{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "这里用来显示 调用scikit-learn实现逻辑回归" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.linear_model import LogisticRegression\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.model_selection import train_test_split\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0. 1.]\n", " [ 1. 1.]\n", " [ 1. 1.]\n", " [ 1. 1.]\n", " [ 1. 1.]\n", " [ 1. 1.]\n", " [ 0. 0.]\n", " [ 1. 1.]\n", " [ 1. 1.]\n", " [ 0. 0.]\n", " [ 1. 1.]\n", " [ 1. 1.]\n", " [ 0. 0.]\n", " [ 0. 0.]\n", " [ 0. 1.]\n", " [ 0. 0.]\n", " [ 0. 0.]\n", " [ 1. 1.]\n", " [ 1. 1.]\n", " [ 0. 0.]]\n", "测试集准确率:90.000000%\n" ] } ], "source": [ "data = np.loadtxt(\"../data/2-logistic_regression/data1.txt\", delimiter=\",\",dtype= np.float64)\n", "X = data[:, 0:-1]\n", "y = data[:, -1]\n", "\n", "# 划分为训练集和测试集\n", "x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n", "\n", "# 归一化\n", "scaler = StandardScaler()\n", "scaler.fit(x_train)\n", "x_train = scaler.fit_transform(x_train)\n", "x_test = scaler.fit_transform(x_test)\n", "\n", "# 逻辑回归\n", "model = LogisticRegression()\n", "model.fit(x_train, y_train)\n", "\n", "# 预测\n", "predict = model.predict(x_test)\n", "right = sum(predict == y_test)\n", "\n", "predict = np.hstack((predict.reshape(-1, 1), y_test.reshape(-1, 1))) # 将预测值和真实值放在一块,好观察\n", "print(predict)\n", "print('测试集准确率:%f%%' % (right * 100.0 / predict.shape[0])) # 计算在测试集上的准确度\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }