{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "这里显示 数字识别 使用scikit-learn" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from scipy import io as spio\n", "import numpy as np\n", "from sklearn.linear_model import LogisticRegression" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "预测准确度为:94.380000%\n" ] } ], "source": [ "data = spio.loadmat(\"../data/2-logistic_regression/data_digits.mat\")\n", "X = data['X'] # 获取X数据,每一行对应一个数字20x20px\n", "y = data['y'] # 这里读取mat文件y的shape=(5000, 1)\n", "y = np.ravel(y) # 调用sklearn需要转化成一维的(5000,)\n", "\n", "model = LogisticRegression()\n", "model.fit(X, y) # 拟合\n", "\n", "predict = model.predict(X) # 预测\n", "\n", "print (u\"预测准确度为:%f%%\" % np.mean((predict == y)*100))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }