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1 Probability Basis

1.1 Statistics Introduction

Remark 1. Before we start anything, let’s recall the definition of all distributions (that would be used):

Distribution Sample Space Probability Density Function E[x] var(x) Parameter

Bernoulli {0, 1} θx(1− θ)1−x θ θ(1− θ) θ ∈ [0, 1]

Bernoulli(+)

{
x ∈ {0, 1}D∑D
i=1 xi = 1

∏D
i=1 θ

xi
i θi var[xi] = θi(1− θi)

{
0 ≤ θ ≤ 1∑D
i=1 θi = 1

Binomial [N ]

(
N
x

)
θx(1− θ)1−x Nθ Nθ(1− θ) θ ∈ [0, 1]

Multinormal

{
x ∈ [N ]D∑D
i=1 xi = N

N !

x1x2 · · ·xK
∏D
i=1 θ

xi
i Nθi Nθi(1− θi)

{
0 ≤ θ ≤ 1∑D
i=1 θi = 1

Gaussian R
1

√
2πσ2

exp

{
−

1

2σ2
(x− µ)2

}
µ σ2

{
µ ∈ R
σ ∈ R≥0

Multinormal RD
1√
|2πΣ|

exp

{
−

1

2
(x− µ)TΣ−1(x− µ)

}
µ Σ

{
µ ∈ RD

Σ ∈ SD×D+

Beta [0, 1]
Γ

Γ(a) + Γ(b)
xa−1(1− x)b−1

a

a+ b

ab

(a+ b)2(a+ b+ 1)

{
a > 0

b > 0

Dirichlet


x ∈ RD

0 ≤ x ≤ 1∑D
i=1 xi = 1

Γ(θ̂)

Γ(θ1) · · ·Γ(θD)

∏D
i=1 x

θi−1
i θi/θ̂


var[xi] =

θi(θ̂ − θi)
θ̂2(θ̂ + 1)

cov[xixj ] =
− θiθj

θ̂2(θ̂ + 1)

θi > 0

Gamma x > 0
1

Γ(a)
baxa−1 exp(−bx)

a

b

a

b2

{
a > 0

b > 0

Wishart∗ Λ−1 ∈ SD×D+ B(W , ν) |Λ|(ν−D−1)/2
exp

(
−

1

2
Tr(W−1Λ)

)
νW −

{
W ∈ SD×D+

ν > D − 1

Poisson N0

λxe−λ

x!
λ λ λ > 0

Table 1: ∗1D Wishart is Gamma with a = ν/2 and 1/2W
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where SD×D+ is the set of positive definite matrix of size D×D, also we have the following addition definitions:

Γ(z) =

∫ ∞
0

xz−1 exp(−x) dx θ̂ =

D∑
i=1

θi

B(W , ν) = |W |−ν/2
(

2νD/2πD(D−1)/4
D∏
i=1

Γ

(
ν + 1− i

2

))−1

Remark 2. (Basic Quantities) Now we will consider the following probability facts, which would be useful
in the future:

E[f(x)] =

∫
p(x)f(x) dx cov(x,y) = Ex,y[(x− E[x])(y − E[y])T ]

= Exy[xyT ]− E[x]E[yT ]

var[f(x)] = E[(f(x)− E[f(x)])2]

= E[f(x)2]− E[f(x)]2

Remark 3. (Additional Quantities) We have the following equality:

Ex[f(x)] = Ez
[
Ex|z[f(x)]

]
Vx[x] = Ez [V[x|z]] + Vz[E[x|z]]

1.2 Linear Algebra

Proposition 1.1. (Woodbury Identity) This following identity can helps the computation as follows:

(A+BD−1C)−1 = A−1 −A−1B(D +CA−1B)−1CA−1

This identity is useful when A ∈ Ra×a is large and diagonal (easy to invert), while B ∈ Ra×b has many rows
but few columns (a > b) conversely for C ∈ Rb×a. The RHS is simplier than LHS.

Proof. This can be proven easily as:[
A−1 −A−1B(D +CA−1B)−1CA−1

]
(A+BD−1C)

= A−1(A+BD−1C)−A−1B(D +CA−1B)−1CA−1(A+BD−1C)

= A−1A+A−1BD−1C −A−1B(D +CA−1B)−1CA−1A

−A−1B(D +CA−1B)−1CA−1BD−1C

= I +A−1BD−1C −A−1B(D +CA−1B)−1DD−1C

−A−1B(D +CA−1B)−1CA−1BD−1C

= I +A−1BD−1C −A−1B
[
(D +CA−1B)−1D + (D +CA−1B)−1CA−1B

]
D−1C

= I +A−1BD−1C −A−1B
[
(D +CA−1B)−1(D +CA−1B)

]
D−1C

= I +A−1BD−1C −A−1BD−1C = I

Proposition 1.2. (Another Identity) Another useful identity can be stated as:

(P−1 +BTR−1B)−1BTR−1 = PBT (BPBT +R)−1
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Proof. This can be proven easily as:

(P−1 +BTR−1B)−1BTR−1(BPBT +R)

= (P−1 +BTR−1B)−1BTR−1BPBT + (P−1 +BTR−1B)−1BTR−1R

= (P−1 +BTR−1B)−1BTR−1BPBT + (P−1 +BTR−1B)−1BT

= (P−1 +BTR−1B)−1
[
BTR−1BP + P−1P

]
BT

= (P−1 +BTR−1B)−1
[
BTR−1B + P−1

]
PBT = PBT

Remark 4. (More Matrix Identities) We have the following:

Tr(ABC) = Tr(CAB) = Tr(BCA)
∣∣A−1

∣∣ =
1

|A|
|AB| = |A| |B|

Remark 5. (Additional Identity) ∣∣∣IN +ABT
∣∣∣ =

∣∣∣IM +ATB
∣∣∣

This also implies that
∣∣∣IN + abT

∣∣∣ = 1 + aT b

Remark 6. (Matrix Derivative - Basics) We still use the following facts:

∂

∂x
(xTa) =

∂

∂x
(aTx) = a

∂

∂x
AB =

∂A

∂x
B +

∂B

∂x
A

∂

∂x
xTAx = (A+AT )x

Proposition 1.3. The derivative of the inverse matrix is given by:

∂

∂x
(A−1) = −A−1 ∂A

∂x
A−1

Proof. We consider differetiate the following eqation A−1A = I as we have:

0 =

(
∂

∂x
I

)
A−1 =

(
∂

∂x
A−1A

)
A−1 =

(
∂A−1

∂x
A+A−1 ∂A

∂x

)
A−1 =

∂A−1

∂x
+A−1 ∂A

∂x
A−1

With algebraic manipulation the proposition is proven.

Remark 7. (Additional Matrix Derivative)

∂

∂A
Tr(AB) = BT ∂

∂A
Tr(ATB) = B

∂

∂A
Tr(A) = I

∂

∂A
Tr(ABAT ) = A(B +BT )

Proposition 1.4. The matrix can be diagonalization as:

A = UΛUT =

N∑
i=1

λiuiu
T
i

U to be the matrix constrcuted that has the column as the eigenvectors ui. The matrix Λ is the diagonal
matrix, whose diagonal element is the eigenvalue λi.

Proof. Recall that the square matrix A ∈ RM×M ’s eigenvalue and eigenvector, which are given by:

Aui = λiui

For i = 1, . . . ,M where ui is the eigenvector and λi is the corresponding eigenvalue. This means that
AU = UΛ; furthermore, UUT = UTU = I as we have |U | = 1. The identity follows by right multiplying
with UT .
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Proposition 1.5. We can show that the determinant and trace of the matrix to be:

|A| =
M∏
i=1

λi Tr(A) =

M∑
i=1

λi

This follows from the identity of determinant and the cyclic properties of trace.

Proposition 1.6. We now going to show very useful identity

∂

∂x
ln |A| = Tr

(
A−1 ∂A

∂x

)
Proof. We consider the LHS first, as we have:

∂

∂x
ln |A| = ∂

∂x
ln

(
M∏
i=1

λi

)
=

∂

∂x

M∑
i=1

lnλi =

M∑
i=1

1

λi

∂λi
∂x

Now, consider the RHS, which we have:

Tr

([
M∑
i=1

1

λi
uiu

T
i

][
M∑
i=1

∂λi
∂x
uiu

T
i

])
= Tr

 M∑
i=1

M∑
j=1

1

λi
uiu

T
i

∂λj
∂x
uju

T
j


=

M∑
i=1

M∑
j=1

1

λi

∂λj
∂x

Tr
(
uiu

T
i uju

T
j

)
=

M∑
i=1

M∑
j=1

1

λi

∂λj
∂x

Tr
(
uTi uju

T
j ui

)
=

M∑
i=1

1

λi

∂λi
∂x

The equality is proven.

Corollary 1.1. The above proposition implies that:

∂

∂A
ln |A| = (A−1)T

Proof. Consider the following partial derivative, we have:

∂

∂acd
ln |A| = Tr

(
A−1 ∂A

∂acd

)
= a−1

dc

where we have a−1
ij be the (i, j)-th element of the matrix A−1. Thus we have proven the equality.

Proposition 1.7. We can show that:

∂

∂A
Tr[ATBAC] = BAC +BTACT

Proof. We will use the identity mapping F1(·) and F2(·) to make the differetiation easier:

∂

∂A
Tr[ATBAC] =

∂

∂A
Tr[F1(A)TBF2(A)C]

=
∂

∂F 1
Tr[F T1BF 2C]

∂F1

∂A
+

∂

∂F 2
Tr[F T1BF 2C]

∂F2

∂A

=
∂

∂F 1
Tr[F T1BF 2C]

∂F1

∂A
+

∂

∂F 2
Tr[CF T1BF 2]

∂F2

∂A

=
∂

∂F 1
Tr[F T1BF 2C]

∂F1

∂A
+

∂

∂F 2
Tr[F T2B

TF 1C
T ]
∂F2

∂A

= BF 2C +BTF 1C
T = BAC +BTACT

where we have F1(A) = F2(A) = F 1 = F 2 = A
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Remark 8. (Notes on Symmetric Matrix) We can construct the symmetric matrix from any kind of
matrix A using the following formula:

M =
A+AT

2

One can show that its eigenvalue is real (given real symmetric matrix), as we consider the complex of,
assuning x is an eigenvector of M with its eigenvalue to be λ:

〈Mx,Mx〉 = x∗M∗Mx = x∗MMx = x∗λ2x = λ2 ‖x‖2

Where M∗ = M̄
T

, and so λ2 is real a non-negative, thus being a real number.

Remark 9. (Notes on Square-Root of Matrix) Given positive semi-definite matrix A, one can show
that there a matrix B such that A = BB (or BTB as B is symmetric as we will shown later). Given the
eigendecomposition of A to be UΛUT , matrix B is U

√
ΛUT , where

√
Λ is the matrix contains square root

of the diagonal of Λ:

BB = (U
√

ΛUT )(U
√

ΛUT ) = U
√

Λ
√

ΛUT = UΛUT = A

Please note that, since A is positive semi-definite, the eigenvalue is non-negative implies that B has real
value eigenvalue (and non-negative), and so B is symmetric. Finally, if A is positive define, then there is a
unique B.

Proposition 1.8. (Partition Matrix) The block matrix can be inversed as:(
A B
C D

)
=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)
where M = (A−BD−1C)−1

1.3 Optimization

Definition 1.1. (Constraint Optimization) The constraint optimization is the optimization problem is
in the form of:

min
x

f0(x)

s.t fi(x) ≤ 0 i ∈ I = [m]

hi(x) = 0 i ∈ E = [p]

Definition 1.2. (KKT Condition) The constraint optimization problem given above can be solved using
the KKT condition. Before that, we consider the Lagragian to be defined as:

L(x,λ,µ) = f0(x) +
∑
i∈I

λifi(x) +
∑
i∈E

µihi(x)

The KKT condition is given by:
∇L(x,λ,µ) = 0

fi(x) ≤ 0 for i ∈ I
hi(x) = 0 for i ∈ E
λi ≥ 0 for i ∈ I
λifi(x) = 0 for i ∈ I

1.4 What are we going to do ?

Theorem 1.1. (Bayes’ Theorem) One can show that:

p(A|B) =
p(B|A)p(A)

p(B)
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Remark 10. There are many ways to learn the parameter given the dataset D = {xi}Ni=1, as we have:

• Maximum Likelihood: Find the parameter θML such that it maximizes the log-likelihood as we have:

θML = arg max
θ

log p(D|θ)

• Bayesian Inference: Find the distribution over the parameter θ using Bayes’ Theorem:

p(θ|D) =
p(θ)p(D|θ)

p(D)

• Maximum A Posteriori : Find the mode of the posterior distribution over parameter

θMAP = arg max
θ

logP (θ|D)

The main problems/solutions of this works is simply trying to get better estimate of p(θ|D) as it maybe
intractable to calculate.

Definition 1.3. (Bayesian Model) The model is M = {P (·|θ) : θ ∈ T }, where they are the distribution
of a single random variable X ∼ P (·|θ). Given the prior, we also have a prior π on parameter space T . The
data is generated by the following process:

Θ ∼ π X1, . . . , Xn|Θ ∼iid p(·|Θ)

The tuple (M, π) is the Bayesian model.

Remark 11. (Model Selection) Given various kinds of modelM1,M2, . . . . The following set of likelihood
associated with Mi is

{p(x|θi,Mi) : θi ∈ Ti}

We are interested in selecting theMi. Starting with the prior p(Mi) and the prior probability of parameter,
given the model Mi, is p(θi|Mi). Finally, the data probability is, where we assume the iid of the dataset:

p(D|θi,Mi) =

N∏
i=1

p(xi|θi,Mi)

Now, we can find the posterior of the parameter given the model Mi together with dataset evidence:

p(θi|D,Mi) =
p(D|θi,Mi)P (θi|Mi)

p(D|Mi)
p(D|Mi) =

∫
p(D|θi,M)p(θi|Mi) dθi

We can perform Bayesian inference over the model Mi

p(Mi|D) =
p(D|Mi)p(Mi)

p(D)

Now, we have the distribution over possible models.

1.5 Exponential Family and Friends

Definition 1.4. (Exponential Family) The set of probability distribution {p(·|θ) : θ ∈ T }, where T is
the parameter space, is exponential family if we have the distribution of the form:

p(x|θ) = f(x)g(θ) exp
(
φ(θ)TT (x)

)
where each components are given (and named) as:
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• Sufficient Statistics: T : X → Rm

• Natural Parameter: φ : T → Rm

• Auxilliary Functions f : X → R≥0 and g : T → R>0 (normalizing factor)

Please note that the function g has the following properties:

g(θ)

∫
f(x) exp

(
φ(θ)TT (x)

)
dx = 1

Remark 12. Let’s consider the example of exponential families as:

Distribution φ(θ) T (x)

Bernoulli/Binomial ln

(
θ

1− θ

)
x

Bernoulli(+)/Multinormal [ln θ1, ln θ2, . . . , ln θD] [x1, x2, . . . , xD]

Gaussian [µ/σ2,−1/2σ2] [x, x2]

Multinormal

[
−

1

2
Vec(Σ−1), Σ−1µ

] [
Vec(xxT ), x

]
Beta [a− 1, b− 1] [lnx, ln(1− x)]

Dirichlet [a1 − 1, a2 − 1, . . . , aD − 1] [lnx1, lnx2, . . . , lnxD]

Gamma [a− 1,−b] [lnx, x]

Poisson lnλ x

where we have the following opeartion Vec : Rn×m → Rn·n×1 is defined as:

Vec(X) = [X11, . . . , Xn1, . . . , X1m, . . . , Xnm]T

Proposition 1.9. The normal distribution can be written as:

1√
|2πΣ|

exp

{
−

1

2
(x− µ)TΣ−1(x− µ)

}

=
1√
|2πΣ|

exp

{
−1

2
µTΣ−1µ

}
exp

{[
−1

2
Vec

(
Σ−1

)
,Σ−1µ

]T [
Vec

(
xxT

)
,x
]}

Please note that Tr(AB) = vec(A)T vec(B), which is proven by the expanding the equation.

Proof. Now, we expand the normal distribution:

1√
|2πΣ|

exp

{
−

1

2
(x− µ)TΣ−1(x− µ)

}

=
1√
|2πΣ|

exp

{
−

1

2
(xTΣ−1 − µTΣ−1)(x− µ)

}

=
1√
|2πΣ|

exp

{
−

1

2

(
xTΣ−1x− 2µTΣ−1x+ µTΣ−1µ

)}

=
1√
|2πΣ|

exp

{
−1

2
µTΣ−1µ

}
exp

{
−1

2
xTΣ−1x+ µTΣ−1x

}
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Now, we consider the quadratic xTΣ−1x, as we have:

Tr(xTΣ−1x) = Tr(Σ−1xxT ) = Vec(Σ−1)T Vec(xxT )

And, so we have the following:

1√
|2πΣ|

exp

{
−1

2
µTΣ−1µ

}
exp

{
−1

2
xTΣ−1x+ µTΣ−1x

}
=

1√
|2πΣ|

exp

{
−1

2
µTΣ−1µ

}
exp

{
−1

2
Vec(Σ−1)T Vec(xxT ) + µTΣ−1x

}
and so we have proven the proposition.

Remark 13. Now, we can consider the iid observations {xi}Ni=1 of exponential family and we have:

N∏
i=1

[
f(xi)g(θ) exp

(
φ(θ)TT (xi)

)]
= g(θ)N

(
N∏
i=1

f(xi)

)
exp

(
N∑
i=1

φ(θ)TT (xi)

)

Definition 1.5. (Conjugate Prior) The conjugate prior of the exponential family is the probability
distribution of the form of:

p(θ|τ , ν) = f(τ , ν)g(θ)ν exp
(
φ(θ)T τ

)
where ν > 0 and τ ∈ Rm. It is designed so that the posterior given this prior will have the same distribution
as the conjugate prior.

Remark 14. The conjugate prior allow use to find the posterior with ease as we don’t have to find the
normalization of the Bayes’ theorem:

p(θ|D) ∝ p(D|θ)p(θ|τ , ν) ∝ g(θ)N+ν exp

(
φ(θ)T

(
τ +

N∑
i=1

T (xi)

))

= F

(
τ +

N∑
i=1

T (xi), N + ν

)
g(θ)N+ν exp

(
φ(θ)T

(
τ +

N∑
i=1

T (xi)

))

And so we have τ quantify the pseudo-observations via the sufficient statistics. Furthermore, ν is the
pseudo-count of the pseudo-observation (can also be seen as the weight of prior belief).

Remark 15. Now, we have the following list of conjugate prior, where it is shown in the table below:

Distribution Conjugate Distribution (2) Conjugate (2)

Bernoulli Beta Multinormal (unknown µ) Multinormal

Poisson Gamma Multinormal (unknown Λ = Σ−1) Wishart
Multinormal Dirichlet Multinormal (unknown Λ) Normal-Wishart
Normal (unknown µ) Normal
Normal (unknown τ = σ−1) Gamma
Normal (unknown µ, τ) Normal-Gamma

Definition 1.6. (Normal-Gamma Distribution) The Normal-Gamma is defined as:

p(x, τ |µ, λ, α, β) =
βα
√
λ

Γ(α)
√

2π
τα−1/2 exp(−βτ) exp

(
−λτ(x− µ)2

2

)
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similarly the Normal-Wishart distribution is given by N (µ|µ0, (λΛ)−1)W(Λ|W , ν), whereW is the Wishart
distribution, where we consider (µ,Σ) ∼ NW(µ0, λ,W , µ), given as:

N (µ|µ0, (λΛ)−1)W(Λ|W , ν)

= B(W , ν) |Λ|(ν−D−1)/2
exp

(
−

1

2
Tr(W−1Λ)

)
1√

|2π(λΛ)−1|
exp

{
−
λ

2
(µ− µ0)TΛ(µ− µ0)

}

=
B(W , ν) |Λ|(ν−D−1)/2√

|2π(λΛ)−1|
exp

(
−1

2
Tr
[
W−1Λ

]
− λ

2
(µ− µ0)TΛ(µ− µ0)T

)

1.6 Everything You Always Wanted to Know About Gaussian But Were Afraid
to Ask..

Proposition 1.10. (Gaussian Integration) We can show that:∫ ∞
−∞

exp(−x2) dx =
√
π

Remark 16. (Shape of Gaussian) Recalling the definition of multivariate Gaussian distribution:

1√
|2πΣ|

exp

{
−

1

2
(x− µ)TΣ−1(x− µ)

}

where we will define the Mahalanobis distance of relating to the Gaussian to be ∆2 = (x−µ)TΣ−1(x−µ).
Now, it is clear that the shape of the Gaussian depends on this value. Now, using the eigendecomposition
on the covariance function, we have:

Σ−1 =

D∑
i=1

1

λi
uiu

T
i =⇒ ∆2 =

D∑
i=1

y2
i

λi

where (λi,ui) is the eigenvalue/eigenvector pair of Σ, and yi = uTi (x−µ). Now for the full vector y is equal
to U(x− µ). Therefore, the shape of Gaussian is charaterized as:

• Ellipsoids with the center at µ

• Axis is in the direction of eigenvector ui.

• Scaling of each direction is the eigenvector λi associated with ui

Remark 17. (Normalizing Factor of Gaussian) To show that the multivariate Gaussian indeed is normal-
ized, we consider a change of coordinate to the eigen-basis consider above. To do this, we consider Jacobina
matrix J as:

Jij =
∂xi
∂yi

= Uji

Since U is orthonormal, we have: |J |2 = |UT |2 = |UT ||U | = |UTU | = |I| = 1. Now, using the definition of

determinant: |Σ|1/2 =
∏D
i=1 |λj |

1/2
. And, so one can perform the integration over as:

∫
p(x) dx =

∫
p(y)|J | dy =

∫ D∏
i=1

1√
2πλi

exp

{
− y2

i

2λi

}
dy =

D∏
i=1

∫
1√

2πλi
exp

{
− y2

i

2λi

}
dyi = 1

The final equality integration follows from the Gaussian integration.
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Proposition 1.11. Consider the following multivariate Gaussian distribution:(
xa
xb

)
∼ N

((
µa
µb

)
,

(
Σaa Σab

Σba Σbb

))
where Λ−1 = Σ, then we can show that:

p(xa|xb) = N (x|µa|b,Λ−1
aa ) where µa|b = µa −Λ−1

aaΛab(xb − µb)

One can simply the equaltion by consider the value K = ΣabΣ
−1
bb and since Σab = Σba, then we have:

µa|b = µa +K(xb − µb)

Σa|b = Σaa −KΣbbK
T

= Σaa −ΣabΣ
−1
bb Σba

The above equation follows from the block-matrix inverse.

Proof. We will consider only the quadratic term inside Gaussian, as we have:

−1

2
(x− µ)TΣ−1(x− µ) =

− 1

2
(xa − µa)TΛaa(xa − µa)− 1

2
(xa − µa)TΛab(xb − µb)

− 1

2
(xb − µb)TΛba(xa − µa)− 1

2
(xb − µb)TΛbb(xb − µb)

Now, we are interested to find the condition distribution as it will have the form of:

−1

2
(xa − µa|b)TΣ−1

a|b(xa − µa|b) = −1

2
xTaΣ−1

a|bxa︸ ︷︷ ︸
1

+xTaΣ−1
a|bµa|b︸ ︷︷ ︸
2

+ const

Now, let’s consider the term for full Gaussian that have the form that matches the condition distribution:

1. The first one is simple as we have: − 1
2x

T
aΛaaxa, and so, one can conclude that Σ−1

a|b = Λaa.

2. For the second term, we consider equation with xTa (· · · ), as we have (from term 2 and 3):

xTaΛaaµa −
1

2
xTaΛabxb +

1

2
xTaΛabµb +

1

2
µTb Λbaxa −

1

2
xTb Λbaxa

= xTa

[
Λaaµa + Λab(xb − µb)

]
For the second equality, we use the fact that ΛT

ba = Λab. Now we simply apply the inverse of Λaa to
get the mean, which means:

xTaΛaaµa|b = xTa

[
Λaaµa + Λab(xb − µb)

]
=⇒ µa|b = µa + Λ−1

aaΛab(xb − µb)

as required.

Please note that one can use the block inverse above to calculate Λaa and Λab in terms of Σ.

Proposition 1.12. Consider the following multivariate Gaussian distribution:(
xa
xb

)
∼ N

((
µa
µb

)
,

(
Σaa Σab

Σba Σbb

))
where Λ−1 = Σ, then we can show that: p(xa) = N (x|µa,Σaa)
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Proof. We will use the full expansion of Gaussian like above proof. However, we will consider the term with
xb, first as we have (similar to the conditional case):

−1

2
xTb Λbbxb + xTb Λbbµb −

1

2
xTb Λbaxa +

1

2
xTb Λbaµa −

1

2
xTaΛabxb +

1

2
µTaΛabxb

= −1

2
xTb Λbbxb + xTb Λbbµb − xTb Λbaxa + xTb Λbaµa

= −1

2

[
xTb Λbbxb + 2xTb ΛbbΛ

−1
bb

(
Λbbµb −Λba(xa − µa)

)︸ ︷︷ ︸
m

]
= −1

2

[
xTb Λbbxb − 2xTb ΛbbΛ

−1
bb m+ (Λ−1

bb m)TΛbb(Λ
−1
bb m)

]
+

1

2
mTΛ−1

bb m

= −1

2
(xb −Λ−1

bb m)TΛbb(xb −Λ−1
bb m) +

1

2
mTΛ−1

bb m

Now, we can integrate out the quantities (that depends on xb) i.e:∫
exp

{
−1

2
(xb −Λ−1

bb m)TΛbb(xb −Λ−1
bb m)

}
dxb

Since it is a Gaussian integration, we didn’t have to perform any thing further as this would yields similar
value for normalization factor. Now, consider the vales related to xa (without xb) and the leftout value from
above:

1

2
mTΛ−1

bb m−
1

2
xTaΛaaxa + xTaΛaaµa +

1

2
xTaΛabµb +

1

2
µTb Λbaxa

=
1

2

[
Λbbµb −Λba(xa − µa)

]T
Λ−1
bb

[
Λbbµb −Λba(xa − µa)

]
− 1

2
xTaΛaaxa + xTaΛaaµa + xTaΛabµb

=
1

2

[
µTb Λbbµb − (xa − µa)TΛT

baµb

− µTb Λba(xa − µa) + (xa − µa)TΛT
baΛ

−1
bb Λba(xa − µa)

]
− 1

2
xTaΛaaxa + xTaΛaaµa + xTaΛabµb

=
1

2

[
µTb Λbbµb − xTaΛT

baµb + µTaΛT
baµb − µTb Λbaxa + µTb Λbaµa

+ xTaΛT
baΛ

−1
bb Λbaxa − µTaΛT

baΛ
−1
bb Λbaxa − xTaΛT

baΛ
−1
bb Λbaµa + µTaΛT

baΛ
−1
bb Λbaµa

]
− 1

2
xTaΛaaxa + xTaΛaaµa + xTaΛabµb

=
1

2

[
− 2xTaΛT

baµb + xTaΛT
baΛ

−1
bb Λbaxa − 2xTaΛT

baΛ
−1
bb Λbaµa

]
− 1

2
xTaΛaaxa + xTaΛaaµa + xTaΛabµb + const

=
1

2
xTaΛT

baΛ
−1
bb Λbaxa − xTaΛT

baΛ
−1
bb Λbaµa −

1

2
xTaΛaaxa + xTaΛaaµa + const

= −1

2
xTa

[
Λaa −ΛT

baΛ
−1
bb Λba

]
xa + xTa

[
Λaa −ΛT

baΛ
−1
bb Λba

]
µa + const

Now, we can compare this to the form:

−1

2
(xa − µ∗a)TΣ∗a(xa − µ∗a) = −1

2
xTaΣ∗axa + xTaΣ∗aµ

∗
a + const

and we have Σ∗a (marginalized) is equal to (Λaa −ΛT
baΛ

−1
bb Λba)−1, and so we have µ∗a = µa. Furthermore,

from the partition inverse of (Λaa −ΛT
baΛ

−1
bb Λba)−1 = Σaa. Thus, we completed the proof.
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Proposition 1.13. (Linear Gaussian Model) Consider the following distributions:

p(x) = N (x|µ,Λ−1) p(y|x) = N (y|Ax+ b,L−1)

Now, we can show that the marginal distribution and the conditional distribution of x given y is given by:

p(y) = N (y|Aµ+ b,L−1 +AΛ−1AT ) p(x|y) = N
(
x
∣∣∣Σ{ATL(y − b) + Λµ

}
,Σ
)

where Σ = (Λ +ATLA)−1

Proof. Let’s consider the joint distribution first, where we denote z =

(
x
y

)
, and consider the inside of

exponential as we have:

−1

2
(x− µ)TΛ(x− µ)− 1

2
(y −Ax− b)TL(y −Ax− b) + const

= −1

2

[
xTΛx− 2xTΛµ+ µTΛµ

]
− 1

2

[
yTLy − xTATLy − bTLy − yTLAx+ xTATLAx+ bTLAx

− yTLb+ xTATLb+ bTLb
]

+ const

= −1

2

[
xTΛx− 2xTΛµ+ yTLy − xTATLy − bTLy

− yTLAx+ xTATLAx+ bTLAx− yTLb+ xTATLb
]

+ const

= −1

2

[
xT
(
Λ +ATLA

)
x+ yTLy − xTATLy − yTLAx

− 2xTΛµ− 2bTLy + 2bTLAx
]

+ const

= −1

2
xT
(
Λ− 1

2
ATLA

)
x− 1

2
yTLy +

1

2
xTATLy +

1

2
yTLAx

+ xTΛµ+ bTLy − bTLAx+ const

= −1

2

(
x
y

)T (
Λ +ATLA −ATL
−LA L

)(
x
y

)
+

(
x
y

)T (
Λµ−ATLb

Lb

)
+ const

Now, using the same pattern matching, we can see that the covariance of z is equal to:(
Λ +ATLA −ATL
−LA L

)−1

=

(
Λ−1 Λ−1AT

AΛ−1 L−1 +AΛ−1AT

)
Similarly, the mean is equal to:(

Λ−1 Λ−1AT

AΛ−1 L−1 +AΛ−1AT

)(
Λµ−ATLb

Lb

)
=

(
µ

Aµ+ b

)
Now, we can use results above (conditional and marginalized) to get the result.

Remark 18. (Conjugate Prior of Multinormal) The proof follows from here. We are now consider the
likelihood of Multinormal distribution given the dataset:

N∏
i=1

1√∣∣2πΛ−1
∣∣ exp

{
−

1

2
(xi − µ)TΛ(xi − µ)

}

=
1∣∣2πΛ−1
∣∣N/2 exp

{
−

1

2

N∑
i=1

(xi − µ)TΛ(xi − µ)

}

∝ |Λ|N/2 exp

{
−

1

2

N∑
i=1

(xi − µ)TΛ(xi − µ)

}
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Now, we will consider the Normal-Wishart distribution in the similar form as:

B(W , ν) |Λ|(ν−D−1)/2√
|2π(λΛ)−1|

exp

(
−1

2
Tr
[
W−1Λ

]
− λ

2
(µ− µ0)TΛ(µ− µ0)T

)
∝ |Λ|(ν−D)/2

exp

(
−1

2
Tr
[
W−1Λ

])
exp

(
−λ

2
(µ− µ0)TΛ(µ− µ0)T

)
Now, we simply have to multiply the conjugate prior and the normal distribution, which gives us:

|Λ|N/2 exp

{
−

1

2

N∑
i=1

(xi − µ)TΛ(xi − µ)

}

|Λ|(ν−D)/2
exp

(
−1

2
Tr
[
W−1Λ

])
exp

(
−λ

2
(µ− µ0)TΛ(µ− µ0)T

)
= |Λ|(ν−D+N)/2

exp

(
−1

2
Tr
[
W−1Λ

])
exp

{
−

1

2

[
N∑
i=1

(
xTi Λxi

)
+NµTΛµ− 2N x̄TΛµ

]}

exp

{
−
λ

2

[
µTΛµ− 2µT0 Λµ+ µT0 Λµ0

]}

= |Λ|(ν−D+N)/2
exp

(
−

1

2

[
Tr
[
W−1Λ

]
+

N∑
i=1

(
xTi Λxi

)
+ (N + λ)µTΛµ

− 2(N x̄T + λµT0 )Λµ+ λµT0 Λµ0

])

Let’s consider exclusively for the expression in the square bracket:

Tr
[
W−1Λ

]
+

N∑
i=1

(
xTi Λxi

)
+ λµT0 Λµ0 + (N + λ)µTΛµ− 2(N x̄T + λµT0 )Λµ

= Tr
[
W−1Λ

]
+

N∑
i=1

(
xTi Λxi

)
+ λµT0 Λµ0 −

1

λ+N
(λµ0 +N x̄)TΛ(λµ0 +N x̄)

+ (N + λ)µTΛµ− 2µTΛ(N x̄+ λµ0)+
1

λ+N
(λµ0 +N x̄)TΛ(λµ0 +N x̄)

Please note that the blue part, whichis equal to:

(N + λ)

(
µ− λµ0 +N x̄

λ+N

)T
Λ

(
µ− λµ0 +N x̄

λ+N

)
Now for the red part, we consider adding and substracting 2N x̄TΛx̄, which we have:

N∑
i=1

(
xTi Λxi

)
− 2

N∑
i=1

xTi Λx̄+

N∑
i=1

x̄Λx̄+N x̄TΛx̄

=

N∑
i=1

(xi − x̄)
T

Λ (xi − x̄) +N x̄TΛx̄
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For the brown equation (together with N x̄TΛx̄), we have:

λµT0 Λµ0 −
1

λ+N
(λµ0 +N x̄)TΛ(λµ0 +N x̄) +N x̄TΛx̄

= λµT0 Λµ0 +N x̄TΛx̄− 1

λ+N

[
λ2µT0 Λµ0 + 2Nλx̄TΛµ0 +N2x̄TΛx̄

]
=
λ+N

λ+N
λµT0 Λµ0 +

λ+N

λ+N
N x̄TΛx̄− 1

λ+N

[
λ2µT0 Λµ0 + 2Nλx̄TΛµ0 +N2x̄TΛx̄

]
=

1

λ+N

[
λ2µT0 Λµ0 +NλµT0 Λµ0 +Nλx̄TΛx̄+N2x̄TΛx̄

]
− 1

λ+N

[
λ2µT0 Λµ0 + 2Nλx̄TΛµ0 +N2x̄TΛx̄

]
=

1

λ+N

[
NλµT0 Λµ0 +Nλx̄TΛx̄+ 2Nλx̄TΛµ0

]
=

Nλ

λ+N
(x̄− µ0)TΛ(x̄− µ0)

Combining the first part (black, red, and brown), and together with the trace trick:

Tr

(
W−1Λ +

N∑
i=1

(xi − x̄) (xi − x̄)
T

Λ +
Nλ

λ+N
(x̄− µ0)(x̄− µ0)TΛ

)
Now, the distribution becomes:

|Λ|(ν−D+N)/2
exp

(
−

1

2
Tr

([
W−1 +

N∑
i=1

(xi − x̄) (xi − x̄)
T

+
Nλ

λ+N
(x̄− µ0)(x̄− µ0)T

]
Λ

)

− N + λ

2

(
µ− λµ0 +N x̄

λ+N

)T
Λ

(
µ− λµ0 +N x̄

λ+N

))
Which is simply a Normal-Wishart Distribution as required.

Proposition 1.14. (Maximum Likelihood of Mean) We can show that for Gaussian distribution, the

maximum likelihood of µ, given the dataset {xi}Ni=1 is

µ̂ML =
1

N

N∑
i=1

xi

Proof. Starting with the log-likelihood to be:

l(µ,Σ) = log

N∏
i=1

N (xi|µ,Σ) = −N
2

log |2πΣ| − 1

2

N∑
i=1

(xn − µ)TΣ−1(xn − µ)

And, so we can consider the derivative over µ as:

∂(−l)
∂µ

=
∂

∂µ

[
N

2
log |2πΣ|+ 1

2

N∑
i=1

(xn − µ)TΣ−1(xn − µ)

]

=
1

2

N∑
i=1

∂

∂µ
(xn − µ)TΣ−1(xn − µ)

=
1

2

N∑
i=1

(
∂

∂µ

[
µTΣ−1µ

]
− 2

∂

∂µ

[
µTΣ−1xi

])
= NΣ−1µ−Σ−1

N∑
i=1

xi

Setting the derivative to zero and we yields the result.
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Proposition 1.15. (Maximum Likelihood of Covariance) We can show that for Gaussian distribution,

the maximum likelihood of Σ, given the dataset {xi}Ni=1 is

Σ̂ML =
1

N

N∑
i=1

(xi − µ)(xi − µ)T

Proof. We consider the derivative over Σ−1 as (please note that we have to constraint of the covariance to
be positive definite but it turn out we don’t have to as the result already satisfies the constriant):

∂(−l)
∂Σ−1 =

∂

∂Σ−1

[
N

2
log |2πΣ|+ 1

2

N∑
i=1

(xn − µ)TΣ−1(xn − µ)

]

= − ∂

∂Σ−1

[
N

2
log
∣∣Σ−1

∣∣]+
1

2

N∑
i=1

∂

∂Σ−1

[
(xn − µ)TΣ−1(xn − µ)

]
= −N

2
ΣT +

1

2

N∑
i=1

(xn − µ)(xn − µ)T

Setting the derivative to zero and we yields the result.

Definition 1.7. (Linear Regression) Now, given the data: D = {(xi,y)}Ni=1. We have yi is conditionally
independent given xi. Now, we consider the supervised learning as we have a linear function x together with
Gaussian noise:

p(y|x,W ,Σy) =
1√
|2πΣy|

exp

{
−1

2
(y −Wx)TΣ−1

y (y −Wx)

}
Proposition 1.16. (Maximum Likelihood of Linear Regression) The maximum likelihood is given by
the following:

Ŵ =

N∑
i=1

yix
T
i

(
N∑
i=1

xix
T
i

)−1

Proof. Consider the log-likelihood of the linear regression:

l = log

N∏
i=1

1√
|2πΣy|

exp

{
−1

2
(yi −Wxi)

TΣ−1
y (yi −Wxi)

}

=

N∑
i=1

−1

2
log |2πΣy| −

1

2
(yi −Wxi)

TΣ−1
y (yi −Wxi)

= −N
2

log |2πΣy| −
1

2

N∑
i=1

(yi −Wxi)
TΣ−1

y (yi −Wxi)

We consider the derivative, as we have:

∂(−l)
∂W

=
∂

∂W

[
N

2
log |2πΣy|+

1

2

N∑
i=1

(yi −Wxi)
TΣ−1

y (yi −Wxi)

]

=
1

2

N∑
i=1

∂

∂W

[
(yi −Wxi)

TΣ−1
y (yi −Wxi)

]
=

1

2

N∑
i=1

∂

∂W

[
yTi Σ−1

y yi + xTi W
TΣ−1

y Wxi − 2xTi W
TΣ−1

y yi

]
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=
1

2

N∑
i=1

[
∂

∂W
Tr[xTi W

TΣ−1
y Wxi]− 2

∂

∂W
Tr[xTi W

TΣ−1
y yi]

]

=
1

2

N∑
i=1

[
∂

∂W
Tr[W TΣ−1

y Wxix
T
i ]− 2

∂

∂W
Tr[W TΣ−1

y yix
T
i ]

]

=
1

2

N∑
i=1

[
2Σ−1

y Wxix
T
i − 2Σ−1

y yix
T
i

]

Please noted that we use the derivative of the trace above, and setting the derivative to zero and we have
the answer as we wanted.

Proposition 1.17. The MAP estimate given prior over the weight p(w) = N (0,A−1) is:

wMAP =

(
A+

∑N
i=1 xix

T
i

σ2
y

)−1

︸ ︷︷ ︸
Σw

∑N
i=1 yixi
σ2
y

=

(
Aσ2

y +

N∑
i=1

xix
T
i

)−1 N∑
i=1

yixi

We will denote the a Please note that we consider the prediction in one-dimensional, as we have

p(D| {xi}Ni=1 ,w, σy) =
1√

2πσ2
y

exp

{
− 1

2σ2
y

N∑
i=1

(yi −wTxi)
2

}

Proof. We start with the log-posterior on w is given as:

log p(w|D, A, σy) = log p(D| {xi}Ni=1 ,w, σy) + log p(w|A) + const

= −1

2
wTAw − 1

2σ2
y

N∑
i=1

(yi −wTxi)
2 + const

= −1

2
wTAw − 1

2σ2
y

N∑
i=1

[
y2
i − 2yiw

Txi + (wTxi)
2
]

+ const

= −1

2
wTAw − 1

2σ2
y

N∑
i=1

2yiw
Txi −

1

2
wT

(
σ−2
y

N∑
i=1

xix
T
i

)
w + const

= −1

2
wT

(
A+ σ−2

y

N∑
i=1

xix
T
i

)
w −wT

N∑
i=1

(yixi)σ
−2
y + const

= −1

2
wTΣ−1

w w −wTΣ−1
w Σw

N∑
i=1

(yixi)σ
−2
y + const

= log N

(
Σw

N∑
i=1

(yixi)σ
−2
y ,Σw

)

As the Gaussian gives the maximum probability at its mean; therefore, we have completed the prove.
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2 Latent Variable Model

Definition 2.1. (Latent Variable Model) The latent variable model can be seen as:

z ∼ p(θz)
x|z ∼ p(θz)

p(x, z;θx,θz) = p(x|z;θx)p(z;θz)

p(x;θx,θz) =

∫
p(x|z;θx)p(z;θz) dz

Note that p(z), p(x|z) and p(x, z) are exponential family but p(x) doesn’t have to be an exponential family.

2.1 PCA Formulation

Remark 19. We will consider the family of PCA formulation. We will start with PCA definition, which can
be formulated in 2 ways: Maximal Variance and Average Projection Cost. Then, we will consider the PPCA
a probabilistic version of PCA.

Definition 2.2. (Maximal Variance) Consider the dataset {xi}Ni=1 where xi ∈ RD. We want to project
the data onto space with dimension M < D. To do this, we want to find a subspace orthonormal basis ui
for i = 1, · · · ,M , such that uTi uj = δij . So that the empirical projected variance, given as:

1

N

N∑
j=1

(uTi xj − uTi x̄)2

is maximized for i = 1, . . . ,M where u1 gives the highest variance, where x̄ = 1/N
∑N
i=1 xi

Proposition 2.1. The maximum projected variance direction u1, . . . ,uM is the M eigenvectors of the data-
covariance matrix:

S =
1

N

N∑
i=1

(xi − x̄)(xi − x̄i)T

associated with the following eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λM ≥ · · · ≥ λD.

Proof. Let’s start with the first direction u1 as we can show that the empirical projected variance:

1

N

N∑
j=1

(uT1 xj − uT1 x̄)2 = uT1 Su1

We will consider the following contraint optimization problem as we have the following Lagrange multiplier
and set the derivative to be 0:

∂

∂u

[
uT1 Su1 + λ1(1− uT1 u1)

]
= 2Su1 − 2λ1u1 = 0

Please note that the matrix S is symmetric. This leads us to the following, equation, which is:

Su1 = λ1u1

Furthermore, if we multiply uT1 on the LHS together with the contraint uT1 u1 = 1, then we have uT1 Su1 = λ1.
This means that first maximal variance projection direction is the eigenvector u1 that has the highest
assocated eigenvalue. Furthermore, the orthogonal comes from the properties of eigenvectors.
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Definition 2.3. (Minimum-Error Formulation) We get the formulation PCA where we have orthonor-
mal set D-dimensional basis vector {ui} where i = 1, . . . , D and uTi uj = δij . This means that the data
point can be represented by the basis:

xi =

D∑
j=1

αijuj =

D∑
j=1

(xTi uj)uj

The value of αij can be found by the inner product αij = xTi uj as above (by the orthogonal properties).
Now, we will consider the approximation using the projection over linear subspace M < D:

x̃i =

M∑
j=1

zijuj +

D∑
j=M+1

bjuj

where the {bj} are component that is same for all data points. Now, we are free to find the {bj} , {zij} and
{uj} given the following objective:

1

N

N∑
i=1

‖xi − x̃i‖2

Proposition 2.2. The solution to the minimum error formulation is the same as the maximal variance
formulation. This gives us the difference interpretation of the PCA.

Proof. Let’s start with finding the value {zij}, first. As we want to find derivative of zij to be zero:

1

N

N∑
i=1

∥∥∥∥∥∥xi −
M∑
j=1

zijuj −
D∑

j=M+1

bjuj

∥∥∥∥∥∥
2

=
1

N

N∑
i=1


xi − M∑

j=1

zijuj −
D∑

j=M+1

bjuj

T xi − M∑
j=1

zijuj −
D∑

j=M+1

bjuj




=
1

N

N∑
i=1

[
xTi xi −

M∑
j=1

ziju
T
j xi −

D∑
j=M+1

bju
T
j xi −

M∑
j=1

zijx
T
i uj

+

 M∑
j=1

ziju
T
j

 M∑
j=1

zijuj

+

 D∑
j=M+1

bju
T
j

 M∑
j=1

zijuj


−

D∑
j=M+1

bjx
T
i uj +

 M∑
j=1

ziju
T
j

 D∑
j=M+1

bjuj

+

 D∑
j=M+1

bju
T
j

 D∑
j=M+1

bjuj

]

=
1

N

N∑
i=1

[
xTi xi −

M∑
j=1

ziju
T
j xi −

D∑
j=M+1

bju
T
j xi −

M∑
j=1

zijx
T
i uj −

D∑
j=M+1

bjx
T
i uj

+

(
M∑
a=1

ziau
T
a

)(
M∑
b=1

zibub

)
+

(
D∑

a=M+1

bau
T
a

)(
M∑
b=1

zibub

)

+

(
M∑
a=1

ziau
T
a

)(
D∑

b=M+1

bbub

)
+

(
D∑

a=M+1

bau
T
a

)(
D∑

b=M+1

bbub

)]

=
1

N

N∑
i=1

[
xTi xi − 2

M∑
j=1

ziju
T
j xi − 2

D∑
j=M+1

bju
T
j xi +

M∑
a=1

M∑
b=1

ziazibu
T
aub

+ 2

D∑
a=M+1

M∑
b=1

bazibu
T
aub +

D∑
a=M+1

D∑
b=M+1

babbu
T
aub

]
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=
1

N

N∑
i=1

[
xTi xi − 2

M∑
j=1

ziju
T
j xi − 2

D∑
j=M+1

bju
T
j xi +

M∑
j=1

z2
ij +

D∑
j=M+1

b2j +
����������
2

D∑
a=M+1

M∑
b=1

bazibu
T
aub

]

=
1

N

N∑
i=1

[
xTi xi − 2

M∑
j=1

ziju
T
j xi − 2

D∑
j=M+1

bju
T
j xi +

M∑
j=1

z2
ij +

D∑
j=M+1

b2j

]

Now, let’s consider the derivative with respected to zab as we now have:

∂

∂zab

1

N

N∑
i=1

[
xTi xi − 2

M∑
j=1

ziju
T
j xi − 2

D∑
j=M+1

bju
T
j xi +

M∑
j=1

z2
ij +

D∑
j=M+1

b2j

]

= − ∂

∂zab

2

N

N∑
i=1

M∑
j=1

ziju
T
j xi +

∂

∂zab

1

N

N∑
i=1

M∑
j=1

z2
ij

= − 2

N
uTb xa +

2

N
zab = 0

And so, we have the zij = xTi uj for j = 1, . . . ,M . Now, we consider the derivative of the with respected to
ba as we have:

∂

∂ba

1

N

N∑
i=1

[
xTi xi − 2

M∑
j=1

ziju
T
j xi − 2

D∑
j=M+1

bju
T
j xi +

M∑
j=1

z2
ij +

D∑
j=M+1

b2j

]

= − ∂

∂ba

2

N

N∑
i=1

M∑
j=M+1

bju
T
j xi +

∂

∂ba

1

N

N∑
i=1

M∑
j=M+1

b2j

= − ∂

∂ba
2

M∑
j=M+1

bju
T
j

(
1

N

N∑
i=1

xi

)
+

∂

∂ba

M∑
j=M+1

b2j

= − ∂

∂ba
2

M∑
j=M+1

bju
T
j

(
1

N

N∑
i=1

xi

)
+

∂

∂ba

M∑
j=M+1

b2j

= −2uTa x̄+ 2ba

And so, we have bj = x̄Tuj for j = M + 1, . . . , D. To find the ui, we have the following:

xi − x̃i = xi −
M∑
j=1

zijuj −
D∑

j=M+1

bjuj

=

M∑
j=1

(xTi uj)uj +

D∑
j=M+1

(xTi uj)uj −
M∑
j=1

(xTi uj)uj −
D∑

j=M+1

(x̄Tuj)uj

=

D∑
j=M+1

(xTi uj)uj −
D∑

j=M+1

(x̄Tuj)uj

=

D∑
j=M+1

{
(xi − x̄)Tuj

}
uj

And, so we now have, the following objective:

1

N

N∑
i=1


 D∑
j=M+1

{
(xi − x̄)Tuj

}
uj

T  D∑
j=M+1

{
(xi − x̄)Tuj

}
uj



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=
1

N

N∑
i=1

[(
D∑

a=M+1

uTa
{
uTa (xi − x̄)

})( D∑
b=M+1

{
(xi − x̄)Tub

}
ub

)]

=
1

N

N∑
i=1

[(
D∑

a=M+1

D∑
b=M+1

{
uTa (xi − x̄)(xi − x̄)Tub

}
uTaub

)]

=
1

N

N∑
i=1

D∑
a=M+1

uTa (xi − x̄)(xi − x̄)Tua =

D∑
a=M+1

uTaSua

Now, we have the same objective to the maximal variance formulation. And the proposition is proven.

2.2 Probabilistic PCA

Definition 2.4. (PPCA) We consider the following system of probabilities:

p(z) = N (z|0, I) p(x|z) = N (x|Wz + µ,Ψ)

which we can consider p(z) to be the PCA projection, while p(x|z) is the reconstruction of the PCA. This
means that we can perform PPCA of it.

Proposition 2.3. We consider the marginalization of Gaussian to be:

p(x) = N (x|µ,C) where C = Ψ +WW T

Proof. We consider the linear Gaussian model in this case, where we use the marginalization (see above) to
get the value of p(x)

Proposition 2.4. We consider the inference of the latent and we have:

p(z|x) = N
(
Σ−1W TΨ−1(x− µ),Σ−1

)
where we have Σ = I +W TΨ−1W .

Remark 20. We have the projection to be:

x̂i = WΣ−1W TΨ−1(xi − µ)

As we have the PCA projection that also take noise into consideration. Furthermore, if Ψ = ψ2I and ψ → 0,
then it leads to the PCA estimation (given the correct W , which we will explore later).

Remark 21. (Likelihood of PPCA) Now, we are left to find the actual value of W and we will assume
that we are aware of µ (which is usually 0), while the covariance matrix is assumed to be Ψ = ψ2I. The
log-likelihood of this PPCA is (using the marginalized):

l = log p({xi}Ni=1 |µ,C) = log

N∏
i=1

1√
|2πC|

exp

{
−1

2
(xi − µ)TC−1(xi − µ)

}

= −N
2

log |C| − 1

2

N∑
i=1

(xi − µ)TC−1(xi − µ) + const.

= −N
2

log |C| − N

2
Tr

(
1

N

N∑
i=1

(xi − µ)TC−1(xi − µ)

)
+ const.

= −N
2

log |C| − N

2
Tr

(
C−1 1

N

N∑
i=1

(xi − µ)(xi − µ)T

)
+ const.

= −N
2

log |C| − N

2
Tr
(
C−1S

)
+ const.

Now C = WW T + ψ2I is given above.
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Proposition 2.5. Non-Trivial Solution of Maximum Likelihood estimate of W is equal to:

WML = U(Λ− ψ2I)1/2V T

where U ∈ RD×M is the first M eigenvector of S the empirical variance matrix and Λ ∈ RM×M be the
matrix, which is the eigenvalues of S. Finally, V ∈ RM×M is an arbitrary orthogonal matrix.

Proof. Let’s consider the derivative of the log-likelihood with respect to W as we now have:

∂l

∂W
=

∂

∂W

[
−N

2
log |C| − N

2
Tr
(
C−1S

)]
= −N

[
−C−1W +C−1SC−1W

]
Setting this to 0, and we can see that, we have the following equation: SC−1W = W , there are 2 outcome
to the solution: W = 0, which can be shown to be minimum. Or, Consider W in the SVD form i.e
W = ULV T for orthogonal matrix U and V , while L is diagonal matrix. This would entail:

S
(
ULV TV LTUT + ψ2I

)−1

ULV T = ULV T

=⇒ S
(
UL2UT + ψ2I

)−1

U = U

=⇒ SU
(
L2 + ψ2I

)−1

= U

=⇒ SU = U
(
L2 + ψ2I

)
For the second implication, we have:

U
(
L2 + ψ2I

)
=
(
UL2UT + ψ2I

)
U =⇒

(
UL2UT + ψ2I

)−1

U = U
(
L2 + ψ2I

)−1

We can see that the U is the eigenvector of S, where the corresponding eigenvalues are λi = l2i +ψ2, and so
we can rewrite the weight to be:

W = U(Λ− ψ2I)1/2V T

where Λ be the matrix, which is the eigenvalues of S.

2.3 Other Related Models

Definition 2.5. (Factor Analysis) The factor analysis is PPCA:

p(z) = N (z|0, I) p(x|z) = N (x|Wz + µ,Ψ)

but we consider the matrix Ψ to be D × D diagonal matrix. This means that the inferences still holds.
However, the training is much harder now as we may not find the W from the data in closed form.

Definition 2.6. (Canonical Correlation Analysis) The data vector D = {(u1,v1), (u2,v2), . . .} where
ui ∈ U and vi ∈ V. We want to find the correlation:

• We find te unti vector a ∈ U and b ∈ V such that the correlation uTi a and vTi b is the maximum the
covariance between them.

• This also requires some in the orthogonal subspace.

Now, the probabilistic CCA is the generative model with latent zi ∈ RK such that:

z ∼ N (0, I) u ∼ N (Υz,Ψu) v ∼ N (Φz,Ψu)

where we have Ψu � 0 and Ψv � 0. This is block diagonal noise. There are certain restriction of Gaussian
FA and PCA as it is modelled the distribution that is too restrictive.
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Definition 2.7. (Mixture Distribution) The mixture distribution has simple discrete latent variable:

si ∼ Discrete[π] xi|si ∼ Psi [θsi ]

The mixture can be seen as a mixture of multiple sources of data. The probability density of the single data
point is given as:

p(xi) =

k∑
i=1

p(xi|si = m)p(si = m) =

k∑
i=1

πmp(si = m)

The most notable mixture distribution is the mixture of Gaussian distribution.

Remark 22. Please note that once can perform a Baysian inference to infer the probability that particular
point x belongs to the cluster m of the mixture distribution:

p(si = m|x) =
pm(x)πm∑k
i=1 pi(x)πi

Remark 23. (Mixture of Gaussian) Let’s consider the mixture of Gaussian, where we have the following
mixture distribution:

p({xi}Ni=1 | {µi}
k
i=1 , {Σi}ki=1 ,π) =

n∏
i=1

k∑
m=1

πm
1√
|2πΣm|

exp

{
−1

2
(xi − µ)Σ−1

m (xi − µ)

}
Again it is hard to find the solution to the problem, and so we will consider the method to solve such the
problem, which is called Expectation-Maximization (EM).

Remark 24. (Mixture of Factor Analyzers) Now, we consider the clustering and dimensionality reduction:

p(x|θ) =

k∑
m=1

πmN (µk|W kW
T
k + Ψ)

where πk is the mixing proportion, while the parameter are θ =
{
{πm,µm,Wm}km=1 ,Ψ

}
. Please note that

this model has 2 kinds of latent variables, which are:

• Cluster indicator variable πm for m ∈ {1, · · · , k}

• Continuous factor zim ∈ RM

Together giving us the following data generating distribution:

p(x|θ) =

k∑
m=1

p(πm)

∫
p(z)p(xm|z,θ) dz

We can use EM to perform an optimization over it.

3 Expectation-Maximization

3.1 Methods

Remark 25. (General Form of The Objective) Now, we shall consider the latent variable model to be:

p(x|z,θx) =
fx(x) exp(φ(θx, z)TT x(x))

Zx(φ(θx, z))
p(z|θx) =

fz(z) exp(θTz T z(z))

Zz(θz)
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and so the marginalization of the latent variable model is equal to:

p(x|θx,θz) =

∫
fx(x) exp(φ(θx, z)TT x(x))

Zx(φ(θx, z))
· fz(z) exp(θTz T z(z))

Zz(θz)
dz

And so, the log-likelihood over the dataset {xi}Ni=1 is equal to:

l(θx,θz) =

N∑
i=1

log

∫
fx(xi) exp(φ(θx, z)TT x(xi))

Zx(φ(θx, z))
· fz(z) exp(θTz T z(z))

Zz(θz)
dz

Theorem 3.1. (Jensen’s Inequality) Getting the set of weights {αi}Ni=1 where
∑
αi = 1 and {xi > 0}Ni=1,

then we can show that:

log

(
N∑
i=1

αixi

)
≥

N∑
i=1

αi log(xi)

for the concave f (and αi is the probability measure). This also implies that: f(Eα[x]) ≥ Eα[f(x)] with the
equality iff f(x) is almost surely constant or linear support of α.

Definition 3.1. (Free Energy) Consider the latent variable model again: Given the observed data X =
{xi} and the set of latent variables Z = {zi} with the parameter θ = {θx,θz}:

l(θ) = log p(X|θ) = log

∫
p(Z,X|θ) dZ

We will consider the Jensen’s inequality for arbitrary distribution q(Z). We can find the lower bound:

l(θ) = log

∫
q(Z)

p(Z,X|θ)

q(Z)
dZ ≥

∫
q(Z) log

p(Z,X|θ)

q(Z)
dZ = F (q,θ)

We denote F (q,θ) to be a free energy.

Remark 26. (Other Form of Free Energy) We can consider the free energy to be:∫
q(Z) log

p(Z,X|θ)

q(Z)
dZ =

∫
q(Z) log p(Z,X|θ) dZ −

∫
q(Z) log q(Z) dZ

=

∫
q(Z) log p(Z,X|θ) dZ +H[q]

and so the free-energy is equal to F (q,θ) = 〈log p(Z,X|θ)〉q(Z) +H[q]

Definition 3.2. (Expectation Maximization) The EM-Step follows the following step to be:

• E-Step: Optimize F (q, θ) with respected to q(Z) as:

q(k)(Z) = arg max
q(Z)

F (q(Z),θ(k−1))

• M-Step: Optimize F (q, θ) with respected to θ as:

θ(k) = arg max
θ

F (q(k)(Z),θ) = arg max
θ

〈logP (Z,X|θ)〉q(k)(Z)

Remark 27. (Simplification of E-Step) To consider the E-step, we have the following free-energy principle:

F (q,θ) =

∫
q(Z)

p(Z,X|θ)

q(Z)
dZ

=

∫
q(Z)

p(Z|X ,θ)p(X|θ)

q(Z)
dZ

=

∫
q(Z) log p(X|θ) dZ +

∫
q(Z) log

p(Z|X ,θ)

q(Z)
dZ

= l(θ)−KL[q(Z)‖p(Z|X ,θ)]
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where l(θ) is the log-likelihood and to minimize the q(Z) by making KL-divergence equal to 0, when setting:

q(k)(Z) = p(Z|X ,θ(k−1))

Furthermore, we can see that after E-step the free energy is equal to likelihood.

Theorem 3.2. (Improvement of EM) The results θ given by EM step never decrease in the likelihood.

Proof. We have the following chain of inequalities:

l(θ(k−1)) =1 F (q(k),θ(k−1)) ≤2 F (q(k),θ(k)) ≤3 l(θ
(k))

Let’s consider each step of the EM as we have:

1. The E-step gives free energy to the likelihood.

2. The M-step maximizes the free energy with respected to θ

3. F ≤ l comes from the lower-bound property of the free energy.

Thus the theorem is proved

Theorem 3.3. (Convergence of EM to Optimum) The fixed point of the EM algorithm is the stationary
point of log-likelihood l(θ) and it is maxima.

Proof. Please note that the fixed point of the EM is when (M-step with complete E-step):

∂

∂θ
〈log p(X ,Z|θ)〉p(Z|X ,θ∗)

∣∣∣∣
θ∗

= 0

Consider the log-likelihood, which we have:

l(θ) = log p(X|θ) = 〈log p(X|θ)〉p(Z|X ,θ∗)

=

〈
log

p(Z,X|θ)

p(Z|X ,θ)

〉
p(Z|X ,θ∗)

= 〈p(Z,X|θ)〉p(Z|X ,θ∗) − 〈p(Z|X ,θ)〉p(Z|X ,θ∗)

Consider the derivative with respected to θ of the log-likelihood evaluated at θ and we have:

∂

∂θ
l(θ)

∣∣∣∣
θ∗

=
∂

∂θ
〈p(Z,X|θ)〉p(Z|X ,θ∗)

∣∣∣∣
θ∗
− ∂

∂θ
〈p(Z|X ,θ)〉p(Z|X ,θ∗)

∣∣∣∣
θ∗

= 0− ∂

∂θ
〈p(Z|X ,θ)〉p(Z|X ,θ∗)

∣∣∣∣
θ∗

= 0

The second term is equal to 0 as the KL-divergence is zero. Now, we are left to show that the second
derivative is “negative”, where we have:

∂2

∂2θ
l(θ)

∣∣∣∣
θ∗

=
∂2

∂2θ
〈p(Z,X|θ)〉p(Z|X ,θ∗)

∣∣∣∣
θ∗
− ∂2

∂2θ
〈p(Z|X ,θ)〉p(Z|X ,θ∗)

∣∣∣∣
θ∗

The first term is negative due to the improvement of EM, now the second term is positive because it is the
minimum of KL-divergence. And, the point θ∗ is minima.

Definition 3.3. (Partial M-Step and E-Step) Let’s start with the M-Step first, as long as we increase
the F (q,θ) in the M-step, the theorem above still holds. And so, for partial M-step, after E-step, we have
the following gradient update:

∂

∂θ

∣∣∣∣
θ(k−1)

〈log p(Z,X|θ)〉p(Z|X ,θ) =
∂

∂θ

∣∣∣∣
θ(k−1)

log p(X|θ)

For E-Step, we can use the typical gradient based scheme on q(Z) but the theorem above may not hold.

24



3.2 Practical

Remark 28. (Useful Derivative Results) Now, we are going to consider EM applied to the mixture of
Gaussian that we have described above. There are some derivatives that would be useful in the future.
Starting wthe the log-likelihood:

l({µi}
k
i=1 , {Σi}ki=1 ,π) =

N∑
i=1

log

k∑
m=1

πm
1√
|2πΣm|

exp

{
−1

2
(xi − µ)Σ−1

m (xi − µ)

}
︸ ︷︷ ︸

pm(xi;θm)

=

N∑
i=1

log

k∑
m=1

πmpm(xi;θm)

where we denote θm =
{
{µi}

k
i=1 , {Σi}ki=1

}
. Now consider the derivatives of the log-likelihood with respected

to both µm and Σm: Starting with outer derivatives, we have:

∂

∂θm

N∑
i=1

log

k∑
m=1

πmpm(xi;θm) =

N∑
i=1

πm∑k
m=1 πmpm(xi;θm)

∂pm(xi;θm)

∂θm

=

N∑
i=1

πmpm(xi;θm)∑k
m=1 πmpm(xi;θm)︸ ︷︷ ︸

γim

∂ log pm(xi;θm)

∂θm

Please remeber γim as it is going to be useful later on. We are left to find the derivatives on the RHS,
starting with the mean µm, which we can use the results from before:

∂ log pm(xi;θm)

∂µm
= Σ−1

m (xi − µm)

Similarly for Σ−1 we have:

∂ log pm(xi;θm)

∂Σm
=

1

2

[
Σm − (xi − µm)(xi − µm)T

]
We can plug both into get the full derivative.

Proposition 3.1. (E-Step for mixture of Gaussian) The E-step for mixture of Gaussian is done by
setting:

γ
(t)
im =

πmpm(xi;θm)∑k
m=1 πmpm(xi;θm)

This follows directly from the Bayes’ rule.

Proposition 3.2. (M-Step for mixture of Gaussian) The M-step for mixture of Gaussian is done by
setting:

µ(t)
m =

1

Nm

N∑
i=1

γ
(t)
imxi

Σ(t)
m =

1

Nm

N∑
i=1

γ
(t)
im(xi − µm)(xi − µm)T

π(t)
m =

Nm
N

where Nm =
∑N
i=1 γ

(t)
im.
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Proof. Setting the derivative of log-likelihood to zero for µm and Σm, which are:

∂l

∂µm
=

N∑
i=1

γimΣ−1
m (xi − µm)

∂l

∂Σm
=

1

2

N∑
i=1

γim

[
Σm − (xi − µm)(xi − µm)T

]
with simple rearrangement, we have the required update. We are left with π

(t)
m as we required the constriant

so that
∑k
m=1 π

(t)
m = 1. We have the following Lagragian:

∂

∂πm

(
N∑
i=1

log

k∑
m=1

πmpm(xi;θm)− λ

[
k∑

m=1

πm − 1

])

=

N∑
i=1

pm(xi;θm)∑k
m=1 πmpm(xi;θm)

+ λ

Setting this to zero, and we have:

N∑
i=1

pm(xi;θm)∑k
m=1 πmpm(xi;θm)

+ λ = 0

=⇒
k∑

m=1

N∑
i=1

pm(xi;θm)πm∑k
m=1 πmpm(xi;θm)

+ λ

k∑
m=1

πm = 0

=⇒ N + λ = 0

and so, we have λ = −N . Now we simply times πk on both side of the original derivative and we get the
result.

Remark 29. (Connection between K-Mean and Gaussian Mixture Model) If we consider φm = 1/k
and Σm = σ2I where σ2 → 0, the leads us to the responsibility:

rim = δ
(
m, arg min

l
‖xi − µl‖

2
)

We find the data in which it is closest to the mean, which we allocate the weight to be 1 and 0 for all others.
Now, we simply have to update the mean (M-step), which is given by:

µm =

∑
i γimxi∑
i xi

This is exactly the K-mean algorithm.

Remark 30. (EM for Factor Analysis) Now, we are interested in training the factor analysis using the
EM algorithm. Recall that factor analysis consists of the following model:

p(z) = N (z|0, I) p(x|z) = N (x|Wz,Ψ)

Furthermore, we are going to assume that Ψ ∈ RD×D where it is a diagonal matrix with values {ψii}Di=1.
And so recall that the marginal distribution, which is:

p(x|θ) = N (x|0,Ψ +WW T )

We can see that the model parameter is θ = {W ,Ψ}. Now let’s recall the EM algorithm, and see what we
have to do:

• E-Step: We have to find the posterior distribution of each latent variable that corresponds to each
data point in dataset {xi}Ni=1:

q
(t)
i (zi) = p(zi|xi,θ(t−1))
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• M-Step: We have to find θ(t) as we have:

arg max
θ

F (q
(t)
i ,θ) = arg max

θ

N∑
i=1

∫
q

(t)
i (zi)

[
log p(zi|θ) + log p(xi|zi,θ)

]
dzi

Proposition 3.3. (E-Step for Factor Analysis) Finding the posterior of zi for the dataset {xi}Ni=1, is:

p(zi|xi) = N (zi|Σ−1W TΨ−1(xi,Σ
−1)

where Σ = I +W TΨ−1W . This is the old result from PPCA that we have derived eariler. We denote the
mean to be µi = Σ−1W TΨ−1(xi).

Proposition 3.4. (M-Step for Factor Analysis) The M-Step update of the factor analysis is given by:

W =

(
N∑
i=1

xiµ
T
i

)(
N∑
i=1

µiµ
T
i +NΣ

)−1

Ψ = WΣW T +
1

N

N∑
i=1

(xi −Wµi)(xi −Wµi)
T

Proof. M-step of the Factor analysis, we are interested into find the variables θ such that

arg max
θ

F (q,θ) =

N∑
i=1

〈log p(zi|θ) + log p(xi|zi,θ)〉qi(zi)

Now let’s consoder the sum of the log, and so we have:

log p(zi|θ) + log p(xi|zi,θ) = −1

2
log |Ψ| − 1

2
(xi −Wzi)

TΨ−1(xi −Wzi) + const.

= −1

2
log |Ψ| − 1

2

[
xTi Ψ−1xi − 2xTi Ψ−1Wzi + zTi W

TΨ−1Wzi

]
+ const.

= −1

2
log |Ψ| − 1

2

[
xTi Ψ−1xi − 2xTi Ψ−1Wzi + Tr[W TΨ−1Wziz

T
i ]
]

+ const.

Now, we consider the expectation over q
(t)
i (zi) as we now have:

〈log p(zi|θ) + log p(xi|zi,θ)〉
q
(t)
i (zi)

=

〈
−1

2
log |Ψ| − 1

2

[
xTi Ψ−1xi − 2xTi Ψ−1Wzi + Tr[W TΨ−1Wziz

T
i ]
]〉

q
(t)
i (zi)

= −1

2
log |Ψ| − 1

2

[
xTi Ψ−1xi − 2xTi Ψ−1W 〈zi〉q(t)i (zi)

+ Tr[W TΨ−1W
〈
ziz

T
i

〉
q
(t)
i (zi)

]
]

= −1

2
log |Ψ| − 1

2

[
xTi Ψ−1xi − 2xTi Ψ−1Wµi + Tr[W TΨ−1W (µiµ

T
i + Σ)]

]
Using the expectation over the Gaussian distribution to be 〈zi〉 = µi and

〈
ziz

T
i

〉
= µiµ

T
i + Σ. Now, let’s

consider the derivative with respected to W and Ψ−1:

1

2

∂

∂W

N∑
i=1

[
2xTi Ψ−1Wµi − Tr[W TΨ−1W (µiµ

T
i + Σ)]

]
=

1

2

N∑
i=1

[
2
∂

∂W
Tr[Wµix

T
i Ψ−1]− ∂

∂W
Tr[W TΨ−1W (µiµ

T
i + Σ)]

]

=
1

2

N∑
i=1

[
2Ψ−1xiµ

T
i − 2

(
Ψ−1W (µiµ

T
i + Σ)

)]
= Ψ−1

[
N∑
i=1

xiµ
T
i −W

(
N∑
i=1

µiµ
T
i +NΣ

)]
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Setting the derivative to zero and we yields:

W =

(
N∑
i=1

xiµ
T
i

)(
N∑
i=1

µiµ
T
i +NΣ

)−1

Let’s consider the case for Ψ−1, which we have:

∂

∂Ψ−1

N∑
i=1

(
−1

2
log |Ψ| − 1

2

[
xTi Ψ−1xi − 2xTi Ψ−1Wµi + Tr[W TΨ−1W (µiµ

T
i + Σ)]

])

=
1

2

N∑
i=1

(
− ∂

∂Ψ−1 log |Ψ| − ∂

∂Ψ−1x
T
i Ψ−1xi + 2

∂

∂Ψ−1x
T
i Ψ−1Wµi

− ∂

∂Ψ−1 Tr[W TΨ−1W (µiµ
T
i + Σ)]

)

=
1

2

N∑
i=1

(
Ψ− xixTi + 2xiµ

T
i W

T −Wµiµ
T
i W

T −WΣW T

)
Setting the derivative to zero, and we have:

1

2

N∑
i=1

(
Ψ− xixTi + 2xiµ

T
i W

T −Wµiµ
T
i W

T −WΣW T

)
= 0

=⇒ NΨ−NWΣW T −
N∑
i=1

[
xix

T
i − 2xiµ

T
i W

T +Wµiµ
T
i W

T
]

= 0

=⇒ Ψ = WΣW T +
1

N

N∑
i=1

(xi −Wµi)(xi −Wµi)
T

Which is the result as required.

3.3 Additional EM Methods

Remark 31. This is going to be more generalized version of EM as we may dealing with the exponential
family, which occures for both latent variable and the observable.

Proposition 3.5. Given the exponential family of the form:

p(x|θ) =
f(x) exp(θTT (x))

Z(θ)

We can show that the
∂

∂θ
logZ(θ) = 〈T (x)〉p(x|θ)

Proof.
∂

∂φ
logZ(φ) =

1

Z(φ)

∂

∂φ
Z(φ)

=
1

Z(φ)

∂

∂φ

∫∫
f(x, z) exp

{
θTT (x)

}
dx dz

=

∫∫
1

Z(φ)
f(x, z)

∂

∂φ
exp

{
θTT (x)

}
dx dz

=

∫∫
1

Z(φ)
f(x, z) exp

{
θTT (x)

}
T (x) dx dz

= 〈T (x)〉p(x|θ)
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Definition 3.4. (EM For Exponential Family) We now consider the joint probability distribution over
x and z to be an exponential family, now we have:

p(x, z|φ) =
f(x, z) exp

(
φ(θx,θz)

TT (x, z)
)

Z(φ)

Let’s consider the free-energy (consider only terms that depends on φ), using the previous result:

F (q,φ) =

∫
q(z) logP (x, z|φ) dz +H[q]

=

∫
q(z)

[
φ(θx,θz)

TT (x, z)− logZ(φ)
]

dz + const.

= φ(θx,θz)
T 〈T (x, z)〉q(z) − logZ(φ)

For the EM algorithm, we have the following:

• For E-Step, we only need to compute the sufficient statistics under the distribution q(z).

• For M-step, we solve for the following equation, where we use the derivative from above:

∂F

∂φ
= 〈T (x, z)〉q(z) − 〈T (x, z)〉p(x,z|φ) = 0

Remark 32. (EM For Exponential Family Mixture) We consider a short-hand version where we consider
the 1-hot vector i.e for the mixture component m, we have:

si = m ⇐⇒ si = [0, 0, . . . , 1︸︷︷︸
m-th position

, . . . , 0]T

To compute the components, we consider the “list” of parameters, which is a matrix Θ = [θm] (has the size
of RD×M ). The log-likelihood is the given by:

log p
(
{xi}Ni=1 , {si}

N
i=1

)
=

N∑
i=1

log

πisi
f(xi) exp

(
θTsiT (xi)

)
Z(θsi)


=

N∑
i=1

[
log πisi + θTsiT (xi)− logZ(θsi)

]
+ const

=

N∑
i=1

[
(logπ)Tsi + (Θsi)

TT (xi)− sTi logZ(Θ)
]

+ const

where Z(Θ) is the normalizing factor of each component, so it has the size of M . If we were to consider the
EM-algorithm for this, we have:

• E-step, we calculate the expectation over the latent variable, which gives us:

γim =

N∑
i=1

〈si〉p
N∑
i=1

T (xi)
〈
sTi
〉
p

• M-step, maximizing the log-joint probability, we have the following solutions (to the derivative):

π(k+1) ∝
N∑
i=1

〈si〉p
〈
T (xi)

∣∣∣θ(k+1)
m

〉
=

∑N
i=1 T (xi) 〈[si]m〉p∑N

i=1 〈[si]m〉p
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Thinking of this as the Gaussian mixture model, where we also have similar form.

Remark 33. (EM for MAP) Recall the probability distribution over the exponential model; however, we
also added the prior over the parameters:

p(x, z|φ) =
f(x, z) exp

(
φ(θx,θz)

TT (x, z)
)

Z(φ)
p(φ|ν, τ ) =

F (ν, τ ) exp
(
φ(θx,θz)

T τ
)

Z(φ)ν

To consider the free-energy over the dataset X and set of latent variables Z, we have:

F (q,φ) =

∫
q(z) logP (X ,Z,φ) dz +H[q]

=

∫
q(Z)

[
φ(θx,θz)

T

(
τ +

N∑
i=1

T (xi, zi)

)
− (N + ν) logZ(φ)

]
dZ + const.

= φ(θx,θz)
T

(
τ +

N∑
i=1

〈T (xi, zi)〉q(zi)

)
− (N + ν) logZ(φ) + const.

Now, we carry on with the EM step as usual.

4 Latent Variable Models for Time Series

4.1 Problems

Definition 4.1. (Time Series with Latent Variable) The latent variable model for time series (with
first order markov model) is given by:

p(z1:T ,x1:T ) = p(z1)p(x1|z1)

T∏
i=2

p(zt|zt−1)p(xt|zt)

Definition 4.2. (Discrete Model) The discrete model is described using the following set of parameters
as there are K number of latent discrete values:

• Initial State Probability p(z1): is given as πz = p(z1 = j)

• Transition Matrix p(zt+1|zt) : is given as Φij = p(zt+1 = j|zt = i)

• Emission Distribution p(xt|zt):

– Continuous variable: Aj(x) = p(xt = x|zt = j)

– Discrete variable: Ajk(x) = p(xt = k|zt = j)

And we have the following process for a discrete model:

z1 ∼ π zt+1|zt ∼ Φzt xt|zt ∼ Azt

Definition 4.3. (Continuous Variable) We consider the continuous variable model, which we model the
time series with Gaussian and Linear transformation, which we have the following process:

z1 ∼ N (µ0,Q0) zt|zt−1 ∼ N (Azt−1,Q) xt|zt ∼ N (Czt,R)

We still use the same joint distribution as above. This has the other name called Linear Gaussian State
Space Model (LGSSM).
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Definition 4.4. (Inference Problems) We are interesting to find the following joint distributions:

p(zt|x1:t) p(zt|x1:T )

The first one is called filtering distribution, while the second one is called smoothing distribution.

Remark 34. (Problem for the Problem) It is clear that we can integrate out the posterior to get the
answer for filtering (and smoothing), but it is very hard:

p(z|x1, . . . ,xt) =

∫
· · ·
∫
p(z1, . . . ,zt|x1, . . . ,xt) dz1 · · · dzt

For the discrete variable, we can have sum instead of integration.

4.2 Solving Inference Problem

Lemma 4.1. (Baysian Filtering) One can compute the filtering recursively as:

p(zt|x1:t) ∝
∫
p(xt|zt)p(zt|zt−1)p(zt−1|x1:t−1) dzt−1

We have the same treatment for discrete variable.

Proof. We have the following:

p(zt|x1:t) =

∫
p(zt, zt−1|xt,x1:t−1) dzt−1

=

∫
p(zt, zt−1|x1:t−1)

p(xt|x1:t−1)
dzt−1

∝
∫
p(xt|zt, zt−1,x1:t−1)p(zt|zt−1,x1:t−1)p(zt−1|x1:t−1) dzt−1

=

∫
p(xt|zt)p(zt|zt−1)p(zt−1|x1:t−1) dzt−1

And we have the values as required.

Definition 4.5. (Forward Message) We consider the quantity αt(i) for which it is the joint probability
of observation and the current latent variable zt = i i.e:

αt(i) = p(x1, . . . ,xt, zt = i|θ)

We call this a forward message.

Proposition 4.1. The forward message can be calculated recursively as:

αt+1(i) =

 K∑
j=1

αt(j)Φij

Ai(xt+1)

where at the start: α1(i) = πiAi(x)

Proof. We consider the following:

αt+1(i) =

K∑
j=1

p(x1, . . . ,xt,xt+1, st = j|st+1 = i)

=

K∑
j=1

p(x1, . . . ,xt|st = j)p(st+1 = i|st = j)p(xt+1|st+1 = i)

=

 K∑
j=1

αt(j)Φij

Ai(xt+1)
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Remark 35. (Filtering For Discrete Model) One can solve the filtering problem, as we have:

p(st = i|x1, . . . ,xt,θ) =
αt(i)∑K
j=1 αt(j)

Remark 36. (Usefulness of Filtering Method) Given the values of αT (i), we can calculate the likelihood
of the parameter θ in O(TK2) time instead of exponential time via the marginalization:

p(x1, · · · ,xT |θ) =

K∑
k=1

αT (k)

Proposition 4.2. (First Step Filter) We can show that the p(z1|x1:1) is equal to:

p(z1|x1:1) = N
(
z1

∣∣∣ ẑ0
1 +K1(x1 −Cẑ0

1)︸ ︷︷ ︸
z1
1

, V̂
0

1 −K1CV̂
0

1︸ ︷︷ ︸
V̂

1
1

)

where we set K1 = V̂
0

1C
T
[
R+CV̂

0

1C
T
]−1

.

Proof. For the state space model, we start with p(z1|x1). We denote ẑ0
1 = µ0 and V̂

0

1 = Q0. Now, we apply
linear Gaussian model above to get the inference. Recall that

p(z1) = N (z1|ẑ0
1, V̂

0

1) p(x1|z1) = N (x1|Cz1,R)

Now, we have the linear Gaussian model as

p(z1|x1) = N
(
z1

∣∣∣Σ [CTR−1x1 + (V̂
0

1)−1ẑ0
1

]
, Σ

)
where Σ is simplified using Woodbury identity:

Σ =
[
(V̂

0

1)−1 +CTR−1C
]−1

= V̂
0

1 − V̂
0

1C
T
[
R+CV̂

0

1C
T
]−1

CV̂
0

1

= V̂
0

1 −K1CV̂
0

1

Now, we consider the mean, as we now have:[
V̂

0

1 −K1CV̂
0

1

] [
CTR−1x1 + (V̂

0

1)−1ẑ0
1

]
= V̂

0

1C
TR−1x1 + ẑ0

1 −K1CV̂
0

1C
TR−1x1 −K1Cẑ

0
1

= ẑ0
1 −K1Cẑ

0
1 + (V̂

0

1C
TR−1 −K1CV̂

0

1C
TR−1)x1

Let’s consider the value, which we can show that it is indeed K1, where we will consider B = CV̂
0

1C
T :

V̂
0

1C
TR−1 −K1BR

−1 = K1

⇐⇒ V̂
0

1C
TR−1 = K1 +K1BR

−1

⇐⇒ V̂
0

1C
TR−1 = K1(I +BR−1)

⇐⇒ V̂
0

1C
TR−1(I +BR−1)−1 = K1

⇐⇒ V̂
0

1C
TR−1(I +BR−1)−1 = V̂

0

1C
T
[
R+B

]−1

⇐⇒ R−1(I +BR−1)−1 =
[
R+B

]−1

⇐⇒
[
R(I +BR−1)

]−1

=
[
R+B

]−1
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And so equation the is proven.

Proposition 4.3. (General Time Filtering) We want to find the value p(zt|x1:t), which we can show

that it is equal to, given p(zt−1|x1:t−1) = N (zt−1|ẑt−1
t−1, V̂

t−1

t−1):

N
(
zt

∣∣∣ẑtt−1 +Kt(xt −Cẑtt−1), V̂
t−1

t −KtCV̂
t−1

t

)
where ẑtt−1 = Aẑt−1

t−1 and V̂
t−1

t = Q+AV̂
t−1

t−1A
T and Kt = V̂

t−1

t CT
[
R+CV̂

t−1

t CT
]−1

Proof. Now, we want to find the probability p(zt|x1:t−1), first, which we can use the marginal distribution
from the linear Gaussian model between p(zt|zt−1) and p(zt−1|x1:t−1), which we marginalize out zt−1, which
we have: ∫

N (zt−1|ẑt−1
t−1, V̂

t−1

t−1)N (zt|Azt−1,Q) dzt−1

= N
(
zt

∣∣∣Aẑt−1
t−1, Q+AV̂

t−1

t−1A
T
)

= N
(
zt

∣∣∣ẑtt−1, V̂
t−1

t

)
This follows directly from linear Gaussian model. Now, we follows the same method above (as we now need
to find distribution of zt given addiitonal information of xt), and so we have:

N
(
zt

∣∣∣ẑtt−1 +Kt(xt −Cẑtt−1), V̂
t−1

t −KtCV̂
t−1

t

)
where Kt = V̂

t−1

t CT
[
R+CV̂

t−1

t CT
]−1

. Thus complete the prove.

Remark 37. (Baysian Smoothing - For Discrete Model) To find the smoothing, we consider calculating
marginal posterior as:

p(zt|x1:T ) =
p(zt,xt+1:T |x1:t)

p(xt+1:T |x1:t)
=
p(xt+1:T |zt)p(zt|x1:t)

p(xt+1:T |x1:t)
=
p(xt+1:T |zt)p(zt,x1:t)

p(z1:T )

We can see that the probability distribution in blue are the forward passing, while the probability distribution
in red is the backward distribution.

Definition 4.6. (Backward Message) Consider the value

βt(i) = p(xt+1:T |zt = i)

We call it a backward message.

Proposition 4.4. Backward message can be calculated in recursive manner:

βt(i) =
K∑
j=1

ΦijAj(xt+1)βt+1(j)

where βT (i) = 1/K, we consider a uniform distribution over the state.

Proof. We consider the following

βt(i) =

K∑
j=1

p(st+1 = j,xt+1,xt+2:T |st = i)

=

K∑
j=1

p(st+1 = j|st = i)p(xt+1|st = i)p(xt+2:T |st+1 = j)

=

K∑
j=1

ΦijAj(xt+1)βt+1(j)

And so it proposition is proven.
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Definition 4.7. (Forward-Backward Algorithm) The smooth distribution can be calculated as:

γt(i) = p(st = i|x1:T ) =
p(st = i,x1:t)p(xt+1:T |st = i)

p(x1:T )
=

αt(i)βt(i)∑k
j=1 αt(j)βt(j)

Remark 38. (Problem with Choosing State) We consider the value of γt(i) is computed using forward
and backward algorithm. Choosing the state i∗t with the largest γt(i) is the best way since the path has the
maximum expected number of correct state. However, this may leads to the path, which is impossible.

Definition 4.8. (Viterbi Decoding) The best path algorithm is called Viterbi decoding as we can use
the Bellman’s dynamics programming. This is done by compute the most probable state sequence (instead
of expected state):

arg max
z1:T

p(z1:T |x1:T ,θ)

And so, we use the same recursion max instead of
∑

, just like the Bellman equation algorithm.

Proposition 4.5. (Smoothing for LGSSM) We receives the value p(zt+1|x1:T ) = N (zt+1|ẑTt+1, V̂
T

t+1)
from the privious time step. Then we can show the following recursive calculation:

p(zt|x1:T ) = N
(
zt

∣∣∣ẑt + J t(zt+1 −Aẑtt), V̂
t

t + J t(V̂
T

t+1 − V̂
t

t+1)JTt

)
where J t = V̂

t

tA
T (V̂

t

t+1)−1, and the first time step can be calculated from result of filtering.

Proof. We consider the following steps:

p(zt|x1:T ) =

∫
p(zt, zt+1|x1:T ) dzt+1

=

∫
p(zt|zt+1,x1:T )p(zt+1|x1:T ) dzt+1

=

∫
p(zt|zt+1,x1:t)p(zt+1|x1:T ) dzt+1

=

∫ [
p(zt+1, zt|x1:t)

p(zt+1|x1:t)

]
p(zt+1|x1:T ) dzt+1

The third equality comes from the markov property. Let’s consider finding the value p(zt|zt+1,x1:t) using

linear Gaussian model as we have proven above: Noted that the value p(zt|x1:t) = N (zt|ẑtt, V̂
t

t). We consider
the mean vector [zt, zt+1]T , we will have to consider the covariance:

Cov(zt, zt+1|x1:t) = E
[(
zt − ẑtt

) (
zt+1 − ẑtt+1

)T ∣∣∣x1:t

]
= E

[(
zt − ẑtt

) (
Azt +w −Aẑtt

)T ∣∣∣x1:t

]
= E

[(
zt − ẑtt

) (
Azt −Aẑtt

)T ∣∣∣x1:t

]
+ E

[(
zt − ẑtt

) ∣∣∣x1:t

]
E[wT ]

= E
[(
zt − ẑtt

) (
zt − ẑtt

)T ∣∣∣x1:t

]
AT = V̂

t

tA
T

where p(w) = N (0,Q). Now, we have the following normal distirbution for the joint :

N

([
zt
zt+1

] ∣∣∣∣∣
[
ẑtt
ẑtt+1

]
,

[
V̂
t

t V̂
t

tA
T

AV̂
t

t V̂
t

t+1

])

Please note that the value V̂
t

t+1 can be found in the intermediate value of the filtering. Now, we use
conditional Gaussian result from above, and we have:

p(zt|zt+1,x1:t) = N
(
zt

∣∣∣ẑt + J t(zt+1 − ẑtt+1), V̂
t

t − J tV̂
t

t+1J
T
t

)
= N

(
zt

∣∣∣ẑt + J t(zt+1 −Aẑtt), V̂
t

t − J tV̂
t

t+1J
T
t

)
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where J t = V̂
t

tA
T (V̂

t

t+1)−1. Now consider the marginalization using a normal Gaussian linear model

together with p(zt+1|ẑTt+1, V̂
T

t+1), as we now have:

p(zt|x1:T ) = N
(
zt

∣∣∣ẑt + J t(zt+1 −Aẑtt), V̂
t

t − J tV̂
t

t+1J
T
t + J tV̂

T

t+1J t

)
= N

(
zt

∣∣∣ẑt + J t(zt+1 −Aẑtt), V̂
t

t + J t(V̂
T

t+1 − V̂
t

t+1)JTt

)
Thus the prove is now complete.

4.3 Learning Parameter

Definition 4.9. (EM-Algorithm for SSM) We have the following free-energy:

F (q, θ) =

∫
q(z1:T )

[
log p(x1:T , z1:T |θ)− log q(z1:T )

]
dz1:T

Now, we consider the following EM-step, as we have:

• E-Step: We find q∗(z1:T ) = p(z1:T |x1:T ,θ), which is already done in the Kalman smoothing.

• M-Step: We want to find θ by maximizing the 〈log p(z1:T ,x1:T |θ)〉q(z1:T |x1:T ), where we have:

p(z1:T ,x1:T |θ) = p(z1)p(x1|z1)

T∏
t=2

p(zt|zt−1)p(xt|zt)

which are all Gaussian, this leads to least square problem as we will see. This also works with discrete
case.

Proposition 4.6. (M-Step for C) The update for C is:

C = R−1
T∑
t=1

〈zt〉q x
T
t

(
T∑
t=1

〈
ztz

T
t

〉
q

)−1

Proof. We have the following log-likelihood (with removed unnecessary terms):

∂

∂C
log p(z1:T ,x1:T |θ) =

∂

∂C

[
T∑
t=1

〈P (xt|zt)〉q

]

=
∂

∂C

[
−1

2

T∑
t=1

〈
(xt −Czt)TR−1(xt −Czt)

〉
q

]

=
∂

∂C

[
−1

2

T∑
t=1

〈
xTt R

−1xTt − 2xTt R
−1Czt + zTt C

TR−1Czt

〉
q

]

=
∂

∂C

Tr

[
C

T∑
t=1

〈zt〉q x
T
t R
−1

]
− 1

2
Tr

CTR−1C

〈
T∑
t=1

ztz
T
t

〉
q


= R−1

T∑
t=1

〈zt〉q x
T
t −R

−1C

〈
T∑
t=1

ztz
T
t

〉
q

Setting this to 0, and we have the update.
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Proposition 4.7. (M-Step for A) The update for A is:

A = R−1
T∑
t=1

〈
ztz

T
t+1

〉
q

(
T∑
t=1

〈
ztz

T
t

〉
q

)−1

Proof. We see that the we have the same situation as the C, and so the update is the same. Please note
that we replace xt with zt+.

Proposition 4.8. (M-Step for HMM) We can take the free-energy with respected to the parameter θ,
and we have:

• Initial State Distribution πi = γi(i), which is expected number of times in state i at the start.

• Define the expected transition from state i→ j to be:

ξt(i→ j) = p(zt = i, zt+1 = j|x1:T ) =
αt(i)ΦijAj(xt+1)βt+1(j)

p(x1:T )

• We have the transition probability and output probability to be:

Φ̂ij =

T−1∑
t=1

ξt(i→ j)

/
T∑
t=1

γt(i) Âik =
∑
t:xt=k

γt(i)

/
T∑
t=1

γt(i)

Proof. As we have computed the E-step, now we consider the free energy, as M-Step trying to maximize the
following quantity

〈logp(z1:T ,x1:T )〉q(z1:T |x1:T ,θ)

= Eq(z1:T |x1:T )

[
log p(z1|π) +

T∑
t=2

log p(zt|zt−1,Φij) +

T∑
t=1

log p(xt|zt, Azt(xt))

]

= Eq(z1|x1:T ) [log p(z1|π)] +

T∑
t=2

Eq(zt,zt−1|x1:T ) [log p(zt|zt−1,Φij)] +

T∑
t=1

Eq(zt)[log p(xt|zt, Azt(xt))]

=

L∑
i=1

γ1(i)πi +

T∑
t=2

L∑
i=1

L∑
j=1

ξ(zi = i, zt−1 = j)Φji +

T∑
t=1

L∑
i=1

γt(i)Aixi

Recall that the number of state to be L. We will denote the emission matrix A ∈ RL×O where O is the
number of possible observable. Furthermore, we recall that we have the following constraint to be:∑

j

Φij = 1
∑
x∈X

Ai(x)
∑
i

πi = 1

for all i = 1, . . . , L in the first and second constraint. Now, we have the following Lagrange multiplier:

L =

L∑
i=1

γ1(i)πi +

T∑
t=2

L∑
i=1

L∑
j=1

ξ(zi = i, zt−1 = j)Φji +

T∑
t=1

L∑
i=1

γt(i)Aixi

−
L∑
i=1

λi

 L∑
j=1

Φij − 1

− L∑
i=1

νi

 L∑
j=1

Aij − 1

− η( L∑
i=1

πi − 1

)
We have the following derivative for πa:

∂L
∂πa

=
∂

∂πa

L∑
i=1

γ1(i) log πi −
∂

∂πa
η

(
L∑
i=1

πi − 1

)
=
γi(a)

πa
− η = 0

⇐⇒ γ1(a) = νπa

⇐⇒
L∑
a=1

γ1(a) = ν

L∑
a=1

πa = ν
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Solving algebra yields to solution for πa. Let’s consider the value of Φab, as we have:

∂L
∂Φab

=
∂L
∂Φab

T∑
t=2

L∑
i=1

L∑
j=1

ξ(zi = i, zt−1 = j)Φji −
∂L
∂Φab

L∑
i=1

λi

 L∑
j=1

Φij − 1


=

T∑
T=1

ξ(zt = b, zt−1 = b)
1

Φab
− λa = 0

⇐⇒ λaΦab =

T∑
t=1

ξ(zt = b, zt−1 = a)

⇐⇒
L∑
j=1

λaΦaj =

L∑
j=1

T∑
t=1

ξ(zt = j, zt−1 = a)

⇐⇒ λa =

L∑
j=1

T∑
t=1

ξ(zt = j, zt−1 = a) =

T∑
t=1

γt−1(a)

And, so the equality is proven. Note that there are difference in time notation but they are equivalent. The
proof for Aij is the same, so we will not go into details.

Remark 39. (Practical Numerical Method) The message passing algorithm can be implode i.e αt(i) =
p(x1:t, zt = i)→ 0 to fix this, we do the following rescale:

ᾱt(i) = Ai(xt)

L∑
j=1

α̃t−1(j)Φij ρt =

L∑
i=1

ᾱt(i) α̃(i) = ᾱt(i)/ρt

Proposition 4.9. We can show that: ρt = p(xt|x1:t−1,θ)

Proof. We will consider the quantity p(zi|x1:i) to be equal to:

α̃t(z) = p(zt|x1, . . . ,xt) =
αt(i)

p(x1:t)

As, we will denote ρt = p(xt|x1:t−1), and from the product rule, we have p(x1:t) =
∏t
i=1 ρi, and so, we can

recover:

αt(i) =

(
t∏
i=1

ρi

)
α̃t(i) =

(
t−1∏
i=1

ρi

)
ρtα̃t(i)

Let’s consider the recursive property of the α, recall its formula:

αt+1(i) =

 L∑
j=1

αt(j)Φij

Ai(xt+1)

⇐⇒

(
n∏
i=1

ρi

)
ρn+1α̃t+1(i) =

 L∑
j=1

[(
n∏
i=1

ρi

)
α̃(zn)

]
Φij

Ai(xt+1)

⇐⇒ ρn+1α̃t+1(i) =

 L∑
j=1

α̃(zn)Φij

Ai(xt+1)

Thus, we have proven the identity. For βt(i). we can consider the fact that β̂t(i) is:

βt(i) =

(
N∏

i=t+1

ci

)
β̂t(i)
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Remark 40. (Decoding/Derivation of Viterbi) We are interested in finding the best hidden state path
given the observations o1:t, together with the following quantity δt(i):

{z∗1 , . . . , z∗t } = arg max
z1,...,zt

p(z1, . . . , zt,x1:t = o1:t|θ)

δt(i) = p(z1, . . . , zt−1, zt = i,x1:t = o1:t|θ)

We can see that we can use the induction step to find this value:

δt+1(j) =
[
max
i
δt(i)Φij

]
Ai(ot+1)

This recursion gives us the Viterbi algorithm.

Definition 4.10. (Viterbi Algorithm) The algorithm to find the best path is given by, where the sequence
of hidden state is stored in ψ:

• Initialization:
δ1(i) = πibi(o1) ψ1(i) = 0

• Induction Step:

δt(j) =

[
max
i∈[L]

δt−1(i)aij

]
bj(ot) ψt(j) = arg max

i∈[L]

δt−1(i)aij

• Termination:
P ∗ = max

i∈[L]
[δT (i)] q∗T = arg max

i∈[L]

[δT (i)]

Remark 41. (Multiple sequences) We now consider the update for HMM but with multiple sequences
l ∈ [L], which we can show that the batch update is:

πi =
1

L

L∑
l=1

γ
(l)
1 (i) Φij =

∑L
l=1

∑T (i)−1
t=1 ξ

(l)
t (i→ j)∑L

l=1

∑T (i)

t=1 γ
(l)
t (i)

Aik =

∑L
l=1

∑T (i)−1
t=1 δ(xt = k)γ

(l)
t (i→ j)∑L

l=1

∑T (i)

t=1 γ
(l)
t (i)

5 Markov Chain (Monte Carlo)

5.1 Markov Chain

Definition 5.1. (Transition Matrix) We consider the probability of state i ∈ [d] will move to state j ∈ [d]
i.e Pi→j , where d is the number of states. This information for the markov chain is stored in d× d transtion
matrix:

P =

P1→1 · · · P1→d
...

. . .
...

Pd→1 · · · Pd→d


Definition 5.2. (Initial Distribution) At the start, we consider the distribution over the states:

pinit =
(
p(x0 = 1), · · · , p(x0 = d)

)T
Lemma 5.1. Given the state distribution pt, we can find the probability distribution over the next state after
transtion pt+1 is:

pt+1 = Ppt

Note that pt ∈ Rd×1 for any t ∈ N
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Proof. Consider the distribution of the first state:

pt+1(s) = p(xt+1 = s) =

d∑
i=1

p(xt+1 = s|xt = i)p(xt = i) =

d∑
i=1

Psipt[i]

And so it is proven.

Definition 5.3. (Stationary) Stationary markov chain is when the transtion matrix P doesn’t depends
on time step.

Definition 5.4. (Equilibrium Distribution) Let P be transtion matrix, then a distribution p such that:
Pp = p is called equilibrium distribution.

Remark 42. Please note that if we consider applying transtion matrix to any starting distribution:

p∞ = lim
n→
P npinit

assuming that it exists, then we can show that it gives rise to (somewhat) equilibrium distribution:

Pp∞ = P lim
n→
P npinit = lim

n→
P npinit = p∞

Definition 5.5. (Aperiodic MC) A stationary MC is aperiodic if: P ii = 0 for i ∈ [d].

Definition 5.6. (Irreducible) MC is irreducible if there is a path from each state to every other state in
the transtion.

Theorem 5.1. If first-order (depends only last time step), stationary MC with finite state space is a periodic
and irreducible, then:

• Limit distribution p∞ exists.

• Limit distribution is also the equilibrium distribution.

• Equilibrium distribution is unique.

• Equilibrium distribution doesn’t depends on initial distribution.

Definition 5.7. (Aperiodic State) The state i is a aperiodic if there exits a time t such that for all t ≥ t0
with positive integer t0, the state comes back to itself with positive probability.

Definition 5.8. (Positive Recurrence State) The state i is positive recurrence if the expected number
of times that it will return to itself is finite.

Definition 5.9. (Ergodicity) There exists a positive integer t0, such that for all pair of states i, j, if
markov chain starts at time 0 at state i, then for all t ≥ t0, the probability of being in state j at time t is
more than 0. Note that this implies all states are positive recurrence and aperiodic.

Theorem 5.2. (Result of Ergodicity) The ergodicity implies the existence of unique stationary distribu-
tion p∞ given any initialized probability distribution.

Definition 5.10. (Detailed Balance wrt. p∗) The markov chain is detailed balance with respect to a
stationary distribution p∗ if for all states i, j:

p∗iPij = p∗jPji

This also means that the markov chain is reversible under this stationary distribution.

Remark 43. (Solving Detailed Balance) Detailed balance implies that we have to solve |S|2 equation,
which is more than the simple stationary equation, which require only |S| equations.
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Proposition 5.1. The stationary distribution of detailed balance markov chain with respect to stationary
distribution p∗ is p∗

Proof. We consider the summation over the detailed balance equation, as we have:

|S|∑
i=1

p∗iPij =

|S|∑
i=1

p∗jPji = p∗j

|S|∑
i=1

Pji = p∗j

This complete the proof.

Remark 44. (Ergodicity and Detailed Balance) Eventhough the detailed balance with respect to sta-
tionary distribution p∗, will have the stationary distribution to be p∗, this doesn’t means that it is unique.
For the uniqueness to hold, ergodicity is required.

Remark 45. (Finding Equilibrium) There are 2 ways we can find the equilibrium: power method, and
eigenvalue. Both of them is based on finding the underlying eigenvalue and eigenvectors.

Definition 5.11. (Random Walk) Given a directed graph G with d vertices, a random walk generates a
sequence of nodes: x0, x1, · · · by first select the vertex x0 at random and, at time t, we uniformly at random
select the children of xt−1 to get to vertex xt.

Remark 46. Random walk can be defined as a markov chain, where:

pinit =

(
1

p
, · · · , 1

p

)
Pij =


1

number of edges
if i links to j

0 otherwise

Remark 47. PageRank algorithm applies random walk to a graph, in order to make the original markov
chain defined by a transtion matrix T to be irreducible and aperiodic:

P ij = (1− α)T ij +
α

d

where α ∈ (0, 1)

5.2 Sampling Algorithm

Definition 5.12. (Sampling Algorithm) Given a distribution p, the sampling algorithm samples to get
the random point x1, . . . ,xn such that the marginal distribution is p. Ideally, the drawning are independent.

Remark 48. (Usefulness of Sampling Algorithm) There are many use-cases of sampling algorithm
notably:

• Compute expectation. Given the output x1, . . . ,xN to be independent from distribution p, the expec-
tation is:

E[f(x)] ≈ 1

N

N∑
i=1

f(xi)

• We can approximate the distribution using the sample to perform a density estimation.

Definition 5.13. (Sampling in Baysian Model) Sometimes the posterior over parameter q̂(θ|x1:n) can’t
be computed analytically, we can still sample from it to get θ1, . . . ,θm given the posterior q̂. We can now
use it for computing expectation like above or perform a prediction:

p(xn+1|x1:n) =

∫
Θ

p(xn+1|θ)q̂(θ|x1:n) dθ ≈ 1

m

m∑
i=1

p(xn+1|θi)
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Definition 5.14. (Boxed Rejection Sampling) We perform the following procedure, as we want to
sample from distribution p̃:

• We generates the Xi ∼ U [a, b], Yi ∼ U [0, c] uniformly to define the box.

• If Yi ≤ p̃(Xi), then we keep the sample Xi.

• Otherwise, we reject the sample and repeat the process.

Remark 49. (Invariance to Scale) Please note that rejection sampling still works if we have Yi ∼ U [0, kc]
given the distribution kp(·) for k > 0. This means that rejection sampling only require us to know the shape
of the distribution, as long as kc is big enough to cover the whole distribution p. This also means that, in
Baysian inference, we doesn’t have to know the evidence in order to sample from the posterior:

p(θ|X ) =
p(X|θ)p(θ)

Z
where Z =

∫
p(X|θ)p(θ) dθ

We only need p̃ = p(X|θ)p(θ) to do rejection sampling.

Definition 5.15. (Rejection Sampling) One doesn’t have to use the uniform distribution to sample
proposed point. We simply have to find the distribution r such that p̃ < r everywhere:

• Sample Xi ∼ r

• Sample Yi|Xi ∼ U [0, r(Xi)]

• If Yi ≤ p̃(Xi), then we keep the sample Xi.

• Otherwise, we reject the sample and repeat the process.

The scaling properties still holds. It will generates iid sample θ1, . . . , θm, where the samples 1/m
∑m
i=1 f(xi)

is an unbiased estimate of Ep[f(x)].

Remark 50. Given the hight of r, |A| is too high, and the hight of p̃, |B|. The rejection sampling will accepts
sample with probability |B|/|A|, so if |A| is too high, the algorithm may be inefficient.

Definition 5.16. (Improtance Sampling) Importance sampling is given distribution p = 1/Zpp̃ that we
want to sample to and arbitary proposal distribution q = 1/Zq q̃ (that we can sample), then:

• Draw x1,x2, . . . ,xm iid from proposal q.

• Expectation Ep[f(x)] is approximated as:

1

m

m∑
i=1

f(xi)[p̃(xi)/q̃(xi)]∑m
j=1 p̃(xj)/q̃(xj)

Proposition 5.2. The importance sampling gives unbiased estimate of Ep[f(x)].

Proof. We have the following sampling:

Ep[f(x)] =

∫
f(x)p(x) dx =

∫
f(x)

p(x)

q(x)
q(x) dx = E

[
f(x)

p(x)

q(x)

]
≈ 1

m

m∑
i=1

f(xi)p(xi)

q(xi)

where x1, . . . ,xm ∼ q. Now, consider the ratio of normalized factor:

Zp
Zq

=

∫
p̃(x) dx

Zq
=

∫
p̃(x) q(x)

q(x) dx

Zq
=

∫
p̃(x)

q(x)

Zqq(x)
dx = Eq

[
p̃(x)

q̃(x)

]
≈ 1

m

m∑
i=1

p̃(xi)

q̃(xi)

Now, the estimator of f can be found as

Ep[f(x)] ≈ 1

m

m∑
i=1

f(xi)p(xi)

q(xi)
=

1

m

m∑
i=1

f(xi)p(xi)

q(xi)

p̃(xi)

q̃(xi)

Zq
Zp

=
1

m

m∑
i=1

f(xi)[p̃(xi)/q̃(xi)]∑m
j=1 p̃(xj)/q̃(xj)
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5.3 More Probabilistic Models

Definition 5.17. (Random Field) Given a weighted undirected graph N = (vN , wN ) where vN is the
vertex set, and wN is the set of edge weights. The edge weights are scalar wij ∈ R. An edge weight wij
means to edge between i and j. Each vertex vi is associated with random variable Θi. The neighbourhood
of vertex vi is the set:

∂(i) = {j : wij 6= 0}

The set {Θj : j ∈ ∂(i)} of random variable associated with neighbourhood is called Markov blanket of Θi

Definition 5.18. (Markov Property) The Markov properties is when:

p(θi|θj , j 6= i) = p(θi|θj , j ∈ ∂(i))

Each Θ is conditionally independent of remaining field given its Markov blanket. A Markov random field is
a random field that is Markov.

Definition 5.19. (Energy Function) Any (strictly positive) probability or density can be rewritten as:

p(x) =
1

Z
exp(−H(x)) where H : X → R+ and Z =

∫
exp(−H(x)) dx

where H is called potential.

Remark 51. The Markov random field (MRF) density for random variable Θ1:n can be written as:

p(θ1, . . . , θn) =
1

Z
exp(−H(θ1, . . . , θn))

Definition 5.20. (Potts Model) Let N be a neighbourhood of graph with weight wij and β > 0. The
MRF, where we have:

p(θ1, . . . , θn) =
1

Z(β)
exp

β∑
ij

wijI {θi = θj}


Note that the energy is additive over pairs. Positive weight encorate smoothness:

• wij > 0, this means that θi = θj increases probability.

• wij < 0, this means that θi = θj decreases probability.

• wij = 0, this means that no interaction between θi and θj .

Definition 5.21. (Ising Model) We have the following distribution:

p(θ1:n) =
1

Z(β)
exp

 ∑
(i,j)∈edge

βI[θi = θj ]


Given rejection sampling, we can sample the distribution without the normalizing factor Z(β), where θi ∈
{−1,+1} and wij ∈ {0, 1}. This model is on the d-dimensional grid.

Remark 52. (Usage of Markov Random Field) Given the problem with observation xi for each i location
on a grid. If we want to model the observation with a distribution p(xi|Θi) for each location, with its
own parameter Θi. We can use MRF as a prior distribution, while we represent p(xi|Θi) as the emission
probability:

• Define a joint (Θ1, . . . ,Θn) as an MRF on the grid graph.

• Given a positive weight, the MRF will encorate the model to explain a neighbourhood of xi by similar
paramter value. This leads to smoothing in the result.
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Definition 5.22. (Baysian Mixture Model) The model of the form:

π(x) =

K∑
k=1

ckp(x|Θk)

is called Baysian model if p(x|θ) is an exponetial model and:

• Θ1, . . . ,ΘK ∼ q where q is a prior over Θ

• (c1, . . . , cK) is sampled from K-dimensional dirichlet distribution.

Definition 5.23. (Posterior Baysian Mixture Model) Another intractable model that may need sam-
pling is:

q̂n(c1:k,θ|x1:n) ∝
n∏
i=1

(
K∑
k=1

ckp(xi|θn)

)(
K∏
k=1

q(θk)

)
qdir(c1:K)

individual evaluate of non-normalized q̃ is numerically unstable but given specific value of c,x or θ, this
collapse to

∑K
k=1 ckp(xi|θk) making it tractable. Furthermore, please note that: we can multiple the Baysian

Mixture model
∏K
k=1 q(θk) with MRF prior to get smoothing effect.

Remark 53. (Problems and Solution) If MRF is used as prior, we have to compute or approximate the
posterior distribution. The solution of MRF distribution on grids are not analytically tractable, so we have
to perform sampling and inference using Markov chain sampling algorithm.

5.4 Markov Chain Monte Carlo

Definition 5.24. (MCMC) We want to sample from distribution with density p. Suppose, we can define
Markov chain with invariance distribution i.e Pinv ≡ P . If we sample x1,x2, . . . from the chain, then once
it has converged and we obtain the sample.

Definition 5.25. (Continuous MC) A continuous Markov chain is defined by an initial pinit and condi-
tional probability t(y|x) is transtion probability or transtion kernel. For example, markov chain on R2, we
can define Markov chain by:

xi+1|xi = xi ∼ g(·|xi, σ2
i )

where g is the spherical Gaussian with fixed variance. Suppose the state X is uncountable, so the transtion
matrix is substuited by conditional probability t. The distribution pinv with density pinv is invariance if:∫

X
t(y|x)pinv(x) dx = pinv(y)

Remark 54. (Several Problems) There are several problems that we have to solve. We have to construct
MC with invariance distribution p. We can’t actually start sampling with x1 ∼ p as if we know how to
sample, our method would be pointless. Furthermore, each point xi is marginally distribution as xi ∼ p but
the points are not iid.

Definition 5.26. (Metropolis-Hasting) We define the conditional probability q(y|x) on X . We then
define a rejection kernel A as we have:

A(xi+1|xi) = min

{
1,
q(xi|xi+1)p(xi+1)

q(xi+1|xi)p(xi)

}
Knowing p̃ (unnormalized) is enough for the rejection kernel A(·|·) as the normalizing factor is cancelled.
We define the trasntion probability of the chain as:

t(xi+1|xi) = q(xi+1|xi)A(xi+1|xi) + δx(xi+1)c(xi) where c(xi) =

∫
q(y|xi)(1−A(y|xi)) dy

To sample from the MH algorithm, at each step i+ 1, generate a proposal x∗ ∼ q(·|xi) and ui ∼ U [0, 1]:
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• If ui > A(x∗|xi) reject a proposal, and we set xi+1 = xi

• If ui ≤ A(x∗|xi), accept proposal, and we set xi+1 = x∗

Remark 55. (Derivation of Metropolis-Hasting) Now, we will consider how Metropolis-Hasting can to
be. Starting with the detailed balance equation, as we have:

p(xi+1|xi)p(x) = p(x|xi+1)p(xi+1) ⇐⇒ p(xi+1|x)

p(x|xi+1)
=
p(xi+1)

p(x)

Now, we will separate the transition step to be:

• Proposal Distribution q(xi+1|xi)

• Acceptance Distribution A(xi+1|xi)

Now, we have:
A(xi+1|xi)
A(xi|xi+1)

=
p(xi+1)

p(xi)

q(xi|xi+1)

q(xi+1|xi)
Now, if we use the Metropolis-Hasting rejection kernel, we now have:

A(xi+1|xi)p(xi)q(xi+1|xi) = A(xi|xi+1)p(xi+1)q(xi|xi+1)

⇐⇒ min
{
P (xi)q(xi+1|xi), p(xi+1)q(xi|xi+1)

}
= min

{
q(xi+1|xi)p(xi), p(xi+1)q(xi|xi+1)

}
Thus the detailed balance is satisfied.

Remark 56. There are several observations on the Metropolis-Hasting as we have:

• We accept if the second term is larger than 1: q(xi|xi+1)p(xi+1) > q(xi+1|xi)p(xi). We accept if the
proposal increases the probability under p.

• If it decreases the probability, we still accept with a probability which depends on the difference to the
current probability.

• We can see this as noisy hill-climbing as it tends to move to the probability under p.

• However, there are some probability that the sampling can move down-hill with certain probability.
Finally, we can show that it won’t stuck at the local maxima.

Definition 5.27. (Burn-in and Mixing-Time) The first m samples are called burn-in phase. The first
m samples are discarded. And, we have:

x1, . . . ,xm−1,xm,xm+1, . . .

We don’t know the m but we can use a certain heuristic called convergence dianostic.

Definition 5.28. (Sequential Dependence) Even after burn-in MC are not iid, we can use the following
strategy as we have to consider the when the sample can be used:

• Estimate empirically how many steps L are needed for xi and xi+L to be independent. We keep every
L-th sample and discard in the between.

• The most common method uses is called auto-correlation function as we have:

Auto(xi,xj) =
E[(xi − µi)(xj − µj)]

σiσj

where µi is the mean and σi is the standard deviation of xi. We can use this auto-correlation to
calculate the value L.
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Definition 5.29. (Gelman-Rubin Criterion) We can also start several chain at random for chain k the
sample xki has the marginal of pik:

• The distribution has to converge to all pi = pinv, which are all idetical.

• We can use hypothesis testing to compare pki for difference k.

• Once the test doesn’t reject anymore, assume that the chain has passed the burn-in phase

Remark 57. (Rules for Selecting a Proposal Distribution) Selecting a proposal distribution, we have
to be aware of the tradeoff, where if var(q) is too large will overstep p and leads to rejection. If var(q) is too
small as many steps will be needed to achives a good converge of the domain.

• If p is unimodal and can be roughly approximate by Gaussian, var(q) should be choosen to be smaller
than the covariance of p.

• With complex posterior, choosing q is difficult but it is important to convergence speed. If we know
some information about the posterior, this might help choosing q.

There are mnay other ways to sample for example mixture of proposal.

Definition 5.30. (Gibbs Sampling) Suppose p(x) is a distribution on Rd and so x = (x1, . . . ,xD). The
full conditional probability of the entry xd is given by the other entries to be:

p(xd|x1, . . . ,xd−1,xd+1, . . . ,xD)

The Gibbs sampler is the special case of MH-algorithm where the proposal of xd is the full conditional over
xd

Remark 58. (Connection to HM) Suppose p is a distribution on RD so each sampler is of the form
xi = (xi,1, . . . ,xi,D). We generate a proposal xi+1 as:

xi+1,1 ∼ p(·|xi,2, . . . ,xi,D)

...

xi+1,d ∼ p(·|xi+1,1, . . . ,xi+1,d−1,xi,d+1, . . . ,xi,D)

...

xi+1,D ∼ p(·|xi,1, . . . ,xi,D−1)

This is like Metropolis-Hasting as we use the proposal distribution and accepting probability to be 1.

Remark 59. (MRF with Gibbs Sampling) Consider D nodes, each dimension d and markov property:

p̃(θd|θ1, . . . , θd−1, θd+1)

= exp
(
β(I {θd = θleft}+ I {θd = θright}), I {θd = θup} , I {θd = θdown})

)
And so we can sample it.
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