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1 Too Many Distributions (And Its related Quantities)

1.1 Normal Distribution and Friends

Definition 1.1. (Normal Distribution) We define the normal distribution to be:

N (x|µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
Definition 1.2. (Cumulative Normal Distribution) We define CDF of normal distribution as:

N (x ≤ y|µ, σ2) = Φ

(
x− µ
σ

)
=

1

2

[
1 + erf

(
x− µ
σ
√

2

)]
where erf(x) =

2√
π

∫ x

0

exp(−t2) dt

Definition 1.3. (Multinomial Cell Probabilities) We consider X1, . . . , Xm the counts in cells 1, . . . ,m
follows multinomial distribution with total count of n and cell probabilities p1, . . . , pm as we have:

p(X1, . . . , Xm|p1, . . . , pm) =
n!∏m

i=1Xi!

m∏
i=1

pXi
i

The marginal distribution of each Xi that is binomial (n, pi), and the joint frequency function isn’t product
of marignal frequency function.

1.2 Statistical Properties

Definition 1.4. (Mean/Variance) Mean and Variance of a random variable x are defined as:

E[f(x)] =

∫
f(x)p(x) dx var(x) = E[(x− E[x])2]

Definition 1.5. (Covariance/Correlation Coefficient) Covariance and Correlation coefficient between
2 variables are defined as:

cov(x, y) = E[(x− E[x])(y − E[y])] ρ =
cov(x, y)√

var(x) var(y)

Theorem 1.1. (Markov’s Inequality) If X is a random variable with P (X ≥ 0) = 1 and for which E[X]
exists then:

P(X ≥ t) ≤ E[X]

t

Proof. Consider the expectation:

E[X] =

∫
xp(x) dx

=

∫
x<t

xp(X) dx+

∫
x≥t

xp(X) dx
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All the terms in the integral are non-negative because X takes only non-negative value, and so:

E[X] ≥
∫
x≥t

xp(X) dx

≥
∫
x≥t

tp(x) = tP(X ≥ t)

Theorem 1.2. (Chebyshev’s Inequality) Let X be a random variable with mean µ and σ2. Then for any
t > 0:

P(|X − µ| > t) ≤ σ2

t2

Proof. We let Y = (X − µ)2. Then E[Y ] = σ2 and this result follows from Markov inequality to Y .

Theorem 1.3. (Law of Large Number) Let X1, X2, . . . , Xi, . . . be sequence of independent random vari-
ables with E[Xi] = µ and var(Xi) = σ2. Let X̄n = 1/n

∑n
i=1Xi. Then for any ε > 0:

P(
∣∣X̄n − µ

∣∣ > ε)→ 0 as n→∞

Proof. Let’s find the E[X̄n] and var(X̄n), and since Xi are independent

E[X̄n] =
1

n

n∑
i=1

E[Xi] = µ var(X̄n) =
1

n2

n∑
i=1

var(Xi) =
σ2

n

This follows from Chebyshev’s inequality, which is:

P(
∣∣X̄n − µ

∣∣ > ε) ≤ var(X̄n)

ε2
=

σ2

nε2
→ 0

as n→∞. Thus the thoerem is proven.

Definition 1.6. (Convergence of Distribution Function) Let X1, X2, . . . be a sequence of random
variable with CDF F1, F2, . . . and let X be random variable with distribution F . We say that Xn converge
to X if:

lim
n→∞

Fn(X) = F (X)

at every point at which F is continuous.

Theorem 1.4. (Continuiy Theorem) Let Fn be a sequence of CDF with the corresponding momement
generating function Mn. Let F be a CDF with momement-generating funcion M . If Mn(t) → M(t) for all
t in an open interval containing zero, then Fn(x)→ F (x) at all continuity points of F .

Theorem 1.5. (Central Limit Theorem) Let X1, X2, . . . be a sequence of independent random variable
having mean 0 and variance σ2 and the common distribution function F and momement-generating function
M defined in a neighborhood of zero. Let:

Sn =

n∑
i=1

Xi

Then, we have:

lim
n→∞

P
(
Sn
σ
√
n
≤ x

)
= Φ(x) −∞ < x <∞
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Proof. Let Zn = Sn/(σ
√
n). We will show that the mgf of Zn tends to the mgf of the standard normal

distribution. Since Sn is the sum of independent random variable:

MSn(t) = [M(t)]n MZn(t) =

[
M

(
t

σ
√
n

)]n
Consider tthe Taylor series expansion about zero, as we have:

M(s) = M(0) + sM ′(0) +
1

2
s2M ′′(0) + εs

Please note that εs/s
2 → 0 as s → 0. Since E[X] = 0,M ′(0) = 0 and M ′′(0) = σ2. As n → ∞, and

t/(σ
√
n)→ 0 and:

M

(
t

σ
√
n

)
= 1 +

1

2
σ2σ2

(
t

σ
√
n

)2

+ εn

Please note that εn/(t
2/(nσ2))→ 0 as n→∞, and we have:

MZn
(t) =

(
1 +

t2

2n
+ εn

)n
It can be shown that if an → a, then we have:

lim
n→∞

(
1 +

an
n

)n
= exp(a)

From this result it follows that:

MZn
(t)→ exp(t2/2) as n→∞

And, so exp(t2/2) is the mgf of the standard normal distribution, as we have shown.

1.3 Quantities

Definition 1.7. (Sample Mean and Sample Variance) LetX1, . . . , Xn be independentN (µ, σ2) random
variable. We refer to them as sample, and we denote sample mean X̄ and sample variance S2 to be:

X̄ =
1

n

n∑
i=1

Xi S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

We have E[X̄] = µ and var(X̄) = σ2/n.

Theorem 1.6. The random variable X̄ and the vector of random variables (X1 − X̄,X2 − X̄, . . . , Xn − X̄)
are independent. And so, X̄ and S2 are independently distributed.

Proof. The proof will be based on momement-generating function:

M(s, t1, . . . , tn) = E
{

exp
[
sX̄ + t1(X1 − X̄) + · · ·+ tn(Xn − X̄)

]}
We observe that since:

n∑
i=1

ti(Xi − X̄) =

n∑
i=1

tiXi − nX̄t̄

Then, we have:

sX̄ +

n∑
i=1

ti(Xi − X̄) =

n∑
i=1

[ s
n

+ (ti − t̄)
]
Xi =

n∑
i=1

aiXi
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where we have ai = s/n+ (ti − t̄). Furthermore, we observe that:

n∑
i=1

ai = s

n∑
i=1

a2
i =

s2

n
+

n∑
i=1

(ti − t̄)2

Now, we have M(s, t1, . . . , tn) = MX1,...,Xn(a1, . . . , an). Since Xi are independent normal random variable,
we have:

M(s, t1, . . . , tn) =

n∏
i=1

MXi
(ai) =

n∏
i=1

exp

(
µai +

σ2

2
a2
i

)

= exp

(
µ

n∑
i=1

ai +
σ2

2

n∑
i=1

a2
i

)

= exp

[
µs+

σ2

2

(
s2

n

)
+
σ2

2

n∑
i=1

(ti − t̄)2

]

= exp

(
µs+

σ2

2n
s2

)
exp

[
σ2

2

n∑
i=1

(ti − t̄)2

]
We can see that the first factor is mgf of X̄. Since the mgf of the vector (X1 − X̄, . . . , Xn − X̄) can be
obtained by setting s = 0 in M , the factor is this mgf. Thus the prove is shown.

1.4 Distribution from Normal Distribution

Definition 1.8. (χ2-Distribution)

• If Z is a standard normal random variable, the distribution of U = Z2 is called the chi-square distri-
bution with 1 degree of freedom.

• If U1, U2, . . . , Un are independent 1 degree of freedom, the distribution of V = U1 + U2 + · · · + Un is
called χ2-distribution with n degrees of freedom and it is denoted by χ2

n.

We can see that the χ2-square n-degree of is gamma distribution with α = n/2 and λ = 1/2, so pdf is:

p(v) =
1

2n/2Γ(n/2)
v(n/2)−1 exp(−v/2)

for v ≥ 0, and so E[V ] = n and var(V ) = 2n. Finally, it is clear that if U ∼ χ2
n and V ∼ χ2

m, then we have
U + V ∼ χ2

m+n

Definition 1.9. (T -Distribution) If Z ∼ N (0, 1) and U ∼ χ2
n and Z and U are independent, then the

distribution of Z/
√
U/n is called the t-distribution with n degrees of freedom. The density function of the

t distribution with n degrees of freedom is:

p(t) =
Γ[(n+ 1)/2]√
nπΓ(n/2)

(
1 +

t2

n

)−(n+1)/2

It is clear that f(t) = f(−t), and so it is symmetric about zero. As the number of degree of freedom
appraoches ∞ the t-distribution tends to standard normal distribution.

Definition 1.10. (F -Distribution) Let U and V be independent χ2-distribution with m and n degrees of
freedom. The distribution of:

W =
U/m

V/n

is called F-distribution with m and n degrees of freedom, and is denoted by Fm,n, where its pdf is:

p(w) =
Γ[(m+ n)/2]

Γ(m/2)Γ(n/2)

(m
n

)m/2
wm/2−1

(
1 +

m

n
w
)−(m+n)/2
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One can show that, for n > 2 as E[W ] exists and equal n/(n− 2). Finally, from the definition of tn random
variable follows an F1,n distribution.

Theorem 1.7. The distribution of (n− 1)S2/σ2 is χ2
n−1-distribution

Proof. Please note that:

1

σ2

n∑
i=1

(Xi − µ)2 =

n∑
i=1

(
Xi − µ
σ

)2

∼ χ2
n

And, note that:

1

σ2

n∑
i=1

(Xi = µ)2 =
1

σ2

n∑
i=1

[(Xi − X̄) + (X̄ − µ)]2

=
1

σ2

n∑
i=1

(Xi − X̄)2 +

(
X̄ − µ
σ/
√
n

)2

Note that
∑n
i=1(Xi − X̄) = 0. Now this relation is like W = U + V , as U and V are independent, we have

MW (t) = MU (t)MV (t) as both W and V are χ2-distribution, we have:

MU (t) =
MW (t)

MV (t)
=

(1− 2t)−n/2

(1− 2t)−1/2
= (1− 2t)−(n−1)/2

The last expression is the mgf of a random variable with a χ2
n−1 distribution.

Corollary 1.1. We can show that:
X̄ − µ
S/
√
n
∼ tn−1

Proof. We can show that it is equivalent to the following ratio:

X̄ − µ
S/
√
n

=

X̄ − µ
σ/
√
n√

S2/σ2

The latter ratio is N (0, 1) and the square root of χ2
n−1 distribution. And so from the definition is tn−1.

2 Estimation of Parameters

2.1 Method of Moments

Remark 1. Given the set of data X1, . . . , Xn sampled from a known distribution family but unknown pa-
rameter P (x|θ), we would like to this parameter.

Definition 2.1. (Moments) The k-th moment of probability is defined as µk = E[Xk], where X is random
variable following distribution. The sample moment is:

µ̂k =
1

n

n∑
i=1

Xk
i

Definition 2.2. (Method of Moments) The method of moments estimates parameters by finding ex-
pression for them in terms of lowest possible order moments and substituting sample moments into the
expression. Suppose there are 2 parameters, which can be expressed in terms of 2 moments as:

θ1 = f1(µ1, µ2) θ2 = f2(µ1, µ2)

Then method moments simply substitute the sample moment of the functions getting the parameter θ̂1, θ̂2.
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Definition 2.3. (Sampling Distribution/Standard Error) It is natural question to aks to the distri-
bution of the estimate, which is called sampling distribution, or the approximation to that distribution. The
standard error is the standard deviation of sampling distribution.

Example 2.1. We will consider the use of method of moments in 3 difference kinds of distribution:

• Poisson Distribution: This is simple as λ = E[X], so the parameter is set to:

λ̂ = X̄ =
1

n

n∑
i=1

Xi

To consider the sampling distribution, we have:

p(λ̂ = n) = p(S = nv) =
(nλ0)nv exp(−nλ0)

(nv)!

Since S =
∑
iXi is Poisson, the mean and variance are both nλ0, so we have E[λ̂] = 1/nE[S] = λ0

and var(λ̂) = λ0/n, and so the standard error is the square root of the variance.

• Normal Distribution: We can see that E[X] = µ and E[X2] = µ2 + σ2, and so, we have:

µ̂ = µ̂1 = X̄

σ̂2 = µ̂2 − µ̂2
1 =

1

n

n∑
i=1

X2
i − X̄2

We can see that the sampling distribution of X̄ ∼ N (µ, σ2/n) and nσ̂2/σ2 ∼ χ2
n−1.

• Gamma Distribution: We can see that the first 2 moments are given as E[X] = α/λ and E[X2] =
(α(α+ 1))/λ2. From the second equation: µ2 = µ2

1 + µ1/λ, and so we have:

λ̂ =
µ̂1

µ̂2 − µ̂2
1

α̂ =
µ̂2

1

µ̂2 − µ̂2
1

The sampling distribution can be hard to find. We will have to use boostrapping to do this.

Definition 2.4. (Bootstrap) We can samping with replacement of the data, and we calculate the parameter
via any mean. The distribution of the parameter is the approximation of the sampling distribution. This
method is called bootstrap.

Definition 2.5. (Consistent) Let θ̂n be an estimate of parameter θ based on sample of size n. Then θ̂n
is said to be consistent in probability if θ̂n converges in probability to θ as n appraoches infinity, that is for
any ε > 0:

P
(∣∣∣θ̂n − θ∣∣∣ > ε

)
→ 0 as n→∞

The weak law of large number implies the sample moment converge in probability to population moment.

2.2 Maximum Likelihood

Definition 2.6. (Maximum Likelihood) We will assume the data Xi to be iid, and so the log-likelihood:

l(θ) = log

n∏
i=1

p(Xi|θ) =

n∑
i=1

log f(Xi|θ)

Example 2.2. We will consider difference distributions and its maximum likelihood estimate:
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• Poisson Distribution: The log-likelihood of the Poisson distribution is:

l(λ) =

n∑
i=1

(Xi log λ− λ− logXi!) = log λ

n∑
i=1

Xi − nλ−
n∑
i=1

logXi!

We can see that its derivative is given as:

l′(λ) =
1

λ

n∑
i=1

Xi − n = 0

The MLE is equal to λ̂ = X̄

• Normal Distribution: The log-likelihood is given by

l(µ, σ2) = log

n∏
i=1

1√
2πσ

exp

(
− (xi − µ)2

2σ2

)

= −n log σ − n

2
log 2π − 1

2σ2

n∑
i=1

(Xi − µ)2

This leads to the following derivative:

∂l

∂µ
=

1

σ2

n∑
i=1

(Xi − µ)
∂l

∂σ
= −n

σ
+ σ−3

n∑
i=1

(Xi − µ)2

Setting the derivative to zero, and we have µ̂ = X̄ and we substitute the MLE for µ for σ as we have

σ̂ =
√

1
n

∑n
i=1(Xi − X̄)2. The sampling distribution is the same as method of moment.

• Gamma Distribution: The log-likelihood is given by:

l(α, λ) = log

n∏
i=1

1

Γ(α)
λαXα−1

i exp(−λXi)

= nα log λ+ (α− 1)

n∑
i=1

logXi − λ
n∑
i=1

Xi − λ
n∑
i=1

Xi − n log Γ(α)

for 0 ≤ x <∞. Now, we have the following derivative:

∂l

∂α
= n log λ+

n∑
i=1

logXi − n
Γ′(α)

Γ

∂l

∂λ
=
nα

λ
−

n∑
i=1

Xi

Setting the second partial to zero as λ̂ = (nα̂)/(
∑n
i=1Xi) = α̂/X̄. Now α can be solved by non-linear

equation via iterative method:

n log α̂− n log X̄ +

n∑
i=1

logXi − n
Γ′(α̂)

Γ(α̂)
= 0

The sampling distribution can be found by bootstrapping.

• Multinomial-Cell Distribution: We have the following log-likelihood to be:

l(p1, . . . , pm) = log
n!∏m

i=1Xi!

m∏
i=1

pXi
i = log n!−

m∑
i=1

logXi! +

m∑
i=1

xi log pi

Maximizing the likelihood would be subject to contraint as we have have the following Lagragian:

L(p1, . . . , pm) = log n!−
m∑
i=1

log xi! +

m∑
i=1

xi log pi + λ

(
m∑
i=1

pi − 1

)
Setting the partial derivative to be equal to zero:
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– As we have the following system of equation: p̂j = −xj/λ for j = 1, . . . ,m summing both equation
as we have: 1 = −n/λ or λ = −n and so p̂j = xj/n.

– The sampling distribution of p̂j is determined by the distribution of xj, which is biomial.

Theorem 2.1. Under appropriate smoothness conditions on f , the MLE from an iid sample is consistent.

Proof. Consider maximizing the following values, given the X1, X2, . . . , Xn ∼ p(X|θ0):

1

n
l(θ) =

1

n

n∑
i=1

log p(Xi|θ)

as n tends to infinity, the law of large number implies that:

1

n
l(θ)→ EX∼p(X|θ0)[log p(X|θ)]

=

∫
p(x|θ0) log p(x|θ) dx

The θ that maximizes l(θ) should be closed to the θ that maximizes E[log f(X|θ)] (again not shown). We
consider the derivative:

∂

∂θ

∫
p(x|θ0) log p(x|θ) dx =

∫
p(x|θ)p(x|θ0)

p(x|θ)
∂

∂θ
dx

If θ = θ0, this equation becomes:∫
∂

∂θ
p(x|θ0) dx =

∂

∂θ

∫
p(x|θ0) dx =

∂

∂θ
(1) = 0

This shows that θ0 is stationary and (hopefully) it is a maximum. The assumption of smoothness on f must
be strong enough to justify this.

Lemma 2.1. Define I(θ) by:

I(θ) = E
[
∂

∂θ
log p(X|θ)

]2

= −E
[
∂2

∂θ2
log p(X|θ)

]
Under appropriate smoothness conditions on p, this can be expressed on the right-hand side.

Proof. Observe that
∫
p(x|θ) dx = 1, and so we have, the following observation:

∂

∂θ

∫
p(X|θ) dx = 0

∂

∂θ
p(x|θ) = p(x|θ)

[
∂

∂θ
log p(x|θ)

]
Combinding this with identity, as we have (take the second derivative to be):

0 =
∂

∂θ

∫
p(x|θ) dx =

∫ [
∂

∂θ
log p(x|θ)

]
p(x|θ) dx

=

∫ [
∂2

∂θ2
log p(x|θ)

]
p(x|θ) dx+

∫ [
∂

∂θ
log p(x|θ)

]2

p(x|θ) dx

And so we have the lemma is proven.

Theorem 2.2. Under smoothness condition on f , the probability distribution of
√
nI(θ0)(θ̂− θ0) thends to

a standard normal distribution
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Proof. The following is sketch of proof. Consider the Taylor series expansion (of l′(θ̂)), as we have:

0 = l′(θ̂) ≈ l′(θ0) + (θ̂ − θ0)l′′(θ)

(θ̂ − θ0) ≈ −l
′(θ0)

l′′(θ0)

√
n(θ̂ − θ0) ≈ −n

−1/2l′(θ0)

n−1l′′(θ0)

We consider the numeraor of this last expression. Its expectation is given as:

E
[
n−1/2l′(θ0)

]
= n−1/2

n∑
i=1

E
[
∂

∂θ
log p(Xi|θ0)

]
= 0

As we have θ0, which is the fixed point (see thoerem above). Now, consider the variance of the quantity:

var
[
n−1/2l′(θ0)

]
=

1

n

n∑
i=1

E
[
∂2

∂θ2
log p(xi|θ0)

]2

= I(θ0)

Consider the denominator to be. Together with the law of large number, the expression converges to:

1

n
l′′(θ0) =

1

n

n∑
i=1

∂2

∂θ2
log p(xi|θ0) −→ E

[
∂2

∂θ2
log p(x|θ0)

]
= −I(θ0)

Thus, we have:

n1/2(θ̂ − θ0) ≈ n−1/2l′(θ0)

I(θ0)

We have the following mean and variance of the ratio to be:

E[n1/2(θ̂ − θ0)] ≈ 0

var[n1/2(θ̂ − θ0)] ≈ I(θ0)

I2(θ0)
=

1

I(θ0)

And so we have var(θ̂ − θ0) ≈ 1/(nI(θ0)). Thus the equation is proven.

Remark 2. For an iid sample, the MLE is the maximizer of the log-likelihood function l(θ) =
∑n
i=1 log p(Xi|θ)

has the asymptotic variance that is given as:

1

nI(θ0)
= − 1

E[l′′(θ0)]

When E[l′′(θ0)] is large, meaning that l(θ) is changing very rapidly in a vincinity of θ0 and the variance of
the maximizer is small.

Remark 3. (Confidence Interval for Mean and Variance Estimate) Consider the maximum likelihood
estimate of µ and σ2 from an iid normal sample to be:

µ̂ = X̄ σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2

There are various confidence interval on each of the likelihood estimation as we have:

• Confidence interval of µ is based on:

√
n(X̄ − µ)

S
∼ tn−1 where S2 =

1

n− 1

n∑
i=1

(Xi − X̄)2
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Let tn−1(α/2) denote the point beyound which t distribution with n− 1 degree of freedom has proba-
bility α/2, to be:

P
(
−tn−1(α/2) ≤

√
n(X̄ − µ)

S
≤ tn−1(α/2)

)
= 1− α

The inequality can be manipulated to yields:

P
(
X̄ − S√

n
tn−1(α/2) ≤ µ ≤ X̄ +

S√
n
tn−1(α/2)

)
= 1− α

The probability that µ lies in the interval is 1− α.

• Let’s consider the conditional interval σ2, as we have the following distribution:

nσ̂2

σ2
∼ χ2

n−1

Let χ2
m(α) denote the point beyound which the chi-square distribution with m degree of freedom that

has probability α:

P
(
χ2
n−1(1− α/2) ≤ nσ̂2

σ2
≤ χ2

n−1(α/2)

)
= 1− α

Manipulation of the inequality yields:

P
(

nσ̂2

χ2
n−1(α/2)

≤ σ2 ≤ nσ̂2

χ2(1− α/2)

)
= 1− α

• For a general maximum likelihood methods, one can consider the distribution of

√
nI(θ̂)(θ̂−θ0), where

it is normally distributed, and so we have the following intervales:

P
(
−z(α/2) ≤

√
nI(θ̂)(θ̂ − θ0) ≤ z(α/2)

)
≈ 1− α

which we can yields the confidence interval, as we have:

P

− z(α/2)√
nI(θ̂)

≤ θ0 ≤
z(α/2)√
nI(θ̂)


• For the estimation for random multinomial. The counts are not iid, so the variance of the parameter

estimate is of the form 1/[nI(θ)] can’t be used. It can be shown that:

var(θ̂) ≈ 1

E[l′(θ0)2]
= − 1

E[l′′(θ0)]

Please note that this is used to construct the confidence interval instead of above.

2.3 Cramer-Rao Lower Bound

Definition 2.7. (Efficiency of Estimates) Given 2 estimates θ̂ and θ̃ of a parameter θ, the efficiency of

θ̂ and θ̃ is defined to be:

eff(θ̂, θ̃) =
var(θ̃)

var(θ̂)

Theorem 2.3. Let X1, . . . , Xn be iid with density function p(x|θ). Let T = t(X1, . . . , Xn) be unbiased
estimate of θ. Then under smoothness assumption on p(x|θ), we have:

var(T ) ≥ 1

nI(θ)

10



Proof. Let the following value:

Z =

n∑
i=1

∂

∂θ
log p(Xi|θ) =

n∑
i=1

1

p(Xi|θ)
∂

∂θ
p(Xi|θ)

We already show that E[Z] = 0. Because the correlation coefficient of Z and T is less than or equal to 1 in
absolute value as:

cov2(Z, T ) ≤ var(Z) var(T )

Furthermore, we have shown that (from the lemma of I(θ)):

var

[
∂

∂θ
log p(X|θ)

]
= I(θ)

and so var(Z) = nI(θ). The proof will be complete by showing that cov(Z, T ) = 1. Please note that (follows
product rule): (

n∑
i=1

1

p(Xi|θ)
∂

∂θ
p(Xi|θ)

) n∏
j=1

f(xj |θ)

 =
∂

∂θ

n∏
i=1

f(xi|θ)

Since Z has mean of 0, we have:

cov(Z, T ) = E[ZT ]

=

∫
· · ·
∫
t(x1, . . . , xn)

[
n∑
i=1

1

p(Xi|θ)
∂

∂θ
p(Xi|θ)

]
n∏
j=1

f(xj |θ) dxj

=

∫
· · ·
∫
t(x1, . . . , xn)

∂

∂θ

n∏
i=1

f(xi|θ) dxi

=
∂

∂θ

∫
· · ·
∫
t(x1, . . . , xn)

n∏
i=1

f(xi|θ) dxi

=
∂

∂θ
E[T ] =

∂

∂θ
θ = 1

This proves the inequality as we have.

Definition 2.8. (Efficient) The unbiased estimate whose variance achieves this lower bound is said to be
efficient. Since the asymptotic variance of maximum likelihood estimate is equal to lower bound, it is said
to be asymptotically efficient.

2.4 Sufficient Statistics

Definition 2.9. A statistics T (X1, . . . , Xn) is said to be sufficient for θ if conditional distribution of
X1, . . . , Xn given T = t doesn’t depends on θ or any value of t.

Theorem 2.4. A necessary and sufficient condition for T (X1, . . . , Xn) to be sufficient for a parameter θ is
the joint probability function factors in the form of:

p(x1, . . . , xn|θ) = g[T (x1, . . . , xn), θ]h(x1, . . . , xn)

Proof. We will consider it to be in discrete case. Suppsoe that the frequency function factors. To simplify
notation, we let X denotes (X1, . . . , Xn) and x denotes (x1, . . . , xn). We have:

P (T = t) =
∑

T (x)=t

P (X = x)

= g(t, θ)
∑

T (x)=t

h(x)

11



We then have:

P (X = x|T = t) =
P (X = x, T = t)

P (T = t)
=

h(x)∑
T (X)=t h(x)

This conditional distributed doesn’t depend on θ. To show that the conclusion holds in other direction,
suppose that the conditional distribution of X given T is independent of θ. Let:

g(t, θ) = P (T = t|θ) h(x) = P (X = x|T = t)

We then have:
P (X = x|θ) = P (T = t|θ)P (X = x|T = t)

= g(t, θ)h(x)

Corollary 2.1. If T is sufficient for θ, the MLE is a function of T .

Proof. The likelihood is g(T, θ)h(x), which depends on θ only through T . To maximize this quantity, we
need to maximize g(T, θ)

Theorem 2.5. (Rao-Blackwell Theorem) Let θ̂ be an estimator of θ with E[θ̂2] <∞ for all θ. Suppose

that T is sufficient statistics for θ, and let θ̃ = E[θ̂|T ], then for all θ:

E[θ̃ − θ]2 ≤ E[θ̂ − θ]2

The inequality is strict unless θ̂ = θ̃.

Proof. First note that from the property of iterated condition expectation, we have:

E[θ̃] = E[E[θ̂|T ]] = E[θ̃]

To compare the square-error, we will have to only consider their varince:

var(θ̂) = var[E[θ̂|T ]] + E[var[θ̂|T ]]

= var(θ̃) + E[var(θ̂|T )]

Thus var(θ̂) > var(θ̃) unless var(θ̂|T ) = 0, which is when θ̂ is a function of T , which implies θ̂ = θ̃.

3 Testing Hypothesis and Goodness of Fit

3.1 Introduction

Definition 3.1. (Likelihood Ratio) Consider the two hypothesis to be H0 and H1, we have the following,
posterior:

P (H0|x) =
P (x|H0)P (H0)

P (x)
P (H1|x) =

P (x|H1)P (H1)

P (x)

The ratio is given as:
P (H0|x)

P (H1|x)
=
P (H0)

P (H1)

P (x|H0)

P (x|H1)

This is the product of the ratio of prior probability and the likelihood ratio. Now, we would like to choose
the hypothesis H0 if, we have:

P (H0|x)

P (H1|x)
=
P (H0)

P (H1)

P (x|H0)

P (x|H1)
> 1 ⇐⇒ P (x|H0)

P (x|H1)
> c

where value of c depends upon your prior probability.
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Definition 3.2. (Neyman-Pearson Paradigm) One hypothesis is singled out as null hypothesis H0 and
other as alternative hypothesis H1. We have the following terminology as:

• Rejecting H0 when it is true is called type I error.

• Probability of a type I error is called significance level and it is denoted as α.

• Accepting the null hypothesis when it is false is called type II error, and it is denoted by β.

• The probability that the null hypothesis is rejected when it is false is called power of the test, which
is equal to 1− β.

• The likelihood ratio is called the test statistics.

• Set of values of the test statistics that leads to rejection of the null hypothesis is called rejection region,
and set of values that leads to acceptance is called acceptance region

• The probability distribution of test statistics when the null hypothesis is true is called null distribution.

Definition 3.3. (Simple Hypothesis) If the null and alternative hypothesis each completely specify the
probability distribution. This kind of setting is called simple hypothesis.

Lemma 3.1. (Neyman-Peason) Suppose that H0 and H1 are simple hypothesis:

• The test that rejects H0 whenever the likelihood ratio is less than c and significance level α.

• Then any other test for which significance level is less than or equal to α has power less than or equal
to that of the likelihood ratio test.

Proof. Let p(x) denote the pdf or frequency function of the observation.

• A test of H0 : p(x) = p0(x) and H1 : p(x) = p1(x) amounts to using a decision function:

d(x) =

{
0 if H0 is accepted

1 if H1 is rejected

• Since d(X) is a Bernoulli random varaible, where we have:

– Significance Level: E0[d(X)] = P0(d(X) = 1)

– Power: E1[d(X)] = P1(d(X) = 0)

• If we consider the likelihood ratio test as the decision function:

d(x) =

{
1 if p0(X) < cp1(X)

0 otherwise

Please note that EX∼p0(X)[X] = α.

• Let d∗(X) be the decision function of another test satisfying E0[d∗(X)] ≤ E0[d∗(x)] = α.

• Consider the following inequalities:

d∗(x)[cp1(x)− p0(x)] ≤ d(x)[cp1(x)− p0]

This follows from the d(x) = 1, where cf1(x)− f0(x) > 0 and if d(x) = 0. where cf1(x)− f0(x) ≤ 0

13



• Integrating the both sides of the inequality above with respected to x as:

cE1[d∗(X)]− E0[d∗(X)] ≤ cE1[d(X)]− E0[d(X)]

and, so we have:
E0[d(X)]− E0[d∗(X)] ≤ c [E1[d(X)]− E1[d∗(X)]]

Since the LHS of this inequality is non-negative, we have: E[d∗(X)] ≤ EA[d(X)]

Example 3.1. (First Test) Consider X1, . . . , Xn be random sample from normal distribution, with un-
known mean and variance σ2. Given 2 hypothesis:

H0 : µ = µ0 H1 : µ = µ1

where µ1 and µ0 are constant. Consider a significance level of α. Then consider likelihood ratio:

f0(X)

f1(X)
=

exp

[
−

1

2σ2

∑n
i=1(Xi − µ0)2

]

exp

[
−

1

2σ2

∑n
i=1(Xi − µ1)2

]

To consider the ratio, we consider the value of
∑n
i=1(Xi − µ1)2 −

∑n
i=1(Xi − µ0)2. Expanding the squares:

2nX̄(µ0 − µ1) + nµ2
1 − nµ2

0

There are 2 conditions, so that the likelihood is small:

• If µ0 − µ1 > 0, the likelihood ratio is small if X̄ is small.

• If µ0 − µ1 < 0, the likelihood ratio is small if X̄ is large.

Let’s consider the later case. Likelihood-ratio rejects for X̄ > x0 for some x0, which we will choose it to give
a test of desired level α. This means choosing P(X̄ > x0) = α if H0 is true:

P(X̄ > x0) = P
(
X̄ − µ0

σ/
√
n

>
x0 − µ0

σ/
√
n

)
The null distribution of X̄ is a normal distribution with mean µ0 and variance σ2/n, then, we can solve:

x0 − µ0

σ/
√
n

= z(α)

for x0 in order to find the rejection region for level α test.

Definition 3.4. (P-Value) As we can see, the testing requires only the null distribution, and we are required
to consider the significance level α (which should be 0.01 and 0.05). P-value is the smallest significance level
at which the null hypothesis would be rejected.

3.2 More Complex Hypothesis Testing

Definition 3.5. (Uniformly Most Powerful) If the alternative hypothesis H1 is composite, a test is most
powerful for every simple alternative in H1 is said to be uniformly most powerful.
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Example 3.2. (2-Sided Test) Consider X1, . . . , Xn be random sample from normal distribution, with
unknown mean and variance σ2. Given 2 hypothesis:

H0 : µ = µ0 H1 : µ 6= µ0

Please note that in this example, this kind of hypothesis is called two-sided alternative. Consider the test at
a specific level α that reject for

∣∣X̄ − µ0

∣∣ > x0, where x0 is determined such that P(
∣∣X̄ − µ0

∣∣ > x0) = α if
H0 is true. We can see that x0 = z(α/2)σ/

√
n:

∣∣X̄ − µ0

∣∣ < z(α/2)σ√
n

⇐⇒ X̄ − z(α/2)σ√
n

≤ µ0 < X̄ +
z(α/2)σ√

n

A 100(1− α)% interval for µ is give, and so if µ0 is in the interval, then we accept the null hypothesis.

Theorem 3.1. Suppose that for every value θ0 in Θ there is a test at level α of the hypothesis H0 : θ = θ0.
Denote the acceptance region of the test by A(θ0). Then set:

C(X) = {θ : X ∈ A(θ)}

is a 100(1− α)% confidence region for θ.

Remark 4. This means that a 100(1−α)% confidence region for θ consists of all those values of θ0 for which
the hypothesis that θ equals θ0 will not be rejected at level α.

Proof. Because A is the acceptance region of a test at level α:

P[X ∈ A(θ0)|θ = θ0] = 1− α

Now, we have:
P[θ0 ∈ C(X)|θ = θ0] = P[X ∈ A(θ0)|θ = θ0] = 1− α

by the definition of C(X)

Definition 3.6. (Generalized Likelihood Ratio Test) Suppose that the observation: X = (X1, . . . , Xn)
have a joint density p(x|θ):

• Then H0 may specify that θ ∈ ω0 where ω0 is subset of all possible values of θ

• For H1 we consider ω1 is disjoint from ω0.

Let Ω = ω0 ∪ ω1. The generalized likelihood ratio is Λ∗ or with the truncated version Λ as the small value
of Λ∗ tends to discredit H0:

Λ∗ =
maxθ∈ω0

l(θ)

maxθ∈ω1
l(θ)

Λ =
maxθ∈ω0

l(θ)

maxθ∈Ω l(θ)

Note that Λ = min(Λ∗, 1). The rejection region is given as Λ ≤ λ0, where the threshold λ0 is choosen so that

P(Λ ≤ λ0|H0) = α

Example 3.3. (Testing Normal Mean) Consider X1, . . . , Xn be random sample from normal distribution,
with unknown mean and variance σ2. Given 2 hypothesis:

H0 : µ = µ0 H1 : µ 6= µ0

We have the following specification:

ω0 = {µ0} ω1 = {µ|µ 6= µ0} Ω = {−∞ < µ <∞}
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If we maximize over ω0, as it has only one point, the numerator. For the denominator, we it is clear that
the MLE is X̄ and so:

max
θω1

l(θ) =
1

(2σπ)n
exp

(
− 1

2σ2

n∑
i=1

(Xi − µ0)2

)
max
θΩ

l(θ) =
1

(2σπ)n
exp

(
− 1

2σ2

n∑
i=1

(Xi − X̄)2

)
The ratio is given as:

Λ = exp

(
− 1

2σ2

[
n∑
i=1

(Xi − µ0)2 −
n∑
i=1

(Xi − X̄)2

])

⇐⇒ −2 log Λ =
1

σ2

(
n∑
i=1

(Xi − µ0)2 −
n∑
i=1

(Xi − X̄)2

)

=
n(X̄ − µ0)2

σ2

Rejecting for small value of Λ is equivalent to reject the large value of −2 log Λ. Together with the identity
that

∑n
i=1(Xi − µ0)2 =

∑n
i=1(Xi − X̄)2 + n(X̄ − µ0)2 . It follows that, under H0:

• X̄ ∼ N (µ0, σ
2/n), which implies that

√
n(X̄ − µ0)/σ ∼ N (0, 1)

• −2 log Λ ∼ χ2
1 is implied from above.

We can now construct the rejection region for any significance level to be:

n

σ2
(X̄ − µ0)2 > χ2

1(α)

where P (Z > χ2
1(α)) = α, recall that we are rejecting the large value of −2 log Λ. This links back to the

original consideration as, we this inequality is equivalent to:∣∣X̄ − µ0

∣∣ ≥ σ√
n
z(α/2)

Theorem 3.2. Under smoothness condition on the probability density, the null distribution of −2 log Λ tends
to a chi-square distribution with degree of freedom of dim Ω− dimω0 as the sample size tends to infinity.

Example 3.4. (Tests for Multinomial Distribution/Goodness of Fit) We consider the following
testing scenario

• H0: The cell probabilities p = p(θ) for θ ∈ ω0 (maybe unknown, with dimension of k) is constrained
on some way.

• H1: Cell probabilities are free except the constriants such that they are non-negative and sum to 1.

We have Ω to be set of m non-negative numbers that sum to one. We have:

max
p∈ω0

(
n!

x1! · · ·xm!

)
p1(θ)x1 · · · pm(θ)xm

where xi are observed counts in m cells. We will denote θ̂ as the MLE of θ. For the denominator, with
unrestricted MLE, we have p̂i = xi/n, and so, the ratio is:

Λ =

n!

x1! · · ·xm!
p1(θ̂)x1 · θ̂)xm

n!

x1! · · ·xm!
p̂x1

1 · · · p̂
xm
m

=

m∏
i=1

(
pi(θ̂)

p̂i

)xi

=⇒ −2 log Λ = −2n

m∑
i=1

p̂i log

(
pi(θ̂)

p̂i

)
= 2

m∑
i=1

Oi log

(
Oi
Ei

)
As we have xi = np̂i, Oi = np̂i and Ei = npi(θ̂). Let’s consider the test statistics:
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• Ω allows cell probability to be free (but have to be sum to 1) so dim Ω = m− 1.

• pi(θ̂) denpends on k-dimensional parameter θ so dimω0 = k

The large sample theory, tells us that the distribution of −2 log Λ is χ2
m−k−1.

Definition 3.7. (Peason’s Chi-Square Statistics) It is a commonly used to test for goodness of fit,
where:

X2 =

m∑
i=1

[
xi − npi(θ̂)

]2
npi(θ̂)

Proposition 3.1. Peason’s statistics and likelihood tests are asymptoticall equivalent under H0

Proof. (Sketch) Starting with the value:

−2 log Λ = 2n

m∑
i=1

p̂i log

(
p̂i

pi(θ̂)

)

If H0 is true and n is large, then p̂i ≈ pi(θ̂). Consider the following Taylor series expansion of:

f(x) = x log

(
x

x0

)
= (x− x0) +

1

2
(x− x0)2 1

x0
+ · · ·

Thus, we have:

−2 log Λ ≈ 2n

m∑
i=1

[p̂i − pi(θ̂)] + n

m∑
i=1

[p̂i − pi(θ̂)]2

pi(θ̂)

The first term is zero due to the fact that probabilities sum to 1, while the second terms is equal to Peason’s
statistics. Note that Peason’s statistics is easier to calculate than the likelihood ratio test.

Example 3.5. (Poisson Dispersion Test) Gives counts x1, . . . , xn, we consider:

• H0: The counts are poisson with common parameter λ. Under ω0 the MLE of λ is λ̂ = X̄.

• H1: The counts have difference rates λ1, . . . , λn. Under Ω we have λ̃i = xi

Please note that ω0 ⊂ Ω is the speical case that they are all equal, so the likelihood ratio is:

Λ =

∏n
i=1 λ̂

xi
exp(−λ̂)

xi!∏n
i=1 λ̃

xi
exp(−λ̃)

xi!

=

n∏
i=1

(
x̄

xi

)xi

exp(xi − x̄)

⇐⇒ −2 log Λ = −2

n∑
i=1

[
xi log

(
x̄

xi

)
+ (xi − x̄)

]

= 2

n∑
i=1

xi log
(xi
x̄

)
We have the following dimensions for the parameter spaces:

• Ω, there are n independent parameter λ1, . . . , λn so dim Ω = n.

• ω1, there is only one parameter so dimω = 1
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Thus, the test statistics distribution is χ2
n−1. We can interprete the test statistics as the ratio of n times the

estimated variance to estimated mean.

Remark 5. We can use Taylor series argument to approximate the test statistics for poisson dispersion test:

−2 log Λ ≈ 1

x̄

n∑
i=1

(xi − x̄)2

3.3 Testing via Plotting

Definition 3.8. (Hanging Rootograms) Graphical display of the differences between observed and fitted
values in historgram. There are multiple sections of rootograms:

• Compare Observed Quatities: We want to compare the observed frequencies with the frequencies
fit by the normal distribution. Given the parameters are approximated as µ ≈ x̄ and σ ≈ σ̂. If j-th
interval has the left boundary xj−1 and right boundary xj . The probability falls in that interval is:

p̂j = Φ

(
xj − x̄
σ̂

)
− Φ

(
xj−1 − x̄

σ̂

)
we can predict the count on j-th interval as n̂j = np̂j , which can be compared to observed counts.
Now, we can find the differences between the expected count and observed out. However, we neglet
the variability in the estimated expected counts.

• Variability: If we neglect the variability in the estimated expected counts as we have:

var(nj − n̂j) = var(nj) = npj − np2
j

if pj are small, we have var(nj − n̂j) ≈ npj . For a large values of pj have more varaible differences
nj − n̂j . And, so we expect larger fluctuation in the center than in the tails.

• Variance-Stabilizing Transfromation: Suppose that a random variable X has mean µ and variance
σ2(µ). If Y = f(X), the method of propagation of error shows that:

Var(Y ) ≈ σ2(µ)[f ′(µ)]2

If f is chosen so that σ2(µ)[f ′(µ)]2 is constant, the variance of Y will not depends on µ. Thus the
transformation accomplishes variance-stabilizing transformation.

• Variability-Stabilizing: Apply this to the case, and we have:

E[nj ] = npj = µ var(nj) ≈ npj = σ2(µ)

That is when σ2(µ) = µ. The variance stabilizing transformation µ[f ′(µ)]2 should be f(x) =
√
x does

the job so:

E[
√
nj ] ≈

√
npj var(

√
nj) ≈

1

4

If the method is correct, and so we compare the differences as
√
nj −

√
n̂j .

• Interpretation: We use the deviation of more than 2 and 3 standard deviations is large. The run of
positive deviations followed by the run of negative deviations and then the large positive deviation in
the extreme right tail. This indicates some asymmetry in the distribution.

• Hanging Chi-Gram: The plot of the components of Pearson’s chi-square statistics:

nj − n̂j√
n̂j

=⇒ var

(
nj − n̂j√

n̂j

)
≈ 1

Neglecting the variability in the expected counts, var(nj − n̂j) ≈ npj = n̂j , while the it is stabilizes
the variance. This leads to the hanging χ2-gram.
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Definition 3.9. (Order Statistics) Consider the sample of size n from a uniform distribution [0, 1]. The
ordered sample values by X(1) < X(2) < · · · < X(n). These values are called order statistics.

Remark 6. (Understanding the Plots) We can show that:

E[X(j)] =
j

n+ 1

If the underlying distribution is uniform, the plot is shown in figure below, it is plotted for sample of size
100 from a uniform distribution. Now, we consider the triangular distribution as we have:

f(y) =

{
4y 0 ≤ y ≤ 1

2

4− 4y 1
2 ≤ y ≤ 1

THe ordered observation Y1, . . . , Y100 are plotted against the points 1/(n+ 1), . . . , n/(n+ 1):

(a) Uniform-Uniform Probability Plot (b) Uniform-Triangular Probability Plot

We can see that there is a clear deviation from the linearity and allow us to describe qualitatively the
deviation of the distribution of Y ’s from the uniform distribution:

• The left tail of the plotted distribution are larger than the expected for a uniform distribution

• The right tail is smaller, which tells us that the distribution of Y decreases more quickly than the tails
of the uniform distribution.

Definition 3.10. (Probability Integral Transform) The technique can be extended to other continuous
probability. If X is a continuous random variable with a strictly increasing cumulative distribution function,
and if Y = FX(X), then Y has a uniform distribution on [0, 1], as:

P (Y ≤ y) = P (FX(X) ≤ y) = P (X ≤ F−1(y)) = F (F−1(y)) = y

This is the uniform of cdf. This transformation is known as probability integral transform.

Remark 7. (Probability Plot) Suppose that it is hypothesized that X follows a certain distribution F .
Given a sample X1, . . . , Xn, we plot:

F (X(k)) vs
k

n+ 1
=⇒ X(k) vs F−1

(
k

n+ 1

)
In some cases, F is of the form F (X) = G

(
x−µ
σ

)
, where µ and σ are location and scale parameter. The

normal distribution is of this form, we could plot:

X(k) − µ
σ

vs G−1

(
k

n+ 1

)
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or if we plot X(k) vs G−1
(

k
n+1

)
. The result would be approixmately a straight line if the model were correct:

X(k) ≈ σG−1

(
k

n+ 1

)
+ µ

Remark 8. (Slight Modification) Slight modification of this procedure are sometimes used. For example
E[X(k)] is used instead, as we have:

E[X(k)] ≈ F−1

(
k

n+ 1

)
= σG−1

(
k

n+ 1

)
+ µ

The modification yields similar result to the original procedure.

Remark 9. (Another Interpretation) Recall that F−1[k/(n+1)] is the k/(n+1) quantile of the distribution
F , the point such that the probability that a random variable with distribution function F is less than it is
k/(n+ 1). We are plotting the ordered observations versus the quantile of the theoretical distribution.

3.4 Testing for Normality

Definition 3.11. (Coefficient of Skewness) The skewness is usually characterized by the third central
moments as: ∫ ∞

i∞
(x− µ)2ϕ(x) dx

which is equal to 0 given the normal distribution. Now, coefficient of skewness is:

b1 =
1

ns3

n∑
i=1

(Xi − X̄)3

Definition 3.12. (Coefficient of Kurtosis) Symmetric distribution can depart from normality by being
heavy tailed or light-tailed. This is characterized by coefficient of Kurtosis as:

b2 =
1

ns4

n∑
i=1

(Xi − X̄)4

Remark 10. (Test for Normality) We can use both coefficient for skewness and kurtosis to access the
normality of the data. Otherwise, we can use the hypothesis test, but is are difficult to evaluate in closed
form but can be approximated by simulation.

4 Summarizing Data

4.1 Methods Based on CDF

Definition 4.1. (Empirical CDF) Suppose we have x1, . . . , xn be a batch of numbers. The empirical
cumulative distribution function is defined as:

Fn(x) =
1

n
(#xi ≤ x)

Or, we have an ordered number of x(1) ≤ x(2) ≤ · · · ≤ x(n). We have: if x(k) ≤ x < x(k+1), then Fn(x) = k/n.

Remark 11. (Comments on Empirical CDF) In the analysis, it is better to express Fn in the following
way, given random variables X1, . . . , Xn:

Fn(x) =
1

n

n∑
i=1

I(−∞,x](Xi) where I(−∞,x](Xi) =

{
1 if Xi ≤ x
0 otherwise
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The random variable I(−∞,x](Xi) are independent Bernoulli random variables, where we have:

I(−∞,x](Xi) =

{
1 with probability F (x)

0 with probability 1− F (x)

Thus, nFn(x) is a binomial random variable (n trials with probability of F (x) of success), as we have:

E[Fn(x)] = F (x) var(Fn(x)) =
1

n
F (x)[1− F (x)]

An estimate of Fn(x) is unbiased and has a maximum variacne at the value of x such that F (x) = 0.5, which
is at median.

Remark 12. (Behavior of F n) If we consider the stochastic behavior of F (x), then we can show that:

max
−∞<x<∞

|Fn(x)− F (x)|

doesns’t depend on F if F is continuous. This allow us to construct a simultaneous confidence band about
Fn, which can be used to test goodness-of-fit. Please note that this isn’t the same compared to the confidence
interval of binomial distribution.

Definition 4.2. (Survival Function) It is equivalent to CDF and is defined as:

S(t) = P(T > t) = 1− F (t)

where T is a random variable with CDF of F . We use it where the data consists of times until failure or
death and so non-negative. S(t) denotes the lifetime will be longer than t, and so we can have empirical
version to be Sn(t) = 1− Fn(t).

Definition 4.3. (Hazard Function) It is interpreted as the instantaneous death rate for individual who
have survived up to a given time. If an individual is alive at time t, the probability that the individual will
die at time interval (t, t+ δ) is (assuming density function f is continuous at t):

P (t ≤ T ≤ t+ δ|T ≥ t) =
P (t ≤ T ≤ t+ δ)

P (T ≥ t)

=
F (t+ δ)− F (t)

1− F (t)
≈ δf(t)

1− F (t)

The hazard function is defined as:

h(t) =
f(t)

1− F (t)

If T is the lifetime of a manufactured component, it may be natural to think of h(t) as the instantaneous or
age-specific failure rate.

Remark 13. (Interpretation of Hazard Function) It can be expressed as:

h(t) = − d

dt
log[1− F (t)] = − d

dt
logS(t)

Which is the negative of the log of survival funcion. With the method of propagation of error:

var
(

1− Fn(t)
)
≈ var[1− Fn(t)]

(1− F (t))2
=

1

n

(
F (t)

1− F (t)

)
For large value of t, the empirical log survial function is unrealiable, because 1− F (t) is very small, and so
in practice, last few data are disregarded.
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Remark 14. (Empirical Survial Function) Suppose that there are no ties and the ordered failure times
are: T(1) < T(2) < · · · < T(n). If t = T(i), Fn(t) = i/n and Sn(t) = 1− i/n. But since logSn(t) is undefined
for t ≥ T(n), it is ofen defined as:

Sn(t) = 1− i

n+ 1

for T(i) ≤ t < T(i+1)

Definition 4.4. (Quantile-Qunatile Plot) If X is a continuous random variable with a strictly increasing
distribution function F , the p-th quantile of the to be value of x such that: F (x) = p or xp = F−1(p). In
Q-Q plot, the quantile of one distribution is plotted against another.

Remark 15. (Usage of Q-Q) Suppose we have 2 distributions:

• F is a model for observations of a control group.

• G is a model for observations of a group that has received some treatment.

Let’s consider how difference update changes the plot:

• Suppose that there is an effect changned by h uniformly i.e yp = xp + h, where yp is the group that
received the treatment and vice versa. This gives us the relationship to be: G(y) = F (y − h).

• Similarly, we have the effect with multiplicative differences i.e given c ∈ R where we have yp = cxp
with the relationship to be G(y) = F (y/h)

Given the number of samples, we have to use the empirical CDF to create thE Q-Q plot. Now, the results
of the changes is shown in the following figure:

(a) Additive Treatment Effect (b) Multiplicative Treatment Effect

Definition 4.5. (Kernel Probability Density Estimate) Let w(x) be a non-negative, symmetric weight
function, centered at zero and integrating to 1. It can be standard normal density, with the following rescaled
version:

wh(x) =
1

h
w
(x
h

)
is a rescaled version of w, as it approaches zero, wh becomes more concentrated and peaked around zero.
On the other hand, as h approaches infinity, wh becomes flat. If X1, . . . , Xn is a sample from a probability
density function p, its esitmate is:

fh(x) =
1

n

n∑
i=1

wh(x−Xi)

The parameter h represents bandwidth of estimating function as it controls the smoothness.
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4.2 Meansure of Location

Definition 4.6. (Arithmetic Mean) The commonly used measure of location is the arithmetic mean,
which is:

x̄ =
1

n

n∑
i=1

Remark 16. (Problem with Arithmeic Mean) By changing a single number, the arithmetic mean of a
batch of numbers can be made arbitary large or smaller. Thus, when used blindly, without careful attention,
the mean can produce a misleading results. Or, we need to have the measure of location that are robut or
insensitive to outlier.

Remark 17. (Why Sample Mean is Bad) The sample mean minimizers the log-likelihood of:

n∑
i=1

(
(Xi − µ)2

σ

)
This is the simpliest case of least square estimate. The outlier have a great effect on this estimate, as the
deviation of µ from Xi is measured by square of their difference.

Definition 4.7. (Median) It is a middle value of the ordered observation; if the sample size is even, the
median is the average of the 2 middle values.

Proposition 4.1. (Confidence Interval) We can show that, given the population median η and the
interval between the order statistics (X(k), X(n−k+1))

P (X(k) ≤ η ≤ X(n−k+1)) = 1− 1

2n−1

k−1∑
j=0

Proof. The coverage probability of this interval is:

P (X(k) ≤ η ≤ X(n−k+1)) = 1− P (η < X(k) or η > Xn−k+1)

= 1− P (η < X(k))− P (η > X(n−k+1))

Since the event are mutually exclusive. To evaluate both terms, we note that:

P (η > X(n−k+1)) =

k−1∑
j=0

P(j observations > η)

P (η < X(k)) =

k−1∑
j=0

P(j observations < η)

The median satisfies P (Xi > η) = P (Xi < η) = 1/2, since n observations X1, . . . , Xn are independent and
identically distributed, the distribution of the number of observation greater than median is binomial with
n trials and probability 1/2:

P (j observations > η) =
1

2

(
n
j

)
and, so we have:

P (η > X(n−k+1)) =
1

2n

k−1∑
j=0

(
n
j

)
This is the same for P (η < X(k)) due to symmetry. Plugging it back to finish the proof
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Remark 18. Median can be seen as the minimizer of the following loss:

n∑
i=1

∣∣∣∣Xi − µ
σ

∣∣∣∣
Here, large deviation are not weighted as heavily, making median robust. The proof follows from the fact
that the dervative of absolute is sgn(·), and so the loss is zero when the positive x − µ (of the normalized
data ) is equal to the negative item x− µ, which is where the median situates.

Definition 4.8. (Trimmed Mean) The 100α% trimmed mean consider the valuse that is between the
lower 100α% and the higher 100α%, as we can write it as:

x̄α =
x[nα]+1 + · · ·+ x(n−[nα])

n− 2[nα]

where [nα] denotes the greatest integer less than or equal to nα.

Definition 4.9. (M-Estimates) Consider the class of esitmates called M -estimates, where it is a minimizer:

n∑
i=1

Ψ

(
Xi − ν
σ

)
where Ψ is the weight function that is a compromise between weight function for mean and median.

Remark 19. (Measure of Dispersion) The most commonly used measure is sample standard deviation,
where it is given as:

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

Using n − 1 as divisor gives unbiased estimate. But like a sample mean standard deviation is sensitive to
outlying observation. Two simple robust measures alternative are:

• Interquartile range (IQR): Differences between 2 sample quantiles.

• Median absolute deviation from the median (MAD): If data are x1, . . . , xn with median x̃, then MAD
is the median of number |x1, . . . , xn|.

5 Comparing Two Samples

5.1 Comparing Two Independent Samples

Remark 20. (Setting) We will assume the sample X1, . . . , Xn ∼ N (µX , σ
2) as the control group and we have

Y1, . . . , Ym ∼ N (µY , σ
2) as the group after receives treatment. The effect of the treatment is characterized

by the differences µX − µY with the natural estimate X̄ − Ȳ .

Remark 21. (Confidence Interval) As X̄− Ȳ is expressed as a linear combination of independent normally
distributed random variable is:

X̄ − Ȳ ∼ N
[
µX − µY , σ2

(
1

n
+

1

m

)]
If we know σ2, where the confidence interval for µX − µY could be based on:

Z =
(X̄ − Ȳ )− (µX − µY )

σ

√
1

n
+

1

m

This leads to the confidence interval, which is of the form of (X̄ − Ȳ )± z(α/2)σ
√

1
m + 1

n .
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Definition 5.1. (Pooled Sample Variance) Generally, σ2 will not be known and must be estimated from
the data by calculating pooled sample variance:

s2
p =

(n− 1)s2
X + (m− 1)s2

Y

m+ n− 2

where s2
X = 1/(n−1)

∑n
i=1(Xi−X̄)2 and similarly for s2

Y , and so s2
p is a weighted average of sample variance

X and Y with weights propotional to degree of freedom.

Theorem 5.1. Suppose that X1, . . . , Xn ∼ N (µX , σ
2) and Y1, . . . , Ym ∼ N (µY , σ

2), and that Yi are inde-
pendent of Xi. The statistics:

t =
(X̄ − Ȳ )− (µX − µY )

sp

√
1

n
+

1

m

This follows a t-distribution with m+ n− 2 degree of freedom.

Proof. We note that (n− 1)s2
X/σ

2 ∼ χ2
n−1 and (m− 1)s2

Y /σ
2 ∼ χ2

m−1. Both are independent as Xi and Yi
are. Their sum is χ2

m+n−2 degree of freedom. We express the statistics as the ratio U/V , where:

U =
(X̄ − Ȳ )− (µX − µY )

σ

√
1

n
+

1

m

V =

√[
(n− 1)σ2

X

σ2
+

(m− 1)s2
Y

σ2

]
1

m+ n− 2

Please note that U follows the standard normal distribution and V has the distribution of square root of χ2

divided by its degree of freedom. The independent of U and V follows from independent of X̄ and s2.

Corollary 5.1. Under the assumption of thoerem above, a 100(1−α)% confidence interval for µX − µY is:

(X̄ − Ȳ )± tm+n−2(α/2)sX̄−Ȳ where sX̄−Ȳ = sp

√
1

n
+

1

m

Remark 22. (Notes on One and Two-Sided Alternative) In the current case, the null hypothesis to be
tested is H0 : µX = µY , where there are 3 common alternatives, as we have:

H1 : µX 6= µY H2 : µX > µY H3 : µX < µY

The test statistics that will be used to make a decision to reject the null-hypothesis is:

t =
X̄ − Ȳ
sX̄−Ȳ

The t-statistics equals the multiple of its estimate standard deviation differs from zero. This is the same role
in the comparison of 2 samples as is played by χ2-statistics. We will reject for extreme value of t. We have
the following rejection region:

H1 : |t| > tn+m−2(α/2) H2 : t > tn+m−2(α) t < −tn+m−2(α)

Proposition 5.1. (Two-Sided Alternative T-Statistics) The test for H1 (see above) rejects the large
value of the following value: ∣∣X̄ − Ȳ ∣∣√∑n

i=1(Xi − X̄)2 +
∑m
j=1(Yj − Ȳ )2

Which is t statistics apart from constant that don’t depend on the data. Thus, the likelihood ratio test is
equivalent to t-test as claimed.
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Proof. Consider the set Ω is the set of all possible parameter values:

Ω =
{
−∞ < µX <∞, −∞ < µY <∞, 0 < σ <∞

}
The unknown parameters are θ = (µX , µY , σ). Under H0 where θ ∈ ω0 where:

ω0 =
{
µX = µY : 0 < σ <∞

}
The likelihood of 2 samples X1, . . . , Xn and Y1, . . . , Ym is given as:

l(µX , µY , σ
2) = log

n∏
i=1

1√
2πσ2

exp

[
−1

2

(
Xi − µX

σ

)2
]

m∏
j=1

1√
2πσ2

exp

[
−1

2

(
Yj − µY

σ

)2
]

= −m+ n

2
log 2π − m+ n

2
log σ2 − 1

2σ2

 n∑
i=1

(Xi − µX)2 +

m∑
j=1

(Yj − µY )2


Let’s consider the MLE and its log-likelihood are given as:

• Under ω0, we have a sample of size m + n from a normal distribution with unknown mean µ0 and
unknown variance σ2

0 . The MLE of µ0 and σ2
0 is:

l(µ̂0, σ̂
2
0) = −n+m

2
log 2π − nm

2
log σ̂2

0 −
m+ n

2

• To find the MLE’s µ̂X , µ̂Y and σ2
1 under Ω, we consider the log-likelihood is

n∑
i=1

(Xi − µ̂X) = 0 =⇒ µ̂X = X̄

m∑
j=1

(Yj − µ̂Y ) = 0 =⇒ µ̂Y = Ȳ

−m+ n

2σ̂2
1

+
1

2σ̂4
1

 n∑
i=1

(Xi − µ̂X)2 +

m∑
j=1

(Yj − µ̂Y )2

 = 0 =⇒ σ̂2
1 =

1

m+ n

 n∑
i=1

(Xi − µ̂X)2 +

m∑
j=1

(Yj − µ̂Y )2


This implies that the log-likelihood, we obtain it as:

l(µ̂X , µ̂Y , σ̂
2
1) = −m+ n

2
log 2π − m+ n

2
log σ̂2

1 −
m+ n

2

The log of likelihood ratio is given as:

l(µ̂0, σ̂
2
0)

l(µ̂X , µ̂Y , σ̂2
1)

=
m+ n

2
log

(
σ̂2

0

σ̂2
0

)
=
m+ n

2
log

(∑n
i=1(Xi − µ̂0)2 +

∑m
j=1(Yj − µ̂0)2∑n

i=1(Xi − X̄)2 +
∑m
j=1(Yj − Ȳ )2

)
Let’s consider the alternatives expression for the numerator of this ratio:

n∑
i=1

(Xi − µ̂0)2 =

n∑
i=1

(Xi − X̂)2 + n(X̄ − µ̂0)2
n∑
j=1

(Yj − µ̂0)2 =

n∑
j=1

(Yj − Ŷ )2 + n(Ȳ − µ̂0)2

Please note that:

µ̂0 =
1

m+ n
(nX̄ +mȲ ) =

n

m+ n
X̄ +

m

m+ n
Ȳ

This implies that:

X̄ − µ̂0 =
m(X̄ − Ȳ )

m+ n
Ȳ − µ̂0 =

n(Ȳ − X̄)

m+ n
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The alternatives expression for the numerator of the ratio is:

n∑
i=1

(Xi − X̄)2 +

m∑
j=1

(Yj − Ȳ )2 +
mn

m+ n
(X̄ − Ȳ )2

The test rejects for the large value of:

1 +
mn

m+ n

(
(X̄ − Ȳ )2∑n

i=1(Xi − X̄)2 +
∑m
j=1(Yj − Ȳ )2

)
This is equivalent to the value above. Thus the proposition is proven.

Remark 23. (Difference Variance) If 2 variances are not assumed to be equal, a natural estimate of
var(X̄ − Ȳ ) is given as:

s2
X

n
+
s2
Y

m

If this estimate is used in the denominator of t statistics, the distribution of that statistics is no longer the
t-distribution. But it can be closely approximated by t-distribution with degree of freedom, where we round
it to nearest integer.

[(s2
X/n) + (s2

Y /m)]2

(s2
X/n)2

n− 1
+

(s2
Y /m)2

m− 1

Remark 24. (Notes on Two Sample T-Test) The power of 2-sample t-test depends on 4 factors:

• The real differences ∆ = |µX − µY |. The larger the differences, the greater the power.

• The significant level α at which the test is done. The larger the more powerful the test.

• The population standard deviation σ, whichi s amplitude of the nose that hides the signal. The smaller
the larger the power.

• The sample size n and m, The larger the sample size, and the greater the power.

The necessary sample sizes can be determined from the significant level of the test, the standard deviation,
and the desired power agaisnt an alternatives hypothesis.

Remark 25. (Finding Power of t Test) To calculate the power of a t test exactly, we need special table
of non-central t distribution. If the sample are reasonably large, one can perform approximation of it based
on normal distribution.

Proposition 5.2. (Approximate Power of the Test) The probability that the test statistics falls in
rejection region is given as:

1− Φ

[
z(α/2)− ∆

σ

√
n

2

]
+ Φ

[
−z(α/2)− ∆

σ

√
n

2

]
where ∆ = µX −µY with test at level α. Now, ∆ moves away from zero, one of these terms will be negligible
with respect to others.

Proof. Consider the following variance:

var(X̄ − Ȳ ) = σ2

(
1

n
+

1

n

)
=

2σ2

n

The tes at level α of H0 : µX = µY agaisnt the alternatives H1 : µX 6= µY is based on test statistics:

Z =
X̄ − Ȳ
σ
√

2/n
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The rejection region is given as: ∣∣X̄ − Ȳ ∣∣ > z(α/2)σ

√
2

n

Let’s consider the rejection region to be the following:

P

[ ∣∣X̄ − Ȳ ∣∣ > z(α/2)σ

√
2

n

]

= P

[
X̄ − Ȳ > z(α/2)σ

√
2

n

]
+ P

[
X̄ − Ȳ < −z(α/2)σ

√
2

n

]

As two of them are mutually exclusive. Both probability can be calculated by standardizing:

P

[
X̄ − Ȳ > z(α/2)σ

√
2

n

]
= P

[
(X̄ − Ȳ )−∆

σ
√

2/n
>
z(α/2)σ

√
2/n−∆

σ
√

2/n

]

= 1− Φ

[
z(α/2)− ∆

σ

√
n

2

]
Similarly, we have the second probability is given as:

Φ

[
−z(α/2)− ∆

σ

√
n

2

]
Adding them together is given the above approximation of the test.

5.2 Nonparametric Test

Remark 26. (Setting for Mann-Whitney test) Suppose we have m+ n experimental untis to assign to
a treatment group and control group, as we have:

• n units are randomly chosen and assigned to the control.

• m units are assigned to the treatment.

We are interested in testing the null hypothesis that the treatment has not effect.

Definition 5.2. (Statistics for Mann-Whitney Test) We consider the following procedure:

• Group all m+ n observations together and rank them in order of increasing size.

• Calculate the sum of the ranks of those observations that came from the control group.

If the sum is too small or too large, we will reject the null hypothesis. Please note that this test doesn’t
depend on an assumption of normality. It is nearly as powerful as t-test and it is generally preferable (for
small sample size).

Remark 27. (Settings for Mann-Whitney Test) Consider the control values as we have X1, . . . , Xn ∼ F
and the experimental values Y1, . . . , Ym ∼ G . The Mann-Whitney test is a test of null hypothesisH0 : F = G.
We will denote TY to denotes the sum of ranks of Y1, Y2, . . . , Ym.

Lemma 5.1. From a simple random sampling without replacement, we have:

cov(Xi, Xj) = −σ2/(N − 1)

where the var(Xi) = σ2
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Proof. Using the identities for covariance established:

cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ]

And, we have the following:

E[XiXj ] =

m∑
k=1

m∑
l=1

ξkξlP (Xi = ξk ∧Xj = ξl)

=

m∑
k=1

ξkP (Xi = ξk)

k∑
l=1

ξlP (Xj = ξl|Xi = ξk)

from the multiplication law of conditional probability as we have:

P (Xj = ξl|Xi = ξk) =

{
nl/(N − 1) if k 6= l

(nl − 1)/(N − 1) if k = l

If we express is give as:

m∑
l=1

ξlP (Xj = ξl|Xi = ξk) =
∑
l 6=k

ξl
nl

N − 1
+ ξk

nk − 1

N − 1

=

m∑
l=1

ξl
nl

N − 1
− ξk

1

N − 1

Now, we have the expression for E[XiXj ] as we have:

m∑
k=1

ξk
nk
N

(
m∑
l=1

ξl
nl

N − 1
− ξk
N − 1

)
=

1

N(N − 1)

(
τ2 −

m∑
k=1

ξ2
knk

)

=
τ2

N(N − 1)
− 1

N(N − 1)

m∑
k=1

ξ2
knk

=
Nµ2

N − 1
− 1

N − 1
(µ2 + σ2)

= µ2 − σ2

N − 1

Finally, subtracting E[Xi]E[Xj ] = µ2 fro mthe last equation, as we have:

cov(Xi, Xj) = − σ2

N − 1

for i 6= j.

Corollary 5.2. With simple random sampling, we can show that:

var(X̄) =
σ2

n

(
N − n
N − 1

)
=
σ2

n

(
1− n− 1

N − 1

)
Proof. We can see that:

var(X̄) =
1

n2

n∑
i=1

n∑
j=1

cov(Xi, Xj)

=
1

n2

n∑
i=1

var(Xi) +
1

n2

n∑
i=1

∑
j 6=i

cov(Xi, Xj)

=
σ2

n
− 1

n2
n(n− 1)

σ2

N − 1

This gives the desired result.
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Proposition 5.3. If F = G as we have:

E[TY ] =
m(m+ n+ 1)

2
var(TY ) =

mn(m+ n+ 1)

12

Proof. Under the null hypothesis, TY is the sum of random sample of size m drawn without replacement
from a population of integers [m+ n]. TY thus equal to m times the average of such a sample as:

E[TY ] = mµ var(TY ) = mσ2

(
N −m
N − 1

)
We can show that, where N = m+ n is the size of population. Using the identities (to calculate the values
µ and σ2) as we have (this follows from the thoerem above):

N∑
k=1

k =
N(N + 1)

2

N∑
k=1

k2 =
N(N + 1)(2N + 1)

6

We find the population as we have [m+ n] as we have:

µ =
N + 1

2
σ2 =

N2 − 1

12

The result follows from the algebraic simplification.

Remark 28. (Alternative Derivation of Mann-Whitney Test) We consider the X ∼ F and Y ∼ G and

• Consider measuring of the effect of the treatment: π = P (X < Y ).

• The value of π is the probability that an observation from the distribution F is smaller than an
independent observation from the distribution G.

The estimate of π can be obtained by comparing all n values of X to all m values of Y . Calculating the
proposition of the comparison for which X was less than Y :

π̂ =
1

mn

n∑
i=1

m∑
j=1

Zij Zij =

{
1 if Xi < Yj

0 otherwise

Understand the relationship of π̂ to the rank sum introduced earlier, we find the convenient to work with:

Vij =

{
1 if X(i) < Y(j)

0 otherwise

Since Vij are jusre reordering of Zij , also gives us:

n∑
i=1

m∑
j=1

Vij = #(X < Y(1)) + #(X < Y(2))

+ · · ·+ #(X < Y(m))

where #(X < Y(1)) is the number of X that are less than Y(1). If the rank of Y(k) in the combined sample
is denoted by Ryk, then the number of X that is less than Y(1) is Ry1 − 1 and number of X is less than Y(2)

is Ry2 − 2 and so on, thus we have:

n∑
i=1

m∑
j=1

Vij = (Ry1 − 1) + (Ry2 − 2) + · · ·+ (Rym −m)

=

m∑
i=1

Ryi −
m∑
i=1

i

=

m∑
i=1

Ryi −
m(m+ 1)

2

= Ty −
m(m+ 1)

2
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Thus π̂ may be expressed in terms of rank sum of Y .

Corollary 5.3. Let UY =
∑n
i=1

∑m
j=1 Zij. Under the null hypothesis H0 : F = G as we have:

E[UY ] =
mn

2
var(UY ) =

mn(m+ n+ 1)

12

Remark 29. For both n and m are both greater than 10, the null distribution UY is quite well approximated
by a normal distribution as we have:

UY − E[UY ]√
var(UY )

∼ N (0, 1)

The distribution of the rank sum of the X and Y may be approximated by normal distribution as the rank
sum differ from UY only by constant.

Remark 30. (Mann-Whitney as CI) Let’s consider the shift model as we have G(x) = F (x − ∆). We
will consider the confidence interval for ∆. To test H0 : F = G, we use the statistics UY equal to number of
Xi − Yj that are less than 0. We can use: (to test the hypothesis that the shift parameter is ∆)

UY (∆) = #[Xi − (Yj −∆) < 0] = #(Yj −Xi > ∆)

The null distribution of UY (∆) is symmetric about mn/2:

P
(
UY (∆) =

mn

2
+ k
)

= P
(
UY (∆) =

mn

2
− k
)

for all integer k. Suppose that k = k(α) is such that P(k ≤ UY (∆) ≤ mn− k) = 1− α; the level α test then
accepts for such UY (∆). By the duality of CI and hypothesis tests, a 100(1− α)% confidence interval for ∆
is thus:

C = {∆ : k ≤ UY (∆) ≤ mn− k}

where C is the set of values for which the null hypothesis won’t be rejected. Let’s find the explicit form for
this CI. Let D(1), D(2), . . . , D(nm) denote the ordered mn differences Yj −Xi. We will show that:

C = [D(k), D(mn−k+1))

To see this, first suppose that ∆ = D(k). Then:

UY (∆) = #(Xi − Yj + ∆ < 0)

= #(Yj −Xi > ∆)

= mn− k

Similarly, if ∆ = D(mn−k+1), we have:

UY (∆) = #(Yj −Xi > ∆) = k

5.3 Bayesian Approach

Remark 31. (Setting For Bayesian Approach) Consider the case where

• Xi ∼ N (µX , ξ
−1)

• Yj ∼ N (µY , ξ
−1) and independent of Xi.

• The means µX and µY are given improper prior that are constant on (−∞,∞).

• ξ is given the improper prior fΞ(ξ) = ξ−1.
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This posterior is thus given by:

p(µX , µY , ξ) ∝ ξ(n+m)/2−1 exp

−ξm+n

2

 n∑
i=1

(xi − µX)2 +

m∑
j=1

(yj − µY )2


Using the identity that

∑n
i=1(xi − µX)2 = (n− 1)s2

x + n(µX − x̄)2, and the analogous expression for yj as:

p(µX , µY , ξ) ∝ ξ(n+m)/2−1 exp

(
−ξ

2

[
(n− 1)s2

x + (m− 1)s2
y

])
× exp

(
−nξ

2
(µX − x̄)2

)
exp

(
−mξ

2
(µY − ȳ)2

)
For a fixed ξ, µX and µY are independent normally distributed with means x̄ and ȳ and precisions nξ and
mξ, thus: the difference µX − µY is normally distributed with mean x̄ − ȳ and variance ξ−1(n−1 + m−1).
With further analysis, one can show that:

∆− (x̄− ȳ)

sp
√
n−1 +m−1

∼ tn+m−2

This may be similar to above result but has differences in interpretation, as x̄ − ȳ and sp are random in
above result and ∆ is fix. This is opposite in this case. The posterior probability that ∆ > 0 can be found
using t distribution. Let T be random variable with tm+n−2 distribution, then:

P (∆ > 0|X,Y ) = P

(
∆− (x̄− ȳ)

sp
√
n−1 +m−1

≥ −(x̄− ȳ)

sp
√
n−1 +m−1

∣∣∣∣∣X,Y
)

= P

(
T ≥ ȳ − x̄

sp
√
n−1 +m−1

)
As, we can use this as CI.

5.4 Compare Paired Samples

Remark 32. (Conditions for Paired Samples Test) Some of the experiments, the samples are paired.
In medical experiment, the subjects might be matched by age or severity of the condition, while one of them
are randomly assigned to treatment group and other control group.

Proposition 5.4. (Releative Efficiently) We will denote the pair as (Xi, Yi) where i = 1, . . . , n adn
assume X and Y have means µX and µY and variances σ2

X and σ2
Y . We will assume that different pairs are

independently distributed that cov(Xi, Yi) = σXY . Given the estimate of D = Xi − Yi (in the pair setting):

var(D̄)

var(X̄ − Ȳ )
= 1− ρ

where ρ is the correlation of members of a pair, and σX = σY = σ. This menas that if the correlation
coefficient is 0.5, a paired design with n pairs of subjects yields same precision as an unpaired design with
2n subject per treatment.

Proof. Starting with paired experiment, as we have:

• We will work with the differences: Di = Xi − Yi, which are independent with:

E[Di] = µX − µY var(Di) = σ2
X + σ2

Y − 2σXY

= σ2
X + σ2

Y − 2ρσXσY

A natural estimate of µX − µY is D̄ = X̄ − X̄, the average difference. From the properties of Di:

E[D̄] = µX − µY var(D̄) =
1

n
(σ2
X + σ2

Y − 2ρσXσY )
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• An experiment had been done by taking a sample of n X’s and an independent sample of n Y ’s, then
µX − µY would be estimated by X̄ − Ȳ and:

E[X̄ − Ȳ ] = µX − µY var(X̄ − Ȳ ) =
1

n
(σ2
X + σ2

Y )

We see that the variance of D̄ is smaller if the correlation is positive. If X and Y are positively correlated.
Consider the case where σX = σY = σ, the 2 variances may be simply expressed as:

var(X̄) =
2σ2(1− ρ)

n
var(X̄ − Ȳ ) =

2σ2

n

Thus the relative efficiently is give.

Remark 33. (Method Based on Normal Distribution) Assume the differences that are sample of a
normal distribution:

E[Di] = µX − µY = µD var(Di) = σ2
D

Generally, σD will be unknown, the inferences will be based on:

t =
D̄ − µD
sD̄

This follows a t distribution with n − 1 degree of freedom. With similar reasoning 100(1 − α)% confidence
interval is given as:

D̄ ± tn−1(α)sD̄

If sample size n is large, the approximate validity of the CI and hypothesis test follows from CLT.

Definition 5.3. (Signed Rank Test) We consider a paired sample (Xi, Yi), we then find the absoluate
differences |Xi − Yi| and rank them in order, denoted by D(i). The signed rank is calculated as:

S(i) =

{
−D(i) if Xi > Yi

D(i) otherwise

Now, we have W(+) =
∑
S(i)>0 S(i). If there is no differences between the two paired conditions, as we expect

about half of Di to be positive and half negative.

Remark 34. (Finding Rejection Region) THe null distribution can be calculated this way. If H0 is true,
it makes no difference:

• The difference Xi − Yi = Di has the same distribution as the difference Yi − Xi = −Di, so the
distribution of Di is symmetric about zero.

• The k-th largest value of D is thus equally likely to be positive or negative, and any particular assign-
ment of signs to the integer 1, . . . , n (the ranks) is equally likely.

• We obtain a list of 2n value of W+ each of which occurs with probability 1/2n. The probability of each
distinct value of W+ may be calculated, given the desired null distribution.

If the sample size is greater than 20, a noraml approximation to the null distribution can be used. We
calculate the mean and variance of W+

Proposition 5.5. Under the null hypothesis that the Di are independent and symmetrically distribution
about zero:

E[W+] =
n(n+ 1)

4
var[W+] =

n(n+ 1)(2n+ 1)

24
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Proof. To facilitate the calculation, we represent W+ in the following way:

W+ =

n∑
i=1

kIk Ik =

{
1 if k largest |Di| has Di > 0

0 otherwise

Under H0 and Ik are independent Bernoulli random variable p = 1/2, so we have:

E[Ik] =
1

2
var(Ik) =

1

4

We thus have:

E[W+] =
1

2

n∑
k=1

k =
n(n+ 1)

4
var(W+) =

1

4

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

24

Remark 35. (When Tie is Encountered) If some of the differences are equal to zero, the most common
way to discard those observation. If there are ties, each |Di| is assigned the average value of the ranks for
which it is tied. If there are not too many ties, the significant level of the test isn’t greatly affected.

6 Analysis of Variance

Definition 6.1. (One-Way Layout) The independent measurement are made under each of several treat-
ments. It is the generalization of the above test. We will denote the I groups that contains J samples. We
will denote, the following values:

Yij = The j-th observation in the i-th treatments.

6.1 Normal Theory: F Test

Remark 36. (Statistical Model of One-Way Layout) We have the statistical model model is given as
Yij = µ+ αi + εij . Here µ is the overall mean and αi is the differential effect of the i-th treatment. We will
assume to be independent, normally distributed with mean 0 and variance σ2. The αi are normalized:

I∑
i=1

αi = 0

Remark 37. (Defining Null-Distribution) The expected response to the i-th treatment is E[Yij ] = µ+αi.
If αi = 0 for i = 1, . . . , I all treatments have the same expected respoinse, and in general αi − αj is the
differeces between the expected values under treatments i and j.

Lemma 6.1. We consider the following identity:

I∑
i=1

J∑
j=1

(Yij − Ȳ..)2 =

I∑
i=1

J∑
j=1

(Yij − Ȳi.)2 + J

I∑
i=1

(Ȳi. − Ȳ..)2

where we have:

Ȳi. =
1

J

J∑
j=1

Yij Ȳ.. =
1

IJ

I∑
i=1

J∑
j=1

Yij

This means that the total sum of squares equals to the sum of square within groups plus the squares between
groups, as we have SSTOT = SSW + SSB
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Proof. To establish the identity, we express the left-hand side as:

I∑
i=1

J∑
j=1

(Yij − Ȳ..)2 =

I∑
i=1

J∑
j=1

[(Yij − Ȳi.) + (Ȳi. − Ȳ..)]2

=

I∑
i=1

J∑
j=1

(Yij − Ȳi.)2 +

I∑
i=1

J∑
j=1

(Ȳi. − Ȳ..)2

+ 2

I∑
i=1

J∑
j=1

(Yij − Ȳi.)(Yi. − Ȳ..)

=

I∑
i=1

J∑
j=1

(Yij − Ȳi.)2 +

I∑
i=1

J∑
j=1

(Ȳi. − Ȳ..)2

+ 2

I∑
i=1

(Yi. − Ȳ..)
J∑
j=1

(Yij − Ȳi.)


The last term of the final expression vanishes because some of deviation from a mean is zero.

Lemma 6.2. Let Xi where i = 1, ,̇n be independent random variable with E[Xi] = µi and var(Xi) = σ2.
Then we have, the following identity:

E[(Xi − X̄)2] = (µi − µ̄)2 +
n− 1

n
σ2 where µ̂ =

1

n

n∑
i=1

µi

Proof. We used the fact that E[U2] = E[U ]2 + var(U) for any random variable with finite variance. Let’s
consider the second term: var(Xi − X̄):

var(Xi − X̄) = var(Xi) + var(X̄)− 2 cov(Xi, X̄)

= σ2 +
1

n
σ2 + cov

Xi,
1

n

n∑
j=1

Xj


= σ2 +

1

n
σ2 − 2

n
σ2

This concludes the proof.

Theorem 6.1. We consider the expectation:

E[SSW] = I(J − 1)σ2 E[SSB] = J

I∑
i=1

α2
i + (I − 1)σ2

Proof. Under the assumption for the model stated at the beginning of this section:

E[SSW] =

I∑
i=1

J∑
j=1

E[(Yij − Ȳi.)2] =

I∑
i=1

J∑
j=1

J − 1

J
σ2 = I(J − 1)σ2

We have used lemma above with the role of Xi being played by Yij . The second equality follows since

E[Yij ] = E[Ȳi] = µ+ αi. Now, let’s find the E[SSB], we use the lemma with Ŷi. and Ŷ.. as:

E[SSB] = J

I∑
i=1

E(Ȳi. − Ȳ..)2 = J

I∑
i=1

[
α2
i +

(I − 1)σ2

IJ

]
= J

I∑
i=1

α2
i + (I − 1)σ2
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Remark 38. (Notes on the Sum of Squares) SSW may be used to estimate σ2, where the estimate is:

s2
p =

SSW

I(J − 1)

which is unbiased. The subscript p stands for pooled. Estimates of σ2 from the I treatments are pooled
together, since:

SSw =

I∑
i=1

(J − 1)s2
i

where s2
i is the sample variance in the i-th group.

Remark 39. (Introduction to the Test) If all the αi are equal to zero, then the expectation of SSB/(I−1)
is also σ2. In this case, SSW/[I(J − 1)] and SSB/(I − 1) should be abount equal. If some of the αi are
non-zero, SSB will be inflated.

Theorem 6.2. If the errors are independent and normally distributed with means 0 and variance σ2, then
we have SSW/σ

2 ∼ χ2
I(J−1). If additionally, the αi are all equal to zero, then SSB/σ

2 ∼ χ2
I−1 and it is

independent of SSW.

Proof. Let’s consider the distribution function over random variable, as we have:

• We consider SSW, where we have:

1

σ2

J∑
j=1

(Yij − Ȳi.)2 ∼ χ2
J−1

There are I such sums in SSW, they are independent of each other. The sum of I independent χ2
J−1

random variable give a χ2
I(J−1). This also applied to SSB noting that var(Ȳi.) = σ2/J

• Now, we will show that 2 sums of square are independent of each other.

– SSW is a function of vector U , which has the element Yij− Ȳi., where i = 1, . . . , I and j = 1, . . . , J

– SSB is a function of vector V whose element are Ȳi. where i = 1, . . . , I, since Ȳ.. can be obtained
from Ȳi.

It is sufficent to how that these 2 vectors are independent of each other, we consider:

– If i 6= i′ then Yij − Ȳi. and Ŷi′. are independent since they are function of differeces observations.

– On the other hand, Yij − Ȳi. and Ȳi. are independent by the previous result.

This completes the proof of the thoerem.

Definition 6.2. (F Statistics) We use the following statistics:

F =
SSB/(I − 1)

SSW/[I(J − 1)]

And it is used to the the following null hypothesis:

H0 : α1 = α2 = · · · = αI = 0

If the null hypothesis is true, the F-statistics should be close to 1, and if it is false, the statistics should be
larger. If the null hypothesis is false the numerator reflects variation between the different groups as well as
variation within groups.
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Theorem 6.3. Under the assumption that the errors are noramlly distributed, the null distribution of F is
F distribution with I − 1 and I(J − 1) degree of freedom.

Proof. The theorem follows from theorem above and for the definition of the F distribution.

Remark 40. (When number are not necessarily equal) The analysis is the same as for the case of equal
sample sizes. Suppose that there are Ji observation under treatment i, for i = 1, . . . , I. The basic identity
still holds:

I∑
i=1

Ji∑
j=1

(Yij − Ȳ..)2 =

I∑
i=1

Ji∑
j=1

(Yij − Ȳi.)2 +

I∑
i=1

Ji(Ȳi − Ȳ..)2

By reasoning similar to that used here for the simple case, as it can be shown that:

E[SSW] = σ2
I∑
i=1

(Ji − 1) E[SSB] = (I − 1)σ2 +

I∑
i=1

Jiα
2
i

The degree of freedom for these sum of squares are
∑I
i=1 Ji − I and I − 1, respectively.

6.2 Problem of Multiple Comparisons

Remark 41. We are interested in comparing pairs or groups of treatments and estimating the treatment
means and their differeces. The naive approach is to compare all pairs of treatment means using t test:

• Although each individual comparison would have a type I error rate of α

• The collection of all Comparisons considered simulataneous would not.

Definition 6.3. (Tukey’s Method) It is used to construct confidence intervals for the differences of all
pairs of means.

• If the sample sizes are all equal and the errors are normally distributed with a constant variance

• The centered sample means: Ȳi.−µi are independent and distributed with N (0, σ2/J), where σ2 ≈ s2
p.

Tukey’s method is based on the probability distribution of the random variable:

max
i1,i2

∣∣(Ȳi1. − µi1)− (Ȳi2. − µi2)
∣∣

sp/
√
J

where maximum is taken over all pairs. This distribution is called studentized range distribution with
parameter I (number of samples being compared) and I(J − 1) (degree of freedom in sp).

Remark 42. (Confidence Bound for Turkey Method) The upper 100α percentage point of the distri-
bution is denoted by qI,I(J−1)(α). Now, we have:

P

[ ∣∣(Ȳi1. − µi1)− (Ȳi2. − µi2)
∣∣ ≤ qI,I(J−1)(α)

sp√
J
, for all i1, i2

]

= P

[
max
i1,i2

∣∣(Ȳi1. − µi1)− (Ȳi2. − µi2)
∣∣ ≤ qI,I(J−1)(α)

sp√
J

]
= 1− α

This can be converted to confidence interval as that holds for all differeces µi1 −µi2 with confidence 100(1−
α)%. The interval are:

Ȳi1. − Ȳi2. ± qI,I(J−1)(α)
sp√
J
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Definition 6.4. (Bonferroni Method) If k null hypotheses are to be tested, a desired overally type I
error rate of at most α can be guarantee by testing each null hypothesis at level α/k, and so if k confidence
intervals are each formed to have a confidence level 100(1−α/k)%, they hold simulataneously with confidence
interval of at least 100(1− α)%

Definition 6.5. (Kruskal-Wallis Test) The observations are assumed to be independent, but no particular
distributional form. We consider:

Rij = the rank of Yij in the sample.

Let’s consider the following quantities:

R̄i. =
1

Ji

Ji∑
j=1

Rij R̄.. =
1

N

I∑
i=1

Ji∑
j=1

Rij =
N + 1

2
SSB =

I∑
i=1

Ji(R̄i. − R̄..)2

SSB is the measure of dispersion of R̄i. where the larger SSB is the stronger is the evidence against the
null hypotheses. The exact null distribution of this statistics for various combination of I and Ji can be
enumerated. Or, we can use the statistics:

K =
12

N(N + 1)
SSB

is approximately distributed as χ2
I−1. The value of K can be found by running the ranks through and

analysis of variance program. It can be shown that:

K =
12

N(N + 1)

(
I∑
i=1

JiR̄
2
i

)
− 3(N − 1)

which is easier to compute by hand.

6.3 Two-Way Layout

Definition 6.6. (Two-Way Layout) Two-Way Layout is an experimental design involving 2 factors. The
level of one factor might be various drugs and the level of the other factor might be genders. If there are I
levels of one factor and J of the other, then there are I×J combinations. We will assume that K independent
observations are taken for each of these combination. We will assume that there are K > 1 observations per
cell.

Remark 43. (Statistical Models) This leads to the simple additive model as:

Ŷij = µ̂+ α̂i + β̂j

We use the Ŷij to denote the fitted or predicted value of Yij . According to this additive model, we have:

Ŷi1 − Ŷi2 = (µ̂+ α̂i + β̂1)− (µ̂+ α̂i + β̂2) = β̂1 − β̂2

This may not always be the case as there can be interaction between each factors, and so this can be
incorporated into the model to make it fit the data exactly. Consider the residual in cell ij to be:

Yij = µ̂+ α̂i + β̂j + δ̂ij

Please note that the transformation can be used to stabilize the variance. Finally, to include the random
error the model is given as:

Yijk = µ+ αi + βj + δij + εijk

where εijk ∼ N (0, σ2), thus we have the following expected value: E[Yijk] = µ+αi+βj +δij . The parameter
will satisfy the following constraints to be:

I∑
i=1

αi = 0

J∑
j=1

βj = 0

I∑
i=1

δij =

J∑
j=1

δij = 0
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Proposition 6.1. (MLE Estimate of Statistical Model) The cell ij are normally distributed with mean
µ+ αi + βj + δij and variance σ2. The MLE, given the constraints, is

µ̂ = Ȳ...

α̂i = Ȳi.. − Ȳ... i = 1, . . . , I

β̂j = Ȳ.j. − Ȳ... j = 1, . . . , J

δ̂ij = Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...

Proof. We have the following log-likelihood:

l = −IJK
2

log(2πσ2)− 1

2σ2

I∑
i=1

J∑
j=1

K∑
k=1

(Yijk − µ− αi − βj − δij)2

Setting the derivative subjected to constraints gives us the MLE.

Proposition 6.2. (Sum of Square Decomposition) We can consider the sum of the square to be:

SSA = JK

I∑
i=1

(Ȳi.. − Ȳ...)2

SSB = IK

J∑
j=1

(Ȳ.j. − Ȳ...)2

SSAB = K

I∑
i=1

J∑
j=1

(Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...)
2

SSE =

I∑
i=1

J∑
j=1

K∑
k=1

(Yijk − Ȳij.)2

SSTOT =

I∑
i=1

J∑
j=1

K∑
k=1

(Yijk − Ȳ...)2

The sum of square satisfy the algebraic identity:

SSTOT = SSA + SSB + SSAB + SSE

Proof. This identity is proved by writing, follows:

Yijk − Ȳ... = (Yijk − Ȳij.) + (Ȳi.. − Ȳ...) + (Ȳ.j. − Ȳ...) + (Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...)

Squaring both side, summing and verifying that the cross product vanishes.

Proposition 6.3. Under the assumption that the errors are independent with means 0 and variance σ2:

E[SSA] = (I − 1)σ2 + JK

I∑
i=1

α2
i

E[SSB] = (J − 1)σ2 + IK

J∑
j=1

β2
j

E[SSAB] = (I − 1)(J − 1)σ2 +K

I∑
i=1

J∑
j=1

δ2
ij

E[SSE] = IJ(K − 1)σ2
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Proof. The result of SSA, SSB and SSE. Apply the lemma to SSTOT as we have:

E[SSTOT] = E

 I∑
i=1

J∑
j=1

K∑
k=1

(Yijk − Ȳ...)2


= (IJK − 1)σ2 +

I∑
i=1

J∑
j=1

K∑
k=1

(αi + βj + δij)
2

= (IJK − 1)σ2 + JK

I∑
i=1

α2
i + IK

J∑
j=1

β2
j +K

I∑
i=1

J∑
j=1

δ2
ij

The last step, we use the constraints on parameter. For example, we have:

I∑
i=1

J∑
j=1

K∑
k=1

αiβj = K

(
I∑
i=1

αi

) J∑
j=1

βj

 = 0

The values of expectation now follows.

Theorem 6.4. Assume that the error are independent and noramlly distributed with mean 0 and variance
σ2, then:

• SSE/σ
2 follows a χ2-distribution with IJ(K − 1) degree of freedom.

• Under null hypotheses: HA : αi = 0, i = 1, . . . , I where SSA/σ
2 follows a χ2

I−1-distribution

• Under null hypotheses: HB : βj = 0, j = 1, . . . , J where SSB/σ
2 follows a χ2

J−1-distribution

• Under null hypotheses: HAB : βij = 0, i = 1, . . . , I, j = 1, . . . , J where SSAB/σ
2 follows a χ2

(I−1)(J−1)-
distribution

• Sums of squares are independently distributed

Remark 44. (On the use of F-Test) The format of F-Test is the same. The mean squares are the sums of
squares divided by their degree of freedom and F statistics are ratios of means squares. Let’s consider the
example:

• We have the following quantities E[MSA] = σ2 + (JK/(I − 1))
∑
i α

2
i and E[MSE] = σ2

• If the ratio MSA/MSE is large, it suggested that some αi is non-zero.

• The null distribution of this F -statistics is F(I−1),IJ(K−1)

6.4 Randomized Block Design

Definition 6.7. (Randomized Block Design) We want to study the effects of I different fertilizers, with
J relatively homogeneous plots of land, each is divided into I plots. Within each block the assignment of
fertilizer to plot is made at random, by comparing fertilizers within blocks, the variablity between blocks,
which would contribute “noise” to the result is control.

Remark 45. (Deriving the Null Distribution) The null distribution of a test statistics can be dervied
from the permuation argument just like null distribution of the Mann-Whitney test. The parameteric test
can be a good approximation as we use the following model:

a

We will assume no interaction between the blocks and treatements.
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Proposition 6.4. We can show that, using the same calculation as above result, and consider no interaction:

E[MSA] = σ2 +
J

I − 1

I∑
i=1

α2
i

E[MSB] = σ2 +
I

J − 1

J∑
j=1

β2
j

E[MSAB] = σ2

Remark 46. We can see that we can estimate σ2 from MSAB. The mean squares are independently dis-
tributed, F test can be performed to test, the hypotheses: HA : ∀i ∈ [I] : αi = 0 uses the following
statistics

F =
MSA

MSAB

where under HA, this statistics follows an F -distribution with I − 1 and (I − 1)(J − 1) degree of freedom.
Contrary to the assumption, there is an interaction then:

E[MSAB] = σ2 +
1

(I − 1)(J − 1)

I∑
i=1

J∑
j=1

δ2
ij

As MSAB will tend to overestimate σ2 making F statistics to be small that it should be.

Definition 6.8. (Friedman’s Test) Like all non-parameteric methods, Friedman’s test relies on ranks and
doesn’t assume normality. Within each of J blocks, the observation is ranked. To test the hypothesis that
there is no effect due to factor corresponding to treatments I, we use the following statistics:

SSA = J

I∑
i=1

(R̄i. − R̄..)2

Under null hypothesis there is no treatment effect, the permuation distribution of the statistics can be
calculated.

Definition 6.9. (Approxiation of Friedman’s Test) For the large sample sizes, we can use the approx-
imation of friedman’s test where the null distribution is, given as:

Q =
12J

I(I + 1)

I∑
i=1

(R̄i. − R̄..)2

is approximately χ2
I−1.

7 The Analysis of Categorical Data

7.1 Fisher’s Exact Test

Remark 47. (Setting for the Tests) Let’s consider the data that we are given as: We want the see whether

Variation 1 Variation 2 Total

Category 1 N11 N12 n1.

Category 2 N21 N22 n2.

Total n.1 n.2 n..

the count in each category is affected by the some variation of data or not (the null hypothesis is that thet
are all randomly assigned). There are auxillary variables denoted (total).
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Remark 48. (Probability Under Null Hypothesis) Under the null hypothesis (randomly generated),
and so the probability that N11 = n11 is given as:

p(n11) =

(
n1.

n11

)(
n2.

n21

)
(
n..
n.1

)
We can use N11 as the test statistics for testing the null hypothesis. We can generate the table to create 2
sided rejects for extreme value of N11

7.2 χ2-Test for Homogeneity

Remark 49. (Settings for χ2-Test) We consider the larger setting compared to Fisher’s exact test, where
we comparing J multinomial distribution each having I categories. If the probability of i-th category of j-th
multinomial is denoted as πij , the null hypothesis is:

H0 : πi1 = πi2 = · · · = πiJ i = 1, . . . , J

Under H0 each of the J multinomial has the same probability for the i-th category as πi.

Proposition 7.1. Under H0, the MLE of the parameter π1, π2, . . . , πI are given as:

π̂i =
ni.
n..

i = 1, . . . , I

where ni. is the total number of response in the i-th category and n.. is the grand total number of response.

Proof. Since the multinomial distribution are independent:

lik(π1, π2, . . . , πI) =

J∏
j=1

(
n.j

n1jn2j · · ·nIj

)
π
n1j

1 π
n2j

2 · · ·πnIj

I

= π
n1j

1 π
n2j

2 · · ·πnIj

I

J∏
j=1

(
n.j

n1jn2j · · ·nIj

)
Consider maximizing the log-likelihood subject to constraint

∑I
i=1 πi = 1. Introducing multiplier, we have

to maximizing:

L(π, λ) =

J∑
j=1

log

(
n.j

n1jn2j · · ·nIj

)
+

I∑
i=1

ni. log πi + λ

(
I∑
i=1

πi − 1

)
Now, we have:

∂l

∂πi
=
ni.
πi

+ λ i = 1, . . . , I

⇐⇒ π̂i = −ni
λ

Summing over both sides and applying the constraint, we find that λ = −n.. and the theorem is proven.

Definition 7.1. (Peason’s χ2-Test) For j-th multinomial, the expected count in the i-th category is the
etimated probability of the cell times the total number of observation for j-th multinomial:

Eij =
ni.
n..
n.j

This gives us the Peason’s χ2-statistics as we have:

X2 =

I∑
i=1

J∑
j=1

(Oij − Eij)2

Eij
=

I∑
i=1

J∑
j=1

(nij − ni.n.j/n..)2

ni.n.j/n..
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For large sample size, the approximate null distribution of this statistics is χ2. We have the degree of freedom
are number of independent counts minus the number of independent parameter:

• Each multinomial has I − 1 independent counts, since the total are fixed.

• I − 1 independent parameter have been estimated.

And so the degree of freedom are given as J(I − 1)− (I − 1) = (I − 1)(J − 1).

7.3 χ2-Test of Independent

Definition 7.2. (Contingency Table) We will discuss the statistical analysis of sample of size n cross-
classifed in table with I rows and J columns. This configuration is called contingency table.

Remark 50. (Settings for the Test) We are interested in the relationship between factors on the table. The
joint distribution of the counts nij where i = 1, . . . , I and j = 1, . . . , J is multinomial with cell probabilities
denoted as:

πi. =

J∑
j=1

πij π.j =

I∑
i=1

πij

Both are the marginal probability that the observation will fall in i-th row or j-columns. If both row and
columns are independent of each other then: πij = πi.π.j . This leads to the following null hypothesis:

H0 : πij = πi.π.j i = 1, . . . , I j = 1, . . . , J

Remark 51. (Defining the χ2-Test) Let’s consider the MLE estimate under each hypothesis

• Under H0 is the MLE of πij is given as:

π̂ij = π̂i.π̂.j =
ni.
n

n.j
n

• Under alternative MLE of πij is given as:

π̃ij =
nij
n

Now we consider χ2-test as we have:

X2 =

I∑
i=1

J∑
j=1

(Oij − Eij)2

Eij
=

I∑
i=1

J∑
j=1

(nij − (ni.n.j)/n)2

(ni.n.j)/n

where Oij are the observation count as we have nij . The expected count is Eij = nπ̂ij = (ni.n.j)/n.

• Let’s consider the degree of freedom as under Ω, the cell probabilities sum to 1 as it has the dimension
to be IJ − 1.

• Under the null hypothesis, the marginal probabilities are estimated from the data are specified to
(I − 1) + (J − 1)

We have the following degree of freedom:

df = IJ − 1− (I − 1)− (J − 1) = (I − 1)(J − 1)

43



7.4 Matched-Pairs Designs

Remark 52. (Setting for the test) We consider the following table

No Cure (Sibling) Cure (Sibling) Total

No Cure (Patient) π11 π12 π1.

Cure (Patient) π21 π22 π2.

Total π.1 π.2 1

The appropriate null hypothesis is πi. = π.i, where i = 1, 2 (the probabilities of cure and no cure should be
the same for patient and sibling), and so we have:

π11 + π12 = π11 + π21 π12 + π22 = π21 + π22

The equation is simplified to π12 = π21, where the null hypothesis is thus:

H0 : π12 = π21

Proposition 7.2. (MLE of Cell Probabilities) Under the H0, the MLE of the cell probabilities are:

π̂11 =
n11

n
π̂22 =

n22

n
π̂12 = π̂21 =

n12 + n21

2n

Definition 7.3. (McNemar’s Test) The contribution to the χ2 statistics from n11 and n22 cells are equal
to zero. The remainder of statistics is:

X2 =
[n12 − (n12 + n21)/2]2

(n12 + n21)/2
+

[n21 − (n12 + n21)/2]2

(n12 + n21)/2
=

(n12 − n21)2

n12 + n21

Let’s consider the degree of freedom, as under Ω there are 3 free parameters (since there are 4 probability
that are constrianted to one). On the null hypothesis, there are addiitonal constraint π12 = π21 so there are
2 free parameter. Thus we have 1 degree of freedom.

7.5 Odd Ratios

Definition 7.4. (Odd) If an event A has probability P (A) of occuring, the odds of A occuring are defined
as (please note that this works with conditional probability):

odds(A) =
P (A)

1− P (A)
=⇒ P (A) =

odds(A)

1 + odds(A)

Definition 7.5. (Odds Ratio) We have the following:

∆ =
odds(D|X)

odds(D|X̄)

where X̄ is the complementary element. This measures the influenced of some event X to the event D.

Remark 53. (Setting for Test) We consider how the odds and odds ratio could be estimated by sampling
from a population with joint and marignal probability defined as:

D̄ D Total

X̄ π00 π01 π0.

X π10 π11 π1.

Total π.0 π.1 1
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With this notation, as we have:

P (D|X) =
π11

π10 + π11
P (D|X̄) =

π01

π00 + π01

And, so we have:

odds(D|X) =
π11

π10
odds(D|X̄) =

π01

π00
∆ =

π11π00

π01π10

The product of diagonal probabilities in the preceding table divided by the product of the off-diagonal
probabilities.

Remark 54. (Ways to Sample the Data)

• Naive Sample: We can consider drawing a random sample from the entire population. But if the event
D is rare, the total sample size would have to be quite large to guarantee that substantial number of
D is included.

• Prospective Study : Fixed number of even X and X̄ are sample, then incidence of D are compared.
This allow use to compare P (D|X) and P (D|X̄) and the odd ratio. However πij can not be estiamte
from the data.

• Retrospective Study : We fixed number of D and D̄ and we compared the number of X and X̄. We can
estimate P (X|D) and P (X|D̄) by the proportion. But, we can’t estimate P (D|X) and P (D|X̄) or the
joint probability.

Proposition 7.3. The odds ratio on the contingency table ∆ can be expressed as:

∆ =
odds(X|D)

odds(X|D̄)

Proof. This follows from the calculation of P (X|D) and 1− P (X|D) where we have:

P (X|D) =
π11

π01 + π11
1− P (X|D) =

π01

π01 + π11
odds(X|D) =

π11

π01
odds(X|D̄) =

π10

π00

We can see that the odds ratio ∆ can be expressed as above, thus complete the proof.

Remark 55. (Retrospective Study - Odds Ratio) We can’t find the odds ratio of given the restrospective
study but we can approximate it. Using the above result. where we replace πij with nij where n is the count
of the observation.

Remark 56. (Statistical Testing) Since the value ∆̂ is non-linear function of the counts, we will have to
use the boostrap to construct the approximation of the distribution ∆̂

8 Linear Least Squares

Remark 57. (Vocabulary Used) We consider the straight like is to fit the points (yi, xi) where i =
1, . . . , n where we call the following components: y is called dependent/response variables. x is called
independent/predictor variables.

Definition 8.1. (Objective) We are interested to minimize the following objective function:

S(β0, β1) =

n∑
i=1

(yi − β0 − β1xi)
2

where we consider to find the β0 and β1 that minimizes this value.
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Proposition 8.1. (Solution of Simiple Linear Regression) We can show that the expression of β0 and
β1 can be found (given the dataset {(yi, xi)}ni=1) as:

β̂0 = ȳ − β̂1x̄ β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

Proof. We consider the derivative of the objective with respected to β0 and β1 as we have:

∂S

∂β0
= −2

n∑
i=1

(yi − β0 − β1xi)
∂S

∂β1
= −2

n∑
i=1

xi(yi − β0 − β1xi)

Setting the partial derivative to zero, we have the minimizer of β̂0 and β̂1 to be:

n∑
i=1

yi = nβ̂0 + β̂1

n∑
i=1

xi

n∑
i=1

xiyi = β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2
i

which we can solve for the β̂0 and β̂1 to obtain:

β̂0 =

(∑n
i=1 x

2
i

)
(
∑n
i=1 yi)− (

∑n
i=1 xi) (

∑n
i=1 xiyi)

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2 β̂1 =
n
∑n
i=1 xiyi − (

∑n
i=1 xi) (

∑n
i=1 yi)

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

With some rearrangement, and we have the required expression.

Remark 58. (Adding Non-Linearity) We can consider the non-linear transformation of the input xi before
perform the linear Least square to increase the capacity of the model.

Definition 8.2. (Linear Least Square) It is a function of the form:

f(x1, x2, . . . , xp−1) = β0 + β1x1 + β2x2 + · · ·+ βp−1xp−1

This involves p unknown parameters β0, β1, . . . , βp−1 as we fit the n data points:

y1, x11, x12, . . . , x1,p−1

y2, x21, x22, . . . , x2,p−1

...

yn, xn1, xn2, . . . , xn,p−1

The function f(x) is called linear regression of y on x. We will always assume that p < n.

8.1 Simple Linear Regression

Definition 8.3. (Statistical Model) We consider the observed value of y is a linear function x plus the
random noise:

yi = β0 + β1xi + ei i = 1, . . . , n

Here ei is the independent random variable with E[ei] = 0 and var(ei) = σ2. Furthermore, xi is assumed to

be fixed. We will consider the statistics of β0 and β1, which are β̂0 and β̂1 respectively.

Proposition 8.2. Under the assumption of the standard statistical model, the least square estimate are
unbiased as E[β̂j ] = βj for j = 0, 1
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Proof. We will consider the proof for β̂0 only as the proof for β1 is similar. Note that E[yi] = β0 + β1xi:

E[β̂0] =

(∑n
i=1 x

2
i

)
(
∑n
i=1 E[yi])− (

∑n
i=1 xi) (

∑n
i=1 xiE[yi])

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

=

(∑n
i=1 x

2
i

)
(nβ0 + β1

∑n
i=1 xi)− (

∑n
i=1 xi)

(
β0

∑n
i=1 xi + β1

∑n
i=1 x

2
i

)
n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

= β0

Thus complete the proof.

Theorem 8.1. Under the assuption of the standard statistical model, we have:

var(β̂0) =
σ2
∑n
i=1 x

2
i

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2 var(β̂1) =
nσ2

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

cov(β̂0, β̂1) =
−σ2

∑n
i=1 xi

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

Proof. We will consider the more general proof later.

Definition 8.4. (Residual Sum of Squares) We define RSS to be:

RSS =

n∑
i=1

(yi − β̂0 − β̂1xi)
2

Remark 59. (Statistical Testing) The value of σ2 is used to find the variance β̂0 and β̂1. Replacing the
σ2 by s1 yielding estimates that we will denote s2

β̂0
and s2

β̂1
. We will show that:

s2 =
RSS

n− 2

It is unbiased estimate of σ2. If the error ei are independent normal random variable, then the linear
combination of them are normal distributed as well. Furthermore, we have:

• If ei are independent and xi satisfies certain assumption, a version of CLT implies that (for large n)m
the estimated slow and intercept are approximately normally distributed.

• The normality assuption, makes possible to construct of confidence interval and hypothesis test, which
can be shown that:

β̂i − βi
sβ̂i

∼ tn−2

We allows the t distribution to be used for CI and hypothesis tests.

Remark 60. (Correlation) Let’s start with finding the correlation coefficient, which is equal to:

r =
sxy√
sxxsyy

where we have:

sxx =
1

n

n∑
i=1

(xi − x̄)2 syy =
1

n

n∑
i=1

(yi − ȳ)2 sxy =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)
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Remark 61. (On connection between Correlation) We can show that the slope of the least square line
is given by:

β̂1 =
sxy
sxx

r = β̂1

√
sxx
syy

The correlation is zero iff the slope is zero. Furthermore, if ŷ = β̂0 + β̂1x, as we have the β̂1 is expressed the
terms of r, then after some manipulation, we have:

ŷ − ȳ
√
syy

= r
x− x̄
√
sxx

We can interpret the following equation to be:

• Suppose that r > 0 and that x is one standard deviation greater than its average, the y is r standard
deviation bigger than its average.

• The predicted value thus deviates from its average by few standard deviation than does the predictor.
(as r ≤ 1)

• In unit of standard deviations, it is closer to its average than is the predictor.

8.2 Matrix Approach

Remark 62. (Matrix Formulation) Consider the model of the form:

y = β0 + β1x1 + · · ·+ βp−1xp−1

It is to be fit to data, which we denote as yi, xi1, xi2, . . . , xip−1 as we have i = 1, . . . , n. We have:

• Y is a vector of observations yi where i = 1, . . . , n.

• β is the unknown β0, . . . , βp−1.

• Xn×p being the matrix:

X =


1 x11 x12 · · · x1,p−1

1 x21 x22 · · · x2,p−1

...
...

. . .
...

1 xn1 xn2 · · · xn,p−1


We have the predicted value to be given by Ŷ = Xβ. We want to find β to minimize:

S(β) =

n∑
i=1

(yi − β0 − β1xi1 − · · · − βp−1xi,p−1)2

= ‖Y −Xβ‖2 =
∥∥∥Y − Ŷ ∥∥∥2

Note that the residual can be find out as Y −Xβ̂, where β̂ is the solution to the optimization problem.

Proposition 8.3. (Solution of Least Square) If XTX is non-singular, the formal solution is given as:

β̂ = (XTX)−1XTY
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Proof. If differetiate the S with respected to each βk, then we see that the minimizer of β̂0, . . . , β̂p−1 satisfies
the following equation:

nβ̂0 + β̂1

n∑
i=1

xi1 + · · ·+ β̂p−1

n∑
i=1

xi,p−1 =

n∑
i=1

yi

β̂0

n∑
i=1

xij + β̂1

n∑
i=1

xi1xik + · · ·+ β̂p−1

n∑
i=1

xikxi,p−1 =

n∑
i=1

yixik k = 1, . . . , p− 1

This can be written in the matrix form as XTXβ̂ = XTY this is called normal equation, and the results
above follows.

Lemma 8.1. If XTX is non-singular iff the rank of X equals to p.

Proof. Suppose that XTX is singular. There exiss a non-zero vector u such that: XTXu = 0. Multiply
the left-handside of this equation by uT , we have:

0 = uTXTXu = (Xu)T (Xu)

And so Xu = 0, thu rank X is less than p. Now suppose that the rank of X is less than p, then there is a
vector u such that Xu = 0. Then XTXu = 0 hence XTX is singular.

Remark 63. (On equivalent to eariler derivation) Let’s consider each matrices:

XTX =

[
1 · · · 1
x1 · · · xn

]1 x1

...
...

1 xn

 =

[
n

∑n
i=1 xi∑n

i=1 xi
∑n
i=1 x

2
i

]

(XTX)−1 =
1

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

[ ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n
i=1 xi n

]
XTY =

[ ∑n
i=1 yi∑n
i=1 xiyi

]
And so, we have:

β̂ =

[
β̂0

β̂1

]
= (XTX)−1XTY

=
1

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

[ ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n
i=1 xi n

] [ ∑n
i=1 yi∑n
i=1 xiyi

]
=

1

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

[(∑n
i=1 x

2
i

)
(
∑n
i=1 yi)− (

∑n
i=1 xi) (

∑n
i=1 xiyi)

n
∑n
i=1 xiyi − (

∑n
i=1 xi) (

∑n
i=1 yi)

]
Thus the equivalent is established.

8.3 Statistical Properties of Least Square

Definition 8.5. (Mean Vector and Covariance Matrix) Given the random vector, Y , the element,
which are jointly distributed random variables:

E[Yi] = µi cov(Yi, Yj) = σij

The mean vector µY and the covariance matrix Σ of Y , are defined as:

E[Y ] = µY =


µ1

µ2

...
µn

 Z =


σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σnn
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Proposition 8.4. If Z = c+AY where Y is a random variable and A a matrix with c a fixed vector, then:

E[Z] = c+AE[Y ]

Proof. The i-th components of Z is given as:

Zi = ci +

n∑
j=1

aijYj =⇒ E[Zi] = Zi = ci +

n∑
j=1

aijE[Yj ]

The implication follows from the linearity of the expectation. As this can be written in matrix form, this
completes the proof.

Proposition 8.5. Given the same setting as the above, if the covariance matrix of Y is ΣY Y , then the
covariance of Z is:

ΣZZ = AΣY YA
T

Proof. The constant c doesn’t affect the covariance:

cov(Zi, Zj) = cov

(
n∑
k=1

aikYk,

n∑
l=1

ajlYl

)
=

n∑
k=1

n∑
l=1

aikajl cov(Yk, Yl) =

n∑
k=1

n∑
l=1

aikσklajl

The last expression in ij element of the desired matrix.

Proposition 8.6. Let X be a random n vector with means µ and covariance Σ and let A be fixed matrix:

E[XTAX] = tr[AΣ] + µTAµ

Proof. The trace of square matrix is defined to be sum of diagonal terms, as we have:

E[XiXj ] = σij + µiµj

We have the following:

E

 n∑
i=1

n∑
j=1

XiXjaij

 =

n∑
i=1

n∑
j=1

σijaij +

n∑
i=1

n∑
j=1

µiµjaij

= tr[AΣ] + µTAµ

Remark 64. (Alternative Proof of Variance Estimator) We are interested in finding E[
∑n
i=1(Xi−X̄)2]

where Xi is uncorrelated random variable with common mean µ. Note that the vector X̄ is given as:

X̄ =
1

n
1TX

THe entries of check are X̄ can be written as: (1/n)11TX and A can be written as:

A = I − 1

n
11T

Thus, it is clear that:
n∑
i=1

(Xi − X̄)2 = ‖AX‖2 = XTATAX = XTAX

Note that the matrix A is symmetric and A2 = A, where note that 1T1 = n. Finally, consider the
expectation of the summation, which we can use our results:

E[XTAX] = σ2 tr[A] + µTAµ = σ2(n− 1)

where µ = µ1, it can be verified that Aµ = 0, als trace A = n− 1, so we have the value required.

50



Definition 8.6. (Cross-Covariance Matrix) Given the random vectors Y ∈ Rp×1 and Z ∈ Rm×1, then
the cross-covariance of Y and Z is defined to be Σ ∈ Rp×m with ij element σij = cov(Yi, Zj). The entries
quanify the strengths of linear relationship between elements of Y and Z.

Proposition 8.7. Let X be a random vector with covariance matrix ΣXX if Y = AX and Z = BX where
A ∈ Rp×n and B ∈ Rm×n, where the cross-covariance matrix of Y and Z is:

ΣY Z = AΣXXB
T

Remark 65. (Alternative Proof of Independence) Consider a random vector X of size n with E = µI
and ΣXX = σ2I. Let Y = X̄ and Z be vector with i-th element Xi − X̄. Let’s consider the ΣZY ∈ Rn×1

as we have:

Z =

(
I − 1

n
11T

)
X Y =

1

n
1TX

From theorem above, we have:

ΣZY =

(
I − 1

n
11T

)
(σ2I)

(
1

n
1

)
This comes Rn×1 vector of zeros. Thus, the mean X̄ is uncorrelated with each of Xi − X̄ for i = 1, . . . , n.
This implies that X̄ and S2 are independent of each other.

Remark 66. (Least Squares Estimates) We consider the following model to be:

Yi = β0 +

p−1∑
j=1

βjxij + ei i = 1, . . . , n

where ei are the random error, as we have:

E[ei] = 0 var(ei) = σ2 cov(ei, ej) = 0 i 6= j

Given the matrix notation as we have Y = Xβ + e, as we have:

E[e] = 0 Σee = σ2I

Theorem 8.2. (Unbias) Given the assumption that the error has mean 0, the least square estimate is
unbiased.

Proof. The least square estimate of β is given:

β̂ = (XTX)−1XTY

= (XTX)−1XT (Xβ + e)

= β + (XTX)−1XTe

From the results aboue, we have the following expectation:

E[β̂] = β + (XTX)−1XTE[e] = β

Theorem 8.3. (Covaraince Matrix of Least Square) Under the assumption that the error have mean

zero and uncorrelated with constant variance σ2, the covariance matrix of the least square estimate β̂ is:

Σβ̂β̂ = σ2(XTX)−1

Proof. From the results above, we have:

Σβ̂β̂ = (XTX)−1XTΣeeX(XTX)−1

= σ2(XTX)−1

51



Remark 67. (Recovery of Original Result) We return to the case of fitting a straight like. From the
computation of (XTX)−1 as we have:

Σβ̂β̂ =
σ2

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

[ ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n
i=1 xi n

]
And so we have the variance and covaraince results, which are the same as above.

Remark 68. (Residual Vector) Because σ2 is the expected square value of an error ei, its is natural to use
the sample average squared the residual, as we have:

ê = Y − Ŷ = Y −Xβ̂ = Y −X(XTX)−1XTY = Y − PY

where P = X(XTX)−1XT is an n× n matrix.

Lemma 8.2. Let P be defined as before, then we have:

P = P T = P 2 (I − P ) = (I − P )T = (I − P )2

Remark 69. The P is the projection matrix that is P projects on the subspace of Rn spanned by the columns
ofX. We may think geometrically of the fitted values, Ŷ as being the projection of Y onto subspace spanned
by columns of X.

Theorem 8.4. Under the assumption that the error are uncorrelated with constant variance σ2, an unbiased
estimate of σ2 is:

s2 =

∥∥∥Y − Ŷ ∥∥∥2

n− p

The sum of squared residual,
∥∥∥Y − Ŷ ∥∥∥2

is often denoted by RSS.

Proof. The sum of squared residual is, using the lemma:

n∑
i=1

(Yi − Ŷi)2 = ‖Y − PY ‖2 = ‖(I − P )Y ‖2 = Y T (I − P )T (I − P )Y

We can compute the expected value of this quadratic form:

E[Y T (I − P )Y ] = E[Y ]T (I − P )E[Y ] + σ2 tr(I − P )

Please note that E[Y ] = Xβ so we have:

(I − P )E[Y ] =
[
I −X(XTX)−1XT

]
Xβ = 0

Furthermore, we consider the trace terms as we have:

tr(I − P ) = tr(I)− tr(P )

= n− tr
[
X(XTX)−1XT

]
= n− tr

[
XTX(XTX)−1

]
= n− tr[I] = n− p

adding them together given us the result.

Proposition 8.8. The covariance matrix of the residual is given by:

Σêê = (I − P )(σ2I)(I − P )T = σ2(I − P )
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Definition 8.7. (Standardized Residual) To put residual in the familar scale corrsponding to the normal
distribution with means 0 and variance is:

Yi − Ŷi
s
√

1− pii
where pii is the i-th diagonal element of P .

Theorem 8.5. If the error have the covariance matrix σ2I, the residual are uncorrelated with the fitted
values.

Proof. The residual are ê = (I − P )Y , and the fitted values are:

Ŷ = PY

from the theorem above, the cross-covaraince matrix of ê and Ŷ is given by:

ΣêŶ = (I − P )(σ2I)P T = σ2(P T − PP T ) = 0

Thus the theorem result is proven.

Remark 70. (Inference About β) We have the following observation of the result:

• Each components β̂i of β̂ can be show that it sample N (βi, σ
2cii), where C = (XTX)−1

• The standard error of β̂i may thus be estimated as sβ̂i
= s
√
cii

We will use this result to construct the CI and hypothesis test. Under normality assumption is given as:

β̂i − βi
sβ̂i

∼ tn−p

Now we have 100(1− α)% CI for βi so that: β̂i ± tn−p(α/2)sβ̂i

Remark 71. (Test for Parameter) To test the null hypothesis H0 : βi = βi0 where βi0 is a fixed number,
we can use the test statistics:

t =
β̂i − βi0
sβ̂i

Under the H0 the test statistics follows the tn−p. The most commonly tested null hypothesis is H0 : βi = 0,
which states that xi has no predicted value.

Remark 72. (Test for Prediction) We can see that the obvious estimate is given as µ̂0 = xT0 β̂. The
variance of this estimate is given as:

var(µ̂0) = xT0 Σβ̂β̂x0 = σ2xT0 (XTX)−1x0

This variance can be estimated by substuiting s2 for σ2 as we have: µ̂0 ± tn−p(α/2)sµ̂0
. Note that the

variance depends on x0.

Definition 8.8. (Squared Multiple Correlated Coefficient) This coefficient is simply defined as the
squared correlation of the dependent variable and fitted values. It can be shown that it is equal to:

R2 =
s2
y − s2

ê

s2
y

It is used as a crude measure of the strength of relationship that has been fitted by least squares.

53



8.4 Conditional Inferece, Unconditional Inference, and Bootstrap

Remark 73. (Differece View) Instead of consider X and Y to be constant like most of the analysis above,
we consider both variable to be random and use the boostrap to quanify the uncertainty in parameter
estimates.

Remark 74. (Some notations) We consider the design matrix Ξ and particular realization of this random
matrix will be denoted asX. The rows of Ξ will be denoted by ξ1, ξ2, . . . , ξn. In place of model Yi = xiβ+ei,
where xi is fixed and ei is random with mean 0 and variance σ2, where we have:

E[Y |ξ = x] = Xβ var[Y |ξ = x] = σ2

In the random X model, Y and ξ have a joint distribution and the data are modeled as n independent
random vectors:

(Y1, ξ1), (Yn, ξ2), . . . , (Yn, ξn)

Let’s consider how the mean and the variance of the parameter given the uncertainty in the data points:

• E[β̂|Ξ = X] = β. Using the nested expectation, we have:

E[β̂] = E[E[β̂|Ξ]] = E[β̂] = β̂

• var[β̂i|Ξ = X] = σ2(XTX)−1
ii . Using the marginalized, we have:

var(β̂i) = var[E[β̂i|Ξ]] + E[var[β̂i|Ξ]]

= var(βi) + E[σ2(ΞTΞ)−1
ii ]

= σ2E[ΞTΞ]−1
ii

This is highlt non-linear function of the random vectors ξ1, ξ2, . . . , ξn. This is hard to evaluate the analysi-
cally.

• Surprisingly, it turns out that the CI still holds at their nominal level of coverage. Let C(X) denote
the 100(1− α)% CI for βj for the old model.

• Using the IA denotes the indicator variable of the event A, we can express the fact that 100(1− α)%
CI as: E[I {βj ∈ C(X)} |Ξ = X] = 1− α

• Because the conditional probability of coverage is the same for every value of Ξ, the unconditional
probability of coverage 1− α:

E[I {βj ∈ C(X)}] = E[E[I {βj ∈ C(X)} |Ξ = X]] = E[1− α] = 1− α

This is every useful result for forming the CI as we can use the old fixed-X model.

We can complete this section by discussing how the boostrap can be used to estimate the variability of the
parameter estimate under the new model.
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