Advanced Topics in Machine Learning

Phu Sakulwongtana



Contents

1 Convex Optimization

1.1 Imtroduction . . . . . . . . e e e e
1.2 Convex Sets . . v v v it e e e e
1.2.1 Examples . . . . .o e e
1.2.2  Operators that Preserve Convexity . . . . . . . .. ... . ..
1.3 Convex Functions . . . . . . . . . . . e
1.3.1 Properties of Convex Functions . . . . . . .. ... ... . L o o
1.3.2 Building Convex Functions . . . . . . . . . . . . . ...
1.3.3 Other Kinds of Convex Related Functions . . . . . . ... ... ... ... ... ....
1.4 Convex Optimization Problems . . . . . . .. . . ...
1.4.1 Introductions . . . . . . . . . . . L e e
1.4.2 Equivalent Convex Problems . . . . . .. . ... ...
1.4.3 Types of Convex Problems . . . . . . . . . ... . . e
1.4.4  Vector Optimization Problem . . . . . . . .. .. ... . o
1.5 Duality . . . . o e e
1.5.1 Lagragian . . . . . . . . ... e
1.5.2 Dual Problems . . . . . . .. e
1.5.3  Techniques of Solving Dual Problems. . . . . . .. ... ... ... ... . ......
2 RKHS in Machine Learning
2.1 Imtroduction to RKHS . . . . . . . .. . e
2.1.1 Building a Kernel . . . . . . . . ..
2.1.2  Further Notions of Kernels and RKHS . . . . .. .. ... ... ... ... .....
2.2 Smoothness of RKHS . . . . . . . o e
2.2.1 Periodic Case . . . . . . .. e
2.2.2  Eigen Expansion Case . . . . . . . .. o
2.3 More of RKHS . . . . . . . . e e
2.4 Application of Kernel . . . . . . . . . . . e e
2.4.1 Kernel PCA . . . . . . . o e
2.4.2 Kernel Ridge Regression . . . . . . . . . .. L

O 0O =~ Ut U xR

10
11
12
12
14
16
21
22
22
24
28



2.5 Maximum Mean Discrepancy . . . . . . . . . .. Lo e e e 44
2.5.1 Mean Embedding . . . . . . . ..o 44
2.5.2 Algorithm . . . . . . .. 45
2.5.3 Statistical Testing of MMD . . . . . . . . ... 46
2.5.4 Characteristic RKHS . . . . . . . . .. o 47

2.6 Testing Dependencies . . . . . . . . . L e 49
2.6.1 Covariance Operators . . . . . . . . . . oo e e e e 49
2.6.2 COCO . . . e e 51
2.6.3 HSIC . . . . e 53

2.7 Testing Goodness of Fit . . . . . . . . L 56

2.8 Support Vector Machine . . . . . . . . . .. L 60
2.8.1 Introduction . . . . . . .. L e 60
2.8.2 Convex Optimization . . . . . . . . . . . . . e 61

Statisical Learning 68

3.1 Formulating Learning Problem . . . . . . .. ... .. o 68
3.1.1 Problem . . . . .. e 68
3.1.2 Risk . .o e 69
3.1.3 Empirical Risks . . . . . . . oL e 70

3.2 Generalization Bound . . . . . . ..o 72
3.2.1 Generalization Error . . . . .. ..o L 72
3.2.2 Bound For Generalization . . . . . . . ... ... ... 73
3.2.3 Regularization . . . . .. .. e 77

3.3 Tikhonov Regularization . . . . . . . . . . . . L e e 79
3.3.1 Regularized Space . . . . . . .. e 79
3.3.2  Introduction to Convex + Finding Weights . . . . . . . .. .. ... ... ... .. 80
3.3.3 Gradient Descent . . . . . . . . ... 81
3.3.4 Stability . . . .. 86

3.4 Early Stopping . . . . . . . e 90

3.5 Sub-Gradient Methods . . . . . . . . . . 92
3.5.1 Introduction to Sub-Gradient . . . . . . . ... L 92
3.5.2  Projected Subgradient Method . . . . . . ... ... ... oL 93
3.5.3 Examples of Stochastic Optimization . . . . . . . .. .. ... . Lo 97

Additional Proof 100

A.1 RKHS in Machine Learning . . . . . . . . . ... L e 100
A.1.1 Expansion of Centered Matrix for PCA . . . . .. .. ... ... ... ..., 100
A.1.2 Centering Kernel Matrix . . . . . . . . . .. oo e 100
A.1.3 Ridge Regression Expansion . . . . . . ... .. 0 o 101



A.1.4 Representor Theorem for Ridge Regression . . . . ... .. ... ... .........
A.1.5 MMD Integration. . . . . . . o oo e
A.1.6 Biased Estimate of HSIC Part 2 . . . . . . . . .. .

A.2 Experimental Proof

A.2.1 Projected Gradient Descent . . . . . . . . . ..



Chapter 1

Convex Optimization

1.1 Introduction

Definition 1.1.1. (Optimization Problem) We have the following optimization problem:
min fo(x)

subject to fi(x) <b;, i=1,...,m

where we have

o x = (x1,...,%,): Optimization Variable
e fo:R™ — R: Objective Function

o fi:R*" =R fori=1,...,m: Constant Function

The optimal solution x* has smallest value of f; among all vectors that satisfies the constraint.

Definition 1.1.2. (Least Square) We have the following problem:
min ||Az — b||§

where we have the following analytic solution z* = (AT A)~1ATb. There are reliable and efficient algorithm
to solve, with the complexity of O(n?k) where A € RF*™. The problem is easy to recognize and a few
standard technique to increase flexibility.

Definition 1.1.3. (Linear Programming) We have the following problem:

minc’ z

subject to a?mﬁbi i=1,....,m

There is no analytical solution but there are reliable and efficient algorithm to solve with complexity of
O(n?m) if m > n. The problem isn’t east to recognize but there are standard tricks to convert problem into
a linear program.

Definition 1.1.4. (Convex Optimization Problem) We have the following problem:

min fo(z)
subject to fi(z) <b; i=1,...,m

The objective and constraint functions are convex. This includes a least square and linear program as special
case. Trying to solve the convex optimization problem has no analytic solution but we have reliable and



efficient algorithm. The time complexity is max{n3 n?m, F} where F is the cost of evaluating f; and their
first and second derivative. The problem is hard to recognize, where there are many tricks to covert problem
to convex form.

Remark 1. The traditional technique to solve non-convex optimization involves compomise, where:

e Local Optimization Method

— Find a point that minimize f; among feasible point near it.

Fast and can handle large problem

— Require initial guess

— No information about distance to global optimum.
e Global Optimization Method:

— Find the global solution

— Worst case complexity can be exponential with problem size.

These algorithms are based on solving convex subproblem.

1.2 Convex Sets

1.2.1 Examples

Definition 1.2.1. (Line) A line through z,zs points:
x=0x1+ (1 —0)xs
where 0 € R
Definition 1.2.2. (Affine Set) A set that contains a line through any 2 distict points in the set.
Definition 1.2.3. (Line Segment) Between 7 and x5 where:
x=0x;+ (1 —0)xs
with 0 <6 <1

Definition 1.2.4. (Convex Set) A set that contains a line segment between any 2 points z1,z9 € C in
the set:
Ox1+ (1 —0)za € C

where 0 <0 <1

Definition 1.2.5. (Convex Combination) Given points x1,xa, ..., zk, then the convex combination:
T =01x1 + 020 + -+ Oz

with 61 + 65+ --- + 6, =1 where ; > 0

Definition 1.2.6. (Convex Hull) Set of all convex combination of points in S is called convex hull.

Definition 1.2.7. (Cone (Non-Negative) Combination) Cone Combination of 27 and zs is any points
with the form:
Tr = 911’1 + 921‘2

with 91 Z 0 and 92 Z 0



Definition 1.2.8. (Convex Cone) Convex Cone is the set that contains all conic combination of points
in the set.

Definition 1.2.9. (Hyperplane) Hyperplane is the set of the form {z|a’z = b} where a # 0
Definition 1.2.10. (Halfspace) Halfspace is the set of the form {z|a”z < b} where a # 0

Definition 1.2.11. (Euclidian Ball) The euclidian with a center x. and radius r is:
B(ze,r) = {x‘ |z —zc| < r} = {xc —l—ru‘ [lully < 1}
Definition 1.2.12. (Ellipsoid) The set of the form
{x‘(m —z )P Yz —x,) < 1}
with P is symmetric positive semi-definite matrices, or we can set
{we + Au| fur <1}

where A being square and non-singular.
Definition 1.2.13. A function that satisfies:

o ||z]| >0and ||z||=0iff z =0

o |tz|| = |t| ||z|| for t € R

o llz+yll <zl + vl
Definition 1.2.14. (Norm Ball) The norm ball is the center z¢ and radius r is:

{o|lle = acl <1}

Definition 1.2.15. (Norm Cone) We have

{@v|lzl <t}

The euclidian norm cone is called second order cone.
Lemma 1.2.1. The norm balls and cones are convez.

Definition 1.2.16. (Polyhedra) The solution set of finitely many linear inequalities and equalities:
Ax <) Cx=d

The < is component-wise inequality, where A € R™*™ and C' € RP*". Please note that the polyhedron is
intersection of finite number of halfspace and hyperplane.

Definition 1.2.17. S™ is set of symmetric n X n matrices.

Definition 1.2.18. (Positive Semi-Definite)

sp={xes

Xto}

where X € S} <= 27Xz >0 for all z. Note that S? is convex cone. If we have strictly greater than 0, we
have positive definite matrices:

s1,={xes

X»O}



1.2.2 Operators that Preserve Convexity

Proposition 1.2.1. Intersection of any number of conver sets is convex.

Proposition 1.2.2. Suppose f : R™ — R™ is affine (f(x) = Az + b with A € R™*™ and b € R™):
e The image of convex set under f is convex

S CR" is conver = f(S):{f(:v)‘xES}

e The inverse image of f~1(C) of a convex set under f is convex:

C CR™ is conver = f~1(C) = {a: e R"”

f@ec}
Proposition 1.2.3. The perspective function P : R — R™ where
P(x,t) =z/t
where dom f = {(x,t)|t > 0}. The image and inverse image of convex set under perspective are convex.

Proposition 1.2.4. A linear fractional function f : R™ — R™

Ax+b

where dom f = {z|cTz + d > 0}

Definition 1.2.19. (Proper Cone) K C R" is proper cone if

e ICis closed (Contains Its Boundary)
e K is solid (Non Empty)
e K is pointed (Contains No Line)
Definition 1.2.20. (Generalized Ineqality) It is defined by proper cone K, where
X=2kY <= y—zek X<kY <= y—zeintk

The property of generalized inequality is similar to < in R. Please note that it isn’t a general linear ordering.
We can have X A Y and Y Ax X

Definition 1.2.21. (Minimum) The point 2 € S is minimum element of S with respected to =i if
yesS = 3k vy
Definition 1.2.22. (Minimal) The point 2 € S is the minimal element of S with respected to
yeSyx X = y=u

Theorem 1.2.1. If C and D are non-empty disjoint convex set, there exists a # 0 and b such that a’x < b
for x € C and a”x > b for x € D. This means that the hyperplane {x\aTx = b} separates C' and D.

Definition 1.2.23. (Supporting Hyperplane) to a set C' at boundary point zy such that

{x‘aTx = aTxO}

where a # 0 and a”z < aTzq for all z € C



Theorem 1.2.2. If C is convex, then there exists, a supporting hyperplane at every boundary point of C
Definition 1.2.24. (Dual Cone) The dual cone of a cone K is:

Kr = {y\yTx >0forall z e IC}

If the cone is a dual of itself is called self-dual. Furtheremore, if dual cone of proper cone is propert, hence
defined generalized inequality:
yri-0 <= yTz>0forallz =x 0

Proposition 1.2.5. The minimum element with respected to <x: = is minimum of S iff for all X =y« 0 is
unique minimizer of Nz over S.

Proposition 1.2.6. The minimal element with respected to <x:

o If x minimizes Nz over S for some X =« 0 then x is minimal

o [f x is a minimal element of convex set S then there exists a non-zero X\ =y~ 0 such that x minimizer
ATz over S

1.3 Convex Functions

1.3.1 Properties of Convex Functions

Definition 1.3.1. (Convex Function) f: R™ — R is convex if dom(f) is convex:

f(0x 4 (1= 0)y) <Of(x)+ (1 —0)f(y)
for all z,y € dom(f) and 0 <60 <1

Definition 1.3.2. (Concave + Strictly Convex) f is convex if —f is convex. f is strictly convex if
dom f is convex and:

fOx+ (1 —=0)y) <0f(x)+(1-0)f(y)
for z,y € dom(f) where z #y and 0 < 6 < 1.

Remark 2. Examples of convex functions in R:

e Affine: ax + b on R and for any a,b € R

e Exponential: exp(az) for any a € R

e Power: z*on Ry fora>1ora <0

e Power of Absolute Value: |z|P on R with p > 1

e Negative entropy: xlogz on Ry,
Examples of concave functions in R:

e Affine: ax + b on R and for any a,b € R
e Power: z*on Ry for0<a <1
e Logarithm: logz on Ry

Remark 3. Examples of convex function in R™:



e Affine Function: f(z) = a2 +b

e Norms: [z|, where

n 1/p
(z w)
=1

for p > 1 and ||z||, = maxy |z
Examples of convex function in R™*":

o Affine Function: f(X)=tr(A"X)+b=371" 3" | AijXij +b

e Special Singular Value:
1/2
FX) = [ Xly = omax(X) = (Amax (X7 X))

Proposition 1.3.1. The function f: R™ — R is convex iff the function g : R — R where g(t) = f(x + tv),
where dom(g) = {t|z + tv € dom f}. Now we can check the convezity of f by checking conveziy of functions
of one variable.

Remark 4. Let’s consider the log-determinant function:

g(t) = logdet(X +tV) = logdet X + logdet(I + X ~1/2V X ~1/2)
=logdet X + Y log(1 +tA;)
i=1

1/2

where \; are eigenvalues of X ~1/2V X ~1/2 and therfore g is concave in ¢ for any choice X = 0 and V hence

f is concave.

Definition 1.3.3. (Extended Value Extension) The extended value extension f of fis:

o f(z)= f(z)if z € dom(J)
o f(z)= o0 if z & dom(f)
This would simplify the notation. The condition:
0<6<1 = f(fz+(1-0)y) <0f(x)+(1-0)F()
as the inequality in R U {co} means the same. The domain f is convex.
Proposition 1.3.2. (Differentiable) f is differentiable if dom(f) is open and the gradient:

oj = (M), o1

exists at each x € dom(f)

Lemma 1.3.1. First order condition, a differentiable f with convex domain S is convex iff:
fy) = f@) + V(@) (y —2)

For all x,y € dom(f). This means a first order approximation of f is global underestimator.

Definition 1.3.4. (Twice Differentiable) If f is twice differentiable, if dom(f) is open then Hessian:

_ Pf(e)
ng(x)ij  Qxdy

fori,j =1,...,n exists at each z € dom(f).



Lemma 1.3.2. For twice differentiable f with convex domain, f is convex iff
V2f(x) =0

for all x € dom(f). If V2f(x) = 0 for all x € dom(f), then f is strictly conver. Note that we can use it to
calculate the convexity of the function.

Definition 1.3.5. (a-sublevel Set) a-sublevel set of f : R™ — R, which we have:

Co, = {x € dom(f)‘f(x) < oz}
A sublevel set of convex functions are convex but not the converse.
Definition 1.3.6. (Epigraph) The epigraph of f : R™ — R:
epi(f) = {(w,t) € R"*!|z € dom(), f(2) < t]
is f is convex iff epi(f) is a convex set.

Definition 1.3.7. (Jensen’s Ineqality) If f is convex then for 0 < 6 <1, we have:

f(0x+(1=0)y) <0f(x) +(1-0)f(y)
The extension if f is convex then f(E[z]) < E[f(2)]

1.3.2 Building Convex Functions

Proposition 1.3.3. We have the following opeartors on function that we can use for creating a new convex
functions:

e Non-negative multiple af is convex if f is convex and o > 0
o Sum f1 + fo is convez if f1 and fo is convex. This can be extended to infinite sum or integral.
e Composition with affine function f(Ax +b) is convez if f is convez.

Proposition 1.3.4. If f1,..., fin are convex then:
f(o) =max { fi(2),.... fm(2)}
Proposition 1.3.5. If f(x,y) is convex in x for each y € A, then:

g(w) = sup f(=z,y)
yeA

1S conver.

Proposition 1.3.6. Composition of g : R™ = R and h : R — R where f(x) = h(g(z)). Then f is convex if:

e ¢ is convex, h is conver and h is non-decreasing.

e g is concave, h is convexr and h is non-increasing.

Proof. Let’s consider when the case where n = 1 and differentiable g and h:

f'(x) = W"(g(x))g () + I (9(x))g" ()

Monotonicity must hold extned value extensions h O

10



Proposition 1.3.7. Composition of g : R — R* and n : RF — R:

f(@) = h(g(z)) = hg1(2), ..., gr(x))

where we have, f is convez: if

e g; convex, h convex, h is non-decreasing.

e g; concave, h conver, h is NoN-INCcreasing.
Proof. For n =1 and differentiable g, h:

f'(x) = g'(2)"V?h(g(2))g' (z) + Vh(g(x))"g" (2)

Proposition 1.3.8. If f(x,y) is convex in (z,y) and C is convex set then:

g(x) = yilelgf(w, Y)

1S convez.

Proposition 1.3.9. The perspective of a function f: R™ — R is the functtion g : R™ x R — R:

9(z,y) = fx/t) -t

where dom = {(z,y)|z/t € dom(f),t > 0}. The g is convez if f is convex.

1.3.3 Other Kinds of Convex Related Functions

Definition 1.3.8. (Conjugate) Conjugate of a function f is f*(y) = sup,ecdom(s) (yTx — f(x)), then f* is
convex even f isn’t.

Definition 1.3.9. (Quasi-Convex) The function f : R™ = R is quasi-convex if the domain of f is convex
and:

So = {x € dom(f)‘f(x) < a}

are convex for all a. f is quasi-concave if —f is quasi-convex. and f is quasi-linear if f is quasi-convex and
quasi-concave.

Proposition 1.3.10. Modified Jensen’s inequalities: For quasi-convez f, and for 0 <0 < 1:

[0z + (1= 0)y) < max{f(z), f(y)}

Proposition 1.3.11. For differentiable f with convex domain is quasi-convex iff

fly) < flx) = V@) (y—=2) <0
Remark 5. Sum of Quasi-convex functions are not necessary quasi-convex.

Definition 1.3.10. (Log-Concave and Log-Convex Function) A positive function f is log concave if
log f is concave:

f0x+ (1=0)y) > f(x)° f(y)'~*

for 0 <0 <1, and f is log convex if log f is convex.

Proposition 1.3.12. We have the following results for log-concave:

11



o Tuwice differentiable f with convex function is log concave iff
F@)V2f(x) 2V f(2)Vf(z)"
for all z € dom(f)
e Product of Log-Concave function is log-concave.

e Sum of log-concave function isn’t always log-concave.

o If f:R™ xR™ — R is log concave then:

g(w) = /f(x,y) dy

is log concave, if the integration exists.

Proposition 1.3.13. Convolution f x g of log-concave function if f,g is log-concave

U*mm»=/}@—ymw>@

Proposition 1.3.14. If C C R" is convex and y is random variable with log-concave probability density
function, then:

f(z) =Prob(z +y € C)

is log-concave.
Proof. We write f(x) as integral of product of log-concave function, where:

1 vwel

flz) = /g(x+y)p(y) dy  glu) = {0 wec

Definition 1.3.11. (K-Convex) The function f : R™ — R™ is K-convex if dom(f) is convex and:

[0z + (1= 0)y) =k 0f(x) + (1= 0)f(y)

for 2,y € dom(f) and 0 <9 < 1.

1.4 Convex Optimization Problems

1.4.1 Introductions

Definition 1.4.1. (Constraint Optimization Problem) The constraint optimization is a problem of the
form:

min fo(x)
subject to fi(z) <0 i=1,...,m
hi(x)=0 i=1,...,p
where z € R™ is optimization variable. fy: R™ — R is the objective. f; : R™ — R where i = 1,...,m be the
inequality constraint function. Finally, h; : R™ — R are equality constraint function. The optimal value is:

p* =inf { fo(x)

f1(CC) §O,z:1,,m,hz(os):(),z:l,,p}

Definition 1.4.2. (Feasibility) We have the following definitions:

12



e 1 is feasible if z € dom(fy) and it satisfies the constraints.

*

o A feasible z is optimal if fy(z) = p*.
e X,pt is the set of optimal points.

Definition 1.4.3. (Local Optimal) z is locally local if there is R > 0 such that x is optimal for:

min fo(2)

subject to fi(2) <0 i=1,...,m
hi(x)=0 i=1,...,p
Iz =zl <R

Definition 1.4.4. (Implicit Constraints) The standard form of optimization problem has an implicit
constrain:

m P
z €D =) dom(fi)N () dom(h)

i=0 i=1
The constraints f;(z) < 0 and h;(x) = 0 are called explicit constriants. The problem is unconstrained if
there is no explicit constraints.

Definition 1.4.5. (Feasibility Problem) We can consider a special case of general problem with fo(x) = 0:
min 0
subject to fi(z) <0 i=1,...,m
hl(.’L‘) =0 7= 1,...,p

where if p* = 0 then the constrains are feasible, and any feasible = is optimal. However, if p* = oo if
constraints are infeasible.

Definition 1.4.6. (Standard Form of Convex Optimization Problem) We have

min fo(z)
subject to fi(x) <0 i=1,...,m
a?mi =b i1=1,...,p
where fy, f1,..., fn are convex, equality constraints are affine.

Definition 1.4.7. (Quasi-Convex Problem) A Quasi-Convex Problem is when fj is quasi-convex (and
fis---, fn are convex.), and it is written as

min fo(x)
subject to fi(z) <0 i=1,...,m
Az =b i=1,...

Proposition 1.4.1. Any locally optimal point of a convex problem is (globally) optimal.

Proof. Suppose z is locally optimal but there exists a feasible point y with fo(y) < fo(z). We see that x is
locally optimal means that there is an R > 0 such that z is feasible and

[z —zlly <R = fo(2) = fo(x)

We then consider z = 0y + (1 — )z with § = R/(2||y — z||,). Since

o |ly— ||, > R so weneed 0 <0 <1/2.

e 2 is convex combination of feasible points « and y, then z is feasible.

13



e ||z —z|,=R/2 and
fo(2) < 0fo(y) + (1 = 0) fo(x) < folz)

Proposition 1.4.2. x is optimal iff it is feasible and

Vo) (y—x) 20
for all feasible y. If we have non-zero V fo(x) we define a supporting hyperplane to feasible set X at x.
Definition 1.4.8. (Unconstrained Problem) z is optimal iff € dom(fy) and V fy(z) =0

Definition 1.4.9. (Equally Constraint Problem) We have the following form:

min fo(z)
subject to Ax = b

x is optimal iff there exists v such that z € dom(f). Az =b and Vfy(z) + ATv =0
Definition 1.4.10. (Minimization Over Non-Negative Orthant) We have the following form

min fo(x)
subject to x = 0

2 is optimal iff x € dom(fy) and x = 0

Vf()(x)z =0 z;>0

1.4.2 Equivalent Convex Problems

Proposition 1.4.3. (Eliminating Equality Constraints) These 2 problems are equivalent as one of the
the solution can be obtained from the solution of the other:

min fo(2)
such that f;(x) <0 i=1,....,m
Az =b>
This is equivalent to:
min fo(Fz + o)

such that fi(Fz+x0) <0 i=1,...,m

where F' and xq are such that:
Ar=b < z=Fz+ 19

for some z
Proposition 1.4.4. (Introducing Equality Constraints)
min fo (A()!E + b)
such that f;(4;xz+b;) <0 i=1,...,m

is equivalent to
min fo(yo)
such that f;(y;) <0 i=1,...,m
y=Ax+b i=01,....m

14



Proposition 1.4.5. (Introducing Slack Varaible for Linear Inequalities)

min fo(z)

such that aiTxgbi i=1,....,m

18 equivalent to
min fo(z)
such that aiTx+si:bi i=1,...,m
Si >0 i=1,...,m

we minimize over ¥ and s

Proposition 1.4.6. (Epigraph Form) Standard Convex Problem is equivalent to

min ¢

such that fo(x) —t <0
filz) <0 i=1,...,m
Axr=5>

where we minimize over T and t.

Proposition 1.4.7. (Minimizer Over Some Variables)

minfo(xl,xg)
such that f;(z1) <0 i=1,...,m

is equivalent to 3
min fo(x1)
such that fi(z1) <0 i=1,...,m

where fo(:vl) =inf,, fo(x1, 22)

Proposition 1.4.8. If fy is quasi-convex then there exists a famility of functions ¢¢ such that:

o ¢ (x) is conver in x for fized t

o t-sublevel set of fo is 0-sublevel set of ¢y:

> 0 on dom( fy), we can take ¢;(x) = p(z) —tq(z)

e Fort >0, ¢ is convex in z

o p(a)/g(x) <t iff Gu(2) < 0

Definition 1.4.11. (Bisection Method For Quasi-Convex Optimization) We can consider the feasi-
bility problem, where we have:
di(x) <0 fi(z) <0 Arx =10

Then we can see that, for a fixed ¢, a convex feasibility problem implies:

o If feasible then ¢t > p*
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e Otherwise t < p*

which leads to binary search-like problem, where:

Algorithm 1 Bisection Method For Quasi-Convex Optimization

1: Input: [ <p* and u > p* and Tolerance € > 0
2: while Until Convergence do
3: t=(t+u)/2

4: Solve the convex feasibility problem
5: if It is Feasible then

6: u=t

7 else

8: =t

9: end if

10: end while

This requires exactly [log,((u —1)/e)] iterations, when u and ! are intial values.

1.4.3 Types of Convex Problems

Definition 1.4.12. (Linear Program)

mincl x4+ d
subject to Gz < h
Axr=b
It is an convex problem with affine objective and constraint functions. Feasible set is polyhedron.

Remark 7. The notable problem of LP is Chebshev center of polyhedron, where the Chebshev center of
P = {zlalz < bj,i=1,...,m} is the center of largest inscribed ball B = {x. + ul |lul|, < r}. Note that
alz < b for all x € B iff

sup {af (@e + )| llully < v} = alwe + 7 laill, < b
Hence, the x. and r can be determined by:

maxr
subject to a . + 7 [|a;|l, < b; fori=1,...,m
Definition 1.4.13. (Linear Fractional Program)
Tz +d
min ————
eTx+ f
subject to Gz < h
Ax =b

where dom(fy) = {x|eTx + f> 0}. This is a quasi-convex optimization, which can be solved by Bisection
method. Note that it is equivalent to LP:
mincly + dz
subject to Gy < hz
Ay = bz
ely+fz=1
z2>0
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Definition 1.4.14. (Generalized Fractional Program) where we have

T
Ci T + dz
— a P
Jolw) = mex Cr T,
where dom(fy) = {sc|eiTx +fi>0i=1,... ,r}. This is also quasi-convex problem, which can be solved by
Bisection

Definition 1.4.15. (Quadratic Program)

min(1/2)2” Pz 4+ ¢ x +r
subject to Gz < h
Ax =10
where P € ST, therefore,the objective is convex. The examples of quadratic program is least square problem.

Definition 1.4.16. (Linear Program with Random Cost)

miné’ z + yzT Xx = Ele"2] + yvar(c'2)
subject to Gz < h
Az =b

We have ¢ as as random variable with a mean of ¢ and covariance of ¥, given this we have ¢’z being a
random variable with a mean of ¢’z and covarance 27 Xz. Fianlly, v > 0 is risk aversion paramter, which
controls the trade-off between expected cost and risk.

Definition 1.4.17. (Quadratic Constrained Quadratic Program)
1
min §wTP0:C + quw + 7o
1
subject to ixTPix + qiTx +7r; <0
Ax =b

where P; € S" where objective and constraints are convex quadratic. If P,..., P, € 81, feasible region is
intersection of m ellipsoid and an affine set.

Definition 1.4.18. (Second Order Cone Programming)
min Tz
subject to ||A;x +bill, <clz+d; i=1,...,m
Fr=g

where A; € R"*™ and F' € RP*™. The inequalities are called second order cone constraints: (A;x+ b;, ciTx +
d;) is in second order cone in R™*!. For n; = 0, reduces to an LP if ¢; = 0 reduces to QCQP.

Remark 8. The parameter in the optimization problem are often constraint, for example, in LP:

minc’ z

subject to alTx <b;, i=1,....,m
as there exists an uncertainty in c, a;, b;.

Definition 1.4.19. (Deterministic Robust Linear Programming) We can constrain the paramter that
must holds for all a; € & where:

min ¢’ x

subject to a}”:cgbi Va; €& i=1,....m
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Definition 1.4.20. (Stochastic Robust Linear Programming) We have a; as random variables. The
constrains must hold with probability n:

minc’ z

subject to Prob(alz < b)) >n i=1,...,m
Proposition 1.4.9. We choose an FEllipsoid &;:
& = {a; + P |Jull, < 1}
The center is a; with the semi-axis is determined by singular value of P;. Then the deterministic robust LP

(with constraint ;) is equivalent to:

min e’z

such that a] z + |Plz|, <b; i=2,...,m

This follows from
sup (a; + Pu)' = alr + ||PiT:17H2
lull,<1

Proposition 1.4.10. Assume a; is Guassian with mean a; and covarance ;. We can see that a;frx 18
Gaussian with mean of al x variance v ;x hence, we have:

=T
bi —a; T

T _
Prob (ai z < bi) = 21/233H

2
where ® is CDF with | N|| (0,1). Given the stochastic robust LP with nn > 1/2 is equivalent to SOCP:

minc’ z

such that @?w—i—@‘l(n)HZi/sz <b; i=1,....m
2

Definition 1.4.21. (Monomial Function) Monomial function is fuction of the form:

an

f(x) = caitexq? - x8

where dom f € R" | with ¢ > 0, the exponent a; can be any real number. Note that this can be transformed
to:
log f(e¥r,...,e¥) =a’y+b

where b = logc

Definition 1.4.22. (Posynomial Function) Posynomial function is sum of monomials:

K
f(z) = Z Rtk pdzh .. pink
k=1

where dom f € R’ . This can be transformed to:

K
log f(e”,...,e") = log (Z exp(agy + bk))

k=1

where b, = log ck.
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Definition 1.4.23. (Geometric Program)
min fo(x)

subject to fi(z) <1 i=1,...,m

hz(ﬁﬁ) =1 i= 1,...,p

with f; is posynomial and h; is monomial. This can be transformed t oconvex problem:

K
min log <Z exp (agky + bO’f))

k=1

K
such that log <Z exp (alTky + bik)) <0
k=1

Gy+d=0

Definition 1.4.24. (Perron-Frobenius Eigenvalue) This exists in (element-wise) positive A € R™*™.
It is defined as real, positive eigenvalue of A to spectral radius max; |A;(A)|. Note that this determines
asymptotic growth/decay rate of A% as A* ~ /\f)f as k — oo. The alternate characterization:

Apf(A) = inf {A\|Av < Ao for some v > 0}

Remark 9. We want to minimize Ay (A(z)) where A(x);; are posynomial of x. This is equivalent to geometric
program:
min A

subject to ZA(x)ijvj/()\vi) <1 i=1,...,n
j=1

where the variables are A, v, x.
Definition 1.4.25. (Generalize Inequality Constraints)

min fo(x)

subject to fi(xz) <k, 0 i=1,...,m

Axr =b

where fp : R” — R convex and f; : R® — R¥: is K;-convex with respected to proper cone K;. This has the
same properties as standard convex optimization problem (convex feasible set, local optimum is global etc.)
Definition 1.4.26. (Conic Form Problem) Special case with affine objective and constraints:

min e’ x

subject to Flz 4+ g <k 0
Ax =0

This extends linear programming (when K = R') to non-polyhedron cones.

Definition 1.4.27. (Semi-Definite Program)

minc’ z

subject to x1Fy + xoFo + -+ x, F, + G <0
Az =10

with F;, G € S*. This ineqality constraints is called linear matrix ineqality (LMI). By having problems with
multiple LMI contraints, for example:

B+ 4z, +G=0
B+ 4z, F,+G=0

PN
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is equivalent to single one:

o0 F, 0 F, 0 G 0
s - " - >l <0
x1{0 FJ—FJJQ{O FJ—F +x {0 FJ—F[O G}_

Proposition 1.4.11. Given the LP program:
min ¢’z

such that Az <b

is equivalent to SDP program:
T

minc’ z
such that diag(Ax —b) <0
Proposition 1.4.12. Given SOCP
min 7z
such that [|A;z +bill, <clz+d; i=1,...,m
is equivalent to the following SDP:
min 1z
(cFx4d)I Az +b; )
J - =1,...
AZI+bZ C?I+dz =0 1 1 M

such that
Proposition 1.4.13. Given the eigenvalue minimization problem:
min Apax (A(z))
where A(z) = Ag + 1Ay + -+ + 2, A, with given A; € S¥. This is equivalent SDP, where:

mint

such that A(z) < tI
with the variable x € R™ and t € R. This follows from Apax(A) <t iff A <t
Proposition 1.4.14. Given the matriz norm minimization problem:

min [ A(@) |y = (max(A@@)7 A(2))) >

where A(x) = Ao + x141 + -+ - + 2,4, is equivalent to:

mint

tI  Ax)

such that [A(x) ‘7

B

Given the variabble x € R™ and t € R. We have the constraint follows from:
[|All, <t <= ATA<T t>0

tI A
= [AT tl} z 0
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1.4.4 Vector Optimization Problem
Definition 1.4.28. (General Vector Optimization Problem)

min fo(z)
such that f;(z) <0 i=1,....,m
hl(LE)ZO iZl,...,p

The minimization with respected to K. We have vector objective fy : R™ — R? minimized with respected
to propert cone K € RY.

Definition 1.4.29. (Convex Vector Optimization Problem)

min fo(z)
such that f;(x) <0 i=1,...,m
Az =b
with fy is K-convex and fi,..., f;, are convex.

Definition 1.4.30. (Optimality) Set of achievable objective vectors O = { fo(x)|z feasible}:

e The feasible z is optimal if fo(x) is minimum value of O
e The feasible z is pareto optimal if fo(z) is minimal value of O

Remark 10. The vector optimization problem with K = Ri, where

fo(z) = (F1(2), ..., Fy(x))

we have ¢ different objectives F;, roughly, we want all f; to be small. Then the notion of optimality becomes:

e The feasible x* is optimal if, y is feasible:

fo(z") = fo(y)
If there exists an optimal point, then the object are non-competing.

e The feasible xP° is pareto optimal, if y is feasible:

fo(y) = fo(zP?) = fo(a®°) = fo(y)
If there are multiple pareto optimal value, there is a trade-off between objective.

Definition 1.4.31. (Scalarization) To find a pareto optimal point, we can choose A >+ 0 and have the
following scalar problem:

min AT fo (z)
such that f;(z) <0 i=1,...,m
hi(z)=0 i=1,...,p
If x is optimal for scalar problem, then it is pareto optimal for vector optimization problems, we have:

M fo(x) = MFu(@) + - - + AgFy(x)

For convex vector optimization problem, we can find (almost) all Pareto optimal point by varying A\ > g« 0.
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1.5 Duality

1.5.1 Lagragian
Definition 1.5.1. (Lagragian) Given a standard form of problem:

min fo(z)
such that fi(z) <0 i=1,...,m
hi(x)=0 i=1,...,p

Given the variable z € R”, domain D, and optimal value p*. We have Lagragian to be L : R” xR™ xRP — R
with domain L = D x R™ x RP:

L(z, A\,v) = fo(x) + Z Aifi(w) + Zvihi(iﬂ)

where we have:

e Weight sum of objective and constant functions.
e )\; is lagragian multiple associated wth f;(z) <0
e v; is lagragian multiple associated with h;(z) =0
Definition 1.5.2. (Dual Function) The function g : R™ x RP — R:

g(A\v) = l}relng(x, A, 0)

m P
= jof (fo(m) + ; Aifi(x) + ;th‘(fﬂ)>
Note that g is concave and it can be —oo for some A, v.
Proposition 1.5.1. If A = 0 then g(A\,v) < p*
Proof. If T is feasible and A > 0 then:
fo(@) > L(Z, \,v) > ig{)L(w,)\,v) =g(\v)
The minimizing over all feasible Z gives p* > g(A,v) O
Remark 11. The least norn solution for linear equation, which we have:

minz”

such that Ax =10

The lagragian is given by L(x,v) = 272 + vT(Az — b). Let’s try to minimize the Lagragian by finding the
gradient with respected to x:

VoL(z,v) =20+ ATv=0 = z=—(1/2)ATv

Plugging back to L gives us:
1
9(v) = L(=(1/2)ATv,v) = =0T AATv — T

and it is concave function of v. Furtheremore, the lower bound is p* > —%vTAATv —bTw for all v.
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Remark 12. If we consider the standard form of LP:

minc’

such that Az =10
z =0

The Lagragian is:
Lz, \v) = cTo + 0T (Az —b) + 2Tz

= bv4 (c+ATv - Nz
Note that if L is affine in x, then we have:
—bTv  if ATv—A+c=0

g\ v) = inf Lz, \,v) = |
z —00 otherwise

Note that g is linear on affine domain {(\,v)|ATv — X\ + ¢ = 0}, hence concave. Now, the lower bound
property: p* > —bTv if ATv+c¢>=0

Remark 13. Given the equality constrained norm minimization:

min ||z||
such that Az =10

The dual function is
bt if ||[ATv]] <1
g(v) = inf ||z|| — vT Az + bTv = v if | v||* -
] —oo  otherwise
where [Jv]|, = sup, <1 uTv is dual norm of ||-||. With the lower bound property: p* > b7 v if ||AT”U||* <1

Proposition 1.5.2. We have inf, ||z|| — yT2z =0 if ||y, <1 and —oco otherwise.

Proof. Then, we have:

e If |ly||, <1 then ||z|| — yTz > 0 for all x with equality if z > 0
e If |ly||, > 1 choose z = tu where |[ul| <1 and uTy = ||y||, > 1:
lzll = 5" 2 = t(llull = llyll,) = —o0

as t — oo.

Definition 1.5.3. (Two-Way Partitioning) Given the two way partitioning:
min 2T Wz
such that (L‘ZQ =1 1=1,...,n

This is non-convex problem with a feasible set contains 2" discrete points. The interpretation is partition
{1,...,n} in 2 sets. Given the weight W;; is the cost assigning ij into same set and —W;; is the const of
defining a different set.

Remark 14. The dual function of two-way partitioning is:

g(v) = inf <$TW$ + Z vi (27 — 1)) = inf 27 (W + diag(v))z — 17w

7

—1Tv  if w+ diag(v) = 0
—00 otherwise

Now we have lower bound property p* > —17v if W + diag(v) = 0
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Proposition 1.5.3. We have linear programming problem:

min fo(z)
such that Az < b
Cr=d

Now, consider the dual function:

_ T T \T,. 3Ty _ 4T

g\ v) = meé{)l;fo (fo(x) +(A'N+C ) z—b"N—d v)
= —fi(=ATXN=CTv) ="\ —dTv

recall the definition of conjugate function f*(-). The dual if conjugate of fo is known.

Remark 15. The example of entropy maximization, we have:

n

folz) = Zfﬂz logz;  f*(x) =) exp(y; — 1)

i=1

1.5.2 Dual Problems

Definition 1.5.4. (Lagragian Dual Problem) We have the following problem:

min g(A, v)
subject to A = 0

We find the lower bound on p* to obtained from Lagragian dual function. Optimal value denote d*. A v
are dual feasible if A = 0 where (\,v) € dom(g). We often simplify by making the implicit constrain
(A, v) € dom(g) explicit.

Definition 1.5.5. (Weak/Strong-Duality) We consider 2 cases:

e If we have d* < p*, this always hold. It can be used to find non-trivial lower bound for difficult problem.

e Otherwise d* = p*, this doesn’t hold in general. We usually hold for convex problem. The conditions
that gurantee that gurantee strong duality in convex problem is called constriant qualificaition.

Remark 16. For example, solving the SDP:

min —17v
subject to w + diag(v) = 0
gives a lower bound for 2 ways partitioning problem

Definition 1.5.6. (Slater’s Constraint Qualification) The strong duality holds for convex problem:

min fo(z)
subject to fi(x) <0 i=1,...,m
Ax =10

if it is strictly feasible: there exists x € int(D)
filz) <0 i=1,....m Ax=0b

Guarantee that the dual optimum is attained (if p* > oo). Note that this can be sharpen: int(D) can be
replaced with relint(D). There exists other types of constraint qualificaition.
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Remark 17. (Linear Programming) Now, we have inequality for Linear Programming: The primal prob-

lem is:
. T
minc x

subject to Ax < b

Together with the dual function:

=bTN f ATA+c=0

g(\) = inf((c+ ATN) Tz —bT\) = { _
z —00 otherwise

Now, the dual problem is:
min —b7 A
subject to ATA+¢=0
A>=0

From Slanter’s Constraint, p* = d* if Az < b for some Z. In fact p* = d* except when primal and dual are
infeasible.

Remark 18. (Quadratic Program) For quadratic program, where we have primal problem (assuming
PeSt,):
min z7 Px
subject to Ax <b
The dual function: )
g(\) = inf(z” Pz + N\ (Az — b)) = —EATAP‘lAT)\ — A

This we have the dual problem to be:

1
min—ZATAP_lAT)\ —bTA
subject to A = 0

From Slater condition p* = d* if AZ < b for some Z in fact p* = d* always.

Remark 19. (Non-Convex Problem with Strong Duality) We have the following non-convex problem:

minz? Az + 207

subject to 2T <1
when A % 0 is non-convex. Given a dual function:

g(\) = inf(2" (A + M)z + 2072 — \)

T

The undbounded below if A+ IA % 0or A+ 1A >0 and b € R(A+ I\), where it is linear combination of
columns. This is minimized by x = —(A 4+ AI)Tb and g(\) = —bT (A + I\)Tb — A\. Now the dual problem:

min —b7 (A + I\)Th — X
subject to A+ A =0
be R(A+ 1))

is equivalent to:
min —t — A
A+1IN b

subject to [ b7 ¢

E

We can have strong duality although the primal problem isn’t convex.
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Definition 1.5.7. (Complementary Slackness) Assume strong duality holds, z* is primal optimal
(A*,v*) is dual optimal:

fo(z™) = g(\",v*) = inf (fo(x) + 2 A file) + vah,»(@)

< fol@®) + DN fi(a™) + Y v hi(a)
i=1 i=1
< fo(z")
Hence the 2 inequalities hold with equality, if:
e z* minimizes L(x, \*,v*)
o \ifi(x*)=0fori=1,...,m (known as complementatry slackness):

Ai>0 = fi(z")=0
filz*) <0 = X' =0

Definition 1.5.8. (KKT Condtion) The following 4 conditions are called KKT condition (for a problem
with differentiable f; and h;):

Primal constraints:

filz)<0fori=1,....m
hi(z)=0fori=1,...,p

Dual Constraints A = 0

Complementary Slackness: \;f;(z) =0fori=1,...,m

Gradient of Lagragian with respected to = vanishes:
Vio(z) + Y NiVfi(x) + Y v Vhi(z) =0
i=1 i=1

The strong duality holds and z, A\, v are optimal, then it must satisfy KKT condition.

Proposition 1.5.4. If z, A, satisfy KKT for convex problem, when they are optimal:

o From complementatry slackness: fo(%) = L(Z, X, 0)

e From the forth condition and conveity: g(\, o) = L(Z, \,?)

hence fo(2) = g(A, )

Proposition 1.5.5. If slanter’s condition is satisfied: x is optimal iff \,v that satisfies KKT condition:

o Recall that slanter implies strong duality and dual optimal is allowed.
e The generalies optimality condition V f(x) = 0 for unconstrained problems.

Remark 20. Perturbation and Sensitivity analysis. Consider unperturbed optimization problem and its dual:

min fo(z)
subject to fi(x) <0 i=1,...,m
gi(z) =0 i=1,...,p
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Its dual is:
max g(A,v)

subject to A > 0
Now, the perturbed problem and its dual is:

min fo(z)
subject to fi(z) <w; i=1,...,m

gi(z) =v; i=1,...,p

and its dual is:
max g(\, v) — uT X — v v

subject to A = 0
We have:

e 1 as primal variable and u, v are parameters.
e p*(u,v) is optimal value as a function of u,v

e We are interested about p*(u,v) that we can obtain from the solution of unperturbed problems and
its dual.

Assume strong duality holds for unperturbed problems and that \* and v are dual optimal for unperturbed
problem.
p* (uv ’U) > g(>‘a V*) - uT)‘* - UTV*

=p*(0,0) — uT\* — 0TV
Given a statistical interpretation:
o If \¥ is large, p* increases greatly if we tighten constraint ¢ (u; < 0)
o If \F is small, p* doesn’t decrease much if we loosen constraint i (u; > 0)
e If v* is large and positive: p* increases greatly if we have v; < 0
o If v* is large and negative: p* increases greatly if we have v; > 0
e If v* is small and positive: p* doesn’t decrease much if we take v; > 0
o If v} is small and negative: p* doesn’t decrease much if we take v; < 0

Lemma 1.5.1. If p*(u,v) is differentiable at (0,0) then:

0.0 0 (0,0)
i aul i a’UZ’
Proof. For A} from global sensitivity result:
* * . ok * *(t - _o* , .
op*(0,0) _ . ~p"(tei,0) —p*(0,0) > 9p*(0,0) _ . p(te:, 0) —p* (0 0)7_&_
ou; t\,0 t Ou; £,0 t
Hence equality. O
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1.5.3 Techniques of Solving Dual Problems

Remark 21. We have an equivalent formulations of a problem can lead to very different duals. Reformulating
the primal problem can be useful when the duals is difficult to derive. The common reformulations are:

e Introduces new variables and equality constrains
e Make explicit constraint implicit or vice versa
e Transform object or constant functions: Replace fo(z) by &(fo(z)) with ¢ convex and increasing,.

Definition 1.5.9. (New Variable and Equality Contraint)
max fo(Ax + b)
This is dual function is constant g = inf, L(z) = inf, f)(Az + b) = p* but this is useless:

min fo(y)
subject to Ax +b—y =0

Now, its dual is
max bl v — i)
subject to ATy =0
As the dual function forms:
g(v) =inf(fo(y) — v y+ v Az +b"v)
x*y
=iy +vty if ATy =0
|- otherwise

Remark 22. (Norm Approximation Problem) We would like to minimize ||Axz — b||. This is the same
as:
min |yl

subject to Ax — b=y

We have the following dual function:

g(v) = inf (Hy|| + Ty —vT Az + bTI/)
w’y

_JboTv +inf, (Hy|| + VTy) if ATy <1
—00 otherwise

v if ATv=0,|v|, <1
—00  otherwise

And, so we have dual of the norm approximation problem is:

max b’ v
subject to ATy =0
[vll, <1

Definition 1.5.10. (Implicit Constraint) Let’s consider the linear programming with box constriants,

which we have: -
minc’ x

subject to Az = b
—1<z<1
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And its dual is
min =0Ty — 17X — 17

subject to ¢ + ATU 4+ 0 = Ao
A >0
A2 =0

However, we can simplify by reformulate the box constraint and make the constriant explicit:

e if —1>=2>1

00 otherwise

min fo(z) = {
subject to Ax = b
Now, the dual function becomes:
g(v) = —121.551 Tz + vl (Azx —b)
= by — HATV + CH1
Now, the dual problem is equal to max —b"v — HAT/L + c||1
Definition 1.5.11. (Problems with Generalized Inequalities) We consider the following problem:
min fo(x)
subject to fi(z) =k, 0 i=1,...,m

i

hi(x)=0 i=1,...,p
Where =<, of generalized inequality on R¥:. There are parallels to the scalar case:
e Lagragian multiplier for f;(z) <k, 0 is a vector \; € R¥:

e Lagragian L : R" x RFt x ... x RFm x R* - R

D

L@ Ao ) = fol@) + 3 AT fi(a) + 3 (@)
=1

i=1

Dual Function is g : R¥t x ... x RF» x RP — R is defined as:

g()‘la"'a)‘mau) = xlg,fDL(zyAh ,A"“I/)

Lower bound property: If A\; =x: 0 then g(A1,...,An) <p*
Dual Problem:

ma’XfO(Ala SERE) Ama V)
subject to A; =g+ 0 i=1,...,m
The weak duality p* > d*. The strong duality is p* = d* for some convex problem with constraint
optimization (Slater).
Remark 23. To show that the lower bound property is true, we have:

m p

fo(@) > fo(Z) + Z M Fi(@) + ) vihi(®)

i=1

> inf L(z, A1,.. 0y A, V)
z€D

= g()\l,. . -7)\m7V)

Mininize over all feasible & will give us p* > g(A1,..., Am, V)
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Definition 1.5.12. (Semi-Definite Program) The primal SDP is given by (F;,G € SF)

min e’z

subject to z1Fy + -+ -+ x, F, <X G
The lagrange multiplier is Z € RX where
L(x,Z2) =clo+tr(Z(x1 Fy + -+ 2, F — G))
Dual function is:

—tr(GZ) if tr(F;Z)+¢=0 i=1,...,n

—00 otherwise

9(Z) = irxlfL(x, 7Z) = {

The dual SDP is defined as:

max — tr(GZ)
subject to Z =0 tr(F;Z)4+¢;=0,i=1,...,n

p* = d* if primal SDP is strictly feasible (there exists « with x1F} + -+ - + 2, F, < G)
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Chapter 2

RKHS in Machine Learning

2.1 Introduction to RKHS

2.1.1 Building a Kernel

Definition 2.1.1. (Kernel) Let X be non-empty set, a function k : X x X — R is a kernel if there exists
a Hilbert space H and a feature map ¢ : X — H such that for all z,z’ € X:

k(l’7 xl) = <¢(I)7 ¢(I)>’H
Remark 24. For a single kernel, there can be multiple features. For example, the map

di(x) =z  ¢o(z) = E;g]

corresponds to the same kernel.

Theorem 2.1.1. Given o > 0 and k, ky, ko be kernel on X, then: ak, k1 + ko, and k1 X ko are kernels.

Proof. Scalar Multiplication: Suppose k(-,-) = (¢(-), ¢())4, with a feature map ¢(-) : X — H and some
points z,x’ € X' ,we can see that

ak(z,2") = (Vap(z), vVab(x)),,

where the new feature map is /ag(+)

Kernel Addition: Suppose ki(-,-) = (¢(-), ¢(-)) 4 and ka(-,-) = (¥(-), (), where ¢ : X — A and
1 : X — A are features map. Then, we can see that, for point z,z’ € X:

(k1 + ko) (2, 2') = k(2. 2") + ko (2,2") = ((@¥) (), (Bl1Y)() 4

where we define:

¢1(x) Y1() ¢1(x)

I

x) = P3(x ) = P3(x ) = P2 (x
o(z) oa(2) Y(z) oa(2) (ol|¥) () bola)
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Kernel Multiplication: We assume same kernel k1, k2. We have

Bi(o,a2)k(a1, 22) = (67 (@)o(a >)( T(2)())
= tr(¢" (@)@ @)v(@))

tr(v(@)6” (2)9 wT(x ))

w( [o@” @) o)’ (@)

The feature map for product kernel is ®(-) = ¢(-)17(+), and the inner product is defined as: for matrix A, B:

(A, B) = tr(AT B)

O
Proposition 2.1.1. Let X and X be a set, and define a map A : X — X we can define a kernel k(-,-) on
X, then:
k(A(), A(+))
s a kernel.
Proof. the new kernel k can be expressed as (1(-),9(-)) 5, where ) = ¢ o A. O

Proposition 2.1.2. Given the kernel ky, ko (with associated feature map ¢ and 1 ,respectively — note that
they don’t have to be unique), k1 — ko doesn’t need to be kernel, nor |k; — ks

Proof. Given x where k(z,2") = (¢(z), #(z')),,, we can see that (k — k)(z,z) = (|k — k|)(z,z) = 0, however
as the feature map doesn’t maps all = to zero vector, it contradicts the definition of inner product as the
product can’t be zero unless both of the vectors are zero. O]

Definition 2.1.2. (Polynomial Kernel) Given theorem 2.1.1, we can construct a polynomial kernel as:
k(w, ') = (e + (z,2")"
and it is valid kernel.

Definition 2.1.3. (Taylor Series Kernel) For r € (0, 0] with a,, > 0 for all n > 0, we have:

Y
n=0
for |z| <7,z € R and we define X’ to be y/7-ball in R%, then the Taylor series kernel is defined as:

oo
k(z,2") = f((z,2")) = Z an {z,2")"
n=0
Lemma 2.1.1. Taylor series kernel is kernel
Proof. There are 2 points we have to proof:
e Taylor Series Converges: Let’s show that the value of (z,2') is less than or equal to r to make

sure that Taylor series converges. This is the application of Cauchy-Schwarz inequality as | (z,2) | <
]| - [|l"[] <.

e Taylor Series Kernel is Kernel: Now, from theorem 2.1.1, we have an addition of kernels and
multiplication to scalar, thus being a kernel.
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O

Definition 2.1.4. (Exponentiated Quadratic Kernel) We define an exponentiated Quadratic kernel to
be

k(x,x’) = exp (—7_2 |z — x’||2)

Corollary 2.1.1. Ezponentiated Quadratic Kernel is kernel.
Proof. Let’s expand the definition of a square normed, then we have:

e () o0 (7 [l 200+ ]

= exp (=2 lal]*) exp (=12 19l ) - exp (2972 (2, 3)
—

ki(z,y) k2 (@.y)

Thus, we have a product of 2 kernels, where one of them is produced from a feature map exp(—~y 2 H||2)
and the other comes from the Taylor series Kernel together with non-negative multiplication. O

Definition 2.1.5. (I;-Space) The space lo comprised of all sequences a = (a;);>1 for which

o0
2
lall7, =) af < oo
=1

Definition 2.1.6. (Infinity Dimension Kernel) Given a sequence of function (¢(x););>1 in lo where
¢; : X — R being the i-th coordinate of ¢, then we can define an infinity dimension kernel to be

k(z,a') = ¢i(x)di(a')
i=1
Theorem 2.1.2. Infinity Dimension Kernel is a kernel.

Proof. We consider the norm of the kennel, and apply Cauchy Schwarz i.e:

oo

> di(a)ei(a)

i=1

I, )| = < o)l - le(z")]| < o0

2.1.2 Further Notions of Kernels and RKHS
Definition 2.1.7. (Positive Definite) A symmetric function & : X x X — R is positive definite if: for all
ai,as,...,a, € R™ and for all x1,xs,...,x, € X"

n

Ziaiajk(xi,xj) Z 0

i=1 j=1
The function k(- -) is strictly positive definite if equality holds when a;,a; # 0.

Theorem 2.1.3. Let H be Hilbert space, X be non-empty set and ¢ : X — H. Then k(z,y) = (¢(x), ¢(y))
is positive definite.
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Proof. For all a1,as,...,a, € R™ and for all x1,x2,...,2, € X"

Z Z aia;k(zi,x;) = Z Z (aip(w), ajp(z;))

i=1 j=1 i=1 j—1
2

= <Z ai¢($i)7zaj¢(xj)> =|1>_aiolz;)| =0
i=1 J=1 J=1

O

Definition 2.1.8. (Notion of Function) We will represent a function, throughout the note, as a vector
of real numbers; for instance, f(-) = [f1 fo f3]7, its evaluation will be based on a feature map ¢(z), as
f(x) = (f, ¢(x)),, as H is space of functions.

Remark 25. Let’s consider the example of f : R? — R as:

T

f(x) = (f,o(x)) = frz1 + foxo + f3(x122) where ¢(x) = | x2

T1T2

Remark 26. (Representing Function as Finite Sum of Kernels) This notion of function can be repre-
sented by infinity many feature of f and ¢(-) as the function, which will be shown as:

f@)=(f,0(x))y = > _ fin()
=1

As we required that Y, f? < oo We will assume that f; can be represented in finite linear combination of
the features ¢;(x):

fi=>" cuidi(xs)
i=1
Then, we have:

fla) = <Zai¢(xi>7¢(x)> =Y aik(wi, x)
i=1 H  i=1

Now, a function with infinite feature can be represented by a finite linear combination of kernels given a
certain number of points.

Remark 27. (Feature Map is also a function) Let’s consider the simpliest case of m = 1 with oy =1,
we have

f(z) =k(z1,2) = <k‘(x1w),¢>(x)> = (k(z,"), ¢(x1))
——
f0) H
And, so we have a kernel parameterized by x;, which is a feature map by definition. And thus, we can

“swap” the notation around and assigned the coefficient to be ¢(x;), thus feature map is a function.Please
note that, we can write the kernel as

k(x,y) = (k(z1,-), k(z2,-))y

Now, k(z,-) is called canonical feature map as it is the simpliest, while there are many feature map (poten-
tially infinite) that can construct this kernel. This means that the space of function H is bigger than all
features at single point as it is an combination of functions.

Definition 2.1.9. (Reproducing Property) The features of RKHS have reproducing property, where for
all z € X and for f(-) € H:

f(@) = (FC) k()

The feature map of every point is a function of kernel k(-, ) = ¢(z) € H where for any x € X, we have:

k(x,a') = (p(x), o(a"))3y = (k( ), k(- 2))y
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2.2 Smoothness of RKHS

2.2.1 Periodic Case

Definition 2.2.1. (Fourier Series) We define a fourier series that represents the function on interval
[—7, w] with periodic boundary as:

f(x) = Z frexp(ilz) = Z fi(cos(lz) + sin(lx))
l=—00 l=—o00
We would like to note that the basis functions are orthogonal to each other as
T 1 I=m

0 otherwise

e exp(ilz)exp(imz) doz = {

Definition 2.2.2. (Translation Invariance) Translation invariance kernel is kernel that is defined by
k(z,y) = k(z —y)

Remark 28. Fourier representation of translation invariance kernel is

o) = Y- hesplitte =) = 3 [Viesatitn)] [\ esoi-itn)]

l=—0o0 l=—00

$i1(x) é1(y)

Proposition 2.2.1. The Ly inner product of the function can be represented by Fourier series as:

<fvg>L2 = Z fla

l=—00

Proof. We expand on the definition of inner product in Ls:

U= [ " ()9 da

= /_OO [i fi exp(ilx)‘| : [ i gi eXp(ilx)‘|

l=—00 l=—00
= /°° [Z fl exp(ilx)‘| . [ Z a1 eXp(—ilx)]
% ll=—c0 l=—o0
:/oo Z fio da:Jr/oo Z ijgikexp(ijz)exp(ikx) dx
T l=—00 T j=—o0 j#k
= > fa
l=—00

O

Definition 2.2.3. (Smooth Dot Product) Recall the coefficient k; from remark 28, we define an inner
product in H to be

l=—00
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And so, we define a dot product to be:

o 12
17, = = S flf” -y I

l=—o00 l=—o00

In the case that k& decays fast, we need to have fl to be fast too in order to have bounded sum.

Remark 29. Given the Jacobi-Theta Kernel:

1 x—1y io? -1 o?l?
K y) = 2#9( o 27r> kl_QweXp<_ 2

as it is a Gaussian version of “periodic” kernel. Now given the top hat function, which is a function:

0 T<lz|<m ! I

) = {1 lz] < T i sin({T")

We can see that the top hat function isn’t in a Gaussian spectrum RKHS. As we can show that ||f||3_l won’t
converge. This is because |f;|> decays polynomial in [, while k; decays in exponential of [. Thus, the norm

doesn’t converge.

Proposition 2.2.2. We can show that

where (-, -),, is defined in 2.2.3. Thus, it has the reproducing property. And, we can show that:
<k(a y)) k(7 Z)> = k(y7 Z)

Proof. First Statement: We consider the following function:

g(x) =k(z—2) = Z exp(ilz) ky exp(—ilz)
l=—00 %/_/
g1
Now, the dot product is equal to:
2 kjex (ilz)
(FOhg() =Y A p Z frexplilz) = f(2)
l=—00 l=—00

Similarly, we can consider 2 functions f(z) = k(x — y) and g(z) = k(x — z), where

oo o0

flz) = l:z;oo exp(ilx) exp(—Az’ly)kl g(z) = l:z;oo exp(ilz) exp(—ilz)k

fi q

Second Statement: And, so the reproducing we have:

ky exp(—ily) ky exp(—ilz)

(90 =D

l=—o0 kl
= Z k; exp(il(z —y)) = k(z —y)
l=—00
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Remark 30. Recalling that function can be represented as:

@)=Y hi)

l=—o00

Now, recall the function f(z) shown in proposition 2.2.2.

>0 kpexp(—ilz)
(f()9()) = fi——"—
l;oo | (Vi)

fi= fl/\/f:l P1(2) = \/f:lexp(—ilz)

2.2.2 Eigen Expansion Case

Then, we have

Remark 31. We are going to extension of the definition of RKHS to eigenexpansion as fourier series only
gives us the periodic domain [—27, 27]

Definition 2.2.4. (Eigenfunction/Eigenvalue) We define a probability measure on X = R, where we
will use Gaussian density:

1 2
p(z) = E exp(—z~)

We define an eigenfunction e;(-) and eigenvalue \; on k(z,2’) wrt. to this measure as

Nei(z) = /k(x,:c’)el(x’)p(x') da’

Definition 2.2.5. (Eigen-expansion) The eigen-expansion of k(z, z") given eigenfunction e; and eigenvalue
A forl=1,2... is (it is countable):

k(z,a') = Mi(@)e(@)e(z’)
=1
where we can show that

0 i#j
1 otherwise

[ eit@les@mto) do = {
Proposition 2.2.3. The Ly(p) inner product of function f(z) = Y75, fier(x) and g(x) = 3252, fmem(x) is
<fag>L2 = Zflgl
=1
Proof. We perform similar calculation as fourier series case:

U, = [ I@gtonte) ar

= / N [ f}el(x)] lz fmem@)] p(z) de =" fig
=1 m=1 =1

— 00
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Definition 2.2.6. (Smooth Dot Product 2) We define a smooth dot product (with the norm) to be:

[o SN o0 fo
G =3 =3
=1 =1

Proposition 2.2.4. We can show that
Proof. We have

O

Remark 32. Let’s try to find the original definition of function evaluation as in definition 2.1.8. Since we
have:

and so we have f; = f;/v/A and ¢(2) = vAei(z), and so we have
@)=Y k(@i z) =Y ai | Yo Neilwe; )| = Y f [ Viel)]
i=1 =1 |=1 =1

where f; = > aiv/Ne(x). As A\ decays as e; becomes rougher, then f; decays since ||f|\3_t < 00. This
reinforce smoothness.

2.3 More of RKHS

Definition 2.3.1. (Reproducing Kernel Hilbert Space) Let H be a Hilbert space of R-valued function
on non-empty set X'. A function k : X x X — R is reproducing kernel of H and H is RKHS if:

e Forall z € X, k(-,z) € H, then k(-,x) € H

e Forall z € X, (f(-),k(-,2))y = f(x)
Definition 2.3.2. (Eval Operators) For all f € H,z € X then we have §,f = f(x)

Theorem 2.3.1. (Riesz Representation) In Hilbert space H, all bounded linear function f is of form
(*y9)y for some g € H.

Theorem 2.3.2. H is RKHS (6, is bounded and linear) iff H has a reproducing kernel.

Proof. (If H has reproducing kernel, then §, is bounded): Starting with the first direction, we have:
|00 f| = |f (@) = [ {f, k(- 2))y |
< IEC 2)lq [[f15
2
= (k(- @), k(. 2))30 " 1 g

= vk, z) || fll5

(If 4, is bounded, then H has reproducing kernel): We will utlize riesz representation. As the
evaluation operator is bounded and linear, then there exists f5, € H such that for all f € H, we have:

6:vf = <f7 fél.)'H
We can define k(-,z) = f5,(-) for all x € X. It is clear that k is reproducing kernel. O
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Definition 2.3.3. (Alternative Definition RKHS) # is an RKHS if the evaluation operator is bounded
i.e for all z € X there exists A\, > 0 such that for all f € H:

[f(@)] = 102] < Aa [l fll5

Remark 33. This definition implies that 2 functions that are identical in RKHS will agree at every point,
for all f,g € H:
|f(@) = g(@)| = [6(f = 9 < A [lf — gl

Theorem 2.3.3. (Moore-Aronszagn) Let k : X x X — R be positive define, then there is unique RKHS
H C RY with reproducing kernel k

2.4 Application of Kernel

Proposition 2.4.1. Given the sample (x;)7, from p and (y;)™, from q. The distance between their mean

in a feature space is:

2

—> @) ==Y )| =5 DD k@nw)+ 5 Y kWoy) - — Y k(@)
i i n M iSi= i=1j=1 gt
Proof. Let’s just expand the definition:
1 1o ’
m 2 Pai) — ;M%) .,
= <m ;mi) 2 ;Mm - ;¢<yz>>
1 m m 2 m 1 n n n
=— <Z é(x,), Z¢(xz>> - <Z o), ~ Z¢(yl)> +— < > o), - Z¢(yi>>
i=1 i=1 =1 i=1 i=1 i=1
1 m m 1 n n m n
Zﬁzzk(ﬂcw%)*—ﬁzzk(yw%) 72219(1‘17%)
=1 j=1 i=1 j=1 i=1 j=1
O
Remark 34. When we can have ¢(z) = x, we distinguish a mean and when we use ¢(x) = [z,2?], we

can distinguish the mean and variance. There is a possibility that we can use kernel to distinguish for 2
distribution. Please note that, we don’t have to explicitly calculate the feature.

2.4.1 Kernel PCA

Definition 2.4.1. (Centering Matrix) The centering matrix H is defined as
I—n""1,n

Definition 2.4.2. (Principle Component Analysis) PCA is a method of finding d-dimensional sub-
space of a higher dimensional space D that contains the direction in the highest variance. Consider the first
principle component:

2

n

1 T 1 T

up =argmax — |u" | x; — — E Z; =argmax u' Cu
ful <t T ni3 llul<1
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where matrix C is defined by:

T
1< 1< 1< 1 -
=1 Jj=1 j=1
where X = [21,...,®,] and H is a centering matrix. To see the expansion please go to appendix A.1.1.

Definition 2.4.3. (Tensor Product) We define tensor product as:
(a®b)e = (b,c)ya
This is analogous to the matrix notation (ab”)c = b ca

Definition 2.4.4. (Kernelized Version of PCA) Let’s consider the PCA model but with a feature map,
starting from the first component:

J1 = argmax 1 > <f,¢($i) - iz¢(ffi)>

n
I Fll <1 " 5=
n

1 . 2
g n 5 U EN) =gy et

Note that the second equality comes from reproducing property of kernel. We will consider the infinite
dimension analogous of covariance:

n n

i=1 j=1

n

= 3 D) @ 6(a)
Remark 35. We can consider the function:
n 1 n N
[= Z a; | ¢(z;) - - Z¢($J‘) = Z%‘W%‘)
i=1

i=1 j=1

Suppose f is constructed as a sum of f + f1 where f} is function component that parallels to the é(mi), and

f1 is function perpendicular to ¢(z;). However, as we perform inner product, the component f, is gone.
Thus, we can write it, in the case of a linear combination.

Proposition 2.4.2. The matriz equation of kernel PCA is
n)\lal = f(oq

where K = HKH as H is centering matrix.

Proof. We will start by consider the application of applying C to f:

cf

Il
/-~
Sl

()=
/&\2
&8
&
;Siz
&8

~

(]
Q
<
&z
8
<



as I%(xi7xj) is 4, j-entry of the matrix K = HKH. To show this please go to appendix A.1.2. Now, we
consider the eigenfunction and eigenvalue equation \; f; = C'f;, where we will project both side with ¢(z,):

e Left Hand Side:
<¢~5($q)7 fl>\l> =\ <¢~>( > =\ Zau (g, 24)
e Right Hand Side:

<¢( sz> %En: k(zq,x Zah (g, ;)

These equation leads to matrix equation n\ Koy = K2q;, by rearrangement, we get the statement. O

Proposition 2.4.3. The norm of the function f is equal to
2
[f1l3, = nAlle

Proof. We have the following;:

1fll3e = {f5 Fhne
= <Zaz¢ xz Z 2¢( z)>
i=1 =1

Il
HM:

n
E LE/“LE]
1j=1

=a'Ka=a n)\a—n)\HaH

O
Remark 36. Given the norm of the function, we have to set o <— a/v/nA assuming that ||« = 1.
Proposition 2.4.4. The projection of a test vector x* to principle component f is
Pro(a®) = (6(e"), ) f = | Do | k(a*, ) Zk *ag) | | D i)
i=1 i=1
Proof. We start by expanding the definiton of f and f:
Pf¢( ) <¢<x*)7f>f_ <¢(m*),2al¢(xz)>f
i=1
= Zaz <¢(.’£*), ¢(x2) - Z ¢(xj)> f
i=1 j=1
n . 1 n .
= [ D i (d(x"), ¢l:)) — ﬁZ(fb(w ), o(x5)) | f
i=1 j=1
= zn:oz k(x x)—lzn:k:(x*x) f
7 ) n 4 PV
i=1 Jj=1
O
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Remark 37. We can consider the application of denoising a hand-written digit. Suppose, we are given a
noisy digit z*:

as we can project onto the first d eigenvectors {f;}&; from kernel PCA. The nearby point y* € X as:
. 2
y" =argmin [[¢(y) — Pag(z")ll3,
yeX

This is how the image can be denoised, which can be done without the access to feature map.

2.4.2 Kernel Ridge Regression
Definition 2.4.5. (Ridge Regression) Given n training points (in R”) and labels:
n T
X:[g;l J}n]GRDX y:[yl yn]
We define A > 0, and our goal is to find a*:

a* = argmin (Hy - XTaH2 +A Ha||2)
a€RP

Theorem 2.4.1. We can show that for ridge regression:
a* = (XXT+ )" Xy

Proof. Instead of proving using derivative, we will consider an alternative; that is because when dealing with
infinite dimension, derivative is troublesome. Starting expanding the terms:

|y — XTaH2 + A a| =yTy — 20" XTa+a" X" Xa + AaTa
=yTy 20" XTa +aT(XXT -~ \Da
=Ty — 2T XT(XXT + )20 4+ 070
2 2
=yTy+ H(XXT FAD)TV2Xy - bH . HyTXT(XXT + M)—WH
where we define b = (X X7 + )\I)l/za. To see the expansion, we have appendix A.1.3. Note that matrix b is

semi-positive definite, therefore the square is defined. Further, X X7 may not be invertible of D > n but by
adding Al will have full rank. To minimize the objective, we have to get:

b= (XXT+A)"V2Xy = o = (XXT 4+ )71 Xy
O

Definition 2.4.6. Singular Value Decomposition (SVD) We assume D > n, and we perform SVD on
X such that X = USVT, where:

U=[w - upl S:[g 8} V=[V 0

where we have:

e U is D x D matrix where UTU = UUT = Ip
e Sis D x D where S has n non-zero entry

° Visnwaheref/Tf/:f/f/T:In
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Theorem 2.4.2. We can write the solution in a* by a linear combination of training points:

a* = Z ol x;
i=1
where o; = 3751 y;Bij as Bij is (i, j)-entry of (XTX + \n)

Proof. We start by defining a SVD of X = USV7T, then we have:

a* = (XXT 4+ \p) ' Xy = (US?UT + Mp)'USVTy
=U(S%>+ \p) tUTUSVTy
=US(S? + \p) 'VTy
=USVTV(S? + \p) 'VTy
= XV (8% 4+ \p) 'VTy
= X(XTX + A,y
For the last equality, we have V(S% + AIp)~'V7 and so:
(52 4+ A1)t 0 } {VT}
0 Mp_n)| | 0
=V(S? + AL,)'VT =V(S* +- \I,) "'V !
=V(V(S* 4+ AL,)) 7t
(V)M V(S* + L))"
(V(S2 + AL,)VT)~!
= (VSVT 4+ A, vVT)!
(
(

V(S?+Mp) VT =[V 0

VSTV 4 A1, = (VSUTUSVT 4+ \I,,) 7!
XTX 4+ AI,) ™!

For the «; value, we have A.1.4 i.e:

B Bz - Pin D1 T 2=y YibBij
Bor PBaz -+ Pon D e Toi Z;:l Y;Bij - -
XXTX +2L) ly=X : . S |y= : = Zyjﬁz‘j T
. . . . . i=1 j=1
Brt Bn2 -+ Pan Zi:l Tni Zj:l yjﬂij —

Definition 2.4.7. (Kernel Ridge Regression) We consider the following optimization problem:

a* = argmin (Zuﬁ — (a3 + A |a||i>

a€EH

i=1

Corollary 2.4.1. The kernel ridge regression solution a* is
at = X(K+M,) 'y = Za*d)(xi)
i=1

where K 1is the gram matrix.
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Proof. We can consider a ridge regression with the data matrix:

X=[p(x1) - dan)]

Please note that (X7 X);; = ((x:), ¢(x;)), = k(xs,2;), given the result in theorem 2.4.2. Or, XTX =
K O

Remark 38. We have the following, in tensor product:

XXT =" (i) @ plxs)

i=1
Remark 39. We can see that the smoothness property of RKHS

2 _ o Jf 2 _ o AP
175 =D Il =D
=1 =1 M

on the left hand side, we eigenvalues based norm and the right hand side is the fourier based norm.

2.5 Maximum Mean Discrepancy

2.5.1 Mean Embedding

Definition 2.5.1. (Feature Map of Probability P) Given P a Borel probability measure on X, define
a feature map of probability P to be:

pp=1[- Eplgi(z)] -]
Definition 2.5.2. (Kernel of Probability) For positive definite k(xz,2’) where:

(P, pq) =Epglk(z,y)]

where  ~ P and y ~ Q. We can consider the expectation in an RKHS as Ep[f(z)] = (f, #p) . And, so up
gives the expectation of all RKHS functions.

Remark 40. We can see that the empirical mean embedding is
1 m
ip = — ; h i~ P
iip m;gb(x) where x;

Theorem 2.5.1. (Existance of Mean Embedding) The element up € F exist, such that
Eplf(@)] = (f,nr)F
for all f € F if Eply/k(@,2)) = Ep [$(@)]|; < o0

Proof. We will consider the application of Riesz theorem by assuming a linear operator Tpf = Ep[f(x)] for
all f € F. We will show that this operator is bounded:

I Tpf| = [Ep[f(z)]]
< Ep[|f(2)]
=Ep[| (f,0(2)) £ ]
S Ep[[[fll£lo(@)] £]
=Ep[Vk(z,2)] I fl £

By Riesz theorem, since the operator is bounded, then there exists up € F that Tpf = (f, up) » O

Remark 41. The probability feature map looks like the following:
pp(t) = (up, @) 7 = (up, k(- 1)) = Ep[k(z, t)]
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2.5.2 Algorithm

Definition 2.5.3. (Maximum Mean Discrepancy) Maximum Mean Discrepancy (MMD) is the distance
between probability feature mean:

MMD?(P, Q) = |lnp — uolx
Lemma 2.5.1. We can show that MMD is equal to

MMD?*(P, Q) = Eplk(z,2")] + Eqlk(y. y')] — 2Epqlk(z,y)]

Proof.
e — Q% = (up — 1g. 1ip — 11Q)
= (up,ppr)F — 2{pup, 1Q)  + (HQ, 1Q) »
=Eplur(2)] + Eqluq(y)] — 2Ep[uq(z)]
=Ep[Ep[k(z,2")]] + Eq[Eq[k(y, y')]] + 2Ep[Eq[k(z, y)]]

Definition 2.5.4. (Empirical Mean MMD) We have the following unbiased empirical mean MMD:

MMD?2(P, Q) = Zk i, 1) Zk T Zk i, yj)
z;éj 1#]

Definition 2.5.5. (Integral Probability Metrics) Integral Probability Metrics is divergence measure,
which has the form:

sup (Eanplo(@)] ~ Eynalo(v)])

The examples of Integral Probability Metrics are MMD and Wassertein.

Definition 2.5.6. (F-Divergence) F-divergence is divergence measure, which has the form:

Df(P,Q)=/Hq(a:)f <§E;;> dz

The example of F-divergence are KL-divergence, Hellinger, and Pearson-Chi Square.

Remark 42. Total Variation can be shown to be both Integral Probability Metrics and F-Divergence. For
instance:

.13
TV(p,q) = sup Ip(A) / ‘ - ‘ ) dx
Ac IC

Theorem 2.5.2. We can show that MMD can be represented by:
MMD(P,Q) = Sup [Ep[f(2)] — Eqlf(x)]]
<1
Note that f is unit ball of F.

Proof.
sup [Ep[f(z)] —Eqlf(x)]] = sup (f,up) = (f 1q)

llri<1 llriI<1

= sup (f,up — pQ)
IFlI<1

To maximize the dot product, we need f should be in the same direction as up — p1g. Therefore, we set
* HP — [1Q
lup — pall
Thus, the dot product to this is:

sup (f,up — pQ) = e — pqll
[[fII<1
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Remark 43. The reason we need a constrain || f|] < 1 because the function has to be smooth as too “sharp”
will lead to perfect seperation i.e maximizing the MMD.

Corollary 2.5.1. (Empirical Witness Function) The empirical witness function is:

n

P =S kGso) — > ki)
i=1 =1

Proof. Since f oc up — pg, and the empirical mean embedding shown in remark 40. we have the following:

f(v) o< {iip = i, p(v))

2.5.3 Statistical Testing of MMD
Theorem 2.5.3. When P # Q, the statistics of empirical MMD is asympototic normal:

—2
MMD_ - MMD(P.Q)* by 1)
Va(P,Q)

where the variance V,(P,Q) = O(n~1Y) but affected by kernel. However, when P = @, the statistics has
asympototic distribution of:

nl\fl\ﬁ)2 ~ Z/\l (27 — 2] where Aigi(x) = / k(xz, 2)pi(x) dP(x)
=1 x

and z ~ N(0,2)

Remark 44. In the perspective of statistical hypothesis testing, we want to find a threshold ¢, for which

2
MMD has false positive . To estimate the c,, we consider estimating the null-hypothesis P = @, by
permuting the items, so that they are uncorrelated.

Definition 2.5.7. (MMD Test Power) Test power is defined as

2
Pr; (nl\m > éa) — @ (MMD (,Q) & )

VVaP.Q)  n/Viu(P.Q)

where Pry is the probability that P # @, and ® is cumulative distribution function of standard normal
distribution.

Remark 45. To find the best kernel, we can find the kernel that minimizes the false negative rate, by maximize
the test power. We would like to note the following:

Ca

2
MMD™(P. Q) _ O(Vn) ————=0(n""?)

Va(P, Q) ny/Vau(P, Q)

Then, for a large n, the second term won’t matter, and so we can just maximize:

MMD?*(P, Q)
Vo(P,Q)

which we can use neural network to perform gradient descent on this objective.
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2.5.4 Characteristic RKHS

Definition 2.5.8. (Characteristic RKHS) A characteristic RKHS, where MMD(P, Q; F) =0 iff P =Q

Theorem 2.5.4. The MMD metrics can be written as, for periodic kernel:

MMD*(P,Q; F) = > |¢pi — doul’hi
l=—0c0

where ¢p;, g, are fourier coefficient of the probability distributions, while ky is the fourier coefficient of the
kernel.

Proof. Let’s consider the fourier coefficient of pup:

T

pp(x) = {up, k(z,-)) r = Erplk(z — 1)) = / k(x —t) dP(t)

—T

Now, we have

/ ! k(t — x)P(t) dt = / ! > /;lexp(il(zt))] [Z &P,lexp(m)] dt

0 T ll=— l=—o0
:/ Z kyexp(ilt) exp(ilm)] [Z bpy exp(ilt)] dt
T ll=—c l=—00

:/ﬂ Z Z klmexl’(ilw)ﬂgp,mexp(imt)

LiI=—oco m=—o00

dt

Il
[
\MS

Z ki p,mexp(ilt) exp(ilz) exp(imt) | +

=—o0 | m#l

Z lzrlgf)p’m exp(imx)] dt
m=l

I
NE
I

Z ki p,mexp(ilt) exp(—ilz) exp(—imt) | dt + Z lAclqAﬁpym exp(imx)

I=—c0 T _m;él m=l
o0

= Z kiop exp(ilx)
l=—00

Thus the fourier coefficient of pup is fip; = IAcl . g{) p,. This is related to convolution theorem as the convolution
in normal domain (time) is equivalent to multiplcation in fourier transformed domain (frequency). We can
see that the MMD can be written as:
2
MMD?(P, Q: F) = |lup — noll>
2

i (QASPJ - ﬁgQ,l) ky expl(ilz)

l=—00

F
o~ [9pi—d0ulPk _ o o g
= — = P — ¢q.i| ki
l;oo kl l;oo
Recalling the square norm for function f in F defined in 2.2.3. O

Corollary 2.5.2. The kernel is characteristic iff none of ky is equal to zero.

Proof. Suppose the kernel at I’ is zero 1.e lAcl/A: 0, then we can find 2 difference distributions P and @ such

that its fourier coeflicients are equal ¢p; = ¢g,; where [ # I’. Then the MMD will be zero, i.e:
MMD?*(P,Q; F) =0

where P # () and the kernel isn’t characteristic. O
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Theorem 2.5.5. (Bochner’s Theorem) For a translation invariance kernel k(xz — y), we have

ba =)= [ es(oita —y)"w) dAw)

Where the characteristic function of P is equality to
op(w) = [ explia™) dP()
Rd

Definition 2.5.9. (Measure Theoretic Integration) We define the following integration, for probability
measure P, (Q:

[ 6 4P = Q)(s) = Erl7(9)] ~ Eql(s)
Theorem 2.5.6. The Fourier representation MMD for R¢:
MMDY(P,QiF) = [ [on() - dow)]? dAW)
where A(w) is finite non-negative Borel measure, for translation invariance kernel.

Proof. We have:
MMDZ(Pa Q; ]:) = EP[k(xa x/)} + EQ [k(y7 y/)] - QERQ[k(x’ y)]

= [[[ -0 ar -] ar -

= [[J[ ewtits =07 ar) ae - 0] ae - @0
-]

- / 16p(@) — d(@)[? dAW)

/Rd exp(—istw) d(P = Q><s>] [ / exp(itw) (P — Q)(t)] dA(w)

For the expansion of the first integration please see appendix A.1.5. O

Corollary 2.5.3. A translation invariance k is characteristic for probability measure on R iff
supp(A) = R

as the support can be zero at most countable set. Furthermore, any continuous, compactly support k is
characteristic.

Theorem 2.5.7. Probability P = Q iff
Epla] = Eqlal

for all f € C(X), the space of bounded continuous function on X.

Definition 2.5.10. (Universal RKHS) A universal RKHS is where k(z,2’) is continuous, X is compact
and F is dense in C'(X) with respect to Lo,. This meanse that for any given ¢ > 0 and f € C(X), there
exists g € F, such that

If =gl <e

Theorem 2.5.8. If F is universal then MMD(P,Q; F) =0 iff P =Q
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Proof. Tt is clear that if P = @ then MMD(P, Q; F) = 0. Now, for the converse, let’s consider the following
inequality:

[Erlf (@) - Eolf ()]
< |[Erlf(@)] - Erlg@)]| + [Erls@)] - Eals@)]| + [Eels®)] - Eel/ )]

< [Er(f@)] - Erlg@)]| + [Eolo(v)] - Eolf )]

<Ep[|f(x) — g(2)]) + Eqllg(y) — f(y)l] < 2¢

For all f € C(X) and € > 0, which implies P = Q. For the second inequality, we would like to note that (As
MMD is equal to zero)

[Erlg@) - Bals)| = | (9. 1p — 1) | < ll5 1y — nall = 0

2.6 Testing Dependencies

2.6.1 Covariance Operators

Remark 46. We might use MMD to measure the statistical dependence between 2 samples X and Y. However,
we will have the following problem:

e We don’t have Q = Px Py as we need to have a pair {(z;,y;)},_, ~ Pxy.

e What kernel to use for the pair ?
For the first problem, we can simular @) by drawing a pair (x;,y;). Also, for the second problem, we can use
product kernel. But why product 7 and is there are more interpretable definition of dependence measure ?

Definition 2.6.1. (Hilbert-Schmidt Operators) Given F and G, which are seperatable Hilbert space.
(gj)jes is an orthogonal basis in G, where J is an index set either finite or countable infinite and:

0 i#j
(9i,95) = o
1 1=
Given a linear operators L : G — F and M : G — F, then Hilbert-Schmidt operator is defined as:
(L, M)ys = Z (Lgj, Mg;) 5
jeJ
Please note that the sum is finite if ||L|| and || M| are finite, which is by Cauchy-Schwarz. Similarly, we can
define a norm to be:
2 2
Ll = D IZaill
jeJ
If the norm of L is finite, then L is called Hilbert-Schmidt.

Lemma 2.6.1. Given a matriz A and B both in R™*™, then Hilbert-Schmidt inner product is (together with
the basis vectors):

(A,B) = (Ag;, Bg;) = tr(A"B)

jeJ
Remark 47. We can consider the covariance operator in finite dimension, which we have:

(Cay, f9") = t2(CL,(fg")) = tr(g"CL, ) = [T Cuyg = By [f(2)g(y)]
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Lemma 2.6.2.
2 2 2
la ® bllgs = llallF bl =

Proof.
2 2 2
la@blfs =Y @@ b)gslF =D 4957 al|
jeJ jed
—Z (b, 95) 7 a, (b, g;) » Z|bg]]-‘| (a,a) 7
jeJ jeJ
2 2
= lallz Y 14:95) 7 > = llall5 6]
jeJ
The last equality is called Parseval’s identity. O
Lemma 2.6.3.

(L,a ®b)yg = (a,Lb) »
Proof. Consider the left hand side

(L,a® b>Hs = Z <nga (a® b)gj>]-'

jeJ
= (Lgj, (b g)ra)z = (b,9)) 5 (a: Lg;)
jed jed

We consider the right hand side

(a, Lb;< > Lg; (b,g)) >Z<a7ng><b7gj>;

jeJ Jj€J
O
Corollary 2.6.1.
(u@v,a®b)yg = (u,a)x (v,b) x
Proof.
<u ® v, a ® b>HS = <CL, (u ® U)b>]-' = <CL, <Ua b>]—' u>]—' = <a7 u>]—' <Ua b>]—'
O

Theorem 2.6.1. There exists Cyy : G — F in Hilbert space such that:
<Czy» A>HS = Emy[<'l/}(m) ® ¢(y)7 A>HS]
if the kernels associated with ¢ and ¢, k1 and ko, respectively are bounded i.e ki(x,x) < 0o and ko(y,y) < oo

Proof. We consider Riesz representation thoerem, which we will have to show that E,,[(¢(2) ® ¢(y), A)ys]
is bounded, which:

Eey [($(2) © $(1), Apes]| < Eay [| (W(@) © 6(3), A} |
< Eay [[[9(2) @ () llus - | All ]
= Eay [l (2) © () llus] | Allas
Now, we will show that E,, [[|[¢(z) ® ¢(y)| gs] < oo is bounded.
Eey [[[9(2) ® ¢(W)llus] = Eay [[[9(2)] 7 [6(0)]| £]
= Eu[v/k1 (2, 2)]Eqy [Vk2(y, )] < 00

Thus the Riesz theorem’s condition is satisfied. O
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Corollary 2.6.2.
(Cay, [ ® 9) = Euy[f(2)9(y)]

Proof.
(Cay, [ ® g) = Eoy [(V(2) ® ¢(2), f @ g)]
= Eqy [(¥(2), ) (0(2), 9)]
= Bay[f(2)g(y)]

O

Definition 2.6.2. (Covariance Operator) The covariance operators Cy, : G — F is an analogous to
covariance matrix of infinite dimension, and it is defiend as:

(f, Ceyg) 7 = Eay[f (2)g(y)]

Definition 2.6.3. (Empirical Covariance Operator) We define an empirical covariance operator as:

’I‘y lz 1’7 ®¢y7

3

2.6.2 COCO

Definition 2.6.4. (Constrained Covariance) We have the following covariance problem

COCO(Pxy) = sup Cov[f(x)g(y)]

Hf”q-[gl HgHHSI

= {16

£1l5 <1 Mgl <1

= sup E,y Z fihi(x) Z 995 ()
st i=1

£l <1 Nl <1
where ¢(z) = ¢(z) — Epp(z) and @(z) = ¢(x) — Ep(z) and C being a covariance operator with centered

feature map. We will use it to determine the dependence between variables. However, please note that
covariance isn’t the same as dependency.

Definition 2.6.5. (Empircal COCO) We define an empirical COCO problem to be

=

- 1 ¢ 1 ¢
COCO=  sup - ,EZ

Ifll <1 llglls <t ™5

:M—‘

Given a sample {(z;,v;)}, sample iid from P,

Theorem 2.6.2. The empirical COCO is the largest eigenvalue Ypmqz i.€:

0 %f(ﬂ al K 0] [a
gL o |18 " 7o I)|B
where K = HKH,L = HLH are center kernel matriz

Proof. We consider the following Lagragian:
1 1
L(f 9:2,7) ——72 fla) == f(xy) g(yi)—ﬁzg(yj)

+5 (171 = 1) + 2 (gl - 1)

o1



We assume that the function f and g are

n

f=2aib(w)  g=> Bidlw)

i=1

Now, consider the smoothness constrain, which we have:

1% =1 =) F —
= <Z Oéﬂ[’(mi)a Z Oéﬂzj(l’z)> -
= a;};a -
For the covariance, we have
1 n 1 n n
- f(xz)_fzf(xj) g(yz)_ Zg(y])
n =1 n Jj=1 Jj=1

), o (y

I
S|
]
A~
bt
<
B
-
S~
<
=
<
\v/
S\H
M=
/\
agE
£
@
5
\/
/\
INgE
@
§
Z
\/
Q

Now, we have the following Lagragian:
I rrs Az Y aT7
L:(f,g,A,"}/) = 7505 KLB+ 5(0{ Ko — 1) + 5(6 Lﬂ - 1)
Now, we differentiate that Lagragian with respect to a and 3, which we have (respectively) and set to zero:
1-= - 1=~ -
0=——KLg+ \Ka 0=—-——LKa+~Lp
n n
By multiplying the first equation with a? and the second one by 87, we have:
1 - - ~ 1 7+~ ~
0=——a'KLB+X"Ka 0=—-=pTLKa+~8TLA
n n
Subtract both equation, yields:

M'Ka=~8"L3

when A # 0 and v # 0, by complementary slackness we have o’ Ka = STLS = 1, thus A = 4. And so,
COCQO is the largest eigenvalue. O

Definition 2.6.6. (Empirical witness Function) We define the empirical witness function as:

cxz:ai k(x;,x) %Z (xzj,x
i=1 j=1

Remark 48. Even with indepdent variable, COCO won’t give us zero at finite sample, since there can be
some mild linear dependence found by f, g, which is a bias. Good news, this will be decrease if the sample
size is higher.
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2.6.3 HSIC

Definition 2.6.7. (Hilbert-Schmidt Indepdent Criterion) We would like to just find the norm of the
centered covariance operator i.e

HSIC(PXY;]:’g) = ||Czy — Mz ®My||HS = ‘ éwy

HS

Theorem 2.6.3. MMD with product kernel:
HSIC?(Pxy; F,G) = MMD?(Pxy, Px, Py; Hy)
where k((z,y), (2',y")) = k(z,2)l(y,y")

Proof.
2
||Oxy — Mz @ /‘yHHs = <Oxy — Mo @ fy, Cpy — iz ® .Uy>Hs
= <C;Ey7 Czy>HS -2 <Cwy7 Ha ® /J’y>HS + </’L$ X Moy s Poa ® /J/y>HS

@ ©) ®

Let’s consider @, first

For the @, we have:

Finally, for @, we have:

<,U1 ® oy P ® /’[’y>HS = </’L‘L5 ,LL.L>]: </.Ly7l1:y>g
= Ew[uaj(iﬂ)]Ey [Mv(y)]
= Erz/ [k(xﬂ xl)} Eyyl [l(y7 yl)}

Combining them, gives us MMD with product kernel. O

Proposition 2.6.1. If we define i-th eigenvalue from COCO (eigenvevalue of C’Xy) as ~y;, then we can show
that

HSIC?(Pxy; F.G) = > 7'
i=1

L2
Proof. We will proof in finite case first, starting by noting that HSIC?*(Pxy; F,G) = ‘ Cay|| = tx(CL,Cuy).

Then, we will show the following:

e Trace is sum of eigenvalues. To show this, we cosnider an eigen-decomposition 4 = QAQ ™', which A
is diagonal matrix of eigenvalues. Thus we have

tr(4) = tr(QAQ ™) = r(AQ Q) = tr(A)
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e For matrix AT A is eigenvalue is A? where ); is the eigenvalue of A. Assume an eigenvector v;.

ATA = (QAQ™HT(QAQ™) = QATQTAAQT = QA*Q"

Definition 2.6.8. (Unbiased Estimate of ”Cwy”?{s ) The empirical estimator of HCzy||12{s is

= 7’L—1 sz Izaxj ynyj)

i=1 j#i
Lemma 2.6.4.
2 n n
Cu||, = %szmxm(xi,m
=1 j=1
Proof.
}yisz<i§:wun®¢% }ijz®¢@»>
=1
= 2 W) @ 9n), i) © 6(4y)
i=1 j=1
= 17 0 )Yl 5 000 000 = 15 303 s )
i=1 j=1 i=1 j=1

Definition 2.6.9. (Biased Esimate of ”Cmy”?-IS) The biased estimate of ||C'$y||;S is

n n

1 1
Hs | n? sz(fci’%‘)l(%wj) = ﬁtr(KL)
i=1 j=1

Ay =

2
;vy‘

Proposition 2.6.2. The differences between unbiased estimate and biased estimate is:

A Z kulu - Z kZJ ll]

1#]
Proof.
R R 1 n n
A—Ab: ZZk i, 5)(Yis y;) 722 (@i, )z, z5)
i=1 j#i i=1 j=1
:EZ n_lzkijzijfﬁz%l”
=1 VE) =1
1< (1 1 - 1|
i=1 J#i J#i
1< (1
= kikij = gy Zkulw
i=1 VE)
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Proposition 2.6.3. The biased estimate of HSIC? is equal to:
—2 1
HSIC = — tr(KHLH)
n

Proof. We consider the empirical estimate of

2 ~ ~
Coy — iz ® ﬂyHHS = <Oa:y — flo @ fiy, Coy — flz @ ,uy>H

S
= (Cons Coy) | ~2(Coyr e @ fiy )+ (i © iy, 1z ® fy) g

® @ ®

For @, we use the result from lemma 2.6.4. Let’s consider the second one @:

b=1

_ <; S (e <i S ) @ ¢<xb>> (i ) <yc>>>

I
3, =
T~ /" ¢
LN 3
=
K
2
(]
\ M=
poy
8
N
®
=
<
N
=
NS
NI
~— ——— -
~—

|
3@"‘
(]
7
s
]
L
=
$
s
g
=

i=1 i=1 =1 i=1
1 n n 1 n n
= <n222k(5€aazb)> (Tﬂzzk(ycayd)>
a=1b=1 c=1d=1
= %(1TK1)(1TL1)

Then we have:
Tl 1 2 I 7 T
HSIC = Etr(KL) — El KL1+ H(l K1)(1°L1)

1 2 T 1 T T
= <tr(KL) — - u(1TKLL) + — (1T K11 Ll))

1

n2

1 1 1 1
=—tr ((I - 11T) KL- = (I - 11T) K11TL)
n n n n
1 1 1 1 1 1
=—tr|(I-=11")(L-=11"L) )= =t ((IT-=-11" ) (I1-=11" )L
n2 n n n? n n
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Note that the third equality comes from
tr(1TKL1) = tr(1TLTK"1) = tr(1TLK1) = tr(K117L)

Proposition 2.6.4. The unbiased estimate of HSIC? is equal to:

2 It 1 / /
- 2)1TK L'+ CECED)] (1"K'1) (1"L'1)

where ()44 1is elementwise sum, and where K' | L' is this cases are K and L with zero diagonal entries.

2 1 l
HSIC” = m (KIQL)-i--‘ri

Theorem 2.6.4. The asympototic of HSIC when Pxy = P, Py is given by

nHSIC 25 Z Nz?
=1
where z; ~ N(0,1), which is sampled iid, and
1 (tjqr)
)\lwl<zj) = /hqurwl(zl) dFiqr hijqr = ﬁ Z ktultu + ktulvw - thultv

(tuvw)

Remark 49. We can find the null hypothesis by permuting the set. We will repeat many difference parameters
to get the empirical CDF, and the threshold ¢, which is 1 — & quantile with moment matching;:

nHSIC,(z) ~ 2L exp(l — z/5)

gel(a)
as we set
_ E[HSIC,]? _ var(HSICy)
~ var(HSICy) ~ nE[HSIC)

Note that this moment matching is purely heuristic, and therefore, there is no guarantee for this.

2.7 Testing Goodness of Fit

Remark 50. We would like to compare a sample ) with a distribution P. However, to use MMD:

MMD(P, Q) = Hszup<1 [EQ [f] —Ep[f]

we could sample from P but that isn’t efficient nor possible (if we only know P up to a constant), while we
can’t also compute Ep[f] in a closed form.

Definition 2.7.1. (Stein Operator) The operator is defined as:

1 d

(f(z)P(x))

Lemma 2.7.1. Ep[Tpf] =0

Proof.
/1;8;‘;(]0(3;))13(33) de/%(f(l")P(x)) dz
= f@)P@|”_=0
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Definition 2.7.2. (Kernel Stein Discrepancy) We define the metrics as:

KSD(P,Q; F) = sup |Eq[Tpf] _EP[TPJCH = sup Eq[Tpf]
£l <1 £l <1

Lemma 2.7.2. Stein Operator can be re-written as:

Trf](x) = - f(a) + f(2)% log P()

dx dx
Proof. We can write the expression as:
1 d 1 d d
%@(f(x)P(w)) = Pl f(ff)ap(i’f) +P(33)%f(ff)
— H P+ I
= (@) o5 P(x) + - f(a)

Remark 51. Consider the fourier transform, f(z) where we have

0= Y dewtln) iz [ f@)ew(-i) i

l=—00

The fourier representation of the derivative is:

d Fooon Ao
= f(@) D (@ fiKE
Proposition 2.7.1. We can show the reproducbility of the differentaible:

@) = (1. 5k
%%k(m —a') = <jx,k(-7x’)’ Zk(-»$>>

Proof. We will consider the periodic kernel, where X = [—m, 7], We define:

oo

o) = ke —y) = 3 @)k expillz ~y)

l=—00

Since we can see that g(y) is real, we can have:

o0

9) =9(y) = > (—ilkiexp(ily — x))

l=—0c0

Let’s consider the inner product on the

(£ 5ok} = a0

_ i fl—iliﬂ exp(il(x — y))

l=—00 fcl
= lioo(il)ﬁ exp(ilz) = %f(x)
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Theorem 2.7.1. There exists an feature map, where:

BenQlTpf] = o (&) = (f Banaleell;  where € = K(,2) - logp(s) + 2 K(. 2

If

d 2
E..o <dzlogp(z)> < o0

Proof. We will proof this by Riesz theorem, where we need a boundness. We can consider the Jensen’s
inequality and Cauchy-Schwarz:

|Ez~Q <f7 €z>]-'| < EzNQ |<f7 §z>]:|
S NI Ezn €11 7

We will have to show that this square norm ||, ||~ is bounded:
||£z||]: = <§za§z>]:
d d d d
= o) —1 k(- ) —1 k(-
(k(.2) g2 10m(2) K21 KC2) L 08p(E) + 0C,2))

- <k(.7 z)dilz log p(2), k(- z)% logp(Z)> + <dd$k(~, z), jx,k(»w’)>

D ©
+ <k(~,w);i10gp(w),Cli,,k("‘f/)>

r=x'=z

d 2
- 2
c+ (dz 0gp(z)> c

where we set k(z, z) = c¢. Now, consider each terms: Starting with the first term @:
k( z)ilo (2), k( z)ilo () ) = i10 (2) 2Ic(z z)| = i10 (2) 20
R gP(2); R dz gp = dz gp ) e gp

Now, consider the second part @:

e ilky exp(—ilz)| [ — ilky exp(—ila’)]

= > ;

<jxk(~,x), di,k(-,x')>

r=x'=z

l=—00
oo . 1 oo .
= > —(@Pheplile=m) = 3 Ph=c>0
l=—0 l=—c0

For the final part @, we have:

(k)5 tompte, i) ) = (L 1oa)) 3 o]l epl itk

l=—c0 ki
= (Cilogmz)) S (i)hexplitke =) i
l=—00
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Given the boundness, we have

d 2
E.vqllé:llF = EzNQ\/C + (dz logp(z)) c

o+ (qossto)

Remark 52. However, the bound condition might not hold. Consider the normal distribution:

S EzNQ

Thus, we have the condition that riesz to hold.

P(z) = J%exm—ﬁ/x)

Then its derivative is —z. If ¢ is Cauchy distribution, then the integral is

Beco (g ewp)) = [ o)

This is undefined.

Proposition 2.7.2. The closed form expression of KSD given indepdent z,z' ~ q, then:
KSD(Pan]:) = ||EZ€Q£Z||]:

Proof.
KSD(P,Q,F) = sup E..q[(Tpg)(2)]

llgll =<1

= sup EZNQ <gafz>}‘
llgll z<1

= Ssup <gﬂE2~Q§Z>]—":”E2~Q£2”}"
H.‘]H]:Sl

Proposition 2.7.3. We can have the following test statistics:

2
[Bzné:ll 7 = Bz pzimghy(2,2)

where we have

ik(:v,y)

d d d
hy(z,y) == log p(z) - log p(y)k(z,y) + & log p(y) .

dx dy
d d d d
| Zk ~ Tk
+ ogp(w)dy (w,y)erxdy (z,y)

Remark 53. Given an example {z;}? ; empirical KSD is

KSD(P,Q; F) = ZZh %, 25)

i=1 j#i

when ¢ = p we obtain the estimate of null distribution with wild bootstrap:

n n
KSD(P,Q; F) = nn=1) 3 oioihy(zi, 7))
i=1 j#i
when {0;}"_, is sampled iid where E[o;] = 0 and E[o?] =1
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2.8 Support Vector Machine

2.8.1 Introduction

Definition 2.8.1. (Learning Problem) Given a set of paired observation (z1,y1),...,(Zn,yn) either for
regression or classification task. We would like to find a function f* in RKHS H that satisfies:

f*=argmin J(f) = argmin Ly(f(1),..., f(zn)) +Q (Hf”?—z)
feEH fEH

where () is non-decreasing, y is the vector of y; and loss L that depends on z; only via f(x;).

Theorem 2.8.1. The representor theorem is a solution to:

min [Ly(f(xl), o fTR) + 0 (Ilflli)]

feH
which takes the form:

n
f* = Z aik(aci, )
i=1
If Q) is strictly increasing, then the solution must take this form.

Proof. Denote fg is the projection of f onto the subspace: span {k(z,-) : 1 <i < n}, such that f = fg+ f1
where fs = S a;k(z;,-). The regularizer is given by || |3, = | fLl5, + I fsl5, > || fsll3, Then by the

definition of Q: a
(1712 = 2 (14512,

This is clear that this minimize for f = fg. The individual terms f(z;) in the loss is:

f(xl) = <f7 k'(.’l?“ )>’H = <fS + fl, k'(l'“ )>7-L = <fSa k(xia )>
And, so we have Ly(f(z1),..., f(zn)) = Ly(fs(z1),..., fs(zn)). Hence, it is clear tha the loss L(-) only
depends on the component of f in data subspace:
e Regularizer is minimal when f = fg

e If Q is non-decreasing, then || f1 ||,, = 0 is minimum. If  strictly increasing, as minimum is unique.

O

Definition 2.8.2. (SVM) We will classify 2 clouds of points, where there exists a hyperplane, which
linearly separate one cloud from the other without error: The smallest distance each class to the seperating
hyperplane w” 2z + b is called margin. We can express the problem as follows:

subject to wTJ:i +b>1 :y;=+1
wle; +b<1 iy, =—1
Please not that we can solve this problem via convex optimization.

Remark 54. To have the sepearting hyperplane, the distance between them
w
d=(zy —ax_ )T —
[[w]
Now, we can see that the constraint is:
wlz, +b=1 wlz_+b=-1

If we minus themselves together and we have w? (z; —z_) = 2, then it is clear that d = 2/ ||w]|| as required.
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2.8.2 Convex Optimization

Definition 2.8.3. (Convex Set) A set C' is convex iff for all 21,29 € C and any 0 < 6 < 1, which we have:
Ox1 + (1 — 9)12 eC

Definition 2.8.4. (Convex Function) A function f is convex if its domain dom(f) is a convex set if for
all z,y € dom(f) and for any 0 < 6 < 1:
f(0x 4 (1= 0)y) <Of(x)+(1—6)f(y)

The function is strictly convex if the inequality is strict for x # y.
Definition 2.8.5. (Optimization Problem) The optimization problem on x € R™:

min fo(z)

i < O = 1, ceey

subject to file) < ! "

hl(x) =0 1,...,p

The point p* is optimal value. D assumed non-empty where:
D= ﬂ dom(f;) N ﬂ dom(h;)
i=0 i=1
Remark 55. Ideally, we have unconstraint problem:

0 u<0

min fo(x) + Zl—(fz(x)) + ZIO(hi(x)) where L = {oo u>0
i=1 1=1

and lo(u) is indicator of 0.

Definition 2.8.6. (Lagrangian) The Lagragian is the lower bound on the original problem:

m p
Lz \v) = fol@)+ > Nifi(x) +Y_ vihi(z)
Tl (@) T <to(hi@)

It has a domain dom(L) = D x R™ x RP. The vector A and v are called Lagrange multiplier or dual variable
to ensure lower bound, we require A > 0.

Definition 2.8.7. (Dual Function) Minimize Lagragian when A > 0 and f;(z) < 0. The Lagrange dual
function is:
= inf L
g(Av) = inf L(z,A,v)

A dual feasible pair (A,v) is a pair for which A = 0 and (), v) € dom(g)

Proposition 2.8.1. For any A = 0 and v, we have g(A\,v) < fo(x) whenever fi(x) < 0 and h;(x) = 0,
including fo(z*) = p*

Proof. Assume Z is feasbile i.e f(Z) <0 and h;(Z) =0 and Z € D and A > 0 then:
n P
Z Aifi(@) + Z vihi(Z) <0
i=1 i=1

Thus, we have:

g\ v) = a}]ng) (fo(f) + Z)\ifi(ﬁf) + Z Vﬂh’@))

< fo(z) + Z Aifi(Z) + Zl’ihi(i')

< fo(@)
The best lower bound g(A,v) on the optimal problem solution p*. O
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Definition 2.8.8. (Lagrange Dual Problem)

max g(\, v)
subject to A = 0

The dual feasible (A, v) with A = 0 and g(\,v) > —o0

Definition 2.8.9. (Dual Optimal) The solution (A*,v*) of the maximal dual and d* is optimal value.
The weak duality holds if d* < p*. However, the strong duality d* = p* might not always holds.

Remark 56. If this strong duality holds, we have easy concave dual problem to find p*. Dual function is a
pointwise infininum of affine function of (A, v) hence concave in (\,v) with convex constraint set A > 0

Proposition 2.8.2. The sufficient condition (non-necessary) for strong duality, which holds if:

min fo(z)
subject to fi(z) <0 i=1,...,n
Ax =b
as h; is affine, for convex fo,..., fn. And, Slater’s condition holds: if there exists some strictly feasbile

points & € relint(D) such that: f;(z) < 0 fori = 1,...,m where AT = b. For the case of affine f;, the
condition is trivial (the inequality constriants no longer strict, reduces to original inequality constraint):

fi(@) <0 i—1,...,m Ai=b

Proposition 2.8.3. (Complementary Slackness) The complementary slackness is the consequence of
strong duality, where we have:

Y Aifi(a*) =0
i=1
which is the condition of complementary slackness, which implies that:
Ai>0 = filz") =0 fi(@") <0 = A =0

Proof. Assume the primal is equal to dual then we have z* solution of original problem and (A*,r*) is the
solution to the dual:
fo(z") = g(\",v7)

= inf <fo(z) - ; Ajfilz) + ; Vi"hi(x)>

< fola®) + Y N fila™) + > vihi(a”)
=1 i=1

< fo(z")
The last inequality comes from z*, \*, v* satisfies A = 0, f;(z*) <0, h;(z*) = 0. O

Definition 2.8.10. (KKT Condition For Global Optimum) Assume function f;, h; are differentiable
and strong duality, since * minimize L(x, \*, v*) derivative at z* is zero:

Vo) + Y N Vfi(a*)+ > v*Vhi(z*) =0
=1 =1

KKT condition means: we are at global optimum (z, A, v) = (z*, \*, v*) when:

e Strong Duality Holds (primal problem convex and constraint functions satisfy Slater’s condition)
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e Primal Feasibility:

e Dual Feasibility: \; >0andi=1,...,m
e Complementary Slackness: \;f;(x) =0andi=1,...,m

e Zero Gradient:

Vio(@)+ > AVifi(z) + Y viVhi(z) =0
i=1 =1

Furthermore, KKT conditions necessary and sufficient for optimality.

Definition 2.8.11. (Optimization Problem for SVM) The problem can be expressed as follows:

()
max [ —
W Tl
subject to min(w?z; +b) =1 i:y; =1
max(w’x; +b) = -1 i:y; =—1
and we have the classifier to be y = sign(w”x 4 b), where we can re-write it case:
. 2
min ||w||
w,b
subject to y;(wlz; +b) > 1

We allow error points within a margin, or even on the wrong side of the decision boundary. However, ideally,
we need the following optimization:

(1 2 - T
min <2w|| —&-C’;]I[yi(w x; +b) <O]>
We will replace with convex upper bound, with hinge loss

l-a 1—a>0

— 0 otherwise

min (; lwl* +C 0 (yiw"a; +b) < 0)) where () = (1-a)s = {

Now, we replace a hinge loss with simple inequality constraints:

N =
min (2 lw]|* + C;&)
subject to & >0

yi(wha; +b) >1-¢

Please note that:

o y;(wTz; +b) > 1 and & = 0. We can minimize if its is correct.

o y;(wlz; +b) <1 and & > 0 takes the value satisfying y;(w” z; +b) = 1 — &. We are able to decrease,
which looks like the hinge loss. We can decrease till 1 — &; is equal.
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Remark 57. The strong duality holds. The optimization problem convex with respect to the variable w, b, &

turned to ?
1 5 -
min (2 ] +CZ&>

i=1
subject to & >0
1—£i—yi(wai+b) <0 1=1,...,n
This is clear that fy, f1,..., fn are convex. The slater’s condition holds. It is trivial since inequality cons-
triants affine and there exists some &; > 0:

yi(wai +b)>1-¢

Thus the strong duality holds, the problem is differentaible and so KKT holds at global optimum.

Remark 58. C'is a hyperparameter that control the trade-off between the margin size and the error. One
can try to reduce the error caused by the points in the margin but this might lead to too small margin i.e
overfitting.

Remark 59. The Lagragian of the SVM

L(w, b, & a,N)
= % lw]|* + CY &+ > aill = () (wzi +b) = &)+ Y Ni(=&)
=1 =1 =1

With dual variable constraint o; > 0 and A; > 0. Let’s minimize the primal variables are:

aL n n
il Z@iyixi =0 = w= Zaiyﬂi
—1 i—1

% = Zyiai =0
oL l
9&i
Note that A\; > 0 and so a; < C;
Remark 60. We will apply the complementary slackness:

=C—-—a;— =0 = a;=C—-\;

e Non-Margin Support Vector o; = C' # 0 (Error within the margin):

— We immediately have 1 — & = y;(wTx; + b)

— From the condition o; = C' — A;, we have A; = 0 (hence we have &; > 0)
e Margin Support Vector: 0 < o; < C (The points on the margin)

— We again have 1 — & = y;(wlz; +b)
— For a; = C — \;, we have \; # 0 and hence & =0

e Non Support Vector: a; =0

— We have y;(wTz; +b) > 1§
— From a; = C — \;, we have \; # 0 hence §; =0

Remark 61. We observe that:

e The solution is sparse: points not on margine or margine error have a; = 0

e The suppor vectors are the points on decision boundary which are margine error contribute.
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e The influence of non-margine support vector is bounded since their weight can’t exceed C.

We can only remember the points that are critical i.e the first and the second one, which we can remove all
the third category point, and still have the same training capability.

Proposition 2.8.4. The dual of the SVM is given by:

g, A)

| =

||’LUH +CZ£%+ZO‘1 1—( yz)(w T +b) — 5i)+z>\i(_§i)

i=1 =1

m
aiayiya] a5+ C Z &

i=1

I
Plﬂs ‘[\E‘ﬂz
NgE lME

s
Il

-
-

m
T
aiogyiyl v — by i

s
Il
-
<.
I
-

m

Z 252 - C_ai)gi

i= X

uMg

s
S

m
m

1 m
—3 Z Z_: YT T

.
I|

We would like to mazimize the dual subjected to constraint 0 < o; < C where Y . y;o; = 0. This is
quadratic program. For margin SV, we have 1 = y;(w” z; +b) to obtain b for any of these or take an average.

Definition 2.8.12. (Kernelized SVM) We have max margin classifier in RKHS. Given a hinge loss
formulation:

Hzlli)n (; ||w\|§{ + ng(ym (w, k(2 )>H)>

i=1

For RKHS with kernel k(z,-). We use a result of representor theorem:
w() =3 Bik(xi, )
i=1

For maximizing the margin equivalent to minimize ||w||§{ for any RKHS a smoothness constraint holds.
The optimization problem becomes:

mln( BTKB—FCZfz)

subject to & >0

inﬁjk(ﬂfz‘,%‘) >1-¢

i=1

This is convex in 8 and &, since K > 0, which strong duality holds, where the dual is

Zaz - *Zza a;yiyik xmxj)

i=1 j=1

subject to w(- Zyzak ) 0<; <C
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Definition 2.8.13. (v;-SVM) We have other kind of SVM, where we have intuitive parameter v as C' is
hard to interpret. Let’s drop b for simplicity and we have:

I B 1
min (2 lwl® = vo+ — ;5)
subject to p >0
§& >0
yw 'z > p—¢
Now, we are directly adjusting margin width p.

Remark 62. We have the following Lagragian:

% Z&*VPJFZ% p— yzw ZT; — fl +Zﬁz 51 +’Y( )

=1 =1

for dual variable o; > 0, 8; > 0 and v > 0. Differentiating and setting to zero for each of primal variables

w, &, p:
é-p n 1 n
W=yt aitfi=_ v=> a-
i=1

from 8 >0 we have 0 < o; < 1/n

Remark 63. For complementary slacknes condition, we assume p > 0 at global solution, hence v = 0 and

Do i = Vi

e Case of & > 0: Complementary Slackenss state 3; = 0, hence we have a; = n~!. This denotes this set

as N(«), then:
[N ()]
. < ;= h <

ZEN(a) iEN

e Case of & = 0: where B; > 0 then o; < n~!. The set is denoted by M(a). The set of points

'>a;>0is
" 1 1 N M
I/:ZOQ‘: Z 5+ZO¢,S Z E where VSM
i=1 iEN (o) M(a) i€M(a)UN (a)

and v is the lower bound based on number of support vector with non-zero weight on margin and
margin error.

Remark 64. Let’s substute to the Lagragian, as we have:

1 1 mom
2 Z Z 1Yy o+ - DG =D oy
i=1 j=1 i=1 i=1 j=1

+Zazp Zazﬁz Z(—m)é}—p(Za—l/)
1=1 1=1
= *% ZZ%%%W%

i=1 j=1
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Therefore, the dual is:
1 m m
gla) = —5 3O aiagyiya] @
i=1 j=1

n
subject to Z o; > v
i=1

0§ai<

S|
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Chapter 3

Statisical Learning

3.1 Formulating Learning Problem

3.1.1 Problem

Definition 3.1.1. (Learning Problem) We have the following components for learning problems:

e X: input space.
e ): output space.
e p: unknown distribution on & x Y

e [:)Y x )Y — R: loss function that measure discrepancy between y,y’ € Y

We want to minimize the expected risk:

inf E£(f) where g(f):/ I(f(x),y) dp(z,y)

frx=y xxY
The relation between & and ) are determined by unknown p, while we can only access via finite sample.
Remark 65. (Loss Function for Regression) The loss function for regression would be in the form of
L(y,y') = Ly — /)

The examples of this kind of loss is:

e Square Loss: (y —y')?
e Absolute Loss: |y — /|
e c-sensitive Loss: max(|ly — y'| —€,0)
Remark 66. (Loss Function for Classification) The loss function for classification would be
L(y.y') = L(yy')

The examples of this kind of loss is:

e 0-1 Loss: 1_,,>0
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e Square loss Loss: (1 —yy’)?
e Hinge Loss: max(1 — yy’,0)
e Logistic Loss: log(1 4 exp(—yy’))

Definition 3.1.2. (Realistic Learning Problem) We have the following components:

e S=U,cn(X x V)" be set of finite dataset on &' x Y
e F be set of all measurable function f : X — Y

e A:S — F be a learning algorithm where S — A(S): X —» Y

We will study the relation between the size of training set and corresponding predictor f, = A((x4, yn)i1)-

Remark 67. We can consider the stochastic algorithm. In this case, given a dataset S € S, the algorithm can
be seen as a distribution over F and its output is simpily one sample of A(S). Note that the deterministic
is simpily a Direc’s delta distribution.

3.1.2 Risk
Definition 3.1.3. (Excess Risk) We define an excess risk of function f,, as

E(fn) — inf E(f)

fer
Definition 3.1.4. (Consistency) The algorithm is consistence

lim £(f,) — inf E(f) =0

n— oo feF
Ideally, we want algorithm to behave like this.

Definition 3.1.5. (Notion of Convergence) However, as f, = A(S) being stochastic or random variable
because the training set S is sampled from p, there are difference notions of convergence:

L] C()Il\/eIgell(:e m eX[)eCtatl()Il
hIIl E 5 ’TL - Hlf 5 ’ -

n—0o0

e Convergence in probability. For all € > 0:

n—oo

lim P <S(fn) —}relffé'(f) > 5) =0

Remark 68. We only interested in the risk of our estimator to be the best i.e £(f,) — inf ;e 7 £(f). However,
we don’t care about finding the best fucntion f*, where it is minimizer of expected risk i.e £(f*) = inf e 7 £(f)

Remark 69. The existence of f* can be useful in several loss function. As the closer the function f to f*,
the closer the risk E£(f) to E(f*):

e For least square function: I(f(z),y) = (f(x) — y)*:
E)=EU) =N = Lz x.p
e For any L-Lipschitz loss function, where |I(z,y) — (2", y)| < L ||z — 2'||, we have:

EN) =) < = Fllerap
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This guarantee that the algorithm is consistency when f — f*.

Definition 3.1.6. (Learning Rate) We can measure the “speed” in which the excess risk goes to zero:
E (E(fn) — inf & =0(n™¢
(fn) jnf (f) (n™%)

where the learning rate is «, which we can compare 2 algorithms via this value.

Definition 3.1.7. (Probabilistic Bound) We would like to consider the following probabilistic bounds
on various values:

e Sample Complexity: A number n(e,d) of training points that the algorithm needs to achieve excess
risk lower than € with a least probability 1 — §

P ()~ LEG) <) 215

e Error Bound: An upperbound &(§,n) on the excess risk f,,, which holds with probability larger
than 1 — d:

P (5(fn) - it £(7) < <G n>) >1-4

e Tail Bound: A lower bound é(g,n) € (0,1) on the probability that f,, will have excess risk larger
than e:

P <5(fn) - EE(f) < s> >1-5(e,m)

3.1.3 Empirical Risks

Definition 3.1.8. (Empirical Risk) Given a finite sample of data (x;, ;)™ , we can use empirical risk to
gather the information about £(f) as:

El) = 7 Y 1))
i=1

Proposition 3.1.1. The expected empirical risk is expected risk Espn [En(f)] = E(f).

Proof. We have:
;Zl(f(fm),yi)] = %ZE(%%) [1(f(z),y)] = Zg(f) = &(f)

1 i=1 i=1

ESan l

%

Lemma 3.1.1. Let’s consider an id variables (x;)?_, and let

One can show that

70



Proof. We have:

2|(5%0) () - H L
—E_ lzn:x lzn:x _Qﬁzn:ﬂg[x]_,_ 2
- L nt:l ' nt:l ' n =1 ' g

where we have

1
—QE {xlxl +x1Lo 4+ -+ T1Tp
n

VR
S|
i\gs
&8
~__—
/N
S|
i\gs
&8
~—
| I
Il

ToTy + TaXo + -+ TaTy

TnpT1 + TpXo + -+ -Tnxn}

o (W) + (7~ )ElEL])

Proposition 3.1.2. The expected absolute difference between empirical risk and expected risk is:

E(|€(f) — E(f)] < M

Proof. Let’s apply the lemma 3.1.1 to the empirical risk, after Jensen’s ineqalities:

E[l€n(f) = EWNN = E[V(En(f) = E())?]
< VE[(Ea(f) — E(H)?]
var(l(f(zi),y))

n

Theorem 3.1.1. (Markov’s Inequality) Let X be non-negative random variable and a > 0, then

P(X >a) <

Proof. We consider the expectation of X:
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Theorem 3.1.2. (Chebyshev’s inequality) Let X be random variable with finite expected value p and
non-zero variance 2. For any real number k > 0:

2

g
PIX —pl 2 k) < 45

Proof. We will consider the use of Markov’s inequality where the random variable be | X — | and the constant
be ko, then we have:

_ 2 2
B(X — | > k) = B(IX — pf? > 42) < AX il _ o

2 2

O

Proposition 3.1.3. The probability of expected risk is greater than some number € > 0 is
var(I(f (), yi))
P(&.(f) — >e) < S Th I
(Eath) - (N 2 ) < =225
This follows directly from the Chebyshev’s inequality.
3.2 Generalization Bound
3.2.1 Generalization Error
Proposition 3.2.1. We will consider the bound of the excess risk, where we assume f* where E(f*) =
infrer E(f):
E[£(fa) — £(/)] < E[E(fa) — Enlfn)
where f, = argmingcr E,(f)
Proof. We consider the following risk decomposition:
E[£(f) - ()]
= E[E(fa) = EalFa) + Enlfn) = Eald") +Ea(f7) = E(F7)]
—_—
<0
< E[£(fu) = Ealfa)] +E[Eals") = £(/7)
O

Definition 3.2.1. (Generalization Error) We can focus on the generalization error:

E[&(f2) = Ealf)]

Proposition 3.2.2. The generalization won’t go to zero for some reasonable algorithm (that try to minimize
empirical error) as n — 0o

Proof. We construct such an algorithm. We assume X = ) = R, and p with dense support. The loss
function I(y,y) = 0 for all y € Y. Given a dataset (z;,y;)}; such that z; # z; for all ¢ # j, if we have

fn : X = Y such that:
s (z){yl ifden ==

0 otherwise

This is clear that the algorithm above have E[£,(f,,)] = 0 but E[E(f,)] = £(0) > 0. Thus, the generalization
error won’t go to zero as n — oo O
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Remark 70. The algorithm constructed is an extream form of memorization, which leads to overfitting.

Definition 3.2.2. (Overfitting) An estimator f, is said to be overfit the training data if for any n € N:

e E[E(fn) — E(f+)] > C for constant C' > 0
o Bl&n(fn) —E(f)] <0

This is where the estimator f,, does better in “practice” than in the real data.

3.2.2 Bound For Generalization

Theorem 3.2.1. (Finite Hypothesis Case) For finite X and ), we have a space of functions:
F=YY={f: x>}
which is also finite, then:

s Jeas-unf) <17y

gn(fn) - g(fn)

where Vr = sup e 7 var(l(f(zi),y))

Proof.
E|

5n(fn) - g(fn)

Remark 71. Empirical risk minimization still works in finite case as

}:0

Remark 72. This finite hypothesis case still works when considering the subset H C F as we have (LHS)
and if f. € H, we can see that (RHS)

lim E[Sn(fn) —E&(f)

n—oo

2 [lenth) — £0)]] < 12 E[enth) - £00)]] < 1y 2

Definition 3.2.3. (Threshold Function) Threshold function of paramter a € (—1,1] is

fa(x) = 1z€[a,oo)

Theorem 3.2.2. (Popoviciu’s Inequality) For any random varaible X bounded variance m < o? < M

(M —m)?

2
o <
- 4
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Proof. Setting g(t) = E[(X — t)?], then when doing the derivative, we can see that
g (t) = 2t — 2E[X]

when setting to zero, we can see that ¢t = E[X], which is the minimum as ¢”(t) = 2. Now, setting t =
(M 4+ m)/2, we have

var(X) <E (X—M;m)zl
= [ —m) + (x - a0y
< EE{((X_m) _ (X—M))Q} _ (M;m)z

O

Remark 73. We consider a binary classification problem Y = {0,1}. We know in advanced that the minimizer
would be a threshold with parameter a*. It is clear that the hypothesis space is F = {f,]a € R} = (-1, 1].
However, computer can only represent a finite set of number(a), given a precision p, we have:

Hp = {fala € (—1,1],al0” = [al0"]}

where [-] represents an integer part of the number. For example:

9 9
le{fa‘ae{_m7“'7mal}}

We can see that |H,| = 2- 107, and so we have
[Vy  10P
< _— —

where the varaince is V3 < 1/4 via Popoviciu’s inequality as our loss is bounded by [0,1]. The bound isn’t
good enough as we need a large n to make the bound being reasonable.

E [|€a(sa) - €(50)

Remark 74. (Chernoff Bounding Technique) Given a random varaibel X and € > 0, we have, for ¢ > 0

Elexp(tX)]

P(X 2 ¢) = Plexp(tX) 2 exp(te)) < =0

where we apply the Markov’s inequality and use ¢ to make the bound tight.

Lemma 3.2.1. (Hoeffding’s Lemma) Let X be a random varaible with E[X] = 0 and a < X < b with
b>a. For anyt > 0, we have
t2(b — a)2)

Elexp(tX)] < exp < 3

Theorem 3.2.3. (I_Ioeﬁding ’s Ineqality) Consider X1, X1,...,X, independent random varaible where
X € ai, bi] and let X =1/nd"" | X;, then

P (‘X — IE[)_(]‘ > a) < 2exp (—Zrlfgjgja)g)

Proof. Since we have:
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Please note that E[X; — E[X;]] = 0, thus we can use Hoeffding lemma, now we have:
P (X —E[X] >¢) < exp(—te)E lexp( (ZX —E Z ]))]
i=1 i=1
= exp(—te) HIE [exp ( ))]
i=1

2

< exp(—te) Hexp <8tn2(bz — ai)2>
= exp <8 3 Z — te)

We will find ¢ that would tighten the bound assuming setting a = (3", (b; — a;)?)/(8n?) and we have the
following equation

ft)y=at* —te  f'(t)=2at—¢
which mean t* = ¢/(2a) plugging back and we have f(t*) = —e2/(4a), and so:

P(X—E[X]>¢) <exp <—m>

as required. O

Theorem 3.2.4. For any € (0,1] and bounded loss 0 < |I(f(x),y)| < M, forall f e H,x € X andy € Y,

we have:
_ \/2M2 log(2|H|/6)

n

gﬂ(fn) - g(fn)

for probability of at least 1 — 6

Proof. Starting by applying Hoeffding’s inequality, for any function f:

P

Now, let’s try to bound the generalization error:
p( e) <P (sw e -z ) = | U {
feHr Fer
<y op(

feH

ealr) - (1) 2 ) <200 (205

gn(fn) - g(fn) Z

ARERGIE

u1) — 81| 2 <) < (Hizewp (52 )

We have used union bound, since at least one of f will achieves a suprenum. To find the form above, we
simply set § to the bound we just derived. O

Remark 75. Recalling the threshold function, our new bound is as follows:

< [4+6p —2logd
n

as M =1 amd log2|H| =log4 - 10P = log4 + plog 10 < 2+ 3p

En(fn) —E(fn)

Proposition 3.2.3. Let X be a random variable such that | X| < M for some constant M > 0, then for any
e >0, we have
E[|X]] < eP(|X| <) + MP(|X]| > ¢)
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Proof. Let’s consider the expectation of | X|, which we have:

—€ &€

p(X)|X] dX + / p(X)|X| dX

—€

(x| - [ T p0IX] dX + /
<M(P(X >e)+P(X < —¢))+eP(—e <X <¢)
=MP(|X|>¢e)+eP(|X]| <e¢)

O

Corollary 3.2.1. Using the proposition above and the generalization bound that we have derived, we have,

for any ¢ € (0,1]:
} <a _6)\/2M2 10g752|7{|/5) Y

5n(fn) - g(fn)

Remark 76. The case where f. € H\H, for any p > 0, then ERM on #, will never minimizes the expected
risk and tere will be a gap between £(f, ) — E(f«). As p — oo, we expect the gap to decrease. However, if

p increases too fast:
[4+6p—2logé
gn(fn)_g(fn) < —Pn & — 00

as we can’t control the generalization error. We will need to increase p gradually. This process is called
regularization.

E|

Proposition 3.2.4. The error decomposition of excess risk is

Generalization Error <0 Generalization Error  Approximation Error

Lemma 3.2.2. The approximation error of threshold function is

E(fp) = E(f2) <lap — a.| <1077

Where we assume a distribution on [—1,1] together with least square loss | = (y — f.(z))?
Proof. We would like to note that, if b > a, fy(z)fo(z) = fo(z). WLOG, assume that a, > a,

1
1

E(f,) —E(f.) = / (@) — f(@))? dp(x)

:/a*p(x) de/;p(g;) dx+/alp(x) dz

P

P P

1 1 1
- / @) dpla) - / 2@ (@) dple) + / F3(a@) do(o)
1

O

Remark 77. We can find the excess risk of threshold function to be bounded by, following proposition 3.2.4:

£(f) — £(J) < 20/ TER 2B 4 ygmr = o, 6,p)

This holds with probability greater than 1 — J. We can shoow the precidion to be

p(n,d) = argmin ¢(n, d, p)
p=>0

Thus leading to error bound as €(n,d) = ¢(n, d, p(n, d)).
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3.2.3 Regularization

Remark 78. The idea of regularization, which has been discussed early in remark 76, is to parameterize ‘H
where H = U'v>0 M~ of hypothesis space, where H., C H, iff v < +’. We perform this to prevent overfitting
as we called v regularization parameter.

Definition 3.2.4. (Regularized Algorithm) Given n training points, the regularized algorithm returns
fy.n on M, while we let v = v(n) as n — oo

Proposition 3.2.5. We can decompose the excess risk as

EFyn) = E(f) = E(fym) — EUF) +E(Fy) — Inf E(F)+ inf £(f) = £(F.)

Sample Error

Approximation Error Irreducible Error
where we let v > 0 and f, = argmingey. E(f).

Remark 79. Let’s explore the definition of each error:

e Irreducible Error: If the irreducible error is zero, then we call H universal.

e Approximation Error: This doesn’t depend on the dataset, but it depends on p, and we call it
bias.

e Sample Error: This random quantity depends on data. We can study it by capacity or stability.

We can show, under a mild assumption:

lim £(f,) ~ inf £(f) =0

Y—0o0

Combining this with universal space: lim, o £(fy) — £(f«x) = 0. Finally, we can have an approximation
error to be bounded as:

E(fy) — J}g;f(f) < A(p,7)

Please note that there will be no rate without any assumption, which is related to no-free launch theorem.
If f. is in Sobolev space W2 then A(p,~) = cy~*

Proposition 3.2.6. We can decompose the sample error to be:

g(f'y,n) - g(f'y) = 5(f%n) - &L(f'y,n) + 5n(f'y,n) - gn(fw) + gn(fv) - 8(fv)

Generalization Error Excess Empirical Risk (<0) Generalization Error

< 5(f7,n) - gn(f%n) + 5n(f“/) - 5(f“/)

Remark 80. The generalization error can be controlled by study the empirical process of

sup [En(f) —E(f)]
FEH,

as we have shown in theorem 3.2.4 (and union bound).

P | sup
FEH,
However, it is hard to find empirical risk minimizer for arbitarty #, as we need to calculate the expected

risk. Good news, in some spaces, it might be easier to do such computation i.e convex or discretization in
special dense hypothesis space.

E(f) — S(f)’ > s) < 2|H[exp (—;;;2)
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Definition 3.2.5. (Infinite Norm of Function) Let X C R? be a compact space and C(X) is a space of
continous function, we define a norm

1flloe = sup | f ()]
zeX

Proposition 3.2.7. If the loss function 1 : Y x Y — R, where l(-,y) is uniformly L-Lipschitz. Then, we
have

£~ ERI LIA ~ folle ()~ Ealf)| < LI~ foll
Proof. Starting with the first one, which we have:
) - &l = | [ 1)) = o)) ot
< [|ithi@)) = isele). )] dotany)
< L/\ﬁ(m) —f2<x>\ dpx ()

=Ll = follprxpay S LA = Folloo

For the second one, we have

1En(f1) = Enlf)] = % Z (fr(zi),yi) — l(f2(xi7yi))‘
< T3 [, 90) ~ 1ot v

i=1

1 n 1 n
< EZU&( ) = fa@)] S L= N = folloe = LIl = follso
i=1 =1

Remark 81. The function that are closed in ||-|| , have similar expected and empirical risks.

Remark 82. If H C C(X) admits a finite discretization H, = {hi,..., hx} with respecte to ||-|| .. Then, the
generalization error can be controlled by:

W) = E(f)]

feH

W) = Ealhy)| + |Ealhy) = £(p)| + £ () - £(1)

T feH
<2L|lhs = fll, + sup
heH,

Ealh) = ()

where hy = argminsey,, [|h — fl|- Now, we will only have to control the supj,cq, [En(h) — E(h)] since H,
is finite.

Definition 3.2.6. (Covering Number) We define the covering number of H of radius n > 0 as the
cardinality of minimal cover of ‘H with ball of radius #:

N(H,n)—inf{ ‘ QG hEH}

Theorem 3.2.5. For anyé € [0,1) and L > 0 being Lipschitz constant of I(-, y), for all x,y and |I(f(z),y)] <

M, we have:
\/2M2 log(2N (H,n)/d)

n

gn(fn) - g(fn) <

holds with probability 1 — 6, and where exists an n(x) for which bounds tends to 0 as n — co.

feH
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Remark 83. The proptotypical results i.e Bias/Variance tradeoft:

E(fym) = E(f7) S E(fym) — E(f5) +E(fy) = E(f7)

<vyBn=—(Variance) <v~7(Bias)

We will have to choose y(n) to get best bias-variance tradeoff.

3.3 Tikhonov Regularization

3.3.1 Regularized Space

Definition 3.3.1. (Normed Regularized Space) Let H be a normed vector space of hypothesis. For
v > 0, we consider

Hy = {1 e | Ifly <7}
As we have H., = By(0) C H. The empirical risk minimization corresponds to:

n

1
fyn = argmin — E I(f(wi),yi)
T Wy M S

Remark 84. If (-, y) is convex, then empirical risk minimization induces convex program, which we can find
the solution in polynomal time.

Definition 3.3.2. (Space of Linear Function) We will focus H to be a space of linear function. Let
XCRYand Y C R, where

H= {f . RY R‘Elw eRest. f(z) = wlz, Ve € Rd}

We will set the norm to be | f||,, = [Jw|| as w is the parameter corresponding to f. Thus, we have the
empirical risk minimization to be:
1 n
Wy 4 = argmin — Zl(w?w,yi)

flwll,<y T i=1

where the empirical risk minimizer being f, - : R? — R is defined as frn(z) = :ETwn,.y for all z € R?

Definition 3.3.3. (Non-Linear Function Extension) We expand the space of linear function to richer
space of functions using the collection of non-linear function (feature extractor) ¥y, ...,y : R — R swhere:

’H{f:Rd%R

k
(wi)iy € Rs.t fa) = Z?/Ji(z)wi Y € Rd}
i1

we will consider || f||;, = [|w||, where w € R*. Furthermore, we can construct a non-linear map ¥ : R* — R¥

where U(z) = (¢¥1(),. .., Y(x)).

Theorem 3.3.1. The covering number of H., is:

N(Hy,n) < (?)d

for allm >0
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Proof. For any v > 0 and B, (0) C R?, which is a ball of radius v centered in 0. Then for all > 0:

N(B(0),) < (477)

But since H, is isomorphic to R?, we have the sampe covering number. O
Definition 3.3.4. (Tikhonov Regualrization Problem) We define the Tikhonov Regualrization problem
to be, instead of constrained optimization problem.

n

o1
WH,n = argmin — Zl(x?w7yl) + A Hw”i[
wer? T G2y

We can show that this problem and problem in definition 3.3.2 are the same as we can find A() such that
Wn,y = w)‘('Y)’n'
Definition 3.3.5. The directional derivative is defined by:
t —
Vo) — tiy T )~ @)

t—0 t

Lemma 3.3.1. V, f(z) = vV f(z)

Proof. One can use a Taylor’s expansion to proof this, but we are going derive it via chain rule. We will
prove in 2D but this can be extended easily. Let’s define a single variable function g(t) = f(z + at,y + bt).
Let’s consider ¢'(0)
t+h)—g(t
J/(t) = lim g(t+h) —g(t)
h—0

= ¢/(0) = lim g(h) ; 9(0)
f(x+ ah,y +bh) — f(z,y)

= J h = Vugle)

where v = (a,b). Now, we can apply the chain rule, which gives us

dg d dg d 9] 0
_Ogdv  dgdy 0y

79 9, T
 Odxdt  Oydt Oz 8yb =v V(o)

Vug(z) = ¢'(0)

3.3.2 Introduction to Convex 4+ Finding Weights
Theorem 3.3.2. Let f: R™ — R and S be a convex subset of R". Then f is convex iff
fy) = f@) + V(@) (y —2)

for all y,x € R

Proof. (=) If f is convex. Then we have, by convexity:

fAy+ 1 =Nz) < Af(y) + (1 - N f(z)

VRS (S YORS (LN R VR YR (I e

Then, by setting A\ — 0, we have

jim L= W=D IO 07y ) < 1) - f0)

A—0




By the definiton of directional derivative.

( <= ) We consider 2 points, where we set z = Ay + (1 — )z
F) 2 f)+ V) (y—2)  fl@)2 () + V() (@~ 2)

Then we have:

M (y) + 1 =Nf(2) > f(2) + AVF(2) (y = 2) + (1 =NV f(2)" (& - 2)
= F@) +VIET My = 2) + (1= N - 2)]
= f(2) + V(2 )T[)\y Ny —aA 4+ N2 4o — Ar— Ay + A2y —z + 22z — A2z
= f(z) = fOy + (1= Nz)

Thus complete the proof. O
Theorem 3.3.3. Any differentiable convex function F : R? — R where w, € R? is global optimizer iff
Vf(w.) =0

Proof. ( =) As the directional derivative measures the rate in which the function grows, we want to find
the direction that decrease f the most. It is clear from the dot production that this would be —V f(x).
Thus, if Vf(w.) # 0, then for some € € R, f(w. — eV f(z)) < f(w.), thus contradicts the assumption that
w, is global optimizer.

( <) We will show that if V f(w,) = 0 then w, is global optimizer. Following the theorem 3.3.2, we can
see that for all y, we have

Fy) = fw) +V fw)" (y — ws)
= f(w.)
Thus complete the proof. O

Proposition 3.3.1. If we set I(f(z),y) = (y — f(x))? then:

wan = argmin [ly — Xwlf3 + nA[lw]3
weRd

= (XTX +nA) 1 XTy

where y € R™ is a collection of labels, while R™"*¢ is the collection of data.

Proof. Since the objective is convex (norm is convex and addition + multiplcation of positive number), we
can find the global minima according to theorem 3.3.3 by finding the derivative and set to 0, which we have:

V| lly = Xw|? + nA ||w||§} = 2XTXw - 2XTy + 2ndw = 0
= w=(XTX+n\)"'X"Ty
Thus complete the proof. O

Remark 85. The total cost of solving the regression is O(nd?+d?) and if d > n, then the complexity becomes
O(d?). However, if we use a representor’s theorem, then we are able to have O(n?).

3.3.3 Gradient Descent

Definition 3.3.6. (Gradient of Weight) In general if [(-,y) : R — R is differentiable, for any y € Y, then
we have:

V(& (w )—|—)\||w|| Z (zFw, y;) + 22w

We can solve the minima by setting the above equation to zero.
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Remark 86. In most cases, we aren’t able to solve the gradient equation analytically, so we need iterated
descent optimization, which provided us with (w(k)) reN that converges to global minimizer.

Definition 3.3.7. (Gradient Descent Algorithm) Let F : RY — R be differentiable. Set w(®) € R, For
any k € N, we define w1 € R? as:
Wit1 = wi — YV EF (wy)

where v > 0 represents the step size of the descent.

Definition 3.3.8. (Lipschitz Gradient) A function f with Lipschitz gradient with constant L is where,
for all z,y € dom(f):

Vi) =Vl < Lz -yl

Lemma 3.3.2. For 2 points x,y € R? and function f : R? — R with Lipschitz gradient with constant L,
then:

Fl) < F@)+ V@)l — )+ ly — al

Proof. We consider the function g(¢t) = f(x + t(y — x)) and; therefore, A'(t) = (Vf(x + t(y — x)),y — x).
Following from fundamental theorem of calculus

h(1) — h(0) = /Olh’(t) dt

as we have h(1) = f(y) and h(0) = f(z):
1
f@):f@%ﬁ/<vﬂw+ﬂyf@%yfw>ﬁ
0
=ﬂ@+%vﬂ@w—x%+A<Vﬂx+ﬂy—@)—vﬂ@w—x>&
gﬂm+wVﬂmw—xw5£HVﬂw+uy—m>—Vﬂmnwy—ﬂ|w
1
gﬂ@+4Vﬂ@w—my+mezwAnuyfmu~w
— 1)+ (V@)y—a) + Ly =l [ ¢
0

= @)+ (V@) g —a)+ 2y~

O
Proposition 3.3.2. Given the gradient descent algorithm, with update weight of ~y:
1 L
(3-5) b - onall® < f(aw) - S
vy o2
forally >0
Proof. Using the result from lemma above and definition of gradient descent
1 L 2
f(@rs1) < flaw) + 5 OV F(@r), 21 — 2k) + 5 et — 2l
1 L
= f(@r) = = llznpr — ael)* + 5 lonen — 2
ol 2
1 L
= flak) - (7 - 2) |1 — 2l
Rearrange and we finish the proof. O
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Remark 87. We can see that the evaluation (f(zy))k=1 is decreasing iff v < 2L, as the norm is positive.

Lemma 3.3.3. For convex function f, given that v < 2/L:
o0
2
Do llws =z | <
i=0
Proof. We can perform the telescoping sum, assuming that the evaluation of convex function is decreasing,
thus having:
- 2
2
> i~ el < ( 3
=0

= 5= (f@0) = min f(@))

Please note that since f is convex, the minima is global. O

- (f(wo) — min ()

Proposition 3.3.3. For all x € dom(f), we have
2y (@) — £@)) < ek — 2l ~ s — 2l + (0L~ 1) s — 2]

Proof. From proposition 3.3.2:

29(f(@rsn) = (@) < 22(f () = (@) = (2= 7E) lowss — ol
= 2V (2) (2% — 7)) — (2 = 7L) 01 — 2]
< 2((ax — o) (wp = 2)) = (2= 9L g — 2l
= |lzk — zpal® + ok — 2l? = |z = 2psal)® = (2 = AL) lJzpgr — 2l
=k — 2l)” ~ [l = ziia|I* = (VL = 1) igr — il

The first equality comes from zy — xx—1 = YV f(zr) The second ineqality comes from lemma 3.3.2, where
we set x = xj and y = x. The second equality comes from:

2 2 2
20w = [|u]l” + [|v]]® = u — o]

Theorem 3.3.4. Suppose that x, = argmin, f(z) (and it exists) and v < 2/L then, for all k > 1:

— Tk 2 - .
fx) — min £ () < © [”m‘) = (O m;nf(x))]

Proof. We recall proposition 3.3.3, we we set x = x,, which we have:

i (f(mi+1) - f(ﬂf*)) <

(||xi =l = winr = 2all? + (VL = 1) i — @il
=0

M=IM= 1=

(s = 2l = lass — o) + D2 >l i
(||xZ — JU*HQ — |zit1 — JU*||2) + (’Y2L—71L)+ Z (f(xo) — ml}nf(x))
(1o =l = o — ) + O 5 3™ (fe) — min £(2)

i=1

IN
Il
o

i

1
2y
1
27 4
1
2
1

2

Ty — Tx (vL—1)4 .
-1 027 ” WQ VL Z( %) mxmf(x)>
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We use the lemma 3.3.3. For the last equality, we have, a telescoping sum and ||z, — x*||2 > 0. Now we can
see that

zn: (f(xi-‘rl) - f(l’*)) 2 k(f(%‘ﬂ) - f(x*))

i=0

as we shown in lemma 3.3.3 that the evaluation will keep decreasing. Rearrange and we finish the proof. [

Corollary 3.3.1. It is clear that the best value of v is 1/L and so, the rate in which the gradient descent is:

Flew) —min f(z) < o= llzo — .

Definition 3.3.9. (Strongly Convex) The function f is strongly convex with modulus g > 0 if, for all
x,y € dom(f) :

F4) = F@) + V@) (g =) + S lly = 2l
Proposition 3.3.4. For all x € dom(f) with f being p-strongly convex:
. 1
(@) = min f(@) < 5[V 1@
Proof. We start off by recalling strongly convex function, and minimize both side of ineqalities:
. . T 1Y 2
min f(y) > min (f(2) + V(@) (y = 2) + 5 ly - al*)
Y )
1 .
> f(x) + 5 min (29f(2)" (uly — 2)) + |y — 2)]*)
oy
1 . 2 2
= f(2) + - min (V@) + 2llu(y - 2)|° = |VF(@) = nly —2)]))
noy
1
= (o) + g min (19£) + uly = )I* = 19 71°)
1
> f(z) + o IV £ ()|
The last equality can be show as: suppose a = u(y — x) and b = V f(z), we have:
lal|® + 2|b]1% = fla — b]| = 2a%a + bTb — [aTa —2aTb+ bTb]
=a"a+2a"b+bTb—b"b = |ja+b|* — |b]]”
Regarrange and we finish the proof. O

Remark 88. From the definition of strongly convex, we can see that

F4) > f@) + V@) (y—a.) + 5 lly - 2.’
= )+ G lly =

where x, = arg min,, f(x).

Theorem 3.3.5. For u-strongly convex function with v < 2/L, we have:

F(ax) —min f@) < (1= 2~ 20)) (o) — min £(2)
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Proof. First, we will show that

f(sn) = min f(2) < (1= (2 = L)) ( (@) = min f(2))
Following proposition3.3.2, we have the following ineqalities:

Flann) = min ) < o) = (2525 ) ok = a4 min )

flax) = (2uy — ¥°Lp) | VF (2| — min f(z)
f () —min f(z) — (2uy — 7*Lp) (f(xk)—ngnf(x))
= (1= (27 = 7*Lw)) (F (@) = min f(2))

IA

And so, by repeating the ineqalities, we have the exponential as required. O
Remark 89. For the best value of «, we should have v =2/(u + L)

Definition 3.3.10. (Projected Gradient) The problem such as Tikhonov regularization can be solved
using projected gradient descent:

w1 =Ty, (g =YV F(wy) )
where Tl : R? — RY dentoes the Euclidian projection onto H, as

w
Iy, (w) = argmin [|w — /|5 = y——
) = e =l =

Lemma 3.3.4. For point y € R and x € Q:
(y —Ho(y)" (z — a(y)) <0
Lemma 3.3.5. Given the projected gradient descent algorithm, with the update weight of v:

1

o) = fonn) = (2= 5 ) lowon —

Proof. From lemma we have:

(2 — YV f(zn) = 2pr1)” (@r — 2p41) <0
which implies that

VF(z)" (wpg1 — 2) < 5 ka — Tpt1 |

Therefore: I
flarer) < flaw) + V(@) (@re —x) + 5 ks = i
L 1
< s+ (5 - 3) lowa - al?
By rearranging, we got the statement above. O

Theorem 3.3.6. The convergence rate of projected gradient is the same as normal gradient descent.

Remark 90. The gradient step of Tikhonov’s regularization:
w1 = wg — Y XTX + ADwp +vX Ty

has the total time complexity as O((k + n)d?) operations for k steps. To achieve the same excess risk as
ERM, we will need a total time complexity of O(nd?).
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Proposition 3.3.5. We can decompose the sample error of the estimator after k iterations:

E(wg) — E(wv) = E(wy) — En(wy) + En(wr) — Sn(w'y,n) + gn(w%n) - gn(w"/) +5n(w"/) - 5(11)7)

<0

< E(wy) = Enlwp) + En(wp) = En(wyn) + Enlwy) — E(w,)

Sample Error on H. Optimization Error Sample Error on H.

Remark 91. Since we know the generalization error, we can control the optimization error to match this i.e
if the generalization error is e(n, vy, d) with probabilistic no less than 1 — d, then we have to perfrom

<=0 ()

To get the same accurary as empirical risk minimization.

3.3.4 Stability

Definition 3.3.11. (Modified Set) Let Z be a set, for any set S = {z1,...,2,} € Z" for any z € Z and
i=1,...,n we denote
Sl’z = {Zl, ce ey Ri—15 Ry Bl e ey Zn} S VAR

Definition 3.3.12. (Uniformed Stability) We denote a dataset z = (x,y) € Z = X x Y and for any
f:+ X —= Y, we denote I(f,z) = I(f(z),y). For an algorithm A and any dataset S = (z;){,, we write
fs = ( ) The algorithm A is 8(n)-stable with n € N and S(n) > 0, if for all S € 2", z € Z and
1=1,.

sup [1(fs, 2) — (fse-» 2)| < ()

zeZ

Theorem 3.3.7. Let A be uniform B(n)-stable algorithm. For any dataset S € Z", define fs = A(s), then

[Es~pn [E(fs) — En(fs)]l < B(n)

This means that we can directly control the generalization error with stablility of an algorithm.

Proof. Starting with the empirical risk:

Es[€n(fs)] =Es [izl(f&zz ] ZES (fs,2:)] = ZESE U(fs,2i)]
i=1
i;ESEz;[l( iz} z) ESES’[ Z gzl z

For the expected risk, we have

Es[E(fs)] = EsEs[l(fs,2")]] = EsEg

Let’s consider the differences:

[Es~pn [E(fs) — En(fs)]| =

Eg [iZl gz 1 lelfs, z]‘
i=1

<ES' Z‘l 572’ z (fSa z)

3

< B(n)
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Lemma 3.3.6. The norm ||-||,, of RKHS H is strongly convez i.e for any g,h € H and 0 € [0,1], we have:
189+ (1= 0)hll3, < 0 llgl3 + (1 6) Il

Proof. We consider expanding the norm, and then find the differences between the left hand side and the
right hand side:

(0g + (1 —0)h)T(0g + (1 — 0)h) = 09" g +20(1 — 0)g"h + (1 — 0)(1 — )R h
= 60279+ 20(1 — 0)g"h + hTh — 200" h + 0*hTh

Now we will minus it with 8g”g + (1 — 8)hT h, which gives us:

02gTg+20(1 —0)g"h+hTh — 20h"h + 0°hTh — 69T g — (1 — O)hTh
=00 —1)gTg+20(1 —0)gTh+0(1 —0)n"h
=0(0-1) llg - hll3,

Since 6 < 1, the inequality holds. O

Lemma 3.3.7. For any convex function F' : H — R and F() = F'(-) + \||"||. Given the minimizer
f =argming ey F(f'), then for some g € H.:

A
F(g) = F(f) = S I — gl
Proof. By definition of F', we can see that:
F(0f + (1 0)g) <OF(f)+ (1 - 6)F(9) = M(1—0)||If —gll3

= or (L8) < rin 4 ro) - 317 - ol

+ A
= (o) - P 2 28 (L22) 4 217 - gl - 27 )
A 2
> 207 ol
Thus complete the proof. O

Theorem 3.3.8. Let H be RKHS with associated kernel K : HxH — R. We can show that for any S € Z7,
ZeHandi=1,...,1:

2L2k?
sup |I(fs, 2) = U fgir, 2')| <
zZ€EZ n

where L > 0 is Lipschitz constant of (-, y) and k* = sup,c K(z, )
Proof. We consider the following functions:

Fi()=EsO)+ Al Fa() = Esuw () + AL,
We will simply the notation fi; = fg and fa = fg:..» and by definition, we have:

f1 = argmin Fy(f) fo = argmin Fy(f)
fEH feEH

Using the lemma above:

RlR) - F() 2 5 I1h- Bl B - B 2 5 I - fil
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Summing them yields:

Af1 = folly, < Fi(f2) — Fi(h) + Fa(f1) — Fa(f2)
= 55(f2) - gsi,z’ (fz) + gsi,z’ (fl) - gS(fl)

_ %l(fg,zi) CU(frz) U 2L — U fa, 2)
I(f1,2) —l(f272)‘

2
< —sup
n z
We can see that [ is Lipschitz:
sup |U(f1,2) = Ufar2)| = sup[i(fi(2),9) — Ufa(e) )|

rEX ,yeY

< Lsup | fi(2) ~ fo(a)|
TEX
< Lk f1 = fally
The last equality comes from the fact that |f(x)| < \/k(x,x) ||fH?_L Thus, we have

9 _ 2Lk
[f1 = fall3 < Y
Plugging this back and we yields the ineqality above. O

Theorem 3.3.9. The excess risk for Tikhonov regularization is

E[£(fs) - £(£.)] < O (n )

Proof. We will define f = argmingey E(f) + A ||fH,2H, and define the following excess risk decomposition:
E(fs) = E(f.) = E(fs) = Es(fs) + Es(fs) = Es(fr) + Es(fr) = EF) + Ml = MIA 3

Please note that

o E(fs) —E(f.) < E(fs) — E(f) + IS5y

e fg is the minimizer of empirical risk, which means:

Es(fs) + Allfslls, — Es(fx) = Allfallz <0
o Esl€s(f)] = ()
And, so we have
E[E(fs) — £(£)] S E|E(fs) = Es(fs) + Es(fs) = Es(Fr) + Es(fr) = (L) + A A5 = MIAI, + A sl |
= E[£(fs) = Es(fs) + Es(fs) + Mlfsl} = Es () = AIAally, +E5(F) = E(F) + A5,

<0

<E[£(fs) ~ E5(fs) + Es(f) — () + AIRIE ]
=E|£(fs) ~ ()] + £(5) £ + A D3

Interpolation and Approximation Error

Generalization Error

Since we know the stability of Tikhonov regualrization, which is O(1/(n))). If we assume the interpolation
and approximation error to be A®, for some s > 0, then:

E[E(fs) —E(f)) O @) e

We can choose the optimal X to be n=/(+1) and we concluded the proof. O
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Remark 92. It is easy to show that s = 1 when f* € H and the expected excess risk decrease with rate
O(n=1/2)

Theorem 3.3.10. (McDiarmid’s Inequality) Let F' : Z™ x Z™ — R such that for any i =1,...,n, there
is ¢; > 0, where

sup ’F(S)fF(Si"") <¢

SezZn zeZ

Then we have following bounds:

]P)SNPIL (

Theorem 3.3.11. For a B(n) uniformly stable algorithm A, where for any S € Z™, we have fs = A(S),
then:

F(8) ~ Borp [F(9)] 2€) < 260 (s )

=1

21og(2/0)

[E5(fs) = £(fs)| < Bn) + (nB(n) + M)
with probabbilty less than 1 — §, where

M > sup [1(S, z;)|
Sezni=1,..n

Proof. We would set F(S) to be £(fs) — Es(fs), and the apply the McDiarmid’s ineqality, which we know
that [Eg/ F(S")| < B(n), thus we have:

() — £075)| < B+ Bz 11080

Now, to consider the bound, for F(S) — F(S%*)
[£(fs) = E(fsue)| +|E5(fs) = Esis (fe2)

S (1) ) = o) 1 ), 1) — 1St )|+ B)
i
:% %+ﬂ( )<25(n)+%

n

F(S) — F(S8%%)

IN

IN

Plugging back, and we have the statement above. O

Proposition 3.3.6. The value M for Tikhonov’s requalrization is:
sup [1(S, )| < kL’/ 0+ ¢

Sezn,i=1,...,n A
where 1(0,y) < co for ally € Y as | is L-Lipschitz and k* = sup, k(z, x)

Proof. For the empirical minimizer fg, we have

Es(fs) + Mllfsll < Es(0) < co

This means that, since the loss is negative

I5sll </ - sy < /2

l(fs, 2)| < [1(fs,2) =10, 2)] = (0, 2)]
< |U(fs,2) =10, 2)| — co

< KL fsll 4o = KLy /T +co
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Corollary 3.3.2. The generalization bound for Tikhonov’s regualrization is

272 272
é’s(fs)—r‘f(fs)’SQkL +<2kL +kL\/§+CO) 21%(2/5)

nA A
with the probabbilty less than 1 — §
Remark 93. Or, we have

stre) - €9 < 0 ()

We, now, can find a suitable .

3.4 Early Stopping

Remark 94. We consider an iterated algorithm and apply to unregularized ERM with n training points. Let

fn be a solution of ERM and f,(f) be sequence of function obtained by the gradient descent. We would like
to find a spot where the algorithm isn’t trained too few or too much.

Remark 95. The intuition here is that every step of gradient descent allows the points to move from previous

state in certain amount i,e f,gt) € H,@) for some radius r(t). To set an early stop means that we regularize
the space of H.

Lemma 3.4.1. For L-Lipschitz, convez, and differentiable function f:H — R. Then
IVE()I <L

for some f € H.

Proof. We consider, where we set y = x + VF":
LIIVF|| = Ly —all > If () = f@)| = |VF" (y — )| = |VF|?

O
Proposition 3.4.1. At step t of gradient descent with step size v > 0 on F', we have:
||ftHH <tyL
Proof.
1fellze = Il fimr = AVE(fim) g < 1 fe—rllyg + Y IVE(fimt) 3 = [ fe-1ll3 + L
Repeat the process and and we that we have. O]

Lemma 3.4.2. For a function F : H — R convex, M -smooth with minimizer w, € H, we have:
1 2
Flw) ~ Flw) > 5o [VF)l
Proof. We consider the lemma 3.3.2
inf f(v) < inf fw) + V()" (0 —w) + 5 o w?
vEH T veEH 2 H
Let’s consider the derivative with respect to v:
L L
Vo [Vf () (v —w) + 3 lv— w||3{} =V, [wa(w)Tv — Vo f(w) w + §(UTU —20Tw + wlw)
L L
= Vuf(w) —0+§2’u— 52w+0

= wa(”LU) + L(’U - w)
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Setting the derivative to zero gives us:
1
v=w— va f(w)

Plugging it back, and we have:

) < F) 4 91T (0= LVuf0) = 0) + 5 o= L0stw) -0
L 2 L N
1
= () = 7 IVl @I+ 52 IV f )
= () = 5= IV uf @)
Rearrange and we have what required. O

Proposition 3.4.2. Givne a function F : H — R convex M-smooth, then for all v,w, we have:
(VE(w) = VF(@),w— v}y, > 2 [VF(w) ~ VF),
Proof. First, we constructed a function:
Fy(z) = F(2) = (VuwF(w), 2)4 Fy(2) = F(2) = (Vo F(v),2)4
We can see that both functions are M-smooth, as we have:
V.Fy,(z) =V,F(z) = V,F(w)

Furthermore, from this, we can see that z = w is the optima, and same for F,(z) where z = v is also an
optima. Apply the previous lemma, we have:

Ful) = Fulw) > 5 VR, Flw) — Fuv) > oo [VEw),
where:
Fu(v) = P(0) = (VWP (),0)y,  Fow) = P(w) — (Vo F(0),w)

Fy(w) = F(w) = (Vo F(w),w);,  Fy(v) = F(v) = (Vo F(v),v)
And, so we have:

F() ~ F(w) ~ (VaF(w),v — why, > 5 [VE )]
Flw) = F(o) — {VoF (), w =)y > o [VE(w)]
Adding them together, we have:
(VuF(w) = VoF ) w— vy > 2 VEW)IE + 51 [VE (),
> 2 IVEu(0) + VE ),
= IVF@) - VEW

Thus complete the proof. O

Lemma 3.4.3. Letl:H — R be convex differentiable and M-smooth. Let 0 >~ > 2/M and G : H — H be
the gradient step operator: G(f) = f —yVI(f) for f € H, then:

1G(f) =Gl < If = 9ll4
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Proof. We have:
lew) ~cwl, =||r—vun -9+ v
=7 =g+~ (vite) - w10

=[], +|p (vt - i) | - 237 ~ 9. v105) - Vit

2 2 Al 2
< |[£=g|, +21Vite) = VU, — TH IV = VU9,
— 1 = ol = (57 =) 1910 - Vi)l < If - ol
Since v(2/M — v) < 1 since v € [0,2/M]. O

Theorem 3.4.1. Let I(-,y) : H — R be convex, L-Lipschitz and M-smooth uniform. For training set

S e 2", let féT) be obtained by applying gradient descent with step size 1/M on empirical risk to S. The
corresponding algorithm is B(n,T)-stable where:

Proof. Let S € 2™z € Z and i € [n]. We will denote f; to be function after ¢ iteration with gradient step
on S. On the other hand, we denote f; to be a function after ¢ iteration with same learning on S*#. Recall
the result from the proof of theorem 3.3.8, that

@ég I(fr,2) = U fr,2)| < Lk || fr — frlly

We want to control this value. For any ¢ € [n] by construction:
fre1=fe — VVES(ft) ft/+1 = ft/ - ’ngsiw(ft)

Then, we have:

fis = Flaallye = || £ = £ = L7 (Vi 20) = VUH 20)| + 2 Vi) = VU, 2)]

J#i x
2
< =S| = Vi 2) — L+ VI )|+ = Sl
J#i
+ L (191, 2l + IVU A1)

2Lk
= 1fe = Fllog + ==

The second ineqalities comes from lemma 3.4.1 and lemma 3.4.3. Please note that ||VI(f:, 2)||,, < Lk:

oLk  2Lk(t+1)
[ fesr = flallyy < Ife = Filla + P ARy

Setting ¢t + 1 = T, and we finish the proof, while setting v = 1/M O

3.5 Sub-Gradient Methods

3.5.1 Introduction to Sub-Gradient

Definition 3.5.1. (Convex Function) A function f : X — [—00,00] is convex iff, for all 2,y € X and
A€ 0,1]:
F(L =Nz +Ay) < (1= A)f(2) +Af(y)
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Definition 3.5.2. (Extended Value Theorem) We can transform the constrained optimization:

. 2
min ||Ax —
[miny | yll

Using the extended value theorem, where this is the same as:

0 T € By

o € B

grcréi)r(l f(z) = h(z) + Lp,(x) where Lp, (x)= {

Definition 3.5.3. (Subdifferential & Subgradient) Let x € dom(f), the subdifferential:

0f(x) = {ue X|vy € X : f(y) 2 F@) + (y — 2. 0)}

The subgradient is the element of 9f at 2. Please note that z = f(y) > f(x)+ (y — x, u) is the affine function
passing through (x, f(z)) with slope u. If & dom(f), then by definition df(z) = 0

Lemma 3.5.1. Suppose that X = X1 x -+ x Xy and f(z1,...,2m) = fi(x1) + - + fin(@m) where
fi: Xi =) — 00, 00], then we have:

Of(x1,...,xm) =0f1(x1) X -+ X O () C X

—— ——
CX1 CXm
Remark 96. Let’s consider X = R™ where f(z) = ||z||, = ..~ |z;| where f; = |-| : R — R, then we have:

Il (@) = | (1) x - x O (zm) CR™
—— ——
CR CR

where, we have:
{-1} ift<0
O|(z) =4 [-1,1] ift=0
{1} ift>0

Lemma 3.5.2. For a convex function f: R — R (note that it is finite), its subdifferential is:
0f(z) = [f.(x), fi ()]
However, for infinite value function, its subdifferential is:
0f(z) = [f.(2), fi(@)] NR
Remark 97. We have the problem:
3161101 f(x) where C C X is closed convex.

f: X — R is convex and Lipschitz continuous.

If f is finite every where, then subdifferential is non-empty, while in smooth setting, there is one subgradient,
which is the gradient.

3.5.2 Projected Subgradient Method
Definition 3.5.4. (Projected Subgradient Method) The projected subgradient method is given by:
Tpt1 = Pe(wp — yug)

where uy € df(x,) and ~, > 0.
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Remark 98. Projected Subgradient method isn’t decending. We will consider X = R? where f(x1,72) =
|z1| + 2 |22| as we have

8f(170) = {1} X [_2a2]
it is clear that (1,2) € 9f(1,0). Then choosing this subgradient will not lead to any convergence.
Lemma 3.5.3. We would like to note that: if u € 0f(x), then ||u|| < L.

Proof. We consider the following inequalities:

(y —z,u) < fy) — f(2)

< 1f(y) — f(=)]

<Ly -«
If we were to set, u =y — x:

2
(y—zy—z)=ly—=z|" <Ly -z
and by simple rearrangement, we arrived at the statement. O
Lemma 3.5.4.
[x41 — 2kl = [|1Po(yr) — Pe(ze)||l < [lyx — x|

Lemma 3.5.5. Forallk e N andx € C:

29k (f(wk) — f(2)) < 27k (T8 — @5 ui)

2 2
< we — 2l = l|@rg1 — 2|° + 7 L?

Proof. The first ineqalities comes from the definition of subgradient:

29k (f(zr) = f(2)) < 29 (xh — @, ug)
= 2(x) — T, YpUL)
= [l — 2ll* + k]| = ok — @ — yrus]
<l = 2l|* = llye — 2| + 7L
< o — 2l® = oers — =l + 2L

O

-1
Theorem 3.5.1. For all k € N, we have fi, = ming<;<y f(x;) and T = (Zf:o %_) (Zf:o %xl) Then for
allk e Nandx € C: 2 k
To— T L2537 A2
max { fr, f(Zr)} — f(z) < llzo _ | 4 d Zlk_o oF
23 im0 Y oiso i

Proof. We start by summing the lemma:

k k
D o 2vi(f(wi) = f@) <D s — @l|” = l|lwiga — 2)* + 4717
i=0 =0

Let’s consider with the following, with the convexity of f:

And, so we have:

k k
(Z 72’) max { fx, f(Zx)} < Z%—f(i)

1=0 =0
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as fi is always less than f(i) by definition, thus the maximum holds, and, so we can apply the lemma above
with telescoping sum:

k
(ZZ’W) [max{fk, (Zp)} — f(z } 22% x;) — f(x))
k
<Z||$z—$H lisr — 2| + L2 47

=0

k
2 2
= llzo — al® = llersr —al” + LY 7
i=0
k
< oo — >+ L2 Y7
i=0

By rearrange the equation, the statement. O
-1
Corollary 3.5.1. Suppose that ), v = 0o and <Zf:0 ’yi) (E?:o 'yia:i) — 0, then it is clear that
fr — inf f f(@g) — inf f
(& (&

The possible choice: v, = 7/(k +1)? with v € [1/2,1]. In particular, vx = 7/vVk + 1 and 3 = 7/(k + 1)

Remark 99. The result above doesn’t assume that s, = argmin, f # (). As for all x € C, we have:

||$0—.13||2 L? Z’L O,yl
k
221:0 Yi 2 Zi:o Yi

But we can see that limsup f(Zx) < f(z) and for all x € C:

limsup f(Zx) < inf f <lim 1%ff(£k) < limsup f(Zg)
C

and so they are all equal and will converge to f.
Corollary 3.5.2. Suppose that S, = argmin, f # 0 then the following holds:

llzo—S. |l

o Let k € N then: set (v;)o<i<k = S then:
s {f (o)} — min f < ZO002)

e Suppose that X is finite dimensional, where > yx = 0o and Y72 < oo then there exists x, € S, such
that Ty, — oy

e For every k € N where v, = 7/(k + 1), then:

max { fr, f(Tx)} — mcinf <0 (bg(lirl)>

o For every k € N where v, = 5/Vk + 1, then:

max { fr, f(Tg)} — mcinf <0 (log(k—l—l))

k+1
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o For every k € N where v, = 3/Vk + 1, then: fi, = inf g /o) <i<k f(2:) where:

k

2
k
Ty = Z Vi Z Vi

i=|k/2] i=k/2]
Suppose C is bounded then:

max { fi, f(#)} —min f = O (welﬁ)

Definition 3.5.5. (Projected Stochastic Subgradient Method) The algorithm is defined as:
T = Po(or — i)

where 4y, is z-valued random variable such that E[d|zx] € Of (zk). Now, we have xj, and f(z)) are random
varaible now.

2
Remark 100. We are going to define a function values fi, = ming<;<x E[f(z;)] and z, = (Zf:o 'yi) (Zf:o 'yixi) .
Together with the assumption that there exists B > 0 such that for all k € N as E[||ix?] < B2 < oo.

Lemma 3.5.6. For all k € N and all points x € C':
2 2
29, (E[P(z5)] = f(2)) < Ell|lzy — 2°] = Efl|lzs1 — z|"] + 1% B
Proof. We consider y, = x — vl and xg1 = Po(yk), then we have:

29k (wk — @, k) = 2(xp — @, T — Yg)
= [l = @[|* + llox — yal* = lyx — 2|
< g — al* = floxsr — 2ll* + 7
and so we have:
2k (xp — x, Blug|zk]) = 2 (xr — @, 2 — yi)

< llax = ol* = E [llzxsr — I 2] +12E el [ |

Note that
29 (F(wx) = () < 2 (on - @, Elula)

and so, we have:
298 (ELf (@0)] = £(@)) < Nl = 2l* — E [lanss — 2l*] +2ZE |l

< llax = &|* = E [llzxsr — 2|*] + 2B

Theorem 3.5.2. For all number k € N and for all x € C: we have
2 k
E[flzo — /7] B72 >ici %‘2
k k
2 Zz‘:o Vi 2 21':1 Yi

Corollary 3.5.3. Suppose that > poqve = 00 and > v2/ > ov — 0 where v = 7/(1 + k)? with
a €[1/2,1]. Then fi — infc f and E[f(Zx)] — infe f

max { f, E[f (Zx)]} — f(2) <

Corollary 3.5.4. Suppose that S, = argmin, f # 0 and let D > dist(xg, Ss) then the following holds:
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o Let k € N and set (vi)1<i<k = D/(BVk + 1) then:

- . BD
masc{fo B @]} —min [ < 7=
o Sety, =7/Vk+1 then:
: . log(k + 1)
e Elf 0]} - < 0 ()

3.5.3 Examples of Stochastic Optimization

Remark 101. (Stochastic Optimization) We have the following setting:

min f(x) = E[f(z, )] = /Z F(z,2) du(Z)

zeC

where ¢ is random variable taking values in measurable space Z with distribution measure p(Z) and F :
X x Z — R such that:

e F(-, z)is convex and L(Z)-Lipschitz continuous and
/ L(2)? du(2) < o0
z

o F(0,2) € LY(Z,pu)
e There exists VF : X x Z — X such that VF(z, z) is subgradient of F(-,z) at X.
o (&k)ken is sequence of independent copies of S.

Remark 102.
|F(,2)| < [F(z,) = F(0,-)| + |[F(0,)]

< LC) [l + [F(0, )]
Thus F(x,-) € L' (z, ).
Definition 3.5.6. (Projected Gradient Descent) We have the following algorithm:
Trr1 = Pz, — i VF (w1, &)
N
U

Checking the assumption on :

o z; = x4(&, ..., &k—1) as we have x;, and &, are independent that random value.

e We have: i
F(y,z) > F(z,z) + <y -z, VF(:E,Z)>

) > fa)+ <y Y AL >

E[VF(x,£)]

for all 2,y € X and z € Z. And, E[VF(z,¢)] € df(z), or we have

E[V F(zy, €)]as] = / VF(ar,2) du(z) € 0f (xx)
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e We have: )
E M@F(l’k,&)H

xk} :/H@F(xk,z)‘f du(2)
< /L(;/:)2 du(2) = B?

Definition 3.5.7. (Statistical Learning) Let £ and 1 be 2 random values with value in X and ) repec-
tively, and let p be the distribution of (§,7). Let I : X x ¥ xR — R be a convex loss function and ® : X — H
be a feature map:

min R(w) = /Xxy Uz, y, (w,8(s))) du(X,Y)

weH
=E[I(&n, (w, ®(s)))]

based on some sequence (&, Nk )ren of independent copies of (£,7). We assume:
e I(z,y,-) is 2-Lipschitz continuous and E[I(&,n,0)] < co

o E {||<I>(x)||2} < oo as we have E[k(&,€)] < o0

We will now check that the assumption for stochastic optimization holds, where we will set Z = X x ),
F:HxZ—->Rand F(w,z) =l(z,y, (w,®(x)))

e Let’s counsider the F(+, z) = l(x,y, (-, ®(x))) and it is convex:
[F(wy, 2) — Flw, 2)] = 1wy, (w1, 8(x))) — Uz, g, (w1, B(z))
< 2[{wy — wy, B(2))|
< 2[[ @@ flwn = wo
L(z)
e We have F(0,-) =1(-,-,0) € LY(Z, pn)
e For the subgradient, we have:
OF (w, z) = 0l(x,y, (w,®(z))) ®(z) C H
I 7
as we have I : X x ) x R — R or we have I'(z,y,t) € 8l(z,y,t), thus we have:
VF(w,z) =1 (z,y, (w,®)))®(z) € OF (w, 2)
And so the third condition holds.
o &, = (&k,mi) and so the final assumption holds.
Definition 3.5.8. (Statitical Learning Algorithm) The algorithm:
Wia1 = W — Vel (§s N (W1 @(Ek)))D(ER)
This isn’t practical as H is co-dimension. However, we can have:
gri1(2) = gr(@) — Wl (e, M 90 (6)) K (2, &)
Where k(z,2") = (®(x), ®(2")) is kernel function.
Remark 103. We let

-1

k Lk k k
Wn, = (Z %‘) (Z %‘wi> gn(x) = (W, B(2)) = (Z %‘) (Z %‘gz‘(ﬂ?)>

=0

We have:
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e The risk of g is R(wy) and according to corollary, we have:

R(wy,) — inf R
H

provided that 7% v = o0 and (3252 7) " (X 72) = 0
e Suppose that S, = argming R # () and let D > d(sg, S«)
— If v = vk + 1 then:
E[R(wg)] —min R < O | ——=
(Rw)] - i < 0 (“EEE)

,_.

o

o
—
ol

+

==
S~—

— Let k € N and let (v;)1<i<k = D/(BvVk + 1) then:

BD
E|R(wg)] — min R <
[R()] —min R < ——

Where B2 = 4E [[16(6)) ]
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Appendix A

Additional Proof

A.1 RKHS in Machine Learning

A.1.1 Expansion of Centered Matrix for PCA

Smarter way to do it is:
1 1
X (1 - 1“”) XT=XxXT - =X1,,4nXT
n n

Now, we consider the second one:

T
n n

1 1 n n , 1 1 o ) o
; Iz‘*gj;fﬂj $i*ﬁ;$j :;Iﬂt, *gXl:E,;fﬁxi]_ X +ﬁX11 X

1 2 1 &
= [=x117x7T i | = =) X1al + 2,17 X"
- —l—;gcxz n; T; +x

1 T (2
= |=x117x7T + xxT| - quf]
L7 - "=

1 1T (2. &
= |-x117x7 + xXxT| - X1fo]
" 4L i=1

n
1 T T ] [2 T T
=[-X11" X" + XX | - |-X11" X
n n

] 1
=xXxT - -x117x7
n

Note that for vector a and b, we have ab? = baT

A.1.2 Centering Kernel Matrix

Please note that

Feoy) = (3. 6(2))) = <¢<xi> — LS o), o) i2¢<xk>>
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Let’s see that:

Foi2y) = <¢><xi> > ), o) — ¢><xk>>

k=1 k=1
= (6(w:), 6(a;)) — <¢<xz>7 LS ) ) - <¢<x]>, L Z¢<xk>> ¥ <; > ol ¢<xk>>
k=1 k=1 k=1 k=1
= (82, 0(w3)) — S (8, 6(wn) — + S (8(as), dlan)) + 5 D0 D (e, ow)

Now, let’s consider K = HK H, which we have:

~ 1 1 1 1
K= (I_ 1n><n> K (I_ 1n><n) = (K_ 1n><nK> (I_ 1n><n>
n n n n

1 1 1
=K - 7K]—n><n - 71n><nK + *2]-n><nK1n><n
n n n

It is clear that K corresponds to @, and we can see that:

Do (T, @)
1 Z':l <$2,LEZ‘> 1 1 : : o
EKlan = E ' . glanK = E Z?:l <ZC1,SL‘Z‘> Z?:l <1‘2,1‘i> e Z?:l <l’n,$z>

Z?:l <'$n, xl>

And, so the addition of them would lead to the @ Finally, @ can be shown easily as we use the result
above and multiply by 1,,xp.

—_

A.1.3 Ridge Regression Expansion
We will show that )
—2y"XTCb+ b7 = |[CXy - b — ||[y" X7 C|
where C' = (X XT + AI)~1/2, please note that C = C”. Let’s consider the right handside:
leXy —o)* — [y XTOT|* = (CXy — H)T(CXy —b) — (T XTCT)T (4" XTCT)

= (" XTCT - ") (CXy—b) — (y" XTCT)T(y"XTCT)
=yI'XTCTCXy —yTXTCTh - bTCXy 4+ bTb — CXyyt XTCT
=@W'XTcTexy — CXyy" XTCT) — 29" XTCTb 4+ b™
=20 XTCTh+ b0
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A.1.4 Representor Theorem for Ridge Regression

We will assume that

Bi1 B2 Bin
X(XTX 4 AL) ly = X 5:21 5:22 B?n ,
Bt Bo Ban

_Z?:l z1:6i1
n
Zi:l 201

>0 @aiBi

Z?:l x1iBi2
n
Zizl T2iBi2

S TaiBio

ZZL:l l’lzﬂm_
n
Zi:l xZiBin

Z?:l xdiﬂin_

(> B Y T1ifie S wiBn| [0
n n n

Yo T2t Y oiq T2ifi2 Y1 Z2ifin | |2

> i ®aiBin Yo Taibie St @aiBin] |Yn

_Z_?:l Yj ZLl Ilzﬂzj

5 i Z?=1 Z?:l Y1 Bij
D1 Y 2oim T2iBi

Z?=1 2?21 Yjr2iBij

> i1 Y5 2imt TniBig D i1 2im1 YiTnilij
_2:;1 Z?:l ijllﬂij

n mn
Doic1 2ot Yi®2ibBi

> i1 221 YiTniBij

The rest will be in main proof.

A.1.5 MMD Integration

We have
[[ =0 ap - Qs ap - @)t
— [ [Eenr (s = ) - Eung k(s ~ )] 4P - Q)(0)
— [Eee k(s = 0] AP = Q)(O) ~ [ Eung[kls = 1] 4P = Q)(1)

- [EMESNP[k(s — )] = EregEonplk(s — t)]} - [EtNPESNQ[k(s —1)] = EregEonglk(s — t)]}
— Epk(s — )] + Eqlk(s — )] — 2Ep glk(s — 1)

A.1.6 Biased Estimate of HSIC Part 2

We have )
> e lib
n n n 22:1 lop
1K = [Zazl ka1 Za:l ka2 Za:l kan} L1 = :
22:1 lnb
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A.2 Experimental Proof

A.2.1 Projected Gradient Descent

Lemma A.2.1. We would like to note that, for some y € R% and x € Q
Mo(y) — 2l* < lly — = - lly - Ta(y)|”

Remark 104. The projected gradient descent can be splitted into 2 parts:

Yt+1 = Tt — ’va(l“t)
Ti41 = HQ(yt+1)
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