUBR=FNTRY=UNLINKLD

RSUBR-IN-BAD-FORMAT
RSUBR~-LACKS-T IXUPS

SECOND-ARG-WRONG=TYPE
STORAGE-TYPLES-DIFFER

STRUCTURE=CONTAINS=UNDUMPABLE=TYPE
SUBSTITUTE=-TYPE=FOR=TYPE
TEMPLATE=TYPF-NAME-HOT-0F=TYPE=TEMPLATE

TEMPLATE-TYPE-VIOLATION
THIRD-ARG-WRONG-TYPE

TOO=F EW=ARGUME HTS-5UPPLTED
TOO=-MANY=ARGS=T0=-PRIMTYPE-DECL
TOO=MANY=ARGS=TO-SPECIAL=-UNSPECIAL-DECL
TOO-MANY-ARGUHENTS-SUPPLIED
TOP-LEVEL-FRANE
TYPE-ALREADY-EXISTS
TYPE-MISHATCH

TYPE=UNDLF ITNED
TYPES-DIFFER=-IN-5TORAGE-0BJECT

Appendix 4

263

<PRINTYPE nof-type? in DECL

First argument to OFF not ONed.

TUPLE or ITUPLE called outside argument
LIST.

MAPRET, MAPLEAVE, MAPSTOP not within
MAPF/R

CRETURN>S <AGAIN>S

in compiled code

in compiled code

zero-length STRING

ZE3BE

CINSERT T <ROOT>>$

€1 '()»$ BLOAT argument too large

¢/ 1 08 <* 1E30 1E30>5

Stack overflow while trying to expand
stack: use RETRY.

use of another PROCESS's FRAME, etc.

Pure-code file disappeared.

RSUBR-ENTRY whose RSUBR cannot be
found

KEEP-FIXUPS should have been true when
RSUBR was input.

CCHTYPE 1 LIST>S <CHUTYPE '![1]
LIST>S

{GC-DUMP <ME> <>>%

(SUBSTITUTE SUBR FSUBR>S

attempt to GC-READ a structure containing
a TEMPLATE whose TYPE is defined but is
not a TEHPLATE

(PRIMTYPE any ...>
{SPECIAL any ...2?

¢ERRET> <FRAME <FRAME <FRAME>>>%
NEWTYPE '

attempt to make a value violate its DECL

ISTORAGE

264

TYPES-DIT I FR=TH-UNIFORM-VECTOR
UNASSIGNED-VARIABLE
UNATTACHLD-PATI-NAME -SEFARATOR
UNBOUND-VARTARLE

UNMATCHED
UVECTOR-PUT=-TYPE-VIOLATION

VECTOR-LIS5-THAN-2-CLEMENTS
WRONG-DIRECTION-CHANNEL

WRONG-NUMDER-OF <ARGUMENTS

Appendix 4

The MDL Programming Language

T <78
1-§

ENDBLOCK with no matching BLOCK

PUT, SETLOC, SUBSTRUC in compiled
code

#DECL ((X) <LIST [REST]>)

<OPEN "MYFILE">$ (Mode missing or
misspelt.)

The MDL PProgramming Language

" Appendix 5. Initial Settings

. l The various switches and useful variables in MDL are initially set up with the following values:

I CACTIVATE-CHARS ¢STRING <ASCII 7> <ASCII 19> <ASCII 155>
:“Tenex and Tops-20 versions only®
¢DECL-CHECK T>
CUNASSIGN {GUNASSIGN DEV>>
CGC-MON <>
CSET THCHAN <SETG INCHAN <OPEN "READ" "TTY:"2»
CUNASSIGN KEEP=FIXUPS>
CUNASSIGN <GUNASSIGN NH1>>
CUNASSTGN <GUNASSIGN NM2>»
¢SET ORLIST <SETG OBLIST (<MOBLIST INITIAL 151> <ROOT>)>>
¢SET OUTCHAN <SETG QUTCHAN <OPEN "PRINT™ "TTY:"2>>
COVLCRFLOW T>
CUNASSIGN REDCFINE?
CRSUBR=-LINK T3
¢SETG <UNASSIGN SNM> “working-direclory®>
CSPECIAL-CHECK <>
{SPCCTAL-MODE UNSPECIAL?>
<SET TH1S-PROCESS <SETG THIS-PROCESS <MAIN>>>
{ON "CHAR" ,QUITTER 8 0 ,INCHAN>
<ON "IPC"™ ,IPC-HANDLER 1> +"ITS version only"

Appendix 5

266 The MDL Programming Language

References

Hewitt, Carl. Planner: A Language for Manipulating Models and Proving Theorems in a Robot
Proc, International Joint Conference on Artificial Intelligence, May 1969,

Lebling. P. David. The MDL Programming Environment, Laboratory for Computer Science,
M.LT.. 1974,

Moon, David A, MACLISP Reference Manual, Laboratory for Computer Science, M.1.T., April
1974,

References

The MDL Programming Language %7

Topic Index

Parenthesized words refer to other items in this index.

ll'l'lll'lll‘l“i

arithmetic

array
assignment
binding
bits

block
boolean
bugs

call
change

character

circular
comma
comments

comparison

conditional

*OPTIONAL® "TUPLE® “ARGS" (parameter)

¢ = % / ABS EXP LOG SIN COS ATAN MIN MAX RANDOW OT 17 ==7 L7 G7 L=7
G=7 N==7

VECTOR UVECTOR TUPLE STRING BYTES TEMPLATE

SET SETG DEFINE DEFMAC ENVIRONMENT (value parameter binding)

BOUND? GBOUND? ASSIGNED? GASSIGNED? LEGAL? (assignment value parameter)
WORD BITS PUTBITS GETBITS BYTES ANDB ORB XORB EQVB LSH ROT

BIND PROG REPEAT BLOCK ENDBLOCK OBLIST MOBLIST OBLIST? !-

FALSE COND AND AND? OR OR? NOT (comparison)

(errors)

FORM APPLY APPLICABLE? EVAL SEGMENT

PUT-DECL PUTPROP SET SETG (side effect)

CHARACTER STRING ASCII PRINC READCHR NEXTCHR FLATSIZE LISTEN PARSE
LPARSE UNPARSE

PUTREST PUT LENGTH? FLATSIZE
GVAL SETG

; FUNCTION ASSOCIATION

=x? Ns=? =7 N=? G7 L=7 L7 G=7 07 17 MAX MIN STRCOMP FLATSIZE LENGTH?
(hoolean)

COND AND OR (boolean)

Topic Index

268

concatenation
caroutine

data type

decimal
do
dump
errors
escape
execule
exit

File system

goto
graphics

identifier

if
indexing

input

imegnr
interrupts
iteration

leave

The MDL Programming Language

SEGMENT STRING CONS

PROCESS STATE RESUME SUICIDE RESUMER HE MAIN BREAK-SEQ LSTEP FREE-RUN

TYPE TYPE? PRIMTYPE TYPEPRIM CHTYPE UTYPE CHUTYPE NEWTYPE PRINTTYPE
APPLYTYPE EVALTYPE ALLTYPES VALID-TYPE?

(loops execute call)

SAVE {output)

FRAME ARGS FUNCT ERROR ERRORS ERRET RETRY UNWIND
\ 6 S0

EVAL APPLY QUOTE FSUBR “ARGS™ (call)

RETURN ACTIVATION (goto)

FILECOPY FILE-LENGTH RENAME OPEN OPEN-NR CHANNEL FILE-EXISTS? NM1 NM2
DEV 5NM SNAME

GO TAG UNWIND PROG REPEAT AGAIN RETURN ACTIVATION "ACT* (loops)

STORAGE IMAGE

ATOM PNAME SPNAME LINK LOOKUP INSERT REMOVE OBLIST SPECIAL [plrlmﬂtr
value)

(conditional)
NTH OFFSET GET PUT BACK TOP (loops)

READ READCHR NEXTCHR READB READSTRING READ-TABLE GC-READ ECHOPAIR
OPEN ACCESS LOAD FLOAD RESTORE RESET

FIX (arithmetic)

EVENT HANDLER ON OFF ENABLE DISABLE INT-LEVEL DISMISS INTERRUPT
(loops)
(quit)

Topic Index

The MDL Programming Language 269

loading FLOAD SAVE RESTORE LOAD

location (pointer)

loops REPEAT PROG RETURN GO ACTIVATION AGAIN MAPF MAPR ILIST IVECTOR
IUVECTOR ISTRING IBYTES IFORM

macro % %% LINK READ-TABLE PARSE-TABLE DEFMAC EXPAND MACRO

monitor "READ" “WRITE"

multi-processing

octal

output

parameter

parentheses

parse
period
pointer
predicate
primitives
procedure
quit

real
recursion
search
sharing

side effect

(coroutine)

PRINT PRINI PRINC PRINTE PRINTSTRING IMAGE GC-DUMP ECHOPAIR FLATSIZE
SAVE TERPRI CRLF OPEN ACCESS RESET BUFOUT METS

FUNCTION ATOM LVAL SET SPECIAL UNSPECIAL (identifier value)
LIST

PARSE LPARSE PARSE-TABLE UNPARSE

LVAL SET READ

LOCATIVE AT IN SETLOC LIST

(boolean)

SUBR FSUBR ROOT GVAL SETG

FUNCTION DEFINE DEFMAC GVAL CLOSURE

“G °5 "0 QUIT VALRET LOGOUT RETURN (loops)
FLOAT (arithmetic)

(always assumed and built in)

MEMQ MEMBER =7 ==7 (comparison)

SEGMENT GROW SUBSTRUC

PUT PUTREST SETLOC SUBSTRUC {chlugﬂ

Topic Index

270

sixbit
storage

structure

subroutine
temporary
terminal
text

trailer

true

tty

unbinding

value

— v

The MDL Programming Language

JNAME XJINAME SEND SEND-WAIT IPC-ON
GC BLOAT BLOAT-STAT FREEZE TUPLE "gC* (structure)

LIST VECTOR UVECTOR STRING BYTES TEMPLATE STRUCTURED? EMPTY? MONAD T
LENGTH LENGTH? (coneatenation)

(procedure primitive)
"AUX®" BIND PROG REPEAT
(1y)

(character)

!=- OBLIST

(hoolean)

LISTEN L ¢ ¢ ~D rubout ECHOPAIR TTYECHO TYI "BLOCKED™ "UNBLOCKED"™
ACTIVATE-CHARS (character)

(binding)

LVAL GVAL VALUE IN SET SETG ENVIRONMENT ASSIGNED? GASSIGNED? BOUND?T
GBOUND? “BIND™ ACTIVATION "ACT® (parameter) RETURN (quit loops)

Topic Index

The MDL Programming Language

An underscored page number refers 1o a
primary descriptiont an unadorned page
number refers to a secondary description,

!H
1§
L
|-
| =#FALSE ()
i.
1<
b
'
A
']

L]

H}ﬂ

"ACT"
"ARGS"
"AUX"
"BIND"
"BLOCKED"
"CALL"
"CHAR"™
"CLOCK"
"DIVERT=-AGC"
"DSK™
"ERROR"
"EXTRA"
HEEH
"ILOPR"
"INFERIOR"™
"INPUT"
"INT®
"10C"
-IPCH
"MPV®
"MUD™
"MUDDLE"™
"NAME"

Name Index

81 87 103 105
8 86
182 187
83 87
184
187
186 195
02 108
188

81 87
186

189

189
102

159
149 203
189

"NET®
"OPT"
"OPTIONAL"
"PARITY"®
"PRINT®
"PRINTB"
"PRINTO"
"PURE"
"QUOTE"
"READ"
"READB"
"REALT"
"RUNT*®
"SAVE"
I'E'i"lrl
"SYSDOWN®
"TUPLE"
"UNBLOCKED™
"VALUE"™
"WRITE"

#

3

wh

Name Index

e

137
1 86 137

e o
e

b

=
=

—
=
—

e — —
wl=|S
=1 [I=—

=

1 105 184 187 211

zlzlE
HHE

HEE

-3

9 87 105 137

=
b}

|

—

R

==
P
m—
_—

24 44 46 100

4 16 98 113 184 185 187

24 152
152

24 57

271

07

17
ISTEP

==7

>

ABS

ACCESS
ACTIVATE=CHARS
ACTIVATION
AGAIN
AGC=-FLAG
ALLTYPES
AND

AND?

ANDB

ANY
APPLICABLE
APPLICABLE?
APPLY
APPLYTYPE
ARGS

ASCII

ASOC
ASSIGNED?
ASSOCIATIONS
AT

ATAN

ATOM

AVALUE

BACK
BINARY
BIND
BITS

% .

101 110

181

&1 150 183 193 205
&5 90 150 175

65

123 169 218

76 79 175 187

17

40

22 100 143 194 217
123

G0 215
166
84 90
160

The MDL Programming Language

BLOAT
BLOAT-STAT
BLOCK
BLOCKED
BOUND?
BREAK-SEQ
BREAKER
BUFOUT
BYTE-SIZE
BYTES

CALLER
CHANLIST
CHANNEL
CHARACTER
CHTYPE
CHUTYPE
CLOSE
CLOSURE
CODE
COMMENT
COND
CON3

COS

CRLF

DEAD
DECL
DECL-CHECK
DECL?
DEFAULT
DEFINE
DEFMAC
DEMSIG
DEV
DISABLE
DISHMISS

ECHOPAIR
EMPTY?
ENABLE
ENDBLOCK
ENTRY=LOC
ENVIROMMENT

EQve

Name Index

186 196

198

142 145

170

79 175 187
173

174

100 111 115
66

55 65 66 213

164
0
65 101 102 103 104 122
64 100 154

45 211

64 216

T

|

Blsl R

=

0 101

170 170
124 223
134
135
141

39 147
156
203
102 265
82

175 179 183
101 113 146
74

182

142 145
166

37 83 84
161

The MDL Progranmmming Language

ERRET
ERROR
ERRORS
EVAL
EVALTYPE
EVENT
EVLIN
EVLOUT
EXP
EXPAND

FALSE
FBIN
FILE-LENGTH

FILE-EXISTS?

FILECOPY
FIX
FLATSIZE
FLOAD
FLOAT
FORM
FRAME
FREE-RUN
FREEZE
FSAVE
FSUBR

FUNCT

function
FUNCTION
Function

G/LVAL
G=?

GY
GASSIGNED?
GBOUND?
GC
GC-DUMP
GC-MON
GC=READ
GDECL
GET
GET-DECL
GETBLTS

19 148 175 222
I8 147 183 206
142 147 206

20 48 83 175

18

178 179 181
175

{75

11

157

7

167

101 110

103

o1 111

21 22 23 28 53 135
100

18 76 110 150
223

27 33 58 71

117 148 176 193 213
175

164 186 194

108

28 31 39 30 56 74 74 75 89 90
96 131 147 150

148 176

2

35 30 78 83 84

84

118

72

70 187

79 132 193

186 195

101 107 199
199

101 107 186 199

-

151
131 136

et

G0

278
GETL 17
GETPL "7
GETPROP 121
GLOC 117 165
GO 96 175 205
GROW 60 186
GUNASSIGN 32
GVAL 31 39 41 117 169 193 194 208
HANDLER 178 179 179 180 185
HANG 191
IBYTES 66
IFORM 58
THEADER 177 180
ILIST 57 205
ILLEGAL 193
IMAGE i01 107 186
IN 116 118 119
INCHAN 103 146
INDEX 136
INDICATOR 123
INIT 18
INITIAL 141 265
INSERT 143 145
INT-LEVEL 183
INTERNAL 258
INTERNAL-TYPE 258
INTERRUPT 181 190
INTERRUPT-HANDLER 186
INTERRUPTS 142 177
IPC-HANDLER 203
1PC-OFF 203
IPC-ON 203
ISTORAGE 239
ISTRING 57 64
ITEM 123
ITS 17 18 102 108 112 113 114 115
166 167 184 184 187 188 189
189 189 195 202 202
ITUPLE 80
IUVECTOR 57
IVECTOR 57

Name Index

274

JNAME
KEEP-F IXUPS

L=INS
L-0UTS
L=?

L7
LAST-0UT
LEGAL?
LENGTIH
LENGTH? -
LERRY,

L ITNK
LIST

LISTEN
LLOC
LMAPY
LOAD
LOCA
LOCAS
LOCATIVE
LOCATIVE?
LOCB
LOCD
LocL
LOCR
LOCS
LOCT
LOCU
LOCV
LOG
LOGOUT
LOOKUP
LOSE
LPARSE
LPROGY
LSH
LVAL

MACRO
MAIN
MANIFEST
MANIFEST?

Ll

167 265

RIC
146
”
i
116

80 85 97 116 118 176 193 214
52 75

L&

118 151

I3

54 57 57 50 68 72 186 204 212
25

116 149 169 183

116 175 193

05

101 109

17

17

125 214

1]

17

116 117 193 214

17

165

17

17

1h

162

MAPF
HAPLEAVE
MAPR
MAPRET
HAPSTOP
MAX

ME
MEMBER
MEMQ
MIN
MOBLIST
MOD
MONAD 7
MUDDLE

N==?
N=?
NBIN
NETACC
NETS
NETSTATE
NEWTYPE
NEXT
NEXTCHR
NM1

NM2

NOT

NTH

OBLIST
OBLIST?
OFF
OFFSET
ON

OPEN
OPEN-NR
OPT
OPTIONAL
OR

OR?

ORB
QUTCHAN
OVERFLOW

PARSE

Name Index

The MDL Programming Language

=
fr

!

T
&
T

133 165 186 193

ey
(=1

96 99 101 187

135 214
181

5 143 143 153 156 157

The MDL Programming Language

PARSE-STRING 156 RESUMABLE 170
PARSE-TABLE 153 RESUME 170 173 173 190
PCODE 164 RESUMER 174
PNAME 22 144 217 RETRY 150 222
PRIMTYPE 4 RETURN 85 90 175
PRIMTYPE=C ﬁ RGLOC 165
PRINI a9 101 112 ROOT 141 145
PRINC 100 101 112 ROT 162
PRINT 20 23 48 99 101 112 141 RSUBR 147 163 165 194
PRINTB 101 106 RSUBR-ENTRY 147 166
PRINTSTRING 101 106 RSUBR-LINK 164 265
PRINTTYPE 18 rubout 17 98 113
PROCESS 146 169 170 190 193 219 RUNABLE 170
PROG 84 89 204 RUNINT 181
PURE-PAGE-LOADER 186 RUNNING 170
PURIFY 108 186 194 199 RUNTIMER 189
PUT 53 56 68 88 120
PUT-DECL 134 136 SAVE 108 108 165 200
PUTBITS 161 SEGMENT 66 72 154
PUTPROP 120 SEND 202
PUTREST 59 69 SEND=WAIT 202
SET 32 37 175 186 194
QUICK=ENTRY 164 259 SETG 30 37 186 194
QUICK-RSUBR 1G4 259 SETLOC 116 118 119
QUIT 202 SIN 40
QUITTER 184 SLEEP 191
QUOTE 56 B2 83 SNAME 110
SN 102 108 110 265

RANDOM 29 SORT 61 73
READ 20 22 99 101 122 140 | 142 153 SORTX 62

187 SPECIAL 127 156 193 223
READ-TABLE 153 SPECIAL-CHECK 134
READA 154 SPECTAL-MODE 128 134
READB 101 106 SPLICE 154
READCHR 96 99 101 105 112 113 187 SPNAME 144
READSTRING 101 106 112 SQRT 40
REALTIMER 189 SQUOTA 253
REDEF INE 10 265 STACKFORM 96
REMOVE 143 145 STATE 170
RENAME 101 111 STORAGE 194
REP 146 STRCOMP 7
REPEAT 84 89 205 STRING 55 57 64 65 100 154 213
RESET 101 102 111 112 STRUCTURED 125
REST 52 56 75 126 219 STRUCTURED? 74
RESTORE 108 109 SUBR 28 81 147

Name Index

276

subroutine
SUBSTITUTE
SUBSTRUC
SUICIDE

T
TAG
TEMPLATE
Tenex

TERPRI
THIS-PROCESS
TIME

TO

TOP

TOPLEVEL
Tops-20

TTYECHO
TUPLE
Yl

TYPE
TYPE=C
TYPE-W
TYPE?
TYPEPRIM

UNAME
UNASSIGN
UNBOUND
UNMANIFEST
UNPARSE
UNSPCCIAL
UNWIND
UTYPE
UVECTOR

VALID-TYPE?
VALRET
VALUE
VECTOR

96 193
55 66 219

I7 18 102 108 113 114 114 115
IGE 167 178 184 187 188 189

|89 189 189 227
76 100 101
174174

201

UL

G0 215

18

17 18 102 108 113 114 114 115
151 167 178 184 187 188 189

|49 189 180 927

101 113 146

80 80 193 214

101 (13 187 187

20 44 74 94 195 211 218

165

127 221 223

150 223

3

54 57 57 63 65 204 213 217

—

16
202
33 124 175

54 57 57 63 186 204 212 216

XJINAME
XORB
XUNAME

[
\
]

8
D
*G
o !
0
“5

{
)

Name Index

The MDL Programming Language

