

Quality Estimation in Practice: from Implementation to State-of-the-Art

Fabio Kepler Unbabel Al

Roadmap

In Practice

Unbabel's use case (pipeline)

• Implementation

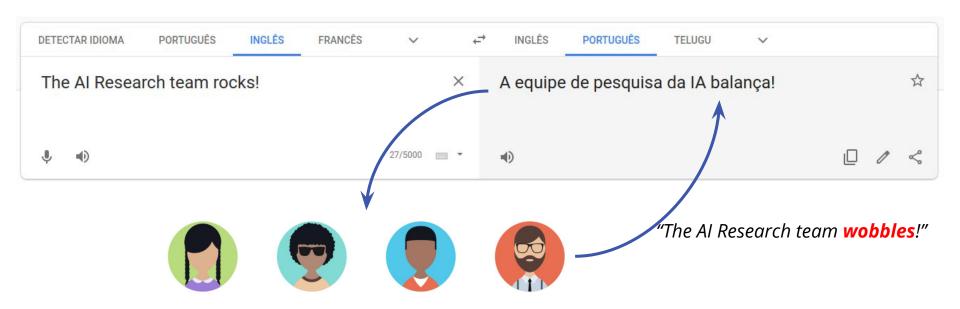
- WMT-QE winning systems from 2016 to 2018
- Impact in production

State-of-the-Art

- WMT-QE 2019 participation
 - New models, much better numbers
 - Same observation as general consensus in the community: large pre-trained models helped a lot
 - Smart ensembling gave a boost

Why Quality Estimation?

Is Machine Translation Solved?



We still need humans in the loop

MT Quality

What could we do if we knew the quality of a translation?

- If it is good, we can skip the human (+speed, -\$)
- Otherwise, we can at least highlight the parts that are wrong
- Ensures final quality in all cases (higher MQM)

Problem

- NMT models are not well calibrated
 - Therefore no reliable confidence score is provided with translations
- In fact, they are usually over-confident
 - Even when they hallucinate

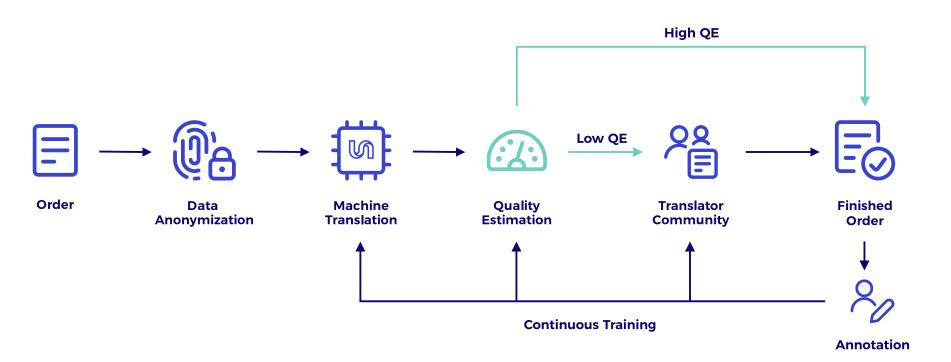
MT Quality Estimation

- Use a different system to estimate how good a translation is
- With no access to a reference translation.
 - o In other words, "not constrained by a (single) reference" (off- but hot-topic)
- Levels:
 - Word
 - Sentence
 - Document

In Practice

(use case)

Unbabel's Pipeline



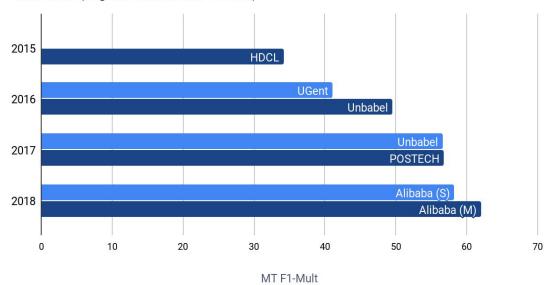
WMT QE Shared Task

WMT QE Competitions (2015-18)

- English-German as the historical benchmark
- Based on a SMT model
- Big improvements each year

WMT-QE State-of-the-Art systems

Word Level (English-German SMT test set)



Previous Winning Models

- 2016-2017: Unbabel's submissions were based on linear stackings of different models
 - A deep neural model with two "bi-directional" GRUs (later called NuQE)
 - A feature-rich linear model
 - Plus predictions from the winning system of the 2017 APE shared task (Marcin)

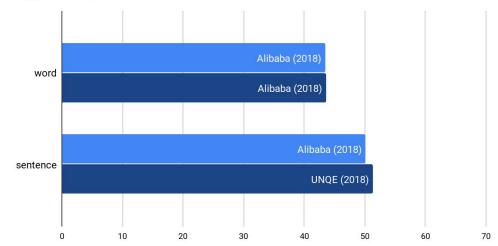
Previous Winning Models

- 2017: POSTECH (Korea) devised a neat 2-stages neural model
 - The Predictor-Estimator
 - It allowed pretraining with large parallel data in a "translation language-model" fashion (more than a year before BERT)
- 2018: Alibaba improved on it with a few tweaks on both submodels
 - E.g., a Predictor using Transformers

WMT QE Competitions (2018)

- Then data got neural
 - New NMT-based translations
 - Scores ballpark dropped by 10 points
- Alibaba's model still best.
- UNQE's submission also uses a
 2-stages architecture:
 - A "bi-directional" RNN
 encoder-decoder with attention
 - Then an HTER prediction block
- Also pretrained with large parallel data

State-of-the-Art QE systems on WMT-QE



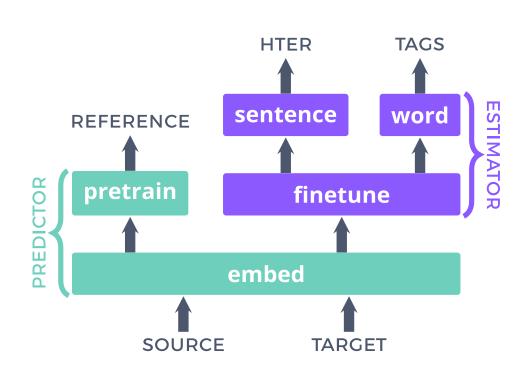
The Predictor-Estimator

Predictor-Estimator

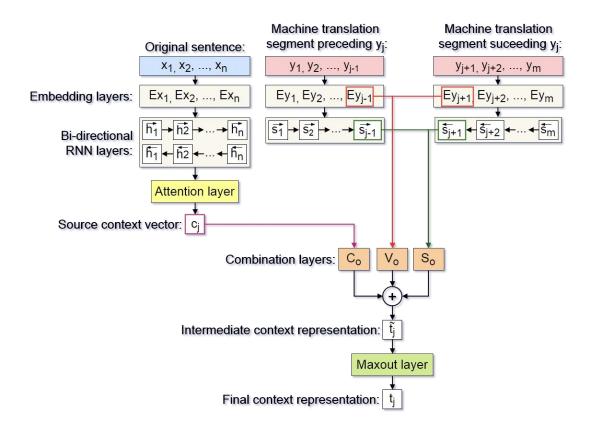
Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon Na. "*Predictor-estimator using multilevel task learning with stack propagation for neural quality estimation*." Proceedings of the Second Conference on Machine Translation. 2017.

Predictor-Estimator

- The predictor module is pretrained on parallel corpora
 - Predicting every token on the TARGET side given its left and right context produced by two uni-directional LSTMs
- The estimator module is trained in a finetuning step
 - Estimates word- and sentence-level scores from the input embedded by the predictor module



Predictor



Estimator



Predictor-Estimator

- Unfortunately, no reference implementation made available
- Neither from Alibaba's variant

Implementation

Introducing

OpenKiwi toolkit

Goals

- Facilitate the **research S production** feedback loop
- Serve as foundation for future research
- Make Unbabel an Industry Leader in QE

In a Nutshell

- Implementation of several WMT winning systems in one single framework
- **State-of-the-art** results
- Easy-to-use API for training and inference
- Extensive documentation
- Modular design for easy extensibility
 - Bulletproofed in this year's shared task submission

OpenKiwi production-easy

- Tested (76% coverage)
- Documented

```
predict(examples, batch_size=1)
                                   [source]
                                                                                                     age source
  Create Predictions for a list of examples.
                     • examples - A dict mapping field names to the list of raw examples (strings).
    Parameters:
                     • batch_size - Batch Size to use. Default 1.
    Returns:
                   A dict mapping prediction levels (word, sentence ..) to the model predictions for
                   each example.
    Raises:
                    Exception – If an example has an empty string as source or target field.
  Example
                                                                                                     aluate a
                                                                                                     ıi. a
    >>> import kiwi
                                                                                                     2015-18
    >>> predictor = kiwi.load_model('tests/toy-data/models/nuge.torch')
                                                                                                    Using
   >>> src = ['a b c', 'd e f g']
                                                                                                     esults on
    >>> tgt = ['q w e r', 't y']
   >>> align = ['0-0 1-1 1-2', '1-1 3-0']
    >>> examples = [kiwi.constants.SOURCE: src,
                     kiwi.constants.TARGET: tgt,
                     kiwi.constants.ALIGNMENTS: align]
    >>> predictor.predict(examples)
    {'tags': [[0.4760947525501251,
       0.47569847106933594,
       0.4948718547821045,
       0.5305878520011902],
      [0.5105430483818054, 0.5252899527549744]]}
```

OpenKiwi production-easy

- Simple usage as a Python package
- Easy training of models with any data
 - Like Unbabel's internal

Easy usage of any pre-trained model

```
Run via API:

import kiwi

nuqe_config = 'experiments/train_nuqe.yaml'
kiwi.train(nuqe_config)
```

Or via CLI:

```
kiwi train --config experiments/train_nuqe.yaml
```

OpenKiwi production-easy

Or train and predict in one go

```
$ pip install openkiwi
import kiwi
config = 'config.yml'
run info = kiwi.train(config)
model = kiwi.load model(
    run info.model path
source = [
    'the Sharpen tool sharpens areas in an image .'
target = [
    'der Schärfen-Werkezug Bereiche in einem Bild schärfer erscheint .'
examples = [{
    'source': source,
    'target': target
}]
predictions = model.predict(examples)
```

OpenKiwi research-easy

Quick experimentation

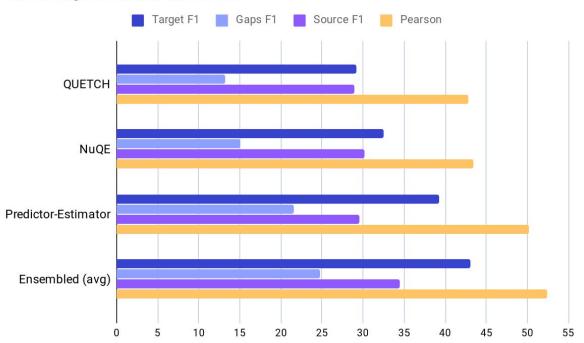
Modular Design → Easily Extensible

Automatic tracking of results through MLFlow

Implemented Models

OpenKiwi Models

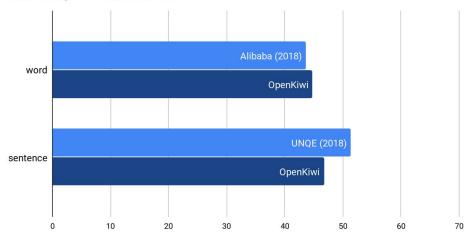
WMT18 English-German NMT dev set



OpenKiwi scoreboard

- Better at word-level
- Trailing a bit on sentence-level
- Using order of magnitude less compute
 - Predictor-Estimator is only pre-trained
 on only 3M in-domain data

State-of-the-Art QE systems as of 2018



Open Source

Contributions are welcome!

https://github.com/Unbabel/OpenKiwi

Simple example

Source

This is a simple sentence.

MT

C'est une phrase simple.

```
['OK', 'OK', 'OK', 'OK', 'OK', 'OK']

MACHINE TRANSLATION: C' est une phrase simple
```

```
import kiwi
predest = kiwi.load model('qe model.torch')
source english = ['This is a simple sentence .']
mt french = ["C' est une phrase simple ."]
probs = predest.predict({kiwi.constants.SOURCE: source english,
                        kiwi.constants.TARGET: mt french})
print(probs)
{ 'tags': [[0.051981423050165176,
                                                  0.052
  0.043979279696941376,
  0.005278203636407852,
  0.006495318375527859.
                                                  0.044
  0.109250508248806,
  0.00104308931622654211,
                                                              -0.6
                                                 0.0053
 'sentence scores': [0.028975505381822586]}
                                          une
                                                 0.0065
                                       phrase
                                                              -0.4
                                                  0.11
                                        simple
                                                              -0.2
                                                  0.001
                                                              -0.0
                                          Probabilities of being BAD
```

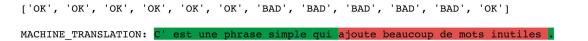
BAD Example

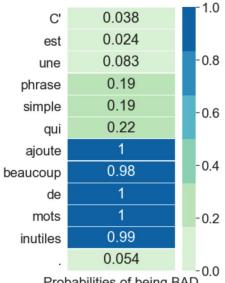
Source

This is a simple sentence.

MT

C' est une phrase simple qui ajoute beaucoup de mots inutiles.





Probabilities of being BAD

'sentence scores': [0.5956864953041077]

Demonstration

Impact in Production Unbabel

• Skipping **5%** of the jobs

Average MQM of skipped jobs close to 80

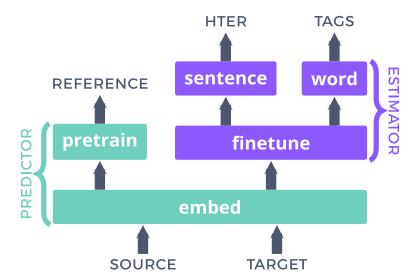
• For **28+** Language Pairs

State-of-the-Art

WMT19 QE Shared Task

Surfing the wave

- Given the great modularity provided in OpenKiwi
- We exploited the similarity of the current wave of Muppet Models[®] to the Predictor-Estimator 2-stages approach



Surfing the wave

- We created several variants replacing the **predictor** by various pretrained models:
 - **PredEst-RNN**: the original bi-LSTM Predictor-Estimator as implemented in OpenKiwi
 - PredEst-Trans: a Transformer-based version like implemented by Alibaba (2018)
 - **PredEst-BERT**: the pretrained multilingual BERT as the Predictor
 - PredEst-XLM: the pretrained XLM as the Predictor

Other models

Linear

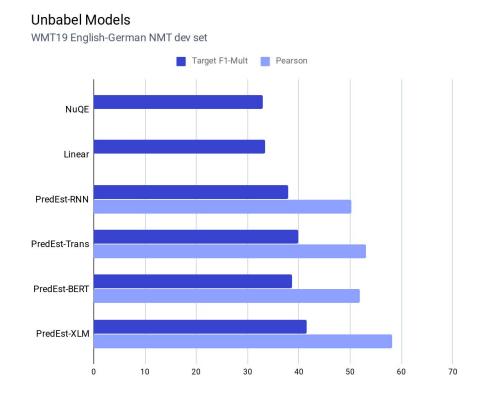
- First-order sequential model incorporating rich features (ngrams, POS tags, dependencies)
- As open-sourced in OpenKiwi

NuQE

- Same deep neural model as open-sourced in OpenKiwi
- Just a few hyper-params tweaked
- No pre-training

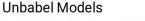
Validation Results English-German

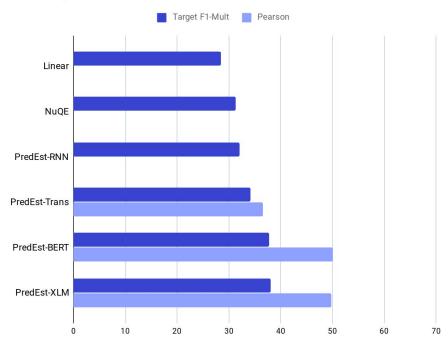
- XLM provided the best single model
- Not that much improvement over plain pre-trained Predictor with Transformers
 - In-domain parallel data of about 3M
- NuQE and linear are the only models that use no extra data (despite POS tags)
 - They lack behind the weakest
 Predictor-Estimator by almost 5 points



Validation Results English-Russian

- BERT and XLM performed considerably better
- Most probably because English-Russian in-domain parallel corpus for pre-training the Predictor was very noisy
- QE data is also much more skewed that for English-German
 - Large majority of sentences with HTER 0
 - o Then a bunch with HTER 1
 - And very few in between





Other models

APE-QE

- A translation or an APE system can be used for QE by treating its output as a surrogate reference and computing quality labels for the MT given that reference
 - PSEUDO-APE: Off-the-shelf translation system (OpenNMT)
 - APE-BERT: APE system built on BERT; described in detail in Unbabel's APE task paper

Ensemble methods

Word level

 Learn convex combination of model predictions via Powell's conjugate direction method (a variant of coordinate descent) to optimize F1-Mult score on dev set

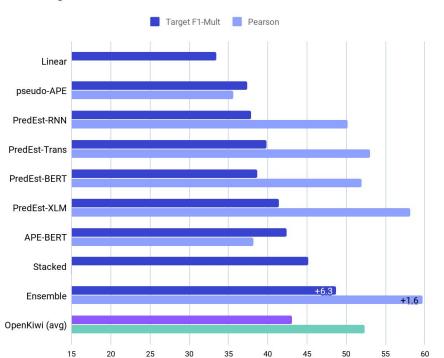
Sentence level

- Perform L2 regularized regression on the dev set with model outputs as features
- Choose best regularization constant via 20-fold cross validation

Dev set results English-{German,Russian}

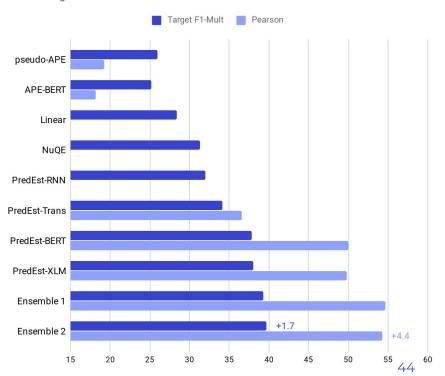
Unbabel Models

WMT19 English-German NMT dev set



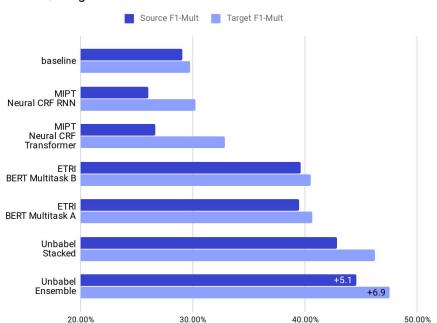
Unbabel Models

WMT19 English-Russian NMT dev set

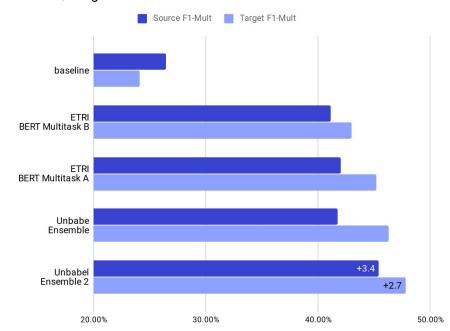


Official Results Word-Level

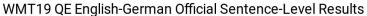
WMT19 QE English-German Official Word-Level Results

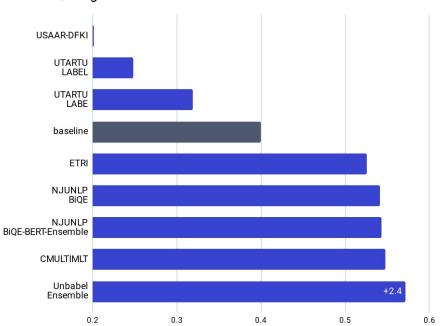


WMT19 QE English-Russian Official Word-Level Results

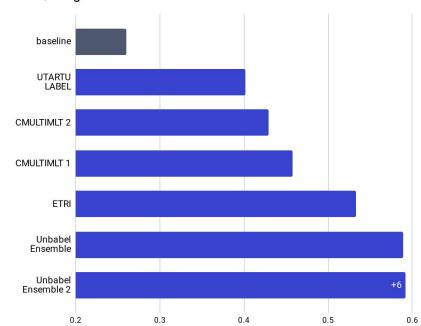


Official Results Sentence-Level



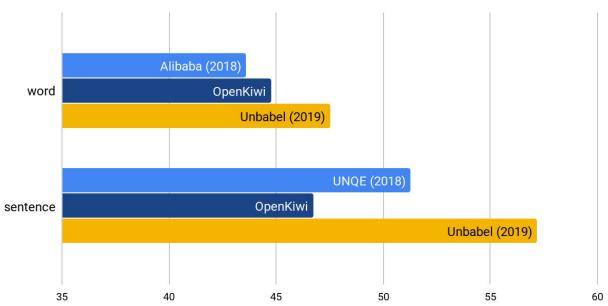


WMT19 QE English-Russian Official Sentence-Level Results



History

State-of-the-Art QE systems



Key Takeaways

- Strong translation models are hard to beat by dedicated QE systems
- Diversity of models can be just as important as individual model performance for ensembling
- A smart ensembling strategy is key to be able to scale to many models that have high variance in their individual performance

Key Takeaways

- Having a modular QE framework to build upon was key to quick experimentation with:
 - Submodels
 - Varying architectures
 - Hyper-parameters searching
- The Muppet models are yet again successful in a transfer learning task
 - But are very brittle in how they are fine-tuned and used

BUILDING UNIVERSAL UNDERSTANDING

Quality Estimation

Al Research

Unbabel Open Day 2019

Roadmap

- Why QE?
 - Unbabel's use case (pipeline)
 - NMT is not calibrated (so no confidence along translations)
 - Neural models are over-confident
 - Current evaluation metrics (BLEU) are restricted to a single (good?) reference translation
 - QE is not constrained by a reference
- OpenKiwi:
 - o Implementation of WMT-QE winning systems from 2016 to 2018
 - o Better word-level numbers, close sentence-level ones
- Some impact in Unbabel's pipeline
- WMT-QE 2019 participation:
 - New models, much better numbers

Quality Estimation

Goal: estimate the quality of translation

- If MT is good, we can skip the human (+speed, -\$)
- Otherwise, we can at least highlight the parts that are wrong
- Ensures final quality (higher MQM)
- Infinite data supply from our post-editors!

MT Quality

What could we do if we knew the **quality of a translation?**

- If it is good, we can skip the human (+speed, -\$)
- Otherwise, we can at least highlight the parts that are wrong
- Ensures final quality (higher MQM)
- Constant data supply from our post-editors!

Problems

- Current evaluation metrics (BLEU) are restricted to a single (good?)
 reference translation
 - A major consensus at ACL and WMT just three weeks ago:
- NMT models are not well calibrated
 - So no reliable confidence provided with translations
- In fact, they are usually over-confident
 - Even when they hallucinate

- ACL and WMT were held just less than three weeks ago
- A major consensus:

Yann LeCun

OpenKiwi research-easy

Quick experimentation

Modular Design → Easily Extensible

Automatic tracking of results through MLFlow

mlflow

Key Takeaways

- Strong translation models are hard to beat by dedicated QE systems
- The Muppet models are yet again successful in a transfer learning task
- Diversity of models can be just as important as individual model performance for ensembling
- A smart ensembling strategy is key to be able to scale to many models that have high variance in their individual performance
- Predicting a Gaussian over HTER scores and training with Maximum Likelihood instead of Squared Loss was crucial for good performance in the sentence level task