

Quality Estimation in support of Automatic Post-Editing

Marco Turchi
Fondazione Bruno Kessler, Trento, Italy
turchi@fbk.eu

In collaboration with Amirhossein Tebbifakhr and Matteo Negri

Outline

- Motivation
- Previous Work
- Effort-aware APE
- Conclusion

Motivation

QE and APE: two ancillary MT tasks...

Motivation

- QE and APE: two ancillary MT tasks...
- ...mostly explored separately

Motivation

- QE and APE: two ancillary MT tasks...
- ...mostly explored separately
- Can we combine them to get better translations?

Quality Estimation (QE)

A supervised learning task:

- Predict MT quality at run-time (without references)
- Learn from (src, mt, quality_label) triplets
- Assign quality_label to (src, mt) test pairs
 - Granularity: word, phrase, sentence, document
 - Label: Post-editing time/effort, binary/Likert scores, ranking
 - Approaches: regression, classification, ranking

Automatic Post-editing (APE)

A "monolingual translation" task:

- Correct MT errors
- Learn from (src, mt, post-edited MT) triplets
- Produce post-edited MT given (src, mt) test pairs
 - Approaches: phrase-based MT, neural MT

SRC: Ape decoding is not always perfect

MT: La decodifica Ape non è sempre perfetta

- Wrong corrections
 - APE: La decodifica delle scimmie non è sempre perfetta

SRC: Ape decoding is not always perfect

MT: La decodifica Ape non è sempre perfetta

Wrong corrections

APE: La decodifica delle scimmie non è sempre perfetta

Unnecessary corrections

APE: Non sempre la decodifica Ape è priva di errori

Automatic evaluation metrics penalize both!

- Wrong corrections
 - APE: La decodifica delle scimmie non è sempre perfetta

- Unnecessary corrections
 - APE: Non sempre la decodifica Ape è priva di errori

- Ideal scenario:
 - Limiting wrong and unnecessary edits
 - In particular, when the *mt* is perfect

- Fixing all the errors
 - Improving the number of corrected sentences

Outline

- Motivation
- Previous Work
- Effort-aware APE
- Conclusion

Combining QE & APE

Three strategies

- QE as activator: suggests whether to run APE or not
- QE as guidance: informs APE decoding
- QE as selector : chooses between MT and APE

Triggers APE when QE score is below a threshold

Indicates which MT tokens have to be kept/changed

Chooses between raw MT and APE output

Experiments: data

- English-German
 - WMT`16 QE/APE data set
 - Domain: information technology
 - (src, mt, post-edited MT) triplets
 - *mt*: phrase-based system
 - post-edited MT: professional translators
 - Training: 12K, Dev: 1K, Test: 2K

Experiments: QE systems

- Best QE systems at WMT`16
 - O Sentence-level [Kozlova et al., 2016]
 - Used for QE as activator
 - Word-level: [Martins et al., 2016] *
 - Used for QE as guidance, selector
- ORACLE labels: released by QE task organizers

^{*} Thanks to Unbabel for providing us with the QE word level predictions

Experiments: APE systems

- Best APE submissions at WMT`16
 - Phrase-based: [Chatterjee et al., 2016]
 - Neural: [Junczys-Dowmunt and Grundkiewicz, 2016]
 - Used for QE as activator, selector
- Ad-hoc system
 - Neural "guided decoder" [Chatterjee et al. 2017]
 - Used for QE as guidance

Triggers APE...

...if the predicted MT quality...

...is below a threshold

Triggers APE...

Phrase-based/Neural

...if the predicted MT quality...

...is below a threshold

Triggers APE...

Phrase-based/Neural

...if the predicted MT quality...

Sentence-level

...is below a threshold

Triggers APE...

Phrase-based/Neural

...if the predicted MT quality...

Sentence-level

...is below a threshold

Estimated on dev data (TER=10)

QE as activator results

Performance drop wrt APE without QE

Sentence-level QE too coarse-grained?

Informs APE...

...with quality labels...

...about MT tokens to be kept/changed

Informs APE...

Phrase-based/Neural

...with quality labels...

...about MT tokens to be kept/changed

Informs APE...

Phrase-based/Neural

...with quality labels...

Word-level ("good"/"bad")

...about MT tokens to be kept/changed

QE as guidance results

Small gain wrt APE without QE

Larger for neural APE (+0.25 BLEU)

QE as guidance results

Small gain wrt APE without QE

- Larger for neural APE (+0.25 BLEU)
- Room for improvement with better predictions (+1.78 wrt NAPE)

Selects APE...

...if the predicted quality...

...is better than MT

Selects APE...

Phrase-based/Neural

...if the predicted quality...

...is better than MT

Selects APE...

Phrase-based/Neural

...if the predicted quality...

Word-level

...is better than MT

QE as selector (word-level)

- Word-level QE
 - Annotate both MT and APE

Replace MT tokens if MT="bad" and APE="good"

QE as selector (word-level) results

Small gain, both for phrase-based and neural APE

Larger for neural APE

QE as selector (word-level) results

Small gain, both for phrase-based and neural APE

- Larger for neural APE
- Room for improvement with better predictions (+3.34 wrt NAPE)

Quick Summary

• Pro:

QE seems to able to support APE

Cons:

- Need of Oracle QE to see large gains
- APE not aware of QE information
- All results on top of a phrase based MT system

Outline

- Motivation
- Previous Work
- Effort-aware APE
- Conclusion

QE as activator + QE as guidance

QE as effort indicator:

- QE as activator + QE as guidance
- QE as effort indicator:

QE as effort indicator:

- Informs the APE about the effort needed to fix the errors
- Prepends an effort tag in front of src and mt

- QE as effort indicator:
 - Informs the APE about the effort needed to fix the errors
 - Prepends an effort tag in front of src and mt

SRC: Ape decoding is not always perfect

MT: La decodifica Ape non è sempre perfetta

- QE as effort indicator:
 - Informs the APE about the effort needed to fix the errors
 - Prepends an effort tag in front of src and mt

SRC: <no_postedits> Ape decoding is not always perfect

MT: <no_postedits> La decodifica Ape non è sempre perfetta

Effort Token

No Post-edit

Light Post-edit

Heavy Post-edit

QE as effort indicator vs QE as activator

Diff: Always routes sentences to APE

- QE as effort indicator vs QE as activator
 - Diff: Always routes sentences to APE

- QE as effort indicator vs QE as guidance
 - Diff: APE aware of QE info

Experiments: data

- WMT`19 QE/APE data set
- Neural MT outputs

- English-German
 - Training: 13K, Dev: 1K, Test: 1K
- English Russian
 - Training: 15K, Dev: 1K, Test: 1K

- At training time
 - Effort token obtained by <u>arbitrary</u> thresholding the TER
 - No Post-edit (TER = 0)

■ Light Post-edit (0< TER < 40)

■ Heavy Post-edit (TER >= 40)

- A test time
 - There is not the pe to compute the TER
 - Predicting the effort token

- How to compute the effort token
 - o <u>BERT</u>:
 - Building a classifier that predicts the 3 tags

How to compute the effort token

<u>BERT</u>:

Building a classifier that predicts the 3 tags

Nearest neighbour:

Using the label of the most similar <src, mt, pe> triplet in the training data

- Neural FBK system
 - Multi-source APE
 - Dual Transformer
 - Ad-hoc pre-processing of the German data
 - Training on artificial data
 - Fine-tuning on in-domain data

QE as effort indicator

Informs APE...

Neural

...with quality labels...

Effort token ("No"/"Light"/"Heavy")

...about the effort to correct the MT

Token Prediction Performance

• Tokens distribution:

	En-De	En-Ru
NO	281	621
Light	615	219
Heavy	104	160

Token Prediction Performance

Tokens distribution:

	En-De	En-Ru
NO	281	621
Light	615	219
Heavy	104	160

Prediction Performance:

Accuracy	En-De	En-Ru
BERT	52	51
N-N	65	64

Token Prediction Performance

Tokens distribution:

	En-De	En-Ru
NO	281	621
Light	615	219
Heavy	104	160

Prediction Performance:

Accuracy	En-De	En-Ru
BERT	52	51
N-N	65	64

QE as effort indicator results

Adding the oracle token:

- Shows small improvements when using the Oracle token
- ... but when the token is predicted?

QE as effort indicator results

Adding the predicted token:

- Does not improve over APE without token
- Using N-N better than BERT

QE as effort indicator results

Robustify the predictor adding wrong labels in the dev

- Helps in improving the performance ...
- ... but still below the APE without token

Let's summarise

- Adding the token results in:
 - Small BLEU improvements only with the Oracle
 - APE is sensitive to the quality of the QE labels

• So ...

Let's summarise

- Adding the
 - o Small BL
 - o APE is s

• So ...

Further Analysis

Does the effort token help?

How are the edits distributed?

 How does the performance change according to the token?

- 28% of data has TER == 0
 - 72% should be modified

Effort-aware APE applies more changes

- 28% of data has TER == 0
 - 72% should be modified

- Effort-aware APE applies more changes
- ... at the cost of a small precision drop

- 28% of data has TER == 0
 - 72% should be modified

 System with predicted tokens not far from Oracle both in precision and sentence modifies

Further Analysis

Does the effort token help?

YES!!!

Further Analysis

Does the effort token help?

How are the edits distributed?

Without Effort Token

- Edits depend on the token
- Small Bleu variance, but better scenario

- Predicted tokens do not reflect the same trend
- Partial benefit from using them

Further Analysis

Does the effort token help?

How are the edits distributed?

More friendly distribution for human

post-editing

Further Analysis

Does the effort token help?

How are the edits distributed?

 How does the performance change according to the token?

All systems better than MT for "Light" and "Heavy"

- All systems better than MT for "Light" and "Heavy"
- Oracle outperforms the others everywhere

- All systems better than MT for "Light" and "Heavy"
- Oracle outperforms the others everywhere
- BERT and N-N reasonable good only for "Light"

Further Analysis

Does the effort token help?

How are the edits distributed?

 How does the performance change according to the token?

Oracle outperforms the "without token"

Outline

- Motivation
- Previous Work
- Effort-aware APE
- Conclusion

Conclusions

Present a novel approach based on the effort token

Using predicted tokens not encouraging

- Adding the Oracle token presents:
 - Small BLEU improvements
 - Better edits distribution
 - More changes, at the cost of small drop in precision

Conclusions

- Can QE support APE?
 - In theory: yes
 - In practice: not yet

- Room for improvement conditioned to:
 - More reliable QE predictions
 - More robust APE models

Quality Estimation in support of Automatic Post-Editing

Marco Turchi
Fondazione Bruno Kessler, Trento, Italy
turchi@fbk.eu

In collaboration with Amirhossein Tebbifakhr and Matteo Negri