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Motivation
● QE and APE: two ancillary MT tasks... 
● ...mostly explored separately
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Quality Estimation (QE)

A supervised learning task:

○ Predict MT quality at run-time (without references)

○ Learn from (src, mt, quality_label) triplets

○ Assign quality_label to (src, mt) test pairs
■ Granularity: word, phrase, sentence, document

■ Label: Post-editing time/effort, binary/Likert scores, ranking

■ Approaches: regression, classification, ranking 6



Automatic Post-editing (APE)

A “monolingual translation” task:

○ Correct MT errors

○ Learn from (src, mt, post-edited MT) triplets

○ Produce post-edited MT given (src, mt) test pairs
■ Approaches: phrase-based MT, neural MT
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● Unnecessary corrections
○ APE: Non sempre la decodifica Ape è priva di errori

SRC: Ape decoding is not always perfect

MT: La decodifica Ape non è sempre perfettaAutomatic evaluation metrics penalize both!



Issues in APE
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● Ideal scenario:

○ Limiting wrong and unnecessary edits
■ In particular, when the mt is perfect

○ Fixing all the errors
■ Improving the number of corrected sentences 
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Combining QE & APE

Three strategies

○ QE as  activator :  suggests whether to run APE or not

○ QE as  guidance:  informs APE decoding

○ QE as  selector  :  chooses between MT and APE

13



Triggers APE when QE score is below a threshold

QE as  activator.  
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QE as  guidance.

Indicates which MT tokens have to be kept/changed

APEMT
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QE as  selector.

Chooses between raw MT and APE output

APE

MT
MT

APE
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Experiments: data

● English-German
○ WMT`16 QE/APE data set

○ Domain: information technology

○ (src, mt, post-edited MT) triplets
■ mt: phrase-based system

■ post-edited MT: professional translators

○ Training: 12K, Dev: 1K, Test: 2K
17



Experiments: QE systems

● Best QE systems at WMT`16
○ Sentence-level [Kozlova et al., 2016] 

■ Used for QE as  activator  

○ Word-level: [Martins et al., 2016] *
■ Used for QE as  guidance ,  selector.  

●  ORACLE labels: released by QE task organizers
* Thanks to Unbabel for providing us with the QE word level predictions 18



Experiments: APE systems

● Best APE submissions at WMT`16
○ Phrase-based: [Chatterjee et al., 2016]

○ Neural: [Junczys-Dowmunt and Grundkiewicz, 2016]
■ Used for QE as  activator , selector.

● Ad-hoc system
○ Neural “guided decoder’’ [Chatterjee et al. 2017]

■ Used for QE as  guidance.   
19



Triggers APE... 
● Phrase-based/neural

...if the predicted MT quality... 
● Sentence-level

...is below a threshold
● Estimated on dev data (TER=10)
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QE as  activator. results 

Performance drop wrt APE without QE
● Sentence-level QE too coarse-grained?

24
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Informs APE… 
● Neural

...with quality labels… 
● Word-level (“good”/”bad”)

...about MT tokens to be kept/changed
● Estimated on dev data (TER=10)
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QE as  guidance. results
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62.11

Small gain wrt APE without QE
● Larger for neural APE (+0.25 BLEU)
● Room for improvement with better predictions (+1.78 wrt NAPE)
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QE as  selector.

Selects APE… 
● Phrase-based/Neural 

...if the predicted quality… 
● Word-level

...is better than MT 
● Estimated on dev data (TER=10)

MT
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QE as  selector (word-level).

● Word-level QE 

○ Annotate both MT and APE

○ Replace MT tokens if MT=“bad” and APE=“good”

33



QE as  selector (word-level)  results
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QE as  selector (word-level)  results
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62.11

Small gain, both for phrase-based and neural APE
● Larger for neural APE
● Room for improvement with better predictions (+3.34 wrt NAPE)



Quick Summary

● Pro:
○ QE seems to able to support APE

● Cons:
○ Need of Oracle QE to see large gains
○ APE not aware of QE information 
○ All results on top of a phrase based MT system
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● QE as  activator  + QE as  guidance

● QE as effort indicator: 

Effort-Aware APE
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● QE as effort indicator: 

○ Informs the APE about the effort needed to fix the errors

○ Prepends an effort tag in front of src and mt

Effort-Aware APE
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SRC: <no_postedits> Ape decoding is not always perfect

MT: <no_postedits> La decodifica Ape non è sempre perfetta



Effort Token

● No Post-edit (TER = 0)

● Light Post-edit (0< TER < 40)

● Heavy Post-edit (TER >= 40)

43



● QE as effort indicator vs QE as  activator: 

○ Diff: Always routes sentences to APE

● QE as effort indicator vs QE as  guidance: 

○ Diff: No information at token level  

Effort-Aware APE
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● QE as effort indicator vs QE as  activator: 

○ Diff: Always routes sentences to APE

● QE as effort indicator vs QE as  guidance: 

○ Diff: APE aware of QE info  

Effort-Aware APE
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Experiments: data

● WMT`19 QE/APE data set
● Neural MT outputs

● English-German
○ Training: 13K, Dev: 1K, Test: 1K

● English Russian
○ Training: 15K, Dev: 1K, Test: 1K
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Experiments: QE systems

● At training time 
○ Effort token obtained by arbitrary thresholding the TER

■ No Post-edit (TER = 0)

■ Light Post-edit (0< TER < 40)

■ Heavy Post-edit (TER >= 40)
47



Experiments: QE systems

● A test time
○ There is not the pe to compute the TER

○ Predicting the effort token

48



Experiments: QE systems

● How to compute the effort token
○ BERT:

■ Building a classifier that predicts the 3 tags

○ Nearest neighbour:
■ Using the label of the most similar <src, mt, pe> triplet in the 

training data 
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Experiments: APE systems

● Neural FBK system
○ Multi-source APE
○ Dual Transformer
○ Ad-hoc pre-processing of the German data
○ Training on artificial data
○ Fine-tuning on in-domain data
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Informs APE… 
● Neural

...with quality labels… 
● Effort token (“No”/“Light”/“Heavy”)

...about the effort to correct the MT
● Estimated on dev data (TER=10)

QE as effort indicator

52



Token Prediction Performance

● Tokens distribution:

● Prediction Performance:
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QE as effort indicator results

56

Adding the oracle token:
● Shows small improvements when using the Oracle token
● … but when the token is predicted?

76.76

79.97



QE as effort indicator results
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Adding the predicted token:
● Does not improve over APE without token
● Using N-N better than BERT

76.76

79.97



QE as effort indicator results
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Robustify the predictor adding wrong labels in the dev
● Helps in improving the performance ...
● … but still below the APE without token

76.76

79.97



Let’s summarise

● Adding the token results in:
○ Small BLEU improvements only with the Oracle

○ APE is sensitive to the quality of the QE labels

● So ...
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Further Analysis

● Does the effort token help?

● How are the edits distributed?

● How does the performance change according to the 
token? 
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Does the effort token help? 

● Effort-aware APE applies more changes
● .. at the cost of being less precise
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Does the effort token help? 

● Effort-aware APE applies more changes
● ... at the cost of a small precision drop
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● 28% of data has TER == 0
○ 72% should be modified



Does the effort token help? 

● System with predicted tokens not far from Oracle 
both in precision and sentence modifies
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● 28% of data has TER == 0
○ 72% should be modified



Further Analysis

● Does the effort token help?
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YES!!!



Further Analysis

● Does the effort token help?

● How are the edits distributed?

● How does the performance change according to the 
token? 
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How are the APE edits distributed?
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How are the APE edits distributed?

● Edits depend on the token
● Small Bleu variance, but better scenario 70
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How are the APE edits distributed?

● Predicted tokens do not reflect the same trend
● Partial benefit from using them 71
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Further Analysis

● Does the effort token help?

● How are the edits distributed?

72

More friendly distribution for human 

post-editing



Further Analysis

● Does the effort token help?

● How are the edits distributed?

● How does the performance change according to the 
token? 
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Performance vs Effort Token

● Largest variations in the “No” class
● Oracle outperforms the others everywhere
● “Heavy” and “No” difficult for BERT and N-N
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Performance vs Effort Token

● All systems better than MT for “Light” and “Heavy”
● “Heavy”Oracle outperforms the others 

everywhere
BERT and N-N reasonable good only for “Light” 
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Further Analysis

● Does the effort token help?

● How are the edits distributed?

● How does the performance change according to the 
token? 
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Oracle outperforms the “without token”
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Conclusions

● Present a novel approach based on the effort token

● Using predicted tokens not encouraging

● Adding the Oracle token presents: 
○ Small BLEU improvements 
○ Better edits distribution 
○ More changes, at the cost of small drop in precision 80



Conclusions

● Can QE support APE?
○ In theory: yes
○ In practice: not yet

● Room for improvement conditioned to:
○ More reliable QE predictions
○ More robust APE models 
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