{ "cells": [ { "cell_type": "markdown", "id": "e69a87fa-121f-484a-a508-94fb3003a8b3", "metadata": {}, "source": [ "# Feldspar-liquid thermobarometry\n", "- Unlike for Cpx and Opx, because the components are calculated the same for Plag and Kspar, we have a single function, calculate_liq_fspar_temp and calculate_liq_fspar_press.\n", "- If the mineral is plagioclase, the functions should use plag_comps=dataframe, while if its Kspar, kspar_comps=dataframe\n", "- You can download the excel spreadsheet here: https://github.com/PennyWieser/Thermobar/blob/main/docs/Examples/Feldspar_Thermobarometry/Feldspar_Liquid.xlsx" ] }, { "cell_type": "markdown", "id": "ae1b9bbe-4d1b-4532-ad5f-df35f5c70370", "metadata": {}, "source": [ "### You need to install Thermobar once on your machine, if you haven't done this yet, uncomment the line below (remove the #)" ] }, { "cell_type": "code", "execution_count": 2, "id": "3f8cd48b-4580-4ecb-91e3-28a77ddde469", "metadata": {}, "outputs": [], "source": [ "#!pip install Thermobar" ] }, { "cell_type": "markdown", "id": "262b4900-1ff1-4339-8e0c-0fb8178a074e", "metadata": {}, "source": [ "## first, load python things" ] }, { "cell_type": "code", "execution_count": 3, "id": "676d20fc-4bae-46ad-8f6b-efff0b9f50a8", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import Thermobar as pt\n", "pd.options.display.max_columns = None" ] }, { "cell_type": "markdown", "id": "4e2e69e4-c3af-4d60-9716-414ac8a873a1", "metadata": {}, "source": [ "## Loading plagioclase- liquid pairs" ] }, { "cell_type": "code", "execution_count": 4, "id": "0b9b7f53-a063-4237-96b7-9622668d0cc5", "metadata": {}, "outputs": [], "source": [ "out_PL=pt.import_excel('Feldspar_Liquid.xlsx', sheet_name=\"Plag_Liquid\")\n", "# This extracts a dataframe of all inputs\n", "my_input_PL=out_PL['my_input']\n", "# This extracts a dataframe of plag compositions from the dictionary \"out\"\n", "Plags=out_PL['Plags']\n", "Liqs_PL=out_PL['Liqs']" ] }, { "cell_type": "markdown", "id": "c1f254e3-0a46-45aa-802e-7a7e3eb95e1f", "metadata": {}, "source": [ "## Lets check these inputs look good (e.g. not just a load of zeros)" ] }, { "cell_type": "code", "execution_count": 5, "id": "a24778b9-02a6-46d6-9a2d-f61913e85e6f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SiO2_PlagTiO2_PlagAl2O3_PlagFeOt_PlagMnO_PlagMgO_PlagCaO_PlagNa2O_PlagK2O_PlagCr2O3_PlagSample_ID_Plag
057.30.0926.60.430.00.038.336.110.490.00
156.50.1226.90.470.00.058.955.660.470.01
257.60.1126.30.500.00.078.506.270.400.02
357.20.1627.00.620.00.069.035.580.840.03
456.70.1427.60.690.00.119.465.580.480.04
\n", "
" ], "text/plain": [ " SiO2_Plag TiO2_Plag Al2O3_Plag FeOt_Plag MnO_Plag MgO_Plag CaO_Plag \\\n", "0 57.3 0.09 26.6 0.43 0.0 0.03 8.33 \n", "1 56.5 0.12 26.9 0.47 0.0 0.05 8.95 \n", "2 57.6 0.11 26.3 0.50 0.0 0.07 8.50 \n", "3 57.2 0.16 27.0 0.62 0.0 0.06 9.03 \n", "4 56.7 0.14 27.6 0.69 0.0 0.11 9.46 \n", "\n", " Na2O_Plag K2O_Plag Cr2O3_Plag Sample_ID_Plag \n", "0 6.11 0.49 0.0 0 \n", "1 5.66 0.47 0.0 1 \n", "2 6.27 0.40 0.0 2 \n", "3 5.58 0.84 0.0 3 \n", "4 5.58 0.48 0.0 4 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SiO2_LiqTiO2_LiqAl2O3_LiqFeOt_LiqMnO_LiqMgO_LiqCaO_LiqNa2O_LiqK2O_LiqCr2O3_LiqP2O5_LiqH2O_LiqFe3Fet_LiqNiO_LiqCoO_LiqCO2_LiqSample_ID_Liq
049.13.2214.414.80.143.206.723.341.700.01.130.00.00.00.00.00
149.23.8915.313.70.123.886.763.441.220.00.830.00.00.00.00.01
249.63.7915.813.00.144.266.593.651.040.00.630.00.00.00.00.02
347.14.2112.017.80.183.407.282.932.020.02.320.00.00.00.00.03
448.13.8813.216.40.164.026.513.361.360.01.590.00.00.00.00.04
\n", "
" ], "text/plain": [ " SiO2_Liq TiO2_Liq Al2O3_Liq FeOt_Liq MnO_Liq MgO_Liq CaO_Liq \\\n", "0 49.1 3.22 14.4 14.8 0.14 3.20 6.72 \n", "1 49.2 3.89 15.3 13.7 0.12 3.88 6.76 \n", "2 49.6 3.79 15.8 13.0 0.14 4.26 6.59 \n", "3 47.1 4.21 12.0 17.8 0.18 3.40 7.28 \n", "4 48.1 3.88 13.2 16.4 0.16 4.02 6.51 \n", "\n", " Na2O_Liq K2O_Liq Cr2O3_Liq P2O5_Liq H2O_Liq Fe3Fet_Liq NiO_Liq \\\n", "0 3.34 1.70 0.0 1.13 0.0 0.0 0.0 \n", "1 3.44 1.22 0.0 0.83 0.0 0.0 0.0 \n", "2 3.65 1.04 0.0 0.63 0.0 0.0 0.0 \n", "3 2.93 2.02 0.0 2.32 0.0 0.0 0.0 \n", "4 3.36 1.36 0.0 1.59 0.0 0.0 0.0 \n", "\n", " CoO_Liq CO2_Liq Sample_ID_Liq \n", "0 0.0 0.0 0 \n", "1 0.0 0.0 1 \n", "2 0.0 0.0 2 \n", "3 0.0 0.0 3 \n", "4 0.0 0.0 4 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(Plags.head())\n", "display(Liqs_PL.head())" ] }, { "cell_type": "markdown", "id": "074fe575-b184-4905-8f75-e77d87ae3b86", "metadata": {}, "source": [ "## Loading Kspar-liquid pairs" ] }, { "cell_type": "code", "execution_count": 6, "id": "0d652191-9ffc-41e0-91b8-07deab72749b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SiO2_KsparTiO2_KsparAl2O3_KsparFeOt_KsparMnO_KsparMgO_KsparCaO_KsparNa2O_KsparK2O_KsparCr2O3_KsparSample_ID_Kspar
065.50.019.60.070.00.000.754.819.360.00
165.40.019.40.050.00.000.593.1311.500.01
264.60.018.80.090.00.000.391.1514.800.02
361.80.019.20.510.00.030.661.7112.900.03
465.10.019.20.050.00.000.362.8712.600.04
\n", "
" ], "text/plain": [ " SiO2_Kspar TiO2_Kspar Al2O3_Kspar FeOt_Kspar MnO_Kspar MgO_Kspar \\\n", "0 65.5 0.0 19.6 0.07 0.0 0.00 \n", "1 65.4 0.0 19.4 0.05 0.0 0.00 \n", "2 64.6 0.0 18.8 0.09 0.0 0.00 \n", "3 61.8 0.0 19.2 0.51 0.0 0.03 \n", "4 65.1 0.0 19.2 0.05 0.0 0.00 \n", "\n", " CaO_Kspar Na2O_Kspar K2O_Kspar Cr2O3_Kspar Sample_ID_Kspar \n", "0 0.75 4.81 9.36 0.0 0 \n", "1 0.59 3.13 11.50 0.0 1 \n", "2 0.39 1.15 14.80 0.0 2 \n", "3 0.66 1.71 12.90 0.0 3 \n", "4 0.36 2.87 12.60 0.0 4 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SiO2_LiqTiO2_LiqAl2O3_LiqFeOt_LiqMnO_LiqMgO_LiqCaO_LiqNa2O_LiqK2O_LiqCr2O3_LiqP2O5_LiqH2O_LiqFe3Fet_LiqNiO_LiqCoO_LiqCO2_LiqSample_ID_Liq
061.710.4518.563.170.270.231.646.117.090.00.0220.00.00.00.00
161.710.4518.563.170.270.231.646.117.090.00.0230.00.00.00.01
262.710.4518.563.170.270.231.646.116.090.00.0250.00.00.00.02
362.710.4518.563.170.270.231.646.116.090.00.0250.00.00.00.03
462.710.4518.563.170.270.231.646.116.090.00.0250.00.00.00.04
\n", "
" ], "text/plain": [ " SiO2_Liq TiO2_Liq Al2O3_Liq FeOt_Liq MnO_Liq MgO_Liq CaO_Liq \\\n", "0 61.71 0.45 18.56 3.17 0.27 0.23 1.64 \n", "1 61.71 0.45 18.56 3.17 0.27 0.23 1.64 \n", "2 62.71 0.45 18.56 3.17 0.27 0.23 1.64 \n", "3 62.71 0.45 18.56 3.17 0.27 0.23 1.64 \n", "4 62.71 0.45 18.56 3.17 0.27 0.23 1.64 \n", "\n", " Na2O_Liq K2O_Liq Cr2O3_Liq P2O5_Liq H2O_Liq Fe3Fet_Liq NiO_Liq \\\n", "0 6.11 7.09 0.0 0.02 2 0.0 0.0 \n", "1 6.11 7.09 0.0 0.02 3 0.0 0.0 \n", "2 6.11 6.09 0.0 0.02 5 0.0 0.0 \n", "3 6.11 6.09 0.0 0.02 5 0.0 0.0 \n", "4 6.11 6.09 0.0 0.02 5 0.0 0.0 \n", "\n", " CoO_Liq CO2_Liq Sample_ID_Liq \n", "0 0.0 0.0 0 \n", "1 0.0 0.0 1 \n", "2 0.0 0.0 2 \n", "3 0.0 0.0 3 \n", "4 0.0 0.0 4 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "out_KL=pt.import_excel('Feldspar_Liquid.xlsx', sheet_name=\"Kspar_Liquid\")\n", "my_input_KL=out_KL['my_input']\n", "Kspars=out_KL['Kspars']\n", "Liqs_KL=out_KL['Liqs']\n", "# As before, we inspect the outputs\n", "display(Kspars.head())\n", "display(Liqs_KL.head())" ] }, { "cell_type": "markdown", "id": "efa1a354-3101-4ab8-8ea9-744e08525197", "metadata": {}, "source": [ "## Example 1 - Plagioclase-Liquid thermomometry\n", "- to get more information, can always do help(pt.function)" ] }, { "cell_type": "code", "execution_count": 7, "id": "c3c7003e-5b80-4e29-81ec-75c7dddcbdd8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on function calculate_fspar_liq_temp in module Thermobar.feldspar:\n", "\n", "calculate_fspar_liq_temp(*, plag_comps=None, kspar_comps=None, meltmatch_plag=None, meltmatch_kspar=None, liq_comps=None, equationT=None, P=None, H2O_Liq=None, eq_tests=False)\n", " Liquid-Feldspar thermometery (same function for Plag and Kspar),\n", " returns temperature in Kelvin.\n", " \n", " Parameters\n", " -------\n", " \n", " liq_comps: pandas.DataFrame\n", " liquid compositions with column headings SiO2_Liq, MgO_Liq etc.\n", " \n", " kspar_comps or plag_comps (pandas.DataFrame)\n", " \n", " Specify kspar_comps=... for Kspar-Liquid thermometry (with column headings SiO2_Kspar, MgO_Kspar) etc\n", " \n", " Specify plag_comps=... for Plag-Liquid thermometry (with column headings SiO2_Plag, MgO_Plag) etc\n", " \n", " EquationT: str\n", " \n", " choose from:\n", " \n", " | T_Put2008_eq24b (Kspar-Liq, P-dependent, H2O-independent\n", " | T_Put2008_eq23 (Plag-Liq, P-dependent, H2O-dependent)\n", " | T_Put2008_eq24a (Plag-Liq, P-dependent, H2O-dependent)\n", " \n", " P: float, int, pandas.Series, str (\"Solve\")\n", " Pressure in kbar to perform calculations at\n", " Only needed for P-sensitive thermometers.\n", " If enter P=\"Solve\", returns a partial function\n", " Else, enter an integer, float, or panda series\n", " \n", " H2O_Liq: optional.\n", " If None, uses H2O_Liq column from input.\n", " If int, float, pandas.Series, uses this instead of H2O_Liq Column\n", " \n", " Returns\n", " -------\n", " \n", " Temperature in Kelvin: pandas.Series\n", " If eq_tests is False\n", " \n", " Temperature in Kelvin + eq Tests + input compositions: pandas.DataFrame\n", " If eq_tests is True\n", "\n" ] } ], "source": [ "help(pt.calculate_fspar_liq_temp)" ] }, { "cell_type": "markdown", "id": "39de2442-fafa-4f7c-9c45-c587acc0fdbf", "metadata": {}, "source": [ "### Temperature using equation 23 at 5 kbar" ] }, { "cell_type": "code", "execution_count": 9, "id": "0da7afac-0959-4f50-aa8e-e41092ab542c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1134.869018\n", "1 1150.684489\n", "2 1146.913528\n", "3 1113.581667\n", "4 1119.243338\n", "dtype: float64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "T_PL_eq23_5kbar=pt.calculate_fspar_liq_temp(plag_comps=Plags, liq_comps=Liqs_PL, \n", " equationT=\"T_Put2008_eq23\", P=5)-273.15\n", "T_PL_eq23_5kbar.head()" ] }, { "cell_type": "markdown", "id": "6ed2873d-b313-4bf6-a047-e62cfc9160df", "metadata": {}, "source": [ "### Temperature using equation 24a at 5 kbar" ] }, { "cell_type": "code", "execution_count": 10, "id": "f84b27cc-9f68-4a67-b474-6cec7db96fed", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1130.080284\n", "1 1147.341341\n", "2 1142.641914\n", "3 1115.989656\n", "4 1127.162158\n", "dtype: float64" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "T_PL_eq24a_5kbar=pt.calculate_fspar_liq_temp(plag_comps=Plags, liq_comps=Liqs_PL, \n", " equationT=\"T_Put2008_eq24a\", P=5)-273.15\n", "T_PL_eq24a_5kbar.head()" ] }, { "attachments": { "2b16dba9-abcb-4fa0-9a9f-4a1a73444fe0.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAF/CAYAAABe0JF0AAAgAElEQVR4Aey9C7RsVXkmuse495rb104n5CXdV+hur2nzMMZj0knaxGhLJJ1w9CgkCJo2dm58xYAHxQfC5iEiGqOCjyjsowbOBm2NihqJJhE2IAe6fcaYFt0+kmgwnb4+DhvYQIHzjn+t+mr99de/1ppVtWbV3Gt/Z4wac625/vk/vvmtOb9aVWfXSnD+fe5zn3N62dUHBDi3+c8i54hzlD8C+WfI+yj/OWKG/UFgWffbigfhspLxcmFftwhwbrvFM4U3zlEKVLv1yTnqFs8U3jhHKVClTyLgI7Cs+40i1p+P3vYui2i9BTRBYZyjBKB27JJz1DGgCdxxjhKASpdEoAaBZd1vFLE1E9LX7mURra94pqiLc5QC1W59co66xTOFN85RClTpkwj4CCzrfqOI9eejt73LIlpvAU1QGOcoAagdu+QcdQxoAnecowSg0iURqEFgWfcbRWzNhPS1e1lE6yueKeriHKVAtVufnKNu8UzhjXOUAlX6JAI+Asu63yhi/fnobe+yiNZbQBMUxjlKAGrHLjlHHQOawB3nKAGodEkEahBY1v1GEVszIX3tXhbR+opniro4RylQ7dYn56hbPFN44xylQJU+iYCPwLLuN4pYfz5627ssovUW0ASFcY4SgNqxS85Rx4AmcMc5SgAqXRKBGgSWdb9RxNZMSF+7l0W0vuKZoi7OUQpUu/XJOeoWzxTeOEcpUKVPIuAjsKz7jSLWn4/e9i6LaL0FNEFhnKMEoHbsknPUMaAJ3HGOEoBKl0SgBoFl3W8UsTUT0tfuZRGtr3imqItzlALVbn1yjrrFM4U3zlEKVOmTCPgILOt+o4j156O3vcsiWm8BTVAY5ygBqB275Bx1DGgCd5yjBKDSJRGoQWBZ9xtFbM2E9LV7WUTrK54p6uIcpUC1W5+co27xTOGNc5QCVfokAj4Cy7rfKGL9+eht77KI1ltAExTGOUoAascuOUcdA5rAHecoAah0SQRqEFjW/UYRWzMhfe1eFtH6imeKujhHKVDt1ifnqFs8U3jjHKVAlT6JgI/Asu43ilh/Pnrbuyyi9RbQBIVxjhKA2rFLzlHHgCZwxzlKACpdEoEaBJZ1v1HE1kxIX7uXRbS+4pmiLs5RClS79ck56hbPFN44RylQpU8i4COwrPuNItafj972LotovQU0QWGcowSgduySc9QxoAnccY4SgEqXRKAGgWXdbxSxNRPS1+5lEa2veKaoi3OUAtVufXKOusUzhTfOUQpU6ZMI+Ags636jiPXno7e9yyJabwFNUBjnKAGoHbvkHHUMaAJ3nKMEoNIlEahBYFn3G0VszYT0tXtZROsrninq4hylQLVbn5yjbvFM4Y1zlAJV+iQCPgLLut8oYv356G3vsojWW0ATFMY5SgBqxy45Rx0DmsAd5ygBqHRJBGoQWNb9RhFbMyF97V4W0fqKZ4q6OEcpUO3WJ+eoWzxTeOMcpUCVPomAj8Cy7jeKWH8+etu7LKL1FtAEhXGOEoDasUvOUceAJnDHOUoAKl0SgRoElnW/UcTWTEhfu5dFtL7imaIuzlEKVLv1yTnqFs8U3jhHKVClTyLgI7Cs+40i1p+P3vYui2i9BTRBYZyjBKB27JJz1DGgCdxxjhKASpdEoAaBZd1vFLE1E9LX7mURra94pqiLc5QC1W59co66xTOFN85RClTpkwj4CCzrfqOI9eejt70piPadb62Fb/7TZXwRA3KAHCAHyIHkHDj8rQ/2do/eqYWl0BYxWKxIYL6IwTwcEAE7+O7L+CIG5AA5QA6QA8k5IHvOPHsWx/ZH8/BJbIzU75GN3Lxd/6OIpYDnmxhygBwgBxbFAdlz+C8vBFJoi5gKKWJjUOqRTQqiUcRy81rU5sU45Bo5QA7InnPuuecWrx5tzzu6lBTaIgYQitgYlHpkk4JoFLHcVCgsyAFygBxYFAcoYvMTJSm0RUyVFLExKPXIJgXRShF7fhh8ly9iQA6QA+QAOZCWAxSx+YmSFNoipkqK2BiUemSTgmgUsWkXbG6IxJccIAfIgYoDFLH5iZIU2iKmSorYGJR6ZJOCaBSx1eLKjYZYkAPkADmQlgMUsfmJkhTaIqZKitgYlHpkk4JoFLFpF2xuiMSXHCAHyIGKAxSx+YmSFNoipkqK2BiUemSTgmi5i9itO88JRx/9fWH9yhN33Pd2d3Lu3HSrTZdYEAtyoDsOUMTmJ0pSaIuYKiliY1DqkU0Kos0iYtcOPCnsecS/CodvP3tMWEr/yspKtODcuP53W+3nEYLIR3LC6/73v1+49X++ZCzvWTao1LnPkhPHdLfREktiSQ6k4QBFbH6iJIW2iKmSIjYGpR7ZpCBaVyJWBOP97ve/hUM3P2tmgbj55eeHI4/852M+5hWxVrTuf/4vTp2nl1fMBjdP7jH+aZNmkyWuxJUcSMcBitj8REkKbRFTJUVsDEo9sklBtFLEvjwMvhv/qp7EnlOM27j+GeqJarwfG3Pzyy8Yithnj/LZuvPccPTR3z98ujudb8mzFLFnTPhbPeexoz6bhz338rI23vk8uXv+2Dfd/BMv4kUO5McBitj8REkKbRFTJUVsDEo9sklBtHlFrAi8I474Z6FOFELg4uP88msIpfjV4hCCD3bS7nvijwf0H3jr8YWYxfW6eHrTahOx8F1+37Zc7G0fzhEXeencJSbOD15xYoGHPJW+ZuN3JwT49j0vC3sf/2Njol/y1P7LJ9qVkEdNwFLni2ts89usOSecE3JgkgMUsfmJkhTaIqZKitgYlHpkk4Jo84jYf/xfLy1EWp2g9ESkfJwPIQvhd+jmUrDZc9kAICL1E1URc3VCT28aXnyJIaJbhCB8a1Ho9Xl52T74RW06d/iHb20jdpInbHCu60VNFLGTGyKwYUtsyIGdwQGK2PxESQptEVMlRWwMSj2ySUG0UsReEAbfjX+tHTg+POTHfnj0xPHQzc+ZGL9153nDp5BPHru2+eXTw5FHfm+QMfpY4ttz6fP8iF0pRMd92xokz1IMvrTIYfue84unoKWIPNf1XRcPOSOGzdWe29zhd98Tf2IMD/jTredLX+dxPFeJFbEiB/LiAEVsfqIkhbaIqZIiNgalHtmkINqsIlY+/j7jzMcUolALRWwYEJr6Y3Icl09RZxexEITrV7aLWMRECwEreXp+vD5PVNo+e67946sQTQJWnlAjR2mBEfBkm9dGzPngfJADs3GAIjY/UZJCW8RUSREbg1KPbFIQbVYRCzEI0YdzLOyeqMM1tNbGnosd/GvB6vXBp27tk1h9bRrfXl62z55r/xCnnjBFLRo/z5fNneezbaDEjbiRA8vlAEVsfqIkhbaIqZIiNgalHtmkIFopYl8RBt+Nf60dOGH4vdbzinGbX35h8fF++aSx9LN158uG35c9pta3jCs/pv+9kR99LjnBz/qVJ438eH1e/pJn+ZT4zNFYbef58fpsnuLD9tlzL/f9z/+l4RPWsl74Oeqo7wu3/s8qR8+XzpvH8VwlVsSKHMiLAxSx+YmSFNoipkqK2BiUemSTgmhdiFjZJDauf2bxcfjqOZVoFREpTyG1AN2+5+XhhN94aDh08+9NCEEISO0DfdqH1+dtVG0iVnKRvxSgxbcITZsz4um8rNC055IPxuncrZC1NsipfGpbiV2Nsfbn1c2+vDZtzgfngxyoOEARm58oSaEtYqpckcB8EYN5ONCViJVFGqJVi0IRd/KfsPCRurTlR+fnTYhY8QExLHbix4o8sfH6vE2iTcTKGJvfgbeeMPwPadWTXy8vK1rteVOeEMrASdcs4vXgFU8ee0KN2mBHEVttiMCGLTEhB3YGB7SInWfv4tidr334JDZG6vfIRm7arv/NImK5WeyMzYLzxHkiB8iB3DigRWzX+xn9zYZACm0RkwlFbAxKPbJJQTSKWG5yuW1yzIecJAf6ywGK2PxESQptEVMlRWwMSj2ySUE0itj+bhYUApxbcoAcyI0DFLH5iZIU2iKmSorYGJR6ZJOCaBSx3ORy2+SYDzlJDvSXAxSx+YmSFNoipkqK2BiUemSTgmiliL0wDL7LFzEgB8gBcoAcSMsBitj8REkKbRFTJUVsDEo9sklBNIrYtAs2N0TiSw6QA+RAxQGK2PxESQptEVMlRWwMSj2ySUE0ithqceVGQyzIAXKAHEjLAYrY/ERJCm0RUyVFbAxKPbJJQbRSxL4yDL7b3WvrzpcP/9bqyZ367TJH8bX55RcN/x7rc8eOu45Df91xq+9Y7pR7p+/zsOz69Nq07Fy6jk8Rm58oSaEtYqqkiI1BqUc2KYg2rYg9+ujvH/vhAv0jBnIsP/P65b99SauI3bj+2cNfxlqe0NUbhT7uetGmv36J2JTcTS1ihef2x0fKn2ZenXjDiVxwj5e/Ivfcme282OtXtt//+5//qIk1x+Zs52TtwG8UY/Y84v8Oh28/fyzn7XteEfY+/seL66vn/MrYNblXbd2o37NNdW/3eT2iiM1PlKTQFjFVUsTGoNQjmxREm1bE6kVbNg5vY8MmELNBaX+LPtYbhT5edB6LiNf3+haBYdcxvDlJfe+IuLNiTESivY+Rh7aVsbPaWZEpWKJPx/AwlvysGPVy1mMhYm2+Oq6IUxsb4+zaJXMl4t/moWN2eexxo0v/y/RFEZufKEmhLWKqpIiNQalHNimIRhH7veHQzf3/OkGfN8VlbsjzxPbmBOLRiqh54rSNRUwt6ETMWcGGJ5iz2HlCVPKS/n1P/MmJp6E6Z2+sl7MeI/nL09qTn/LwCf/i79hf/XfFp0W6FojqOuyl/he++NETT3Z13K6OPW505XvZfihi8xMlKbRFTJUUsTEo9cgmBdFKEfuqMPju9K+N658zfDLz+2Pjt+68oNggDrz1N4t2/OO4Ms7ml188/D5qORZjYCttuYm+fMy3zVNy0GPkeP3Kp4zG2Ovap85BH9sY+tz6a4tXbtDj2CLWwStOLp7ulE+Lfj/U9Ut8G1fXgfysDXLzsEVe3jXPN2JIi6dVwB35wwY+m+Yftl5r67D51OFU1y8xrE/Ur+M3jffsDt38+2HWWjEOGEorOaE/Bjtbk8VJ59x0jJiloHtV2L7nwuLjdg+jSlC+PNpOYsu48isAZ4/uzaY4Ol8dE/02Z8ydzInYQMTeeNNzx9YZ2F2z8WwlYptrRsy2VubD3gsyRmLKU9ymdclijTw1x/R41I8+nJ9x5mNHX5UQTiEfyxWM0zVZm1n5pH16xxSx+YmSFNoipkqK2BiUemSTgmgpRazetOwC7y3S2ERl4ZMN7qSTHx5u/Z/VpmcXRIgpvSBLHPjBRqZ96A1R56CPbRyct8WzNdZt0hKr+miyEul1/W11SH5tuXn1YeMDXuInFneNuc0PfpvmH5ja1vqS63rO5LwOp7r+eefF5qixnKdW7QcxYv3F4ASfba34gtgR2zreyjUdN9ZO+9TCyM5rXZ6eHeYaPLRYIs+/+/qZY4Jc+vWbBXAfuOO8Lpem/jofyAXrUAwfdT3wi1olB9uHcz2PYifYiZjVuNv4YmdzxFg9Tvq6eFHE5idKUmiLmCopYmNQ6pFNCqKlFLF60W3adOy1mIUSi3bdpoPrOgfxqzeHumMvPvzVxcOGbq/rGPDr9dncYIu4TXXAxsaGjzrfkod9QqTHxB7bepCPzjkmljfOy93GQ55efxfzAv9odRwv55havbqkL8afZ1PnDznXtchVPwkEZroP47XYibXDWAgq/fS5ibN6nBZTiKv79JzIOJ2niDZ5Q/Xlvz0jPPhHfyjop5uID0xxjtjiR+erY8JGtzqu9Fu/yN3Gsfnrc/jQ95Ptw7n1i9ohoCUnzDn8YSzOUY/OAX1dtBSx+YmSFNoipkqK2BiUemSTgmiFiL3vD8JghtfGdb9XPsG56ZSx8Vt3vKL4qK5YFId+bd/ml15Sfsw3HLv/tF8ebRbFE7x/PGfMp81Pxo8EmJM7rusNCMfF04qbTgk6B31sY8k5/OmatJ2tD9e8/rpYXj/iInfd6jqasED+Rx75veGQmatpcUddepzkhFzkulez1wdfaGNqFVsPp7r+urhef51f5IdW23l+vD6M1a32g35vrO2TcTLfmgs41vMAn3Ut/BTCbOuC0f22ffcrw969PxH27fvJUR98rB34zfJrAf94Toi1k7HCFxtH1g/J24uDeBiL+tCunv24sdwsll6eMhY5AFP4sec6Po69GnANLTDFOmHXSMTBdYyz/boee03G2D6cox74lfh2PYUtckDOwFa30/AJMdtaitj8REkKbRFTJUVsDEo9sklBtFxELBY+2XywiNrFFzbSYuHFQqyv4bon2rSd3ij0sbbBcVs8uzFgnNdfF8vr9/rgG21bbmLX5icWd9QDMeD5ho2eG68P+aNty7HNzhtfF9fr98Yjpm61nefH69Pjcaz9oM8ba/u8cRgf24oPEcJ6HjG2SZxqIRdrh/ytwJJ4Wmwivm11TLkm51ZcWUysX/AbnLQ5oRYPD+Rj80C/bbWdHGuRjrjIA2Ntv67HXpMxtg/nFuNYEdu2ViLPLlqK2PxESQptEVMlRWwMSj2ySUG03EQsFklssnaxx/W6RTv2utjpjUIfw4du2+JhE7SbiOfX67P5IHZbXLGLsamLiThoxa7pqa5cP+qo7w+3qifl1jfy0XPn9SEmWthYDHEdrY3X1N/FvMA/Wh0fOU9bq/jSfuA7xh9s2nCCT9vGPAG1IlB8eFjG2DXl6423+WpRqPPQQtZiaf1KDk984kPD4eETZy8n4KLnUudi89DX9LH4kdwOXvGUsU+bdO527mz++hy56rxsH86t3xgRWzdW19TlMUVsfqIkhbaIqZIiNgalHtmkIFopYl8dBvdN/8JifeimU8fGb91x4fDrBE8d9du+zS+dMVzgTw1yfMwxPxoOb71iZF/nW+e5duDE4ROZKr6MKxfyVwe5Lk9116+s8ti++1XhhBMeFiRnm0P5NKLypWPJcVs8m7PEKj+WfeioLvGj4+oYdf1tdcTkBvyBDfKYFnf4AaaosRQUJXbWRmJ5fbp2HMfUWodTXf+884Lc0Oo4Xl1eH8bqFnZ6TtAHfMXe64vBScfCsTcO13SLmDo3GavnWexj7by4gqO8YdIxdA44rsRjtT6Ad+WnNedO3FMSD9fgR7de3nJdYsmaYXNCvPJJbZWH9olj2Iofzz6Gj5pj8LdvX7WOIE/wpK4eiWVxgC3GSt7e/EhcrJWorYuWIjY/UZJCW8RUSREbg1KPbFIQrRSxfxgG903/2rjuuWpTq8Zv3fHKoYj9rZFf27f5pZeOROz23X9QiD18jUDaarOs/Ho5Sg56nByvX1nFlTj2+4PlxnJh0DnoYy8O+tri2evlxjNeQ12sun6JLdfq6pglN8lrVtx1jeUTp6eO5lJysXNd14e8bdtWax1Odf3iX+csHJlmXrz88IZn3lp1XpLTNP7acLJ5e/Ot751K7JR8RS6wqbsnY+10rfCp71WbL873n/booRi8cLSeyDXE9Tg4LmLH7z89dvXsY8d86mvIEa1nixxtW4nCai3SNhYLy0fLZTvXB9765LE1FljYHCVO3bxa7G0MqRtrpc593mOK2PxESQptEVMlRWwMSj2ySUG0eUTsvIsZx09ursSEmJAD5ECfOUARm58oSaEtYqqkiI1BqUc2KYhGEcsNs88bJmsjv8mBvDhAEZufKEmhLWKqpIiNQalHNimIVorY14TBfXwRA3KAHCAHyIG0HKCIzU+UpNAWMVVSxMag1CObFESjiE27YHNDJL7kADlADlQcoIjNT5Sk0BYxVVLExqDUI5sURCtF7GvD4D6+iAE5QA6QA+RAWg5QxOYnSlJoi5gqKWJjUOqRTQqiUcSmXbC5IRJfcoAcIAcqDlDE5idKUmiLmCopYmNQ6pFNCqKVIvZ1YXAfX8SAHCAHyAFyIC0HKGLzEyUptEVMlRSxMSj1yCYF0eYRsZtfOiscccT/Ffbt+6mpRfDWHa8ORx99RFi/8mlTj+3DJrP/tMcMf4ghTf07Dd+dlm8fOJhzDfOsLdPWBe6tnv2rvVuLUq8z02It9hSx+YmSFNoipkqK2BiUemSTgmiliL0oDO6b7rV992vD3r0/ORSwk2M3v7RaCFz8oXBpyz+W/vwiFjaOUsROjp82n1zsvbrLPzb+8gmMZYOpuzZvPTsN352W77zzw/H193zb2tI1duDe6tn/aeIe7TrWMvylXGdmqYciNj9RkkJbxFRJERuDUo9sUhBtVhG7duDkWgEm10S0WoGq+7FxWJtZFsWYMSIujzzyX4RDN5UiOmbMLDZSo90MZRPRAh5+gYG1x/V5WvheFL7T5OrNRep8vZjT5LyTbXda7U1rS4p5APdS3Icp8p3WZ271UcTmJ0pSaIuYKiliY1DqkU0Kos0iYvGkxFv0N6471RWwWHhlQ73qA88IWFgXJbKWuZGjVg8v2bD3POKB4fDWH3T6FAgxF4Uv5jem9eYidb5ezJhc+2Czk2pvWltSzQW4592fqWIu2m+qdWaWOihi8xMlKbRFTJUUsTEo9cgmBdFKEXtxGNwX/9r80tnqqWY1bvvu14W9ex86FGWvbvS5dccfFt+JPfDWpxQtvnZQbiSVT1l8cW38KwmlDfy8/bLfKmLDthSGZQ6wwTVpy+/xlj42rnveWAw9VnBBvQeveFrxFYnqqWqVZxN+iG9r077LJ8S+P8TXNtXTqgsKnIE9YiBmG76Swzz1t421uCAvOxfo7yLf2Jiwa6oBeZ3x0mPH+AUO2LHrV/72iPcY28TNmBzEBhywHIy9P+rw9vLVfXVxJSdbu71vUL+ObW1QP1rE01zHtdhaYzi0/7T/OHbPS464dxDPa9tqRv52nur6JYb1qdcm5FA3PhZjjPdwRYxFtRSx+YmSFNoipkqK2BiUemSTgmiziFhZdMvvcpYCCosfFtSYzQC22o/4hTiAT9m49KZqxRv86HEQdHrDrFvErT+JKxucHSv/gU33Ib+YVmLo/PQY5K9r1NflGDbAFfXJxotxsLHnMfhqG4kXW38MdrYWOffmAvnrXOr4oG28fGNjil1bDcjLzh9EkOaEzdcbi7nT49pyAGYeB2Us5ryunia89Vjkq/tkbF3cpnmAL3BWcpPaTzrpZ8Kt/zi+bsg1vOrWFtSmc7O4IabOy84J/GgbjNO5Ih/d2nhyLfZeqcPR5gd+WCHrjffyrsMYtho/Xdsijyli8xMlKbRFTJUrEpgvYjAPB0oR+/owuC/+tXbgKWHPI44Kh7fkN7mrcVt3vKZ4qrp69q+N9WsbHMN2/cqnj2w3v3ROsWHqPtijFZvyu60vKMZ5fsR247r9Q+FY2tlxYlM31trac+QS08rY8i84PGxUpx63ffdFxRO+Nsxks9y3r/QhPo866ohw8sk/O+qTesuN+RW1uCAX4DtP/bFjda049vD0/M2aL+LoNjamjNG2yMvOj8Ub42Su2/DV3IR/jEHOOgf41ryHnW3tuLqxXlyvz/Pn2dk4Mk5jYfOsO69bWzx7m5uXl83Ds0GfnWMdEzazzpPNVXzX3fuebV1fLMZ1sXSNizrWInaevYtjd7724ZPYGKnfIxu5abv+l5OIrdso8NQLH0uWT8WaRazdvJo2AfjVrY7hjY1Z8JGDJ/gxPnZz0Zu7HIug1UJKXxffHpa2D/npunHcVn/sWNSpWw9Pm5tXQ9cxY/whLytwNPaoDbYQOvYcdogrdjgG7rptmwP4a7o/xEZiWAHs5eb1eWNjc9Z56TdYyNtrLY+tjfYpWGmMvPxtn1cPbOwc69ixNXv+xY/Xj7jgC+J5/d54sdd4NGEcu84gh5StFrFd72f0NxsCKbRFTCYUsTEo9cgmBdFKEfuGMLgv/rV24KnDJ7Hye9jVuO27Lx5+J1ae0o5f03ZyvHXHa4d/J1aexJY+bB/OSxFY+tv80rnDDfn0Yhxsyo2gykXsqqcUbwh2nMT0+pCLbmPt7BiJr3PX13EMzMoNtMof19Eih+tveH444YSHh0M3nT6G4f7THhu0Dw8X2wef4gtxvNaz8/q8sV6fN9bmJuNsnzfO8+/1eWO9PjsWOWhsxaYSsReOsIMtuGjP4VvigpsxOcg4zw7+Ncc8O68PY5GrxPD6vLFeH2rzWlkvIM5LoVVhZu3r1hbk1lQrbJpq8nLHODvHOjdvnL6O4zo7rx9xdb7ix+v3xiOmtG0Yx64z2meqY4rY/ERJCm0RUyVFbAxKPbJJQbRZRKy3gWPBk2uyYdmFGddlMb7qA89yF2q7eIutfGx+6z9Wm55dzO0YxLE52nFih7FNm5fYeWMRx2uBQfnxf70w1TnU4QX/2ITOe9necMwxDxm9SRDxeuyxPx4e/KM/XAhb2KM27df24XyW+mPHIh/denjCXxf56lg4borZVD/ysjaWXxIHtqjBniMXPRY21j9s0Xr5S1/b/SHjvbGIi1zFzutrGtuWM3JHK74g3tFnW42NvhZTq5e/7fNygE1TPTE2kq+HV10/7mkb1/Ph9Wl8cOzVJ9eQv55vjFl0SxGbnyhJoS1iqqSIjUGpRzYpiDaLiG1bUEVYeUIWTwtkIfUWVdtnz7Holx8h1j+JxUKuNwf40n2yeOucsJhLHDztlL62ejGuzp++bo+n8Q1cdQ2o1T7hQr160/L65qk/ZqytV86Rh64DfV3kGxtT7NpqQF46VxnniS3YogZ7LuMwX9pfWw4YV34loHpqbv1794eMhZ2OCVv9Rgv8Qv51caW/LWepU7/ZkjGCmb53pc++6u4H1IDckL/2Z23Et9cndeonuqhF42PzknPYIQfpi10r6uqymKAuPS8Sxxs/DcbeeK/GRfRRxOYnSlJoi5gqKWJjUOqRTQqilSL2jWFwX/xr++7Xh717fyqsnv3rteM2v3Re8dQFHyNKW244LyzGbN3xuuHXCf7LyIfXt3HdaaOPImX8wVmVJDIAACAASURBVCuePvw6wbgfHUeOvdy0r3KTKGv2ci03udcWucn1UkCUMeuwAi42F5yXQvOVo3rFj2yMOladb+mX/DWG0oeYuh7p97D0+sR2nvrbxop/72XnwsvN64vJ14snfTYm7JpqQA6WT+LLzids168sOY1zzD9a6yumpjoO6pq8+wM1ajtwxdZ94K2/NXFP1sVtyxm8RM3SWu4iN91inIeRrsGrFXgDf/Hb1IfcTn/hrwz/Q2r9eoYcLWbiQ9+/dXjV9YtfXZf4w/wgprTeeGCFOqStw3iadUbHTXFMEZufKEmhLWKqpIiNQalHNimIVorYN4XBfdO91g781nATf9XUY6eN1WS/dcdF4eijfyCsX/k7S82jKce6a8i93LCnw7/OJ/vzwRHzuxO5uUwe5bK2LBODLmODh7msMxSx+YmSFNoipkqK2BiUemSTgmizitjtu99QPI3dt++nlyoesUDvRKGw/7Rjsngj0OWGSV+ViN7J3FzmPOaytiwTgy5j57bOUMTmJ0pSaIuYKiliY1DqkU0KopUi9o/C4L7pX5tfOr/4ykApZKcfP0tMO2brjovVk9jl5GBzijmXjUU+/ivF987JO6Y22pTzuVO5mcP85bC25IDDvDnkuM5QxOYnSlJoi5gqKWJjUOqRTQqiFSL23j8KA76IATlADpAD5EBiDlDE5idKUmiLmCopYmNQ6pFNCqKVIvbNYXAvX8SAHCAHyAFyIC0HKGLzEyUptEVMlRSxMSj1yCYF0UoR+5YwuJcvYkAOkAPkADmQlgMUsfmJkhTaIqZKitgYlHpkk4JoFLFpF2xuiMSXHCAHyIGKAxSx+YmSFNoipkqK2BiUemSTgmiliL0kDO7la1oMtm5/Y/mfyq743c7xg+/Vs/cm872eIO9pMczBfvuuN4e9ex82+nvExIVrQQ687GsOFLH5iZIU2iKmSorYGJR6ZJOCaLtVxG5c98LyrwPMIeQgNFOIHvieRsRijP7j5/b4/vf/nvDlr1yYTHzvxI13/2m/EvbsOTocvu0Nnb9h2Il4eDl3cb94fvvWF3sP3vqNP5yLa5ubF5Q/OVzjx+Zxv/v97+HQTWeMxRQf8jPAdo2Qc3s/xPiLnUuK2PxESQptEVMlRWwMSj2ySUG0UsReGgb37u7X5uYrhr/KJQt9HBZbt79pKAafET1mWt+rZz9+Zt8b170oVJtXVVPKvGPry8Vu+663hL17fzqsX9H9HOZSY1/zmOWenQeLWeLV3YPz5AHOyhvSW7/xmon1Afe3XjvW1n57Yi2QekTEtnE/1l9sTRSx+YmSFNoipkqK2BiUemSTgmiliF0Lg3t392tz88Jw5JHfFw7d9NJoLLZu/6OhiH1m9JhYnOG73Ihmm5uN61483LjGa4Lv9Su6zzu2vlzsiMVs3Mph/ma5Z+fJe5Z4dfdgWx77T3vc8JOi8XsU/fK0tBSxr51Ye0Swlk9S3zS6tn3XJcWbNb2eSD2liB2PYXOL9WfH1Z1TxOYnSlJoi5gqKWJjUOqRTQqizSJiZVHTH0GVT/vGhRIW/IPrzygWSm0jC7sebxdcb/GD2PDGIZYWoJKjXuTtIq7HeL737dsz2gBsvpKDCECMO3Dg6YWYRW56o0At1odXs96gmnzBZ1tbt4F2mTdw7GqeF8ktcAJYS6vnpWnOUPc0nGuar6ZYuKY5Kb6Alebi2//4dwqxgpp0PYgPf3U2qE3PqRzjTR74c8ZLjxuLhXvc+vfeLFkbnSf8N91XsEEN0gIf75r2Dxx0CyzhD7XAxvOJeLDxWqnT+vLspE/zMSZfvb7BJ3x4ucn6ov3KPLeJ2Gn8IYe2liI2P1GSQlvEVEkRG4NSj2xSEK0UsQfC4N7419ra0wsRhzFyXi6orxv52dx8ZbFA7tnzr8Ph2+THFEr/nu3+044N1g720m7d/uZCJK6e/YSRn+27Lg0nnfRz4dZvvG7iulyTj4hlQyo30MoHziW/clM+s/BpzxFf8tV+pF82JskFeenaq02r9Cv2MTVbG/jWNSOn2NbLRcbCdxd5dznPwApzhHOdp/R1GRNY6Jh1cTVPMQ7zE8M58eu97NyLjY4l5zKXmofAAHkjn1IwldxDTvreiokF33qc9OF+8WIhZ8lRj/M42JYD/Ot59/zonIArxmJepF+vFbCzreQELOWal6MXz/qx517e1gY5C3al+PR5osd5+cl1zLnnx47BPEtc/dI4TONP59d0TBGbnyhJoS1iqqSIjUGpRzYpiDaLiLULlLe4e31YrPUiKb48Wx0Di60dp21k08fCLfZHHfUD4eSTf37UJ5uJ3hRtTHsuvpGv3hB1TFzXedlcPRvxoeN5Nuiri63zqDuu20Dhe968bR3Iw/NfZ4sxda3GCTZe36wxvXFen5f/tJxD/rqNjSVjRISISL3m2hdNvKmr86M5UGdj8bTntnb4sdy09xjGVU/7qntKcw92ViRrG8lJ+7Fj5Bx91g7XpmnbMIj1pfG3Y1CTCEiLpbW151aQ4vq8olP8Sj7Afl5/yEu3FLH5iZIU2iKmSorYGJR6ZJOCaKWIfWsY3DvdSzZw/e69fAJ01sjP5uarhk9uxvtkg9HjcGzH23x0vFKMXjSKJbZra/9l+ATozcWxCNqN614yFK4XjV0Xe5ufPYdNuSE+aywWctu6/S3D78RW122f+G2r2YsNP+XmNt3cID+p38MVvtevmC9vYFSKj27mWXzquRZ+2Bo8vGJwBi669bCI9TUt53RcHMfGgj2wKd+wVbzw6pAx8C9zjWPcc7rVGIudN6foQyzLTX2/IV/YgmsxOdgx4svr8/IUW2Ak9XlrBXKzrR4Xyzvrw57X3YNip7GwWFo/9ly459W2fdda8SmU5YeMrxtjfQsO5dP0N4cu/Fn/FLH5iZIU2iKmSorYGJR6ZJOCaKWIfVsY3Bv32rr9knD00T84XOTkD1i/LWxu/sFw01sd+Ynti40LO1mIsfmWi/jFYzlcf8NLwwkn/Gw4dNNqQK6yge4/7VfD6tn7avOry/eII+4fyg14Eh/tH/nZPs8vbNF6NvCjc4Z9bLtx3RlDAVjNi4yFb12X7fNy8uJ6dl6fN9b2IYdyA10MtxBTYxGbP+xiOWfrlXP4EL56122f8Fj4v2/fI8bsvTrgHxyOjeXZ6T7EstwUvul7UuLDFvhqP7Y2nNsxnh/pa/NVt1YgDlrEm4V38FHX1t2D2h7xvXnVdvq4EqTl+odr23cdCHv3PnyCH3JduKNrxBjbarsu/Fn/FLH5iZIU2iKmSorYGJR6ZJOCaNOKWNk45KP6W79RLZ7eZuL1YbG2m59d5GLOxT82Z7HHYnveeU8KxxzzE+HwbaUIkgX52GMfGh78ow8ohC182/zsudi15Yvr2KD1GPTBpqlmW4v20zQOtdS1dRsockKOOh76YNMWfxbc6vIVX4vmFupE3RqLttqn5ZxXN+K3xZKxEC43Hjqr4L4eAz+6DhmjhSVs9DgvJ29OdV+dHx0LfmGLvHDelANsMEZ8eX06J8TzWrHTa4W1keuz8s76sud196C1k3PwScRsm9gEF/Q6DJ/eNfhuwl3noN8kzeMPOemWIjY/UZJCW8RUSREbg1KPbFIQrRSxbw+De+NeW7dfWjyJXb/i2cWY7bveWrzzLz+OlKdJpZ/xDabyvbb2O8WTJIwXe/GBp6cYr1vxVQpT+SWh0tfGdS9VTxnLPjylKhfqKg/ZwMonRK8fjbf5oS49VmJJvrY2iS12GKNr8fpiaq6efpQ1YozOR+LKBqfjAQ+v9TASOy9Hrw856Hh2riyOyCNmLGzR2hwWwS0bE7nE5j8N5+DbtjGx7FxaLnh1yNwI9zWHYmJ5c6r7EEv7lZokJ3ufwVZzqC0Hb0xTn85D8oxZK/QcWN91vIOdjqf9eMd23jwbrw+80rhpO8HQYo3rXp5ib9cxiWFrkT5rF+sP8dtaitj8REkKbRFTJUVsDEo9sklBtGlFrCxQ2EBFUMmCd3D92errBJV4LL9DVwlbLG7YXGU8XuWTh0qkwlZabCqwRdzyI9gyHvKyCzDGlk8WKlu9KSOWrkvb637kIJsLFne90Xh94r+tZoyD/9Nf+OvFmwW9ySAPHQ+5e63YWzzEDrG0H68vJm8PR+TSVjPsdIsaMcepuVVXd0ztYuNhXMc5Xac9bsIKmGguyHgtdFAH+IPWjpFxTbFw3d67ep4Ry/qWPK2wgq3mGmKIwEae0mIN8MZ4feIH2Mh4uWeBvfbr3QMyVr+0n7o1zYunfXjH4jcmvjfW68Oc6/rk2OILvGDn5aBrhp2dP+QQ4w+2bS1FbH6iJIW2iKmSIjYGpR7ZpCBaKWL/OAzu5YsYkAM7lQNbt68NPyF5Du9lrmVZc4AiNj9RkkJbxFRJERuDUo9sUhCtFLGXhcG9fBEDcmCncmDr9gNKxHIed+o87oa8KWLzEyUptEVMlRSxMSj1yCYF0ShiueHvho2z7zVSxPI+3ikcp4jNT5Sk0BYxVVLExqDUI5sURCtF7OVhcC9fxIAcIAfIAXIgLQcoYvMTJSm0RUyVFLExKPXIJgXRChE7uDwM+CIG5AA5QA6QA4k5QBGbnyhJoS1iqqSIjUGpRzYpiFaK2INhMOCLGJAD5AA5QA6k5QBFbH6iJIW2iKmSIjYGpR7ZpCBaKWLXw2DAFzEgB8gBcoAcSMsBitj8REkKbRFTJUVsDEo9sklBtFxE7P79vxb27fuZpYvpra23l//Le/25S8+laTPd3r4s7N37iNHf2VzPPF+vllmwzoUnXj2p+zY3X1f+PeZD52XNzXlwmIUT88Tj2LSC1cOXIjY/UZJCW8RUuSKB+SIG83CgFLFXhMFg+tfm5kXFLwLhD2VLW/xR7UMvm9rf/v2/Hvbt+9mpx82Sd9OYra0/HorY3196Lk15Cl579vybcPjw27POs6mGGKw3Ns4uf6VsvZyPNp5Y+6b4Ka6ljC/325FHfn84NMP9laLWFD5jOJEiLn1Ov/7PipkWsfPsXRy787UPn8TGSP0e2chN2/W/WUXs2tozx8QFFrS6flyva9vESd042z/NRu/Z7oRNdHv78uIp7PpQ2FkMdsr5LFhPyxNvjheJT5fxu/S1SAymiTULJ6bxT9vFidU6rLWI7Xo/o7/ZEEihLWIyoYiNQalHNimIVorYK8NgEP/a2DhnKGBPccdtbl4crrrqhe61ujiVOInPw/MlscunVee3xvdst7YuC0cf/UNhfd2vzYu56L6dkGMMJrPUMS1PvDmOya0rmy7jd+mrq/q69jMLJ7rOgf7mW4Pb8KOIzU+UpNAWMVVSxMag1CObFEQrRew7wmAQ99reXi+eAu7Z82/D4cN/HD2uzf/+/ccVXyeQFl9PKH7H+9ZLihhbW5crcVnmavtwjvHSll9RmKytzhb9Bw48q4gHX6urJ0zUurFx7ijXuljwBz/SWuysH3tdYwf86/w1+apE0MtHtaytPav8vfshzvDv1avzkOOmWLhm8Zd4kru8SQA2TVjbnNt4ou3hX2Nl87E1IT9vDPyVb3B8Dk4THxghVtO8S57aN/K2Pmx93phlznld3tNwQnzYeSq/xlTxGnPVxK26XB7ykH81fCNc+bM4t80VfLOdXHspYvMTJSm0RUyVFLExKPXIJgXRphWx2BxiRM40CzjEKwQCxBQ2C8TFdfHt9Xmbdl0eni18agEtG5jdJG0f8tUiAr40VmJ30kmPDLcORaMVFJKrYIG6vdzhV2Mhdm2+MA75IGcICPEBG+vb5tEWS+yx8cOX4H3EEfcfPuWuYjVhbeeojSfW3p7bOvR5XU2YUw8b22fj2XPEq4vVNO/W1ywcXPacS/1Su+ac9Ektwkvg2cQJ+ACvcK7HTOOn7d6eZa4kJ758DChi8xMlKbRFTJUUsTEo9cgmBdFKEfvOMBjEvba2DhZPKFdXfyN6TIzv8gnbvx/zqTdpxF1fP3Vk4/Vtbr5ePUVprsmzrfNZiq8y9vb2FWHv3p8JFgPrT871OIuDF0tsrJ+YcbG+NM4S56ijfjCcfPIvhn37SuwF81IMXDrCOSZ+Xd4iAEQkXHPNORO88XK2mFksdP7IS/PE2ttzjLGtl4vY6Hieje2z8ey5+LRjkItni2vS6uuxHJRxugbxkcOc23sHdXrYSM5N95HFRs5j/MDG5qL5BBu97njxkD/b5jVX8KGIzU+UpNAWMVVSxMag1CObFETLWcTqzcvbTLw+vdG3bSierefT9tlzxPH6RUDg42IrDlEfruu2ejo0uSl4cWJ9iagsn/ZdVjwRE/Gqhau+jrpsGxsL44ABhDL6vTpsn50jLcjgB/mI0LD29hxjbFtnp+PZ3MSH7bN+7LmMkT4RZXq+cdw079qXjYt6vH49p3K8zDlH7VYUNuXv1ST24JWHnTfG9mk8EV9aLWKRL2LotmmutD8ej69hFLH5iZIU2iKmSorYGJR6ZJOCaKWI/a9hMIh7bW9fWTyFLIWQ/Fxt3Lg2u/379w6fBlb+NjffMHwC87ywtbU+/E7s80YxvT4ZU/7HrgtGdnWxPVvPp+2z5/Bf1y/X19aePRItpZhdC158+GpqvTixvmB3/fXnhxNO+IVw6NAFY9jKPJRPpqp5sLnAh4y117xz8SmbfyliK79eHbbPxmrjibW3515+0ldnp+PZ3GSc7bN+7HlTrLrc0K992biw8foxLoc5l1zKp6rVfYzcpfXyt30412sQagQnYbO+XsWxfXYM8tjYOG/49aELankBW7bV/RyLBUVsfqIkhbaIqZIiNgalHtmkIFopYt8VBoP418bGywpRUm4Qk+M2N98YrrrqxVP5rMRC5U/ilILvQNjaukKJ2NLG65PYpYh9RWt8z9bzafu2t98x/DrBb47F8PxZXMUGmzj8rq6O+7Fj7DnGafzR1+YLuZ933pPDMcf8VDh8WH5i8l1B8D/22J8OD37wvwyHDjVjFxtL/K6tPaeYwxtvvKCoW+cHP14d6LOYtvHE2ttziyXO9bygT1odb5Z8vfjwo7HQMeuOtS/Mo/WhbeAHtjnNuc0buQIbzL/02z6pUb4SceutB0b3n63bjqnzg3sR8aWVdad8yvqKUey6fPU4HldrdxMWFLH5iZIU2iKmSorYGJR6ZJOCaKWIfXcYDKZ7yeYuT9fW1/ePjRXRovu3t98Z9u792aEYfeuYrY5ZioWfG13f2rpy+B1KEXjvDvCzb19l4+Vgx+kY9tizRZ+uy+vb2Dh/uNFdWJvf5uabwjHHPCwcPiy/ilPia8dZvFBr+ZS09I2xaL185FqsL+BWbsxlXpKrbOjlm4b6eUIOMbFsrXKuueHVYfskr/JNSYlFG0+sPfzpWlGDbcX3nj0PGs0XMAHnYjgYGz8GP5uf9W3x9fKDj1zmXPKR2kuRWPFbapE5wnw13X/WBnVrn9ZG4np9ds49X7PMFXBnO7mvUMTmJ0pSaIuYKiliY1DqkU0KopUi9k/CYDD9a3PzjwrhI8IEr3IjeeXI39bWO4Zi9MRRnxdr//7Hj3zA1+rq+Bgb78CB5w6fzp425ntj4+UjX6UAqa/N2iLf9fXKp9cnNeixkrONtb39XwsBj3qktfiIH1uX2JViSv4w+WTudfnE+pK8bR7I1dbgxUdfU97Axs4h5lnw9eqwfRKjFLElpzBeY6pjWHvJFbnImKb6gAF8yxw84xmPGxtja7YcnCa+9dU2722+m+rLZc7BHT0nwDuWE3ZOhcsHD+4f44nlkYzx+uyci69XveppE/fHtHOFOtlOrl8UsfmJkhTaIqZKitgYlHpkk4Jo84jYmAXa2zxjxtFmcvEnJovHRERzk/DlnCx+TlJjLmtW+YnE29w3kanj990/RWx+oiSFtoipkiI2BqUe2aQgWili3xMGgzSvtbXnDkVAGv+p8qZfzpdwoBKxxGM33BPb2+8qPj0p37hwzlPMOUVsfqIkhbaIqZIiNgalHtmkIFohYu95bxgkeG3f+e6w97h/H9bXn5/Ef4qc6TMNF3Yqrvv3PyHse8LPk78J1occOLFx7QWjrx7haw2rq0/mfCecb4rY/ERJCm0RUyVFbAxKPbJJQbSUIjaHTYo5UJSSA+QAOZAPByhi8xMlKbRFTJUUsTEo9cgmBdFKEfu+MLiHL2JADpAD5AA5kJYDFLH5iZIU2iKmSorYGJR6ZJOCaBSxaRdsbojElxwgB8iBigMUsfmJkhTaIqZKitgYlHpkk4JopYi9Kgzu4YsYkAPkADlADqTlAEVsfqIkhbaIqZIiNgalHtmkIFopYt8fBvfk+dq+873Ffw7Df7pYXz89eH255s+80vJq67Z3h6OP+uGwunpSFhxGPsLTFHO/f/++sO8JvzCX780vXhqOPPKIcOjGPwyp8xUMeL+mvQdm5Znmwaw+ZhlHEZufKEmhLWKqXJHAfBGDeTiQu4iVTXvPnv8nHP7Ou0Ybt+3buPbC4n8YxwiHaWxnWaA5ZrEbNkQYRWw87lq8AL+Ye2dWbtv7dVY/OYzr0/qhebBIbLWInWfv4tidr334JDZG6vfIRm7arv+VIvYDYXBPfq/tO98X9h73c2F9/YWj/Ly+HHLf/OLa6OlWDvnslhy2bvuT4ZPYk0cc8WpPMT+eT+SjOevlM2vf/v1PHD6Jnf1+1XmnzjfX+3VW/HMcp+dzmvxmHTdNDM9Wi9iu9zP6mw2BFNoiJhOK2BiUemSTgmg5i1hvg/X6vIVy0X3L2hAWXWdu8cCH1VWK2Ni50VwFfqlEd2r/sTX32U7P5zR1zjpumhieLUVsfqIkhbaIqZIiNgalHtmkIFopYj8YBvdM99q49lUTfyS83AhLP/Z6+T2+yRjWrvzqwJ+E7TuvKp7C4ruw0j70of8mPPrRPzUWV+w/8+k3Dp+CvmZUh/Ur4yW/zS8eaLVFDoLJ1m3vKZ70HVh7XtEin1I0lfXABtekRb3eNe1/GtzraoIPex054DpyOeOME8ewld+LP3Tja4Idr+cTY9/+9uePjbW1rF166tj8wDdykBZzcPDgC8MRR/zz8nfqbyznzuZg/ct4eRqpsZZjPR86lhwjdz1GY2Nj6mvWF87rfKK/iS/wYeN6tcIWLZ7Eagzuf///M9z6D+sF9xHfmzv0AX+Zc89e33sYg/i2tTVo7LQfYN9Wo/Wn7XFNx5B8wDnJFfW08VTGwV9dbsBJ81SOy+8TV9jNcj8Bx6YcUEsTl2CDGqQFPsAF1+y9iPqEB8hnES1FbH6iJIW2iKmSIjYGpR7ZpCDaLCIWi6Pe4GQxhpCQY71gYjPD4oqFUvzoDVj6ZXPGxoUFWsfx+uxi3JSfZxuTg7ax9Une1q/0IVfgIn2CxUlP/uWR6JC+mFdTTTLe5uRhjnz03MhYCCLg7vnzxiKGHid56vny5liwEvGqx0lMz1bzwbNBXhpjsbMvb37EJgY36wvnnk/k08aXmFoRR7eYK2Bs5wDxcV3G2j6dt72Gczs3Ogccx2AHfzofjLdtDCYSU0QZ/IFLOEc8zXGLkcSNiQXfGgsPOx1LfGOO9DiLVUwOqKWNSzonjanUCFy8eHXjtI8UxxSx+YmSFNoipkqK2BiUemSTgmiliP3TMLgn7rV123uH30F8ijtm+873F0/qVlfHr29+8a3DJxivLcbBz/r6i8b8aDvPxuvzxtj4qM+znTYH8SEiTI/TfnUsa4dr07Soua6maTG3fjau/YPhm4krRnNha0QOumapQcaWm3g5r7auOlzKp1nVmDr/erxngz5bU0wesbhZXzjXuaEP+WicYrH0/MEvWhFI5ZvB6n7Vc+DFt306jr6GY+sfsXUbix18ajy0HxzX2elcYbt26fMKzl3z0VdOrEV1ftowEt82lj23NohluTfP/aRjwr/GTq7bNUWPAUZea+3suTcmRR9FbH6iJIW2iKmSIjYGpR7ZpCBaKWI/FAb3xL02v/i24SL6YnfM1m3vKzaW9fXx67YffvBRl25LUfS6YMdIjl6f+CpF0esC/Nr4qM+z1bFxPE8OiCXt/v1PGn30XT5RudLFTY+xx201eZiID9uP83LTrea72nSr3GALHO05cvRy0zULnsBSj8F86T7ZnIG/bjFezx3GIS9bE66jbRqLGmELn7Yf19HG+rT+gJmuEceoFTFsK9jue8J/GOMQ/Em+NpaMt306b1w7sLa/uG+tbxsf5xhnMbL99hzjbYsagINuPUzAMZtvXTz4l3xxrGPgWMfSOCFf3YdYlnsx91NMDvCvMfb6dE7IEy1wiq0P41K2FLH5iZIU2iKmSorYGJR6ZJOCaMsUsVbI2IXTW7C9Pr2IY3PQC7/2a21T5KDj4VieHmEjmVbMttXkYSJxbT/OZ9l0MdbiqnODTfkxqvxW+4cKwWAx1nMAfLw+XEPr2SCmrQlj0DaNtTXBp+2HL7SxPq0/bxx8trWpRCy4qUVcUy62JtjafnsOO9tOiwnE2awi1nLS5iPnXk66D7VZ7sWK2LYc4F/z0OvTOaEO2DXdi944jE/ZUsTmJ0pSaIuYKiliY1DqkU0KopUi9uowuCfutXXbVcOP8J7qjtm+84Nh73E/H1ZXx6+PL5hXhzY/kg9sykW8zM/r075x3cZHfdPYzpoDYnmtxC8/DpQn1XlgvnHtq4dfJ3jHKCfgCOztOXLXY6W2ox74w+HWf6j8aLwxxuuD/7p5k7EedjHjMLYSDSXusVxF3rZtqgO4yRjkiD6cN9VqY+G8ErEVd/QcwDdiefF13tZe/FdCtoqB+GhjsbP+Md62sIvBZO3S/QVfb/zY64p7SY+BH12/xPIw0uNsPnKuccJ13YdY1o+OhXGwRV44t2NhLy1sMKauT+eE8dLXdi964zA+ZUsRm58oSaEtYqqkiI1BqUc2KYg2rYiVxU02EbvRycKNBVmO9XVseOVTk2pjFD/yBEgv0mJ7wvG/FA7dKF8nKAWzvu712cW4KT/PtosckBcwEJwkZwMZSAAAIABJREFU1jHH7AmHvyO/G17WXYdN+XS2En+wR9tUk9jU+dWYezlirI0PW2Bvz2Wc1CeCHDVbG8y75gLGWUEp/W18EBsRWXv2PHiEKcYgB7HxXsjN2sXg5vmTPs8n+oCbttN9yFv3ae7XxbQiFvFQFzDX8y5jNMf1PYDxOo9YIRuDnee/rrYYTGxMOde1efEsTyV+TCyNE3LWfYgF7GEjObXdTzE5wL+em6Y+nYe1Ay/0vahrQe6LaCli8xMlKbRFTJUUsTEo9cgmBdEKEXv3n4XBlK+Na/5w9PG4bCLFRnLwJSM/9nqxqToxNr/w9kIIwYe0hUj59lVh6/D7w9FH/UhYV369PvFx5AOOCIc+dlFtfOTn2XaRg+Cna5Z6t+/40+KptK6t2ERUnqhn9aynjnKvmwvtHz41Nva6xbwulowrNt2vv3OUA2zhH+eIi9bmrXOQWg9e/uKJufHmADU3zYXY2DxOf8FvFhyxecCfbnVuGhvdL3Xpa3q8d6zHyjjkB9xkjNcn/W21evH2P+/4ifvO1m79Hrj0tLH7SONflxvitGGh6/ewq/Pv1daGCWLZepGrYI544CdaO6YtFq7bdcXDzvqWPNvuJ9Rv50rynXb9E1/ARs+B7vPuRV0L8llESxGbnyhJoS1iqqSIjUGpRzYpiFaK2A+Hwd18LQODjWteUz61/tjFWc/B1uEPDIXQGVnnuYw5ZMx81g7yNJ+5qLsvKGLzEyUptEVMlRSxMSj1yCYF0Shil7vor11yWtj3hEdmLwwpDpbLkzpBwP7xeSFPx/HIkR8UsfmJkhTaIqZKitgYlHpkk4JopYj9SBjczdeiMdi+4+qw97hfCOsH5elm3vhvHf6gehKbd665Y8n80vGHPE2HbVe8pYjNT5Sk0BYxVVLExqDUI5sURKOIzX/R72rzoB/ONTlADiybAxSx+YmSFNoipkqK2BiUemSTgmiliP3zMLibL2JADpAD5AA5kJYDFLH5iZIU2iKmSorYGJR6ZJOCaKWI/YswuJsvYkAOkAPkADmQlgMUsfmJkhTaIqZKitgYlHpkk4JoFLFpF2xuiMSXHCAHyIGKAxSx+YmSFNoipkqK2BiUemSTgmiliP3LMLh79tfW4auHf6vzaXP5mScHjp19/mbBDnO+fvDMXT3nm19YD0c+4AfCoY+9cVfjMAuHOGax92wueFPE5idKUmiLmCopYmNQ6pFNCqJRxE5uJBBo+EPpXlv+MfP3zCVcRAAVPw35dd+PzaP8oYRxsSQ+jjjieyf+AH75R9N/NBz+9odGOcb4i93o4IsidneIWMw37gWPix53PH7W3Tue7bz8gs/YfL0abO3AQLd1NXn+6vok1526HtTV5PVTxOYnSlJoi5gqKWJjUOqRTQqilSL2o2Fw9+yvrcN/pp7ExvvZ/MIVw6dYb5or/jS5zxJz45qLhz9I0F2e23f8edh73H8Y/rKPiNhx3DxM1y45fSIPqUdE7PrBsyZ8aJ+x/vQYHHuYwV9bXPhoaj3/TfY5Xcst9xT5YK5Xz5JPWkqeelzENd2KnR4n1/Y/7zcmeCz3mIhCzSf02fHaf9uxxH/IQ44u7hHPzyx47fb1oA3ztusUsfmJkhTaIqZKitgYlHpkk4JopYi9Jgzunv21dfjDQxH721P5qTaQP5pq3Dy5zhKz2rQm80Tt5ZOY90bVsf95vzl6clo3bu2SF4Y9e+RJqvwkcDk323f8RSF8V8+qcJZ6KhFbP4ex/hBLtx5mqLsUHfVxtZ+6Y89/nW1u/bnlniKfebjjzRe4o3ks94Tlu4yV/n1P+KXRPeD5q+vT90ud/1nw2u3rQR3esf0UsfmJkhTaIqZKitgYlHpkk4Jos4pYLcTwsZrelGTjQ7+05cd5lQjERqZtsFm1ja1bLNvGNcWs8yn9TZsWxiG2rRPXvVbGeCIWmy/w0GPtZiybcJuIncafjiXHdZih/8ClLyrewGAeNQdkPHDBdYsP/OC6tF7dyKvNn9hBmBy8/KwCGx1T5lLH8oQTYunWjhMfIuAR69DHKm5bW68er26bi/Vjr+v85NjzqWNbf/qa9YXzebgDH7ZFnporwmt7LzTFtj69cz03UrvmgdgjD82HGEw8XzY+eGpjWjt9vhPWA53vrMcUsfmJkhTaIqZKitgYlHpkk4JopYi9Ngzujn+tXfKi4YbzvmLc1uGPqCexpR+xWT+4OvJrx0i8zS9cOfw6wZtHdtIfM9bLN2ZcXUzPH/o2rnn9cAMczxPXdSu22BR1/doGxx4mcm37jr8Me4975FDMjc+LHSP1eN+J1bGn8YfcdOthhjkvhUfJAw+nruck1p9gUoo++RnOipM6X+mv3hRUdrBHKzFL0VrxWWoVEWaxsRh42AO7UsSVuYndSU8+Jtz69RJLO8+xudp8UENMXrDVrZc/rns54lpTK+NKcVfdT4ij5yxmbtriwJ+HuYytw6vJr8WyzbZv60FTvTHXKGLzEyUptEVMlRSxMSj1yCYF0aYVsdgMtEhCn96U7WLmbRZenx0n57F2dqw3zuuz4+z5NJsWxkociEuNFa5LWycCsKGXT4WaRaz2h2Pxq0XXvP48zDDnujbUrPuQE1rPl9cH+7bWG+v1efmKb89Wx8S4Om7r8cDZ2mobxCyfnlei2ItpcbR+9BgcezaxecGHbjF2Vi5qX3Is+Untnj8RrRB8aC2W1l/dOfLW4z1R7OFV5xP9u309AA6zthSx+YmSFNoipkqK2BiUemSTgmiliN0Ig7vjXptfeId6elqO2Tr85+Hoox4QVs96+pif/c87cWxTut/9/o9w6GPy9KUc5/nCtbaxsLNt27immNYXzjeueUOwueNaXStxKhF79qhmbV+J2KvGrm/f8VH1JHZ8XurGaL9yLDjs2fPvwuFvfzjM68/DDHO+frCqzetDLhAl0losPf+2Hn0+yxzr+dC5ePnoWBin67TXyz+x9eZQV7/Xr2sonw5XHEBMm2dbrpKXh6UXX2zr+nV983JH+0Jd4KW+pvmKfrnvpOZS8I7fB7Cpaz0cYvvqfKJ/t68HwGHWliI2P1GSQlvEVLkigfkiBvNwIIWIxeaoN6vYDSR2rF1AY8d5eVhf9nyaTQsbr2y+dcIH/usEaZNw8DZ7+NOttpvXn4cZ8NY12j6cz8IDXQuO5/Hn1QC/Ta2MK5+aVmJd22u/yE9jIrZ1/XINT82FLxCz2qeOFXPsja2LX9ev48zLHfgCjpoLuIY87JtguV53j2BsXatxFWz1S4tiD686n+jf7esBcJi11SJ2nr2LY3e+9uGT2Bip3yMbuWm7/leI2LuuC4PI1+Yt7yw39cvPHo3Z+s5fVE9i77ouiM1RD/yRcOvX3z+ykb7iidUNb2ntixlr850npvVlzzeueWP59FDlbm3WLnlxsVEWTxkb7PQ4GVMKlwonXPeubd9+TfGEttjsG+YLdvue8KgR1vP48+YOc77u8AB9Xc/JPP6Qbxt2wB9t2ziNDXC3MbQN/NpWbAqxfPnZoS2mHavPvVjz5CW+5+GOjJf7R0Sk5qPOualeL7Ye6x1P48/Dy/Op+3b7eqCxmOVYi9iu9zP6mw2BFNoiJhOK2BiUemSTgmjTilhZtEZP+b71kUIkyUYjmxQ2b2wiEDPYRK3Agx3GiW/0tY21i2fsONjpmNaXPW/atOCvToxaX/q8aYOGX52n2FsMZS60jfiXPmsX60/nh2NvLPowT2Jr++z5NDxAbN3G+qsTJuCpzllyOuH4x4RDDW88PNyFE4K7jWW5gpq1gJMxxzz2Z8Lh4f0jNdpxs+YKjCwnrH8vL421PvZ81mEi64DG16tD+8axZyc4ibDXtUgdNgZ8oLW1ol9a+ESOXm3a3jtu8g9/fV4PPEym6aOIzU+UpNAWMVVSxMag1CObFESbRcRioZbNRF6nv+DksSexsqBhs5HrIqgOXnb2xJNYa4eNPnasXThjx2k7xLS+9LnYW1Gor097LCIT2OkWGyv8WZy9HHQt8FW3gcb4Q2zb6jiCGXzpnL0+PW5aHtgc5DzGnxWW2g9EDLCStviIWwlKbY9jHRdjpXYvlrW1HIOAhB9pvbntIlcduy0v1Oq1mFvk7OUL/+CEVyfGS2t5ivHaBr6QE2xsP65La99k62vIqQ4X3a/H6WPJwatf20xzvBPXg2nqs7YUsfmJkhTaIqZKitgYlHpkk4JopYi9Pgzu4osYkAPkADlADqTlAEVsfqIkhbaIqZIiNgalHtmkIFopYm8Ig7v4IgbkADlADpADaTlAEZufKEmhLWKqpIiNQalHNimIRhGbdsHmhkh8yQFygByoOEARm58oSaEtYqqkiI1BqUc2KYhWitiPhcFdfBEDcoAcIAfIgbQcoIjNT5Sk0BYxVVLExqDUI5sURKOITbtgc0MkvuQAOUAOVBygiM1PlKTQFjFVUsTGoNQjmxREK0XsjWFwF1/EgBwgB8gBciAtByhi8xMlKbRFTJUUsTEo9cgmBdEoYtMu2NwQiS85QA6QAxUHKGLzEyUptEVMlRSxMSj1yCYF0UoReygM7pr+tXnLnxR/jHzfE355pvGzxFzkmP3PO3n4h9Vf1ml9W9/ZKP6u7vrl3fpdJDZ9qGGReMXEkvvpyAf8YDh0w4FO+RYTuwubGE7s9BrbcFp2fZiD1bP+32w5RBGbnyhJoS1iqqSIjUGpRzYpiDariN2+/Yaw97hfCqkFLOLoP4Cuj3V8iGp9Hcd79jwkHP7WNWMLOxZ82Nz//v8s3Pr1q8dsRMh6/W2bWdN1xKWInf6NUxOus1zbuObNSd6ozJLLsgXQLDnrMTG83uk16nq942XXhzmgiO3Rxr+AUlJoi5i0KWJjUOqRTQqizSpi1y55aefiztsU6vqwWGshCBGr++rGx4oXxJl1U/A2NfiMybMu/2X396GGZWNo43tcsTY5n8dwYqfX2Ib/LPXNMqYuD8zBrOtVnd8u+/kkNj9RkkJbxFRJERuDUo9sUhCtFLE3hcFd8a/t2z9WPIUtF8r4cdPEaLNdu+TMUD5dvXaU++Yt7ym+3lCKw/q8Yu2QgxcL19paiVV+RPzWUZ5b37lOfZ2gPs8238u83ocalomfF9vjimeXa18MJ3Z6jW3Yz1LfLGPq8sAcLHNtrssN/RSx+YmSFNoipkqK2BiUemSTgmiliL05DO6Kf23e8t6hMHvb2Lit71wfjj7qyHDg0rOKFh/Tr571u2N208TybBFn/fLzx/xKXkcc8b3B9lsflSjdGBtv7XBeVy+u17XIEzhIu+8Jjw7oj8Fp45pLio+74aMU7u15N43DNclF5y64SByNH2wRH9dja4BPjC9/c77iTawfydPm8pCH/OsJHlqbNrzs3CIf5Cttmw8vN4st/DbNuc5F6rBYSZw2jmsfmFuZg/IrMR8u5nv79huHb0LH78s27GLnUvMHscAbnd+sNaIumy9i1F23cwI85U3mwcteVqwdwBx52n4ZY+NqfmDcoRtKjsdipvmm82yKhTrx3X3to+s1F7G6aCli8xMlKbRFTJUUsTEo9cgmBdFmEbGysOpNEQsbNmp9TWyxMcBOFnoRm3rRtcdNi7BsDHrjaPPrbarHPu4XxoS2xK+Libq0H8Rsa+2mJvbw14aTFR8yVjYsr3adR8w4bI6oCXOCc/GHDVj3yTjBaZoa9Hib2zR+LI8st6zvGLz0/CAXzQMRYSc9+dhw69dLAahxxrHNA8JNixH4bppznQt86FwwJ03zjzgYBz/Cb8wDbHAOvzo36bNcE3ybxli/ONf5dlEj8tU1SR+4iWPNF+Cg50TswHudY1N/G8d0feKnDTPEKj+tqd7cYWzMnGgbYI75Fz+5vShi8xMlKbRFTJUUsTEo9cgmBdFmEbGyMNtFXxZKLKB6o8MmofvmWVS9GE3+JFe92WEz0wu/jEeedpOTaxgzy8ZgNzXx59WA+MDJs0Ge3oYn1+p8140TbGSjv+Yv31wIel0f4us+xKiLY2vQ9ji2eCAO6hY76wc2NhctHmGj/cBXE146HxsXOTe1ddzQfmW8l5+NZ8fI/GiewofFweYn4hM8Fp9HPfAB4eSTfnXUJ7h5fufBztaIXJEHcuyiRviuwyF2TiQnm09dnrY+2Fkfdf5g7133+lBj05x4NuirwwZ5LLOliM1PlKTQFjFVUsTGoNQjmxREK0XsfwuDu+Jfa5ecNRSx142N2/rODYUYWr/85aN+r2+aWNZ2//Oe4sa2dvpcj9m+/VDYe9yjhhv6eM1SV7W5V9cwptwYqn4do+5485b3qY+8y7EeJrZPxtU9ra6eME3mMu04wUZEfik2Kn/wo+dS12jzlWten/QjhsSRl87fG2P7PAzF78Y1l458IV/E0K2Op2uQY+tb5+pxwY63ueK67bfnYmf7bC64Dt5JvTE56ftTjmVu9Vh9HRjEck3jUzeXBy5dLdYByynEqt5UVBhMUyPmehpuenh7+UhfXT/iam7hGByzcyi+mjDrOpblDOrJqaWIzU+UpNAWMVVSxMag1CObFERbhoht2gywKWBT04svxtVtXtpWH8smUj45vi5AkHobrBZFejzGeDlpO+/Y29Sw0eg6bJ83zvNv+6Ydhw3W4tGGtc1X8rB9OAf2YmPzg80sWOj5sn4tLnXndeNE6IGLTcLRy78Ji2nrBHe/+U/XFG++YjiImq7fWAsnHP/YIN/P1HmKT+0H9uX3OKs3MhozjI+ZS+AGYaf9eLGmrVF8lN99r94s6xjIVWPtzYn0efnU9dfZ6tjaBnk0YdZVLOSAmHp+cS2XliI2P1GSQlvEVEkRG4NSj2xSEG0WEauf6uiFEQuo3jy8Pj1mmmNsdoe/Nf4EuMkHBKgWaSJQPGFS1z9PDXpTQ56eP9uH82k3o2nGod4bb3hbIQp0rDY/uN4011K7fJRdfp/Uf8IV68cTLVrEwo+uAXg3td78aHu57sWGDfhl41q/yK8NL/2UUmIg/nnnPGviiT5ysC1ykjHHPPbnAu4XuX/ku+APfvBRhbDFOORma8B1aSWPaedS4lkha3GBb8E4tsa2fFG/racutsUcOdn+trh2XAxmdoycyys2luVmzDjEWFZLEZufKEmhLWKqpIiNQalHNimIVojY7f8eBlO8Nj9/1XBDffvYuK1vf6z6OsHQn9c3TSzYSswjvl/+8sDLx2LiurT7T31KWD3zGWPXpa/cSKtckdO+xz96ZAv/drz49erd3rqpeDJWiOGvfWTkR+cjx4il/aJP1+L1rb2lfBqo7STuCU86Jhy6oarHxowZt/FRfBRf+pFzeYKmY4kfi53YSS1evrbPngMz7dPaaMx0LjKPex7+Y+HwN68vsPZ8xdRtsdJzK8eF6BvGEFuLkx3v2SA3za+YOnUuOo7ULnOj/enr3jHGaN6Jf7mHPM62YWfzR41tc2nvv65qbOJm7JyIXV0+df1tOOlxMZhJDrDTcyX9bbHExt4XGGN9iW0uL4rY/ERJCm0RUyVFbAxKPbJJQbRZRCw2MLtQYjHW4sPrm2UxlcXa23y1LwgxfJwpbd0Y1KBtdd7ar2wMWkDJNdRlMdDjcKzzEiGCsTqe1yfjZVMU4aHztLkgjm6bxiEfmzuEj84Ltjq+XPfy9fr0eBE8By87f+wNkDfG67PzJb5edeGpEyK7qW6ND4616LAxpGYt0jDGa3WdMs4KTq8m26dz0THEd2weGOeNQX02N4xpw07XGDuX4hu8krhd16h5KcdN3PXqrsunrl/qacLJjmvDDNhrO51nUywZCw4Bh9Of/5/L/6Rp3swjTg4tRWx+oiSFtoipkiI2BqUe2aQg2iwiVhZCEXZ1AjGHhbKrHLBJWMHniYSuYtJP3FMjmYPdwEH7tK2P/NgNNfZx3mapiSI2P1GSQlvEVEkRG4NSj2xSEK0UsR8Pg+3pXttbN5f/y//xj5l67LSxlmm//9SnDoXSn4/VufaW1bCv57UvE/e22LuFf5uff3844vv/RVi//IIx/rXhs5Ou74Yad9J8pM6VIjY/UZJCW8RUSREbg1KPbFIQbVYRKwsdNp++ijkRsOVHlOMCAgKqz8Ii9UY2rf+Nj66NfaVC5qV8Oj7dm69p4y7bvu5N1LLz6jL+bqixS7x2ui8tYv/tC44NfOWDwaLl0oqIGr6IwTwcmEfE7vTFlPn3WwByfjm/5EB+HKCIzUe02jcQ82iJWcbySeyi3zYsOZ6QpOt/pYj9RBhs80UMyAFygBwgB9JyQIvYrvcz+psNAYjZ2UbPPooidnbsduRIiti0iys3L+JLDpAD5EBaDlDE5ic/KGLzm5NeZpROxH4yDLb5IgbkADlADpADaTlAEZufPKGIzW9OeplRn0Xs1rdvGv5QwisWLqg3P/+B4n+Al/9BLe0CvhM3yP2n/tbwP7gtfm40XuDI6pnPnJojGLt++XJr0PWkPEa9s2AVk9es/mcdF5MTbXbG2kURm588oYjNb056mVE6EfupMNhO99r46NuGIujC2jhb3755KGLrbWyOGIM/9O215d8R/Wht3O2tj4e9x/1y2Pf4/zhmA+Gmfbb5svnNe27rK//g/eVjebbF2Pz8B8ufC/3aJAZyTf58k65Rjtcvn5wDwWPR9dvagMfqmc+aCgPxg7FebTZOH85R7yxYxdQ/q/9Zx7XlFLPGtPmQ6135yS1WTD6LsqGIzU+eUMTmNye9zGinili7OIp4Kn+XvBJk2NzmERmyAU0r9Nbeco4rzkS0lb+MdWgkmKRvWv+29thz4KFFiOQ6TXwI9DrxKf60f8mtbhP38omtpSu72BxS8WueOryc5vHXNjYWqzY/dddn9T/ruLo85ulf9JzMk2ufxlLE5idPKGLzm5NeZkQR2/y0eFoRC5FnhZxsGJ6IXeQGLALTiuimfO0mJ/njCWudiLVj5LypRi8nz0eqvqbcdExPnGDsPG+SdIxpj72cpvUxjT3q9bg9jZ8621n9zzquLo95+hc9J/Pk2qexFLH5yROK2PzmpJcZ5SBivYVfxI0WSlZs6THYxCCwpJWP8tF/4JJzi68V4Po0m/C0IlbnZTeJZYpY4Ge/4iA5ennZ3PW5nRt9zTtusm/CS/sSH5g/ae3T42nmWotx+GziBHzDVtpp+YWn0fBh30zoWnHsxcU47xrmdpFYtcWSWjDHBy97RfFVEz13084FsIkZ14R53X0tuZa/ZnbhKO9DN5Sf7rTVWjcnqB9+pAabG+YO9cHXtGuXjQU/4J204BBi9aGliM1PnlDE5jcnvcwoBxGLhRZCAoJLFlw85YINzu1ibc9lYcYYLYbrNq+6hXwWex1P+/XEouSNTVPb2mPY6c3IHgM/O1bOgandLOWabM51OXu+Yux1vk15YY4wr1485KhtbA7wo+vw5q5uXFOOEn8eftmY4s/jgq4d9ei8ZA5POvE/hVuH30X2clo0VlJb07wAO+G4FU8WF69mjQmOY8ZZGxmrMa+LpcdZfOVaTK32a03Wj+Wld28ivzY+AxO0OhZ8NHEI43Z6SxGbnzyhiM1vTnqZUQ4iVhZQ2WAgsGQhPuqBDwgnP/nXRn2y8OsFXS/WMt6eSx8Wcb3xiF2MaMSibjcc9Ne1stHZzRq2ehOVPmxedfYY10WLWMBY+9Qbt+6vO57FXj99036Rl95o9fW6YzvfMXPt2aCvLb6NJ3lhbBO/PBsZ6/nTtcbwtM0H/Fk7Lycbz7NBXxNWNlZdrfClsUNfk3/YNI3zbLw8LI8xDvG9WoCp5y+mr47vNhZy0XXaOdK54Fj7ibHHuJ3eUsTmJ08oYvObk15mlIuI1eJPjkVsaeGqr8uCqxdr71z6vI3A62tawLsWsdM8PW3Ka9pr2DyXIWKbYuMahENTXfImQOOnhbE3r7bPckZiwaYtftNYLTTgD30QEjpvHOv8vbp1vfoNHGy9nHBNj5V4OpbNUeOg87ZPFDHOYtUUS3x7eXp9df5RU50vOy4Wc9ihZnuveznOWytyRUzUZvvtudh5fRiP1uas8/U4hHE7vaWIzU+eUMTmNye9zCidiP10GGzHvzY//6fFXxe4/to/Dic86VfCoRsOhq1v/7fhn8h6Zdh/6n8e/q/30ifsxU7i2HPp0+ORi9eHa15bbWxlHM9G95Vi+8fD4W/eNFG/1LDn4dU1OS/FRbtvqU+eIEMAeW0pLnzMt7c+EfYe9+jhk+1xG5uXrsc7lhrLDfGaiRo9e+mri4G8mnLHnGns7HzDZv3yV45ysn12jOQFm6b4Ytc0dtqYdRjV9QvemG+Ne1NOi8AK2DXFqsOuKfemuYgZ59nUYat5Kcflm7zJNaarWuFHc0Zys/323LPxaqqrvY5Dno+d2EcRm588oYjNb056mVEuIhZi5rxzfi8c89ifH4lA2ViOfdwjw4MffHQhbLHA2sXanovdrBsBYkg7rYgVey00tC+9YUo/ao4VstrXLMee+EQOTcLBxvL8WBt9jhhaIOC6N0e4hlbm9qgHHhlu/Volmu18e35sn4wpv0oyKXTb6rfxJDfr3+uDTZt/1NrU2vy9nKRvUVjFxJJ66vKcZS7EV9u4aTDH/X3wsguHf6KvekOp85631vKp9sHRPW/5oGN5PKrrs3yxfrzrFj9rsxPPKWLzkycUsfnNSS8zykXEysIpIk+eOOkFXhZlWXStMLSLtbdxoU8/9fD6mhZtbHJ44ttkK9dsXtreili5BoFn69PjujpG7RpfEaRWREvNMg8aN51DnYhFLXac1G1jwF8TXrBB3vCLONqntZGxXp+dA6nFcg5xdQtfGjv0Ia+6mIih7aQGfOKg4+BYcNFv5qTfchHxm3JKiRXioy4vluRdN8ezzkXMuFjMkbNwQD9RtnnH1go7PSe2fjuPyEG/yYMfYCv5eH3Sr186VgyH9NidfEwRm588oYjNb056mVE6EfuZMNie7rXx0bcPxc76aOz21ifVx+CVv83Pfygc+YAfCoduqGw0tSaKAAAgAElEQVRlvGxG8pINYXzRL8d6fU15ejk12SPf1TOfPaoB9tXme/PYNeRUirKqHozrskUs4OTFBI7lBlphLvljnG61Hcbq66VAv3asZtS09pZzh+JhHBNcR6v9Ss7lk7Nq/lGXzqWpD/md/vynF19Z8eYLsdHqHKbll/BV3owhrrSlaPLrBo+0fdNciV0pgj4TdJ6psWqLJdh596r0Y35QY+xcxI6LxVw4KDlo7nh5x9Qq47SdzIlXv7bRcyfjNTY6J9St+2CPVseK5RDG7uSWIjY/eUIRm9+c9DKjnETsTl5Ede6yKTYJN227m4+xKccIyN2ME2uv3kgRC2LhcYAiNj95QhGb35z0MiOK2O43BTwBwZMxb9Fl32eKr49Q7HfPP3KLmO42DlDE5idPKGLzm5NeZkQRm2bDw0eZFLI+vvhqQtNHo7ttI2a9PleIC3Fp4wBFbH7yhCI2vznpZUbpROxfhcE2X8SAHCAHyAFyIC0HKGLzkycUsfnNSS8zoohNu7hy8yK+5AA5QA6k5QBFbH7yhCI2vznpZUYUsWkXV25exJccIAfIgbQcoIjNT55QxOY3J73MKJ2I/WwYbPNFDMgBcoAcIAfScoAiNj95QhGb35z0MiOK2LSLKzcv4ksOkAPkQFoOUMT2Up7MVNSKNyqF0PHisG/xCKSYW1lQ5l20195yXtj3+Mc2+tn69sfD0Uf9y9EfkC//GPyVjWNsXpuf/7Phz3Re1zgu1s7653nazYv4El9ygBygiF28dqiLiCewuq2zTdFPEZsC1Yx9JhOxd342DOZ4rb15KGJrfGx9qxSwq2c+ZxRHxhRC9vorR31NOWzf9umw99cfXf4wwd9fVzsm1q4pFq/NxwfiR/zIAXKgjgMUsfmIDC1ecbzI7FZE1PBFDObhQPEktkZ81i1Ctr9NxMr14mc7/7//PhKfEJta2Fq/ON9/6tNGT3CLP7hfI2Jj7eCXLTdacoAcIAcWywEtYiGc2B4bFo2BiFUv5jx6YtqxfBK7yLcMGcQSgnT9L7WIhVgtvm5gxLKITitumzYUEcNNIhZjY+1gz3axmxjxJt7kwO7lAEXs4gWrJ1ZFS9T1d60z6vxRxNYh09P+XESsiMSVlZXGF0Rrk4idVmzG2sfacSPdvRsp555zTw4shwNaxPZ0q94xZVHE7pip6kei6UTsX4fBnbO/1t78svI/djk+tm/7TNj7649xr8u48snq9VHxY+1j7eapmWNn5wuxI3bkwO7lAEVsfnokhbaIqZJPYmNQ6pFNCqKVXyeYb0GliJ0PP27oxI8cIAd2CwcoYvMTJSm0RUyVFLExKPXIJgXRliliq+/EfpxPYp2n2LtlU2OdFHDkwO7hAEVsfqIkhbaIqZIiNgalHtmkIFopYj8XBnfGv9befH7j92Hl+7L7Hn/MyKfYl18buGHUt33bXxVfM1g98/dGfW05eH68MbF23lj2xfOAWBErcoAcmJYDFLH5iZIU2iKmSorYGJR6ZJOCaLOI2GkXra1vfbL4oQMtWEVoln8n9h0jEbvxl5cX4nj9sleP+nSsWHEaa6d985ibMTlADpAD6TlAEZufKEmhLWKqpIiNQalHNimItggRKxsDhCz+qoEVsGJTJ2L3n/rb7pNfK3Zj7bhRpd+oiDExJgfIAY8DFLH5iZIU2iKmSorYGJR6ZJOCaIsSsd5ixj5ucuQAOUAO7C4OUMTmJ0pSaIuYKiliY1DqkU0KolHE7q4NhIKB800OkAPL5ABFbH6iJIW2iKmSIjYGpR7ZpCAaRSw3tGVuaIxN/pEDu4sDFLH5iZIU2iKmSorYGJR6ZJOCaBSxu2sDoWDgfJMD5MAyOUARm58oSaEtYqqkiI1BqUc2KYhGEcsNbZkbGmOTf+TA7uIARWx+oiSFtoipkiI2BqUe2aQgGkXs7tpAKBg43+QAObBMDlDE5idKUmiLmCopYmNQ6pFNCqJRxHJDW+aGxtjkHzmwuzhAEZufKEmhLWKqpIiNQalHNimIVorYvwmDO/kiBuQAOUAOkANpOUARm58oSaEtYqqkiI1BqUc2KYhGEZt2weaGSHzJAXKAHKg4QBGbnyhJoS1iqqSIjUGpRzYpiEYRWy2u3GiIBTlADpADaTlAEZufKEmhLWKqpIiNQalHNimIRhGbdsHmhkh8yQFygByoOEARm58oSaEtYqqkiI1BqUc2KYhGEVstrtxoiAU5QA6QA2k5QBGbnyhJoS1iqqSIjUGpRzYpiEYRm3bB5oZIfMkBcoAcqDhAEZufKEmhLWKqpIiNQalHNimIRhFbLa7caIgFOUAOkANpOUARm58oSaEtYqqkiI1BqUc2KYhGEZt2weaGSHzJAXKAHKg4QBGbnyhJoS1iqqSIjUGpRzYpiEYRWy2u3GiIBTlADpADaTlAEZufKEmhLWKqpIiNQalHNimIRhGbdsHmhkh8yQFygByoOEARm58oSaEtYqpckcB8EYN5OFCK2P8RBnfyRQzIAXKAHCAH0nJAi9iVlZXAVx4YzKMjZh3LJ7ExUr9HNkKUrv9RxKZdsLkhEl9ygBwgByoOaBF7ySdC4Gv5GMgbiWX8c6OmEDrLKI4xJxFIMbcUsdXiyo2GWJAD5AA5kJYDFLHLF632jQNF7KTeYk8CBChi0y6u3LyILzlADpADaTlAEUsRC3nEJ7FAYpe0FLFpF1duXsSXHCAHyIG0HKCIpYiFZKOIBRK7pE0hYr/1v94RZFHhixiQA+QAOUAOpObArV97ezj33HOLl/1Ym+fLEbj8OsEuEZHLLjOFiNU1YWFhWy6wxIE4kAPkADmQjgMbX/xseNun7uZ/7lryf3CjiNVKiMfJEKCITbeYcqMituQAOUAOLJYDh770qfD333hPuGHzMxSzSxSyFLHJZBsdawRSi1gdi8ezIcA5mg23RY7iHC0S7dliyabKj5aX89HyonGXJ7EiYv/hG+8KN3/l4+GyT9/JuV+woKWInW2d4qgpEeDmOyVgSzDnHC0B9ClDco6mBGwJ5hSxu0PAasG89sl7wzW3/E3xZPbjX7k5rH96i2J2QWKWInYJi9xuDMnNN/9Z5xxxjvJHIP8MKWLjRez5L3ik+tWrR4YT3xc/VovIXI5FzP7FLbcUYvZTX70xrB84ZVTfoy4O4ZKLn9l8/onNcOLDhr+C9bCLwvmzCEEbYxYfO2gMRWz+a2IvMqRAyn8aOUeco/wRyD/D5YpYJYIafxb1meGUZQuVkdhajHg95fimn0jtHo8Pf34z/P1XLw0HL3teeOhDjw4UsWneoFDE5r8m9iJDCqT8p5FzxDnKH4H8M1yuiDVCYSQUV8KDXrCZ9CPu6qlqnCgdicpZnzhOKcJH8Vbi8uvq6e4H/+bvwle+/sHw1393bXjvO08ffxI7UYN6E7IgXLqqc1l+KGLzXxN7kSEFUv7TyDniHOWPQP4ZUsTGicSRqFyQWBvFW7CIhbgTMXvL594QPnDVGeEXf/HHyiezFLFzv7GiiM1/TexFhhRI+U8j54hzlD8C+We440Ts+y4KD7JfPXCEZSUC9cfypWCtnsLqayth5firHZGinjbquMrW8zf+JFn5OP7qMLJXPiAe0Vb5t4vsytbUs4KvHVwdHoXcFVbVuKGdehKOrxOIgBUh+4kvfDB88D0vMU9mVV0PuyicUvudYWVn67cxPxGZ6ydCGOUvNRleFPlrG6lf1Q6cF91SxOa/JvYiQwqk/KeRc8Q5yh+B/DPcSSJ2JP6UGBkJGU+wjYlEEUeVIBz5Un1NgmYyTvlViFH/KKdxwVb6VH0Qk9KO5Tf+1YqR35b8KjsIViXuPExGeTp2VlCq86dd/s3w1596XbjumvPDySf90vDJ7HhdpXDXfchJ9ymhLfWrGKXwnEHEKoFazWsZx/ocf3MxjnnT/Hd1jSI2/zWxFxlSIOU/jZwjzlH+COSf4Y4RsepJG56yFcLCiiBl1yRYKrFTCdsmoeKJxUtqYk36ViKuQbjq+FU8JfoggOGjJn41FiIyUhhaLJ1z+U9fb3z9M8Lnv/qe8OHP3+j/dQI7Tv8VA+SOryZM2Ebmqp+yKmE+KYpFqCr8tS1yWGBLEZv/mtiLDCmQ8p9GzhHnKH8E8s9wx4hYJXYkZ+9ln7qN24yL1Umh2fxUblIYOn+CCmJI5TrxdNKKOIwxbRVvPG8tdKsaVsa+s1qN7V7EAtMTDmyFT331z8JXb3l9ePYzjw3f87PqT2xNU7+ynZg/JTgna1JPkpUdRay/5qx43dxEPVT60ce5zX8eOUeco/wRyD9DESVaGC31WAmaiaeo6trYk1gj/sr81ZM3I3gxthKA9SJRY+GJKF8wjYvbvorYEsfN8LuP+b5wwcufGj79128PH8ZP2qq5aq1f2VLEplsvKGLTYZulZwqkLKdlLCnO0RgcWZ5wjrKclrGkdoyIVR+dN32XVAvP0bEaC3HciYh1/ErMSd9KVHf4JLZORE8KbhVfPbWcsLOCsu1cfUz/I4+5uBCxf/+N94QPv/fU8CM/8n1hZfR9XhXf1m9jKJ/6P2JN5MqvE4zdx20nFLFtCPXsOjff/CeUc8Q5yh+B/DPcMSJ2TByOf3yO76YWT/JEFCmhVgjZkVBST11HfcaX+2RXfXQ9+s9S5dcPRuJqFNMTbF5f7NcXVM4TuSm/XnyV6yjPpj6LSdu5Izjf9qkPhTe98Enh0598Tbjgne8Ol336zvHvpLaKWB/rxvxHtY8/BcdTd34nNgSK2PzX4k4zpEDqFM4kzjhHSWDt1CnnqFM4kzjbSSK2EKTq6afkXr2G3/9Uwqu6Jnb4fmglHqsnpkM/VmAp0eiJKDzpnfCzYn+sQYnNhhjwJ20VT9eIY12L+o9QBR6PDA/CT8GO1Wzt4EvaSexGbwiGGLvnWsSOzcVK+J4TPxSuueVvhj9p+2fhOY/7oXKubP1qvirRGZGrxogitnVtoIhthahfBtx8859PzhHnKH8E8s8wKxGrRKMWdDyuhHcMFpUA1mJ3Oh8xcWJs1j55byh+0vYb7wmf+uqN4cq/+k4+38FeAt/kflvGPzcqN9FlTMViYnJuF4PzPFE4R/Ogt5ixnKPF4DxPFIrY5Yi7GAE4q01OIlbXIGL2b//hquInbd/52W/uSjFLETvPasWx0Qhw842GammGnKOlQR8dmHMUDdXSDCliKWK10FzEsfyk7Ve+/sHwN3//l+G9n/vGrhKzFLFLW+p2V2BuvvnPN+eIc5Q/AvlnSBHbPxG7CCHaRYz3f+7r4ZavfaR4yXEXPnP3sTQRmzswzI8LETlADpAD5MC0HKCIJWem5UzX9vI0Vp7KytNZeUrbtf+c/Mn9Jg9gFv1ayQkE5sJFhxwgB8gBcqALDlDEkkdd8KgLH/I92b/+u2uL783K92e78JmbDz6JXcL/psuNBMyHiy45QA6QA91wgCK2GxzJx+5wlL9gIH/JoPjhhM9vBvkLB33BlyKWIrY3ZO7LTck6ulu8iSWxXDQHKGLJuUVzLjbe+qe3RmJW/uZsH8QsRSxFLEUsOUAOkAPkQEccoIiliI0Vlcuyk1/9uvkrHw//8I13hRs2PxPe9qm7d+z9TxHb0cK1LDIyLhdMcoAcIAfy4QBFbD5zwfuieS5EvIqIla8ZHPrSp4Y/ads8JjdMKWIpYnfsO7Dcbibms7MWP84X5ysFByhiyasUvErpU8Tsxhc/W4hZeUIrT2pTxuvSN0UsReyOIWuXxKcvbjTkADmQggMUseRVCl4twqd8R1a+KytfM5D/CCbfoV1E3HliUMRSxGZP0nkIzrHcUMgBcmCRHKCIJd8WybdUseRPcsnXDETM5vyTthSxFLEUseQAOUAOkAMdcYAiliI2lbBchl8Rs/KjCfL3ZnMUsxSxHS1cyyAXY3KxJAfIAXIgLw5QxC5wPi5+ZhC8i9fxV8/4RmwznPiwoY+HXRTOz0wTnHL8MLeVlfCoixeIrcFBfvlLxKz8rK38Ilgu6w5FrJmoXCaGeSzvZiX2xJ4cIAdm5QBF7Dh3zn/BI0dCc1yEXR0eBQG6shIe9IJpf1FKja8VsEqgSixXpCob9/p4Pe28UP5qY07nsxKyzwynLFmziIAVISuvHH7SliJ2yYRovyGmIzv9ES9ygBwgB5bHAYrYcex9ETsu9KYXsCFUfh8ZTnzfeMwR/993UXiQEsorK56tyqULERsVsybfWj0SI9in9TmfvYhZ+YqBPJ1dppiliK0lzXwTPLqJ6D+bjx04J+Q0OUAOpOYARew4xyqxWX0crvtmEbCXfKISdU3jqyeY1Ufyk/bditi4mOMYxXCywmz5T2N1vvI9WRGz+ElbfW0RxxSxFJkUmeQAOUAOkAMdcYAidlygVeJrKGK7+B7ryIf3ZBXxK6G7cvxF1fdeV6wIHBexp6ivP/hPbuHfa2Njarur1VNlEds2v2Ec9YR3/GsZXh6L79M/afsXt9yysJ+0pYjtaOFaxDsOxlj8jUnMiTk5QA5MwwGK2HG+jItYJd7m+Oi+8lkj+GRfHwndUjxXY6onwuW8KhE7+m6u7muIYfVDdEyFgxfT/Y5vldPk0+RxzKfha9e2ImY//pWbiyez8jdnU/+kLUWsJSHP+USGHCAHyAFyYEYOUMSOCyotHgWb0csVauNj6wTW6CP7BiE8ssGTTfUkc2UsdiUOx/7jlxGkl+jxqg79VDQ+phKxKpeJ8YaDo+tqTB1Gy+6XX/2SX/+SrxnIT9umErMUsYYky554xo9bxIgTcSIHyIEcOUARO87LMRF7/NVhJMTm+JNRIx91IlYLzpHgU2IVwrbY/1W/9qdEbNSTz6li9l/E4t4U8SoiVsRsip+0pYiliOUTF3KAHCAHyIGOOEARWy9iy6eWSsBN/LUAJSjV087xJ6ehEsJadKr5GxPO2o86roSpiqn9TSlip4upMBiJbFXXmMiu8ByJdzUGYjH3VsSsfL0AYrarn7SliFXEz50EzK+6mYkFsSAHyIEcOUARO85LLe5GH73rp5Zjgg2CUn0PFWJSCczKp7Ib7eXw4fwnKR135E/Zj/oi/4TXzDFnEbFVnpUAH8c6x/vB5rT2yXtHYlZ+0nZeMUsROyLhziODJQfPOYfkADlADiyXAxSx4/hXgnP8P1Tp/uq7qBBq4+IUTyBHIhjCduJJbghj3111nljCV/WXBxBT/xiCLzJr7y0tjqNi+v6r3MbrL+KqGCMcdrh+kZ+0lSezf/W318/8k7YUsTucBLU3Fevix6PkADlADiycAxSxcSL2kk8o8Sgf8xdPQdE3LuIgeCvxVolA+1SyEoLjonm0V44E8Eoov6aAmOo/neFrB44gHflR99b0Mav89VclKj/j9UtMYFD7J7hUPl6OOfd96H98pfjRBPl7s+/+7D9Ndc9SxO7gic+ZlMxtfCEnHsSDHNgdHKCInWeeISjHRVwp7sb/Jmwl6sb7+3mf+aK3b7XKL39tfv3q4idt5RfBYuqjiKWIjSJKDJloM8/izbHkDznQBw5QxM7DY0fE4snpxFNRJezUd1n7wCFbQ9MTWmvbh3MRsLd87SOFoPV+0vab/3TZSLdQxFLEjsjQB/Kzhnk2EI4lf8iBeTlAETsPhyBixz/at18ZGM0RBK58/D8hcufJI5+xlYCt+XpEjzWMfLVAvmLwla9/MMhXDmTeRcDiJecUsT0mwOhGZ40U6uQAOUAOLIQDFLH5CEDugf2Yi3d+9pvFf/6S/wQGAYunsUsTsRKYL2JADpAD5AA5QA6QA+QAOdDGAS1gcSxjPve5zy38tcJ3SP14h2TnMaysyPP9iZe143k/55/zynnd7RyQTXW3Y8D6uQ50zQHRFRCuupX7bRn/KGJ7/NEeRSwXsK4XMPojp3YKByhiydWdwtWdlqenLShieywml0lQS7Zl5sLY3FTIAXJgURygiCXXFsW13RjHaguKWIrYZB99abLtxpuNNXMzIwd2HwcoYnffnPM+X+yca21BEUsRm0zEyo0NsvEmX+xNTryJNzmwHA5QxC4Hd/J9d+EObUERSxGbVMTKwiJk4wKzuxYYzjfne7dygCKW3N+t3F903aItKGIpYikwyQFygBwgBzriAEUsReyixdxujkcR29HCtZtJxNq5aJMD5AA5UHKAIpb3Au+FxXGAIpYilk9gyAFygBwgBzriAEVsBwJG/5zsyu77udW5RfD7LgoPWnlkOPF9HcxFR/fF3DXV5EERWwNMKsDpt/83FeeYc0wO7F4OzC5irw6Pav0ly2eGU+bdswqB0+TH5uGIocJHzS9MPeyicP5YjhH+tP1EfjI+NgfHTvvu9HjKurzYE7V2c9+ccvxKWDn+6inemM5TS8TYqfgyHQYUsR6x2DcF+acjHDd34kUOkAN95sDsItbwonga2bUo2wwnPkzEZ52ILQXJg16wOdoDzn/BI8OKFZFDUfKoi03OE3tnpD89Tuo2AkxEmY5V5jTeJ5yq6++ebzPUpWssjtvmog3buutlbhqv5vrnqSVybDRf6mqq76eInSBWPVjNROA44kMOkAPkwG7nwLJFbPEUzvkIHv2SX52ILUTgxJPUUmxpYXtJpCiJ9qf34cK3FtkilJSYH37VoFakve+icGKruJ7vPp2pLlVjzFzY+6iIacS9tSnOC3w0fs21zlNL9NhIvrj1KNy86xSxLQB5oLGv+aYgPsSHHCAHdisHliNi8VRvJaxMiNBxLhbCw30SO/ThCKVCdGm/UaJkCn92Hx4K1VJw6yeuQ586Fzs2+fkcdZnc6udifM7kXipsnbmx95nM1dgbDhNz3H6eWqYYG8WXyZrHc/WvU8Q2TrAPWgywtCF25AA5QA7sPg4sVsSWH+cWYi9C4Agf64VTvSiZGDMUJRCZaMefjk7hL3ofnvz4eup7rCZ31CBtswjsrq4JXBtwiBOx5ql1g78St3lqmWJsDebjfJltrZD5Wsa/lamJ1zoZswHAPIgbOUAOkAPkQFcckE21E1/F00j1MbreA5UoaBZck/NaL5ymECU6l+Fx6dd5auqI6/ocJvMdx7IDEevkPh6jLYf5cNKxpsGhsHWwnPA31VPqeWqZZyzeTGm+tOHuX6eInZvQPrCaWDwmRuQAOUAO7A4O7FYRK/we/9rBfCLHv192j4jFmwLhU+1rTNSWeE++qRnOg/YzGjfPHM0ztlwLxvky2/pAEUsR281TA+JIHMkBcoAcKASHL8Cm3KSbnsSOcC5FXSFyRsKkOU790796URIrNsbt5vc3iePQ51RPGw0e6il2nTicFILaR3d11c+Fjvf/t3ctR3LjMLRjcQAbgKuchA8Tgm97cghOYHx0FL45Ch/ntsFoiwRBgiBIURLV+vSbqil1SySIzwPwxNZM0+vZnVhvV/8fdJFvt9iyZS7ZlOOltLmMfzkGJDYWg9I5PQ7EGPgNGAAGgAFggDHgmiq/3nTsIrHs90Ao3G7bDMFrESf7GsluEzunR0lqtslj29Qx/NFX9XnKZ/13guKP43r9lOyx/ZOuS/z4sY0blbnrUpZ8bevQZ8uWuRZepF69r0FiQWLHFFz4EX4EBoABYODJO7El4fG7W8a/2GJSYBMPllN+XE/j82dz3Rqa1NK6+bhff/vksW69x5qNpOv25yzn9ei0a4Zwt2PBMaGjH1slsaRPldg383KLLX1z+/GS2zwfh8nnG/6wqxng5U7tcTzGwK/AADAADNwPA8fsxM77kYmf00/+lsSHiEkao4npNP0K5CyNqf/vWSayaawhb00PNh8LGCS7S59+P2kf98cixbVJYn08lj5KkGR3xahKyPv9kDDQwovUa/61k3nED/47QVeSzAcQTRA+AgaAAWDgPBhwTRXxOE88XiEW1k7nK9jtbASJBZlEwQUGgAFgABgYhAGQWBDYpxJIvyP9zB3oc8UXJHZQ4XoqaKEzGi4wAAwAA6fEAEjsuUgOevO94wESi0ZwykaAwnPvwoP4Ir53xQBILLB9V2yf0S6QWJBYkFhgABgABoCBQRgAiQWJPSPZu6tOILGDCtddAQK7UJCBAWAAGOjHAEhsv6+AK/hqKwZcvn18fDz9F/+dAOQZOz/AADAADNwOAyCxIGZbiRnm92MIO7FoIrdrIigA/QUAvoKvgIGxGACJHetP4BP+bGEAJBYkFiQWGAAGgAFgYBAGQGJBulqkC9fG4gMkdlDhAjDHAhP+hD+BAWDgihgAiQVur4jbq+oMEgsSix0YYAAYAAaAgUEYAIldSGLVV9jqr2i9Krk6nd43/VKE65PYqwTmKnoOKuSnS2DYNfH3Y3/6/t8JCAt93/a8Lv9Nb/+k73pHg7MIAvlyd9/4GvaYHl//nAA/lh/Kc/wd9bv7RtSXPhKrv28+YdzNp99v079C7qqa6mPWkqP1ML75ieMe9WL9HtPjn/fpR6Zjhzw5vtDPze/VwRgnZQ99vdAuXtv0XSUextiRuPW5sCh3V9rMtrtjEd8yRz2ue8dJ2eH16Unsj++fQ0KLxHkIEHjjB4M53BmOBBAFc7CeRkBXFTrIuUxT3hZfKkqROO6B824sKV0q83zhLRplpRBWZGzz2fxaszVqi15dMSJfDq1Xhc7hZkI3QaPxPmR9zuT0NsWOcea6oUcovBCRFT0j02k+vkvx00di1bo+zqP7A98A1mwvc5CwrPQIvp7HV6c86X9nt8KUi5dci/NLnnMxqZ1fGq/58SvsCjY6HWO9DecIj8rHVp6Hc3r+vL4KW35dskH7sC5rvc1J5hz+WM/ecTw+P16ExOZJmIFgDxIrk2zU66voOcreu8q5dBzLwpQKTl4YzPNDbe/RhYpbf+HtsGEHXFIzbdSo3jVX+3dpg1ruJ8tGh5HuJv23jDfJVM28d5z3VU52TMx635dr18cu942WNZ7Ekv71m4NSZ+qRvPGTY5P19f5XhP/XX8q5jDh1+rpbnswHL1vq52wVmLDInZr/9rO0n20ccVxll9SxeOp5i9YAABqiSURBVF3i0ceriMU0+fOK5EubvG6N63Gs96P0c9tnW23uwZ/TrXdctKPw5eQ3OacDfrr/T6x3ZnFnL0CwuvC3g9hy2qprV9HTAMkqe+8q59JxFHmzJj5Dbe/RhcZckcSuenRjtX/39pNBbJr4KWPb2xR7x9EnW70kNuzaGSRhj9o2nsRSr6Je6IipIHnNOPBupUVewu6XQYAKQuVxOefrBfK0zoGoOr+535TvQeaT4mZjYYNd2s74vswPInM6TvW1WVePCSOGfJ2PTn52YxJ1sXhQfd0CG005Lfzl6xK2tf35GLZFHx1mjvjZjcSmROe70ErCq8R5/PN5+sTFwWomenwNOHocJ6WS2acngZ2T2x91Quv19PUayPQ81pPH6+uFvZyIf7JnFmOBVfNTYXLApLlffoZk4WetLN2VHP3RU5KV+8pMWC0rW491asnJr/l4RL8Y1zL5OiF5vRkfMG5+vk+fvJ8Enpv20HpUHDkX6Bh9w7J/C920zIgLw75o+zT90vMM25u6MO7iUfnF2c4yWe8en0gdvWyy49P3NbgVfop61go1r+OeP+ZYy/n6HL3Pct3pzrZyjPh9ZruW5dZJ/uPc66s5UsfwmtdkHYTtuqHQe9In4ox1KWIRdmI4rt3j+Fk7SXgMvaWei22YkSdlq9cuhrZfGjJ9/ojcVjIzeSLXOLbZdTG3Tg4CPoyYFHO87/Ia4mzM114gT+hX05vOaxw1/FeTWdFd5lnCqSV/vF3kXx3rsE7MBZ0blm6h9hgxzP3q/KjXs+XRvHE2F1iqxKl3XG4X2eBiecTPNhIbgOmTSBUn5wyZXJZz6JwKqiwiSiY1aDneDjLJVcn98xvdASmZ83paCezWTXcrlm09d0pNPR3IpC886Cx7Sb9IWgM4I1ERyVjKs+aGNZrzWnokv5Tr2UQj9xXr1JZTkApv93ysyuTj9QxcSR8ErEcCF/zcE/tyjNLTwGTRnBi/bl01nm0q1ykLcDlG6RLsYpl0pDEyn/35ik/KuLfwIv0uPtaSvi/ywC78pW3sK64Flh3GOcu/+pxpu5ZF7y3MSF+aeltx8H4QeWGNEedIrvSvFQfyZa5D77jkX0lGCuwKnewbCTueOQaXj3F6LJbRibVMLmOhIJRJ59y/6Xy8yTEIUH1Omk9jGN/u/ILYZXFJMjPb/BjCcZtktuaPuDbYLo6Z4ffYO3lT5zG/e+rjYMiSvvRjZF2b9f84m3uw5HTtHSft4tcu34742UBig4M5KLrI6wAV1yuJIYtINofWKxIpG+OSpSKX9SnGqwTT1/17WSTUeHN3h4u7bCD2vMIe1jMUo+K61q9mr9XwClvIV7KhekDKGCzUI5PVu15mk6FTIafiX2tc9Kf2P7831nNzMh9U1uuKvSWfzsXYGvbHa5b+2fgZO7KxHbpY63XZyXpszNMu3PJa+bEswKpGmXYYPsl8FtbQ5/R77zcpi16Xn1jkOvt8M2WV4xY1QS9T/weD4A+j2ea+6x1X6ujsIVm1mlnBh4k7Wz43zbnjK5BY54N8E2Bb7GyfEpabNWmH+OW6DLSLc4O5i9A992XAn69JeS4xxh3Gqr9ZntVwH+yScuK8cTbn+V3Pq95xeWxI3kVIrAqYBIFRiMs7GkHqjPHeMZI8ZGNkg5BBUOcDQDMyJUBq7WI19eQiEUGmdkLCejaQhb1SB/d6Tk+z4Tq7lb3hfVFgLDJQmVv4KtNNr8e+1+f1e0PXLl91yIn+K/2bx1LFSsfAv7fWM+LjdVfr9dhjzdMxk2OCzCImUnc5ns+HeU0cWvO0LiwvO7Z8pHxSYKyNl3W4ZZn50WwsskaZuhm2WX7S5/R77y+WRccWgc1x6uqq9mNum6uN3r7MnnKMr6FeN/HYR4xlb1PsHVdZn2umqSvJLuIedazLtBpn65zLhdZ185rsP3M6Mblp7MDyGnVyUPe1x4jpw9xH+bjt8ljndAwyO3RJc3Idud/Z9Yl4RRsTg+yq5obTl/LW0qMeP7LTX4/kU9nucOTX7elHcu4gm7l2FH/TJNcSdnSMs+LsYnvEz4adWOWArKiHIi5Bn13noBqFWxaRbA43CLWubkx+Tm0XQK/boacoZARkJvIBkJmOWrfG+zk9tV1RD+0Hel8k3mlJrBHzaJvzl7avcm7G72assnU4NtZ6jBOBI2s965xewxyjYibH+NdiXS3PvZfj+bp1jq/x0RyjdOGx2bHlIx3PytgirpV1u3DLscuPc41mE7a07/R77y+yKTVq7ZuE5ewRA1NWbptrGt4+WVOzGIXxXpZFYN313qbYO67UkZtbTqzkOJJd1CvLlo3n9iKxqbZY8ZW2ptctbNrXev1UxmqbvKQzx9IfA2Gv3lz/fp+e8t8JCoLV6yf+dC3fUc1sDDXKwqbt0+Qrf71BYueu53oouVtsDjk0pz+v3zuOx8vjvUisL6TqrkMX6lBsi6SoktgKWLXcBhC9w+V4/3pGT6uQZrpXmrE1Lzs3N2+jvV1kgHSwY8B+WaZHLkvLn7PZJa+eUzkn45j5NRWAFO8WKbTW44LHPqgQxzmsOb0yrLBuyg+ZLeqaZVs2viKzOk/7omM9MyZsm27ky/BSNIwu3LLN+XG+AFuxNs5Z/tXn9Hvv71wW7bYq//h5AlcRI2qcFT/TN8IH/nqrSfNH/Wp945Eh25eV2Ba60jh7Jzr3kWyCo1+PJ7Gk+5J/scU22f7k2JFcmQs0PseEw5Mc42SbGDPqkiWPdes90lq6fjCmyvO9cvvH9fmJHgXL9SH783PWuuY4n7Ol7+V8P69KYrdgfr3NhX4FGWb8pSPZr+tDui5l6tf3IrFF0wtFTX1k5pMi21lQ43Sj8EVaJrZdLCkQchyREl8AMpkaXGp9bjCZjkxwknwT+L4xpDE64O59U0+3dpe9Jcj9WmbD0/bq90xMVMIu0KNNYtlmXUyc39lXhk4FnlxSGXa72M7EqoyDsZ5VtDLcpKTuib3GOc+JDUnJnsWFZXvEU8u3+vm5FI+oS0FIkq/z2DJWOG7JJ/vjVqwl9CW/tQpwWS/sxlzBlqxfKmaEqxJLJF/6SI8xao6wKcOruSb5gjFVxKiQVdpm4s3AmDXO2aexU9os4tWwIbO10FvI6Lw2nsQu14Hx5XSRv2WcKC5pjMRMWNfX4VxOnVB3yOv0YxYXHz+tg6HrGtldczrsCn5KPuYc03rze1UzDD8nWTYGfG7USKyXp9bospXXWmMzze3FX++4DAvKBofdI352epyACRiD5PP05v8VjQa7Btfn6e37t/R8mFXwNMCawOH16eiBqGVm8iw9tY5OlraDG3q+XvaRoQp4BEO2vtCTx+vrhb0EcN1IiEjoxKGxKSF1ctD6hSynS6ceSbZLIr1eSEqrEEbyac2xzimdvF86Y8W+9cdOH2jcSBlNe5IfuEF9+v4+fZF/8WrJ1v7Wz93J6xITW3WRdsXXFf9bevMcqZ9r4FJHP4ZkFljz8+ZwG3DEa4UjkSw9V41V/vnys2Kb1N/prm3V74VNeQ7wbpnwgZTtaolZG5XeXj7hu/AZPyagiBLjrSQ6GvNGPRP2JDnGuMwWrn/1GPgYxVy3bBx3zukd62zACN6P8y982edLRxDLnO2beyUfu3w74qebxD7NmWYTu1/An+bPZvGuNPDmnLvFAj44Bxbvhqt97Oki6qfNX8q1ZzV0kNh9MIh6scCv5s3ugvmnzeXSBpBYH6ywk1bs2pQOQyKN8AkIXHW3+ELFA7kwIheuIuO6NZI+sqzv0o7GMUjsVTANPUdj/wh5r0lijY+innWXfkSQz7cmSCxILBrI+fJyJib8SMSFbvb5mTv9qMWevgeJncERbtTxuMlADLwmiR3owD2LIWSjGAIDwAAwcC0MgMReK17Ir2vHCyQWhBZ3hcAAMAAMAAODMOCaKn7hA2DgeRj4+PiYnv17vj/sGlTAcFd37bs6xA/xAwaAgS0YcORly3zMBf6AgX4MuHw74gckFqQZhR4YAAaAgdthACS2n4CArMFXWzEAEosmcrsmsjUpMB+FFRgABtZiACQW2FmLHcxbjh2QWJBYkFhgABgABoCBQRgAiV1OREDe4LO1GACJHVS41gYA85C8wAAwAAzcBwMgsfvG0v/btAv9m7f+3H7ul3L067VvPLfqARLbQWL5fw06Z+W/xtchdsjbGjQ3/4w6jbBrDxmn9JXxv4ojtp709Zh7+HqNzFPGJ+YxNZYYm1ADXu7/SvP/iFU18OX8EHFRb+wOK2vy4OXnGDXRwpevFyCxwFjIRZdvR/xc6g+7fNKcjFicUaezFuFT+gpfcxyL8Cnj83ea6KtWH1Pxj/KZ0J2sJuyVfz4+nrzmN+18vvBPB9HbS9czyAWJrRN8Oz7h2+AeOb74C2EeKs887kBiY/20fbo0BtcdDxLbUXDP2GTPqNNZk+mUvgKJjUX4vPExCGysF/9Nb1/fpx/x/XWbQCtvmci7RmGRVXfdOt+SefdrILHLcoEwpgksyyg/Yvf1AiQ21s+759OcfSCxHU2ot8nKgu8c639jsvFXreYfT1ofl8wFzV3v1alH1t3H9PrqmfH7BRIbi/D54hN2hmLuckN9taOsVd+mfztqpZVDusb5eLv66HbYeFc71EsmxHEMj4tr866dm/9t+vKPfMSrRoSeGzeQ2CX+ns81XR/8+69/1CN1Gp8SuwEjakeXarDAj77usfl5evv5Pn3y+Pw8vX3/Nj2KHeNp+hVwzPj1PVU/HqHlcx8P2GfOoPPl7v15q33Ob0f8XO9xAgU0AlwqmlS880TiZKMgcVKJMR7kScaSYGZFPtNtnbwla19tbI+vnh2/ooDGGAp8xMa9pClcb+z54kO5+vLNRBJMowHrOhDjGMcKwiluCOI4h/kwVpNfIgNcMx9TioWQGcmEPHd8/oDELqlBHbmm+iTjJxHGEP+IO0umG5OwUa33UUYipoxRwrslmx89Wia/1MGWrfMM73N8gcR2EAWfNBLcxRwCX0oqcrKfF4u3Mca6eytk5wFjAM/rZM/j+a90nPeVERu+S94pftiJTfg8X3zsZqKJVt7ckj23yS1JYmMeVOwUYxPh5ObudrvSzbWPtyCw3l9i1yrVUUFOY/21zk2TvClM8yu6dtbYtXEEiV3g954eaJFYjUc5ZlamXe9pNzXhtHgfcDNPPnvkW2PsurMWh68yDyS2o6DNNlmfNAL8QaafF5OtDto1RXdWpw67XgXks746IH4gsanRnS8+881kVuc75F8gA65JzBJ2k4Tm5JLJrfedlmnOtwirdc5e56j6BhKbcns+BvO5RrUy9VePn9hXw1qKuEaMOZw90g6p10fi2l8XjxSIm60aiS0eHZAE2uV9j3w/JtlEfurwxR3qymAbQGI7HDrbsExAhudWY7KBxM4XtCXFr3/sGeMHEpvid774BKIUd/+SrozhWZ076grLOu+RapYnsZoIaPtMEmqTS+87kNj4TPh541/ifryuIddinyzX1Lnm3+vxgTjqDaH805NAZiv9urCtMU7qVOjTmBfXMMeAxEb/6PrSeA8S23AOO1QCls9lRw/I8q93c3CDxGY+6/D7qPFnjB9IbGpW541PmdOMyVmdn4hv1mmPoyQBmiC49dx1fz7UQNdQeMeVrxMJTrtO3neDSWzSk9ep7Ng+IS7O3j1icVeZFDuOW6oLZG9J7Dx+NIn1N1Fqx1XGOuvRpUzTtybRDPrx7qv/oy+te4f8TB+2uWOetAmvfZ6BxHYAoadhFWO4qMdkI4DmjcA4F3Y08nEM8nQs1uuww0zUF5jX46tizM7xA4ldhuWnx4efiVakjHJofqf2PrkmyKD8qFX4h2uVj1FGTsXcWAfFF7XInW5zJ1fMj2Otc1RHPVmO61jjEub2jA9I7FI/c6xsMqgfZfE4i3F2ayny52p3xEvQhUnnb3rPNz2M3ZTXQgffA8T7rFeyzvajNj3ydU3jOfImcE+c3kU2SGwGTDv5YnFuPT/zV4A6FPK3r4/pEZPNIKwh+bJEWkJiC33yP6C4C0i32nHG+IHEplw7ZXxiXRAESeTbyzUaQTI9WQy+0H7gRtwaE+MtiYaQn+qhqKlxrDgn4uHXi7XWYUuMi3MT5rbWlNZ8p0vrOq5V4iAwwPjR+HK+i/gR8c/HidjHMQYZ5Y2KOEYR0iaJTX+0mPCq7JqTH/p/svV9+mLeNCu5sTbhvMOD898RP5f6F1tri45PtqywAnRrfXnEPMTv3HhFfM4dn31yVhCUJ5PTXntAYl8Rl7C5Nz9GjwOJ3fGuBk322omN+J07fojPueMzulmRPJDYffz6iliCzXfAEkgsSCw++qpgACTp3EUe8Tl3fPZpkCCx+/j1FbEEm++AJZDYCoG5Q3BhA4oUMAAMAAPPxQAeJ3iuv4Hv1/Y3SCxILHZigQFgABgABgZhACT2tUkVSPVz4+/y7ePj4+m/L/GHXQDzc8EMf8PfwAAwcDQGQGKBwaMx+ErrYyd20N33K4EGtqJIAwPAADBgYwAk1vYL8AK/7IEBkFiQWHyMCAwAA8AAMDAIAyCxIGt7kDXItHEFEjuocAFgNsDgF/gFGAAGXgkDILHA+yvh/WhbQWJBYrEDAwwAA8AAMDAIAyCxILFHE7tXWh8kdlDheiXQwFYUaWAAGAAGbAyAxNp+AV7glz0wABILEosdmE0YOP8/X9+jcEAmGhIwYGMAJNb2y654+f0+fXo8pseKr3k/05emeF0ej+nLzwN8uKkPHqcvSOyugRMExyXYSb/re9fisqt/906cnviJMYjvMTdE3MBcjsXfz9Pb773xAflUO/5MX6LfZQwe06fv/x2DiQPrDkjsfF78+P7Z7If+/GISF2pwjcDG+mDXhGEkdmad3j5LRPbb9O+BGO7V9QzjQGL3BEoENRd2O4nOAAToYBTerviBxB6JHd65eDxk0RekqtbY9sz7F5LNpMM1kmz3KOaOjIuRYzf0FUjsfJwtEktYWt4jaV4dZ7TWZ79Ta91UjSKxc+v010mqX5au/TLmY3AXWSCxOxbR1GCZxL7mzsRVk6UvfiCxR8WXmhflVkagXE7//BZ3ZdEMdmpokajWPmVyuVEnF0fhZu91QWLn8UaE7336wf035GuRx3y9eqT6W8/xdN3Xc+PTsjEkdn6dJbgr/FO1f97XS9a94liQ2N3AIXeD3qe3f5jI6qIux/2ZZGPOd5cA1ucmmIxLK35UvFwiucdF/nUfk8WPVpfvKjzXxitjSsQn24Vlm6zrIlZfRa5ht3bdR/6zJJZj4Y4iHoJIpBvFVBfjOTdOriF2e+OYkHeRDO1Wz6Ut7dcgsW3/uBqXkbQQ4zoRbcjzcxt1Vl73RLkcyyQ2w5RZUzr1MNch/H/5KfLg0djUknqfANNn7ksgsXsBROwEubtLSU7zu00L1HmzPTOAbqtbd/xErGJRkudSc76tr/bKoZbc0Pj45qEkMTIG3LjkOb6pXPfHIIila+gVf5oEQNS5XhIrCKqsny7mVEOTzFUEqIWvDddAYhtkL/g1kViK4er4+Tpdr7FpHaeTvRaT19SXA64FTufyfX4dxqrQ1SS77Dsan3Ti8zjqWIDEbihW2pnyPSdG3E2VTTfb+WFw5820mL+TnlJnvE4FovB/NX6ikcuip0gwfJt8O8QX1XikdVIMDRKb5WCaM0S3l8pVUb/iJxDpBiGREzFO5EmKUWru8ZwYJx8PSY29knsH+x8kdj6fiPTRc6qPB+fn/Dydnzl51PMJHwmD0+SxJXH1N5zT9aBJMNesY5DSUMMSnqXcUndtO96Tv0Bi9yh4ZoMVBTfbqRDFXSRSLOTZWAlyvN4tiRfFT8RVFkdBYmUR3U3nPXB8ZpkyRtLvUWcRl9gkxTmRa4jJoFoiMO8aC/9SkxZ1TsTLqnPxnBgHEjsoRjE/jpXnyaf/5OpPeNQu3cQsyccmifU1QhFk45zHm64Hob4QdkXdYFzL8YbMX8U5g8SGnWGQ2G1YBIndIak5QbmIW8dEbERxF4kRCzlI7Lrn9TbEdVn8RIGrNN0U623JuqS433+syBszR6zrIlYi1+7vq+fjTuYQ4V/EQ+SJVefiOTEOJPb5MdwzL3LyGbAh4+3rt8CMRR71s7Wq5ksMFj1Y5P88iW37vm8dsiUnrNY5XotqFXoH+6N+BIlVwN+euKJR6uYa7u58QsWEFYmqE8sn7ro71O121EFzb9lL4yfGx5jKZ6DVTsBwvL1qnKSP+RlJ4QuxK5gagYiVyLV741n4ZDT2nI8rfpSNvdjNEnkSCauolfGcGAcSu2McR+OiQ15OYqeJdi7zR+roGda8/xWE0+d5Pobymfpqyv3kP8JmmlPIdPpX5SY5y9axCKt1juW3rvEYHF0MQGI7Em5Rk5NE1SjwsUDHjzgJrJ7YivFpXEq2RXqMtutV5C2OnyBGsenaMUX8xhddO09q/hexErmGuKyMS7xR0Ddqtv+tWDXPxXxiUkGPKKTdLBFPOfbgWuVqOTDVxlRBYl3MAp4S8XQ40v3PxVzgrfjYPqzrZYlxEhOhxjOOPAazekD4TXo0bOleh2TymoQP61xYq2aXtAOvfZ6BxA4GQirKxu6QWysWfr7rJCCDxDYKxeAYtRrM8viJRsofefExK4znsK9l+2WvyRsP9n28SZR+F7FCbIYQLbnj6mtY0/+i1sVx/OxsIisxByUxFXUzEQERTzn2ifXCyhmQWJlz9muTxPLjAQ4bPj8dXhIu2NcOHxoDmnB6DFUxEXATakDEm8Cklsdr62P/OhZhtc6Rv2r+0evjPXZihxRyAMkuVPAL/AIMAAOvhgGQ2FGYt0isI6D5DivdSJVk97q4I3LbS6Sva+cYnLh8O+Ln8eqOh/1jAAw/wo/AADBwJgyAxI7CY0li/c5n8SlKvrN6Jiys0YV2hu9EykfhwZYDEnvwR09rQI45NpjhF/gFGAAGjsYASOwoDNKOpPNn/C0IbFiLHymqXb9In+dHG9LjEqN8eV85ILEXAffRhRnr37cIILaILTAwDgMgseN8CVzCl3MYOIzExjsreZeF1+mOE76AL4ABYAAYAAaAAWAAGGhi4OPjY3r2L56JxQ4w/qgOGAAGgAFgABgABoCBTRg44g+7/gdFwn6+pg1rpgAAAABJRU5ErkJggg==" } }, "cell_type": "markdown", "id": "d5c3a24c-2ee0-4714-8437-9f4cc77c6a7f", "metadata": {}, "source": [ "### Equilibrium tests\n", "- We can also calculate equilibrium tests following the methods described in the supporting information of Putirka (2008) (Fspar-Liq spreadsheet)\n", "- By default, no filtering is done, but specifiying eq_tests=True calculates the relevant equilibrium parameters, and then below we show how to filter outputs with different values of these\n", "\n", "![image.png](attachment:2b16dba9-abcb-4fa0-9a9f-4a1a73444fe0.png)\n" ] }, { "cell_type": "code", "execution_count": 11, "id": "4a6ca23e-0bf3-4325-bfb9-cf0fd3aee9b3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
T_K_calcPass An-Ab Eq Test Put2008?Delta_AnDelta_AbDelta_OrPred_An_EqEPred_Ab_EqFPred_Or_EqGObs_Kd_Ab_AnSiO2_PlagTiO2_PlagAl2O3_PlagFeOt_PlagMnO_PlagMgO_PlagCaO_PlagNa2O_PlagK2O_PlagCr2O3_PlagSample_ID_PlagSi_Plag_cat_propMg_Plag_cat_propFet_Plag_cat_propCa_Plag_cat_propAl_Plag_cat_propNa_Plag_cat_propK_Plag_cat_propMn_Plag_cat_propTi_Plag_cat_propCr_Plag_cat_propsumSi_Plag_cat_fracMg_Plag_cat_fracFet_Plag_cat_fracCa_Plag_cat_fracAl_Plag_cat_fracNa_Plag_cat_fracK_Plag_cat_fracMn_Plag_cat_fracTi_Plag_cat_fracCr_Plag_cat_fracAn_PlagAb_PlagOr_PlagSiO2_LiqTiO2_LiqAl2O3_LiqFeOt_LiqMnO_LiqMgO_LiqCaO_LiqNa2O_LiqK2O_LiqCr2O3_LiqP2O5_LiqH2O_LiqFe3Fet_LiqNiO_LiqCoO_LiqCO2_LiqSample_ID_LiqSiO2_Liq_mol_fracMgO_Liq_mol_fracMnO_Liq_mol_fracFeOt_Liq_mol_fracCaO_Liq_mol_fracAl2O3_Liq_mol_fracNa2O_Liq_mol_fracK2O_Liq_mol_fracTiO2_Liq_mol_fracP2O5_Liq_mol_fracCr2O3_Liq_mol_fracSi_Liq_cat_fracMg_Liq_cat_fracMn_Liq_cat_fracFet_Liq_cat_fracCa_Liq_cat_fracAl_Liq_cat_fracNa_Liq_cat_fracK_Liq_cat_fracTi_Liq_cat_fracP_Liq_cat_fracCr_Liq_cat_fracMg_Number_Liq_NoFe3Mg_Number_Liq_Fe3PT
01408.019018High T: No0.1010160.1523530.0291080.5181450.4013030.0001070.51010257.30.0926.60.430.00.038.336.110.490.000.9536600.0007440.0059850.1485450.5217680.1971640.0104040.00.0011270.01.8393970.5184640.0004050.0032540.0807570.2836630.1071890.0056560.00.0006130.00.4171290.5536560.02921549.13.2214.414.80.143.206.723.341.700.01.130.00.00.00.00.000.5499880.0534360.0013280.1386400.0806520.0950520.0362690.0121460.0271300.0053580.00.4787390.0465130.0011560.1206800.0702040.1654770.0631410.0211460.0236160.0093280.00.2781940.27819451408.019018
11423.834489High T: No0.0898660.1024590.0279410.5429900.4160850.0003910.45547556.50.1226.90.470.00.058.955.660.470.010.9403450.0012410.0065420.1596010.5276530.1826430.0099790.00.0015020.01.8295060.5139890.0006780.0035760.0872370.2884130.0998320.0054550.00.0008210.00.4531250.5185430.02833249.23.8915.313.70.123.886.763.441.220.00.830.00.00.00.00.010.5455000.0641310.0011270.1270300.0803060.0999650.0369750.0086280.0324420.0038960.00.4745690.0557920.0009800.1105120.0698640.1739330.0643340.0150120.0282240.0067780.00.3354750.33547551423.834489
21420.063528High T: No0.1171890.1103120.0227640.5354510.4479910.0006710.50000457.60.1126.30.500.00.078.506.270.400.020.9586530.0017370.0069590.1515760.5158840.2023270.0084930.00.0013770.01.8470060.5190310.0009400.0037680.0820660.2793080.1095430.0045980.00.0007460.00.4182610.5583030.02343549.63.7915.813.00.144.266.593.651.040.00.630.00.00.00.00.020.5472690.0700710.0013080.1199550.0779070.1027310.0390420.0073190.0314550.0029430.00.4750450.0608230.0011360.1041240.0676260.1783480.0677790.0127070.0273040.0051080.00.3687360.36873651420.063528
31386.731667High T: No0.0215530.0292790.0496560.4701930.4723910.0000340.46102857.20.1627.00.620.00.069.035.580.840.030.9519960.0014890.0086300.1610270.5296140.1800610.0178350.00.0020030.01.8526550.5138550.0008040.0046580.0869170.2858680.0971910.0096270.00.0010810.00.4486400.5016700.04969147.14.2112.017.80.183.407.282.932.020.02.320.00.00.00.00.030.5212690.0560960.0016870.1647470.0863270.0782620.0314360.0142600.0350470.0108690.00.4593380.0494310.0014870.1451740.0760700.1379270.0554020.0251320.0308830.0191560.00.2540010.25400151386.731667
41392.393338High T: Yes0.0211150.0291070.0280640.4488560.5307430.0003290.36963356.70.1427.60.690.00.119.465.580.480.040.9436740.0027290.0096040.1686950.5413830.1800610.0101920.00.0017530.01.8580920.5078730.0014690.0051690.0907900.2913650.0969070.0054850.00.0009430.00.4699710.5016360.02839348.13.8813.216.40.164.026.513.361.360.01.590.00.00.00.00.040.5319990.0662830.0014990.1516930.0771470.0860330.0360270.0095950.0322800.0074440.00.4670350.0581890.0013160.1331690.0677270.1510550.0632540.0168460.0283380.0130710.00.3040760.30407651392.393338
\n", "
" ], "text/plain": [ " T_K_calc Pass An-Ab Eq Test Put2008? Delta_An Delta_Ab Delta_Or \\\n", "0 1408.019018 High T: No 0.101016 0.152353 0.029108 \n", "1 1423.834489 High T: No 0.089866 0.102459 0.027941 \n", "2 1420.063528 High T: No 0.117189 0.110312 0.022764 \n", "3 1386.731667 High T: No 0.021553 0.029279 0.049656 \n", "4 1392.393338 High T: Yes 0.021115 0.029107 0.028064 \n", "\n", " Pred_An_EqE Pred_Ab_EqF Pred_Or_EqG Obs_Kd_Ab_An SiO2_Plag TiO2_Plag \\\n", "0 0.518145 0.401303 0.000107 0.510102 57.3 0.09 \n", "1 0.542990 0.416085 0.000391 0.455475 56.5 0.12 \n", "2 0.535451 0.447991 0.000671 0.500004 57.6 0.11 \n", "3 0.470193 0.472391 0.000034 0.461028 57.2 0.16 \n", "4 0.448856 0.530743 0.000329 0.369633 56.7 0.14 \n", "\n", " Al2O3_Plag FeOt_Plag MnO_Plag MgO_Plag CaO_Plag Na2O_Plag K2O_Plag \\\n", "0 26.6 0.43 0.0 0.03 8.33 6.11 0.49 \n", "1 26.9 0.47 0.0 0.05 8.95 5.66 0.47 \n", "2 26.3 0.50 0.0 0.07 8.50 6.27 0.40 \n", "3 27.0 0.62 0.0 0.06 9.03 5.58 0.84 \n", "4 27.6 0.69 0.0 0.11 9.46 5.58 0.48 \n", "\n", " Cr2O3_Plag Sample_ID_Plag Si_Plag_cat_prop Mg_Plag_cat_prop \\\n", "0 0.0 0 0.953660 0.000744 \n", "1 0.0 1 0.940345 0.001241 \n", "2 0.0 2 0.958653 0.001737 \n", "3 0.0 3 0.951996 0.001489 \n", "4 0.0 4 0.943674 0.002729 \n", "\n", " Fet_Plag_cat_prop Ca_Plag_cat_prop Al_Plag_cat_prop Na_Plag_cat_prop \\\n", "0 0.005985 0.148545 0.521768 0.197164 \n", "1 0.006542 0.159601 0.527653 0.182643 \n", "2 0.006959 0.151576 0.515884 0.202327 \n", "3 0.008630 0.161027 0.529614 0.180061 \n", "4 0.009604 0.168695 0.541383 0.180061 \n", "\n", " K_Plag_cat_prop Mn_Plag_cat_prop Ti_Plag_cat_prop Cr_Plag_cat_prop \\\n", "0 0.010404 0.0 0.001127 0.0 \n", "1 0.009979 0.0 0.001502 0.0 \n", "2 0.008493 0.0 0.001377 0.0 \n", "3 0.017835 0.0 0.002003 0.0 \n", "4 0.010192 0.0 0.001753 0.0 \n", "\n", " sum Si_Plag_cat_frac Mg_Plag_cat_frac Fet_Plag_cat_frac \\\n", "0 1.839397 0.518464 0.000405 0.003254 \n", "1 1.829506 0.513989 0.000678 0.003576 \n", "2 1.847006 0.519031 0.000940 0.003768 \n", "3 1.852655 0.513855 0.000804 0.004658 \n", "4 1.858092 0.507873 0.001469 0.005169 \n", "\n", " Ca_Plag_cat_frac Al_Plag_cat_frac Na_Plag_cat_frac K_Plag_cat_frac \\\n", "0 0.080757 0.283663 0.107189 0.005656 \n", "1 0.087237 0.288413 0.099832 0.005455 \n", "2 0.082066 0.279308 0.109543 0.004598 \n", "3 0.086917 0.285868 0.097191 0.009627 \n", "4 0.090790 0.291365 0.096907 0.005485 \n", "\n", " Mn_Plag_cat_frac Ti_Plag_cat_frac Cr_Plag_cat_frac An_Plag Ab_Plag \\\n", "0 0.0 0.000613 0.0 0.417129 0.553656 \n", "1 0.0 0.000821 0.0 0.453125 0.518543 \n", "2 0.0 0.000746 0.0 0.418261 0.558303 \n", "3 0.0 0.001081 0.0 0.448640 0.501670 \n", "4 0.0 0.000943 0.0 0.469971 0.501636 \n", "\n", " Or_Plag SiO2_Liq TiO2_Liq Al2O3_Liq FeOt_Liq MnO_Liq MgO_Liq \\\n", "0 0.029215 49.1 3.22 14.4 14.8 0.14 3.20 \n", "1 0.028332 49.2 3.89 15.3 13.7 0.12 3.88 \n", "2 0.023435 49.6 3.79 15.8 13.0 0.14 4.26 \n", "3 0.049691 47.1 4.21 12.0 17.8 0.18 3.40 \n", "4 0.028393 48.1 3.88 13.2 16.4 0.16 4.02 \n", "\n", " CaO_Liq Na2O_Liq K2O_Liq Cr2O3_Liq P2O5_Liq H2O_Liq Fe3Fet_Liq \\\n", "0 6.72 3.34 1.70 0.0 1.13 0.0 0.0 \n", "1 6.76 3.44 1.22 0.0 0.83 0.0 0.0 \n", "2 6.59 3.65 1.04 0.0 0.63 0.0 0.0 \n", "3 7.28 2.93 2.02 0.0 2.32 0.0 0.0 \n", "4 6.51 3.36 1.36 0.0 1.59 0.0 0.0 \n", "\n", " NiO_Liq CoO_Liq CO2_Liq Sample_ID_Liq SiO2_Liq_mol_frac \\\n", "0 0.0 0.0 0.0 0 0.549988 \n", "1 0.0 0.0 0.0 1 0.545500 \n", "2 0.0 0.0 0.0 2 0.547269 \n", "3 0.0 0.0 0.0 3 0.521269 \n", "4 0.0 0.0 0.0 4 0.531999 \n", "\n", " MgO_Liq_mol_frac MnO_Liq_mol_frac FeOt_Liq_mol_frac CaO_Liq_mol_frac \\\n", "0 0.053436 0.001328 0.138640 0.080652 \n", "1 0.064131 0.001127 0.127030 0.080306 \n", "2 0.070071 0.001308 0.119955 0.077907 \n", "3 0.056096 0.001687 0.164747 0.086327 \n", "4 0.066283 0.001499 0.151693 0.077147 \n", "\n", " Al2O3_Liq_mol_frac Na2O_Liq_mol_frac K2O_Liq_mol_frac TiO2_Liq_mol_frac \\\n", "0 0.095052 0.036269 0.012146 0.027130 \n", "1 0.099965 0.036975 0.008628 0.032442 \n", "2 0.102731 0.039042 0.007319 0.031455 \n", "3 0.078262 0.031436 0.014260 0.035047 \n", "4 0.086033 0.036027 0.009595 0.032280 \n", "\n", " P2O5_Liq_mol_frac Cr2O3_Liq_mol_frac Si_Liq_cat_frac Mg_Liq_cat_frac \\\n", "0 0.005358 0.0 0.478739 0.046513 \n", "1 0.003896 0.0 0.474569 0.055792 \n", "2 0.002943 0.0 0.475045 0.060823 \n", "3 0.010869 0.0 0.459338 0.049431 \n", "4 0.007444 0.0 0.467035 0.058189 \n", "\n", " Mn_Liq_cat_frac Fet_Liq_cat_frac Ca_Liq_cat_frac Al_Liq_cat_frac \\\n", "0 0.001156 0.120680 0.070204 0.165477 \n", "1 0.000980 0.110512 0.069864 0.173933 \n", "2 0.001136 0.104124 0.067626 0.178348 \n", "3 0.001487 0.145174 0.076070 0.137927 \n", "4 0.001316 0.133169 0.067727 0.151055 \n", "\n", " Na_Liq_cat_frac K_Liq_cat_frac Ti_Liq_cat_frac P_Liq_cat_frac \\\n", "0 0.063141 0.021146 0.023616 0.009328 \n", "1 0.064334 0.015012 0.028224 0.006778 \n", "2 0.067779 0.012707 0.027304 0.005108 \n", "3 0.055402 0.025132 0.030883 0.019156 \n", "4 0.063254 0.016846 0.028338 0.013071 \n", "\n", " Cr_Liq_cat_frac Mg_Number_Liq_NoFe3 Mg_Number_Liq_Fe3 P T \n", "0 0.0 0.278194 0.278194 5 1408.019018 \n", "1 0.0 0.335475 0.335475 5 1423.834489 \n", "2 0.0 0.368736 0.368736 5 1420.063528 \n", "3 0.0 0.254001 0.254001 5 1386.731667 \n", "4 0.0 0.304076 0.304076 5 1392.393338 " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "T_PL_eq23_5kbar_EqTests=pt.calculate_fspar_liq_temp(plag_comps=Plags, liq_comps=Liqs_PL, \n", " equationT=\"T_Put2008_eq23\", P=5, eq_tests=True)\n", "T_PL_eq23_5kbar_EqTests.head()" ] }, { "cell_type": "markdown", "id": "0627d7a5-5c2e-44ae-8c87-9576e7d418ab", "metadata": {}, "source": [ "### Here we filter based on whether any given pair passes the An-Ab test within the values recomended by Putirka (2008) (T>1050 is 0.28+-0.11, and T<1050 is 0.1+-0.05)\n", "- The code uses the calculated temperature to decide what value to compare against, and the print Yes or No, as well as the temperature category it placed it into\n", "- Then, we make a variable of true/false called Eq_Filt, where we want it to read True if any of the column 'Pass An-Ab Eq Test Put2008?' contains the word yes\n", "- By using Loc, we extract the rows of the dataframe T_PL_eq23_5kbar_EqTests where Eq_Filt is True\n", "- The new dataframe \"T_PL_eq23_filt\" contains only pairs passing this filter" ] }, { "cell_type": "code", "execution_count": 13, "id": "f4475a28-5e80-45d6-bee1-162548df1c13", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
T_K_calcPass An-Ab Eq Test Put2008?Delta_AnDelta_AbDelta_OrPred_An_EqEPred_Ab_EqFPred_Or_EqGObs_Kd_Ab_AnSiO2_PlagTiO2_PlagAl2O3_PlagFeOt_PlagMnO_PlagMgO_PlagCaO_PlagNa2O_PlagK2O_PlagCr2O3_PlagSample_ID_PlagSi_Plag_cat_propMg_Plag_cat_propFet_Plag_cat_propCa_Plag_cat_propAl_Plag_cat_propNa_Plag_cat_propK_Plag_cat_propMn_Plag_cat_propTi_Plag_cat_propCr_Plag_cat_propsumSi_Plag_cat_fracMg_Plag_cat_fracFet_Plag_cat_fracCa_Plag_cat_fracAl_Plag_cat_fracNa_Plag_cat_fracK_Plag_cat_fracMn_Plag_cat_fracTi_Plag_cat_fracCr_Plag_cat_fracAn_PlagAb_PlagOr_PlagSiO2_LiqTiO2_LiqAl2O3_LiqFeOt_LiqMnO_LiqMgO_LiqCaO_LiqNa2O_LiqK2O_LiqCr2O3_LiqP2O5_LiqH2O_LiqFe3Fet_LiqNiO_LiqCoO_LiqCO2_LiqSample_ID_LiqSiO2_Liq_mol_fracMgO_Liq_mol_fracMnO_Liq_mol_fracFeOt_Liq_mol_fracCaO_Liq_mol_fracAl2O3_Liq_mol_fracNa2O_Liq_mol_fracK2O_Liq_mol_fracTiO2_Liq_mol_fracP2O5_Liq_mol_fracCr2O3_Liq_mol_fracSi_Liq_cat_fracMg_Liq_cat_fracMn_Liq_cat_fracFet_Liq_cat_fracCa_Liq_cat_fracAl_Liq_cat_fracNa_Liq_cat_fracK_Liq_cat_fracTi_Liq_cat_fracP_Liq_cat_fracCr_Liq_cat_fracMg_Number_Liq_NoFe3Mg_Number_Liq_Fe3PT
41392.393338High T: Yes0.0211150.0291070.0280640.4488560.5307430.0003290.36963356.70.1427.60.690.00.119.465.580.480.040.9436740.0027290.0096040.1686950.5413830.1800610.0101920.00.0017530.01.8580920.5078730.0014690.0051690.0907900.2913650.0969070.0054850.00.0009430.00.4699710.5016360.02839348.13.8813.216.400.164.026.513.361.360.01.590.00.00.00.00.040.5319990.0662830.0014990.1516930.0771470.0860330.0360270.0095950.0322800.0074440.00.4670350.0581890.0013160.1331690.0677270.1510550.0632540.0168460.0283380.0130710.00.3040760.30407651392.393338
61410.107078High T: Yes0.0076950.0372240.0213750.4795760.5277740.0008040.33160556.10.2127.80.560.00.099.945.530.380.060.9336880.0022330.0077940.1772550.5453070.1784480.0080680.00.0026290.01.8554220.5032210.0012040.0042010.0955340.2938990.0961760.0043480.00.0014170.00.4872710.4905500.02218049.54.2314.814.000.164.636.363.761.040.00.690.00.00.00.00.060.5406060.0753820.0014800.1278670.0744230.0952500.0398090.0072450.0347490.0031900.00.4719410.0658070.0012920.1116260.0649700.1663030.0695050.0126500.0303360.0055700.00.3708750.37087551410.107078
71418.246494High T: Yes0.0262810.0066220.0203360.5078640.5035600.0011440.36668556.40.2027.30.530.00.089.615.480.360.070.9386810.0019850.0073770.1713700.5354990.1768340.0076440.00.0025040.01.8418940.5096280.0010780.0040050.0930400.2907330.0960070.0041500.00.0013590.00.4815820.4969380.02148049.54.0415.313.500.134.656.393.620.900.00.660.00.00.00.00.070.5433800.0760960.0012090.1239330.0751580.0989730.0385230.0063020.0333590.0030670.00.4737960.0663510.0010540.1080630.0655330.1725980.0671800.0109900.0290870.0053480.00.3804150.38041551418.246494
81388.282711High T: Yes0.0445790.0219380.0298390.4444670.5028150.0002370.36892556.00.1427.00.640.00.099.685.260.500.080.9320240.0022330.0089080.1726190.5296140.1697350.0106160.00.0017530.01.8275020.5099990.0012220.0048740.0944560.2898020.0928780.0058090.00.0009590.00.4890460.4808770.03007752.04.0412.514.300.153.306.712.801.410.01.170.00.00.00.00.080.5732620.0542340.0014010.1318380.0792580.0812060.0299240.0099150.0335010.0054600.00.5088850.0481440.0012430.1170330.0703580.1441730.0531280.0176030.0297390.0096940.00.2914610.29146151388.282711
91397.830490High T: Yes0.1073680.0614760.0206520.4450340.4883350.0000870.19767254.50.0027.50.750.00.2411.104.740.350.090.9070590.0059550.0104390.1979410.5394220.1529550.0074310.00.0000000.01.8212020.4980550.0032700.0057320.1086870.2961900.0839860.0040800.00.0000000.00.5524020.4268590.02073957.81.8713.79.350.203.416.333.821.940.00.300.00.00.00.00.090.6268840.0551340.0018370.0848060.0735590.0875600.0401640.0134210.0152560.0013770.00.5486840.0482570.0016080.0742270.0643830.1532750.0703080.0234940.0133530.0024110.00.3939760.39397651397.830490
\n", "
" ], "text/plain": [ " T_K_calc Pass An-Ab Eq Test Put2008? Delta_An Delta_Ab Delta_Or \\\n", "4 1392.393338 High T: Yes 0.021115 0.029107 0.028064 \n", "6 1410.107078 High T: Yes 0.007695 0.037224 0.021375 \n", "7 1418.246494 High T: Yes 0.026281 0.006622 0.020336 \n", "8 1388.282711 High T: Yes 0.044579 0.021938 0.029839 \n", "9 1397.830490 High T: Yes 0.107368 0.061476 0.020652 \n", "\n", " Pred_An_EqE Pred_Ab_EqF Pred_Or_EqG Obs_Kd_Ab_An SiO2_Plag TiO2_Plag \\\n", "4 0.448856 0.530743 0.000329 0.369633 56.7 0.14 \n", "6 0.479576 0.527774 0.000804 0.331605 56.1 0.21 \n", "7 0.507864 0.503560 0.001144 0.366685 56.4 0.20 \n", "8 0.444467 0.502815 0.000237 0.368925 56.0 0.14 \n", "9 0.445034 0.488335 0.000087 0.197672 54.5 0.00 \n", "\n", " Al2O3_Plag FeOt_Plag MnO_Plag MgO_Plag CaO_Plag Na2O_Plag K2O_Plag \\\n", "4 27.6 0.69 0.0 0.11 9.46 5.58 0.48 \n", "6 27.8 0.56 0.0 0.09 9.94 5.53 0.38 \n", "7 27.3 0.53 0.0 0.08 9.61 5.48 0.36 \n", "8 27.0 0.64 0.0 0.09 9.68 5.26 0.50 \n", "9 27.5 0.75 0.0 0.24 11.10 4.74 0.35 \n", "\n", " Cr2O3_Plag Sample_ID_Plag Si_Plag_cat_prop Mg_Plag_cat_prop \\\n", "4 0.0 4 0.943674 0.002729 \n", "6 0.0 6 0.933688 0.002233 \n", "7 0.0 7 0.938681 0.001985 \n", "8 0.0 8 0.932024 0.002233 \n", "9 0.0 9 0.907059 0.005955 \n", "\n", " Fet_Plag_cat_prop Ca_Plag_cat_prop Al_Plag_cat_prop Na_Plag_cat_prop \\\n", "4 0.009604 0.168695 0.541383 0.180061 \n", "6 0.007794 0.177255 0.545307 0.178448 \n", "7 0.007377 0.171370 0.535499 0.176834 \n", "8 0.008908 0.172619 0.529614 0.169735 \n", "9 0.010439 0.197941 0.539422 0.152955 \n", "\n", " K_Plag_cat_prop Mn_Plag_cat_prop Ti_Plag_cat_prop Cr_Plag_cat_prop \\\n", "4 0.010192 0.0 0.001753 0.0 \n", "6 0.008068 0.0 0.002629 0.0 \n", "7 0.007644 0.0 0.002504 0.0 \n", "8 0.010616 0.0 0.001753 0.0 \n", "9 0.007431 0.0 0.000000 0.0 \n", "\n", " sum Si_Plag_cat_frac Mg_Plag_cat_frac Fet_Plag_cat_frac \\\n", "4 1.858092 0.507873 0.001469 0.005169 \n", "6 1.855422 0.503221 0.001204 0.004201 \n", "7 1.841894 0.509628 0.001078 0.004005 \n", "8 1.827502 0.509999 0.001222 0.004874 \n", "9 1.821202 0.498055 0.003270 0.005732 \n", "\n", " Ca_Plag_cat_frac Al_Plag_cat_frac Na_Plag_cat_frac K_Plag_cat_frac \\\n", "4 0.090790 0.291365 0.096907 0.005485 \n", "6 0.095534 0.293899 0.096176 0.004348 \n", "7 0.093040 0.290733 0.096007 0.004150 \n", "8 0.094456 0.289802 0.092878 0.005809 \n", "9 0.108687 0.296190 0.083986 0.004080 \n", "\n", " Mn_Plag_cat_frac Ti_Plag_cat_frac Cr_Plag_cat_frac An_Plag Ab_Plag \\\n", "4 0.0 0.000943 0.0 0.469971 0.501636 \n", "6 0.0 0.001417 0.0 0.487271 0.490550 \n", "7 0.0 0.001359 0.0 0.481582 0.496938 \n", "8 0.0 0.000959 0.0 0.489046 0.480877 \n", "9 0.0 0.000000 0.0 0.552402 0.426859 \n", "\n", " Or_Plag SiO2_Liq TiO2_Liq Al2O3_Liq FeOt_Liq MnO_Liq MgO_Liq \\\n", "4 0.028393 48.1 3.88 13.2 16.40 0.16 4.02 \n", "6 0.022180 49.5 4.23 14.8 14.00 0.16 4.63 \n", "7 0.021480 49.5 4.04 15.3 13.50 0.13 4.65 \n", "8 0.030077 52.0 4.04 12.5 14.30 0.15 3.30 \n", "9 0.020739 57.8 1.87 13.7 9.35 0.20 3.41 \n", "\n", " CaO_Liq Na2O_Liq K2O_Liq Cr2O3_Liq P2O5_Liq H2O_Liq Fe3Fet_Liq \\\n", "4 6.51 3.36 1.36 0.0 1.59 0.0 0.0 \n", "6 6.36 3.76 1.04 0.0 0.69 0.0 0.0 \n", "7 6.39 3.62 0.90 0.0 0.66 0.0 0.0 \n", "8 6.71 2.80 1.41 0.0 1.17 0.0 0.0 \n", "9 6.33 3.82 1.94 0.0 0.30 0.0 0.0 \n", "\n", " NiO_Liq CoO_Liq CO2_Liq Sample_ID_Liq SiO2_Liq_mol_frac \\\n", "4 0.0 0.0 0.0 4 0.531999 \n", "6 0.0 0.0 0.0 6 0.540606 \n", "7 0.0 0.0 0.0 7 0.543380 \n", "8 0.0 0.0 0.0 8 0.573262 \n", "9 0.0 0.0 0.0 9 0.626884 \n", "\n", " MgO_Liq_mol_frac MnO_Liq_mol_frac FeOt_Liq_mol_frac CaO_Liq_mol_frac \\\n", "4 0.066283 0.001499 0.151693 0.077147 \n", "6 0.075382 0.001480 0.127867 0.074423 \n", "7 0.076096 0.001209 0.123933 0.075158 \n", "8 0.054234 0.001401 0.131838 0.079258 \n", "9 0.055134 0.001837 0.084806 0.073559 \n", "\n", " Al2O3_Liq_mol_frac Na2O_Liq_mol_frac K2O_Liq_mol_frac TiO2_Liq_mol_frac \\\n", "4 0.086033 0.036027 0.009595 0.032280 \n", "6 0.095250 0.039809 0.007245 0.034749 \n", "7 0.098973 0.038523 0.006302 0.033359 \n", "8 0.081206 0.029924 0.009915 0.033501 \n", "9 0.087560 0.040164 0.013421 0.015256 \n", "\n", " P2O5_Liq_mol_frac Cr2O3_Liq_mol_frac Si_Liq_cat_frac Mg_Liq_cat_frac \\\n", "4 0.007444 0.0 0.467035 0.058189 \n", "6 0.003190 0.0 0.471941 0.065807 \n", "7 0.003067 0.0 0.473796 0.066351 \n", "8 0.005460 0.0 0.508885 0.048144 \n", "9 0.001377 0.0 0.548684 0.048257 \n", "\n", " Mn_Liq_cat_frac Fet_Liq_cat_frac Ca_Liq_cat_frac Al_Liq_cat_frac \\\n", "4 0.001316 0.133169 0.067727 0.151055 \n", "6 0.001292 0.111626 0.064970 0.166303 \n", "7 0.001054 0.108063 0.065533 0.172598 \n", "8 0.001243 0.117033 0.070358 0.144173 \n", "9 0.001608 0.074227 0.064383 0.153275 \n", "\n", " Na_Liq_cat_frac K_Liq_cat_frac Ti_Liq_cat_frac P_Liq_cat_frac \\\n", "4 0.063254 0.016846 0.028338 0.013071 \n", "6 0.069505 0.012650 0.030336 0.005570 \n", "7 0.067180 0.010990 0.029087 0.005348 \n", "8 0.053128 0.017603 0.029739 0.009694 \n", "9 0.070308 0.023494 0.013353 0.002411 \n", "\n", " Cr_Liq_cat_frac Mg_Number_Liq_NoFe3 Mg_Number_Liq_Fe3 P T \n", "4 0.0 0.304076 0.304076 5 1392.393338 \n", "6 0.0 0.370875 0.370875 5 1410.107078 \n", "7 0.0 0.380415 0.380415 5 1418.246494 \n", "8 0.0 0.291461 0.291461 5 1388.282711 \n", "9 0.0 0.393976 0.393976 5 1397.830490 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Eq_filt=T_PL_eq23_5kbar_EqTests['Pass An-Ab Eq Test Put2008?'].str.contains(\"Yes\")\n", "T_PL_eq23_filt=T_PL_eq23_5kbar_EqTests.loc[Eq_filt]\n", "T_PL_eq23_filt.head()" ] }, { "cell_type": "markdown", "id": "f9787249-dd84-49d3-95e6-373fe3fe2258", "metadata": {}, "source": [ "### Can also add filters based on Delta An, Ab, Or values\n", "- Here, new dataframe \"T_PL_eq23_filt2\" has calculated and predicted An values within 0.05, 0.03 for Or and 0.03 for Ab" ] }, { "cell_type": "code", "execution_count": 14, "id": "a7985543-06cb-4329-8f02-7be50374e588", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
T_K_calcPass An-Ab Eq Test Put2008?Delta_AnDelta_AbDelta_OrPred_An_EqEPred_Ab_EqFPred_Or_EqGObs_Kd_Ab_AnSiO2_PlagTiO2_PlagAl2O3_PlagFeOt_PlagMnO_PlagMgO_PlagCaO_PlagNa2O_PlagK2O_PlagCr2O3_PlagSample_ID_PlagSi_Plag_cat_propMg_Plag_cat_propFet_Plag_cat_propCa_Plag_cat_propAl_Plag_cat_propNa_Plag_cat_propK_Plag_cat_propMn_Plag_cat_propTi_Plag_cat_propCr_Plag_cat_propsumSi_Plag_cat_fracMg_Plag_cat_fracFet_Plag_cat_fracCa_Plag_cat_fracAl_Plag_cat_fracNa_Plag_cat_fracK_Plag_cat_fracMn_Plag_cat_fracTi_Plag_cat_fracCr_Plag_cat_fracAn_PlagAb_PlagOr_PlagSiO2_LiqTiO2_LiqAl2O3_LiqFeOt_LiqMnO_LiqMgO_LiqCaO_LiqNa2O_LiqK2O_LiqCr2O3_LiqP2O5_LiqH2O_LiqFe3Fet_LiqNiO_LiqCoO_LiqCO2_LiqSample_ID_LiqSiO2_Liq_mol_fracMgO_Liq_mol_fracMnO_Liq_mol_fracFeOt_Liq_mol_fracCaO_Liq_mol_fracAl2O3_Liq_mol_fracNa2O_Liq_mol_fracK2O_Liq_mol_fracTiO2_Liq_mol_fracP2O5_Liq_mol_fracCr2O3_Liq_mol_fracSi_Liq_cat_fracMg_Liq_cat_fracMn_Liq_cat_fracFet_Liq_cat_fracCa_Liq_cat_fracAl_Liq_cat_fracNa_Liq_cat_fracK_Liq_cat_fracTi_Liq_cat_fracP_Liq_cat_fracCr_Liq_cat_fracMg_Number_Liq_NoFe3Mg_Number_Liq_Fe3PT
41392.393338High T: Yes0.0211150.0291070.0280640.4488560.5307430.0003290.36963356.700.1427.600.690.000.119.465.580.480.040.9436740.0027290.0096040.1686950.5413830.1800610.0101920.0000000.0017530.01.8580920.5078730.0014690.0051690.0907900.2913650.0969070.0054850.0000000.0009430.00.4699710.5016360.02839348.103.8813.2016.400.164.026.513.361.360.01.590.000.00.00.00.040.5319990.0662830.0014990.1516930.0771470.0860330.0360270.0095950.0322800.0074440.00.4670350.0581890.0013160.1331690.0677270.1510550.0632540.0168460.0283380.0130710.00.3040760.30407651392.393338
71418.246494High T: Yes0.0262810.0066220.0203360.5078640.5035600.0011440.36668556.400.2027.300.530.000.089.615.480.360.070.9386810.0019850.0073770.1713700.5354990.1768340.0076440.0000000.0025040.01.8418940.5096280.0010780.0040050.0930400.2907330.0960070.0041500.0000000.0013590.00.4815820.4969380.02148049.504.0415.3013.500.134.656.393.620.900.00.660.000.00.00.00.070.5433800.0760960.0012090.1239330.0751580.0989730.0385230.0063020.0333590.0030670.00.4737960.0663510.0010540.1080630.0655330.1725980.0671800.0109900.0290870.0053480.00.3804150.38041551418.246494
81388.282711High T: Yes0.0445790.0219380.0298390.4444670.5028150.0002370.36892556.000.1427.000.640.000.099.685.260.500.080.9320240.0022330.0089080.1726190.5296140.1697350.0106160.0000000.0017530.01.8275020.5099990.0012220.0048740.0944560.2898020.0928780.0058090.0000000.0009590.00.4890460.4808770.03007752.004.0412.5014.300.153.306.712.801.410.01.170.000.00.00.00.080.5732620.0542340.0014010.1318380.0792580.0812060.0299240.0099150.0335010.0054600.00.5088850.0481440.0012430.1170330.0703580.1441730.0531280.0176030.0297390.0096940.00.2914610.29146151388.282711
191514.271339High T: Yes0.0422480.0133020.0050140.8042880.2193590.0002860.29626848.730.0631.460.350.000.2215.412.600.090.0190.8110270.0054580.0048720.2747990.6170990.0839000.0019110.0000000.0007510.01.7998160.4506170.0030330.0027070.1526820.3428680.0466160.0010620.0000000.0004170.00.7620400.2326610.00529948.071.6316.1610.160.207.7211.392.570.500.00.280.060.00.00.00.0190.5106960.1222680.0018000.0902690.1296540.1011710.0264690.0033880.0130260.0012590.00.4510300.1079830.0015890.0797230.1145060.1787020.0467530.0059850.0115040.0022240.00.5752720.57527251514.271339
231431.136469High T: Yes0.0133930.0275200.0185700.6050080.3354820.0000260.29099753.350.2328.830.830.010.3212.674.110.320.0230.8879190.0079400.0115520.2259380.5655100.1326260.0067940.0001410.0028790.01.8413000.4822240.0043120.0062740.1227060.3071260.0720280.0036900.0000770.0015640.00.6184010.3630020.01859648.014.1713.2513.390.234.819.573.471.420.00.860.260.00.00.00.0230.5195580.0775990.0021080.1211820.1109650.0844980.0364040.0098020.0339440.0039400.00.4579040.0683910.0018580.1068020.0977970.1489410.0641680.0172780.0299160.0069440.00.3903660.39036651431.136469
\n", "
" ], "text/plain": [ " T_K_calc Pass An-Ab Eq Test Put2008? Delta_An Delta_Ab Delta_Or \\\n", "4 1392.393338 High T: Yes 0.021115 0.029107 0.028064 \n", "7 1418.246494 High T: Yes 0.026281 0.006622 0.020336 \n", "8 1388.282711 High T: Yes 0.044579 0.021938 0.029839 \n", "19 1514.271339 High T: Yes 0.042248 0.013302 0.005014 \n", "23 1431.136469 High T: Yes 0.013393 0.027520 0.018570 \n", "\n", " Pred_An_EqE Pred_Ab_EqF Pred_Or_EqG Obs_Kd_Ab_An SiO2_Plag TiO2_Plag \\\n", "4 0.448856 0.530743 0.000329 0.369633 56.70 0.14 \n", "7 0.507864 0.503560 0.001144 0.366685 56.40 0.20 \n", "8 0.444467 0.502815 0.000237 0.368925 56.00 0.14 \n", "19 0.804288 0.219359 0.000286 0.296268 48.73 0.06 \n", "23 0.605008 0.335482 0.000026 0.290997 53.35 0.23 \n", "\n", " Al2O3_Plag FeOt_Plag MnO_Plag MgO_Plag CaO_Plag Na2O_Plag K2O_Plag \\\n", "4 27.60 0.69 0.00 0.11 9.46 5.58 0.48 \n", "7 27.30 0.53 0.00 0.08 9.61 5.48 0.36 \n", "8 27.00 0.64 0.00 0.09 9.68 5.26 0.50 \n", "19 31.46 0.35 0.00 0.22 15.41 2.60 0.09 \n", "23 28.83 0.83 0.01 0.32 12.67 4.11 0.32 \n", "\n", " Cr2O3_Plag Sample_ID_Plag Si_Plag_cat_prop Mg_Plag_cat_prop \\\n", "4 0.0 4 0.943674 0.002729 \n", "7 0.0 7 0.938681 0.001985 \n", "8 0.0 8 0.932024 0.002233 \n", "19 0.0 19 0.811027 0.005458 \n", "23 0.0 23 0.887919 0.007940 \n", "\n", " Fet_Plag_cat_prop Ca_Plag_cat_prop Al_Plag_cat_prop Na_Plag_cat_prop \\\n", "4 0.009604 0.168695 0.541383 0.180061 \n", "7 0.007377 0.171370 0.535499 0.176834 \n", "8 0.008908 0.172619 0.529614 0.169735 \n", "19 0.004872 0.274799 0.617099 0.083900 \n", "23 0.011552 0.225938 0.565510 0.132626 \n", "\n", " K_Plag_cat_prop Mn_Plag_cat_prop Ti_Plag_cat_prop Cr_Plag_cat_prop \\\n", "4 0.010192 0.000000 0.001753 0.0 \n", "7 0.007644 0.000000 0.002504 0.0 \n", "8 0.010616 0.000000 0.001753 0.0 \n", "19 0.001911 0.000000 0.000751 0.0 \n", "23 0.006794 0.000141 0.002879 0.0 \n", "\n", " sum Si_Plag_cat_frac Mg_Plag_cat_frac Fet_Plag_cat_frac \\\n", "4 1.858092 0.507873 0.001469 0.005169 \n", "7 1.841894 0.509628 0.001078 0.004005 \n", "8 1.827502 0.509999 0.001222 0.004874 \n", "19 1.799816 0.450617 0.003033 0.002707 \n", "23 1.841300 0.482224 0.004312 0.006274 \n", "\n", " Ca_Plag_cat_frac Al_Plag_cat_frac Na_Plag_cat_frac K_Plag_cat_frac \\\n", "4 0.090790 0.291365 0.096907 0.005485 \n", "7 0.093040 0.290733 0.096007 0.004150 \n", "8 0.094456 0.289802 0.092878 0.005809 \n", "19 0.152682 0.342868 0.046616 0.001062 \n", "23 0.122706 0.307126 0.072028 0.003690 \n", "\n", " Mn_Plag_cat_frac Ti_Plag_cat_frac Cr_Plag_cat_frac An_Plag Ab_Plag \\\n", "4 0.000000 0.000943 0.0 0.469971 0.501636 \n", "7 0.000000 0.001359 0.0 0.481582 0.496938 \n", "8 0.000000 0.000959 0.0 0.489046 0.480877 \n", "19 0.000000 0.000417 0.0 0.762040 0.232661 \n", "23 0.000077 0.001564 0.0 0.618401 0.363002 \n", "\n", " Or_Plag SiO2_Liq TiO2_Liq Al2O3_Liq FeOt_Liq MnO_Liq MgO_Liq \\\n", "4 0.028393 48.10 3.88 13.20 16.40 0.16 4.02 \n", "7 0.021480 49.50 4.04 15.30 13.50 0.13 4.65 \n", "8 0.030077 52.00 4.04 12.50 14.30 0.15 3.30 \n", "19 0.005299 48.07 1.63 16.16 10.16 0.20 7.72 \n", "23 0.018596 48.01 4.17 13.25 13.39 0.23 4.81 \n", "\n", " CaO_Liq Na2O_Liq K2O_Liq Cr2O3_Liq P2O5_Liq H2O_Liq Fe3Fet_Liq \\\n", "4 6.51 3.36 1.36 0.0 1.59 0.00 0.0 \n", "7 6.39 3.62 0.90 0.0 0.66 0.00 0.0 \n", "8 6.71 2.80 1.41 0.0 1.17 0.00 0.0 \n", "19 11.39 2.57 0.50 0.0 0.28 0.06 0.0 \n", "23 9.57 3.47 1.42 0.0 0.86 0.26 0.0 \n", "\n", " NiO_Liq CoO_Liq CO2_Liq Sample_ID_Liq SiO2_Liq_mol_frac \\\n", "4 0.0 0.0 0.0 4 0.531999 \n", "7 0.0 0.0 0.0 7 0.543380 \n", "8 0.0 0.0 0.0 8 0.573262 \n", "19 0.0 0.0 0.0 19 0.510696 \n", "23 0.0 0.0 0.0 23 0.519558 \n", "\n", " MgO_Liq_mol_frac MnO_Liq_mol_frac FeOt_Liq_mol_frac CaO_Liq_mol_frac \\\n", "4 0.066283 0.001499 0.151693 0.077147 \n", "7 0.076096 0.001209 0.123933 0.075158 \n", "8 0.054234 0.001401 0.131838 0.079258 \n", "19 0.122268 0.001800 0.090269 0.129654 \n", "23 0.077599 0.002108 0.121182 0.110965 \n", "\n", " Al2O3_Liq_mol_frac Na2O_Liq_mol_frac K2O_Liq_mol_frac \\\n", "4 0.086033 0.036027 0.009595 \n", "7 0.098973 0.038523 0.006302 \n", "8 0.081206 0.029924 0.009915 \n", "19 0.101171 0.026469 0.003388 \n", "23 0.084498 0.036404 0.009802 \n", "\n", " TiO2_Liq_mol_frac P2O5_Liq_mol_frac Cr2O3_Liq_mol_frac Si_Liq_cat_frac \\\n", "4 0.032280 0.007444 0.0 0.467035 \n", "7 0.033359 0.003067 0.0 0.473796 \n", "8 0.033501 0.005460 0.0 0.508885 \n", "19 0.013026 0.001259 0.0 0.451030 \n", "23 0.033944 0.003940 0.0 0.457904 \n", "\n", " Mg_Liq_cat_frac Mn_Liq_cat_frac Fet_Liq_cat_frac Ca_Liq_cat_frac \\\n", "4 0.058189 0.001316 0.133169 0.067727 \n", "7 0.066351 0.001054 0.108063 0.065533 \n", "8 0.048144 0.001243 0.117033 0.070358 \n", "19 0.107983 0.001589 0.079723 0.114506 \n", "23 0.068391 0.001858 0.106802 0.097797 \n", "\n", " Al_Liq_cat_frac Na_Liq_cat_frac K_Liq_cat_frac Ti_Liq_cat_frac \\\n", "4 0.151055 0.063254 0.016846 0.028338 \n", "7 0.172598 0.067180 0.010990 0.029087 \n", "8 0.144173 0.053128 0.017603 0.029739 \n", "19 0.178702 0.046753 0.005985 0.011504 \n", "23 0.148941 0.064168 0.017278 0.029916 \n", "\n", " P_Liq_cat_frac Cr_Liq_cat_frac Mg_Number_Liq_NoFe3 Mg_Number_Liq_Fe3 \\\n", "4 0.013071 0.0 0.304076 0.304076 \n", "7 0.005348 0.0 0.380415 0.380415 \n", "8 0.009694 0.0 0.291461 0.291461 \n", "19 0.002224 0.0 0.575272 0.575272 \n", "23 0.006944 0.0 0.390366 0.390366 \n", "\n", " P T \n", "4 5 1392.393338 \n", "7 5 1418.246494 \n", "8 5 1388.282711 \n", "19 5 1514.271339 \n", "23 5 1431.136469 " ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "Eq_filt_An=T_PL_eq23_5kbar_EqTests['Delta_An']<0.05\n", "Eq_filt_Or=T_PL_eq23_5kbar_EqTests['Delta_Or']<0.03\n", "Eq_filt_Ab=T_PL_eq23_5kbar_EqTests['Delta_Ab']<0.03\n", "\n", "T_PL_eq23_filt2=T_PL_eq23_5kbar_EqTests.loc[Eq_filt&Eq_filt_An&Eq_filt_Ab&Eq_filt_Or]\n", "T_PL_eq23_filt2" ] }, { "cell_type": "markdown", "id": "f8af0476-1fc0-466b-b5a7-18c3784f162e", "metadata": {}, "source": [ "## Example 2 - Plagioclase-Liquid barometry\n", "- Note, Putirka (2008) questions whether plagioclase barometers are at all accurate, so use with extreme caution" ] }, { "cell_type": "code", "execution_count": 15, "id": "313ade07-60bc-47e3-a578-e1abd39db44e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 4.041798\n", "1 3.060993\n", "2 3.936693\n", "3 2.432249\n", "4 0.986835\n", "dtype: float64" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Press=pt.calculate_fspar_liq_press(liq_comps=Liqs_PL, plag_comps=Plags, \n", " equationP=\"P_Put2008_eq25\", T=1300)\n", "Press.head()" ] }, { "cell_type": "code", "execution_count": 16, "id": "6d934c26-8404-4030-b143-bd756b42be85", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Pass An-Ab Eq Test Put2008?P_kbar_calcDelta_AnDelta_AbDelta_OrPred_An_EqEPred_Ab_EqFPred_Or_EqGObs_Kd_Ab_AnSiO2_PlagTiO2_PlagAl2O3_PlagFeOt_PlagMnO_PlagMgO_PlagCaO_PlagNa2O_PlagK2O_PlagCr2O3_PlagSample_ID_PlagSi_Plag_cat_propMg_Plag_cat_propFet_Plag_cat_propCa_Plag_cat_propAl_Plag_cat_propNa_Plag_cat_propK_Plag_cat_propMn_Plag_cat_propTi_Plag_cat_propCr_Plag_cat_propsumSi_Plag_cat_fracMg_Plag_cat_fracFet_Plag_cat_fracCa_Plag_cat_fracAl_Plag_cat_fracNa_Plag_cat_fracK_Plag_cat_fracMn_Plag_cat_fracTi_Plag_cat_fracCr_Plag_cat_fracAn_PlagAb_PlagOr_PlagSiO2_LiqTiO2_LiqAl2O3_LiqFeOt_LiqMnO_LiqMgO_LiqCaO_LiqNa2O_LiqK2O_LiqCr2O3_LiqP2O5_LiqH2O_LiqFe3Fet_LiqNiO_LiqCoO_LiqCO2_LiqSample_ID_LiqSiO2_Liq_mol_fracMgO_Liq_mol_fracMnO_Liq_mol_fracFeOt_Liq_mol_fracCaO_Liq_mol_fracAl2O3_Liq_mol_fracNa2O_Liq_mol_fracK2O_Liq_mol_fracTiO2_Liq_mol_fracP2O5_Liq_mol_fracCr2O3_Liq_mol_fracSi_Liq_cat_fracMg_Liq_cat_fracMn_Liq_cat_fracFet_Liq_cat_fracCa_Liq_cat_fracAl_Liq_cat_fracNa_Liq_cat_fracK_Liq_cat_fracTi_Liq_cat_fracP_Liq_cat_fracCr_Liq_cat_fracMg_Number_Liq_NoFe3Mg_Number_Liq_Fe3PT
0Low T: Yes4.0417980.0352850.0524590.0291560.4524140.5011970.0000590.51010257.30.0926.60.430.00.038.336.110.490.000.9536600.0007440.0059850.1485450.5217680.1971640.0104040.00.0011270.01.8393970.5184640.0004050.0032540.0807570.2836630.1071890.0056560.00.0006130.00.4171290.5536560.02921549.13.2214.414.80.143.206.723.341.700.01.130.00.00.00.00.000.5499880.0534360.0013280.1386400.0806520.0950520.0362690.0121460.0271300.0053580.00.4787390.0465130.0011560.1206800.0702040.1654770.0631410.0211460.0236160.0093280.00.2781940.2781944.0417981300
1Low T: Yes3.0609930.0244600.0020300.0281340.4775840.5165140.0001980.45547556.50.1226.90.470.00.058.955.660.470.010.9403450.0012410.0065420.1596010.5276530.1826430.0099790.00.0015020.01.8295060.5139890.0006780.0035760.0872370.2884130.0998320.0054550.00.0008210.00.4531250.5185430.02833249.23.8915.313.70.123.886.763.441.220.00.830.00.00.00.00.010.5455000.0641310.0011270.1270300.0803060.0999650.0369750.0086280.0324420.0038960.00.4745690.0557920.0009800.1105120.0698640.1739330.0643340.0150120.0282240.0067780.00.3354750.3354753.0609931300
2Low T: Yes3.9366930.0429340.0138690.0230900.4611950.5721720.0003460.50000457.60.1126.30.500.00.078.506.270.400.020.9586530.0017370.0069590.1515760.5158840.2023270.0084930.00.0013770.01.8470060.5190310.0009400.0037680.0820660.2793080.1095430.0045980.00.0007460.00.4182610.5583030.02343549.63.7915.813.00.144.266.593.651.040.00.630.00.00.00.00.020.5472690.0700710.0013080.1199550.0779070.1027310.0390420.0073190.0314550.0029430.00.4750450.0608230.0011360.1041240.0676260.1783480.0677790.0127070.0273040.0051080.00.3687360.3687363.9366931300
3Low T: Yes2.4322490.0046280.0236720.0496700.4440110.5253420.0000210.46102857.20.1627.00.620.00.069.035.580.840.030.9519960.0014890.0086300.1610270.5296140.1800610.0178350.00.0020030.01.8526550.5138550.0008040.0046580.0869170.2858680.0971910.0096270.00.0010810.00.4486400.5016700.04969147.14.2112.017.80.183.407.282.932.020.02.320.00.00.00.00.030.5212690.0560960.0016870.1647470.0863270.0782620.0314360.0142600.0350470.0108690.00.4593380.0494310.0014870.1451740.0760700.1379270.0554020.0251320.0308830.0191560.00.2540010.2540012.4322491300
4Low T: Yes0.9868350.0310260.0611520.0281970.4389450.5627880.0001960.36963356.70.1427.60.690.00.119.465.580.480.040.9436740.0027290.0096040.1686950.5413830.1800610.0101920.00.0017530.01.8580920.5078730.0014690.0051690.0907900.2913650.0969070.0054850.00.0009430.00.4699710.5016360.02839348.13.8813.216.40.164.026.513.361.360.01.590.00.00.00.00.040.5319990.0662830.0014990.1516930.0771470.0860330.0360270.0095950.0322800.0074440.00.4670350.0581890.0013160.1331690.0677270.1510550.0632540.0168460.0283380.0130710.00.3040760.3040760.9868351300
\n", "
" ], "text/plain": [ " Pass An-Ab Eq Test Put2008? P_kbar_calc Delta_An Delta_Ab Delta_Or \\\n", "0 Low T: Yes 4.041798 0.035285 0.052459 0.029156 \n", "1 Low T: Yes 3.060993 0.024460 0.002030 0.028134 \n", "2 Low T: Yes 3.936693 0.042934 0.013869 0.023090 \n", "3 Low T: Yes 2.432249 0.004628 0.023672 0.049670 \n", "4 Low T: Yes 0.986835 0.031026 0.061152 0.028197 \n", "\n", " Pred_An_EqE Pred_Ab_EqF Pred_Or_EqG Obs_Kd_Ab_An SiO2_Plag TiO2_Plag \\\n", "0 0.452414 0.501197 0.000059 0.510102 57.3 0.09 \n", "1 0.477584 0.516514 0.000198 0.455475 56.5 0.12 \n", "2 0.461195 0.572172 0.000346 0.500004 57.6 0.11 \n", "3 0.444011 0.525342 0.000021 0.461028 57.2 0.16 \n", "4 0.438945 0.562788 0.000196 0.369633 56.7 0.14 \n", "\n", " Al2O3_Plag FeOt_Plag MnO_Plag MgO_Plag CaO_Plag Na2O_Plag K2O_Plag \\\n", "0 26.6 0.43 0.0 0.03 8.33 6.11 0.49 \n", "1 26.9 0.47 0.0 0.05 8.95 5.66 0.47 \n", "2 26.3 0.50 0.0 0.07 8.50 6.27 0.40 \n", "3 27.0 0.62 0.0 0.06 9.03 5.58 0.84 \n", "4 27.6 0.69 0.0 0.11 9.46 5.58 0.48 \n", "\n", " Cr2O3_Plag Sample_ID_Plag Si_Plag_cat_prop Mg_Plag_cat_prop \\\n", "0 0.0 0 0.953660 0.000744 \n", "1 0.0 1 0.940345 0.001241 \n", "2 0.0 2 0.958653 0.001737 \n", "3 0.0 3 0.951996 0.001489 \n", "4 0.0 4 0.943674 0.002729 \n", "\n", " Fet_Plag_cat_prop Ca_Plag_cat_prop Al_Plag_cat_prop Na_Plag_cat_prop \\\n", "0 0.005985 0.148545 0.521768 0.197164 \n", "1 0.006542 0.159601 0.527653 0.182643 \n", "2 0.006959 0.151576 0.515884 0.202327 \n", "3 0.008630 0.161027 0.529614 0.180061 \n", "4 0.009604 0.168695 0.541383 0.180061 \n", "\n", " K_Plag_cat_prop Mn_Plag_cat_prop Ti_Plag_cat_prop Cr_Plag_cat_prop \\\n", "0 0.010404 0.0 0.001127 0.0 \n", "1 0.009979 0.0 0.001502 0.0 \n", "2 0.008493 0.0 0.001377 0.0 \n", "3 0.017835 0.0 0.002003 0.0 \n", "4 0.010192 0.0 0.001753 0.0 \n", "\n", " sum Si_Plag_cat_frac Mg_Plag_cat_frac Fet_Plag_cat_frac \\\n", "0 1.839397 0.518464 0.000405 0.003254 \n", "1 1.829506 0.513989 0.000678 0.003576 \n", "2 1.847006 0.519031 0.000940 0.003768 \n", "3 1.852655 0.513855 0.000804 0.004658 \n", "4 1.858092 0.507873 0.001469 0.005169 \n", "\n", " Ca_Plag_cat_frac Al_Plag_cat_frac Na_Plag_cat_frac K_Plag_cat_frac \\\n", "0 0.080757 0.283663 0.107189 0.005656 \n", "1 0.087237 0.288413 0.099832 0.005455 \n", "2 0.082066 0.279308 0.109543 0.004598 \n", "3 0.086917 0.285868 0.097191 0.009627 \n", "4 0.090790 0.291365 0.096907 0.005485 \n", "\n", " Mn_Plag_cat_frac Ti_Plag_cat_frac Cr_Plag_cat_frac An_Plag Ab_Plag \\\n", "0 0.0 0.000613 0.0 0.417129 0.553656 \n", "1 0.0 0.000821 0.0 0.453125 0.518543 \n", "2 0.0 0.000746 0.0 0.418261 0.558303 \n", "3 0.0 0.001081 0.0 0.448640 0.501670 \n", "4 0.0 0.000943 0.0 0.469971 0.501636 \n", "\n", " Or_Plag SiO2_Liq TiO2_Liq Al2O3_Liq FeOt_Liq MnO_Liq MgO_Liq \\\n", "0 0.029215 49.1 3.22 14.4 14.8 0.14 3.20 \n", "1 0.028332 49.2 3.89 15.3 13.7 0.12 3.88 \n", "2 0.023435 49.6 3.79 15.8 13.0 0.14 4.26 \n", "3 0.049691 47.1 4.21 12.0 17.8 0.18 3.40 \n", "4 0.028393 48.1 3.88 13.2 16.4 0.16 4.02 \n", "\n", " CaO_Liq Na2O_Liq K2O_Liq Cr2O3_Liq P2O5_Liq H2O_Liq Fe3Fet_Liq \\\n", "0 6.72 3.34 1.70 0.0 1.13 0.0 0.0 \n", "1 6.76 3.44 1.22 0.0 0.83 0.0 0.0 \n", "2 6.59 3.65 1.04 0.0 0.63 0.0 0.0 \n", "3 7.28 2.93 2.02 0.0 2.32 0.0 0.0 \n", "4 6.51 3.36 1.36 0.0 1.59 0.0 0.0 \n", "\n", " NiO_Liq CoO_Liq CO2_Liq Sample_ID_Liq SiO2_Liq_mol_frac \\\n", "0 0.0 0.0 0.0 0 0.549988 \n", "1 0.0 0.0 0.0 1 0.545500 \n", "2 0.0 0.0 0.0 2 0.547269 \n", "3 0.0 0.0 0.0 3 0.521269 \n", "4 0.0 0.0 0.0 4 0.531999 \n", "\n", " MgO_Liq_mol_frac MnO_Liq_mol_frac FeOt_Liq_mol_frac CaO_Liq_mol_frac \\\n", "0 0.053436 0.001328 0.138640 0.080652 \n", "1 0.064131 0.001127 0.127030 0.080306 \n", "2 0.070071 0.001308 0.119955 0.077907 \n", "3 0.056096 0.001687 0.164747 0.086327 \n", "4 0.066283 0.001499 0.151693 0.077147 \n", "\n", " Al2O3_Liq_mol_frac Na2O_Liq_mol_frac K2O_Liq_mol_frac TiO2_Liq_mol_frac \\\n", "0 0.095052 0.036269 0.012146 0.027130 \n", "1 0.099965 0.036975 0.008628 0.032442 \n", "2 0.102731 0.039042 0.007319 0.031455 \n", "3 0.078262 0.031436 0.014260 0.035047 \n", "4 0.086033 0.036027 0.009595 0.032280 \n", "\n", " P2O5_Liq_mol_frac Cr2O3_Liq_mol_frac Si_Liq_cat_frac Mg_Liq_cat_frac \\\n", "0 0.005358 0.0 0.478739 0.046513 \n", "1 0.003896 0.0 0.474569 0.055792 \n", "2 0.002943 0.0 0.475045 0.060823 \n", "3 0.010869 0.0 0.459338 0.049431 \n", "4 0.007444 0.0 0.467035 0.058189 \n", "\n", " Mn_Liq_cat_frac Fet_Liq_cat_frac Ca_Liq_cat_frac Al_Liq_cat_frac \\\n", "0 0.001156 0.120680 0.070204 0.165477 \n", "1 0.000980 0.110512 0.069864 0.173933 \n", "2 0.001136 0.104124 0.067626 0.178348 \n", "3 0.001487 0.145174 0.076070 0.137927 \n", "4 0.001316 0.133169 0.067727 0.151055 \n", "\n", " Na_Liq_cat_frac K_Liq_cat_frac Ti_Liq_cat_frac P_Liq_cat_frac \\\n", "0 0.063141 0.021146 0.023616 0.009328 \n", "1 0.064334 0.015012 0.028224 0.006778 \n", "2 0.067779 0.012707 0.027304 0.005108 \n", "3 0.055402 0.025132 0.030883 0.019156 \n", "4 0.063254 0.016846 0.028338 0.013071 \n", "\n", " Cr_Liq_cat_frac Mg_Number_Liq_NoFe3 Mg_Number_Liq_Fe3 P T \n", "0 0.0 0.278194 0.278194 4.041798 1300 \n", "1 0.0 0.335475 0.335475 3.060993 1300 \n", "2 0.0 0.368736 0.368736 3.936693 1300 \n", "3 0.0 0.254001 0.254001 2.432249 1300 \n", "4 0.0 0.304076 0.304076 0.986835 1300 " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Press=pt.calculate_fspar_liq_press(liq_comps=Liqs_PL, plag_comps=Plags, \n", " equationP=\"P_Put2008_eq25\", T=1300, eq_tests=True)\n", "Press.head()" ] }, { "cell_type": "markdown", "id": "f11830e4-779b-47f8-b999-710b14a08460", "metadata": {}, "source": [ "## Example 4 - Kspar-Liquid thermometry" ] }, { "cell_type": "code", "execution_count": 18, "id": "f8590dd5-d90b-4832-9aa0-8573c65c315b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 931.611608\n", "1 874.979583\n", "2 700.236443\n", "3 745.871566\n", "4 795.809510\n", "dtype: float64" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "T_KL_24=pt.calculate_fspar_liq_temp(kspar_comps=Kspars, liq_comps=Liqs_KL, \n", " equationT=\"T_Put2008_eq24b\", P=5)-273.15\n", "T_KL_24.head()" ] }, { "cell_type": "code", "execution_count": 19, "id": "2c926591-421f-449a-aef0-5663267610b6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sorry, no equilibrium tests implemented for Kspar-Liquid\n" ] }, { "data": { "text/plain": [ "0 931.611608\n", "1 874.979583\n", "2 700.236443\n", "3 745.871566\n", "4 795.809510\n", "dtype: float64" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Currently, we haven't implemented any equilibrium tests for Kfeldspar. \n", "T_KL_24=pt.calculate_fspar_liq_temp(kspar_comps=Kspars, liq_comps=Liqs_KL, \n", " equationT=\"T_Put2008_eq24b\", P=5, eq_tests=True)-273.15\n", "T_KL_24.head()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 5 }