

Paul Borisov

Azure OpenAI Chat
Web Part, v1.3
Supported options: chat history, private and global chat sharing,

consecutive event streaming, integration with Azure API Management,

options to use encrypted SharePoint list / Local storage / Azure SQL

Database for storing chat history, options to support full-screen mode and

unlimited length of chat history, integrations with SharePoint search,

company users, local date and time, search on Internet using Bing and

Google services, image generation with Dalle3, image analysis with GPT-

4V, PDF content analysis, voice input and read out of AI-generated text.

9-7-2024

Table of Contents
Introduction .. 3

Deployment .. 3

Permissions ... 3

Configuration .. 4

Privacy settings for SharePoint List storage .. 11

Privacy settings for generated images .. 12

Storage encryption .. 12

Options to use native Open AI instead of Azure OpenAI .. 12

User interface.. 13

Navigation panel ... 14

Content panel ... 15

Using Shared chats .. 16

Localization ... 16

Event streaming .. 16

Voice input .. 17

Voice output.. 17

Web Speech API .. 17

Native OpenAI ... 17

Examples for prompt text ... 17

Image analysis (Vision) .. 18

Image generations (Dalle) ... 18

Backend ... 19

Azure OpenAI service .. 19

Model deployments .. 19

Chat Web API .. 20

Azure API Management .. 20

Named values .. 21

APIs .. 21

OpenAI .. 22

OpenAI4 .. 22

OpenAI-Native (optional) .. 23

ChatWebApi (optional) ... 23

Bing (optional) ... 24

Google (optional) .. 24

API operations ... 25

API settings for OpenAI ... 25

chat ... 26

dalle (optional) .. 27

API settings for OpenAI4 ... 28

chat ... 29

chat4o ... 30

chat4omini .. 31

chatpreview (optional) .. 32

vision (optional) .. 33

API settings for OpenAI-Native (optional) ... 34

chat ... 35

dalle (optional) .. 36

tts (optional) .. 37

API settings for ChatWebApi (optional) .. 38

API settings for Bing (optional) ... 39

search .. 40

API settings for Google (optional) ... 41

search .. 42

Known issues ... 43

Security ... 43

Frontend.. 43

Backend ... 44

Introduction

This document outlines the functionality of the Azure OpenAI Chat Web Part, its frontend and backend

components, and configurations.

It refers to the supplementary document, azure-openai-chat-security.pdf, which offers more detailed

information on configurable security options.

Deployment
To deploy the web part, you should add its compiled solution, azure-openai-chat.sppkg, into an App

Catalog.

• This can be a global App Catalog of your SharePoint Online tenant, or a site collection scoped

one.

• Use standard deployment options to make the web part globally available on all sites or add the

app manually to specific sites.

Permissions
After adding the package, open the URL https://yourtenant-

admin.sharepoint.com/_layouts/15/online/AdminHome.aspx#/webApiPermissionManagement and

approve the requested permissions.

To enable this permission, create a standard Azure App registration named openaiwp in Microsoft Entra

ID (Azure AD). The web part uses this App registration to make authenticated requests using the context

of the signed-in user.

This is used in the Chat sharing option. It is utilized to get details of all users from AAD to display them in

the People Picker component.

An alternative (reduced) permission for the Chat sharing option is available. If access level User.Read.All

cannot be granted, the web part can use this reduced scope to get only the basic information of the

user’s colleagues. In this case, the list of available contacts may be reduced compared to the more

advanced previous option. If neither of the last two permissions can be granted, the Chat sharing

feature can only provide unrestricted sharing.

Permission Scope Purpose

openaiwp, required user_impersonation To enable this permission,
create a standard Azure App
registration named openaiwp in
Microsoft Entra ID (Azure AD).
The web part uses this App
registration to make
authenticated requests using
the context of the signed-in
user.

Microsoft Graph, optional User.Read.All This is used in the Chat sharing
option. It is utilized to get
details of all users from AAD to
display them in the People
Picker component.

Microsoft Graph, optional People.Read An alternative (reduced)
permission for the Chat sharing
option is available. If access
level User.Read.All cannot be
granted, the web part can use
this reduced scope to get only
the basic information of the
user’s colleagues. In this case,
the list of available contacts
may be reduced compared to
the more advanced previous
option.

If neither of the last two
permissions can be granted, the
Chat sharing feature can only
provide unrestricted sharing.

Configuration
Create a modern Site Page, add the web part "Azure OpenAI Chat", and click on the "Configure" button.

This action opens the web part settings with the default values shown below.

Title Description Default

Client ID: create a

user_impersonation

app with

name=openaiwp

The App ID (Client ID) for the openaiwp

Azure registration is used to authorize SPFx

requests.

00000000-0000-0000-0000-
000000000000

Base URL for GPT
endpoint (APIM API
or full)

This is the endpoint for the primary

language model "GPT 3.5”.

You should either deploy the endpoint via

the Azure API Management service

(recommended for greater security) or use

the full URL to an Azure OpenAI endpoint

(https://tenant.openai.azure.com/...) with

the api-key added to its own setting below.

https://tenant.azure-
api.net/openai

This refers to the endpoint

published via the Azure API

Management service.

Base URL for GPT4
endpoint (APIM API
or full)

This is an optional endpoint for the language

model "GPT 4”.

The same rules as above apply.

https://tenant.azure-
api.net/openai4

Same as above.

Base URL for Chat
WebApi (APIM API or
full)

This is an optional endpoint for the

"ChatWebAPI” App Service, which manages

chat history data in the Azure SQL database.

You should either deploy the endpoint via

the Azure API Management service (the

recommended secure method) or use full

URL to your version of ChatWebAPI.

Empty (it defaults to
https://tenant.azure-
api.net/chatwapi)

Same as above.

Optional api-key for
Azure OpenAI (for
troubleshooting, not
for Production)

Please note that if you use your api-key

here, it poses a security risk as the key could

potentially be leaked, because it will

become visible in the browser's request

headers.

The key is encrypted and stored in the web

part settings (displayed as ***).

Language models There are several predefined language
models, GPT 3.5 (gpt-35-turbo-16k) , GPT 4
(gpt-4-32k), and GPT 4 Turbo (gpt-4-1106-
preview, which supports up to 128k input
tokens and 4096 output ones).

In September 2024, support of two newer
models was added (webpart version 1.3+)

• GPT-4o

• GPT-4o Mini

GPT 3.5, GPT 4, GPT-4 Turbo,
GPT-4o, GPT-4o Mini

If only one language model is
toggled, the language model
selector will not be visible in
the UI. If none is selected, the
logic defaults to using the gpt-
35-turbo model.

You should use predefined deployments in
APIM-endpoints /openai and /openai4
published via API Management.

Alternatively, if you enter full URLs to Azure
OpenAI endpoints, a textbox with model
names appears instead of predefined
checkboxes. In this box, you can adjust the
model names as needed.

Be careful with the adjustments if you use
full URLs to Azure OpenAI endpoints.

• The logic uses exact model names to
dynamically modify the endpoint
URLs when it is necessary. For
example, it can dynamically change
/openai/deployments/gpt-4-32k/ to
/openai/deployments/gpt-4-
0613/chat/completions at the time
of request execution.

• APIM-based endpoints are
predefined. They use the
deployments defined in APIM
operations. They do not use any
dynamic adjustments.

Storage type for chat
history

There are three predefined options for
storage: SharePoint list, Local Storage, and
(Azure SQL) Database.

The default option stores chat history in a
SharePoint list. When you select this, a
textbox and a button become available to
create a custom list. By default, the list is
created on the current site with the
predefined name, dbChats. Security settings
are automatically enabled for list items to
limit access to their authors. The SharePoint
Search Crawler does not index the list
content by default to prevent potential leaks
of private conversations.

The option of retrieving/saving chat history
to/from an Azure SQL database is managed
by the ChatWebAPI App Service (as
mentioned above).

SharePoint list

The option for SharePoint list
supports chat privacy. For
example, SharePoint search
does not display private chat
conversations to users other
than the authors of those
chats. If users open the
Custom list dbChats, they will
only see their own messages.
However, this does not apply
to Site owners, who can see
all records in the list and can
find them in SharePoint
search results.

Please note if you enable the
sharing feature while using
SharePoint list storage, you
should adjust the list

You can use "Local Storage” to quickly
demonstrate the functionality to customers.
In this case, the chat history will be saved in
the local storage of your browser. While
actual chat sharing will not work, you can
demonstrate this option too.

permissions using the Update
button.

In case of using the
SharePoint list storage, the
maximum length of Chat
history text is limited to 2 MB
per Chat entry. This is the
technical limit of the multiline
text field in SharePoint
Online.

Enable storage
encryption

Enables AES encryption of the sensitive
personal data in Chats for the selected
storage type:

• SharePoint list

• Local storage

• Database

Encryption transparently supports Shared
chats, private and global.

Using encryption is a reasonable choice
when you use SharePoint list storage with
the sharing option enabled and want to hide
details of personal Chats from other users of
SharePoint.

Not selected

Sensitive personal data
includes Chat name and Chat
messages. When the storage
encryption is enabled, the
display name of the current
user is not saved (set to
empty).

Enable sharing Enables a sharing option for personal Chats.
This option is disabled by default.

Chat authors can decide if they want to
share their personal Chats with others.

Selected

The web part supports two
levels of sharing:
1. Global sharing: each
personal Chat can be shared
with Everyone.
2. Private sharing: each
personal Chat can be shared
with up to 15 specific users
selected in the dialog.

Enable streaming Enables the event-streaming response
option, which provides gradual outputs of
texts generated by AI. This option is disabled
by default.

Selected

Enable full screen
mode

Enables full-screen mode and displays the
expansion icon in the upper right-hand
corner.

Selected

Enable integrations Enables integrations with external data
using the feature of OpenAI "Function
calling". There are several functions
available by default in the web part:

Not selected

• searchSharepoint

• peopleSearch

• currentDateAndTime

There are also optional functions configured
separately if corresponding services are
available:

• searchOnInternet: this function uses
Azure Bing Search service with api-
key managed by APIM or configured
explicitly in the web part settings
(encrypted).

• searchOnGoogle: this function uses
Google Custom Search with key=…&
cx=… values managed by APIM or
configured explicitly in the web part
settings (encrypted).

Configuration instructions for
optional Bing and Google
APIM endpoints are described
in the chapter Azure API
Management below.

Image analysis
(Vision)

Enables the option to explore and describe
uploaded images using GPT-4 Vision model
of (Azure) OpenAI.

The APIM endpoint /vision must be
configured to use this option. Configuration
instructions for adding this endpoint are
described in the chapter Azure API
Management below.

Alternatively, if you already use the Native
OpenAI endpoint URL for GPT 4 chats, it will
automatically use the corresponding
endpoint to analyze images using the same
api-key stored in the web part settings
(encrypted).

• Native OpenAI uses the endpoint
https://api.openai.com/v1/chat
/completions with gpt-4-vision-
preview model

Also, you can use Azure OpenAI service URL
with the predefined endpoint
https://tenant.openai.azure.com
/openai/deployments/gpt-4-vision-
preview/images
/generations?api-version=2023-07-01-
preview available in Swedish Central zone

Not selected

(with Computer Vision resource deployed
into the same zone)

Image generation
(Dalle)

Enables the option to generate images using
Dalle3 imaging model of (Azure) OpenAI.

The APIM endpoint /dalle must be
configured to use this option. Configuration
instructions for adding this endpoint are
described in the chapter Azure API
Management below.

Alternatively, if you already use the full
Azure OpenAI or Native OpenAI endpoint
URL for GPT 3.5 chats, it will automatically
use the corresponding endpoint to generate
Dalle3 images using the same api-key stored
in the web part settings (encrypted).

• Azure OpenAI service uses the
endpoint
https://tenant.openai.azure.com
/openai/deployments/dalle3/images
/generations?api-version=2023-12-
01-preview available in Swedish
Central zone

• Native OpenAI uses the endpoint
https://api.openai.com
/v1/images/generations

Not selected

In Azure OpenAI, the
deployment of the model
Dalle3 is available in Swedish
Central zone (as of December
2023).

Native OpenAI provides the
model Dall-e-3 available by
default in paid API
subscriptions.

If you enable the option for
Image generations, you must
create the SharePoint library,
which will store generated
images. Just click on the
“Create” button below the
checkbox to created it
automatically.

• Default library is

created on the
current site with the
name Chat Images.

• Generated images are
excluded from
SharePoint Search
results. However,
they are available for
SharePoint users if
they access the
library content
directly.

As of December 2023, the
web part also includes the
older processing logic for the
previous Dalle2 imaging

model kept for backward
compatibility.

Enable examples for
the prompt text

Enabled the dropdown box visible in the left-
hand side of the prompt area. It opens the
list of available examples for the prompt
text that include integration samples (when
enabled).

Not selected

Enable voice input If the browser supports Web Speech API and
the microphone is available, this option
provides voice input for the prompt text.

There are 15 popular world
languages available by
default.

Enable voice output
(text to speech)

If the browser supports Web Speech API,
this option provides reading out of AI-
generated texts on click of the Radio-icon.

Alternatively, if you use Native OpenAI
endpoints, this option supports its tts-1-hd
model (text to speech). In this case the
language to read out texts is selected
automatically by OpenAI.

There are 15 popular world
languages to read out texts in
available by default.

Code highlighting Enables code highlighting to render
markdown outputs of code snippets.

Selected

Show highlighting
styles

Enables the display of a dropdown with code
styles for highlighted outputs. This feature is
disabled by default.

Selected

Default style Default code style for highlighted outputs. stackoverflowDark

Show prompt area at
bottom

When enabled, the prompt text area will
appear at the bottom. It is disabled by
default.

Not selected

Unlimited chat
history length (AI-
responses in long
chats may be less
accurate)

When enabled, this feature permits the use
of unlimited history length in chats. In such
cases, the system dynamically removes
earlier messages just prior to submitting the
history to Azure OpenAI. This process does
not impact the storage of the entire (uncut)
history and new responses.

Not selected

Locale for dates
(default is fi-FI)

The locale for formatting dates visible in the
web part is optional. The default setting is
'fi-FI' (empty), but it can be changed, for
instance, to 'en-US'.

Default (empty textbox)

Privacy settings for SharePoint List storage
If you plan to create a SharePoint list to store chat histories, ensure that this does not expose data to the

Search Crawler. By default, the list creation button applies the following changes to list settings:

• Permissions for this list: Unique (permission inheritance is broken)

o Everyone except external users: Contribute

o List's creator: Full Control

• Advanced settings: Read and write permissions are only for item authors

o Read access: Read items that were created by the user.

Important: If you wish to use shared chats, you will need to adjust access to less strict

value “Read access: Read all items”. In this context, users may gain access to others'

messages. This is a technical limitation of SharePoint storage.

▪ To address this issue, you can enable storage encryption.

▪ To adjust permissions automatically, click on the Update button for the

SharePoint list in the web part settings.

o Create and Edit access: Create items and edit items that were created by the user

• Allow items from this list to appear in search results? No

o Note: You can modify this setting if necessary. In this case list items should be accessible

in search results for their authors and site admins. However, they should not be

available to regular users unless you use Read access: Read all items as mentioned

above.

Privacy settings for generated images
AI-generated images are not private. They are stored in the document library available for Everyone by

default.

If you enable the option for Image generations, the corresponding library Chat Images uses the

following default settings:

• Permissions for this list: Unique (permission inheritance is broken)

o Everyone except external users: Contribute.

▪ You can create your own Custom permission level, for example, Contribute

without Delete.

o List's creator: Full Control

• Allow items from this list to appear in search results? No

o You can modify this setting if necessary.

Storage encryption

When you enable storage encryption, the maximum chat name length is limited to 150 chars.
Unencrypted storage supports up to 255 characters.

Options to use native Open AI instead of Azure OpenAI
The web part also supports the use of native OpenAI API URLs, such as

https://api.openai.com/v1/chat/completions, instead of Azure OpenAI ones.

You can use the native OpenAI API deployed via the API Management service with predefined

endpoint(s) that contain the word "native".

• For example, you might use https://tenant.azure-api.net/openainative or https://tenant.azure-

api.net/openainative4 or both.

• In such cases, the logic will correctly manage conditions for querying data from the native

OpenAI API, including automatic adjustments of model names - like gpt-3.5-… instead of gpt-35-

…, smoother event streaming outputs, etc.

To conduct quick tests, you can temporarily use the direct URL

https://api.openai.com/v1/chat/completions in the web part settings for "Base URL for GPT endpoint

(APIM API or full)” and "Base URL for GPT endpoint (APIM API or full)”. You can add the api-key for

native Open AI into the setting "Optional api-key for Azure OpenAI (for troubleshooting, not for

Production)”. For security reasons, it is recommended to use API Management service deployments, as

described above.

User interface
Global version

This is the initial UI without chat history.

This is the UI displaying the previous chat history of the current user.

Navigation panel
The left-hand panel displays chats started by the current user and sorted by the dates of the last

modifications.

• When the user starts a new chat, the logic automatically generates a chat name using the

entered texts.

• The default date format corresponds to Finnish: dd.MM for the current year and dd.MM.yyyy

for previous years. This can be changed in the web part settings, for example, to en-US.

• The user can edit the chat name, delete the chat, and share it with others (if the sharing option

has been enabled in the settings). The actions of deleting and sharing require the user's

confirmation.

• Corresponding action icons appear after the chat name when the user selects the chat's row.

• The sharing dialog offers two options: “Share with Everyone” (which is the default) and “Share

with specific users.” In the latter case, only the selected users will have access to the chats

shared with them.

• Shared chats accessible to the current user are displayed at the bottom of the Navigation Panel.

Users can select the “Hide My Chats” checkbox if they wish to hide the chats they have shared.

• The web part supports code highlighting options, which are accessible in the settings. If “Show

Highlighting Styles” is enabled, the corresponding selector will appear at the bottom.

Content panel
This area displays the message history for the chat selected in the Navigation Panel. By default, the most

recently modified chat by the user is selected.

• The upper section of the panel displays the chat's name and, if more than one model is available

in the settings, the language models. An icon to switch to Full Screen mode is also present,

providing convenience for longer chats.

• A prompt area is designated for entering questions, followed by a character counter. The

maximum request length is restricted to 15,000 characters for GPT-3.5-turbo-16k 30,000

characters for GPT-4-32k and 125,000 characters for GPT-4-1106-preview, GPT-4o and GPT-4o

Mini.

• The maximum acceptable history length for a single chat should not exceed 64k characters for

GPT-3.5-turbo-16k and 128k characters for GPT-4-32k. If this length is exceeded, the user should

initiate a new chat to continue the conversation.

o There is an option in the web part settings for “Unlimited Chat History Length (AI-

responses in long chats may be less accurate)”. When this feature is enabled, it allows

for an unlimited history length. In such cases, the system automatically removes the

earliest messages before submitting the history to Azure OpenAI. However, this does

not impact on the saving of the entire (uncut) history and new responses back into

storage.

• Chat messages are composed of user queries followed by AI responses. If a user makes a typo,

they can edit the message, correct it, and save the changes. Subsequent queries will use this

updated history.

• If AI responses include code snippets, these are displayed in a highlighted format. The user can:

o Click on the 'Raw' button () to view the original, unformatted response.

o Click on the 'Copy' button () to copy the code snippet to the clipboard.

Using Shared chats
When users select a Shared Chat at the bottom of the Navigation Panel, they initiate a new chat, and a

copy of the chat's history is loaded into the Content Panel. Subsequently, users can continue the original

conversation within their own copies of the Shared Chat. For security reasons, it is not permitted to

continue original conversations on behalf of their authors.

Localization
The web part uses standard localization files for SPFx solutions. The current version includes files for the

following languages:

• English (en-us)

• Finnish (fi-fi)

• Norwegian (nb-no)

Event streaming
If the streaming option is enabled in the web part settings, the AI responses should be presented with

the visual effects of consecutive text outputs, with the entire response being formatted at the end of the

process.

If the streaming option is not enabled, the complete, formatted AI response will be provided at the end

of the processing stage.

Voice input
This option was added in December 2023. It uses Web Speech API if it is supported by the browser.

There are 15 popular world languages available by default. Voice input was tested for all of them.

To use the voice input, click on the MIC-icon near the submit button, select the desired language, and

start speaking into your microphone. Click on the stop button to input your speech into the prompt box

and then click on the Submit button as usual.

Voice output
This feature is supported in two options.

Web Speech API
Most modern browsers support Web Speech API. It provides a straightforward way to use speech

synthesis for AI-generated texts when OpenAI text-to-speech model is not available.

• Click on the Radio-icon in the right-hand part of the content area.

• The standard Web Speech API requires selecting the preferred language; using default page

language is not always optimal. There us a dropdown menu to select the language to read out

texts. The read out starts upon the selection.

Native OpenAI
Native OpenAI has a separate language model tts-1 (tts-1-…) that handles text to speech conversions.

This model provides automatic handling of texts that contain mixed languages.

Azure OpenAI does not yet have support for text-to-speech models (as of Dec 2023).

If you use any direct Native OpenAI endpoint in the web part settings, tts-1 is supported automatically.

Alternatively, if you use the APIM endpoint /openainative, you can configure its /tts operation

(/openainative/tts) to support text to speech conversions. You can find configuration details in the

Backend chapter below.

Examples for prompt text
Click on the dropdown menu and select an example. It will be inserted into the prompt area.

Image analysis (Vision)
When this optional integration is enabled, you can select an image or images using the upward arrow

button located in the right-hand corner.

• After selecting the images, the prompt texts “What is in these images” is added automatically.

• Click on the Submit button to make their analysis.

Image generations (Dalle)
When this optional integration is enabled, you can use the prompt text like shown below to generate an

image

• Create an image: an illustration of a business meeting

• Click on the Submit button to generate the image.

Backend

Azure OpenAI service
As of November 2023, the options to create this service are not readily available in the Azure portal.

Each new customer is required to complete a specific electronic form with their company details, submit

it to Microsoft, and await approval for the service. Typically, Microsoft reviews and approves the request

within a few working days.

The Azure OpenAI service can be created in any zone that supports GPT 3.5 and GPT 4 deployments. For

instance, Swedish Central and East US 2 are suitable choices as they support both models.

• Please note that European zones may support a limited range of text models. Usually, the latest

models are first introduced in US zones before they become available in EU zones.

• As of December 2023, Dalle3 imaging model is only available in Swedish Central. Consider

choosing this zone if you wish to use it for Image generations in the web part.

Model deployments
Add two models to Azure OpenAI service instance using the blade Resource Management > Model

deployments > Manage deployments. Configure the predefined deployment names as shown in bold.

• gpt-35-turbo-16k, version 0613 (Dec 2023). According to Microsoft, it uses training data up to

Sep 2021.

• gpt-4-32k, version 0613 (Dec 2023). According to Microsoft, it uses training data up to Sep 2021.

• You can use other models as well: https://learn.microsoft.com/en-us/azure/ai-

services/openai/concepts/models#model-summary-table-and-region-availability

Optionally, it is recommended to add the deployment for gpt-4-1106-preview (GPT 4 Turbo), which

supports 128k input tokens and uses training data up to April 2023.

https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#model-summary-table-and-region-availability
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#model-summary-table-and-region-availability

• As of December 2023, this model is not yet intended to production deployments and has quite a

limited request capacity before it starts the denial of service.

Also, it is recommended to add the optional deployment for gpt-4-vision-preview (GPT 4 with Vision),

which provides analysis and text descriptions of uploaded images.

• To enable the deployment of Vision-preview in Azure Open AI, you must configure the Azure AI

Computer Vision resource in the same Azure region as your GPT-4 with Vision resource.

o More information: https://learn.microsoft.com/en-us/azure/ai-services/openai/how-

to/gpt-with-vision

o By default, this resource uses Price Tier: Free (F0), which supports 20 Calls per minute,

5K Calls per month.

o You can choose the more capable Price Tier: S1, which supports 10 Calls per second and

costs ~1$ per 1000 calls.

• The recommended zone for the deployment is Swedish Central (as of Dec 2023). It supports

both types of imaging models Vision and Dalle3 for image generations.

Since September 2024, two more newer models supported by the web part (version 1.3+). You should

add them to the optional deployments as well to support corresponding operations.

o gpt-4o

o gpt-4o-mini

Chat Web API
If you opt to use a database for storing chat histories, the App Service “ChatWebApi” should be

deployed to manage them.

The current version of ChatWebApi (v1.0, as of November 2023) has been developed as an ASP.NET

Core (Minimal) Web API project for Visual Studio 2022, based on .NET 7.0.

The standard features available in Visual Studio 2022 Community Edition can be used to deploy the

application as an Azure App Service.

• Consider creating a Windows-based service to simplify troubleshooting. You can opt for Linux if

you are comfortable with it. For production deployments, it is recommended to use an

Application Service Plan S1 or higher.

• Connect to your Azure Portal and go to the App Service you have created.

o If you have an instance of API Management service, select the option to deploy the Web

API to the Azure Application Management service (this is recommended).

o Save a publishing profile.

• Compile the application and deploy it to the App Service using your saved publishing profile.

Azure API Management
It is recommended to use the Azure API Management Service (APIM) to ensure secure access to Azure

OpenAI API. Key benefits of the APIM include:

• The ability to hide the details of user request authentication and authorization.

https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/gpt-with-vision
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/gpt-with-vision

• Eliminating the necessity to provide the api-key to the client app, as the api-key does not travel

with the browser's requests. Instead, the APIM adds the api-key to the request after verifying

the client's identity.

• Facilitating seamless updates of endpoints when newer versions of language models become

available. Please follow the instructions and examples provided below to configure the APIM

endpoints.

Follow the instructions and examples below to configure APIM endpoints.

Named values
Use the blade API Management service > APIs > Named values

This is the vault, which stores secure keys inside an API Management service instance.

• You can just add a new value as Secret.

• Optionally, it supports remote access to Azure Key Vault for enhanced security.

You should add the following keys:

• AadId: your Azure AD tenant GUID.

o If you plan to grant access to APIM endpoints for users from multiple Azure AD domains,

you can also add the GUIDs of other AAD tenants like AadId-gt, Aad-kavoerokkiisa, etc.

• ApiKeyAzureOpenAIService: stores the api-key for Azure OpenAI service instance, which

contains GPT-3.5 language model deployment.

o You can find api-key under tenant-specific URLs like

https://portal.azure.com/#@[domain.onmicrosoft.com]/resource/subscriptions/

[subscriptionguid]/resourceGroups/openai/providers/Microsoft.CognitiveServices/acco

unts/[openai-account]/cskeys

• ApiKeyAzureOpenAIService4: the same key as above or a separate api-key in another Azure

OpenAI instance, which contains GPT-4 deployment (if the first instance only has GPT-3.5).

• ApiKeyNativeOpenAI: the optional api-key, which can be used for native open AI deployment(s)

in API Management service.

APIs
Use the blade API Management service > APIs > APIs

Create three sets of APIs with settings shown in the table below.

OpenAI

Display name: OpenAI

Name: openai

Description: Azure Open AI Service

Web service URL: https://your-openai-instance.openai.azure.com

• Use your instance of Azure OpenAI service.

• Replace your-openai-instance with your instance with GPT-3.5 deployment.

URL scheme: HTTPS

API URL suffix: openai

• Base URL: https://tenant.azure-api.net/openai

• Replace tenant with your instance of API Management service.

Subscription required: No (clear default checkbox, it is important!)

Security: User authorization, None (default)

OpenAI4

Display name: OpenAI4

Name: openai4

Description: Azure Open AI Service

Web service URL: https://your-openai-instance.openai.azure.com

• Use your instance of Azure OpenAI service.

• Replace your-openai-instance with your instance with GPT-4 deployment.

URL scheme: HTTPS

API URL suffix: openai

• Base URL: https://tenant.azure-api.net/openai4

• Replace tenant with your instance of API Management service.

Subscription required: No (clear default checkbox, it is important!)

Security: User authorization, None (default)

OpenAI-Native (optional)

Display name: OpenAI-Native

Name: openainative

Description: Native Open AI API

Web service URL: https://api.openai.com/v1/chat (without /completions)

URL scheme: HTTPS

API URL suffix: openainative

• Base URL: https://tenant.azure-api.net/openainative

• Replace tenant with your instance of API Management service.

Subscription required: No (clear default checkbox, it is important!)

Security: User authorization, None (default)

ChatWebApi (optional)

Display name: ChatWebApi

Name: chatwebapi

Description: Chat Web Api

Web service URL: https://your-chatwapi-app-service.azurewebsites.net

• Use your Chat Web Api App Service deployment.

• Replace your-chatwapi-app-service.

URL scheme: HTTPS

API URL suffix: chatwebapi

• Base URL: https://tenant.azure-api.net/chatwebapi

• Replace tenant with your instance of API Management service.

Subscription required: No (clear default checkbox, it is important!)

Security: User authorization, None (default)

After that, publish your App Service for Chat Web Api and deploy it to the configured APIM-endpoint

ChatWebApi. You can use Visual Studio 2022 to simplify Publishing and APIM-deployment actions.

Bing (optional)

Note you must have Azure Bing Search service deployed to use this endpoint.

Display name: Bing

Name: bing

Description: Azure Bing Search service

Web service URL: https://api.bing.microsoft.com/v7.0

URL scheme: HTTPS

API URL suffix: bing

• Base URL: https://tenant.azure-api.net/bing

• Replace tenant with your instance of API Management service.

Subscription required: No (clear default checkbox, it is important!)

Security: User authorization, None (default)

Google (optional)

Note you must have Google Custom Search service available in your Google APIs subscription to use this

endpoint.

Display name: Google

Name: google

Description: Google Custom Search service

Web service URL: https://www.googleapis.com/customsearch/v1

URL scheme: HTTPS

API URL suffix: google

• Base URL: https://tenant.azure-api.net/google

• Replace tenant with your instance of API Management service.

Subscription required: No (clear default checkbox, it is important!)

Security: User authorization, None (default)

API operations
Subsets of API operations should be created under each of your API.

• Clients will refer to them as https://<baseURL>/<operationurl>

• For example, like https://tenant.azure-api.net/openai and https://tenant.azure-api.net/openai4

API settings for OpenAI

Configure All operations. Key points are shown below.

• Adjust allowed origins if necessary. Have a look at Known issues.

• AadId and ApiKeyAzureOpenAIService are tokens for values stored in Named values.

A sample working config is given below.

<policies>
 <inbound>
 <base />
 <cors allow-credentials="false">
 <allowed-origins>
 <origin>*</origin>
 </allowed-origins>
 <allowed-methods preflight-result-max-age="300">
 <method>GET</method>
 <method>POST</method>
 <method>OPTIONS</method>
 </allowed-methods>
 <allowed-headers>
 <header>Access-Control-Allow-Origin</header>
 <header>Authorization</header>
 <header>Content-Type</header>
 <header>Origin</header>
 </allowed-headers>
 </cors>
 <validate-jwt header-name="Authorization" failed-validation-
httpcode="401" failed-validation-error-message="Unauthorized. Access token is
missing or invalid.">
 <openid-config
url="https://login.microsoftonline.com/organizations/v2.0/.well-known/openid-
configuration" />
 <issuers>
 <issuer>https://sts.windows.net/{{AadId}}/</issuer>
 <!--Optional authorized external domains (end with backslash)-->
 <issuer>https://sts.windows.net/{{AadId-gt}}/</issuer>
 <issuer>https://sts.windows.net/{{AadId-kavoetokkiisa}}/</issuer>
 </issuers>
 </validate-jwt>
 <set-header name="api-key" exists-action="override">
 <value>{{ApiKeyAzureOpenAIService}}</value>

 </set-header>
 </inbound>
 <backend>
 <base />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

After that, you need to add and configure the operations for your OpenAI API:

chat

Display name: chat

Name: chat (it can add any descriptive value, not important)

URL: POST /chat

Description: Chat for GPT-3.5

Configuration:

• Add a rewrite URL like shown below. It should correspond to backend URL in Azure OpenAI.

o Clients send POST requests with payload to the APIM’s URL https://tenant.azure-

api.net/openai/chat

o APIM transforms the URL and forwards the payload to Azure OpenAI service.

• gpt-35-turbo-16k is a chat model for GPT-3.5 deployed to your Azure OpenAI service instance.

<policies>
 <inbound>
 <base />
 <rewrite-uri template="/openai/deployments/gpt-35-turbo-
16k/chat/completions?api-version=2023-07-01-preview" />
 </inbound>

 <backend>
 <base />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

dalle (optional)

Display name: dalle

Name: dalle (it can add any descriptive value, not important)

URL: POST /dalle

Configuration:

• Add a rewrite URL like shown below. It should correspond to backend URL in Azure OpenAI.

o Clients send POST requests with payload to the APIM’s URL https://tenant.azure-

api.net/openai/dalle

o APIM transforms the URL and forwards the payload to Azure OpenAI Dalle-service.

Dalle3 is the newest imaging model, which must be deployed into your Azure OpenAI service instance
It is supported, for example, in Swedish Central zone.

<policies>
 <inbound>
 <base />
 <rewrite-uri template="/openai/deployments/Dalle3/images/generations?api-
version=2023-12-01-preview" />
 </inbound>
 <backend>

 <base />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

API settings for OpenAI4

Configure All operations. Key points are shown below.

• Adjust allowed origins if necessary. Have a look at Known issues.

• AadId and ApiKeyAzureOpenAIService4 are tokens for values stored in Named values.

A sample working config is given below.

<policies>
 <inbound>
 <base />
 <cors allow-credentials="false">
 <allowed-origins>
 <origin>*</origin>
 </allowed-origins>
 <allowed-methods preflight-result-max-age="300">
 <method>GET</method>
 <method>POST</method>
 <method>OPTIONS</method>
 </allowed-methods>
 <allowed-headers>
 <header>Access-Control-Allow-Origin</header>
 <header>Authorization</header>
 <header>Content-Type</header>
 <header>Origin</header>
 </allowed-headers>
 </cors>
 <validate-jwt header-name="Authorization" failed-validation-
httpcode="401" failed-validation-error-message="Unauthorized. Access token is
missing or invalid.">
 <openid-config
url="https://login.microsoftonline.com/organizations/v2.0/.well-known/openid-
configuration" />
 <issuers>
 <issuer>https://sts.windows.net/{{AadId}}/</issuer>
 <!--Optional authorized external domains (end with backslash)-->
 <issuer>https://sts.windows.net/{{AadId-gt}}/</issuer>
 <issuer>https://sts.windows.net/{{AadId-kavoetokkiisa}}/</issuer>
 </issuers>

 </validate-jwt>
 <set-header name="api-key" exists-action="override">
 <value>{{ApiKeyAzureOpenAIService4}}</value>
 </set-header>
 </inbound>
 <backend>
 <base />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

After that, you need to add and configure an operation for your OpenAI4 API:

chat

Display name: chat

Name: chat (it can add any descriptive value, not important)

URL: POST /chat

Description: Chat for GPT-4

Configuration:

• Add a rewrite URL like shown below. It should correspond to backend URL in Azure OpenAI.

o Clients send POST requests with payload to the APIM’s URL https://tenant.azure-

api.net/openai4/chat

o APIM transforms the URL and forwards the payload to Azure OpenAI service.

• gpt-4-32k is a chat model for GPT-4 deployed to your Azure OpenAI service instance.

<policies>
 <inbound>
 <base />

 <rewrite-uri template="/openai/deployments/gpt-4-
32k/chat/completions?api-version=2023-07-01-preview" />
 </inbound>
 <backend>
 <base />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

chat4o

Display name: chat4o

Name: chat4o

URL: POST /chat4o

Description: Forwarding to GPT 4o endpoint

Configuration:

• Add a rewrite URL like shown below. It should correspond to backend URL in Azure OpenAI.

o Clients send POST requests with payload to the APIM’s URL https://tenant.azure-

api.net/openai4/chat4o

o APIM transforms the URL and forwards the payload to Azure OpenAI service.

• gpt-4o is a chat model for GPT-4o deployed to your Azure OpenAI service instance.

<policies>
 <inbound>

 <base />
 <rewrite-uri template="/openai/deployments/gpt-4o/chat/completions?api-
version=2024-02-15-preview" />
 </inbound>
 <backend>
 <forward-request timeout="180" fail-on-error-status-code="true" buffer-
response="false" />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

chat4omini

Display name: chat4omini

Name: chat4omini

URL: POST /chat4omini

Description: Forwarding to GPT 4o Mini endpoint

Configuration:

• Add a rewrite URL like shown below. It should correspond to backend URL in Azure OpenAI.

o Clients send POST requests with payload to the APIM’s URL https://tenant.azure-

api.net/openai4/chat4omini

o APIM transforms the URL and forwards the payload to Azure OpenAI service.

• gpt-4o-mini is a chat model for GPT-4o deployed to your Azure OpenAI service instance.

<policies>
 <inbound>
 <base />
 <rewrite-uri template="/openai/deployments/gpt-4o-
mini/chat/completions?api-version=2024-02-15-preview" />
 </inbound>
 <backend>
 <forward-request timeout="180" fail-on-error-status-code="true" buffer-
response="false" />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

chatpreview (optional)

This is an additional operation to distinguish the calls to Azure OpenAI deployments of GPT 4 (gpt-4-32k)

and GPT 4 Turbo (gpt-4-1106-preview) when both are enabled simultaneously in the web part settings.

Display name: chatpreview

Name: chatpreview (it can add any descriptive value, not important)

URL: POST /chatpreview

Configuration:

• Add a rewrite URL like shown below. It should correspond to backend URL in Azure OpenAI.

o Clients send POST requests with payload to the APIM’s URL https://tenant.azure-

api.net/openai4/chatpreview

o APIM transforms the URL and forwards the payload to Azure OpenAI service.

• gpt-4-1106-preview is a chat model for GPT-4 Turbo deployed to your Azure OpenAI service

instance.

<policies>
 <inbound>
 <base />
 <rewrite-uri template="/openai/deployments/gpt-4-1106-
preview/chat/completions?api-version=2023-07-01-preview" />
 </inbound>
 <backend>
 <forward-request timeout="180" fail-on-error-status-code="true" buffer-
response="false" />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

vision (optional)

This is an additional operation to make calls to the optionally configured Azure OpenAI deployment of

GPT 4 Vision (gpt-4-vision-preview).

• To enable Vision-preview model on Azure OpenAI, you must deploy a Computer Vision resource

as mentioned above (refer to Model deployments).

Display name: vision

Name: vision (it can add any descriptive value, not important)

URL: POST /vision

Configuration:

• Add a rewrite URL like shown below. It should correspond to backend URL in Azure OpenAI.

o Clients send POST requests with payload to the APIM’s URL https://tenant.azure-

api.net/openai4/vision

o APIM transforms the URL and forwards the payload to Azure OpenAI service.

• gpt-4-vision-preview is a chat model for GPT-4 deployed to your Azure OpenAI service instance.

<policies>
 <inbound>
 <base />
 <rewrite-uri template="/openai/deployments/gpt-4-vision-
preview/chat/completions?api-version=2023-07-01-preview" />
 </inbound>
 <backend>
 <forward-request timeout="180" fail-on-error-status-code="true" buffer-
response="false" />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

API settings for OpenAI-Native (optional)

Configure All operations. Key points are shown below.

• Adjust allowed origins if necessary. Have a look at Known issues.

• AadId and ApiKeyNativeOpenAI are tokens for values stored in Named values.

A sample working config is given below.

<policies>
 <inbound>
 <base />
 <cors allow-credentials="false">
 <allowed-origins>
 <origin>*</origin>
 </allowed-origins>
 <allowed-methods preflight-result-max-age="300">
 <method>GET</method>
 <method>POST</method>
 <method>OPTIONS</method>
 </allowed-methods>
 <allowed-headers>
 <header>Access-Control-Allow-Origin</header>
 <header>Authorization</header>
 <header>Content-Type</header>
 <header>Origin</header>
 </allowed-headers>
 </cors>

 <validate-jwt header-name="Authorization" failed-validation-
httpcode="401" failed-validation-error-message="Unauthorized. Access token is
missing or invalid.">
 <openid-config
url="https://login.microsoftonline.com/organizations/v2.0/.well-known/openid-
configuration" />
 <issuers>
 <issuer>https://sts.windows.net/{{AadId}}/</issuer>
 <!--Optional authorized external domains (end with backslash)-->
 <issuer>https://sts.windows.net/{{AadId-gt}}/</issuer>
 <issuer>https://sts.windows.net/{{AadId-kavoetokkiisa}}/</issuer>
 </issuers>
 </validate-jwt>
 <set-header name="Authorization" exists-action="override">
 <value>Bearer {{ApiKeyNativeOpenAI}}</value>
 </set-header>
 </inbound>
 <backend>
 <base />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

After that, you need to add and configure an operation for your OpenAI-Native API:

chat

Display name: chat

Name: chat (it can add any descriptive value, not important)

URL: POST /chat

Description: Chat for native Open AI

Configuration:

• Add a rewrite URL like shown below.

o Clients send POST requests with payload to the APIM’s URL https://tenant.azure-

api.net/openainative/chat

o APIM transforms the URL and forwards the payload to native OpenAI API.

o Transformed URL corresponds to https://api.openai.com/v1/chat/completions

<policies>
 <inbound>
 <base />
 <rewrite-uri template="/completions" />
 </inbound>
 <backend>
 <forward-request timeout="120" fail-on-error-status-code="true"
buffer-response="false" />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

dalle (optional)

This is an optional configuration to support Dall-e-3 image generation model of Native OpenAI.

Display name: dalle

Name: dalle (it can add any descriptive value, not important)

URL: POST /dalle

Configuration:

• Add a rewrite URL like shown below. It should correspond to backend URL in Native OpenAI.

o Clients send POST requests with payload to the APIM’s URL https://tenant.azure-

api.net/openainative/dalle

o APIM transforms the URL and forwards the payload to Dalle-service of the Native

OpenAI.

o The transformed URL corresponds to https://api.openai.com/v1/images/generations

<policies>
 <inbound>
 <base />
 <rewrite-uri template="/images/generations" />
 </inbound>
 <backend>
 <base />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

tts (optional)

This is an optional configuration to support text-to-speech model of Native OpenAI (tts-1).

Display name: tts

Name: tts (it can add any descriptive value, not important)

URL: POST /tts

Configuration:

• Add a rewrite URL like shown below. It should correspond to backend URL in Native OpenAI.

o Clients send POST requests with payload to the APIM’s URL https://tenant.azure-

api.net/openainative/tts

o APIM transforms the URL and forwards the payload to text-to-speech service of the

Native OpenAI.

o The transformed URL corresponds to https://api.openai.com/v1/audio/speech

<policies>
 <inbound>
 <base />
 <rewrite-uri template="/audio/speech" />
 </inbound>
 <backend>
 <base />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

API settings for ChatWebApi (optional)

Configure All operations. Key points are shown below.

• Adjust allowed origins if necessary. Have a look at Known issues.

• AadId- are tokens for values stored in Named values.

A sample working config is given below.

<policies>
 <inbound>
 <base />
 <cors allow-credentials="false">
 <allowed-origins>
 <origin>*</origin>
 </allowed-origins>
 <allowed-methods preflight-result-max-age="300">
 <method>GET</method>
 <method>POST</method>
 <method>PUT</method>
 <method>DELETE</method>
 <method>OPTIONS</method>
 </allowed-methods>
 <allowed-headers>
 <header>Access-Control-Allow-Origin</header>
 <header>Authorization</header>
 <header>Content-Type</header>
 <header>Origin</header>
 </allowed-headers>
 </cors>

 <validate-jwt header-name="Authorization" failed-validation-
httpcode="401" failed-validation-error-message="Unauthorized. Access token is
missing or invalid.">
 <openid-config
url="https://login.microsoftonline.com/organizations/v2.0/.well-known/openid-
configuration" />
 <issuers>
 <issuer>https://sts.windows.net/{{AadId}}/</issuer>
 <!--Optional authorized external domains (end with backslash)-->
 <issuer>https://sts.windows.net/{{AadId-gt}}/</issuer>
 <issuer>https://sts.windows.net/{{AadId-kavoetokkiisa}}/</issuer>
 </issuers>
 </validate-jwt>
 </inbound>
 <backend>
 <base />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

API settings for Bing (optional)

Configure All operations. Key points are shown below.

• Adjust allowed origins if necessary. Have a look at Known issues.

• AadId and ApiKeyBingSearch are tokens for values stored in Named values.

o ApiKeyBingSearch stores a Key for your Azure Bing Search Service

A sample working config is given below.

<policies>
 <inbound>
 <base />
 <cors allow-credentials="false">
 <allowed-origins>
 <origin>*</origin>
 </allowed-origins>
 <allowed-methods preflight-result-max-age="300">
 <method>GET</method>
 </allowed-methods>
 <allowed-headers>
 <header>Access-Control-Allow-Origin</header>
 <header>Authorization</header>
 <header>Content-Type</header>
 <header>Origin</header>
 </allowed-headers>

 </cors>
 <validate-jwt header-name="Authorization" failed-validation-
httpcode="401" failed-validation-error-message="Unauthorized. Access token is
missing or invalid.">
 <openid-config
url="https://login.microsoftonline.com/organizations/v2.0/.well-known/openid-
configuration" />
 <issuers>
 <issuer>https://sts.windows.net/{{AadId}}/</issuer>
 <!--Optional authorized external domains (end with backslash)-->
 <issuer>https://sts.windows.net/{{AadId-gt}}/</issuer>
 <issuer>https://sts.windows.net/{{AadId-kavoetokkiisa}}/</issuer>
 </issuers>
 </validate-jwt>
 <set-header name="Ocp-Apim-Subscription-Key" exists-action="override">
 <value>{{ApiKeyBingSearch}}</value>
 </set-header>
 </inbound>
 <backend>
 <base />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

After that, you need to add and configure the search operation for your Bing endpoint:

search

Display name: search

Name: search (it can add any descriptive value, not important)

URL: GET /search

Configuration:

• Add a rewrite URL like shown below.

o Clients send GET requests with query string parameters to the APIM’s URL

https://tenant.azure-api.net/bing/search?q=QUERY_TEXT&mkt=LOCALE

o APIM transforms the URL and forwards the payload to Azure Bing Search Service.

o Transformed URL corresponds to

https://api.bing.microsoft.com/v7.0/search?q=QUERY_TEXT&mkt=LOCALE

• Use default APIM policies.

API settings for Google (optional)

Configure All operations. Key points are shown below.

• Adjust allowed origins if necessary. Have a look at Known issues.

• AadId- are tokens for values stored in Named values.

ApiKeyGoogleSearch stores a query string combination of key=API_KEY&cx=SEARCH_ENGINE_ID used

in your instance of Google Custom Search API. Please refer to Google documentation for Custom Search

to generate those values (https://developers.google.com/custom-search/v1/introduction). They are

available free of charge to developers.

A sample working config is given below.

• Note that unlike the Bing endpoint the main policy of Google endpoint does not use the header

with ApiKeyGoogleSearch. In Google search, the key is injected by APIM
directly into a query string in the search operation (as shown below).

<policies>
 <inbound>
 <base />
 <cors allow-credentials="false">
 <allowed-origins>
 <origin>*</origin>
 </allowed-origins>
 <allowed-methods preflight-result-max-age="300">
 <method>GET</method>
 </allowed-methods>
 <allowed-headers>
 <header>Access-Control-Allow-Origin</header>
 <header>Authorization</header>
 <header>Content-Type</header>
 <header>Origin</header>
 </allowed-headers>
 </cors>
 <validate-jwt header-name="Authorization" failed-validation-
httpcode="401" failed-validation-error-message="Unauthorized. Access token is
missing or invalid.">

 <openid-config
url="https://login.microsoftonline.com/organizations/v2.0/.well-known/openid-
configuration" />
 <issuers>
 <issuer>https://sts.windows.net/{{AadId}}/</issuer>
 <!--Optional authorized external domains (end with backslash)-->
 <issuer>https://sts.windows.net/{{AadId-gt}}/</issuer>
 <issuer>https://sts.windows.net/{{AadId-kavoetokkiisa}}/</issuer>
 </issuers>
 </validate-jwt>
 </inbound>
 <backend>
 <base />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

After that, you need to add and configure the search operation for your Google endpoint:

search

Display name: search

Name: search (it can add any descriptive value, not important)

URL: GET /search

Configuration:

• Add a rewrite URL like shown below.

o Clients send GET requests with query string parameters to the APIM’s URL

https://tenant.azure-api.net/google/search?q=QUERY_TEXT&lr=LOCALE

o APIM transforms the URL and forwards the payload to Google Custom Search service.

o Transformed URL corresponds to

https://www.googleapis.com/customsearch/v1?key=API_KEY&cx=SEARCH_ENGINE_ID

&q=QUERY_TEXT&lr=LOCALE

▪ The first two parameters should be injected within the APIM policy as shown

below.

<policies>
 <inbound>
 <base />
 <rewrite-uri template="?{{ApiKeyGoogleSearch}}" />
 </inbound>
 <backend>
 <base />
 </backend>
 <outbound>
 <base />
 </outbound>
 <on-error>
 <base />
 </on-error>
</policies>

Known issues
There was an intermittent issue that might have been associated with the use of the Consumption plan

for API Management in the DEV-tenant.

• Please refer to the table available at https://azure.microsoft.com/en-us/pricing/details/api-

management/?ef_id=_k_CjwKCAjw67ajBhAVEiwA2g_jEHK13rhWiOba6Xz7YiLxkWCKMivEjoXqV

mi8dQPCK3rVkmewyqSb6BoCrVkQAvD_BwE_k_&OCID=AIDcmmftanc7uz_SEM__k_CjwKCAjw67

ajBhAVEiwA2g_jEHK13rhWiOba6Xz7YiLxkWCKMivEjoXqVmi8dQPCK3rVkmewyqSb6BoCrVkQAvD

_BwE_k_&gclid=CjwKCAjw67ajBhAVEiwA2g_jEHK13rhWiOba6Xz7YiLxkWCKMivEjoXqVmi8dQPC

K3rVkmewyqSb6BoCrVkQAvD_BwE#pricing

• As indicated there, the Consumption plan uses Shared isolation.

• According to discussions in Microsoft forums, this might occasionally cause CORS-conflicts if you

specify explicit values in allowed-origins.

o Other plans offer Private isolation and do not seem to encounter similar issues.

• Anyway, it might be prudent to avoid defining explicit CORS rules in APIM policies.

Security

Frontend
The web part is hosted on SharePoint Online and utilizes the standard authentication options provided

by the platform. Connection to backend endpoints is established using the Azure App registration

openaiwp as outlined in the “Permissions” chapter of this document.

Backend
For more information on securing backend services, please refer to the supplementary document azure-

openai-chat-security.pdf.

