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Chapter 1

Convex Optimization

1.1 Introduction

Definition 1.1.1. (Optimization Problem) We have the following optimization problem:

min f0(x)

subject to fi(x) ≤ bi i = 1, . . . ,m

where we have

• x = (x1, . . . , xn): Optimization Variable

• f0 : Rn → R: Objective Function

• fi : Rn → R for i = 1, . . . ,m: Constant Function

The optimal solution x∗ has smallest value of f0 among all vectors that satisfies the constraint.

Definition 1.1.2. (Least Square) We have the following problem:

min ‖Ax− b‖22

where we have the following analytic solution x∗ = (ATA)−1AT b. There are reliable and efficient algorithm
to solve, with the complexity of O(n2k) where A ∈ Rk×m. The problem is easy to recognize and a few
standard technique to increase flexibility.

Definition 1.1.3. (Linear Programming) We have the following problem:

min cTx

subject to aTi x ≤ bi i = 1, . . . ,m

There is no analytical solution but there are reliable and efficient algorithm to solve with complexity of
O(n2m) if m ≥ n. The problem isn’t east to recognize but there are standard tricks to convert problem into
a linear program.

Definition 1.1.4. (Convex Optimization Problem) We have the following problem:

min f0(x)

subject to fi(x) ≤ bi i = 1, . . . ,m

The objective and constraint functions are convex. This includes a least square and linear program as special
case. Trying to solve the convex optimization problem has no analytic solution but we have reliable and
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efficient algorithm. The time complexity is max{n3, n2m,F} where F is the cost of evaluating fi and their
first and second derivative. The problem is hard to recognize, where there are many tricks to covert problem
to convex form.

Remark 1. The traditional technique to solve non-convex optimization involves compomise, where:

• Local Optimization Method

– Find a point that minimize f0 among feasible point near it.

– Fast and can handle large problem

– Require initial guess

– No information about distance to global optimum.

• Global Optimization Method:

– Find the global solution

– Worst case complexity can be exponential with problem size.

These algorithms are based on solving convex subproblem.

1.2 Convex Sets

1.2.1 Examples

Definition 1.2.1. (Line) A line through x1, x2 points:

x = θx1 + (1− θ)x2

where θ ∈ R

Definition 1.2.2. (Affine Set) A set that contains a line through any 2 distict points in the set.

Definition 1.2.3. (Line Segment) Between x1 and x2 where:

x = θx1 + (1− θ)x2

with 0 ≤ θ ≤ 1

Definition 1.2.4. (Convex Set) A set that contains a line segment between any 2 points x1, x2 ∈ C in
the set:

θx1 + (1− θ)x2 ∈ C

where 0 ≤ θ ≤ 1

Definition 1.2.5. (Convex Combination) Given points x1, x2, . . . , xk, then the convex combination:

x = θ1x1 + θ2x2 + · · ·+ θkxk

with θ1 + θ2 + · · ·+ θk = 1 where θi ≥ 0

Definition 1.2.6. (Convex Hull) Set of all convex combination of points in S is called convex hull.

Definition 1.2.7. (Cone (Non-Negative) Combination) Cone Combination of x1 and x2 is any points
with the form:

x = θ1x1 + θ2x2

with θ1 ≥ 0 and θ2 ≥ 0
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Definition 1.2.8. (Convex Cone) Convex Cone is the set that contains all conic combination of points
in the set.

Definition 1.2.9. (Hyperplane) Hyperplane is the set of the form {x|aTx = b} where a 6= 0

Definition 1.2.10. (Halfspace) Halfspace is the set of the form {x|aTx ≤ b} where a 6= 0

Definition 1.2.11. (Euclidian Ball) The euclidian with a center xc and radius r is:

B(xc, r) =
{
x
∣∣∣ ‖x− xC‖ ≤ r} =

{
xc + ru

∣∣∣ ‖u‖2 ≤ 1
}

Definition 1.2.12. (Ellipsoid) The set of the form{
x
∣∣∣(x− xc)TP−1(x− xc) ≤ 1

}
with P is symmetric positive semi-definite matrices, or we can set{

xc +Au
∣∣∣ ‖u1‖ ≤ 1

}
where A being square and non-singular.

Definition 1.2.13. A function that satisfies:

• ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Definition 1.2.14. (Norm Ball) The norm ball is the center xC and radius r is:{
x
∣∣∣ ‖x− xC‖ ≤ 1

}
Definition 1.2.15. (Norm Cone) We have{

(x, y)
∣∣∣ ‖x‖ ≤ t}

The euclidian norm cone is called second order cone.

Lemma 1.2.1. The norm balls and cones are convex.

Definition 1.2.16. (Polyhedra) The solution set of finitely many linear inequalities and equalities:

Ax � b Cx = d

The � is component-wise inequality, where A ∈ Rm×n and C ∈ Rp×n. Please note that the polyhedron is
intersection of finite number of halfspace and hyperplane.

Definition 1.2.17. Sn is set of symmetric n× n matrices.

Definition 1.2.18. (Positive Semi-Definite)

Sn+ =
{
X ∈ Sn

∣∣∣X � 0
}

where X ∈ Sn+ ⇐⇒ zTXz ≥ 0 for all z. Note that Sn+ is convex cone. If we have strictly greater than 0, we
have positive definite matrices:

Sn++ =
{
X ∈ Sn

∣∣∣X � 0
}
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1.2.2 Operators that Preserve Convexity

Proposition 1.2.1. Intersection of any number of convex sets is convex.

Proposition 1.2.2. Suppose f : Rn → Rm is affine (f(x) = Ax+ b with A ∈ Rm×n and b ∈ Rm):

• The image of convex set under f is convex

S ⊆ Rn is convex =⇒ f(S) =
{
f(x)

∣∣∣x ∈ S}
• The inverse image of f−1(C) of a convex set under f is convex:

C ⊆ Rm is convex =⇒ f−1(C) =
{
x ∈ Rn

∣∣∣f(x) ∈ C
}

Proposition 1.2.3. The perspective function P : Rn+1 → Rn where

P (x, t) = x/t

where dom f = {(x, t)|t > 0}. The image and inverse image of convex set under perspective are convex.

Proposition 1.2.4. A linear fractional function f : Rn → Rm

f(x) =
Ax+ b

cTx+ d

where dom f = {x|cTx+ d > 0}

Definition 1.2.19. (Proper Cone) K ⊆ Rn is proper cone if

• K is closed (Contains Its Boundary)

• K is solid (Non Empty)

• K is pointed (Contains No Line)

Definition 1.2.20. (Generalized Ineqality) It is defined by proper cone K, where

X �K Y ⇐⇒ y − x ∈ K X ≺K Y ⇐⇒ y − x ∈ intK

The property of generalized inequality is similar to ≤ in R. Please note that it isn’t a general linear ordering.
We can have X 6�K Y and Y 6�K X

Definition 1.2.21. (Minimum) The point x ∈ S is minimum element of S with respected to �K if

y ∈ S =⇒ x �K y

Definition 1.2.22. (Minimal) The point x ∈ S is the minimal element of S with respected to

y ∈ S, y �K X =⇒ y = x

Theorem 1.2.1. If C and D are non-empty disjoint convex set, there exists a 6= 0 and b such that aTx ≤ b
for x ∈ C and aTx > b for x ∈ D. This means that the hyperplane

{
x|aTx = b

}
separates C and D.

Definition 1.2.23. (Supporting Hyperplane) to a set C at boundary point x0 such that{
x
∣∣∣aTx = aTx0

}
where a 6= 0 and aTx ≤ aTx0 for all x ∈ C
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Theorem 1.2.2. If C is convex, then there exists, a supporting hyperplane at every boundary point of C

Definition 1.2.24. (Dual Cone) The dual cone of a cone K is:

K∗ =
{
y|yTx ≥ 0 for all x ∈ K

}
If the cone is a dual of itself is called self-dual. Furtheremore, if dual cone of proper cone is propert, hence
defined generalized inequality:

y �K∗ 0 ⇐⇒ yTx ≥ 0 for all x �K 0

Proposition 1.2.5. The minimum element with respected to �K: x is minimum of S iff for all λ �K∗ 0 is
unique minimizer of λT z over S.

Proposition 1.2.6. The minimal element with respected to �K:

• If x minimizes λT z over S for some λ �K∗ 0 then x is minimal

• If x is a minimal element of convex set S then there exists a non-zero λ �K∗ 0 such that x minimizer
λT z over S

1.3 Convex Functions

1.3.1 Properties of Convex Functions

Definition 1.3.1. (Convex Function) f : Rn → R is convex if dom(f) is convex:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom(f) and 0 ≤ θ ≤ 1

Definition 1.3.2. (Concave + Strictly Convex) f is convex if −f is convex. f is strictly convex if
dom f is convex and:

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom(f) where x 6= y and 0 ≤ θ ≤ 1.

Remark 2. Examples of convex functions in R:

• Affine: ax+ b on R and for any a, b ∈ R

• Exponential: exp(ax) for any a ∈ R

• Power: xα on R++ for α ≥ 1 or α ≤ 0

• Power of Absolute Value: |x|p on R with p ≥ 1

• Negative entropy: x log x on R++

Examples of concave functions in R:

• Affine: ax+ b on R and for any a, b ∈ R

• Power: xα on R++ for 0 ≤ α ≤ 1

• Logarithm: log x on R++

Remark 3. Examples of convex function in Rn:
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• Affine Function: f(x) = aTx+ b

• Norms: ‖x‖p where (
n∑
i=1

|xi|p
)1/p

for p ≥ 1 and ‖x‖∞ = maxk |xk|

Examples of convex function in Rm×n:

• Affine Function: f(X) = tr(ATX) + b =
∑m
i=1

∑n
j=1AijXij + b

• Special Singular Value:

f(X) = ‖X‖2 = σmax(X) =
(
λmax(XTX)

)1/2
Proposition 1.3.1. The function f : Rn → R is convex iff the function g : R→ R where g(t) = f(x+ tv),
where dom(g) = {t|x+ tv ∈ dom f}. Now we can check the convexity of f by checking convexiy of functions
of one variable.

Remark 4. Let’s consider the log-determinant function:

g(t) = log det(X + tV ) = log detX + log det(I +X−1/2V X−1/2)

= log detX +

n∑
i=1

log(1 + tλi)

where λi are eigenvalues of X−1/2V X−1/2 and therfore g is concave in t for any choice X � 0 and V hence
f is concave.

Definition 1.3.3. (Extended Value Extension) The extended value extension f̃ of f is:

• f̃(x) = f(x) if x ∈ dom(f)

• f̃(x) =∞ if x 6∈ dom(f)

This would simplify the notation. The condition:

0 ≤ θ ≤ 1 =⇒ f̃(θx+ (1− θ)y) ≤ θf̃(x) + (1− θ)f̃(y)

as the inequality in R ∪ {∞} means the same. The domain f is convex.

Proposition 1.3.2. (Differentiable) f is differentiable if dom(f) is open and the gradient:

∇f(x) =

(
∂f(x)

∂x1
, · · · , ∂f(x)

∂xn

)
exists at each x ∈ dom(f)

Lemma 1.3.1. First order condition, a differentiable f with convex domain S is convex iff:

f(y) ≥ f(x) +∇f(x)T (y − x)

For all x, y ∈ dom(f). This means a first order approximation of f is global underestimator.

Definition 1.3.4. (Twice Differentiable) If f is twice differentiable, if dom(f) is open then Hessian:

∇2f(x)ij =
∂2f(x)

∂x∂y

for i, j = 1, . . . , n exists at each x ∈ dom(f).

9



Lemma 1.3.2. For twice differentiable f with convex domain, f is convex iff

∇2f(x) � 0

for all x ∈ dom(f). If ∇2f(x) � 0 for all x ∈ dom(f), then f is strictly convex. Note that we can use it to
calculate the convexity of the function.

Definition 1.3.5. (α-sublevel Set) α-sublevel set of f : Rn → R, which we have:

Cα =
{
x ∈ dom(f)

∣∣∣f(x) ≤ α
}

A sublevel set of convex functions are convex but not the converse.

Definition 1.3.6. (Epigraph) The epigraph of f : Rn → R:

epi(f) =
{

(x, t) ∈ Rn+1
∣∣∣x ∈ dom(f), f(x) ≤ t

}
is f is convex iff epi(f) is a convex set.

Definition 1.3.7. (Jensen’s Ineqality) If f is convex then for 0 ≤ θ ≤ 1, we have:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

The extension if f is convex then f(E[z]) ≤ E[f(z)]

1.3.2 Building Convex Functions

Proposition 1.3.3. We have the following opeartors on function that we can use for creating a new convex
functions:

• Non-negative multiple αf is convex if f is convex and α > 0

• Sum f1 + f2 is convex if f1 and f2 is convex. This can be extended to infinite sum or integral.

• Composition with affine function f(Ax+ b) is convex if f is convex.

Proposition 1.3.4. If f1, . . . , fm are convex then:

f(x) = max
{
f1(x), . . . , fm(x)

}
Proposition 1.3.5. If f(x, y) is convex in x for each y ∈ A, then:

g(x) = sup
y∈A

f(x, y)

is convex.

Proposition 1.3.6. Composition of g : Rn → R and h : R→ R where f(x) = h(g(x)). Then f is convex if:

• g is convex, h is convex and h̃ is non-decreasing.

• g is concave, h is convex and h̃ is non-increasing.

Proof. Let’s consider when the case where n = 1 and differentiable g and h:

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

Monotonicity must hold extned value extensions h̃

10



Proposition 1.3.7. Composition of g : Rn → Rk and n : Rk → R:

f(x) = h(g(x)) = h(g1(x), . . . , gk(x))

where we have, f is convex: if

• gi convex, h convex, h̃ is non-decreasing.

• gi concave, h convex, h̃ is non-increasing.

Proof. For n = 1 and differentiable g, h:

f ′′(x) = g′(x)T∇2h(g(x))g′(x) +∇h(g(x))T g′′(x)

Proposition 1.3.8. If f(x, y) is convex in (x, y) and C is convex set then:

g(x) = inf
y∈C

f(x, y)

is convex.

Proposition 1.3.9. The perspective of a function f : Rn → R is the functtion g : Rn × R→ R:

g(x, y) = f(x/t) · t

where dom = {(x, y)|x/t ∈ dom(f), t > 0}. The g is convex if f is convex.

1.3.3 Other Kinds of Convex Related Functions

Definition 1.3.8. (Conjugate) Conjugate of a function f is f∗(y) = supx∈dom(f)(y
Tx− f(x)), then f∗ is

convex even f isn’t.

Definition 1.3.9. (Quasi-Convex) The function f : Rn ⇒ R is quasi-convex if the domain of f is convex
and:

Sα =
{
x ∈ dom(f)

∣∣∣f(x) ≤ α
}

are convex for all α. f is quasi-concave if −f is quasi-convex. and f is quasi-linear if f is quasi-convex and
quasi-concave.

Proposition 1.3.10. Modified Jensen’s inequalities: For quasi-convex f , and for 0 ≤ θ ≤ 1:

f(θx+ (1− θ)y) ≤ max {f(x), f(y)}

Proposition 1.3.11. For differentiable f with convex domain is quasi-convex iff

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0

Remark 5. Sum of Quasi-convex functions are not necessary quasi-convex.

Definition 1.3.10. (Log-Concave and Log-Convex Function) A positive function f is log concave if
log f is concave:

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ

for 0 ≤ θ ≤ 1, and f is log convex if log f is convex.

Proposition 1.3.12. We have the following results for log-concave:
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• Twice differentiable f with convex function is log concave iff

f(x)∇2f(x) � ∇f(x)∇f(x)T

for all x ∈ dom(f)

• Product of Log-Concave function is log-concave.

• Sum of log-concave function isn’t always log-concave.

• If f : Rn × Rm → R is log concave then:

g(x) =

∫
f(x, y) dy

is log concave, if the integration exists.

Proposition 1.3.13. Convolution f ∗ g of log-concave function if f, g is log-concave

(f ∗ g)(x) =

∫
f(x− y)g(y) dy

Proposition 1.3.14. If C ⊆ Rn is convex and y is random variable with log-concave probability density
function, then:

f(x) = Prob(x+ y ∈ C)

is log-concave.

Proof. We write f(x) as integral of product of log-concave function, where:

f(x) =

∫
g(x+ y)p(y) dy g(u) =

{
1 u ∈ C
0 u ∈ C

Definition 1.3.11. (K-Convex) The function f : Rn → Rm is K-convex if dom(f) is convex and:

f(θx+ (1− θ)y) �K θf(x) + (1− θ)f(y)

for x, y ∈ dom(f) and 0 ≤ θ ≤ 1.

1.4 Convex Optimization Problems

1.4.1 Introductions

Definition 1.4.1. (Constraint Optimization Problem) The constraint optimization is a problem of the
form:

min f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

where x ∈ Rn is optimization variable. f0 : Rn → R is the objective. fi : Rn → R where i = 1, . . . ,m be the
inequality constraint function. Finally, hi : Rn → R are equality constraint function. The optimal value is:

p∗ = inf
{
f0(x)

∣∣∣fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p
}

Definition 1.4.2. (Feasibility) We have the following definitions:

12



• x is feasible if x ∈ dom(f0) and it satisfies the constraints.

• A feasible x is optimal if f0(x) = p∗.

• Xopt is the set of optimal points.

Definition 1.4.3. (Local Optimal) x is locally local if there is R > 0 such that x is optimal for:

min f0(z)

subject to fi(z) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

‖z − x‖2 ≤ R

Definition 1.4.4. (Implicit Constraints) The standard form of optimization problem has an implicit
constrain:

x ∈ D =

m⋂
i=0

dom(fi) ∩
p⋂
i=1

dom(hi)

The constraints fi(x) ≤ 0 and hi(x) = 0 are called explicit constriants. The problem is unconstrained if
there is no explicit constraints.

Definition 1.4.5. (Feasibility Problem) We can consider a special case of general problem with f0(x) = 0:

min 0

subject to fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

where if p∗ = 0 then the constrains are feasible, and any feasible x is optimal. However, if p∗ = ∞ if
constraints are infeasible.

Definition 1.4.6. (Standard Form of Convex Optimization Problem) We have

min f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m

aTi xi = bi i = 1, . . . , p

where f0, f1, . . . , fn are convex, equality constraints are affine.

Definition 1.4.7. (Quasi-Convex Problem) A Quasi-Convex Problem is when f0 is quasi-convex (and
f1, . . . , fn are convex.), and it is written as

min f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m

Ax = b i = 1, . . . , p

Proposition 1.4.1. Any locally optimal point of a convex problem is (globally) optimal.

Proof. Suppose x is locally optimal but there exists a feasible point y with f0(y) < f0(x). We see that x is
locally optimal means that there is an R > 0 such that z is feasible and

‖z − x‖2 ≤ R =⇒ f0(z) ≥ f0(x)

We then consider z = θy + (1− θ)x with θ = R/(2 ‖y − x‖2). Since

• ‖y − x‖2 > R so we need 0 ≤ θ ≤ 1/2.

• z is convex combination of feasible points x and y, then z is feasible.

13



• ‖z − x‖2 = R/2 and
f0(z) ≤ θf0(y) + (1− θ)f0(x) < f0(x)

Proposition 1.4.2. x is optimal iff it is feasible and

∇f0(x)T (y − x) ≥ 0

for all feasible y. If we have non-zero ∇f0(x) we define a supporting hyperplane to feasible set X at x.

Definition 1.4.8. (Unconstrained Problem) x is optimal iff x ∈ dom(f0) and ∇f0(x) = 0

Definition 1.4.9. (Equally Constraint Problem) We have the following form:

min f0(x)

subject to Ax = b

x is optimal iff there exists ν such that x ∈ dom(f). Ax = b and ∇f0(x) +AT ν = 0

Definition 1.4.10. (Minimization Over Non-Negative Orthant) We have the following form

min f0(x)

subject to x � 0

x is optimal iff x ∈ dom(f0) and x � 0 {
∇f0(x)i ≥ 0 xi = 0

∇f0(x)i = 0 xi > 0

1.4.2 Equivalent Convex Problems

Proposition 1.4.3. (Eliminating Equality Constraints) These 2 problems are equivalent as one of the
the solution can be obtained from the solution of the other:

min f0(x)

such that fi(x) ≤ 0 i = 1, . . . ,m

Ax = b

This is equivalent to:
min f0(Fz + x0)

such that fi(Fz + x0) ≤ 0 i = 1, . . . ,m

where F and x0 are such that:
Ax = b ⇐⇒ x = Fz + x0

for some z

Proposition 1.4.4. (Introducing Equality Constraints)

min f0(A0x+ b)

such that fi(Aix+ bi) ≤ 0 i = 1, . . . ,m

is equivalent to
min f0(y0)

such that fi(yi) ≤ 0 i = 1, . . . ,m

yi = Aix+ bi i = 0, 1, . . . ,m

14



Proposition 1.4.5. (Introducing Slack Varaible for Linear Inequalities)

min f0(x)

such that aTi x ≤ bi i = 1, . . . ,m

is equivalent to
min f0(x)

such that aTi x+ si = bi i = 1, . . . ,m

si ≥ 0 i = 1, . . . ,m

we minimize over x and s

Proposition 1.4.6. (Epigraph Form) Standard Convex Problem is equivalent to

min t

such that f0(x)− t ≤ 0

fi(x) ≤ 0 i = 1, . . . ,m

Ax = b

where we minimize over x and t.

Proposition 1.4.7. (Minimizer Over Some Variables)

min f0(x1, x2)

such that fi(x1) ≤ 0 i = 1, . . . ,m

is equivalent to
min f̃0(x1)

such that fi(x1) ≤ 0 i = 1, . . . ,m

where f̃0(x1) = infx2
f0(x1, x2)

Proposition 1.4.8. If f0 is quasi-convex then there exists a famility of functions φt such that:

• φt(x) is convex in x for fixed t

• t-sublevel set of f0 is 0-sublevel set of φt:

f0(x) ≤ t ⇐⇒ φt(x) ≤ 0

Remark 6. The example of this is:

f0 =
p(x)

q(x)

where if p is convex and q is concave, and p(x) ≥ 0 and q(x) > 0 on dom(f0), we can take φt(x) = p(x)−tq(x)

• For t ≥ 0, φt is convex in x

• p(x)/q(x) ≤ t iff φt(x) ≤ 0

Definition 1.4.11. (Bisection Method For Quasi-Convex Optimization) We can consider the feasi-
bility problem, where we have:

φt(x) ≤ 0 fi(x) ≤ 0 Ax = b

Then we can see that, for a fixed t, a convex feasibility problem implies:

• If feasible then t ≥ p∗
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• Otherwise t ≤ p∗

which leads to binary search-like problem, where:

Algorithm 1 Bisection Method For Quasi-Convex Optimization

1: Input: l ≤ p∗ and u ≥ p∗ and Tolerance ε > 0
2: while Until Convergence do
3: t = (t+ u)/2
4: Solve the convex feasibility problem
5: if It is Feasible then
6: u = t
7: else
8: l = t
9: end if

10: end while

This requires exactly dlog2((u− l)/ε)e iterations, when u and l are intial values.

1.4.3 Types of Convex Problems

Definition 1.4.12. (Linear Program)

min cTx+ d

subject to Gx � h
Ax = b

It is an convex problem with affine objective and constraint functions. Feasible set is polyhedron.

Remark 7. The notable problem of LP is Chebshev center of polyhedron, where the Chebshev center of
P =

{
x|aTi x ≤ bi, i = 1, . . . ,m

}
is the center of largest inscribed ball B = {xc + u| ‖u‖2 ≤ r}. Note that

aTi x ≤ b for all x ∈ B iff

sup
{
aTi (xc + u)

∣∣∣ ‖u‖2 ≤ r} = aTi xc + r ‖ai‖2 ≤ bi

Hence, the xc and r can be determined by:

max r

subject to aTi xc + r ‖ai‖2 ≤ bi for i = 1, . . . ,m

Definition 1.4.13. (Linear Fractional Program)

min
cTx+ d

eTx+ f

subject to Gx � h
Ax = b

where dom(f0) =
{
x|eTx+ f > 0

}
. This is a quasi-convex optimization, which can be solved by Bisection

method. Note that it is equivalent to LP:

min cT y + dz

subject to Gy � hz
Ay = bz

eT y + fz = 1

z ≥ 0
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Definition 1.4.14. (Generalized Fractional Program) where we have

f0(x) = max
i=1,...,r

cTi x+ di
eTi x+ fi

where dom(f0) =
{
x|eTi x+ fi > 0; i = 1, . . . , r

}
. This is also quasi-convex problem, which can be solved by

Bisection

Definition 1.4.15. (Quadratic Program)

min(1/2)xTPx+ qTx+ r

subject to Gx � h
Ax = b

where P ∈ Sn+, therefore,the objective is convex. The examples of quadratic program is least square problem.

Definition 1.4.16. (Linear Program with Random Cost)

min c̄Tx+ γxTΣx = E[cTx] + γ var(cTx)

subject to Gx � h
Ax = b

We have c as as random variable with a mean of c̄ and covariance of Σ, given this we have cTx being a
random variable with a mean of cTx and covarance xTΣx. Fianlly, γ > 0 is risk aversion paramter, which
controls the trade-off between expected cost and risk.

Definition 1.4.17. (Quadratic Constrained Quadratic Program)

min
1

2
xTP0x+ qT0 x+ r0

subject to
1

2
xTPix+ qTi x+ ri ≤ 0

Ax = b

where Pi ∈ Sn+ where objective and constraints are convex quadratic. If P1, . . . , Pm ∈ Sn++ feasible region is
intersection of m ellipsoid and an affine set.

Definition 1.4.18. (Second Order Cone Programming)

min fTx

subject to ‖Aix+ bi‖2 ≤ c
T
i x+ di i = 1, . . . ,m

Fx = g

where Ai ∈ Rni×n and F ∈ Rp×n. The inequalities are called second order cone constraints: (Aix+ bi, c
T
i x+

di) is in second order cone in Rni+1. For ni = 0, reduces to an LP if ci = 0 reduces to QCQP.

Remark 8. The parameter in the optimization problem are often constraint, for example, in LP:

min cTx

subject to aTi x ≤ bi i = 1, . . . ,m

as there exists an uncertainty in c, ai, bi.

Definition 1.4.19. (Deterministic Robust Linear Programming) We can constrain the paramter that
must holds for all ai ∈ Ei where:

min cTx

subject to aTi x ≤ bi ∀ai ∈ Ei i = 1, . . . ,m

17



Definition 1.4.20. (Stochastic Robust Linear Programming) We have ai as random variables. The
constrains must hold with probability η:

min cTx

subject to Prob(aTi x ≤ bi) ≥ η i = 1, . . . ,m

Proposition 1.4.9. We choose an Ellipsoid Ei:

Ei =
{
āi + Piu

∣∣ ‖u‖2 ≤ 1
}

The center is āi with the semi-axis is determined by singular value of Pi. Then the deterministic robust LP
(with constraint Ei) is equivalent to:

min cTx

such that āTi x+
∥∥PTi x∥∥2

≤ bi i = 2, . . . ,m

This follows from
sup
‖u‖2≤1

(āi + Piu)
T
x = āTi x+

∥∥PTi x∥∥2

Proposition 1.4.10. Assume ai is Guassian with mean āi and covarance Σ̄i. We can see that aTi x is
Gaussian with mean of āTi x variance xTΣix hence, we have:

Prob
(
aTi x ≤ bi

)
= Φ

bi − a−Ti xi∥∥∥Σ
1/2
i x

∥∥∥
2


where Φ is CDF with ‖N‖ (0, 1). Given the stochastic robust LP with η ≥ 1/2 is equivalent to SOCP:

min cTx

such that āTi x+ Φ−1(η)
∥∥∥Σ

1/2
i x

∥∥∥
2
≤ bi i = 1, . . . ,m

Definition 1.4.21. (Monomial Function) Monomial function is fuction of the form:

f(x) = cxa11 cxa22 · · ·xann

where dom f ∈ Rn++ with c > 0, the exponent ai can be any real number. Note that this can be transformed
to:

log f(ey1 , . . . , eyn) = aT y + b

where b = log c

Definition 1.4.22. (Posynomial Function) Posynomial function is sum of monomials:

f(x) =

K∑
k=1

ckx
a1k
1 xa2k2 · · ·xankn

where dom f ∈ Rn++. This can be transformed to:

log f(ey1 , . . . , eyn) = log

(
K∑
k=1

exp(aTk y + bk)

)

where bk = log ck.

18



Definition 1.4.23. (Geometric Program)

min f0(x)

subject to fi(x) ≤ 1 i = 1, . . . ,m

hi(x) = 1 i = 1, . . . , p

with fi is posynomial and hi is monomial. This can be transformed t oconvex problem:

min log

(
K∑
k=1

exp
(
aT0ky + b0k

))

such that log

(
K∑
k=1

exp
(
aTiky + bik

))
≤ 0

Gy + d = 0

Definition 1.4.24. (Perron-Frobenius Eigenvalue) This exists in (element-wise) positive A ∈ Rn×n.
It is defined as real, positive eigenvalue of A to spectral radius maxi |λi(A)|. Note that this determines
asymptotic growth/decay rate of Ak as Ak ∼ λkpf as k →∞. The alternate characterization:

λpf(A) = inf {λ|Av � λv for some v � 0}

Remark 9. We want to minimize λpf(A(x)) where A(x)ij are posynomial of x. This is equivalent to geometric
program:

minλ

subject to

n∑
j=1

A(x)ijvj/(λvi) ≤ 1 i = 1, . . . , n

where the variables are λ, v, x.

Definition 1.4.25. (Generalize Inequality Constraints)

min f0(x)

subject to fi(x) �Ki 0 i = 1, . . . ,m

Ax = b

where f0 : Rn → R convex and fi : Rn → Rki is Ki-convex with respected to proper cone Ki. This has the
same properties as standard convex optimization problem (convex feasible set, local optimum is global etc.)

Definition 1.4.26. (Conic Form Problem) Special case with affine objective and constraints:

min cTx

subject to Fx+ g �K 0

Ax = b

This extends linear programming (when K = Rm+ ) to non-polyhedron cones.

Definition 1.4.27. (Semi-Definite Program)

min cTx

subject to x1F1 + x2F2 + · · ·+ xnFn +G ≺ 0

Ax = b

with Fi, G ∈ Sk. This ineqality constraints is called linear matrix ineqality (LMI). By having problems with
multiple LMI contraints, for example:

x1F̂1 + · · ·+ xnF̂n + Ĝ � 0

x1F̃1 + · · ·+ xnF̂n + G̃ � 0
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is equivalent to single one:

x1

[
F̂1 0

0 F̃1

]
+ x2

[
F̂2 0

0 F̃2

]
+ · · ·+ xn

[
F̂n 0

0 F̃n

]
+

[
Ĝ 0

0 G̃

]
� 0

Proposition 1.4.11. Given the LP program:

min cTx

such that Ax � b

is equivalent to SDP program:
min cTx

such that diag(Ax− b) � 0

Proposition 1.4.12. Given SOCP

min fTx

such that ‖Aix+ bi‖2 ≤ c
T
i x+ di i = 1, . . . ,m

is equivalent to the following SDP:

min fTx

such that

[
(cTi x+ di)I Aix+ bi
Aix+ bi cTi x+ di

]
� 0 i = 1, . . . ,m

Proposition 1.4.13. Given the eigenvalue minimization problem:

minλmax(A(x))

where A(x) = A0 + x1A1 + · · ·+ xnAn with given Ai ∈ Sk. This is equivalent SDP, where:

min t

such that A(x) � tI

with the variable x ∈ Rn and t ∈ R. This follows from λmax(A) ≤ t iff A � tI

Proposition 1.4.14. Given the matrix norm minimization problem:

min ‖A(x)‖2 =
(
λmax(A(x)TA(x))

)1/2
where A(x) = A0 + x1A1 + · · ·+ xnAn is equivalent to:

min t

such that

[
tI A(x)
A(x) tI

]
� 0

Given the variabble x ∈ Rn and t ∈ R. We have the constraint follows from:

‖A‖2 ≤ t ⇐⇒ ATA � t2I t ≥ 0

⇐⇒
[
tI A
AT tI

]
� 0
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1.4.4 Vector Optimization Problem

Definition 1.4.28. (General Vector Optimization Problem)

min f0(x)

such that fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

The minimization with respected to K. We have vector objective f0 : Rn → Rq minimized with respected
to propert cone K ∈ Rq.

Definition 1.4.29. (Convex Vector Optimization Problem)

min f0(x)

such that fi(x) ≤ 0 i = 1, . . . ,m

Ax = b

with f0 is K-convex and f1, . . . , fm are convex.

Definition 1.4.30. (Optimality) Set of achievable objective vectors O = {f0(x)|x feasible}:

• The feasible x is optimal if f0(x) is minimum value of O

• The feasible x is pareto optimal if f0(x) is minimal value of O

Remark 10. The vector optimization problem with K = Rd+, where

f0(x) = (F1(x), . . . , Fq(x))

we have q different objectives Fi, roughly, we want all fi to be small. Then the notion of optimality becomes:

• The feasible x∗ is optimal if, y is feasible:

f0(x∗) � f0(y)

If there exists an optimal point, then the object are non-competing.

• The feasible xpo is pareto optimal, if y is feasible:

f0(y) � f0(xpo) =⇒ f0(xpo) = f0(y)

If there are multiple pareto optimal value, there is a trade-off between objective.

Definition 1.4.31. (Scalarization) To find a pareto optimal point, we can choose λ �K∗ 0 and have the
following scalar problem:

minλT f0(x)

such that fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

If x is optimal for scalar problem, then it is pareto optimal for vector optimization problems, we have:

λT f0(x) = λ1F1(x) + · · ·+ λqFq(x)

For convex vector optimization problem, we can find (almost) all Pareto optimal point by varying λ �K∗ 0.
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1.5 Duality

1.5.1 Lagragian

Definition 1.5.1. (Lagragian) Given a standard form of problem:

min f0(x)

such that fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

Given the variable x ∈ Rn, domain D, and optimal value p∗. We have Lagragian to be L : Rn×Rm×Rp → R
with domain L = D × Rm × Rp:

L(x, λ, v) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

vihi(x)

where we have:

• Weight sum of objective and constant functions.

• λi is lagragian multiple associated wth fi(x) ≤ 0

• vi is lagragian multiple associated with hi(x) = 0

Definition 1.5.2. (Dual Function) The function g : Rm × RD → R:

g(λ, v) = inf
x∈D

L(x, λ, v)

= inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

vihi(x)

)

Note that g is concave and it can be −∞ for some λ, v.

Proposition 1.5.1. If λ � 0 then g(λ, v) ≤ p∗

Proof. If x̃ is feasible and λ � 0 then:

f0(x̃) ≥ L(x̃, λ, v) ≥ inf
x∈D

L(x, λ, v) = g(λ, v)

The minimizing over all feasible x̃ gives p∗ ≥ g(λ, v)

Remark 11. The least norn solution for linear equation, which we have:

minxTx

such that Ax = b

The lagragian is given by L(x, v) = xTx + vT (Ax − b). Let’s try to minimize the Lagragian by finding the
gradient with respected to x:

∇xL(x, v) = 2x+AT v = 0 =⇒ x = −(1/2)AT v

Plugging back to L gives us:

g(v) = L(−(1/2)AT v, v) = −1

4
vTAAT v − bT v

and it is concave function of v. Furtheremore, the lower bound is p∗ ≥ − 1
4v
TAAT v − bT v for all v.
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Remark 12. If we consider the standard form of LP:

min cTx

such that Ax = b

x � 0

The Lagragian is:
L(x, λ, v) = cTx+ vT (Ax− b) + xTx

= −bT v + (c+AT v − λ)Tx

Note that if L is affine in x, then we have:

g(λ, v) = inf
x
L(x, λ, v) =

{
−bT v if AT v − λ+ c = 0

−∞ otherwise

Note that g is linear on affine domain {(λ, v)|AT v − λ + c = 0}, hence concave. Now, the lower bound
property: p∗ ≥ −bT v if AT v + c � 0

Remark 13. Given the equality constrained norm minimization:

min ‖x‖
such that Ax = b

The dual function is

g(v) = inf
x
‖x‖ − vTAx+ bT v =

{
bT v if

∥∥AT v∥∥∗ ≤ 1

−∞ otherwise

where ‖v‖∗ = sup‖u‖≤1 u
T v is dual norm of ‖·‖. With the lower bound property: p∗ ≥ bT v if

∥∥AT v∥∥∗ ≤ 1

Proposition 1.5.2. We have infx ‖x‖ − yTx = 0 if ‖y‖∗ ≤ 1 and −∞ otherwise.

Proof. Then, we have:

• If ‖y‖∗ ≤ 1 then ‖x‖ − yTx ≥ 0 for all x with equality if x ≥ 0

• If ‖y‖∗ > 1 choose x = tu where ‖u‖ ≤ 1 and uT y = ‖y‖∗ > 1:

‖x‖ − yTx = t(‖u‖ − ‖y‖∗)→ −∞

as t→∞.

Definition 1.5.3. (Two-Way Partitioning) Given the two way partitioning:

minxTWx

such that x2
i = 1 i = 1, . . . , n

This is non-convex problem with a feasible set contains 2n discrete points. The interpretation is partition
{1, . . . , n} in 2 sets. Given the weight Wij is the cost assigning ij into same set and −Wij is the const of
defining a different set.

Remark 14. The dual function of two-way partitioning is:

g(v) = inf
x

(
xTWx+

∑
i

vi(x
2
i − 1)

)
= inf

x
xT (W + diag(v))x− 1T v

=

{
−1T v if w + diag(v) � 0

−∞ otherwise

Now we have lower bound property p∗ ≥ −1T v if W + diag(v) � 0
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Proposition 1.5.3. We have linear programming problem:

min f0(x)

such that Ax � b
Cx = d

Now, consider the dual function:

g(λ, v) = inf
x∈dom f0

(
f0(x) + (ATλ+ CT v)Tx− bTλ− dT v

)
= −f∗0 (−ATλ− CT v)− bTλ− dT v

recall the definition of conjugate function f∗(·). The dual if conjugate of f0 is known.

Remark 15. The example of entropy maximization, we have:

f0(x) =

n∑
i=1

xi log xi f∗(x) =

n∑
i=1

exp(yi − 1)

1.5.2 Dual Problems

Definition 1.5.4. (Lagragian Dual Problem) We have the following problem:

min g(λ, v)

subject to λ � 0

We find the lower bound on p∗ to obtained from Lagragian dual function. Optimal value denote d∗. λ, v
are dual feasible if λ � 0 where (λ, v) ∈ dom(g). We often simplify by making the implicit constrain
(λ, v) ∈ dom(g) explicit.

Definition 1.5.5. (Weak/Strong-Duality) We consider 2 cases:

• If we have d∗ ≤ p∗, this always hold. It can be used to find non-trivial lower bound for difficult problem.

• Otherwise d∗ = p∗, this doesn’t hold in general. We usually hold for convex problem. The conditions
that gurantee that gurantee strong duality in convex problem is called constriant qualificaition.

Remark 16. For example, solving the SDP:

min−1T v

subject to w + diag(v) � 0

gives a lower bound for 2 ways partitioning problem

Definition 1.5.6. (Slater’s Constraint Qualification) The strong duality holds for convex problem:

min f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m

Ax = b

if it is strictly feasible: there exists x ∈ int(D)

fi(x) < 0 i = 1, . . . ,m Ax = b

Guarantee that the dual optimum is attained (if p∗ > ∞). Note that this can be sharpen: int(D) can be
replaced with relint(D). There exists other types of constraint qualificaition.
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Remark 17. (Linear Programming) Now, we have inequality for Linear Programming: The primal prob-
lem is:

min cTx

subject to Ax � b

Together with the dual function:

g(λ) = inf
x

((c+ATλ)Tx− bTλ) =

{
−bTλ if ATλ+ c = 0

−∞ otherwise

Now, the dual problem is:
min−bTλ
subject to ATλ+ c = 0

λ � 0

From Slanter’s Constraint, p∗ = d∗ if Ax̃ ≺ b for some x̃. In fact p∗ = d∗ except when primal and dual are
infeasible.

Remark 18. (Quadratic Program) For quadratic program, where we have primal problem (assuming
P ∈ Sn++):

minxTPx

subject to Ax � b

The dual function:

g(λ) = inf
x

(xTPx+ λT (Ax− b)) = −1

4
λTAP−1ATλ− bTλ

This we have the dual problem to be:

min−1

4
λTAP−1ATλ− bTλ

subject to λ � 0

From Slater condition p∗ = d∗ if Ax̃ ≺ b for some x̃ in fact p∗ = d∗ always.

Remark 19. (Non-Convex Problem with Strong Duality) We have the following non-convex problem:

minxTAx+ 2bTx

subject to xTx ≤ 1

when A 6� 0 is non-convex. Given a dual function:

g(λ) = inf
x

(xT (A+ λI)x+ 2bTx− λ)

The undbounded below if A + Iλ 6� 0 or A + Iλ � 0 and b 6∈ R(A + Iλ), where it is linear combination of
columns. This is minimized by x = −(A+ λI)†b and g(λ) = −bT (A+ Iλ)†b− λ. Now the dual problem:

min−bT (A+ Iλ)†b− λ
subject to A+ λI � 0

b ∈ R(A+ Iλ)

is equivalent to:
min−t− λ

subject to

[
A+ Iλ b
bT t

]
� 0

We can have strong duality although the primal problem isn’t convex.
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Definition 1.5.7. (Complementary Slackness) Assume strong duality holds, x∗ is primal optimal
(λ∗, v∗) is dual optimal:

f0(x∗) = g(λ∗, v∗) = inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x) +

p∑
i=1

v∗i hi(x)

)

≤ f0(x∗) +

m∑
i=1

λ∗i fi(x
∗) +

n∑
i=1

v∗hi(x
∗)

≤ f0(x∗)

Hence the 2 inequalities hold with equality, if:

• x∗ minimizes L(x, λ∗, v∗)

• λ∗i fi(x∗) = 0 for i = 1, . . . ,m (known as complementatry slackness):

λ∗i > 0 =⇒ fi(x
∗) = 0

fi(x
∗) < 0 =⇒ λ∗i = 0

Definition 1.5.8. (KKT Condtion) The following 4 conditions are called KKT condition (for a problem
with differentiable fi and hi):

• Primal constraints:
fi(x) ≤ 0 for i = 1, . . . ,m

hi(x) = 0 for i = 1, . . . , p

• Dual Constraints λ � 0

• Complementary Slackness: λifi(x) = 0 for i = 1, . . . ,m

• Gradient of Lagragian with respected to x vanishes:

∇f0(x) +

m∑
i=1

λi∇fi(x) +

n∑
i=1

vi∇hi(x) = 0

The strong duality holds and x, λ, v are optimal, then it must satisfy KKT condition.

Proposition 1.5.4. If x̃, λ̃, ṽ satisfy KKT for convex problem, when they are optimal:

• From complementatry slackness: f0(x̃) = L(x̃, λ̃, ṽ)

• From the forth condition and convexity: g(λ̃, ṽ) = L(x̃, λ̃, ṽ)

hence f0(x̃) = g(λ̃, ṽ)

Proposition 1.5.5. If slanter’s condition is satisfied: x is optimal iff λ, v that satisfies KKT condition:

• Recall that slanter implies strong duality and dual optimal is allowed.

• The generalies optimality condition ∇f(x) = 0 for unconstrained problems.

Remark 20. Perturbation and Sensitivity analysis. Consider unperturbed optimization problem and its dual:

min f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m

qi(x) = 0 i = 1, . . . , p
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Its dual is:
max g(λ, ν)

subject to λ � 0

Now, the perturbed problem and its dual is:

min f0(x)

subject to fi(x) ≤ ui i = 1, . . . ,m

gi(x) = vi i = 1, . . . , p

and its dual is:
max g(λ, ν)− uTλ− vT ν
subject to λ � 0

We have:

• x as primal variable and u, ν are parameters.

• p∗(u, v) is optimal value as a function of u, v

• We are interested about p∗(u, v) that we can obtain from the solution of unperturbed problems and
its dual.

Assume strong duality holds for unperturbed problems and that λ∗ and ν are dual optimal for unperturbed
problem.

p∗(u, v) ≥ g(λ, ν∗)− uTλ∗ − vT ν∗

= p∗(0, 0)− uTλ∗ − vT ν∗

Given a statistical interpretation:

• If λ∗i is large, p∗ increases greatly if we tighten constraint i (ui < 0)

• If λ∗i is small, p∗ doesn’t decrease much if we loosen constraint i (ui ≥ 0)

• If ν∗ is large and positive: p∗ increases greatly if we have vi < 0

• If ν∗ is large and negative: p∗ increases greatly if we have vi > 0

• If ν∗ is small and positive: p∗ doesn’t decrease much if we take vi > 0

• If ν∗i is small and negative: p∗ doesn’t decrease much if we take vi < 0

Lemma 1.5.1. If p∗(u, v) is differentiable at (0, 0) then:

λ∗i =
∂p∗(0, 0)

∂ui
ν∗i = −∂p

∗(0, 0)

∂vi

Proof. For λ∗i from global sensitivity result:

∂p∗(0, 0)

∂ui
= lim
t↘0

p∗(tei, 0)− p∗(0, 0)

t
≥ −λ∗i

∂p∗(0, 0)

∂ui
= lim
t↗0

p∗(tei, 0)− p∗(0, 0)

t
≤ −λ∗i

Hence equality.
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1.5.3 Techniques of Solving Dual Problems

Remark 21. We have an equivalent formulations of a problem can lead to very different duals. Reformulating
the primal problem can be useful when the duals is difficult to derive. The common reformulations are:

• Introduces new variables and equality constrains

• Make explicit constraint implicit or vice versa

• Transform object or constant functions: Replace f0(x) by φ(f0(x)) with φ convex and increasing.

Definition 1.5.9. (New Variable and Equality Contraint)

max f0(Ax+ b)

This is dual function is constant g = infx L(x) = infx f)(Ax+ b) = p∗ but this is useless:

min f0(y)

subject to Ax+ b− y = 0

Now, its dual is
max bT ν − f∗0 (ν)

subject to AT ν = 0

As the dual function forms:
g(ν) = inf

x,y
(f0(y)− νT y + νTAx+ bT ν)

=

{
−f∗0 (ν) + bT ν if AT ν = 0

−∞ otherwise

Remark 22. (Norm Approximation Problem) We would like to minimize ‖Ax− b‖. This is the same
as:

min ‖y‖
subject to Ax− b = y

We have the following dual function:

g(ν) = inf
x,y

(
‖y‖+ νT y − νTAx+ bT ν

)
=

{
bT ν + infx

(
‖y‖+ νT y

)
if AT ν ≤ 1

−∞ otherwise

=

{
bT ν if AT ν = 0, ‖ν‖∗ ≤ 1

−∞ otherwise

And, so we have dual of the norm approximation problem is:

max bT ν

subject to AT ν = 0

‖ν‖∗ ≤ 1

Definition 1.5.10. (Implicit Constraint) Let’s consider the linear programming with box constriants,
which we have:

min cTx

subject to Ax = b

− 1 � x � 1
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And its dual is
min−bT ν − 1Tλ1 − 1Tλ2

subject to c+AT ν + λ1 − λ2

λ1 � 0

λ2 � 0

However, we can simplify by reformulate the box constraint and make the constriant explicit:

min f0(x) =

{
cTx if − 1 � x � 1

∞ otherwise

subject to Ax = b

Now, the dual function becomes:
g(ν) = inf

−1�x�1
cTx+ νT (Ax− b)

= −bT ν −
∥∥AT ν + c

∥∥
1

Now, the dual problem is equal to max−bT ν −
∥∥ATµ+ c

∥∥
1

Definition 1.5.11. (Problems with Generalized Inequalities) We consider the following problem:

min f0(x)

subject to fi(x) �Ki 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

Where �Ki of generalized inequality on Rki . There are parallels to the scalar case:

• Lagragian multiplier for fi(x) �Ki 0 is a vector λi ∈ RKi

• Lagragian L : Rn × Rk1 × · · · × Rkm × Rd → R

L(x, λ1, . . . , λm, ν) = f0(x) +

m∑
i=1

λTi fi(x) +

D∑
i=1

νihi(x)

• Dual Function is g : Rk1 × · · · × Rkm × RD → R is defined as:

g(λ1, . . . , λm, ν) = inf
x∈D

L(x, λ1, · · · , λm, ν)

• Lower bound property: If λi �K∗i 0 then g(λ1, . . . , λm) ≤ p∗

• Dual Problem:
max f0(λ1, . . . , λm, ν)

subject to λi �K∗i 0 i = 1, . . . ,m

The weak duality p∗ ≥ d∗. The strong duality is p∗ = d∗ for some convex problem with constraint
optimization (Slater).

Remark 23. To show that the lower bound property is true, we have:

f0(x̃) ≥ f0(x̃) +

m∑
i=1

λTi fi(x̃) +

p∑
i=1

νihi(x̃)

≥ inf
x∈D

L(x, λ1, . . . , λm, ν)

= g(λ1, . . . , λm, ν)

Mininize over all feasible x̃ will give us p∗ ≥ g(λ1, . . . , λm, ν)

29



Definition 1.5.12. (Semi-Definite Program) The primal SDP is given by (Fi, G ∈ Sk)

min cTx

subject to x1F1 + · · ·+ xnFn � G

The lagrange multiplier is Z ∈ RK where

L(x, Z) = cTx+ tr(Z(x1F1 + · · ·+ xnFn −G))

Dual function is:

g(Z) = inf
x
L(x, Z) =

{
− tr(GZ) if tr(FiZ) + ci = 0 i = 1, . . . , n

−∞ otherwise

The dual SDP is defined as:

max− tr(GZ)

subject to Z � 0 tr(FiZ) + ci = 0, i = 1, . . . , n

p∗ = d∗ if primal SDP is strictly feasible (there exists x with x1F1 + · · ·+ xnFn ≺ G)
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Chapter 2

RKHS in Machine Learning

2.1 Introduction to RKHS

2.1.1 Building a Kernel

Definition 2.1.1. (Kernel) Let X be non-empty set, a function k : X × X → R is a kernel if there exists
a Hilbert space H and a feature map φ : X → H such that for all x, x′ ∈ X :

k(x, x′) = 〈φ(x), φ(x)〉H

Remark 24. For a single kernel, there can be multiple features. For example, the map

φ1(x) = x φ2(x) =

[
x/
√

2

x/
√

2

]
corresponds to the same kernel.

Theorem 2.1.1. Given α > 0 and k, k1, k2 be kernel on X , then: αk, k1 + k2, and k1 × k2 are kernels.

Proof. Scalar Multiplication: Suppose k(·, ·) = 〈φ(·), φ(·)〉H, with a feature map φ(·) : X → H and some
points x, x′ ∈ X ,we can see that

αk(x, x′) =
〈√

αφ(x),
√
αφ(x′)

〉
H

where the new feature map is
√
αφ(·)

Kernel Addition: Suppose k1(·, ·) = 〈φ(·), φ(·)〉A and k2(·, ·) = 〈ψ(·), ψ(·)〉B, where φ : X → A and
ψ : X → A are features map. Then, we can see that, for point x, x′ ∈ X :

(k1 + k2)(x, x′) = k1(x, x′) + k2(x, x′) = 〈(φ‖ψ)(·), (φ‖ψ)(·)〉A

where we define:

φ(x) =


φ1(x)
φ2(x)
φ3(x)
φ4(x)

...

 ψ(x) =


ψ1(x)
ψ2(x)
ψ3(x)
φ4(x)

...

 (φ||ψ)(x) =


φ1(x)
ψ1(x)
φ2(x)
ψ2(x)

...
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Kernel Multiplication: We assume same kernel k1, k2. We have

k1(x1, x2)k(x1, x2) =
(
φT (x)φ(x)

)
·
(
ψT (x)ψ(x)

)
= tr

(
φT (x)φ(x)ψT (x)ψ(x)

)
= tr

(
ψ(x)φT (x)φ(x)ψT (x)

)
= tr

( [
φ(x)ψT (x)

]T
φ(x)ψT (x)

)
The feature map for product kernel is Φ(·) = φ(·)ψT (·), and the inner product is defined as: for matrix A,B:

〈A,B〉 = tr(ATB)

Proposition 2.1.1. Let X and X̃ be a set, and define a map A : X → X̃ we can define a kernel k(·, ·) on
X̃ , then:

k(A(·), A(·))

is a kernel.

Proof. the new kernel k̃ can be expressed as 〈ψ(·), ψ(·)〉X̃ , where ψ = φ ◦A.

Proposition 2.1.2. Given the kernel k1, k2 (with associated feature map φ and ψ ,respectively – note that
they don’t have to be unique), k1 − k2 doesn’t need to be kernel, nor |k1 − k2|

Proof. Given x where k(x, x′) = 〈φ(x), φ(x′)〉H, we can see that (k − k)(x, x) = (|k − k|)(x, x) = 0, however
as the feature map doesn’t maps all x to zero vector, it contradicts the definition of inner product as the
product can’t be zero unless both of the vectors are zero.

Definition 2.1.2. (Polynomial Kernel) Given theorem 2.1.1, we can construct a polynomial kernel as:

k(x, x′) = (c+ 〈x, x′〉)m

and it is valid kernel.

Definition 2.1.3. (Taylor Series Kernel) For r ∈ (0,∞] with an ≥ 0 for all n ≥ 0, we have:

f(z) =

∞∑
n=0

anz
n

for |z| < r, z ∈ R and we define X to be
√
r-ball in Rd, then the Taylor series kernel is defined as:

k(x, x′) = f(〈x, x′〉) =

∞∑
n=0

an 〈x, x′〉
n

Lemma 2.1.1. Taylor series kernel is kernel

Proof. There are 2 points we have to proof:

• Taylor Series Converges: Let’s show that the value of 〈x, x′〉 is less than or equal to r to make
sure that Taylor series converges. This is the application of Cauchy-Schwarz inequality as | 〈x, x′〉 | ≤
‖x‖ · ‖x′‖ < r.

• Taylor Series Kernel is Kernel: Now, from theorem 2.1.1, we have an addition of kernels and
multiplication to scalar, thus being a kernel.
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Definition 2.1.4. (Exponentiated Quadratic Kernel) We define an exponentiated Quadratic kernel to
be

k(x, x′) = exp
(
−γ−2 ‖x− x′‖2

)
Corollary 2.1.1. Exponentiated Quadratic Kernel is kernel.

Proof. Let’s expand the definition of a square normed, then we have:

exp
(
−γ−2 ‖x− y‖2

)
= exp

(
−γ−2

[
‖x‖2 − 2 〈x, y〉+ ‖y‖2

])
= exp

(
−γ−2 ‖x‖2

)
exp

(
−γ−2 ‖y‖2

)
︸ ︷︷ ︸

k1(x,y)

· exp
(
2γ−2 〈x, y〉

)︸ ︷︷ ︸
k2(x,y)

Thus, we have a product of 2 kernels, where one of them is produced from a feature map exp(−γ−2 ‖·‖2)
and the other comes from the Taylor series Kernel together with non-negative multiplication.

Definition 2.1.5. (l2-Space) The space l2 comprised of all sequences a = (ai)i≥1 for which

‖a‖2l2 =

∞∑
l=1

a2
l <∞

Definition 2.1.6. (Infinity Dimension Kernel) Given a sequence of function (φ(x)i)i≥1 in l2 where
φi : X → R being the i-th coordinate of φ, then we can define an infinity dimension kernel to be

k(x, x′) =

∞∑
i=1

φi(x)φi(x
′)

Theorem 2.1.2. Infinity Dimension Kernel is a kernel.

Proof. We consider the norm of the kennel, and apply Cauchy Schwarz i.e:

‖k(x, x′)‖ =

∥∥∥∥∥
∞∑
i=1

φi(x)φi(x
′)

∥∥∥∥∥ ≤ ‖φ(x)‖ · ‖φ(x′)‖ ≤ ∞

2.1.2 Further Notions of Kernels and RKHS

Definition 2.1.7. (Positive Definite) A symmetric function k : X ×X → R is positive definite if: for all
a1, a2, . . . , an ∈ Rn and for all x1, x2, . . . , xn ∈ Xn

n∑
i=1

n∑
j=1

aiajk(xi, xj) ≥ 0

The function k(·, ·) is strictly positive definite if equality holds when ai, aj 6= 0.

Theorem 2.1.3. Let H be Hilbert space, X be non-empty set and φ : X → H. Then k(x, y) = 〈φ(x), φ(y)〉
is positive definite.
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Proof. For all a1, a2, . . . , an ∈ Rn and for all x1, x2, . . . , xn ∈ Xn

n∑
i=1

n∑
j=1

aiajk(xi, xj) =

n∑
i=1

n∑
j=1

〈aiφ(xi), ajφ(xj)〉

=

〈
n∑
i=1

aiφ(xi),

n∑
j=1

ajφ(xj)

〉
=

∥∥∥∥∥∥
n∑
j=1

ajφ(xj)

∥∥∥∥∥∥
2

≥ 0

Definition 2.1.8. (Notion of Function) We will represent a function, throughout the note, as a vector
of real numbers; for instance, f(·) = [f1 f2 f3]T , its evaluation will be based on a feature map φ(x), as
f(x) = 〈f, φ(x)〉H as H is space of functions.

Remark 25. Let’s consider the example of f : R2 → R as:

f(x) = 〈f, φ(x)〉 = f1x1 + f2x2 + f3(x1x2) where φ(x) =

 x1

x2

x1x2


Remark 26. (Representing Function as Finite Sum of Kernels) This notion of function can be repre-
sented by infinity many feature of f and φ(·) as the function, which will be shown as:

f(x) = 〈f, φ(x)〉H =

∞∑
l=1

flφl(x)

As we required that
∑∞
l=1 f

2
l ≤ ∞ We will assume that fl can be represented in finite linear combination of

the features φl(x):

fl =

m∑
i=1

αiφl(xi)

Then, we have:

f(x) =

〈
m∑
i=1

αiφ(xi), φ(x)

〉
H

=

m∑
i=1

αik(xi, x)

Now, a function with infinite feature can be represented by a finite linear combination of kernels given a
certain number of points.

Remark 27. (Feature Map is also a function) Let’s consider the simpliest case of m = 1 with α1 = 1,
we have

f(x) = k(x1, x) =

〈
k(x1, ·)︸ ︷︷ ︸
f(·)

, φ(x)

〉
H

= 〈k(x, ·), φ(x1)〉

And, so we have a kernel parameterized by x1, which is a feature map by definition. And thus, we can
“swap” the notation around and assigned the coefficient to be φ(x1), thus feature map is a function.Please
note that, we can write the kernel as

k(x, y) = 〈k(x1, ·), k(x2, ·)〉H
Now, k(x, ·) is called canonical feature map as it is the simpliest, while there are many feature map (poten-
tially infinite) that can construct this kernel. This means that the space of function H is bigger than all
features at single point as it is an combination of functions.

Definition 2.1.9. (Reproducing Property) The features of RKHS have reproducing property, where for
all x ∈ X and for f(·) ∈ H:

f(x) = 〈f(·), k(·, x)〉H
The feature map of every point is a function of kernel k(·, x) = φ(x) ∈ H where for any x ∈ X , we have:

k(x, x′) = 〈φ(x), φ(x′)〉H = 〈k(·, x), k(·, x′)〉H
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2.2 Smoothness of RKHS

2.2.1 Periodic Case

Definition 2.2.1. (Fourier Series) We define a fourier series that represents the function on interval
[−π, π] with periodic boundary as:

f(x) =

∞∑
l=−∞

f̂l exp(ilx) =

∞∑
l=−∞

f̂l(cos(lx) + sin(lx))

We would like to note that the basis functions are orthogonal to each other as

1

2π

∫ π

−π
exp(ilx)exp(imx) dx =

{
1 l = m

0 otherwise

Definition 2.2.2. (Translation Invariance) Translation invariance kernel is kernel that is defined by

k(x, y) = k(x− y)

Remark 28. Fourier representation of translation invariance kernel is

k(x, y) =

∞∑
l=−∞

k̂l exp(il(x− y)) =

∞∑
l=−∞

[√
k̂l exp(ilx)

]
︸ ︷︷ ︸

φl(x)

[√
k̂l exp(−ily)

]
︸ ︷︷ ︸

φl(y)

Proposition 2.2.1. The L2 inner product of the function can be represented by Fourier series as:

〈f, g〉L2
=

∞∑
l=−∞

f̂lĝl

Proof. We expand on the definition of inner product in L2:

〈f, g〉L2
=

∫ ∞
−∞

f(x)g(x) dx

=

∫ ∞
−∞

[ ∞∑
l=−∞

f̂l exp(ilx)

]
·

[ ∞∑
l=−∞

ĝl exp(ilx)

]

=

∫ ∞
−∞

[ ∞∑
l=−∞

f̂l exp(ilx)

]
·

[ ∞∑
l=−∞

ĝl exp(−ilx)

]

=

∫ ∞
−∞

∞∑
l=−∞

f̂lĝl dx+

∫ ∞
−∞

∞∑
j=−∞

∑
j 6=k

f̂j ĝk exp(ijx)exp(ikx) dx

=

∞∑
l=−∞

f̂lĝl

Definition 2.2.3. (Smooth Dot Product) Recall the coefficient k̂l from remark 28, we define an inner
product in H to be

〈f, g〉H =

∞∑
l=−∞

f̂lĝl

k̂l
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And so, we define a dot product to be:

‖f‖2H = 〈f, f〉H =

∞∑
l=−∞

f̂lĝl

k̂l
=

∞∑
l=−∞

|f̂l|2

k̂l

In the case that k̂l decays fast, we need to have f̂l to be fast too in order to have bounded sum.

Remark 29. Given the Jacobi-Theta Kernel:

k(x, y) =
1

2π
ϑ

(
x− y

2π
,
iσ2

2π

)
k̂i =

1

2π
exp

(
−σ

2l2

2

)
as it is a Gaussian version of “periodic” kernel. Now given the top hat function, which is a function:

f(x) =

{
1 |x| < T

0 T ≤ |x| < π
f̂l =

sin(lT )

lπ

We can see that the top hat function isn’t in a Gaussian spectrum RKHS. As we can show that ‖f‖2H won’t

converge. This is because |f̂l|2 decays polynomial in l, while k̂l decays in exponential of l. Thus, the norm
doesn’t converge.

Proposition 2.2.2. We can show that

〈f(·), k(·, z)〉H = f(z)

where 〈·, ·〉H is defined in 2.2.3. Thus, it has the reproducing property. And, we can show that:

〈k(·, y), k(·, z)〉 = k(y, z)

Proof. First Statement: We consider the following function:

g(x) = k(x− z) =

∞∑
l=−∞

exp(ilx) k̂l exp(−ilz)︸ ︷︷ ︸
gl

Now, the dot product is equal to:

〈f(·), g(·)〉 =

∞∑
l=−∞

f̂l
k̂l exp(ilz)

k̂l
=

∞∑
l=−∞

f̂l exp(ilz) = f(z)

Similarly, we can consider 2 functions f(x) = k(x− y) and g(x) = k(x− z), where

f(x) =

∞∑
l=−∞

exp(ilx) exp(−ily)k̂l︸ ︷︷ ︸
f̂l

g(x) =

∞∑
l=−∞

exp(ilx) exp(−ilz)k̂l︸ ︷︷ ︸
ĝl

Second Statement: And, so the reproducing we have:

〈f(·), g(·)〉 =

∞∑
l=−∞

k̂l exp(−ily)k̂l exp(−ilz)
k̂l

=

∞∑
l=−∞

k̂l exp(il(z − y)) = k(z − y)
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Remark 30. Recalling that function can be represented as:

f(z) =

∞∑
l=−∞

flφl(z)

Now, recall the function f(z) shown in proposition 2.2.2.

〈f(·), g(·)〉 =

∞∑
l=−∞

f̂l
k̂l exp(−ilz)(√

k̂l

)2

Then, we have

fl = f̂l/

√
k̂l φl(z) =

√
k̂l exp(−ilz)

2.2.2 Eigen Expansion Case

Remark 31. We are going to extension of the definition of RKHS to eigenexpansion as fourier series only
gives us the periodic domain [−2π, 2π]

Definition 2.2.4. (Eigenfunction/Eigenvalue) We define a probability measure on X = R, where we
will use Gaussian density:

p(x) =
1√
2π

exp(−x2)

We define an eigenfunction el(·) and eigenvalue λl on k(x, x′) wrt. to this measure as

λlel(x) =

∫
k(x, x′)el(x

′)p(x′) dx′

Definition 2.2.5. (Eigen-expansion) The eigen-expansion of k(x, x′) given eigenfunction el and eigenvalue
λl for l = 1, 2 . . . is (it is countable):

k(x, x′) =

∞∑
l=1

λl(x)el(x)el(x
′)

where we can show that ∫
ei(x)ej(x)p(x) dx =

{
0 i 6= j

1 otherwise

Proposition 2.2.3. The L2(p) inner product of function f(x) =
∑∞
l=1 f̂lel(x) and g(x) =

∑∞
l=1 f̂mem(x) is

〈f, g〉L2
=

∞∑
l=1

f̂lĝl

Proof. We perform similar calculation as fourier series case:

〈f, g〉L2
=

∫ ∞
−∞

f(x)g(x)p(x) dx

=

∫ ∞
−∞

[ ∞∑
l=1

f̂lel(x)

][ ∞∑
m=1

f̂mem(x)

]
p(x) dx =

∞∑
l=1

f̂lĝl
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Definition 2.2.6. (Smooth Dot Product 2) We define a smooth dot product (with the norm) to be:

〈f, g〉H =

∞∑
l=1

f̂ ĝ

λl
‖f‖2H =

∞∑
l=1

f̂2
l

λl

Proposition 2.2.4. We can show that

〈f(·), k(·, z)〉 = f(z)

Proof. We have

〈f(·), k(·, z)〉 =

∞∑
l=1

f̂lλlel(z)

λl
=

∞∑
l=1

f̂lel(z) = f(z)

Remark 32. Let’s try to find the original definition of function evaluation as in definition 2.1.8. Since we
have:

〈f(·), k(·, z)〉H =

∞∑
l=1

f̂l(λlel(z))(√
λl
)2

and so we have fl = f̂l/
√
λl and φl(z) =

√
λlel(z), and so we have

f(x) =

m∑
i=1

αik(xi, x) =

m∑
i=1

αi

 ∞∑
j=1

λjei(xi)ej(x)

 =

∞∑
l=1

fl

[√
λjel(x)

]
where fl =

∑m
i=1 αi

√
λlel(xl). As λl decays as el becomes rougher, then fl decays since ‖f‖2H < ∞. This

reinforce smoothness.

2.3 More of RKHS

Definition 2.3.1. (Reproducing Kernel Hilbert Space) Let H be a Hilbert space of R-valued function
on non-empty set X . A function k : X × X → R is reproducing kernel of H and H is RKHS if:

• For all x ∈ X , k(·, x) ∈ H, then k(·, x) ∈ H

• For all x ∈ X , 〈f(·), k(·, x)〉H = f(x)

Definition 2.3.2. (Eval Operators) For all f ∈ H, x ∈ X then we have δxf = f(x)

Theorem 2.3.1. (Riesz Representation) In Hilbert space H, all bounded linear function f is of form
〈·, g〉H for some g ∈ H.

Theorem 2.3.2. H is RKHS (δx is bounded and linear) iff H has a reproducing kernel.

Proof. (If H has reproducing kernel, then δx is bounded): Starting with the first direction, we have:

|δxf | = |f(x)| = | 〈f, k(·, x)〉H |
≤ ‖k(·, x)‖H ‖f‖H
= 〈k(·, x), k(·, x)〉1/2H ‖f‖H
=
√
k(x, x) ‖f‖H

(If δx is bounded, then H has reproducing kernel): We will utlize riesz representation. As the
evaluation operator is bounded and linear, then there exists fδx ∈ H such that for all f ∈ H, we have:

δxf = 〈f, fδx〉H
We can define k(·, x) = fδx(·) for all x ∈ X . It is clear that k is reproducing kernel.
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Definition 2.3.3. (Alternative Definition RKHS) H is an RKHS if the evaluation operator is bounded
i.e for all x ∈ X there exists λx ≥ 0 such that for all f ∈ H:

|f(x)| = |δx| ≤ λx ‖f‖H

Remark 33. This definition implies that 2 functions that are identical in RKHS will agree at every point,
for all f, g ∈ H:

|f(x)− g(x)| = |δx(f − g)| ≤ λx ‖f − g‖H
Theorem 2.3.3. (Moore-Aronszajn) Let k : X × X → R be positive define, then there is unique RKHS
H ⊂ RX with reproducing kernel k

2.4 Application of Kernel

Proposition 2.4.1. Given the sample (xi)
m
i=1 from p and (yi)

m
i=1 from q. The distance between their mean

in a feature space is:∥∥∥∥∥ 1

m

m∑
i=1

φ(xi)−
1

n

n∑
i=1

φ(yi)

∥∥∥∥∥
2

H

=
1

m2

m∑
i=1

m∑
j=1

k(xi, xj) +
1

n2

n∑
i=1

n∑
j=1

k(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yi)

Proof. Let’s just expand the definition:∥∥∥∥∥ 1

m

m∑
i=1

φ(xi)−
1

n

n∑
i=1

φ(yi)

∥∥∥∥∥
2

H

=

〈
1

m

m∑
i=1

φ(xi)−
1

n

n∑
i=1

φ(yi),
1

m

m∑
i=1

φ(xi)−
1

n

n∑
i=1

φ(yi)

〉

=
1

m2

〈
m∑
i=1

φ(xi),

m∑
i=1

φ(xi)

〉
− 2

mn

〈
m∑
i=1

φ(xi),
1

n

n∑
i=1

φ(yi)

〉
+

1

n2

〈
1

n

n∑
i=1

φ(yi),
1

n

n∑
i=1

φ(yi)

〉

=
1

m2

m∑
i=1

m∑
j=1

k(xi, xj) +
1

n2

n∑
i=1

n∑
j=1

k(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yi)

Remark 34. When we can have φ(x) = x, we distinguish a mean and when we use φ(x) = [x, x2], we
can distinguish the mean and variance. There is a possibility that we can use kernel to distinguish for 2
distribution. Please note that, we don’t have to explicitly calculate the feature.

2.4.1 Kernel PCA

Definition 2.4.1. (Centering Matrix) The centering matrix H is defined as

I − n−11n×n

Definition 2.4.2. (Principle Component Analysis) PCA is a method of finding d-dimensional sub-
space of a higher dimensional space D that contains the direction in the highest variance. Consider the first
principle component:

u1 = arg max
‖u‖≤1

1

n

uT
xi − 1

n

n∑
j=1

xj

2

= arg max
‖u‖≤1

uTCu
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where matrix C is defined by:

C =
1

n

n∑
i=1

xi − 1

n

n∑
j=1

xj

xi − 1

n

n∑
j=1

xj

T

=
1

n
XHXT

where X = [x1, . . . ,xn] and H is a centering matrix. To see the expansion please go to appendix A.1.1.

Definition 2.4.3. (Tensor Product) We define tensor product as:

(a⊗ b)c = 〈b, c〉H a

This is analogous to the matrix notation (abT )c = bT ca

Definition 2.4.4. (Kernelized Version of PCA) Let’s consider the PCA model but with a feature map,
starting from the first component:

f1 = arg max
‖f‖H≤1

1

n

n∑
i=1

〈f, φ(xi)−
1

n

n∑
j=1

φ(xi)

〉2

= arg max
‖f‖H≤1

1

n

n∑
i=1

(
f(xi)− Ê[f ]

)2

= arg max
‖f‖H≤1

var(f)

Note that the second equality comes from reproducing property of kernel. We will consider the infinite
dimension analogous of covariance:

C =
1

n

n∑
i=1

φ(xi)−
1

n

n∑
j=1

φ(xj)

⊗
φ(xi)−

1

n

n∑
j=1

φ(xj)


=

1

n

n∑
i=1

φ̃(xi)⊗ φ̃(xi)

Remark 35. We can consider the function:

f =

n∑
i=1

αi

φ(xi)−
1

n

n∑
j=1

φ(xj)

 =

n∑
i=1

αiφ̃(xi)

Suppose f is constructed as a sum of f‖+f⊥ where f‖ is function component that parallels to the φ̃(xi), and

f⊥ is function perpendicular to φ̃(xi). However, as we perform inner product, the component f⊥ is gone.
Thus, we can write it, in the case of a linear combination.

Proposition 2.4.2. The matrix equation of kernel PCA is

nλlαl = K̃αl

where K̃ = HKH as H is centering matrix.

Proof. We will start by consider the application of applying C to f :

Cf =

(
1

n

n∑
i=1

φ̃(xi)⊗ φ̃(xi)

)
n∑
j=1

αj φ̃(xj)

=
1

n

n∑
i=1

φ̃(xi)

〈
φ̃(xi),

n∑
j=1

αj φ̃(xj)

〉

=
1

n

n∑
i=1

φ̃(xi)

 n∑
j=1

αj k̃(xi, xj)
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as k̃(xi, xj) is i, j-entry of the matrix K̃ = HKH. To show this please go to appendix A.1.2. Now, we

consider the eigenfunction and eigenvalue equation λlfl = Cfl, where we will project both side with φ̃(xq):

• Left Hand Side: 〈
φ̃(xq), flλl

〉
= λl

〈
φ̃(xq), fl

〉
H

= λl

n∑
i=1

αlik̃(xq, xi)

• Right Hand Side: 〈
φ̃(xq), Cfl

〉
=

1

n

n∑
i=1

k̃(xq, xi)

 n∑
j=1

αlik̃(xq, xi)


These equation leads to matrix equation nλlK̃αl = K̃2αl, by rearrangement, we get the statement.

Proposition 2.4.3. The norm of the function f is equal to

‖f‖H = nλ ‖α‖2

Proof. We have the following:
‖f‖H = 〈f, f〉H

=

〈
n∑
i=1

αiφ̃(xi),

n∑
i=1

αiφ̃(xi)

〉

=

n∑
i=1

n∑
j=1

αiαj k̃(xi, xj)

= αT K̃α = αTnλα = nλ ‖α‖2

Remark 36. Given the norm of the function, we have to set α← α/
√
nλ assuming that ‖α‖ = 1.

Proposition 2.4.4. The projection of a test vector x∗ to principle component f is

Pfφ(x∗) = 〈φ(x∗), f〉 f =

 n∑
i=1

αi

k(x∗, xi)−
1

n

n∑
j=1

k(x∗, xj)

 n∑
i=1

αiφ̃(xi)

Proof. We start by expanding the definiton of f and f̃ :

Pfφ(x∗) = 〈φ(x∗), f〉 f =

〈
φ(x∗),

n∑
i=1

αiφ̃(xi)

〉
f

=

n∑
i=1

αi

〈
φ(x∗), φ(xi)−

1

n

n∑
j=1

φ(xj)

〉
f

=

 n∑
i=1

αi 〈φ(x∗), φ(xi)〉 −
1

n

n∑
j=1

〈φ(x∗), φ(xj)〉

 f

=

 n∑
i=1

αi

k(x∗, xi)−
1

n

n∑
j=1

k(x∗, xj)

 f
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Remark 37. We can consider the application of denoising a hand-written digit. Suppose, we are given a
noisy digit x∗:

Pdφ(x∗) = Pf1φ(x∗) + · · ·+ Pfdφ(x∗)

as we can project onto the first d eigenvectors {fl}di=1 from kernel PCA. The nearby point y∗ ∈ X as:

y∗ = arg min
y∈X

‖φ(y)− Pdφ(x∗)‖2H

This is how the image can be denoised, which can be done without the access to feature map.

2.4.2 Kernel Ridge Regression

Definition 2.4.5. (Ridge Regression) Given n training points (in RD) and labels:

X =
[
x1 · · · xn

]
∈ RD×n y =

[
y1 · · · yn

]T
We define λ > 0, and our goal is to find a∗:

a∗ = arg min
a∈RD

(∥∥y −XTa
∥∥2

+ λ ‖a‖2
)

Theorem 2.4.1. We can show that for ridge regression:

a∗ = (XXT + λI)−1Xy

Proof. Instead of proving using derivative, we will consider an alternative; that is because when dealing with
infinite dimension, derivative is troublesome. Starting expanding the terms:∥∥y −XTa

∥∥2
+ λ ‖a‖ = yT y − 2yTXTa+ aTXTXa+ λaTa

= yT y − 2yTXTa+ aT (XXT − λI)a

= yT y − 2yTXT (XXT + λI)−1/2b+ bT b

= yT y +
∥∥∥(XXT + λI)−1/2Xy − b

∥∥∥2

−
∥∥∥yTXT (XXT + λI)−1/2

∥∥∥2

where we define b = (XXT + λI)1/2a. To see the expansion, we have appendix A.1.3. Note that matrix b is
semi-positive definite, therefore the square is defined. Further, XXT may not be invertible of D > n but by
adding λI will have full rank. To minimize the objective, we have to get:

b∗ = (XXT + λI)−1/2Xy =⇒ a∗ = (XXT + λI)−1Xy

Definition 2.4.6. Singular Value Decomposition (SVD) We assume D > n, and we perform SVD on
X such that X = USV T , where:

U =
[
u1 · · · uD

]
S =

[
S̃ 0
0 0

]
V =

[
Ṽ 0

]
where we have:

• U is D ×D matrix where UTU = UUT = ID

• S is D ×D where S̃ has n non-zero entry

• V is n×D where Ṽ T Ṽ = Ṽ Ṽ T = In
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Theorem 2.4.2. We can write the solution in a∗ by a linear combination of training points:

a∗ =

n∑
i=1

α∗i xi

where αi =
∑n
j=1 yjβij as βij is (i, j)-entry of (XTX + λIn)

Proof. We start by defining a SVD of X = USV T , then we have:

a∗ = (XXT + λID)−1Xy = (US2UT + λID)−1USV T y

= U(S2 + λID)−1UTUSV T y

= US(S2 + λID)−1V T y

= USV TV (S2 + λID)−1V T y

= XV (S2 + λID)−1V T y

= X(XTX + λIn)−1y

For the last equality, we have V (S2 + λID)−1V T , and so:

V (S2 + λID)−1V T =
[
Ṽ 0

] [(S̃2 + λIn)−1 0
0 (λID−n)

] [
Ṽ T

0

]
= Ṽ (S̃2 + λIn)−1Ṽ T = Ṽ (S̃2 + λIn)−1Ṽ −1

= Ṽ (Ṽ (S̃2 + λIn))−1

= (Ṽ T )−1(Ṽ (S̃2 + λIn))−1

= (Ṽ (S̃2 + λIn)Ṽ T )−1

= (Ṽ S̃2Ṽ T + λInṼ Ṽ
T )−1

= (V STV + λIn)−1 = (V SUTUSV T + λIn)−1

= (XTX + λIn)−1

For the αi value, we have A.1.4 i.e:

X(XTX + λIn)−1y = X


β11 β12 · · · β1n

β21 β22 · · · β2n

...
...

. . .
...

βn1 βn2 · · · βnn

 y =


∑n
i=1 x1i

∑n
j=1 yjβij∑n

i=1 x2i

∑n
j=1 yjβij

...∑n
i=1 xni

∑n
j=1 yjβij

 =
n∑
i=1

 n∑
j=1

yjβij


︸ ︷︷ ︸

αi

xi

Definition 2.4.7. (Kernel Ridge Regression) We consider the following optimization problem:

a∗ = arg min
a∈H

(
n∑
i=1

(yi − 〈a, φ(xi)〉)2 + λ ‖a‖2H

)

Corollary 2.4.1. The kernel ridge regression solution a∗ is

a∗ = X(K + λIn)−1y =

n∑
i=1

α∗φ(xi)

where K is the gram matrix.
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Proof. We can consider a ridge regression with the data matrix:

X =
[
φ(x1) · · · φ(xn)

]
Please note that (XTX)ij = 〈φ(xi), φ(xj)〉H = k(xi, xj), given the result in theorem 2.4.2. Or, XTX =
K

Remark 38. We have the following, in tensor product:

XXT =

n∑
i=1

φ(xi)⊗ φ(xi)

Remark 39. We can see that the smoothness property of RKHS

‖f‖2H =

∞∑
l=1

f̂2
l

λl
‖f‖2H =

∞∑
l=1

|f̂l|2

k̂l

on the left hand side, we eigenvalues based norm and the right hand side is the fourier based norm.

2.5 Maximum Mean Discrepancy

2.5.1 Mean Embedding

Definition 2.5.1. (Feature Map of Probability P ) Given P a Borel probability measure on X , define
a feature map of probability P to be:

µP =
[
· · · EP [φi(x)] · · ·

]
Definition 2.5.2. (Kernel of Probability) For positive definite k(x, x′) where:

〈µP , µQ〉 = EP,Q[k(x, y)]

where x ∼ P and y ∼ Q. We can consider the expectation in an RKHS as EP [f(x)] = 〈f, µP 〉F . And, so µP
gives the expectation of all RKHS functions.

Remark 40. We can see that the empirical mean embedding is

µ̂P =
1

m

m∑
i=1

φ(xi) where xi ∼ P

Theorem 2.5.1. (Existance of Mean Embedding) The element µP ∈ F exist, such that

EP [f(x)] = 〈f, µP 〉F
for all f ∈ F if EP [

√
k(x, x)] = EP ‖ψ(x)‖F <∞

Proof. We will consider the application of Riesz theorem by assuming a linear operator TP f = EP [f(x)] for
all f ∈ F . We will show that this operator is bounded:

|TP f | = |EP [f(x)]|
≤ EP [|f(x)|]
= EP [| 〈f, φ(x)〉F |]
≤ EP [‖f‖F ‖φ(x)‖F ]

= EP [
√
k(x, x)] ‖f‖F

By Riesz theorem, since the operator is bounded, then there exists µP ∈ F that TP f = 〈f, µP 〉F
Remark 41. The probability feature map looks like the following:

µP (t) = 〈µP , φ(t)〉F = 〈µP , k(·, t)〉F = EP [k(x, t)]
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2.5.2 Algorithm

Definition 2.5.3. (Maximum Mean Discrepancy) Maximum Mean Discrepancy (MMD) is the distance
between probability feature mean:

MMD2(P,Q) = ‖µP − µQ‖2F
Lemma 2.5.1. We can show that MMD is equal to

MMD2(P,Q) = EP [k(x, x′)] + EQ[k(y, y′)]− 2EP,Q[k(x, y)]

Proof.
‖µP − µQ‖2F = 〈µP − µQ, µP − µQ〉F

= 〈µP , µP 〉F − 2 〈µP , µQ〉F + 〈µQ, µQ〉F
= EP [µP (x)] + EQ[µQ(y)]− 2EP [µQ(x)]

= EP [EP [k(x, x′)]] + EQ[EQ[k(y, y′)]] + 2EP [EQ[k(x, y)]]

Definition 2.5.4. (Empirical Mean MMD) We have the following unbiased empirical mean MMD:

MMD2(P,Q) =
1

n(n− 1)

∑
i 6=j

k(xi, xj) +
1

n(n− 1)

∑
i 6=j

k(yi, yj)−
1

n2

∑
i,j

k(xi, yj)

Definition 2.5.5. (Integral Probability Metrics) Integral Probability Metrics is divergence measure,
which has the form:

sup
g∈H

(
Ex∼P [g(x)]− Ey∼Q[g(y)]

)
The examples of Integral Probability Metrics are MMD and Wassertein.

Definition 2.5.6. (F-Divergence) F-divergence is divergence measure, which has the form:

Df (P,Q) =

∫
H
q(x)f

(
p(x)

q(x)

)
dx

The example of F -divergence are KL-divergence, Hellinger, and Pearson-Chi Square.

Remark 42. Total Variation can be shown to be both Integral Probability Metrics and F -Divergence. For
instance:

TV(p, q) = sup
A∈F
|p(A)− q(A)| = 1

2

∫ ∣∣∣∣p(x)

q(x)
− 1

∣∣∣∣ q(x) dx

Theorem 2.5.2. We can show that MMD can be represented by:

MMD(P,Q) = sup
‖f‖≤1

[EP [f(x)]− EQ[f(x)]]

Note that f is unit ball of F .

Proof.
sup
‖f‖≤1

[EP [f(x)]− EQ[f(x)]] = sup
‖f‖≤1

〈f, µP 〉 − 〈f, µQ〉

= sup
‖f‖≤1

〈f, µP − µQ〉

To maximize the dot product, we need f should be in the same direction as µP − µQ. Therefore, we set

f∗ =
µP − µQ
‖µP − µQ‖

Thus, the dot product to this is:
sup
‖f‖≤1

〈f, µP − µQ〉 = ‖µP − µQ‖
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Remark 43. The reason we need a constrain ‖f‖ ≤ 1 because the function has to be smooth as too “sharp”
will lead to perfect seperation i.e maximizing the MMD.

Corollary 2.5.1. (Empirical Witness Function) The empirical witness function is:

f∗(v) =
1

n

n∑
i=1

k(xi, v)− 1

n

n∑
i=1

k(yi, v)

Proof. Since f ∝ µP − µQ, and the empirical mean embedding shown in remark 40. we have the following:

f(v) ∝ 〈µ̂P − µ̂Q, φ(v)〉

=

〈
1

n

n∑
i=1

φ(xi)−
1

n

n∑
i=1

φ(yi), φ(v)

〉
=

1

n

n∑
i=1

k(xi, v)− k(yi, v)

2.5.3 Statistical Testing of MMD

Theorem 2.5.3. When P 6= Q, the statistics of empirical MMD is asympototic normal:

M̂MD
2
−MMD(P,Q)2√
Vn(P,Q)

D−→ N (0, 1)

where the variance Vn(P,Q) = O(n−1) but affected by kernel. However, when P = Q, the statistics has
asympototic distribution of:

nM̂MD
2
∼
∞∑
l=1

λl[z
2
l − 2] where λiφi(x) =

∫
X
k̃(x, x̃)φi(x) dP (x)

and zl ∼ N (0, 2)

Remark 44. In the perspective of statistical hypothesis testing, we want to find a threshold cα for which

M̂MD
2

has false positive α. To estimate the cα, we consider estimating the null-hypothesis P = Q, by
permuting the items, so that they are uncorrelated.

Definition 2.5.7. (MMD Test Power) Test power is defined as

Pr1

(
nM̂MD > ĉα

)
→ Φ

(
MMD2(P,Q)√

Vn(P,Q)
− cα

n
√
Vn(P,Q)

)

where Pr1 is the probability that P 6= Q, and Φ is cumulative distribution function of standard normal
distribution.

Remark 45. To find the best kernel, we can find the kernel that minimizes the false negative rate, by maximize
the test power. We would like to note the following:

MMD2(P,Q)√
Vn(P,Q)

= O(
√
n)

cα

n
√
Vn(P,Q)

= O(n−1/2)

Then, for a large n, the second term won’t matter, and so we can just maximize:

MMD2(P,Q)√
Vn(P,Q)

which we can use neural network to perform gradient descent on this objective.
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2.5.4 Characteristic RKHS

Definition 2.5.8. (Characteristic RKHS) A characteristic RKHS, where MMD(P,Q;F) = 0 iff P = Q

Theorem 2.5.4. The MMD metrics can be written as, for periodic kernel:

MMD2(P,Q;F) =

∞∑
l=−∞

|φP,l − φQ,l|2k̂l

where φP,l, φQ,l are fourier coefficient of the probability distributions, while k̂l is the fourier coefficient of the
kernel.

Proof. Let’s consider the fourier coefficient of µP :

µP (x) = 〈µP , k(x, ·)〉F = Et∼P [k(x− t)] =

∫ π

−π
k(x− t) dP (t)

Now, we have∫ π

−π
k(t− x)P (t) dt =

∫ π

−π

[ ∞∑
l=−∞

k̂l exp(il(x− t))

][ ∞∑
l=−∞

φ̂P,l exp(ilt)

]
dt

=

∫ π

−π

[ ∞∑
l=−∞

k̂lexp(ilt) exp(ilx)

][ ∞∑
l=−∞

φ̂P,l exp(ilt)

]
dt

=

∫ π

−π

[ ∞∑
l=−∞

∞∑
m=−∞

k̂lexp(ilt) exp(ilx)φ̂P,m exp(imt)

]
dt

=

∫ π

−π

∞∑
l=−∞

∑
m 6=l

k̂lφ̂P,mexp(ilt) exp(ilx) exp(imt)

+

[∑
m=l

k̂lφ̂P,m exp(imx)

]
dt

=

∞∑
l=−∞

∫ π

−π

∑
m 6=l

k̂lφ̂P,mexp(ilt) exp(−ilx) exp(−imt)

 dt+
∑
m=l

k̂lφ̂P,m exp(imx)

=

∞∑
l=−∞

k̂lφ̂P,l exp(ilx)

Thus the fourier coefficient of µP is µ̂P,l = k̂l · φ̂P,l. This is related to convolution theorem as the convolution
in normal domain (time) is equivalent to multiplcation in fourier transformed domain (frequency). We can
see that the MMD can be written as:

MMD2(P,Q;F) = ‖µP − µQ‖2F

=

∥∥∥∥∥
∞∑

l=−∞

(
φ̂P,l − φ̂Q,l

)
k̂l exp(ilx)

∥∥∥∥∥
2

F

=

∞∑
l=−∞

|φ̂P,l − φ̂Q,l|2k̂2
l

k̂l
=

∞∑
l=−∞

|φ̂P,l − φ̂Q,l|2k̂l

Recalling the square norm for function f in F defined in 2.2.3.

Corollary 2.5.2. The kernel is characteristic iff none of k̂l is equal to zero.

Proof. Suppose the kernel at l′ is zero i.e k̂l′ = 0, then we can find 2 difference distributions P and Q such
that its fourier coefficients are equal φ̂P,l = φ̂Q,l where l 6= l′. Then the MMD will be zero, i.e:

MMD2(P,Q;F) = 0

where P 6= Q and the kernel isn’t characteristic.
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Theorem 2.5.5. (Bochner’s Theorem) For a translation invariance kernel k(x− y), we have

k(x− y) =

∫
Rd

exp(−i(x− y)Tω) dΛ(ω)

Where the characteristic function of P is equality to

φP (ω) =

∫
Rd

exp(ixTω) dP (x)

Definition 2.5.9. (Measure Theoretic Integration) We define the following integration, for probability
measure P,Q: ∫

f(s) d(P −Q)(s) = EP [f(s)]− EQ[f(s)]

Theorem 2.5.6. The Fourier representation MMD for Rd:

MMD2(P,Q;F) =

∫
|φP (ω)− φQ(ω)|2 dΛ(ω)

where Λ(w) is finite non-negative Borel measure, for translation invariance kernel.

Proof. We have:

MMD2(P,Q;F) = EP [k(x, x′)] + EQ[k(y, y′)]− 2EP,Q[k(x, y)]

=

∫ [∫
k(s− t) d(P −Q)(s)

]
d(P −Q)(t)

=

∫ [∫∫
Rd

exp(−i(s− t)Tω) dΛ(ω) d(P −Q)(t)

]
d(P −Q)(t)

=

∫ [∫
Rd

exp(−isTω) d(P −Q)(s)

] [∫
Rd

exp(itTω) d(P −Q)(t)

]
dΛ(ω)

=

∫
|φP (ω)− φQ(ω)|2 dΛ(ω)

For the expansion of the first integration please see appendix A.1.5.

Corollary 2.5.3. A translation invariance k is characteristic for probability measure on Rd iff

supp(Λ) = Rd

as the support can be zero at most countable set. Furthermore, any continuous, compactly support k is
characteristic.

Theorem 2.5.7. Probability P = Q iff
EP [x] = EQ[x]

for all f ∈ C(X ), the space of bounded continuous function on X .

Definition 2.5.10. (Universal RKHS) A universal RKHS is where k(x, x′) is continuous, X is compact
and F is dense in C(X ) with respect to L∞. This meanse that for any given ε > 0 and f ∈ C(X ), there
exists g ∈ F , such that

‖f − g‖∞ ≤ ε

Theorem 2.5.8. If F is universal then MMD(P,Q;F) = 0 iff P = Q
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Proof. It is clear that if P = Q then MMD(P,Q;F) = 0. Now, for the converse, let’s consider the following
inequality: ∣∣∣EP [f(x)]− EQ[f(y)]

∣∣∣
≤
∣∣∣EP [f(x)]− EP [g(x)]

∣∣∣+
∣∣∣EP [g(x)]− EQ[g(y)]

∣∣∣+
∣∣∣EQ[g(y)]− EQ[f(y)]

∣∣∣
≤
∣∣∣EP [f(x)]− EP [g(x)]

∣∣∣+
∣∣∣EQ[g(y)]− EQ[f(y)]

∣∣∣
≤ EP [|f(x)− g(x)|] + EQ[|g(y)− f(y)|] ≤ 2ε

For all f ∈ C(X ) and ε > 0, which implies P = Q. For the second inequality, we would like to note that (As
MMD is equal to zero)∣∣∣EP [g(x)]− EQ[g(y)]

∣∣∣ =
∣∣∣ 〈g, µP − µQ〉 ∣∣∣ ≤ ‖g‖F ‖µp − µQ‖F = 0

2.6 Testing Dependencies

2.6.1 Covariance Operators

Remark 46. We might use MMD to measure the statistical dependence between 2 samplesX and Y . However,
we will have the following problem:

• We don’t have Q = PXPY as we need to have a pair {(xi, yi)}ni=1 ∼ PXY .

• What kernel to use for the pair ?

For the first problem, we can simular Q by drawing a pair (xi, yj). Also, for the second problem, we can use
product kernel. But why product ? and is there are more interpretable definition of dependence measure ?

Definition 2.6.1. (Hilbert-Schmidt Operators) Given F and G, which are seperatable Hilbert space.
(gj)j∈J is an orthogonal basis in G, where J is an index set either finite or countable infinite and:

〈gi, gj〉 =

{
0 i 6= j

1 i = j

Given a linear operators L : G → F and M : G → F , then Hilbert-Schmidt operator is defined as:

〈L,M〉HS =
∑
j∈J
〈Lgj ,Mgj〉F

Please note that the sum is finite if ‖L‖ and ‖M‖ are finite, which is by Cauchy-Schwarz. Similarly, we can
define a norm to be:

‖L‖2HS =
∑
j∈J
‖Lgi‖2F

If the norm of L is finite, then L is called Hilbert-Schmidt.

Lemma 2.6.1. Given a matrix A and B both in Rn×n, then Hilbert-Schmidt inner product is (together with
the basis vectors):

〈A,B〉 =
∑
j∈J
〈Agj , Bgj〉 = tr(ATB)

Remark 47. We can consider the covariance operator in finite dimension, which we have:〈
Cxy, fg

T
〉

= tr(CTxy(fgT )) = tr(gTCTxyf) = fTCxyg = Exy[f(x)g(y)]
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Lemma 2.6.2.
‖a⊗ b‖2HS = ‖a‖2F ‖b‖

2
F

Proof.

‖a⊗ b‖2HS =
∑
j∈J
‖(a⊗ b)gj‖2F =

∑
j∈J

∥∥〈b, gj〉F a∥∥2

F

=
∑
j∈J

〈
〈b, gj〉F a, 〈b, gj〉F a

〉
F =

∑
j∈J
| 〈b, gj〉F |

2 〈a, a〉F

= ‖a‖F
∑
j∈J
| 〈b, gj〉F |

2 = ‖a‖2F ‖b‖
2
F

The last equality is called Parseval’s identity.

Lemma 2.6.3.
〈L, a⊗ b〉HS = 〈a, Lb〉F

Proof. Consider the left hand side

〈L, a⊗ b〉HS =
∑
j∈J
〈Lgj , (a⊗ b)gj〉F

=
∑
j∈J

〈
Lgj , 〈b, gj〉F a

〉
F =

∑
j∈J
〈b, gj〉F 〈a, Lgj〉F

We consider the right hand side

〈a, Lb〉F =

〈
a,
∑
j∈J

Lgj 〈b, gj〉F

〉
=
∑
j∈J
〈a, Lgj〉 〈b, gj〉F

Corollary 2.6.1.
〈u⊗ v, a⊗ b〉HS = 〈u, a〉F 〈v, b〉F

Proof.
〈u⊗ v, a⊗ b〉HS = 〈a, (u⊗ v)b〉F = 〈a, 〈v, b〉F u〉F = 〈a, u〉F 〈v, b〉F

Theorem 2.6.1. There exists Cxy : G → F in Hilbert space such that:

〈Cxy, A〉HS = Exy[〈ψ(x)⊗ φ(y), A〉HS]

if the kernels associated with ψ and φ, k1 and k2, respectively are bounded i.e k1(x, x) <∞ and k2(y, y) <∞

Proof. We consider Riesz representation thoerem, which we will have to show that Exy[〈ψ(x)⊗ φ(y), A〉HS]
is bounded, which: ∣∣∣Exy[〈ψ(x)⊗ φ(y), A〉HS]

∣∣∣ ≤ Exy
[∣∣∣ 〈ψ(x)⊗ φ(y), A〉HS

∣∣∣]
≤ Exy [‖ψ(x)⊗ φ(y)‖HS · ‖A‖HS]

= Exy [‖ψ(x)⊗ φ(y)‖HS] ‖A‖HS

Now, we will show that Exy [‖ψ(x)⊗ φ(y)‖HS] <∞ is bounded.

Exy [‖ψ(x)⊗ φ(y)‖HS] = Exy [‖ψ(x)‖F ‖φ(y)‖F ]

= Ex[
√
k1(x, x)]Ey[

√
k2(y, y)] <∞

Thus the Riesz theorem’s condition is satisfied.
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Corollary 2.6.2.
〈Cxy, f ⊗ g〉 = Exy[f(x)g(y)]

Proof.
〈Cxy, f ⊗ g〉 = Exy [〈ψ(x)⊗ φ(x), f ⊗ g〉]

= Exy [〈ψ(x), f〉 , 〈φ(x), g〉]
= Exy[f(x)g(y)]

Definition 2.6.2. (Covariance Operator) The covariance operators Cxy : G → F is an analogous to
covariance matrix of infinite dimension, and it is defiend as:

〈f, Cxyg〉F = Exy[f(x)g(y)]

Definition 2.6.3. (Empirical Covariance Operator) We define an empirical covariance operator as:

Ĉxy =
1

n

n∑
i=1

ψ(xi)⊗ φ(yi)

2.6.2 COCO

Definition 2.6.4. (Constrained Covariance) We have the following covariance problem

COCO(PXY ) = sup
‖f‖H≤1 ‖g‖H≤1

Cov[f(x)g(y)]

= sup
‖f‖H≤1 ‖g‖H≤1

〈
f, C̃xyg

〉

= sup
‖f‖H≤1 ‖g‖H≤1

Exy

 ∞∑
j=1

fjψ̃j(x)

 ∞∑
j=1

gj φ̃j(x)


where ψ̃(x) = ψ(x) − Exψ(x) and φ̃(x) = φ(x) − Exφ(x) and C̃ being a covariance operator with centered
feature map. We will use it to determine the dependence between variables. However, please note that
covariance isn’t the same as dependency.

Definition 2.6.5. (Empircal COCO) We define an empirical COCO problem to be

ĈOCO = sup
‖f‖H≤1 ‖g‖H≤1

1

n

n∑
i=1

f(xi)−
1

n

n∑
j=1

f(xj)

g(yi)−
1

n

n∑
j=1

g(yj)


Given a sample {(xi, yi)}ni=1 sample iid from Pxy

Theorem 2.6.2. The empirical ĈOCO is the largest eigenvalue γmax i.e:[
0 1

nK̃L̃
1
nK̃L̃ 0

] [
α
β

]
= γ

[
K̃ 0

0 L̃

] [
α
β

]
where K̃ = HKH, L̃ = HLH are center kernel matrix

Proof. We consider the following Lagragian:

L(f, g, λ, γ) =− 1

n

n∑
i=1

f(xi)−
1

n

n∑
j=1

f(xj)

g(yi)−
1

n

n∑
j=1

g(yj)


+
λ

2

(
‖f‖2F − 1

)
+
γ

2

(
‖g‖2F − 1

)
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We assume that the function f and g are

f =

n∑
i=1

αiψ̃(xi) g =

n∑
i=1

βiφ̃(xi)

Now, consider the smoothness constrain, which we have:

‖f‖2F − 1 = 〈f, f〉F − 1

=

〈
n∑
i=1

αiψ̃(xi),

n∑
i=1

αiψ̃(xi)

〉
− 1

= αT K̃α

For the covariance, we have

1

n

n∑
i=1

f(xi)−
1

n

n∑
j=1

f(xj)

g(yi)−
1

n

n∑
j=1

g(yj)


=

1

n

n∑
i=1

〈
f, ψ̃(xi)

〉
F

〈
g, φ̃(yi)

〉
G

=
1

n

n∑
i=1

〈
n∑
i=1

αiψ̃(xi), ˜ψ(xi)

〉〈
n∑
i=1

βiφ̃(xi), φ̃(yi)

〉
G

=
1

n
αT K̃L̃β

Now, we have the following Lagragian:

L(f, g, λ, γ) = − 1

n
αT K̃L̃β +

λ

2
(αT K̃α− 1) +

γ

2
(βT L̃β − 1)

Now, we differentiate that Lagragian with respect to α and β, which we have (respectively) and set to zero:

0 = − 1

n
K̃L̃β + λK̃α 0 = − 1

n
L̃K̃α+ γL̃β

By multiplying the first equation with αT and the second one by βT , we have:

0 = − 1

n
αT K̃L̃β + λαT K̃α 0 = − 1

n
βT L̃K̃α+ γβT L̃β

Subtract both equation, yields:
λαT K̃α = γβT L̃β

when λ 6= 0 and γ 6= 0, by complementary slackness we have αT K̃α = βT L̃β = 1, thus λ = γ. And so,
COCO is the largest eigenvalue.

Definition 2.6.6. (Empirical witness Function) We define the empirical witness function as:

f(x) ∝
n∑
i=1

αi

k(xi, x)− 1

n

n∑
j=1

k(xj , x)


Remark 48. Even with indepdent variable, COCO won’t give us zero at finite sample, since there can be
some mild linear dependence found by f, g, which is a bias. Good news, this will be decrease if the sample
size is higher.
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2.6.3 HSIC

Definition 2.6.7. (Hilbert-Schmidt Indepdent Criterion) We would like to just find the norm of the
centered covariance operator i.e

HSIC(PXY ;F ,G) = ‖Cxy − µx ⊗ µy‖HS =
∥∥∥C̃xy∥∥∥

HS

Theorem 2.6.3. MMD with product kernel:

HSIC2(PXY ;F ,G) = MMD2(PXY , PX , PY ;Hk)

where k((x, y), (x′, y′)) = k(x, x′)l(y, y′)

Proof.
‖Cxy − µx ⊗ µy‖2HS = 〈Cxy − µx ⊗ µy, Cxy − µx ⊗ µy〉HS

= 〈Cxy, Cxy〉HS︸ ︷︷ ︸
1

−2 〈Cxy, µx ⊗ µy〉HS︸ ︷︷ ︸
2

+ 〈µx ⊗ µy, µx ⊗ µy〉HS︸ ︷︷ ︸
3

Let’s consider 1 , first

〈Cxy, Cxy〉HS = Exy
[
〈ψ(x)⊗ φ(y), Cxy〉HS

]
= ExyEx′y′ [〈ψ(x)⊗ φ(y), ψ(x′)⊗ φ(y′)〉HS]

= ExyEx′y′
[
〈ψ(x), ψ(x′)〉F 〈φ(x), φ(x′)〉G

]
= ExyEx′y′ [k(x, x′)k(y, y′)]

For the 2 , we have:

〈Cxy, µx ⊗ µy〉HS = Exy
[
〈ψ(x)⊗ φ(y), µx ⊗ µy〉HS

]
= Exy

[
〈ψ(x), µx〉F 〈φ(y), µy〉G

]
= Exy [Ex′ [k(x, x′)Ey′ [l(y, y′)]]]

Finally, for 3 , we have:

〈µx ⊗ µy, µx ⊗ µy〉HS = 〈µx, µx〉F 〈µy, µy〉G
= Ex[µx(x)]Ey[µy(y)]

= Exx′ [k(x, x′)]Eyy′ [l(y, y′)]

Combining them, gives us MMD with product kernel.

Proposition 2.6.1. If we define i-th eigenvalue from COCO (eigenvevalue of C̃XY ) as γi, then we can show
that

HSIC2(PXY ;F ,G) =

∞∑
i=1

γi

Proof. We will proof in finite case first, starting by noting that HSIC2(PXY ;F ,G) =
∥∥∥C̃xy∥∥∥2

= tr(CTxyCxy).

Then, we will show the following:

• Trace is sum of eigenvalues. To show this, we cosnider an eigen-decomposition A = QΛQ−1, which Λ
is diagonal matrix of eigenvalues. Thus we have

tr(A) = tr(QΛQ−1) = tr(ΛQ−1Q) = tr(Λ)
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• For matrix ATA is eigenvalue is λ2
i where λi is the eigenvalue of A. Assume an eigenvector vi.

ATA = (QΛQ−1)T (QΛQ−1) = QΛTQTAΛQT = QΛ2QT

Definition 2.6.8. (Unbiased Estimate of ‖Cxy‖2
HS ) The empirical estimator of ‖Cxy‖2HS is

Â =
1

n(n− 1)

n∑
i=1

∑
j 6=i

k(xi, xj)l(yi, yj)

Lemma 2.6.4. ∥∥∥Ĉxy∥∥∥2

HS
=

1

n2

n∑
i=1

n∑
j=1

k(xi, xj)l(xi, xj)

Proof. ∥∥∥Ĉxy∥∥∥2

HS
=

〈
1

n

n∑
i=1

ψ(xi)⊗ φ(yi),
1

n

n∑
i=1

ψ(xi)⊗ φ(yi)

〉

=
1

n2

n∑
i=1

n∑
j=1

〈ψ(xi)⊗ φ(yi), ψ(xj)⊗ φ(yj)〉HS

=
1

n2

n∑
i=1

n∑
j=1

〈ψ(xi), ψ(xj)〉F 〈φ(yi), φ(yj)〉F =
1

n2

n∑
i=1

n∑
j=1

k(xi, xj)l(xi, xj)

Definition 2.6.9. (Biased Esimate of ‖Cxy‖2
HS) The biased estimate of ‖Cxy‖2HS is

Âb =
∥∥∥Ĉxy∥∥∥2

HS
=

1

n2

n∑
i=1

n∑
j=1

k(xi, xj)l(xi, xj) =
1

n2
tr(KL)

Proposition 2.6.2. The differences between unbiased estimate and biased estimate is:

Â− Âb =
1

n

 1

n

n∑
i=1

kiilii −
1

n(n− 1)

n∑
i 6=j

kij lij


Proof.

Â− Âb =
1

n(n− 1)

n∑
i=1

∑
j 6=i

k(xi, xj)l(yi, yj)−
1

n2

n∑
i=1

n∑
j=1

k(xi, xj)l(xi, xj)

=
1

n

n∑
i=1

 1

n− 1

n∑
j 6=i

kij lij −
1

n

n∑
j=1

kij lij


=

1

n

n∑
i=1

 1

n
kiikjj −

1

n− 1

 n∑
j 6=i

kij lij

− 1

n

 n∑
j 6=i

kij lij


=

1

n

n∑
i=1

 1

n
kiikjj −

1

n(n− 1)

 n∑
j 6=i

kij lij
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Proposition 2.6.3. The biased estimate of HSIC2 is equal to:

ĤSIC
2

=
1

n2
tr(KHLH)

Proof. We consider the empirical estimate of∥∥∥Ĉxy − µ̂x ⊗ µ̂y∥∥∥2

HS
=
〈
Ĉxy − µ̂x ⊗ µ̂y, Ĉxy − µ̂x ⊗ µ̂y

〉
HS

=
〈
Ĉxy, Ĉxy

〉
HS︸ ︷︷ ︸

1

−2
〈
Ĉxy, µ̂x ⊗ µ̂y

〉
HS︸ ︷︷ ︸

2

+ 〈µ̂x ⊗ µ̂y, µ̂x ⊗ µ̂y〉HS︸ ︷︷ ︸
3

For 1 , we use the result from lemma 2.6.4. Let’s consider the second one 2 :〈
Ĉxy, µ̂x ⊗ µ̂y

〉
HS

=
〈
µ̂x, Ĉxyµ̂y

〉
HS

=

〈
1

n

n∑
a=1

ψ(xa),

(
1

n

n∑
b=1

ψ(xb)⊗ φ(xb)

)(
1

n

n∑
c=1

φ(yc)

)〉

=
1

n3

〈
n∑
a=1

ψ(xa),

(
n∑
b=1

n∑
c=1

[
ψ(xb)⊗ φ(yb)

]
φ(yc)

)〉

=
1

n3

〈
n∑
a=1

ψ(xa),

(
n∑
b=1

n∑
c=1

〈φ(yb), φ(yc)〉ψ(xb)

)〉

=
1

n3

n∑
b=1

n∑
c=1

l(yb, yc)

〈
n∑
a=1

φ(xa), φ(xb)

〉

=
1

n3

n∑
a=1

n∑
b=1

n∑
c=1

l(yb, yc)k(xa, xb) =
1

n3
1TKL1

For the expansion please see appendix A.1.6. For 3 , we have:

〈µ̂x ⊗ µ̂y, µ̂x ⊗ µ̂y〉HS = 〈µ̂x, µ̂x〉F 〈µ̂y, µ̂y〉G

=

〈
1

n

n∑
i=1

ψ(xi),
1

n

n∑
i=1

ψ(xi)

〉
·

〈
1

n

n∑
i=1

φ(yi),
1

n

n∑
i=1

φ(yi)

〉

=

(
1

n2

n∑
a=1

n∑
b=1

k(xa, xb)

)(
1

n2

n∑
c=1

n∑
d=1

k(yc, yd)

)

=
1

n4
(1TK1)(1TL1)

Then we have:

ĤSIC
2

=
1

n2
tr(KL)− 2

n3
1TKL1 +

1

n4
(1TK1)(1TL1)

=
1

n2

(
tr(KL)− 2

n
tr(1TKL1) +

1

n2
tr(1TK11TL1)

)
=

1

n2

(
tr(KL)− 1

n
tr(11TKL)− 1

n
tr(K11TL) +

1

n2
tr(11TK11TL)

)
=

1

n2
tr

((
I − 1

n
11T

)
KL− 1

n

(
I − 1

n
11T

)
K11TL

)
=

1

n2
tr

((
I − 1

n
11T

)(
L− 1

n
11TL

))
=

1

n2
tr

((
I − 1

n
11T

)(
I − 1

n
11T

)
L

)
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Note that the third equality comes from

tr(1TKL1) = tr(1TLTKT1) = tr(1TLK1) = tr(K11TL)

Proposition 2.6.4. The unbiased estimate of HSIC2 is equal to:

HSIC2 =
1

n(n− 3)

[
(K ′ � L′)++ −

2

(n− 2)
1TK ′L′1 +

1

(n− 1)(n− 2)

(
1TK ′1

) (
1TL′1

)]
where (·)++ is elementwise sum, and where K ′, L′ is this cases are K and L with zero diagonal entries.

Theorem 2.6.4. The asympototic of HSIC when PXY = PxPy is given by

nĤSIC
D−→

∞∑
l=1

λlz
2
l

where zl ∼ N (0, 1), which is sampled iid, and

λlψl(zj) =

∫
hijqrψl(zi) dFiqr hijqr =

1

4!

(ijqr)∑
(tuvw)

ktultu + ktulvw − 2ktultv

Remark 49. We can find the null hypothesis by permuting the set. We will repeat many difference parameters
to get the empirical CDF, and the threshold cα, which is 1− α quantile with moment matching:

nHSICb(z) ∼
xα−1 exp(1− x/β)

βαΓ(α)

as we set

α =
E[HSICb]

2

var(HSICb)
β =

var(HSICb)

nE[HSICb]

Note that this moment matching is purely heuristic, and therefore, there is no guarantee for this.

2.7 Testing Goodness of Fit

Remark 50. We would like to compare a sample Q with a distribution P . However, to use MMD:

MMD(P,Q) = sup
‖f‖H≤1

[
EQ[f ]− EP [f ]

]
we could sample from P but that isn’t efficient nor possible (if we only know P up to a constant), while we
can’t also compute EP [f ] in a closed form.

Definition 2.7.1. (Stein Operator) The operator is defined as:

[TP f ](x) =
1

P (x)

d

dx
(f(x)P (x))

Lemma 2.7.1. EP [TP f ] = 0

Proof. ∫
P (x)

P (x)

d

dx
(f(x))P (x) dx =

∫
d

dx
(f(x)P (x)) dx

= f(x)P (x)
∣∣∣∞
−∞

= 0
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Definition 2.7.2. (Kernel Stein Discrepancy) We define the metrics as:

KSD(P,Q;F) = sup
‖f‖H≤1

[
EQ[TP f ]− EP [TP f ]

]
= sup
‖f‖H≤1

EQ[TP f ]

Lemma 2.7.2. Stein Operator can be re-written as:

[TP f ](x) =
d

dx
f(x) + f(x)

d

dx
logP (x)

Proof. We can write the expression as:

1

P (x)

d

dx
(f(x)P (x)) =

1

P (x)

[
f(x)

d

dx
P (x) + P (x)

d

dx
f(x)

]
=
f(x)

P (x)

d

dx
P (x) +

d

dx
f(x)

= f(x)
d

dx
logP (x) +

d

dx
f(x)

Remark 51. Consider the fourier transform, f(x) where we have

f(x) =

∞∑
l=−∞

f̂l exp(ilx) f̂l =

∫ π

−π
f(x) exp(−ilx) dx

The fourier representation of the derivative is:

d

dx
f(x)

F−→ {(il)f̂l}∞i=−∞

Proposition 2.7.1. We can show the reproducbility of the differentaible:

d

dx
f(x) =

〈
f,

d

dx
k(·, x)

〉
d

dx

d

dx′
k(x− x′) =

〈
d

dx′
k(·, x′), d

dx
k(·, x)

〉
Proof. We will consider the periodic kernel, where X = [−π, π], We define:

g(y) =
d

dx
k(x− y) =

∞∑
l=−∞

(il)k̂l exp(il(x− y))

Since we can see that g(y) is real, we can have:

g(y) = g(y) =

∞∑
l=−∞

(−il)k̂l exp(il(y − x))

Let’s consider the inner product on the〈
f,

d

dx
k(x, ·)

〉
= 〈f, g(·)〉F

=

∞∑
l=−∞

f̂l ¯̂gl

k̂l

=

∞∑
l=−∞

f̂l−ilk̂l exp(il(x− y))

k̂l

=

∞∑
l=−∞

(il)f̂l exp(ilx) =
d

dx
f(x)
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Theorem 2.7.1. There exists an feature map, where:

Ez∼Q[TP f ] = Ez∼Q 〈f, ξz〉F = 〈f,Ez∼Q[ξz]〉F where ξz = k(·, z) d
dz

log p(z) +
d

dz
k(·, z)

If

Ez∼Q
(
d

dz
log p(z)

)2

<∞

Proof. We will proof this by Riesz theorem, where we need a boundness. We can consider the Jensen’s
inequality and Cauchy-Schwarz:

|Ez∼Q 〈f, ξz〉F | ≤ Ez∼Q |〈f, ξz〉F |
≤ ‖f‖Ez∼Q ‖ξz‖F

We will have to show that this square norm ‖ξz‖F is bounded:

‖ξz‖F = 〈ξz, ξz〉F

=

〈
k(·, z) d

dz
log p(z) +

d

dz
k(·, z), k(·, z) d

dz
log p(z) +

d

dz
k(·, z)

〉
F

=

〈
k(·, z) d

dz
log p(z), k(·, z) d

dz
log p(z)

〉
︸ ︷︷ ︸

1

+

〈
d

dx
k(·, x),

d

dx′
k(·, x′)

〉∣∣∣∣
x=x′=z︸ ︷︷ ︸

2

+

〈
k(·, x)

d

dx
log p(x),

d

dx′
k(·, x′)

〉∣∣∣∣
x=x′=z︸ ︷︷ ︸

3

= c+

(
d

dz
log p(z)

)2

c

where we set k(z, z) = c. Now, consider each terms: Starting with the first term 1 :〈
k(·, z) d

dz
log p(z), k(·, z) d

dz
log p(z)

〉
=

[(
d

dz
log p(z)

)2

k(z, z)

]
=

[
d

dz
log p(z)

]2

c

Now, consider the second part 2 :

〈
d

dx
k(·, x),

d

dx′
k(·, x′)

〉∣∣∣∣
x=x′=z

=

∞∑
l=−∞

[
− ilk̂l exp(−ilx)

][
− ilk̂l exp(−ilx′)

]
k̂l

=

∞∑
l=−∞

−(il)2k̂l��
���

��:1
exp(il(x′ − x)) =

∞∑
l=−∞

l2k̂l = c > 0

For the final part 3 , we have:

〈
k(·, z) d

dz
log p(z),

d

dz
k(·, z)

〉
=

(
d

dz
log p(z)

) ∞∑
l=−∞

[
k̂l exp(−ilx)

][
(−il) exp(−ilx′)k̂l

]
k̂l

=

(
d

dz
log p(z)

) ∞∑
l=−∞

(il)k̂l���
���

�:1
exp(il(x′ − x)) = 0
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Given the boundness, we have

Ez∼Q ‖ξz‖F = Ez∼Q

√
c+

(
d

dz
log p(z)

)2

c

≤

√√√√Ez∼Q

[
c+

(
d

dz
log p(z)

)2

c

]

Thus, we have the condition that riesz to hold.

Remark 52. However, the bound condition might not hold. Consider the normal distribution:

P (x) =
1√
2π

exp(−x2/x)

Then its derivative is −x. If q is Cauchy distribution, then the integral is

Ez∈Q
(
d

dz
log p(z)

)2

=

∫ ∞
−∞

z2q(z) dz

This is undefined.

Proposition 2.7.2. The closed form expression of KSD given indepdent z, z′ ∼ q, then:

KSD(P,Q,F) = ‖Ez∈Qξz‖F

Proof.
KSD(P,Q,F) = sup

‖g‖F≤1

Ez∼Q[(TP g)(z)]

= sup
‖g‖F≤1

Ez∼Q 〈g, ξz〉F

= sup
‖g‖F≤1

〈g,Ez∼Qξz〉F = ‖Ez∼Qξz‖F

Proposition 2.7.3. We can have the following test statistics:

‖Ez∼Qξz‖2F = Ez,z′∼qhp(z, z′)

where we have

hp(x, y) =
d

dx
log p(x)

d

dy
log p(y)k(x, y) +

d

dy
log p(y)

d

dx
k(x, y)

+
d

dx
log p(x)

d

dy
k(x, y) +

d

dx

d

dy
k(x, y)

Remark 53. Given an example {zi}ni=1 empirical KSD is

K̂SD(P,Q;F) =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

hp(zi, zj)

when q = p we obtain the estimate of null distribution with wild bootstrap:

K̃SD(P,Q;F) =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

σiσjhp(zi, zj)

when {σi}ni=1 is sampled iid where E[σi] = 0 and E[σ2
i ] = 1
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2.8 Support Vector Machine

2.8.1 Introduction

Definition 2.8.1. (Learning Problem) Given a set of paired observation (x1, y1), . . . , (xn, yn) either for
regression or classification task. We would like to find a function f∗ in RKHS H that satisfies:

f∗ = arg min
f∈H

J(f) = arg min
f∈H

Ly(f(1), . . . , f(xn)) + Ω
(
‖f‖2H

)
where Ω is non-decreasing, y is the vector of yi and loss L that depends on xi only via f(xi).

Theorem 2.8.1. The representor theorem is a solution to:

min
f∈H

[
Ly(f(x1), . . . , f(xn)) + Ω

(
‖f‖2H

)]
which takes the form:

f∗ =

n∑
i=1

αik(xi, ·)

If Ω is strictly increasing, then the solution must take this form.

Proof. Denote fS is the projection of f onto the subspace: span {k(x, ·) : 1 ≤ i ≤ n}, such that f = fS + f⊥
where fS =

∑n
i=1 αik(xi, ·). The regularizer is given by ‖f‖2H = ‖f⊥‖2H + ‖fS‖2H ≥ ‖fS‖

2
H. Then by the

definition of Ω:
Ω
(
‖f‖2H

)
≥ Ω

(
‖fS‖2H

)
This is clear that this minimize for f = fS . The individual terms f(xi) in the loss is:

f(xi) = 〈f, k(xi, ·)〉H = 〈fS + f⊥, k(xi, ·)〉H = 〈fS , k(xi, ·)〉

And, so we have Ly(f(x1), . . . , f(xn)) = Ly(fS(x1), . . . , fS(xn)). Hence, it is clear tha the loss L(·) only
depends on the component of f in data subspace:

• Regularizer is minimal when f = fS

• If Ω is non-decreasing, then ‖f⊥‖H = 0 is minimum. If Ω strictly increasing, as minimum is unique.

Definition 2.8.2. (SVM) We will classify 2 clouds of points, where there exists a hyperplane, which
linearly separate one cloud from the other without error: The smallest distance each class to the seperating
hyperplane wTx+ b is called margin. We can express the problem as follows:

min
w,b

(
‖w‖2

)
= max

w,b

(
2

‖w‖

)
subject to wTxi + b ≥ 1 i : yi = +1

wTxi + b ≤ 1 i : yi = −1

Please not that we can solve this problem via convex optimization.

Remark 54. To have the sepearting hyperplane, the distance between them

d = (x+ − x−)T
w

‖w‖

Now, we can see that the constraint is:

wTx+ + b = 1 wTx− + b = −1

If we minus themselves together and we have wT (x+− x−) = 2, then it is clear that d = 2/ ‖w‖ as required.
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2.8.2 Convex Optimization

Definition 2.8.3. (Convex Set) A set C is convex iff for all x1, x2 ∈ C and any 0 ≤ θ ≤ 1, which we have:

θx1 + (1− θ)x2 ∈ C

Definition 2.8.4. (Convex Function) A function f is convex if its domain dom(f) is a convex set if for
all x, y ∈ dom(f) and for any 0 ≤ θ ≤ 1:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

The function is strictly convex if the inequality is strict for x 6= y.

Definition 2.8.5. (Optimization Problem) The optimization problem on x ∈ Rn:

min f0(x)

subject to
fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 1, . . . , p

The point p∗ is optimal value. D assumed non-empty where:

D =

m⋂
i=0

dom(fi) ∩
m⋂
i=1

dom(hi)

Remark 55. Ideally, we have unconstraint problem:

min f0(x) +

m∑
i=1

l−(fi(x)) +

p∑
i=1

l0(hi(x)) where L− =

{
0 u ≤ 0

∞ u > 0

and l0(u) is indicator of 0.

Definition 2.8.6. (Lagrangian) The Lagragian is the lower bound on the original problem:

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x)︸ ︷︷ ︸
≤l−(fi(x))

+

p∑
i=1

νihi(x)︸ ︷︷ ︸
≤l0(hi(x))

It has a domain dom(L) = D×Rm×Rp. The vector λ and ν are called Lagrange multiplier or dual variable
to ensure lower bound, we require λ � 0.

Definition 2.8.7. (Dual Function) Minimize Lagragian when λ ≥ 0 and fi(x) ≤ 0. The Lagrange dual
function is:

g(λ, ν) = inf
x∈D

L(x, λ, ν)

A dual feasible pair (λ, ν) is a pair for which λ � 0 and (λ, ν) ∈ dom(g)

Proposition 2.8.1. For any λ � 0 and ν, we have g(λ, ν) ≤ f0(x) whenever fi(x) ≤ 0 and hi(x) = 0,
including f0(x∗) = p∗

Proof. Assume x̃ is feasbile i.e f(x̃) ≤ 0 and hi(x̃) = 0 and x̃ ∈ D and λ � 0 then:

n∑
i=1

λifi(x̃) +

p∑
i=1

νihi(x̃) ≤ 0

Thus, we have:

g(λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)

≤ f0(x̃) +

m∑
i=1

λifi(x̃) +

p∑
i=1

νihi(x̃)

≤ f0(x̃)

The best lower bound g(λ, ν) on the optimal problem solution p∗.
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Definition 2.8.8. (Lagrange Dual Problem)

max g(λ, ν)

subject to λ � 0

The dual feasible (λ, ν) with λ � 0 and g(λ, ν) > −∞

Definition 2.8.9. (Dual Optimal) The solution (λ∗, ν∗) of the maximal dual and d∗ is optimal value.
The weak duality holds if d∗ ≤ p∗. However, the strong duality d∗ = p∗ might not always holds.

Remark 56. If this strong duality holds, we have easy concave dual problem to find p∗. Dual function is a
pointwise infininum of affine function of (λ, ν) hence concave in (λ, ν) with convex constraint set λ � 0

Proposition 2.8.2. The sufficient condition (non-necessary) for strong duality, which holds if:

min f0(x)

subject to fi(x) ≤ 0 i = 1, . . . , n

Ax = b

as hi is affine, for convex f0, . . . , fn. And, Slater’s condition holds: if there exists some strictly feasbile
points x̃ ∈ relint(D) such that: fi(x̃) < 0 for i = 1, . . . ,m where Ax̃ = b. For the case of affine fi, the
condition is trivial (the inequality constriants no longer strict, reduces to original inequality constraint):

fi(x̃) ≤ 0 i− 1, . . . ,m Ax̃ = b

Proposition 2.8.3. (Complementary Slackness) The complementary slackness is the consequence of
strong duality, where we have:

m∑
i=1

λ∗i fi(x
∗) = 0

which is the condition of complementary slackness, which implies that:

λ∗i > 0 =⇒ fi(x
∗) = 0 f∗i (x∗) < 0 =⇒ λ∗i = 0

Proof. Assume the primal is equal to dual then we have x∗ solution of original problem and (λ∗, ν∗) is the
solution to the dual:

f0(x∗) = g(λ∗, ν∗)

= inf
x∈D

(
f0(x) +

m∑
i=1

λ∗i fi(x) +

p∑
i=1

ν∗i hi(x)

)

≤ f0(x∗) +

m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

ν∗i hi(x
∗)

≤ f0(x∗)

The last inequality comes from x∗, λ∗, ν∗ satisfies λ � 0, fi(x
∗) ≤ 0, hi(x

∗) = 0.

Definition 2.8.10. (KKT Condition For Global Optimum) Assume function fi, hi are differentiable
and strong duality, since x∗ minimize L(x, λ∗, ν∗) derivative at x∗ is zero:

∇f0(x∗) +

m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗∇hi(x∗) = 0

KKT condition means: we are at global optimum (x, λ, ν) = (x∗, λ∗, ν∗) when:

• Strong Duality Holds (primal problem convex and constraint functions satisfy Slater’s condition)
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• Primal Feasibility: {
fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

• Dual Feasibility: λi ≥ 0 and i = 1, . . . ,m

• Complementary Slackness: λifi(x) = 0 and i = 1, . . . ,m

• Zero Gradient:

∇f0(x) +

m∑
i=1

λ∇ifi(x) +

p∑
i=1

νi∇hi(x) = 0

Furthermore, KKT conditions necessary and sufficient for optimality.

Definition 2.8.11. (Optimization Problem for SVM) The problem can be expressed as follows:

max
w,b

(
2

‖w‖

)
subject to min(wTxi + b) = 1 i : yi = 1

max(wTxi + b) = −1 i : yi = −1

and we have the classifier to be y = sign(wTx+ b), where we can re-write it case:

min
w,b
‖w‖2

subject to yi(w
Txi + b) ≥ 1

We allow error points within a margin, or even on the wrong side of the decision boundary. However, ideally,
we need the following optimization:

min
w,b

(
1

2
‖w‖2 + C

n∑
i=1

I
[
yi(w

Txi + b) < 0
])

We will replace with convex upper bound, with hinge loss

min
w,b

(
1

2
‖w‖2 + C

n∑
i=1

θ
(
yi(w

Txi + b) < 0
))

where θ(α) = (1− α)+ =

{
1− α 1− α > 0

0 otherwise

Now, we replace a hinge loss with simple inequality constraints:

min
w,b,ξi

(
1

2
‖w‖2 + C

n∑
i=1

ξi

)
subject to ξi ≥ 0

yi(w
Txi + b) ≥ 1− ξi

Please note that:

• yi(wTxi + b) ≥ 1 and ξi = 0. We can minimize if its is correct.

• yi(wTxi + b) < 1 and ξi > 0 takes the value satisfying yi(w
Txi + b) = 1− ξi. We are able to decrease,

which looks like the hinge loss. We can decrease till 1− ξi is equal.
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Remark 57. The strong duality holds. The optimization problem convex with respect to the variable w, b, ξ
turned to ?

min
w,b,ξ

(
1

2
‖w‖2 + C

n∑
i=1

ξi

)
subject to ξi ≥ 0

1− ξi − yi(wTxi + b) ≤ 0 i = 1, . . . , n

This is clear that f0, f1, . . . , fn are convex. The slater’s condition holds. It is trivial since inequality cons-
triants affine and there exists some ξi ≥ 0:

yi(w
Txi + b) ≥ 1− ξi

Thus the strong duality holds, the problem is differentaible and so KKT holds at global optimum.

Remark 58. C is a hyperparameter that control the trade-off between the margin size and the error. One
can try to reduce the error caused by the points in the margin but this might lead to too small margin i.e
overfitting.

Remark 59. The Lagragian of the SVM

L(w, b, ξ, α, λ)

=
1

2
‖w‖2 + C

n∑
i=1

ξi +

n∑
i=1

αi(1− (yi)(w
Txi + b)− ξi) +

n∑
i=1

λi(−ξi)

With dual variable constraint αi ≥ 0 and λi ≥ 0. Let’s minimize the primal variables are:

∂L

∂w
= w −

n∑
i=1

αiyixi = 0 =⇒ w =

n∑
i=1

αiyixi

∂L

∂b
=
∑
i

yiαi = 0

∂L

∂ξi
= C − αi − λi = 0 =⇒ αi = C − λi

Note that λi ≥ 0 and so ai ≤ Ci
Remark 60. We will apply the complementary slackness:

• Non-Margin Support Vector αi = C 6= 0 (Error within the margin):

– We immediately have 1− ξi = yi(w
Txi + b)

– From the condition αi = C − λi, we have λi = 0 (hence we have ξi > 0)

• Margin Support Vector: 0 ≤ αi ≤ C (The points on the margin)

– We again have 1− ξi = yi(w
Txi + b)

– For αi = C − λi, we have λi 6= 0 and hence ξi = 0

• Non Support Vector: αi = 0

– We have yi(w
Txi + b) > 1− ξi

– From αi = C − λi, we have λi 6= 0 hence ξi = 0

Remark 61. We observe that:

• The solution is sparse: points not on margine or margine error have αi = 0

• The suppor vectors are the points on decision boundary which are margine error contribute.

64



• The influence of non-margine support vector is bounded since their weight can’t exceed C.

We can only remember the points that are critical i.e the first and the second one, which we can remove all
the third category point, and still have the same training capability.

Proposition 2.8.4. The dual of the SVM is given by:

g(α, λ) =
1

2
‖w‖2 + C

n∑
i=1

ξi +

n∑
i=1

αi(1− (yi)(w
Txi + b)− ξi) +

n∑
i=1

λi(−ξi)

=
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj + C

m∑
i=1

ξi

−
m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj − b

m∑
i=0

αiyi

+

m∑
i=1

αi −
m∑
i=1

αiξi −
m∑
i=1

(c− αi︸ ︷︷ ︸
λi

)ξi

=

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj

We would like to maximize the dual subjected to constraint 0 ≤ αi ≤ C where
∑n
i=1 yiαi = 0. This is

quadratic program. For margin SV, we have 1 = yi(w
Txi+b) to obtain b for any of these or take an average.

Definition 2.8.12. (Kernelized SVM) We have max margin classifier in RKHS. Given a hinge loss
formulation:

min
w

(
1

2
‖w‖2H + C

n∑
i=1

θ(yi, 〈w, k(xi, ·)〉H)

)
For RKHS with kernel k(x, ·). We use a result of representor theorem:

w(·) =

n∑
i=1

βik(xi, ·)

For maximizing the margin equivalent to minimize ‖w‖2H: for any RKHS a smoothness constraint holds.
The optimization problem becomes:

min
β,ξ

(
1

2
βTKβ + C

n∑
i=1

ξi

)
subject to ξi ≥ 0

yi

n∑
i=1

βjk(xi, xj) ≥ 1− ξi

This is convex in β and ξ, since K � 0, which strong duality holds, where the dual is

g(α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjk(xi, xj)

subject to w(·) =

m∑
i=1

yiαik(x, ·) 0 ≤ αi ≤ C
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Definition 2.8.13. (νi-SVM) We have other kind of SVM, where we have intuitive parameter ν as C is
hard to interpret. Let’s drop b for simplicity and we have:

min
w,ρ,ξ

(
1

2
‖w‖2 − νρ+

1

n

n∑
i=1

ξi

)
subject to ρ ≥ 0

ξi ≥ 0

yiw
Tx ≥ ρ− ξi

Now, we are directly adjusting margin width ρ.

Remark 62. We have the following Lagragian:

1

2
‖w‖2 +

1

n

n∑
i=1

ξi − νρ+

n∑
i=1

αi(ρ− yiwTxi − ξi) +

n∑
i=1

βi(−ξi) + γ(−ρ)

for dual variable αi ≥ 0, βi ≥ 0 and γ ≥ 0. Differentiating and setting to zero for each of primal variables
w, ξ, ρ:

w =

n∑
i=1

αiyixi αi + βi =
1

n
ν =

n∑
i=1

αi − γ

from β ≥ 0 we have 0 ≤ αi ≤ 1/n

Remark 63. For complementary slacknes condition, we assume ρ > 0 at global solution, hence γ = 0 and∑n
i=1 αi = νi:

• Case of ξi > 0: Complementary Slackenss state βi = 0, hence we have αi = n−1. This denotes this set
as N(α), then: ∑

i∈N(α)

1

n
=
∑
i∈N

αi ≤
n∑
i=1

αi = ν where
|N(α)|
n

≤ ν

• Case of ξi = 0: where βi > 0 then αi < n−1. The set is denoted by M(α). The set of points
n−1 > αi > 0 is

ν =

n∑
i=1

αi =
∑

i∈N(α)

1

n
+
∑
M(α)

αi ≤
∑

i∈M(α)∪N(α)

1

n
where ν ≤ |N(α)|+ |M(α)|

n

and ν is the lower bound based on number of support vector with non-zero weight on margin and
margin error.

Remark 64. Let’s substute to the Lagragian, as we have:

1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj +

1

n

n∑
i=1

ξi − ρν −
m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj

+

n∑
i=1

αiρ−
n∑
i=1

αiξi −
n∑
i=1

(
1

n
− αi

)
ξi − ρ

(
n∑
i=1

α− ν

)

= −1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj
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Therefore, the dual is:

g(α) = −1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj

subject to

n∑
i=1

αi ≥ ν

0 ≤ αi ≤
1

n
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Chapter 3

Statisical Learning

3.1 Formulating Learning Problem

3.1.1 Problem

Definition 3.1.1. (Learning Problem) We have the following components for learning problems:

• X : input space.

• Y: output space.

• ρ: unknown distribution on X × Y

• l : Y × Y → R: loss function that measure discrepancy between y, y′ ∈ Y

We want to minimize the expected risk:

inf
f :X→Y

E(f) where E(f) =

∫
X×Y

l(f(x), y) dρ(x, y)

The relation between X and Y are determined by unknown ρ, while we can only access via finite sample.

Remark 65. (Loss Function for Regression) The loss function for regression would be in the form of

L(y, y′) = L(y − y′)

The examples of this kind of loss is:

• Square Loss: (y − y′)2

• Absolute Loss: |y − y′|

• ε-sensitive Loss: max(|y − y′| − ε, 0)

Remark 66. (Loss Function for Classification) The loss function for classification would be

L(y, y′) = L(yy′)

The examples of this kind of loss is:

• 0-1 Loss: 1−yy′>0
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• Square loss Loss: (1− yy′)2

• Hinge Loss: max(1− yy′, 0)

• Logistic Loss: log(1 + exp(−yy′))

Definition 3.1.2. (Realistic Learning Problem) We have the following components:

• S =
⋃
n∈N(X × Y)n be set of finite dataset on X × Y

• F be set of all measurable function f : X → Y

• A : S → F be a learning algorithm where S 7→ A(S) : X → Y

We will study the relation between the size of training set and corresponding predictor fn = A((xi, yn)ni=1).

Remark 67. We can consider the stochastic algorithm. In this case, given a dataset S ∈ S, the algorithm can
be seen as a distribution over F and its output is simpily one sample of A(S). Note that the deterministic
is simpily a Direc’s delta distribution.

3.1.2 Risk

Definition 3.1.3. (Excess Risk) We define an excess risk of function fn as

E(fn)− inf
f∈F
E(f)

Definition 3.1.4. (Consistency) The algorithm is consistence

lim
n→∞

E(fn)− inf
f∈F
E(f) = 0

Ideally, we want algorithm to behave like this.

Definition 3.1.5. (Notion of Convergence) However, as fn = A(S) being stochastic or random variable
because the training set S is sampled from ρ, there are difference notions of convergence:

• Convergence in expectation

lim
n→∞

E
[
E(fn)− inf

f∈F
E(f)

]
= 0

• Convergence in probability. For all ε > 0:

lim
n→∞

P
(
E(fn)− inf

f∈F
E(f) > ε

)
= 0

Remark 68. We only interested in the risk of our estimator to be the best i.e E(fn)→ inff∈F E(f). However,
we don’t care about finding the best fucntion f∗, where it is minimizer of expected risk i.e E(f∗) = inff∈F E(f)

Remark 69. The existence of f∗ can be useful in several loss function. As the closer the function f to f∗,
the closer the risk E(f) to E(f∗):

• For least square function: l(f(x), y) = (f(x)− y)2:

E(f)− E(f∗) = ‖f − f∗‖L2(X ,ρ)

• For any L-Lipschitz loss function, where |l(z, y)− l(z′, y)| ≤ L ‖z − z′‖, we have:

E(f)− E(f∗) ≤ ‖f − f∗‖L1(X ,ρ)
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This guarantee that the algorithm is consistency when f → f∗.

Definition 3.1.6. (Learning Rate) We can measure the “speed” in which the excess risk goes to zero:

E
[
E(fn)− inf

f∈F
E(f)

]
= O(n−α)

where the learning rate is α, which we can compare 2 algorithms via this value.

Definition 3.1.7. (Probabilistic Bound) We would like to consider the following probabilistic bounds
on various values:

• Sample Complexity: A number n(ε, δ) of training points that the algorithm needs to achieve excess
risk lower than ε with a least probability 1− δ

P
(
E(fn(ε,δ))− inf

f∈F
E(f) ≤ ε

)
≥ 1− δ

• Error Bound: An upperbound ε(δ, n) on the excess risk fn, which holds with probability larger
than 1− δ:

P
(
E(fn)− inf

f∈F
E(f) ≤ ε(δ, n)

)
≥ 1− δ

• Tail Bound: A lower bound δ(ε, n) ∈ (0, 1) on the probability that fn will have excess risk larger
than ε:

P
(
E(fn)− inf

f∈F
E(f) ≤ ε

)
≥ 1− δ(ε, n)

3.1.3 Empirical Risks

Definition 3.1.8. (Empirical Risk) Given a finite sample of data (xi, yi)
m
i=1, we can use empirical risk to

gather the information about E(f) as:

En(f) =
1

n

n∑
i=1

l(f(xi), yi)

Proposition 3.1.1. The expected empirical risk is expected risk ES∼ρn [En(f)] = E(f).

Proof. We have:

ES∼ρn
[

1

n

n∑
i=1

l(f(xi), yi)

]
=

1

n

n∑
i=1

E(xi,yi) [l(f(xi), y)] =
1

n

n∑
i=1

E(f) = E(f)

Lemma 3.1.1. Let’s consider an iid variables (xi)
n
i=1 and let

x̄n =
1

n

n∑
i=1

xi

One can show that

Var(x̄n) =
Var(x)

n
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Proof. We have:

E
[
(x̄n − µ)

2
]

= E

( 1

n

n∑
i=1

xi − µ

)2
 = E

[(
1

n

n∑
i=1

xi − µ

)(
1

n

n∑
i=1

xi − µ

)]

= E

[(
1

n

n∑
i=1

xi

)(
1

n

n∑
i=1

xi

)
− 2µ

n

n∑
i=1

xi + µ2

]

= E

[(
1

n

n∑
i=1

xi

)(
1

n

n∑
i=1

xi

)]
− 2µ

n

n∑
i=1

E[xi] + µ2

=
1

n2

(
nE[x2] + (n2 − n)µ2

)
− µ2 =

E[x2] + µ2

n
=

Var(x)

n

where we have

E

[(
1

n

n∑
i=1

xi

)(
1

n

n∑
i=1

xi

)]
=

1

n2
E
[
x1x1 + x1x2 + · · ·+ x1xn

x2x1 + x2x2 + · · ·+ x2xn

...

xnx1 + xnx2 + · · ·+ xnxn

]
=

1

n2

(
nE[x2] + (n2 − n)E[x]E[x]

)

Proposition 3.1.2. The expected absolute difference between empirical risk and expected risk is:

E [|En(f)− E(f)|] ≤
√

var(l(f(xi), yi))

n

Proof. Let’s apply the lemma 3.1.1 to the empirical risk, after Jensen’s ineqalities:

E[|En(f)− E(f)|] = E[
√

(En(f)− E(f))2]

≤
√
E[(En(f)− E(f))2]

=

√
var(l(f(xi), y))

n

Theorem 3.1.1. (Markov’s Inequality) Let X be non-negative random variable and a > 0, then

P(X ≥ a) ≤ E[X]

a

Proof. We consider the expectation of X:

E[X] =

∫ ∞
−∞

xp(x) dx =

∫ ∞
0

xp(x) dx

=

∫ a

0

xp(x) dx+

∫ ∞
a

xp(x) dx

≥
∫ ∞
a

xp(x) dx ≥
∫ ∞
a

ap(x) dx

= aP (X ≥ a)
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Theorem 3.1.2. (Chebyshev’s inequality) Let X be random variable with finite expected value µ and
non-zero variance σ2. For any real number k > 0:

P(|X − µ| ≥ k) ≤ σ2

k2

Proof. We will consider the use of Markov’s inequality where the random variable be |X−µ| and the constant
be kσ, then we have:

P(|X − µ| ≥ k) = P(|X − µ|2 ≥ k2) ≤ E[|X − µ|2]

k2
=
σ2

k2

Proposition 3.1.3. The probability of expected risk is greater than some number ε ≥ 0 is

P
(
En(f)− E(f) ≥ ε

)
≤ var(l(f(xi), yi))

nε2

This follows directly from the Chebyshev’s inequality.

3.2 Generalization Bound

3.2.1 Generalization Error

Proposition 3.2.1. We will consider the bound of the excess risk, where we assume f∗ where E(f∗) =
inff∈F E(f):

E
[
E(fn)− E(f∗)

]
≤ E

[
E(fn)− En(fn)

]
where fn = arg minf∈F En(f)

Proof. We consider the following risk decomposition:

E
[
E(fn)− E(f∗)

]
= E

[
E(fn)− En(fn) + En(fn)− En(f∗)︸ ︷︷ ︸

≤0

+En(f∗)− E(f∗)
]

≤ E
[
E(fn)− En(fn)

]
+ E

[
En(f∗)− E(f∗)

]
= E

[
E(fn)− En(fn)

]
+ 0

Definition 3.2.1. (Generalization Error) We can focus on the generalization error:

E
[
E(fn)− En(fn)

]
Proposition 3.2.2. The generalization won’t go to zero for some reasonable algorithm (that try to minimize
empirical error) as n→∞

Proof. We construct such an algorithm. We assume X = Y = R, and ρ with dense support. The loss
function l(y, y) = 0 for all y ∈ Y. Given a dataset (xi, yi)

n
i=1 such that xi 6= xj for all i 6= j, if we have

fn : X → Y such that:

fn(x) =

{
yi if ∃i ∈ [n] : xi = x

0 otherwise

This is clear that the algorithm above have E[En(fn)] = 0 but E[E(fn)] = E(0) ≥ 0. Thus, the generalization
error won’t go to zero as n→∞
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Remark 70. The algorithm constructed is an extream form of memorization, which leads to overfitting.

Definition 3.2.2. (Overfitting) An estimator fn is said to be overfit the training data if for any n ∈ N:

• E[E(fn)− E(f∗)] > C for constant C > 0

• E[En(fn)− E(f∗)] ≤ 0

This is where the estimator fn does better in “practice” than in the real data.

3.2.2 Bound For Generalization

Theorem 3.2.1. (Finite Hypothesis Case) For finite X and Y, we have a space of functions:

F = YX = {f : X → Y}

which is also finite, then:

E
[∣∣∣En(fn)− E(fn)

∣∣∣] ≤ |F|√VF
n

where VF = supf∈F var(l(f(xi), y))

Proof.

E
[∣∣∣En(fn)− E(fn)

∣∣∣] ≤ E

[
sup
f∈F

∣∣∣En(f)− E(f)
∣∣∣]

≤
∑
f∈F

[∣∣∣En(f)− E(f)
∣∣∣]

≤ |F|
√
VF
n

Remark 71. Empirical risk minimization still works in finite case as

lim
n→∞

E
[∣∣∣En(fn)− E(fn)

∣∣∣] = 0

Remark 72. This finite hypothesis case still works when considering the subset H ⊂ F as we have (LHS)
and if f∗ ∈ H, we can see that (RHS)

E
[∣∣∣En(fn)− E(fn)

∣∣∣] ≤ |H|√VH
n

, E
[∣∣∣En(fn)− E(f∗)

∣∣∣] ≤ |H|√VH
n

Definition 3.2.3. (Threshold Function) Threshold function of paramter a ∈ (−1, 1] is

fa(x) = 1x∈[a,∞)

Theorem 3.2.2. (Popoviciu’s Inequality) For any random varaible X bounded variance m ≤ σ2 ≤M

σ2 ≤ (M −m)2

4
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Proof. Setting g(t) = E[(X − t)2], then when doing the derivative, we can see that

g′(t) = 2t− 2E[X]

when setting to zero, we can see that t = E[X], which is the minimum as g′′(t) = 2. Now, setting t =
(M +m)/2, we have

var(X) ≤ E

[(
X − M +m

2

)2
]

=
1

4
E
[
((X −m) + (X −M))2

]
≤ 1

4
E
[
((X −m)− (X −M))2

]
=

(M −m)2

4

Remark 73. We consider a binary classification problem Y = {0, 1}. We know in advanced that the minimizer
would be a threshold with parameter a∗. It is clear that the hypothesis space is F = {fa|a ∈ R} = (−1, 1].
However, computer can only represent a finite set of number(a), given a precision p, we have:

Hp = {fa|a ∈ (−1, 1], a10p = [a10p]}

where [·] represents an integer part of the number. For example:

H1 =

{
fa : a ∈

{
− 9

10
, · · · , 9

10
, 1

}}
We can see that |Hp| = 2 · 10p, and so we have

E
[∣∣∣En(fn)− E(fn)

∣∣∣] ≤ |Hp|√VH
n

=
10p√
n

where the varaince is VH ≤ 1/4 via Popoviciu’s inequality as our loss is bounded by [0, 1]. The bound isn’t
good enough as we need a large n to make the bound being reasonable.

Remark 74. (Chernoff Bounding Technique) Given a random varaibel X and ε > 0, we have, for t > 0

P(X ≥ ε) = P(exp(tX) ≥ exp(tε)) ≤ E[exp(tX)]

exp(tε)

where we apply the Markov’s inequality and use t to make the bound tight.

Lemma 3.2.1. (Hoeffding’s Lemma) Let X be a random varaible with E[X] = 0 and a ≤ X ≤ b with
b > a. For any t > 0, we have

E[exp(tX)] ≤ exp

(
t2(b− a)2

8

)
Theorem 3.2.3. (Hoeffding’s Ineqality) Consider X1, X1, . . . , Xn independent random varaible where
Xi ∈ [ai, bi] and let X̄ = 1/n

∑n
i=1Xi, then

P
(∣∣∣X̄ − E[X̄]

∣∣∣ ≥ ε) ≤ 2 exp

(
− 2n2ε2∑n

i=1(bi − ai)2

)
Proof. Since we have:

P
(∣∣∣X̄ − E[X̄]

∣∣∣ ≥ ε) = 2P
(
X̄ − E[X̄] ≥ ε

)
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Please note that E[Xi − E[Xi]] = 0, thus we can use Hoeffding lemma, now we have:

P
(
X̄ − E[X̄] ≥ ε

)
≤ exp(−tε)E

[
exp

(
t

n

(
n∑
i=1

Xi − E

[
n∑
i=1

Xi

]))]

= exp(−tε)
n∏
i=1

E
[
exp

(
t(Xi − E[Xi])

n

)]

≤ exp(−tε)
n∏
i=1

exp

(
t2

8n2
(bi − ai)2

)

= exp

(
t2

8n2

n∑
i=1

(bi − ai)2 − tε

)

We will find t that would tighten the bound assuming setting a = (
∑n
i=1(bi − ai)2)/(8n2) and we have the

following equation
f(t) = at2 − tε f ′(t) = 2at− ε

which mean t∗ = ε/(2a) plugging back and we have f(t∗) = −ε2/(4a), and so:

P
(
X̄ − E[X̄] ≥ ε

)
≤ exp

(
− 2ε2n2∑n

i=1(bi − ai)2

)
as required.

Theorem 3.2.4. For any δ ∈ (0, 1] and bounded loss 0 ≤ |l(f(x), y)| < M , for all f ∈ H, x ∈ X and y ∈ Y,
we have: ∣∣∣En(fn)− E(fn)

∣∣∣ ≤√2M2 log(2|H|/δ)
n

for probability of at least 1− δ

Proof. Starting by applying Hoeffding’s inequality, for any function f :

P
(∣∣∣En(f)− E(f)

∣∣∣ ≥ ε) ≤ 2 exp

(
−2n2ε2

4M2

)
Now, let’s try to bound the generalization error:

P
(∣∣∣En(fn)− E(fn)

∣∣∣ ≥ ε) ≤ P

(
sup
f∈H

∣∣∣En(f)− E(f)
∣∣∣ ≥ ε) = P

⋃
f∈H

{∣∣∣En(f)− E(f)
∣∣∣ ≥ ε}


≤
∑
f∈H

P
(∣∣∣En(f)− E(f)

∣∣∣ ≥ ε) ≤ |H|2 exp

(
−n

2ε2

2M2

)
We have used union bound, since at least one of f will achieves a suprenum. To find the form above, we
simply set δ to the bound we just derived.

Remark 75. Recalling the threshold function, our new bound is as follows:∣∣∣En(fn)− E(fn)
∣∣∣ ≤√4 + 6p− 2 log δ

n

as M = 1 amd log 2|H| = log 4 · 10p = log 4 + p log 10 ≤ 2 + 3p

Proposition 3.2.3. Let X be a random variable such that |X| < M for some constant M > 0, then for any
ε > 0, we have

E[|X|] ≤ εP(|X| ≤ ε) +MP(|X| > ε)
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Proof. Let’s consider the expectation of |X|, which we have:

E[|X|] =

∫ ∞
ε

p(X)|X| dX +

∫ −ε
−∞

p(X)|X| dX +

∫ ε

−ε
p(X)|X| dX

≤M(P (X > ε) + P (X < −ε)) + εP (−ε ≤ X ≤ ε)
= MP (|X| > ε) + εP (|X| ≤ ε)

Corollary 3.2.1. Using the proposition above and the generalization bound that we have derived, we have,
for any δ ∈ (0, 1]:

E
[∣∣∣En(fn)− E(fn)

∣∣∣] ≤ (1− δ)
√

2M2 log(2|H|/δ)
n

+ δM

Remark 76. The case where f∗ ∈ H\Hp for any p > 0, then ERM on Hp will never minimizes the expected
risk and tere will be a gap between E(fn,p)− E(f∗). As p→∞, we expect the gap to decrease. However, if
p increases too fast: ∣∣∣En(fn)− E(fn)

∣∣∣ ≤√4 + 6p− 2 log δ

n
→∞

as we can’t control the generalization error. We will need to increase p gradually. This process is called
regularization.

Proposition 3.2.4. The error decomposition of excess risk is

E(fn)− E(f∗) = E(fn)− En(fn)︸ ︷︷ ︸
Generalization Error

+ En(fn)− En(fp)︸ ︷︷ ︸
≤0

+ En(fp)− E(fp)︸ ︷︷ ︸
Generalization Error

+ E(fp)− E(f∗)︸ ︷︷ ︸
Approximation Error

≤ E(fn)− En(fn) + En(fp)− E(fp) + E(fp)− E(f∗)

Lemma 3.2.2. The approximation error of threshold function is

E(fp)− E(f∗) ≤ |ap − a∗| ≤ 10−p

Where we assume a distribution on [−1, 1] together with least square loss l = (y − fa(x))2

Proof. We would like to note that, if b ≥ a, fb(x)fa(x) = fb(x). WLOG, assume that a∗ ≥ ap

E(fp)− E(f∗) =

∫ 1

−1

(f∗(x)− fp(x))2 dp(x)

=

∫ 1

−1

f2
∗ (x) dp(x)−

∫ 1

−1

2f∗(x)fp(x) dp(x) +

∫ 1

−1

f2
p (x) dp(x)

=

∫ 1

a∗
p(x) dx− 2

∫ 1

a∗
p(x) dx+

∫ 1

ap

p(x) dx

=

∫ 1

ap

p(x) dx−
∫ 1

a∗
p(x) dx =

∫ a∗

ap

p(x) dx ≤ |a∗ − ap|

Remark 77. We can find the excess risk of threshold function to be bounded by, following proposition 3.2.4:

E(fn)− E(f∗) ≤ 2

√
4 + 6p− 2 log δ

n
+ 10−p = φ(n, δ, p)

This holds with probability greater than 1− δ. We can shoow the precidion to be

p(n, δ) = arg min
p≥0

φ(n, δ, p)

Thus leading to error bound as ε(n, δ) = φ(n, δ, p(n, δ)).
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3.2.3 Regularization

Remark 78. The idea of regularization, which has been discussed early in remark 76, is to parameterize H
where H =

⋃
γ>0Hγ of hypothesis space, where Hγ ⊂ Hγ′ iff γ ≤ γ′. We perform this to prevent overfitting

as we called γ regularization parameter.

Definition 3.2.4. (Regularized Algorithm) Given n training points, the regularized algorithm returns
fγ,n on Hγ , while we let γ = γ(n) as n→∞

Proposition 3.2.5. We can decompose the excess risk as

E(fγ,n)− E(f∗) = E(fγ,n)− E(fγ)︸ ︷︷ ︸
Sample Error

+ E(fγ)− inf
f∈H
E(f)︸ ︷︷ ︸

Approximation Error

+ inf
f∈H
E(f)− E(f∗)︸ ︷︷ ︸

Irreducible Error

where we let γ > 0 and fγ = arg minf∈Hγ E(f).

Remark 79. Let’s explore the definition of each error:

• Irreducible Error: If the irreducible error is zero, then we call H universal.

• Approximation Error: This doesn’t depend on the dataset, but it depends on ρ, and we call it
bias.

• Sample Error: This random quantity depends on data. We can study it by capacity or stability.

We can show, under a mild assumption:

lim
γ→∞

E(fγ)− inf
f∈H
E(f) = 0

Combining this with universal space: limγ→∞ E(fγ) − E(f∗) = 0. Finally, we can have an approximation
error to be bounded as:

E(fγ)− inf
f∈H
E(f) ≤ A(ρ, γ)

Please note that there will be no rate without any assumption, which is related to no-free launch theorem.
If f∗ is in Sobolev space WS,2 then A(ρ, γ) = cγ−s

Proposition 3.2.6. We can decompose the sample error to be:

E(fγ,n)− E(fγ) = E(fγ,n)− En(fγ,n)︸ ︷︷ ︸
Generalization Error

+ En(fγ,n)− En(fγ)︸ ︷︷ ︸
Excess Empirical Risk (≤0)

+ En(fγ)− E(fγ)︸ ︷︷ ︸
Generalization Error

≤ E(fγ,n)− En(fγ,n) + En(fγ)− E(fγ)

Remark 80. The generalization error can be controlled by study the empirical process of

sup
f∈Hγ

|En(f)− E(f)|

as we have shown in theorem 3.2.4 (and union bound).

P

(
sup
f∈Hγ

∣∣∣En(f)− E(f)
∣∣∣ ≥ ε) ≤ 2|H| exp

(
−n

2ε2

2M2

)
However, it is hard to find empirical risk minimizer for arbitarty Hp as we need to calculate the expected
risk. Good news, in some spaces, it might be easier to do such computation i.e convex or discretization in
special dense hypothesis space.
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Definition 3.2.5. (Infinite Norm of Function) Let X ⊂ Rd be a compact space and C(X ) is a space of
continous function, we define a norm

‖f‖∞ = sup
x∈X
|f(x)|

Proposition 3.2.7. If the loss function l : Y × Y → R, where l(·, y) is uniformly L-Lipschitz. Then, we
have

|E(f1)− E(f2)| ≤ L ‖f1 − f2‖∞ |En(f1)− En(f2)| ≤ L ‖f1 − f2‖∞

Proof. Starting with the first one, which we have:

|E(f1)− E(f2)| =
∣∣∣∣∫ l(f1(x), y)− l(f2(x), y) dρ(x, y)

∣∣∣∣
≤
∫ ∣∣∣l(f1(x), y)− l(f2(x), y)

∣∣∣ dρ(x, y)

≤ L
∫ ∣∣∣f1(x)− f2(x)

∣∣∣ dρX (x)

= L ‖f1 − f2‖L1(X ,ρX ) ≤ L ‖f1 − f2‖∞
For the second one, we have

|En(f1)− En(f2)| = 1

n

∣∣∣∣∣
n∑
i=1

l(f1(xi), yi)− l(f2(xi, yi))

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣l(f1(xi), yi)− l(f2(xi, yi))
∣∣∣

≤ L 1

n

n∑
i=1

|f1(x)− f2(x)| ≤ L 1

n

n∑
i=1

‖f1 − f2‖∞ = L ‖f1 − f2‖∞

Remark 81. The function that are closed in ‖·‖∞ have similar expected and empirical risks.

Remark 82. If H ⊂ C(X ) admits a finite discretization Hp = {h1, . . . , hN} with respecte to ‖·‖∞. Then, the
generalization error can be controlled by:

sup
f∈H

∣∣∣En(f)− E(f)
∣∣∣

≤ sup
f∈H

∣∣∣En(f)− En(hf )
∣∣∣+
∣∣∣En(hf )− E(hf )

∣∣∣+
∣∣∣E(hf )− E(f)

∣∣∣
≤ 2L ‖hf − f‖∞ + sup

h∈Hp

∣∣∣En(h)− E(h)
∣∣∣

where hf = arg minh∈Hp ‖h− f‖∞. Now, we will only have to control the suph∈Hp |En(h)− E(h)| since Hp
is finite.

Definition 3.2.6. (Covering Number) We define the covering number of H of radius η > 0 as the
cardinality of minimal cover of H with ball of radius η:

N (H, η) = inf

{
m

∣∣∣∣∣H ⊆
m⋃
i=1

Bη(hi), hi ∈ H

}
Theorem 3.2.5. For any δ ∈ [0, 1) and L > 0 being Lipschitz constant of l(·, y), for all x, y and |l(f(x), y)| <
M , we have:

sup
f∈H

∣∣∣En(fn)− E(fn)
∣∣∣ ≤√2M2 log(2N (H, n)/δ)

n

holds with probability 1− δ, and where exists an η(x) for which bounds tends to 0 as n→∞.

78



Remark 83. The proptotypical results i.e Bias/Variance tradeoff:

E(fγ,n)− E(f∗) ≤ E(fγ,n)− E(fγ)︸ ︷︷ ︸
<γβn−α(Variance)

+ E(fγ)− E(f∗)︸ ︷︷ ︸
<γ−τ (Bias)

We will have to choose γ(n) to get best bias-variance tradeoff.

3.3 Tikhonov Regularization

3.3.1 Regularized Space

Definition 3.3.1. (Normed Regularized Space) Let H be a normed vector space of hypothesis. For
γ ≥ 0, we consider

Hγ =
{
f ∈ H

∣∣∣ ‖f‖H ≤ γ}
As we have Hγ = Bγ(0) ⊂ H. The empirical risk minimization corresponds to:

fγ,n = arg min
‖f‖H≤γ

1

n

n∑
i=1

l(f(xi), yi)

Remark 84. If l(·, y) is convex, then empirical risk minimization induces convex program, which we can find
the solution in polynomal time.

Definition 3.3.2. (Space of Linear Function) We will focus H to be a space of linear function. Let
X ⊂ Rd and Y ⊂ R, where

H =
{
f : Rd → R

∣∣∣∃w ∈ Rd s.t. f(x) = wTx, ∀x ∈ Rd
}

We will set the norm to be ‖f‖H = ‖w‖ as w is the parameter corresponding to f . Thus, we have the
empirical risk minimization to be:

wn,γ = arg min
‖w‖2≤γ

1

n

n∑
i=1

l(xTi w, yi)

where the empirical risk minimizer being fn,γ : Rd → R is defined as fn,γ(x) = xTwn,γ for all x ∈ Rd

Definition 3.3.3. (Non-Linear Function Extension) We expand the space of linear function to richer
space of functions using the collection of non-linear function (feature extractor) ψ1, . . . , ψk : Rd → R swhere:

H =

{
f : Rd → R

∣∣∣∣∣∃(wi)ki=1 ∈ R s.t f(x) =

k∑
i=1

ψi(x)wi ∀x ∈ Rd
}

we will consider ‖f‖H = ‖w‖2 where w ∈ Rk. Furthermore, we can construct a non-linear map Ψ : Rd → Rk
where Ψ(x) = (ψ1(x), . . . , ψk(x)).

Theorem 3.3.1. The covering number of Hγ is:

N (Hγ , n) ≤
(

4γ

η

)d
for all η > 0
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Proof. For any γ ≥ 0 and Bγ(0) ⊂ Rd, which is a ball of radius γ centered in 0. Then for all η > 0:

N (Bγ(0), η) ≤
(

4γ

η

)d
But since H, is isomorphic to Rd, we have the sampe covering number.

Definition 3.3.4. (Tikhonov Regualrization Problem) We define the Tikhonov Regualrization problem
to be, instead of constrained optimization problem.

wλ,n = arg min
w∈Rd

1

n

n∑
i=1

l(xTi w, yi) + λ ‖w‖2H

We can show that this problem and problem in definition 3.3.2 are the same as we can find λ(γ) such that
wn,γ = wλ(γ),n.

Definition 3.3.5. The directional derivative is defined by:

∇vf(x) = lim
t→0

f(x+ tv)− f(x)

t

Lemma 3.3.1. ∇vf(x) = vT∇f(x)

Proof. One can use a Taylor’s expansion to proof this, but we are going derive it via chain rule. We will
prove in 2D but this can be extended easily. Let’s define a single variable function g(t) = f(x+ at, y + bt).
Let’s consider g′(0)

g′(t) = lim
h→0

g(t+ h)− g(t)

h

⇐⇒ g′(0) = lim
h→0

g(h)− g(0)

h

= lim
h→0

f(x+ ah, y + bh)− f(x, y)

h
= ∇vg(x)

where v = (a, b). Now, we can apply the chain rule, which gives us

∇vg(x) = g′(0) =
∂g

∂x

dx

dt
+
∂g

∂y

dy

dt
=
∂g

∂x
a+

∂g

∂y
b = vT∇g(x)

3.3.2 Introduction to Convex + Finding Weights

Theorem 3.3.2. Let f : Rn → R and S be a convex subset of Rn. Then f is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x)

for all y, x ∈ R

Proof. ( =⇒ ) If f is convex. Then we have, by convexity:

f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x)

⇐⇒ f(λy + (1− λ)x)− f(x)

λ
=
f(x− (y − x)λ)− f(x)

λ
≤ f(y)− f(x)

Then, by setting λ→ 0, we have

lim
λ→0

f(x− (y − x)λ)− f(x)

λ
= ∇f(x)T (y − x) ≤ f(y)− f(x)
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By the definiton of directional derivative.

( ⇐= ) We consider 2 points, where we set z = λy + (1− λ)x :

f(y) ≥ f(z) +∇f(z)T (y − z) f(x) ≥ f(z) +∇f(z)T (x− z)

Then we have:

λf(y) + (1− λ)f(x) ≥ f(z) + λ∇f(z)T (y − z) + (1− λ)∇f(z)T (x− z)

= f(z) +∇f(z)T
[
λ(y − z) + (1− λ)(x− z)

]
= f(z) +∇f(z)T

[
λy − λ2y − xλ+ λ2x+ x− λx− λy + λ2y − x+ 2λx− λ2x

]
= f(z) = f(λy + (1− λ)x)

Thus complete the proof.

Theorem 3.3.3. Any differentiable convex function F : Rd → R where w∗ ∈ Rd is global optimizer iff
∇f(w∗) = 0

Proof. ( =⇒ ) As the directional derivative measures the rate in which the function grows, we want to find
the direction that decrease f the most. It is clear from the dot production that this would be −∇f(x).
Thus, if ∇f(w∗) 6= 0, then for some ε ∈ R, f(w∗ − ε∇f(x)) ≤ f(w∗), thus contradicts the assumption that
w∗ is global optimizer.

( ⇐= ) We will show that if ∇f(w∗) = 0 then w∗ is global optimizer. Following the theorem 3.3.2, we can
see that for all y, we have

f(y) ≥ f(w∗) +∇f(w∗)
T (y − w∗)

= f(w∗)

Thus complete the proof.

Proposition 3.3.1. If we set l(f(x), y) = (y − f(x))2 then:

wλ,n = arg min
w∈Rd

‖y −Xw‖22 + nλ ‖w‖22

= (XTX + nλI)−1XT y

where y ∈ Rn is a collection of labels, while Rn×d is the collection of data.

Proof. Since the objective is convex (norm is convex and addition + multiplcation of positive number), we
can find the global minima according to theorem 3.3.3 by finding the derivative and set to 0, which we have:

∇
[
‖y −Xw‖22 + nλ ‖w‖22

]
= 2XTXw − 2XT y + 2nλw = 0

⇐⇒ w = (XTX + nλI)−1XT y

Thus complete the proof.

Remark 85. The total cost of solving the regression is O(nd2 +d2) and if d > n, then the complexity becomes
O(d3). However, if we use a representor’s theorem, then we are able to have O(n3).

3.3.3 Gradient Descent

Definition 3.3.6. (Gradient of Weight) In general if l(·, y) : R→ R is differentiable, for any y ∈ Y, then
we have:

∇(En(w) + λ ‖w‖22) =
1

n

n∑
i=1

∂

∂w
l(xTi w, yi) + 2λw

We can solve the minima by setting the above equation to zero.
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Remark 86. In most cases, we aren’t able to solve the gradient equation analytically, so we need iterated
descent optimization, which provided us with (w(k))k∈N that converges to global minimizer.

Definition 3.3.7. (Gradient Descent Algorithm) Let F : Rd → R be differentiable. Set w(0) ∈ Rd. For
any k ∈ N, we define w(t+1) ∈ Rd as:

wk+1 = wk − γ∇F (wk)

where γ > 0 represents the step size of the descent.

Definition 3.3.8. (Lipschitz Gradient) A function f with Lipschitz gradient with constant L is where,
for all x, y ∈ dom(f):

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖

Lemma 3.3.2. For 2 points x, y ∈ Rd and function f : Rd → R with Lipschitz gradient with constant L,
then:

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2

Proof. We consider the function g(t) = f(x + t(y − x)) and; therefore, h′(t) = 〈∇f(x+ t(y − x)), y − x〉.
Following from fundamental theorem of calculus

h(1)− h(0) =

∫ 1

0

h′(t) dt

as we have h(1) = f(y) and h(0) = f(x):

f(y) = f(x) +

∫ 1

0

〈∇f(x+ t(y − x)), y − x〉 dt

= f(x) + 〈∇f(x), y − x〉+

∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉 dt

≤ f(x) + 〈∇f(x), y − x〉+

∫ 1

0

‖∇f(x+ t(y − x))−∇f(x)‖ · ‖y − x‖ dt

≤ f(x) + 〈∇f(x), y − x〉+ L ‖y − x‖
∫ 1

0

‖t(y − x)‖ · dt

= f(x) + 〈∇f(x), y − x〉+ L ‖y − x‖2
∫ 1

0

t · dt

= f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2

Proposition 3.3.2. Given the gradient descent algorithm, with update weight of γ:(
1

γ
− L

2

)
‖xk − xk+1‖2 ≤ f(xk)− f(xk+1)

for all γ > 0

Proof. Using the result from lemma above and definition of gradient descent

f(xk+1) ≤ f(xk) +
1

γ
〈γ∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

= f(xk)− 1

γ
‖xk+1 − xk‖2 +

L

2
‖xk+1 − xk‖2

= f(xk)−
(

1

γ
− L

2

)
‖xk+1 − xk‖2

Rearrange and we finish the proof.
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Remark 87. We can see that the evaluation (f(xk))k=1 is decreasing iff γ ≤ 2L, as the norm is positive.

Lemma 3.3.3. For convex function f , given that γ ≤ 2/L:

∞∑
i=0

‖xi − xi+1‖2 ≤
2γ

2− γL

(
f(x0)−min

x
f(x)

)
Proof. We can perform the telescoping sum, assuming that the evaluation of convex function is decreasing,
thus having:

∞∑
i=0

‖xi − xi+1‖2 ≤
(

2γ

2− γL

) ∞∑
i=0

f(xi)− f(xi+1)

=
2γ

2− γL

(
f(x0)−min

x
f(x)

)
Please note that since f is convex, the minima is global.

Proposition 3.3.3. For all x ∈ dom(f), we have

2γ
(
f(xk+1)− f(x)

)
≤ ‖xk − x‖2 − ‖xk+1 − x‖2 + (γL− 1) ‖xk+1 − xk‖2

Proof. From proposition 3.3.2:

2γ
(
f(xk+1)− f(xk)

)
≤ 2γ(f(xk)− f(x))− (2− γL) ‖xk+1 − xk‖2

= 2γ(∇f(xk)T (xk − x))− (2− γL) ‖xk+1 − xk‖2

≤ 2
(

(xk − xk+1)T (xk − x)
)
− (2− γL) ‖xk+1 − xk‖2

= ‖xk − xk+1‖2 + ‖xk − x‖2 − ‖x− xk+1‖2 − (2− γL) ‖xk+1 − xk‖2

= ‖xk − x‖2 − ‖x− xk+1‖2 − (γL− 1) ‖xk+1 − xk‖2

The first equality comes from xk − xk−1 = γ∇f(xk) The second ineqality comes from lemma 3.3.2, where
we set x = xk and y = x. The second equality comes from:

2uT v = ‖u‖2 + ‖v‖2 − ‖u− v‖2

Theorem 3.3.4. Suppose that x∗ = arg minx f(x) (and it exists) and γ < 2/L then, for all k > 1:

f(xk)−min
x
f(x) ≤ 1

k

[
‖x0 − x∗‖2

2γ
+

(γL− 1)+

2− γL

(
f(x0)−min

x
f(x)

)]

Proof. We recall proposition 3.3.3, we we set x = x∗, which we have:

n∑
i=0

(
f(xi+1)− f(x∗)

)
≤ 1

2γ

n∑
i=0

(
‖xi − x∗‖2 − ‖xi+1 − x∗‖2 + (γL− 1) ‖xi+1 − xi‖2

)
=

1

2γ

n∑
i=0

(
‖xi − x∗‖2 − ‖xi+1 − x∗‖2

)
+

(γL− 1)+

2γ

n∑
i=1

‖xi+1 − xi‖2

≤ 1

2γ

n∑
i=0

(
‖xi − x∗‖2 − ‖xi+1 − x∗‖2

)
+

(γL− 1)+

2− γL

n∑
i=1

(
f(x0)−min

x
f(x)

)
=

1

2γ

(
‖x0 − x∗‖2 − ‖xn − x∗‖2

)
+

(γL− 1)+

2− γL

n∑
i=1

(
f(x0)−min

x
f(x)

)
=
‖x0 − x∗‖2

2γ
+

(γL− 1)+

2− γL

n∑
i=1

(
f(x0)−min

x
f(x)

)
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We use the lemma 3.3.3. For the last equality, we have, a telescoping sum and ‖xn − x∗‖2 ≥ 0. Now we can
see that

n∑
i=0

(
f(xi+1)− f(x∗)

)
≥ k

(
f(xi+1)− f(x∗)

)
as we shown in lemma 3.3.3 that the evaluation will keep decreasing. Rearrange and we finish the proof.

Corollary 3.3.1. It is clear that the best value of γ is 1/L and so, the rate in which the gradient descent is:

f(xk)−min
x
f(x) ≤ L

2k
‖x0 − x∗‖2

Definition 3.3.9. (Strongly Convex) The function f is strongly convex with modulus µ > 0 if, for all
x, y ∈ dom(f) :

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
‖y − x‖2

Proposition 3.3.4. For all x ∈ dom(f) with f being µ-strongly convex:

f(x)−min
x
f(x) ≤ 1

2µ
‖∇f(x)‖2

Proof. We start off by recalling strongly convex function, and minimize both side of ineqalities:

min
y
f(y) ≥ min

y

(
f(x) +∇f(x)T (y − x) +

µ

2
‖y − x‖2

)
≥ f(x) +

1

2µ
min
y

(
2∇f(x)T (µ(y − x)) + ‖µ(y − x)‖2

)
= f(x) +

1

2µ
min
y

(
‖∇f(x)‖2 + 2 ‖µ(y − x)‖2 − ‖∇f(x)− µ(y − x)‖

)
= f(x) +

1

2µ
min
y

(
‖∇f(x) + µ(y − x)‖2 − ‖∇f‖2

)
≥ f(x) +

1

2µ
‖∇f(x)‖2

The last equality can be show as: suppose a = µ(y − x) and b = ∇f(x), we have:

‖a‖2 + 2 ‖b‖2 − ‖a− b‖ = 2aTa+ bT b−
[
aTa− 2aT b+ bT b

]
= aTa+ 2aT b+ bT b− bT b = ‖a+ b‖2 − ‖b‖2

Regarrange and we finish the proof.

Remark 88. From the definition of strongly convex, we can see that

f(y) ≥ f(x∗) +∇f(x∗)
T (y − x∗) +

µ

2
‖y − x∗‖2

= f(x∗) +
µ

2
‖y − x∗‖2

where x∗ = arg minx f(x).

Theorem 3.3.5. For µ-strongly convex function with γ < 2/L, we have:

f(xk)−min
x
f(x) ≤

(
1− γµ(2− γL)

)k(
f(x0)−min

x
f(x)

)
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Proof. First, we will show that

f(xk+1)−min
x
f(x) ≤

(
1− γµ(2− γL)

)(
f(xk)−min

x
f(x)

)
Following proposition3.3.2, we have the following ineqalities:

f(xk+1)−min
x
f(x) ≤ f(xk)−

(
2− γL

2γ

)
‖xk − xk−1‖2 + min

x
f(x)

= f(xk)−
(
2µγ − γ2Lµ

)
‖∇F (xk)‖2 −min

x
f(x)

≤ f(xk)−min
x
f(x)−

(
2µγ − γ2Lµ

) (
f(xk)−min

x
f(x)

)
=
(
1−

(
2µγ − γ2Lµ

)) (
f(xk)−min

x
f(x)

)
And so, by repeating the ineqalities, we have the exponential as required.

Remark 89. For the best value of γ, we should have γ = 2/(µ+ L)

Definition 3.3.10. (Projected Gradient) The problem such as Tikhonov regularization can be solved
using projected gradient descent:

wk+1 = ΠHγ

(
wk − γ∇F (wk)

)
where ΠHγ : Rd → Rd dentoes the Euclidian projection onto Hγ as

ΠHγ (w) = arg min
w′∈Hγ

‖w − w′‖22 = γ
w

‖w‖2

Lemma 3.3.4. For point y ∈ R and x ∈ Ω:

(y −ΠΩ(y))T (x−ΠΩ(y)) ≤ 0

Lemma 3.3.5. Given the projected gradient descent algorithm, with the update weight of γ:

f(xk)− f(xk+1) ≥
(

1

γ
− L

2

)
‖xk+1 − xk‖2

Proof. From lemma we have:

(xk − γ∇f(xk)− xk+1)
T

(xk − xk+1) ≤ 0

which implies that

∇F (xk)T (xk+1 − xk) ≤ 1

γ
‖xk − xk+1‖

Therefore:

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
L

2
‖xk+1 − xk‖2

≤ f(xk) +

(
L

2
− 1

γ

)
‖xk+1 − xk‖2

By rearranging, we got the statement above.

Theorem 3.3.6. The convergence rate of projected gradient is the same as normal gradient descent.

Remark 90. The gradient step of Tikhonov’s regularization:

wk+1 = wk − γ(XTX + λI)wk + γXT y

has the total time complexity as O((k + n)d2) operations for k steps. To achieve the same excess risk as
ERM, we will need a total time complexity of O(nd2).
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Proposition 3.3.5. We can decompose the sample error of the estimator after k iterations:

E(wk)− E(wγ) = E(wk)− En(wk) + En(wk)− En(wγ,n) + En(wγ,n)− En(wγ)︸ ︷︷ ︸
≤0

+En(wγ)− E(wγ)

≤ E(wk)− En(wk)︸ ︷︷ ︸
Sample Error on Hγ

+ En(wk)− En(wγ,n)︸ ︷︷ ︸
Optimization Error

+ En(wγ)− E(wγ)︸ ︷︷ ︸
Sample Error on Hγ

Remark 91. Since we know the generalization error, we can control the optimization error to match this i.e
if the generalization error is ε(n, γ, δ) with probabilistic no less than 1− δ, then we have to perfrom

k = O
(

1

ε(n, γ, δ)

)
To get the same accurary as empirical risk minimization.

3.3.4 Stability

Definition 3.3.11. (Modified Set) Let Z be a set, for any set S = {z1, . . . , zn} ∈ Zn for any z ∈ Z and
i = 1, . . . , n we denote

Si,z = {z1, . . . , zi−1, z, zi+1, . . . , zn} ∈ Zn

Definition 3.3.12. (Uniformed Stability) We denote a dataset z = (x, y) ∈ Z = X × Y and for any
f : X → Y, we denote l(f, z) = l(f(x), y). For an algorithm A and any dataset S = (zi)

n
i=1, we write

fS = A(S). The algorithm A is β(n)-stable with n ∈ N and β(n) > 0, if for all S ∈ Zn, z ∈ Z and
i = 1, . . . , n:

sup
z̄∈Z
|l(fS , z̄)− l(fSi,z , z̄)| ≤ β(n)

Theorem 3.3.7. Let A be uniform β(n)-stable algorithm. For any dataset S ∈ Zn, define fS = A(s), then

|ES∼ρn [E(fS)− En(fS)]| ≤ β(n)

This means that we can directly control the generalization error with stablility of an algorithm.

Proof. Starting with the empirical risk:

ES [En(fS)] = ES

[
1

n

n∑
i=1

l(fS , zi)

]
=

1

n

n∑
i=1

ES [l(fS , zi)] =
1

n

n∑
i=1

ESEz′i [l(fS , zi)]

=
1

n

n∑
i=1

ESEz′i [l(fSi,z′i , z
′
i)] = ESES′

[
1

n

n∑
i=1

l(f
Si,z

′
i
, z′i)

]

For the expected risk, we have

ES [E(fS)] = ESES′ [l(fS , z′)]] = ESES′
[

1

n

n∑
i=1

l(fS , z
′
i)

]

Let’s consider the differences:

|ES∼ρn [E(fS)− En(fS)]| =

∣∣∣∣∣ES′
[

1

n

n∑
i=1

l(f
Si,z

′
i
, z′i)−

1

n

n∑
i=1

l(fS , z
′
i)

]∣∣∣∣∣
≤ ES′

1

n

n∑
i=1

∣∣∣l(f
Si,z

′
i
, z′i)− l(fS , z′i)

∣∣∣ ≤ β(n)
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Lemma 3.3.6. The norm ‖·‖H of RKHS H is strongly convex i.e for any g, h ∈ H and θ ∈ [0, 1], we have:

‖θg + (1− θ)h‖2H < θ ‖g‖2H + (1− θ) ‖h‖2H

Proof. We consider expanding the norm, and then find the differences between the left hand side and the
right hand side:

(θg + (1− θ)h)T (θg + (1− θ)h) = θ2gT g + 2θ(1− θ)gTh+ (1− θ)(1− θ)hTh
= θ2gT g + 2θ(1− θ)gTh+ hTh− 2θhTh+ θ2hTh

Now we will minus it with θgT g + (1− θ)hTh, which gives us:

θ2gT g + 2θ(1− θ)gTh+ hTh− 2θhTh+ θ2hTh− θgT g − (1− θ)hTh
= θ(θ − 1)gT g + 2θ(1− θ)gTh+ θ(1− θ)hTh

= θ(θ − 1) ‖g − h‖2H

Since θ < 1, the inequality holds.

Lemma 3.3.7. For any convex function F ′ : H → R and F (·) = F ′(·) + λ ‖·‖. Given the minimizer
f = arg minf ′∈H F (f ′), then for some g ∈ H:

F (g)− F (f) ≥ λ

2
‖f − g‖2H

Proof. By definition of F , we can see that:

F (θf + (1− θ)g) ≤ θF (f) + (1− θ)F (g)− λθ(1− θ) ‖f − g‖2H

⇐⇒ 2F

(
f + g

2

)
≤ F (f) + F (g)− λ

2
‖f − g‖2H

⇐⇒ F (g)− F (f) ≥ 2F

(
f + g

2

)
+
λ

2
‖f − g‖2H − 2F (f)

≥ λ

2
‖f − g‖2H

Thus complete the proof.

Theorem 3.3.8. Let H be RKHS with associated kernel K : H×H → R. We can show that for any S ∈ Zn,
z′ ∈ H and i = 1, . . . , i:

sup
z∈Z

∣∣∣l(fS , z)− l(fSi,z′ , z′)∣∣∣ ≤ 2L2k2

nλ

where L > 0 is Lipschitz constant of l(·, y) and k2 = supx∈X K(x, x)

Proof. We consider the following functions:

F1(·) = ES(·) + λ ‖·‖2H F2(·) = ESi,z′ (·) + λ ‖·‖2H

We will simply the notation f1 = fS and f2 = fSi,z′ and by definition, we have:

f1 = arg min
f∈H

F1(f) f2 = arg min
f∈H

F2(f)

Using the lemma above:

F1(f2)− F1(f1) ≥ λ

2
‖f1 − f2‖2H F2(f1)− F2(f2) ≥ λ

2
‖f2 − f1‖2H
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Summing them yields:

λ ‖f1 − f2‖2H ≤ F1(f2)− F1(f1) + F2(f1)− F2(f2)

= ES(f2)− ESi,z′ (f2) + ESi,z′ (f1)− ES(f1)

=
1

n
l(f2, zi)− l(f1, zi) + l(f1, z

′
i)− l(f2, z

′
i)

≤ 2

n
sup
z

∣∣∣l(f1, z)− l(f2, z)
∣∣∣

We can see that l is Lipschitz:

sup
z

∣∣∣l(f1, z)− l(f2, z)
∣∣∣ = sup

x∈X ,y∈Y

∣∣∣l(f1(x), y)− l(f2(x), y)
∣∣∣

≤ L sup
x∈X

∣∣∣f1(x)− f2(x)
∣∣∣

≤ Lk ‖f1 − f2‖H

The last equality comes from the fact that |f(x)| ≤
√
k(x, x) ‖f‖2H. Thus, we have

‖f1 − f2‖2H ≤
2Lk

nλ

Plugging this back and we yields the ineqality above.

Theorem 3.3.9. The excess risk for Tikhonov regularization is

E
[
E(fS)− E(f∗)

]
≤ O

(
n−

s
s+1
)

Proof. We will define fλ = arg minf∈H E(f) + λ ‖f‖2H, and define the following excess risk decomposition:

E(fS)− E(f∗) = E(fS)− ES(fS) + ES(fS)− ES(fλ) + ES(fλ)− E(f∗) + λ ‖fλ‖2H − λ ‖fλ‖
2
H

Please note that

• E(fS)− E(f∗) ≤ E(fS)− E(f∗) + λ ‖fS‖2λ
• fS is the minimizer of empirical risk, which means:

ES(fS) + λ ‖fS‖2H − ES(fλ)− λ ‖fλ‖2H ≤ 0

• ES [ES(fλ)] = E(fλ)

And, so we have

E[E(fS)− E(f∗)] ≤ E
[
E(fS)− ES(fS) + ES(fS)− ES(fλ) + ES(fλ)− E(f∗) + λ ‖fλ‖2H − λ ‖fλ‖

2
H + λ ‖fS‖2λ

]
= E

[
E(fS)− ES(fS) + ES(fS) + λ ‖fS‖2λ − ES(fλ)− λ ‖fλ‖2H︸ ︷︷ ︸

≤0

+ES(fλ)− E(f∗) + λ ‖fλ‖2H
]

≤ E
[
E(fS)− ES(fS) + ES(fλ)− E(f∗) + λ ‖fλ‖2H

]
= E

[
E(fS)− ES(fS)

]
︸ ︷︷ ︸

Generalization Error

+ E(fλ)− E(f∗) + λ ‖fλ‖2H︸ ︷︷ ︸
Interpolation and Approximation Error

Since we know the stability of Tikhonov regualrization, which is O(1/(nλ)). If we assume the interpolation
and approximation error to be λs, for some s > 0, then:

E[E(fS)− E(f∗)] ≤ O
(

1

nλ

)
+ λs

We can choose the optimal λ to be n−1/(s+1), and we concluded the proof.
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Remark 92. It is easy to show that s = 1 when f∗ ∈ H and the expected excess risk decrease with rate
O(n−1/2)

Theorem 3.3.10. (McDiarmid’s Inequality) Let F : Zn×Zn → R such that for any i = 1, . . . , n, there
is ci > 0, where

sup
S∈Zn,z∈Z

∣∣∣F (S)− F (Si,z)
∣∣∣ < ci

Then we have following bounds:

PS∼ρn
(∣∣∣F (S)− ES′∼ρn [F (S′)]

∣∣∣ ≥ ε) ≤ 2 exp

(
− 2ε2∑n

i=1 c
2
i

)
Theorem 3.3.11. For a β(n) uniformly stable algorithm A, where for any S ∈ Zn, we have fS = A(S),
then: ∣∣∣ES(fS)− E(fS)

∣∣∣ ≤ β(n) + (nβ(n) +M)

√
2 log(2/δ)

n
with probabbilty less than 1− δ, where

M ≥ sup
S∈Zn,i=1,...,n

|l(S, zi)|

Proof. We would set F (S) to be E(fS)− ES(fS), and the apply the McDiarmid’s ineqality, which we know
that |ES′F (S′)| ≤ β(n), thus we have:∣∣∣ES(fS)− E(fS)

∣∣∣ ≤ β(n) +

√∑n
i=1 ci log(2/δ)

2

Now, to consider the bound, for F (S)− F (Si,z)∣∣∣F (S)− F (Si,z)
∣∣∣ ≤ ∣∣∣E(fS)− E(fSi,z )

∣∣∣+
∣∣∣ES(fS)− ESi,z (fSi,z )

∣∣∣
≤ 1

n

∑
j 6=i

∣∣∣l(f1(xj), yj)− l(f2(xj), yj)
∣∣∣+

1

n

∣∣∣l(f1(xi), yi)− l(f2(x′i), y
′
i)
∣∣∣+ β(n)

=
(n− 1)β(n)

n
+

2M

n
+ β(n) ≤ 2β(n) +

2M

n

Plugging back, and we have the statement above.

Proposition 3.3.6. The value M for Tikhonov’s regualrization is:

sup
S∈Zn,i=1,...,n

|l(S, zi)| ≤ kL
√
c0
λ

+ c0

where l(0, y) ≤ c0 for all y ∈ Y as l is L-Lipschitz and k2 = supx k(x, x)

Proof. For the empirical minimizer fS , we have

ES(fS) + λ ‖fS‖ ≤ ES(0) ≤ c0

This means that, since the loss is negative

‖fS‖ ≤
√
c0
λ
− ES(f) ≤

√
c0
λ

Then, we have:
|l(fS , z)| ≤ |l(fS , z)− l(0, z)| − |l(0, z)|

≤ |l(fS , z)− l(0, z)| − c0

≤ kL ‖fS‖+ c0 = kL

√
c0
λ

+ c0
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Corollary 3.3.2. The generalization bound for Tikhonov’s regualrization is∣∣∣ES(fS)− E(fS)
∣∣∣ ≤ 2k2L2

nλ
+

(
2k2L2

λ
+ kL

√
c0
λ

+ c0

)√
2 log(2/δ)

n

with the probabbilty less than 1− δ

Remark 93. Or, we have ∣∣∣ES(fS)− E(fS)
∣∣∣ ≤ O( 1√

nλ

)
We, now, can find a suitable λ.

3.4 Early Stopping

Remark 94. We consider an iterated algorithm and apply to unregularized ERM with n training points. Let

fn be a solution of ERM and f
(t)
n be sequence of function obtained by the gradient descent. We would like

to find a spot where the algorithm isn’t trained too few or too much.

Remark 95. The intuition here is that every step of gradient descent allows the points to move from previous

state in certain amount i,e f
(t)
n ∈ Hr(t) for some radius r(t). To set an early stop means that we regularize

the space of H.

Lemma 3.4.1. For L-Lipschitz, convex, and differentiable function f : H → R. Then

‖∇F (f)‖ ≤ L

for some f ∈ H.

Proof. We consider, where we set y = x+∇F :

L ‖∇F‖ = L ‖y − x‖ ≥ ‖f(y)− f(x)‖ =
∥∥∇FT (y − x)

∥∥ = ‖∇F‖2

Proposition 3.4.1. At step t of gradient descent with step size γ > 0 on F , we have:

‖ft‖H ≤ tγL

Proof.
‖ft‖H = ‖ft−1 − γ∇F (ft−1)‖H ≤ ‖ft−1‖H + γ ‖∇F (ft−1)‖H = ‖ft−1‖H + γL

Repeat the process and and we that we have.

Lemma 3.4.2. For a function F : H → R convex, M -smooth with minimizer w∗ ∈ H, we have:

F (w)− F (w∗) ≥
1

2M
‖∇F (w)‖2H

Proof. We consider the lemma 3.3.2

inf
v∈H

f(v) ≤ inf
v∈H

f(w) +∇f(w)T (v − w) +
L

2
‖v − w‖2H

Let’s consider the derivative with respect to v:

∇v
[
∇wf(w)T (v − w) +

L

2
‖v − w‖2H

]
= ∇v

[
∇wf(w)T v −∇wf(w)Tw +

L

2
(vT v − 2vTw + wTw)

]
= ∇wf(w)− 0 +

L

2
2v − L

2
2w + 0

= ∇wf(w) + L(v − w)
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Setting the derivative to zero gives us:

v = w − 1

L
∇wf(w)

Plugging it back, and we have:

f(w∗) ≤ f(w) +∇f(w)T
(
w − 1

L
∇wf(w)− w

)
+
L

2

∥∥∥∥w − 1

L
∇wf(w)− w

∥∥∥∥2

H

= f(w)− 1

L
‖∇wf(w)‖2H +

1

2L
‖∇wf(w)‖2H

= f(w)− 1

2L
‖∇wf(w)‖2H

Rearrange and we have what required.

Proposition 3.4.2. Givne a function F : H → R convex M -smooth, then for all v, w, we have:

〈∇F (w)−∇F (v), w − v〉H ≥
1

M
‖∇F (w)−∇F (v)‖2H

Proof. First, we constructed a function:

Fw(z) = F (z)− 〈∇wF (w), z〉H Fv(z) = F (z)− 〈∇vF (v), z〉H

We can see that both functions are M -smooth, as we have:

∇zFw(z) = ∇zF (z)−∇wF (w)

Furthermore, from this, we can see that z = w is the optima, and same for Fv(z) where z = v is also an
optima. Apply the previous lemma, we have:

Fw(v)− Fw(w) ≥ 1

2M
‖∇Fw(v)‖2H Fv(w)− Fv(v) ≥ 1

2M
‖∇Fv(w)‖2H

where:
Fw(v) = F (v)− 〈∇wF (w), v〉H Fv(w) = F (w)− 〈∇vF (v), w〉H

Fw(w) = F (w)− 〈∇wF (w), w〉H Fv(v) = F (v)− 〈∇vF (v), v〉H
And, so we have:

F (v)− F (w)− 〈∇wF (w), v − w〉H ≥
1

2M
‖∇Fw(v)‖2H

F (w)− F (v)− 〈∇vF (v), w − v〉H ≥
1

2M
‖∇Fv(w)‖2H

Adding them together, we have:

〈∇wF (w)−∇vF (v), w − v〉H ≥
1

2M
‖∇Fw(v)‖2H +

1

2M
‖∇Fv(w)‖2H

≥ 1

M
‖∇Fw(v) +∇Fv(w)‖2H

=
1

M
‖∇F (w)−∇F (v)‖2H

Thus complete the proof.

Lemma 3.4.3. Let l : H → R be convex differentiable and M -smooth. Let 0 ≥ γ ≥ 2/M and G : H → H be
the gradient step operator: G(f) = f − γ∇l(f) for f ∈ H, then:

‖G(f)−G(g)‖H ≤ ‖f − g‖H
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Proof. We have:∥∥∥G(f)−G(g)
∥∥∥2

H
=
∥∥∥f − γ∇l(f)− g + γ∇l(g)

∥∥∥2

H

=
∥∥∥f − g + γ

(
∇l(g)−∇l(f)

)∥∥∥2

H

=
∥∥∥f − g∥∥∥2

H
+
∥∥∥γ(∇l(g)−∇l(f)

)∥∥∥2

H
− 2γ

〈
f − g,∇l(f)−∇l(g)

〉
≤
∥∥∥f − g∥∥∥2

H
+ γ2‖∇l(g)−∇l(f)‖2H −

2γ

M
‖∇l(f)−∇l(g)‖2H

= ‖f − g‖2H − γ
(

2

M
− γ
)
‖∇l(f)−∇l(g)‖2H ≤ ‖f − g‖

2
H

Since γ(2/M − γ) ≤ 1 since γ ∈ [0, 2/M ].

Theorem 3.4.1. Let l(·, y) : H → R be convex, L-Lipschitz and M -smooth uniform. For training set

S ∈ Zn, let f
(T )
S be obtained by applying gradient descent with step size 1/M on empirical risk to S. The

corresponding algorithm is β(n, T )-stable where:

β(n, T ) ≤ 2L2k2

M

T

n

Proof. Let S ∈ Zn, z ∈ Z and i ∈ [n]. We will denote ft to be function after t iteration with gradient step γ
on S. On the other hand, we denote f ′t to be a function after t iteration with same learning on Si,z. Recall
the result from the proof of theorem 3.3.8, that

sup
z̄∈Z

∣∣∣l(fT , z̄)− l(f ′T , z̄)∣∣∣ ≤ Lk ‖fT − f ′T ‖H
We want to control this value. For any t ∈ [n] by construction:

ft+1 = ft − γ∇ES(ft) f ′t+1 = f ′t − γ∇ESi,z (ft)

Then, we have:

∥∥ft+1 − f ′t+1

∥∥
H =

∥∥∥∥∥∥ft − f ′t − γ

n

∑
j 6=i

[
∇l(ft, zj)−∇l(f ′t , zj)

]
+
γ

n

[
∇l(ft, zi)−∇l(f ′t , z)

]∥∥∥∥∥∥
H

≤ 1

n

∑
j 6=i

∥∥∥ft − γ∇l(ft, zj)− f ′t + γ∇l(f ′t , zj)
∥∥∥2

H
+

1

n
‖ft − f ′t‖H

+
γ

n

(
‖∇l(ft, zi)‖H + ‖∇l(f ′t , z)‖

)
= ‖ft − f ′t‖H +

2Lk

n
γ

The second ineqalities comes from lemma 3.4.1 and lemma 3.4.3. Please note that ‖∇l(ft, z)‖H ≤ Lk:∥∥ft+1 − f ′t+1

∥∥
H ≤ ‖ft − f

′
t‖H +

2Lk

nM
=

2Lk(t+ 1)

nM

Setting t+ 1 = T , and we finish the proof, while setting γ = 1/M

3.5 Sub-Gradient Methods

3.5.1 Introduction to Sub-Gradient

Definition 3.5.1. (Convex Function) A function f : X → [−∞,∞] is convex iff, for all x, y ∈ X and
λ ∈ [0, 1]:

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)
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Definition 3.5.2. (Extended Value Theorem) We can transform the constrained optimization:

min
‖x‖≤1

‖Ax− y‖2

Using the extended value theorem, where this is the same as:

min
x∈X

f(x) = h(x) + LB1
(x) where LB1

(x) =

{
0 x ∈ B1

∞ x 6∈ B1

Definition 3.5.3. (Subdifferential & Subgradient) Let x ∈ dom(f), the subdifferential:

∂f(x) =
{
u ∈ X

∣∣∣∀y ∈ X : f(y) ≥ f(x) + 〈y − x, u〉
}

The subgradient is the element of ∂f at x. Please note that z = f(y) ≥ f(x)+〈y − x, u〉 is the affine function
passing through (x, f(x)) with slope u. If x 6∈ dom(f), then by definition ∂f(x) = ∅

Lemma 3.5.1. Suppose that X = X1 × · · · × Xm and f(x1, . . . , xm) = f1(x1) + · · · + fm(xm) where
fi : Xi →]−∞,∞], then we have:

∂f(x1, . . . , xm) = ∂f1(x1)︸ ︷︷ ︸
⊂X1

× · · · × ∂m(xm)︸ ︷︷ ︸
⊂Xm

⊂ X

Remark 96. Let’s consider X = Rm where f(x) = ‖x‖1 =
∑m
i=1 |xi| where fi = |·| : R→ R, then we have:

∂ ‖·‖x1
(x) = ∂ |·| (x1)︸ ︷︷ ︸

⊂R

× · · · × ∂ |·| (xm)︸ ︷︷ ︸
⊂R

⊂ Rm

where, we have:

∂ |·| (x) =


{−1} if t < 0

[−1, 1] if t = 0

{1} if t > 0

Lemma 3.5.2. For a convex function f : R→ R (note that it is finite), its subdifferential is:

∂f(x) =
[
f ′−(x), f ′+(x)

]
However, for infinite value function, its subdifferential is:

∂f(x) =
[
f ′−(x), f ′+(x)

]
∩ R

Remark 97. We have the problem:

min
x∈C

f(x) where C ⊂ X is closed convex.

f : X → R is convex and Lipschitz continuous.

If f is finite every where, then subdifferential is non-empty, while in smooth setting, there is one subgradient,
which is the gradient.

3.5.2 Projected Subgradient Method

Definition 3.5.4. (Projected Subgradient Method) The projected subgradient method is given by:

xk+1 = Pc(xk − γuk)

where uk ∈ ∂f(xn) and γn > 0.
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Remark 98. Projected Subgradient method isn’t decending. We will consider X = R2 where f(x1, x2) =
|x1|+ 2 |x2| as we have

∂f(1, 0) = {1} × [−2, 2]

it is clear that (1, 2) ∈ ∂f(1, 0). Then choosing this subgradient will not lead to any convergence.

Lemma 3.5.3. We would like to note that: if u ∈ ∂f(x), then ‖u‖ < L.

Proof. We consider the following inequalities:

〈y − x, u〉 ≤ f(y)− f(x)

≤ |f(y)− f(x)|
≤ L ‖y − x‖

If we were to set, u = y − x:
〈y − x, y − x〉 = ‖y − x‖2 ≤ L ‖y − x‖

and by simple rearrangement, we arrived at the statement.

Lemma 3.5.4.
‖xk+1 − xk‖ = ‖PC(yk)− Pc(xk)‖ ≤ ‖yk − xk‖

Lemma 3.5.5. For all k ∈ N and x ∈ C:

2γk(f(xk)− f(x)) ≤ 2γk 〈xk − x, uk〉

≤ ‖xk − x‖2 − ‖xk+1 − x‖2 + γ2
kL

2

Proof. The first ineqalities comes from the definition of subgradient:

2γk(f(xk)− f(x)) ≤ 2γk 〈xk − x, uk〉
= 2 〈xk − x, γkuk〉

= ‖xk − x‖2 + ‖γkuk‖2 − ‖xk − x− γkuk‖

≤ ‖xk − x‖2 − ‖yk − x‖+ γ2
kL

2

≤ ‖xk − x‖2 − ‖xk+1 − xk‖2 + γ2
kL

2

Theorem 3.5.1. For all k ∈ N, we have fk = min0≤i≤k f(xi) and x̄ =
(∑k

i=0 γi

)−1 (∑k
i=0 γixi

)
. Then for

all k ∈ N and x ∈ C:

max {fk, f(x̄k)} − f(x) ≤ ‖x0 − x‖2

2
∑k
i=0 γi

+
L2

2

∑k
i=0 γ

2
i∑k

i=0 γi

Proof. We start by summing the lemma:

k∑
i=0

2γi(f(xi)− f(x)) ≤
k∑
i=0

‖xi − x‖2 − ‖xi+1 − x‖2 + γ2
i L

2

Let’s consider with the following, with the convexity of f :

f(x̄) = f

(∑k
i=0 γixi∑k
i=0 γi

)
≤

k∑
i=1

f(xi)γi

/ k∑
i=0

γi

And, so we have: (
k∑
i=0

γi

)
max {fk, f(x̄k)} ≤

k∑
i=0

γif(i)
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as fk is always less than f(i) by definition, thus the maximum holds, and, so we can apply the lemma above
with telescoping sum:(

k∑
i=0

2γi

)[
max {fk, f(x̄k)} − f(x)

]
≤

k∑
i=0

2γi(f(xi)− f(x))

≤
k∑
i=0

‖xi − x‖2 − ‖xi+1 − x‖2 + L2
k∑
i=0

γ2
i

= ‖x0 − x‖2 − ‖xk+1 − x‖2 + L2
k∑
i=0

γ2
i

≤ ‖x0 − x‖2 + L2
k∑
i=0

γ2
i

By rearrange the equation, the statement.

Corollary 3.5.1. Suppose that
∑
k∈N γ =∞ and

(∑k
i=0 γi

)−1 (∑k
i=0 γixi

)
→ 0, then it is clear that

fk → inf
c
f f(x̄k)→ inf

c
f

The possible choice: γk = γ̄/(k + 1)2 with γ ∈ [1/2, 1]. In particular, γk = γ̄/
√
k + 1 and γ̄k = γ̄/(k + 1)

Remark 99. The result above doesn’t assume that s∗ = arg minc f 6= ∅. As for all x ∈ C, we have:

f(x̄k) ≤ f(x) +
‖x0 − x‖2

2
∑k
i=0 γi

+
L2

2

∑k
i=0 γ

2
i∑k

i=0 γi

But we can see that lim sup f(x̄k) ≤ f(x) and for all x ∈ C:

lim sup f(x̄k) ≤ inf
c
f ≤ lim inf

k
f(x̄k) ≤ lim sup f(x̄k)

and so they are all equal and will converge to f .

Corollary 3.5.2. Suppose that S∗ = arg minc f 6= ∅ then the following holds:

• Let k ∈ N then: set (γi)0≤i≤k = ‖x0−S∗‖
L
√
k+1

then:

max {fk, f(x̄k)} −min
c
f <

Ld(x0, S∗)√
k + 1

• Suppose that X is finite dimensional, where
∑
γk =∞ and

∑
γ2
k <∞ then there exists x∗ ∈ S∗ such

that xk → x∗

• For every k ∈ N where γk = γ̄/(k + 1), then:

max {fk, f(x̄k)} −min
c
f ≤ O

(
1

log(k + 1)

)

• For every k ∈ N where γk = γ̄/
√
k + 1, then:

max {fk, f(x̄k)} −min
c
f ≤ O

(
log(k + 1)√

k + 1

)
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• For every k ∈ N where γk = γ̄/
√
k + 1, then: f̃k = infbk/2c≤i≤k f(xi) where:

x̃k =

 k∑
i=bk/2c

γi

2
k∑

i=bk/2c

γixi

Suppose C is bounded then:

max {fk, f(x̄k)} −min
c
f = O

(
1√
k + 1

)
Definition 3.5.5. (Projected Stochastic Subgradient Method) The algorithm is defined as:

xk+1 = PC(xk − γkûk)

where ûk is x-valued random variable such that E[ûk|xk] ∈ ∂f(xk). Now, we have xk and f(xk) are random
varaible now.

Remark 100. We are going to define a function values fk = min0≤i≤k E[f(xi)] and x̄k =
(∑k

i=0 γi

)2 (∑k
i=0 γixi

)
.

Together with the assumption that there exists B > 0 such that for all k ∈ N as E[‖ûk‖2] ≤ B2 <∞.

Lemma 3.5.6. For all k ∈ N and all points x ∈ C:

2γn(E[P (xn)]− f(x)) ≤ E[‖xk − x‖2]− E[‖xk+1 − x‖2] + γ2
kB

2

Proof. We consider yk = xk − γûk and xk+1 = PC(yk), then we have:

2γk 〈xk − x, ûk〉 = 2 〈xk − x, xk − yk〉

= ‖xk − x‖2 + ‖xk − yk‖2 − ‖yk − x‖2

≤ ‖xk − x‖2 − ‖xk+1 − x‖2 + γ2
k ‖uk‖

2

and so we have:

2γk 〈xk − x,E[uk|xk]〉 = 2 〈xk − x, xk − yk〉

≤ ‖xk − x‖2 − E
[
‖xk+1 − x‖2

∣∣xk]+ γ2
kE
[
‖uk‖2

∣∣xk]
Note that

2γk

(
f(xk)− f(x)

)
≤ 2γk 〈xk − x,E[uk|xk]〉

and so, we have:

2γk

(
E[f(xk)]− f(x)

)
≤ ‖xk − x‖2 − E

[
‖xk+1 − x‖2

]
+ γ2

kE
[
‖uk‖2

]
≤ ‖xk − x‖2 − E

[
‖xk+1 − x‖2

]
+ γ2

kB
2

Theorem 3.5.2. For all number k ∈ N and for all x ∈ C: we have

max {fk,E[f(x̄k)]} − f(x) ≤ E[‖x0 − x‖2]

2
∑k
i=0 γi

+
B2

2

∑k
i=1 γ

2
i∑k

i=1 γi

Corollary 3.5.3. Suppose that
∑∞
k=0 γk = ∞ and

∑n
i=0 γ

2
i /
∑n
i=0 γi → 0 where γ = γ̄/(1 + k)2 with

α ∈ [1/2, 1]. Then fk → infC f and E[f(x̄k)]→ infC f

Corollary 3.5.4. Suppose that S∗ = arg minc f 6= ∅ and let D ≥ dist(x0, S∗) then the following holds:

96



• Let k ∈ N and set (γi)1≤i≤k = D/(B
√
k + 1) then:

max {fn,E[f(x̄k)]} −min
c
f ≤ BD√

k + 1

• Set γk = γ̄/
√
k + 1 then:

max {fn,E[f(x̄k)]} −min
c
f ≤ O

(
log(k + 1)√

k + 1

)

3.5.3 Examples of Stochastic Optimization

Remark 101. (Stochastic Optimization) We have the following setting:

min
x∈C

f(x) = E[f(x, ξ)] =

∫
Z
F (x, z) dµ(Z)

where ξ is random variable taking values in measurable space Z with distribution measure µ(Z) and F :
X × Z → R such that:

• F (·, z) is convex and L(Z)-Lipschitz continuous and∫
Z
L(z)2 dµ(Z) <∞

• F (0, z) ∈ L1(Z, µ)

• There exists ∇̃F : X ×Z → X such that ∇̃F (x, z) is subgradient of F (·, z) at X.

• (ξk)k∈N is sequence of independent copies of S.

Remark 102.
|F (·, x)| ≤ |F (x, ·)− F (0, ·)|+ |F (0, ·)|

≤ L(·) ‖x‖+ |F (0, ·)|

Thus F (x, ·) ∈ L1(z, µ).

Definition 3.5.6. (Projected Gradient Descent) We have the following algorithm:

xk+1 = Pc(xk − γk ∇̃F (xk, ξk)︸ ︷︷ ︸
ûk

)

Checking the assumption on ûk:

• xk = xk(ξ0, . . . , ξk−1) as we have xk and ξk are independent that random value.

• We have:

F (y, z) ≥ F (x, z) +
〈
y − x, ∇̃F (x, z)

〉
f(y) ≥ f(x) +

〈
y − x,

∫
Z
∇̃F (x, z) dµ(Z)︸ ︷︷ ︸

E[∇̃F (x,ξ)]

〉

for all x, y ∈ X and z ∈ Z. And, E[∇̃F (x, ξ)] ∈ ∂f(x), or we have

E[∇̃F (xk, ξ)|xk] =

∫
∇̃F (xk, z) dµ(z) ∈ ∂f(xk)
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• We have:

E
[∥∥∥∇̃F (xk, ξk)

∥∥∥2
∣∣∣∣xk] =

∫ ∥∥∥∇̃F (xk, z)
∥∥∥2

dµ(Z)

≤
∫
L(z)2 dµ(Z) = B2

Definition 3.5.7. (Statistical Learning) Let ξ and η be 2 random values with value in X and Y repec-
tively, and let µ be the distribution of (ξ, η). Let l : X ×Y×R→ R be a convex loss function and Φ : X → H
be a feature map:

min
w∈H

R(w) =

∫
X×Y

l(x, y, 〈w,Φ(s)〉) dµ(X,Y )

= E[l(ξ, η, 〈w,Φ(s)〉)]
based on some sequence (ξk, ηk)k∈N of independent copies of (ξ, η). We assume:

• l(x, y, ·) is 2-Lipschitz continuous and E[l(ξ, η, 0)] <∞

• E
[
‖Φ(x)‖2

]
≤ ∞ as we have E[k(ξ, ξ)] <∞

We will now check that the assumption for stochastic optimization holds, where we will set Z = X × Y,
F : H ×Z → R and F (w, z) = l(x, y, 〈w,Φ(x)〉)

• Let’s consider the F (·, z) = l(x, y, 〈·,Φ(x)〉) and it is convex:

|F (w1, z)− F (w2, z)| = |l(x, y, 〈w1,Φ(x)〉)− l(x, y, 〈w1,Φ(x)〉)|
≤ 2 |〈w1 − w2,Φ(x)〉|
≤ 2 ‖Φ(x)‖︸ ︷︷ ︸

L(z)

‖w1 − w2‖

• We have F (0, ·) = l(·, ·, 0) ∈ L1(Z, µ)

• For the subgradient, we have:

∂F (w, z) = ∂ l(x, y, 〈w,Φ(x)〉)︸ ︷︷ ︸
⊂R

Φ(x)︸ ︷︷ ︸
∈H

⊂ H

as we have l̃′ : X × Y × R→ R or we have l̃′(x, y, t) ∈ ∂l(x, y, t), thus we have:

∇̃F (w, z) = l̃′(x, y, 〈w,Φ(x)〉)Φ(x) ∈ ∂F (w, z)

And so the third condition holds.

• ξk = (ξk, ηk) and so the final assumption holds.

Definition 3.5.8. (Statitical Learning Algorithm) The algorithm:

wk+1 = wk − γk l̃′(ξn, ηn, 〈wk,Φ(ξk)〉)Φ(ξk)

This isn’t practical as H is ∞-dimension. However, we can have:

gk+1(x) = gk(x)− γk l̃′(ξk, ηk, gk(ξk))K(x, ξk)

Where k(x, x′) = 〈Φ(x),Φ(x′)〉 is kernel function.

Remark 103. We let

w̄n =

(
k∑
i=0

γi

)−1( k∑
i=0

γiwi

)
ḡn(x) = 〈w̄k,Φ(x)〉 =

(
k∑
i=0

γi

)−1( k∑
i=1

γigi(x)

)
We have:
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• The risk of gk is R(w̄k) and according to corollary, we have:

R(w̄k)→ inf
H
R

provided that
∑∞
k=−∞ γk =∞ and (

∑∞
i=0 γi)

−1(
∑k
i=0 γ

2
i )→ 0

• Suppose that S∗ = arg minHR 6= ∅ and let D ≥ d(s0, S∗)

– If γk = γ̄
√
k + 1 then:

E[R(w̄k)]−min
H

R ≤ O
(

log(k + 1)√
k + 1

)
– Let k ∈ N and let (γi)1≤i≤k = D/(B

√
k + 1) then:

E[R(w̄k)]−min
H

R ≤ BD√
k + 1

Where B2 = 4E
[
‖φ(ξ))‖2

]
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Appendix A

Additional Proof

A.1 RKHS in Machine Learning

A.1.1 Expansion of Centered Matrix for PCA

Smarter way to do it is:

X

(
I − 1

n
1n×n

)
XT = XXT − 1

n
X1n×nX

T

Now, we consider the second one:

n∑
i=1

xi − 1

n

n∑
j=1

xj

xi − 1

n

n∑
j=1

xj

T

=

n∑
i=1

xix
T
i −

1

n
X1xi −

1

n
xi1

TXT +
1

n2
X11TXT

=

[
1

n
X11TXT +

n∑
i=1

xix
T
i

]
−

[
1

n

n∑
i=1

X1xTi + xi1
TXT

]

=

[
1

n
X11TXT +XXT

]
−

[
2

n

n∑
i=1

X1xTi

]

=

[
1

n
X11TXT +XXT

]
−

[
2

n
X1

n∑
i=1

xTi

]

=

[
1

n
X11TXT +XXT

]
−
[

2

n
X11TXT

]
= XXT − 1

n
X11TXT

Note that for vector a and b, we have abT = baT

A.1.2 Centering Kernel Matrix

Please note that

k̃(xi, xj) =
〈
φ̃(xi), φ̃(xj)

〉
=

〈
φ(xi)−

1

n

n∑
k=1

φ(xk), φ(xj)−
1

n

n∑
k=1

φ(xk)

〉
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Let’s see that:

k̃(xi, xj) =

〈
φ(xi)−

1

n

n∑
k=1

φ(xk), φ(xj)−
1

n

n∑
k=1

φ(xk)

〉

= 〈φ(xi), φ(xj)〉 −

〈
φ(xi),

1

n

n∑
k=1

φ(xk)

〉
−

〈
φ(xj),

1

n

n∑
k=1

φ(xk)

〉
+

〈
1

n

n∑
k=1

φ(xk),
1

n

n∑
k=1

φ(xk)

〉

= 〈φ(xi), φ(xj)〉︸ ︷︷ ︸
1

− 1

n

n∑
k=1

〈φ(xi), φ(xk)〉 − 1

n

n∑
k=1

〈φ(xj), φ(xk)〉︸ ︷︷ ︸
2

+
1

n2

n∑
k=1

n∑
l=1

〈φ(xk), φ(xl)〉︸ ︷︷ ︸
3

Now, let’s consider K̃ = HKH, which we have:

K̃ =

(
I − 1

n
1n×n

)
K

(
I − 1

n
1n×n

)
=

(
K − 1

n
1n×nK

)(
I − 1

n
1n×n

)
= K − 1

n
K1n×n −

1

n
1n×nK +

1

n2
1n×nK1n×n

It is clear that K corresponds to 1 , and we can see that:

1

n
K1n×n =

1

n


· · ·

∑n
i=1 〈x1, xi〉 · · ·

· · ·
∑n
i=1 〈x2, xi〉 · · ·

...
· · ·

∑n
i=1 〈xn, xi〉 · · ·

 1

n
1n×nK =

1

n


...

...
...∑n

i=1 〈x1, xi〉
∑n
i=1 〈x2, xi〉 · · ·

∑n
i=1 〈xn, xi〉

...
...

...


And, so the addition of them would lead to the 2 . Finally, 3 can be shown easily as we use the result
above and multiply by 1n×n.

A.1.3 Ridge Regression Expansion

We will show that
−2yTXTCb+ bT b = ‖CXy − b‖2 −

∥∥yTXTC
∥∥2

where C = (XXT + λI)−1/2, please note that C = CT . Let’s consider the right handside:

‖CXy − b‖2 −
∥∥yTXTCT

∥∥2
= (CXy − b)T (CXy − b)− (yTXTCT )T (yTXTCT )

= (yTXTCT − bT )(CXy − b)− (yTXTCT )T (yTXTCT )

= yTXTCTCXy − yTXTCT b− bTCXy + bT b− CXyyTXTCT

= (yTXTCTCXy − CXyyTXTCT )− 2yTXTCT b+ bT b

= −2yTXTCT b+ bT b
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A.1.4 Representor Theorem for Ridge Regression

We will assume that

X(XTX + λIn)−1y = X


β11 β12 · · · β1n

β21 β22 · · · β2n

...
...

. . .
...

βn1 βn2 · · · βnn

 y

=


∑n
i=1 x1iβi1

∑n
i=1 x1iβi2 · · ·

∑n
i=1 x1iβin∑n

i=1 x2iβi1
∑n
i=1 x2iβi2 · · ·

∑n
i=1 x2iβin

...
...

. . .
...∑n

i=1 xdiβi1
∑n
i=1 xdiβi2 · · ·

∑n
i=1 xdiβin

 y

=


∑n
i=1 x1iβi1

∑n
i=1 x1iβi2 · · ·

∑n
i=1 x1iβin∑n

i=1 x2iβi1
∑n
i=1 x2iβi2 · · ·

∑n
i=1 x2iβin

...
...

. . .
...∑n

i=1 xdiβi1
∑n
i=1 xdiβi2 · · ·

∑n
i=1 xdiβin



y1

y2

...
yn



=


∑n
j=1 yj

∑n
i=1 x1iβij∑n

j=1 yj
∑n
i=1 x2iβij

...∑n
j=1 yj

∑n
i=1 xniβij

 =


∑n
j=1

∑n
i=1 yjx1iβij∑n

j=1

∑n
i=1 yjx2iβij
...∑n

j=1

∑n
i=1 yjxniβij



=


∑n
i=1

∑n
j=1 yjx1iβij∑n

i=1

∑n
j=1 yjx2iβij

...∑n
i=1

∑n
j=1 yjxniβij


The rest will be in main proof.

A.1.5 MMD Integration

We have∫∫
[k(s− t) d(P −Q)(s)] d(P −Q)(t)

=

∫ [
Es∼P [k(s− t)]− Es∼Q [k(s− t)]

]
d(P −Q)(t)

=

∫
Es∼P [k(s− t)] d(P −Q)(t)−

∫
Es∼Q [k(s− t)] d(P −Q)(t)

=
[
Et∼PEs∼P [k(s− t)]− Et∼QEs∼P [k(s− t)]

]
−
[
Et∼PEs∼Q[k(s− t)]− Et∼QEs∼Q[k(s− t)]

]
= EP [k(s− t)] + EQ[k(s− t)]− 2EP,Q[k(s− t)]

A.1.6 Biased Estimate of HSIC Part 2

We have

1TK =
[∑n

a=1 ka1

∑n
a=1 ka2 · · ·

∑n
a=1 kan

]
L1 =


∑n
b=1 l1b∑n
b=1 l2b

...∑n
b=1 lnb
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A.2 Experimental Proof

A.2.1 Projected Gradient Descent

Lemma A.2.1. We would like to note that, for some y ∈ Rd and x ∈ Ω

‖ΠΩ(y)− x‖2 ≤ ‖y − x‖2 − ‖y −ΠΩ(y)‖2

Remark 104. The projected gradient descent can be splitted into 2 parts:

yt+1 = xt − γ∇f(xt)

xt+1 = ΠΩ(yt+1)
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