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1 Introduction

Definition 1.1. (Linear Model) Given the explainatory variable x, the model is

Yi = βi + βixi + ei

for i = 1, 2, . . . , N as Yi denotes the i-th observation and Y corresponds to value xi, where we have:

• Explanatory variable x

• ei is the error associated with i-th observation.

• β0, β1 are unknown variable.

The model can be defined as E[Yi] = β0 + β1xi where have i = 1, . . . , N , as we can define: ei = Yi − E[Yi].
Furthermore, we can write the prediction E[Yi|Xi = xi] in order to make clear that the x-value are random
variable. We are interested in how Y depends on x.

Remark 1. (General Linear Regression) In general, there arem explainatory variables labelled x1, . . . , xm
by consider the following model:

Yi = β0 + β1x1 + · · ·+ βmxim + ci where i = 1, . . . ,M

If some of the explainatory variables are discrete and some are continuous then we have a general linear
regression, as we can describe the model in compacted manner Yi = xTi β + ci

Remark 2. (Error in General Linear Regression) The error usually assume to be independent, normally
distribution with 0 means and constant variance σ, thus Yi is independent normally distributed random
variable:

E[Yi]x
T
i β var(Yi) = σ2

Remark 3. (Example Model) The model might compare the mean of 2 groups i.e a 2 sample problem.
For j-th observation in the i-th group, we have:

Yij = νi + eij i = 1, 2 j = 1, . . . , n

with the assuption about the error, then Yij is independent of N (µi, σ
2). The above model is:

Yij = xij1µ1 + xij2µ2 + eij where xijk =

{
1 if k = i

0 if k 6= i

xijk is called the dummy variable or indicator variable. Furthermore, we can extend the problem into I ≥ 2
groups where:

Yij = xij1µ1 + · · ·+ xijIµI + eij
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2 Inference for Linear Model

Definition 2.1. (Least Square Estimation) The least square established of the element β minimizer the
following sum of square:

S(β) =

N∑
i=1

e2i =

N∑
i=1

(Yi − xTi β)2

with respected to elements of β. Note that the method can be written in the matrix of the form Y = Xβ+e,
where we have:

Y =

 Y1
...
YN

 X =

x
T
1
...
xTN

 ∈ RN×p β =

β1...
βp

 e =

 e1
...
eN


as we have X is known as design matrix in the context of design experiment. The optimization objective
can be written as:

S(β) = eTe = (Y −Xβ)T (Y −Xβ)

Remark 4. If we consider the differentiate with respected to β and we have β̂ = (XTX)−1XTY assuming

p < N and so XTX is full rank. We can show that β̂ is an unbiased estimator with E[β̂] = β. The covariance

matrix of β̂ if in addition ei : i = 1, . . . , N are independent with constant variance σ2:

v(β̂) = σ2(XTX)−1

and so we can assume the error are independent normally distribution with mean of 0 and constant variance
of σ2, then we have: β̂ ∼ Np(β, σ2(XTX)−1)

Theorem 2.1. (Gauss-Markov) If ψ = cTβ is an estimatable function, there exists the unique a linear

unbiased estimator of it which has minimal variance, which is equal to ψ̂ = cT β̂

Remark 5. The least square estimator is MLE of a data that is normall distributed, we can see that the
normal distribution is:

L(β, σ2) =

(
1√

2πσ2

)N
exp

(
−S(β)

2σ2

)
from which it can be seen that maximization of L(β, σ2).

Remark 6. The estimation of σ2. For the residuals, the fitted values are the estimator of the mean response
for each observation: for the i-th observation of the fitted value µ̂i = xiβ̂ with the following residual:

ê = Y −Xβ̂ = Y −X(XTX)−1XTY

where ê = (IN −H)Y where H = X(XTX)−1XT .

Definition 2.2. (RSS) The sum of the squared where the residual sum of square (RSS) and is the minimal
of S(β) and so:

RSS = êTe =

n∑
i=1

ê2 =

N∑
i=1

(Yi − xTi β̂)2

We can so that the expected value of RSS:

E[RSS] = E[êT ê] = E[Y T (In −H)Y ] = (N − p)σ2

Remark 7. The unbiased estimator of σ̂2 = RSS/(N − p) under the assuption of independent ei ∼ N (0, σ2),

it can be shown that RSS/σ2 ∼ X 2
N−p independent of β̂.
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Definition 2.3. (Weight Least Square) Weighted Least Square is used when we know that the error
isn’t constantly the weighted least square estimation of βj minimizes

S(β) =

N∑
i=1

wi(Yi − xTi β)2

Remark 8. The greater the weight, the more reliable i.e having small variance. Ideally, we would like to put
wi = 1/ var(Yi). This is what we obtained from normal criterion with Yi

√
wi, which has constant variance.

Furthermore, the matrix form is:

S(β) = (Y −Xβ)TV −1(Y −Xβ)

where V is N ×N diagonal matrix with var(Yi) is the diagonal. The estimator of β̂ is:

β̂ = (XTV −1X)−1XTV −1Y

Note that V can be genearlized to a correlated errors, while the solution is scale invariance for the value V .

Remark 9. However, we don’t really know V in practice and there are 2 ways we can fix this:

• It is sometimes to assume that the variance of Yi are propotional to f(xi) as wi = 1/f(xi) even if
var(xi) = cf(xi) and still works.

• The weighted least square can be used iteratively as we can guess V and re-estimate it.

3 Confidence Interval Test

Remark 10. (Test For Regression Parameter) We can derive that β̂j ∼ N (βj , σ
2vj) where vj is the

(j, j)-th diagonal (XTX)−1 as we have RSS/σ2 ∼ X 2
N−p as we have:

t =
β̂j − βj√
σ̂2vj

where we have σ̂2 = RSS/(N − p) an exact 100(1− α) percent for βj has limit:

β̂j ± tN−p,1/(2α) se(β̂j)

where se(β̂j) =
√
σ̂2vj and tN−p,1/(2α) is upperbound 100 · 1/2α point of tN−p distribution. It can be used

to test hypothesis of the form:

• H0 : βj = β∗ for given j

• H0 : βj = 0 for a given j, where we obtain the p-value the usual way.

Remark 11. (CI Test for Linear Combination of Parameters) Inference about ψ = cTβ an estimated

expected response. Let ψ̂ = cT β̂, which we have:

ψ̂ − ψ√
σ̂2v

∼ tN−p

where cT (XTX)−1c = v, we can construct 100(1 − α)-percent interval and we have the test start for
H0 : ψ = ψ∗.

Remark 12. (Test About Multiple Parameter) Consider testing null hypothesis H0 that a subset of
p− q parameter out of p are 0, leaning q non-zero parameter. Let H1 denotes an alternative hypothesis that
all p are not 0.
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• We let RSS0 and RSS denote the residual sum of square under H0 and H1 respectively.

• It can be shown that the difference between RSS0 − RSS is independent of RSS and so:

RSS0 − RSS

σ2
∼ X 2

p−q

under H0

• We obtain F -test, as we have:

(RSS0 − RSS)/(p− q)
RSS/(N − p)

∼ Fp−q,N−p

under H0, in case where p− q = 1 and F = t2 where t is the t-statistics given above.

4 Multiple Linear Regression

Definition 4.1. (Multiple-Linear Regression) We consider the following model as we have:

Yi = β0 + β1xi1 + · · ·+ βmxim + ei for i = 1, . . . , N

where Yi is the response Y corresponds to xi1, . . . , xim.

Remark 13. Given the normally distributed errors e1, . . . , eN with constant variance σ2. We can see that Yi
is independent N (µi, σ

2) where:
µi = β0 + β1xi1 + · · ·+ βmxim

The matrix form of the model Y = Xβ + e where i-th row of X is (1, xi1, . . . , xim) and β = (β0, . . . , βm)T .
We will assume that XTX is invertible.

Remark 14. We have the following results on the multiple linear regression models:

• Least Square Estimate β̂ = (XTX)−1XTY

• Sampling Distribution of β̂ where we have β̂ ∼ N (β, σ2(XTX)−1)

• Residual Sum of Square is

RSS = (Y −Xβ̂)T (Y −Xβ̂) = Y TY − 2β̂
T
XTY + β̂

T
XTXβ̂

= Y TY − β̂
T
XTY

• Unbiased Estimator of σ2: σ̂2 = (RSS) / (N −m− 1)

• T-test for H0 : βj = 0 as we have t = β̂j/se(β̂j) ∼ tN−m−1 under H0.

• F-test for H0 : ν of regression parameter β1, . . . , βm are 0 i.e testing for omission of ν explainatory
variable where ν ≤ m as we have:

F =
(RSS0 − RSS)/ν

RSS/(N −m− 1)
∼ Fν,N−m−1 under H0

• Special Case: H0 : β1 = β2 = · · · = βm = 0 under H0. The least square estimator of β0 is the sample
mean:

RSS0 =
∑
i

(Yi − Ȳ )2 = correlated total sum of square
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The results are represented in a table of analysis of variance table:

Source of Variation Sum of Square Degree of Freedom Mean-Square F

Regression SS(reg) m SS(reg)/m
SS(reg)/m

RSS /(N −m− 1)

Residual RSS N −m− 1
RSS

N −m− 1
−

Total CTSS N − 1

where we have SS(reg) =
∑N
i=1(µ̂i − Ȳ )2 = CTSS−RSS where µ̂i = xTi β̂ are fitted value.

5 Interpretation of Regression Parameter

Remark 15. (Partial Regression Coefficient) The coefficient βj of an explainatory variable xj in a
multiple linear regression that includes other explainatory variable called partial regression coefficient. It
makes sure that the rate of change of the mean response with xj while holding constant the values of other
explainatory variable in model.

Remark 16. (Total Regression Coefficient) The coefficient xj in the simple linear regression of the
respons variable xj on its own is called total regression coefficient. It measures the rate of the mean response
with xj ignorning the value of the other.

Remark 17. (Checking Model Adequacy) Assessment of the model assumptions, we have:

• Linearity of the relationship between predictor and Y .

• Normality of ei: Though the normal distribution theoretically can guarantee generting the arbitary
real number, very extreme values occurs under normal distribution with small probability.

– The outier have strong influence of least square regression as the detection of it is the most
important task.

– Another possible deviation could be skewness of the distributed shape.

– Some deviation from normality are less dangerous: Limited/Restricted Value Range.

– Normality is an idealization that never holds precisely in practice, we have to find whether the
deviation that gives us misleading conclusion about the data.

• Homogeneocity of the variance of ei: The variance don’t depends on any of the predictor variable.
(oppose to heteroscedastic)

• Independent of ei of each other.

Remark 18. (Matrix Plot) All scratter plot of any pair of predictor variables and response arranged
in matrix form can be used without having fitted the linear regression or access linearlity, outlier and
heteroscedastic.

The danger of over-interpreting as it doesn’t give a full impression. Non-linearity shape of the plot of single
predictor vs response is caued by the value of other predictor than the real violation of linearity. It may
reveal co-linearity and leverate points, which are not violation but problematic.

Remark 19. (Residual and Standardized Residual) Residuals are the deviation of the observation of
their ideal. It can be interpreted as the estimation of error ei (denoted by êi). Standardized residual are
residual divded by their estimated standard-deviation so it have σ = 1. This helps us access their size.

• Too mant standardized with manitude of greater than 2 suggests that the eror distribution have heavier
tail but around 5-percent of the standardized residual should be expected to be > 2
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• The covariance of residual is V (ê) = σ2[I −H] where H = X(XTX)−1XT called hat matrix, and so
we have:

var(êi) = σ2(1− hii) cov(êi, êj) = −σ2hij for i 6= j

while the error are assumed to be uncorrelated, we just show that the residual are correlated. For i-th
observation, the standard deviation residual is given by:

ri =
êi

σ
√

1− hii
Remark 20. (Residual Plots) Makes sense to use standardized residual for the plot but a raw plot but
other kinds of plots may works well as we have the following kinds of plots:

• Predictor vs Residual : Error is assumed to be independent from the predictor variable.

– The plot should be randomly scrattered.

– Plot reveals non-linearity, heteroscedastic, auto-correlation of residual with neighbouring values
of outier.

• Fitted Values vs Residuals: If the model is true, the correlation between the residual are fitted value
is zero. If any problem, it will have similar problem with predictor and residual plot.

• Observation vs Residual : If the observation order is informative, the error should be iid and plot should
randomly scrattered. It may reveal the autocorrelation and heteroscedasity as well.

• Normal Probability Plot of Residual : The normal probability plot the sorted residual (standardized)
r(i) (i smallest residual) against theoretically quantity of normal distribution Φ−1 ((i− 0.5)/n)

– Ideal local sorted realization of standard normal distribution.

– They should looks like a straight line.

– It also indicates a deviation from normality, including outlier too.

Remark 21. (Remedies for Violate Model Assumption)

• Non-Linearity : It helps to transform one or more predictors and/or response. A linear nodel may
holds some non-linear function of observed variable.

• Non-Normality of error distribution. Robust linear regression may help with outlier. Skewness can be
helped using a transformation. Some transformation to response and predictor.

• Heteroscedasity : Weighted square, transformation, and robust regression.

• Dependence of Errors: Not affect regression parameter estimator but it affects standard deviation and
confidence interval. If assuption can be made, time series may apply.

Definition 5.1. (Coefficient of Determination) R2 is defined by:

R2 =

∑
(µ̂i − ȳ)2∑
(yi − ȳ)2

=
SS(reg)

CTSS
= 1− RSS

CTSS

Propotion of the total variations explained by regression model. It is also a square of the correlation between
the observed and filled values. This is known as multiple correlation coefficient.

• Measures how the models accounts for data. This isn’t directly related to be model assuption.

• Small value of R2 means that the assuption are violated or some crutial information is missing in the
data or model is fine but the error variance is large.

The model violation still possible if R2 is relatively high:
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• True relationship is strong and monotone but slightly non-linear

• The case of heteroscedasity with small error variances a linear may yield a good fit with high R2.

Definition 5.2. (Regression Outlier) Observation with unusual y-values compared to other observation
with small x-values. If there are small number of regression outlier, these may show up in residual plot with
large residual.

Definition 5.3. (Leverage Points) Observation with usual x-values compared to the bulk of data. Lin-
ear regression don’t assume normality for the predictors therefore leverage points don’t violate the model.
However, this cause instability of the regression as if there is a small change in the data, it may lead to large
change in the least square regression estimator. It can be distinguished between 2 points:

• Good Leverage Points: If the y-values are inline with the other y-value. The fitted xTi β̂ is similar to
the observation value yi, as the omitting the observation won’t change the fitting.

• Bad Leverage Points: y-value is unusual, then xTi β̂ is difference from yi depending on the extended of
the effected.

Leverage describes the potential for affecting the model fit. We introduce the Mahalanobis distance MDi,
as we have:

MDi =

√
(xi − x̄)Σ̂−1x (xi − x̄)

where Σ̂X is empirical covariance matrix of x-observation. There is ono-to-one relation with diagonal element
of Hat, as we have:

MD2
i = (N − 1)

(
hii −

1

N

)
We see that MD2

i ∼ X 2
p−1 which can be used to access whether a distance is unusually large. Note that the

leverage points can be prevented in design experiment.

Remark 22. Checking for the outlier can be given by:

• It is good to check before fitting the data. In higher dimension, it is hard to spot such unusual
observation: residual plot can help but as it is derived from fitted model, which might be affected by
outlier.

• Another possibility is Cook’s statistics, fit the model repeatedly by omitting one observation and see
how the fit value change. The change is given as X(β̂− β̂(i)) where β̂(i) is the least square without the
i-th observation. It is given by:

Di =
1

pσ̂2
(β̂ − β̂(i))TXTX(β̂ − β̂(i))

The largest value of Di indicates the i-th observation is influential. It can be shown that:

Di =
1

p

(
hii

1− hii

)
r2i

There is no need to fit at all.

Both Mahalanobis distance and Cook’s statistics can’t reliabily finds all the points. As there can be masking
effect, when there are > 1 outlier points prevents the effect of each other.

Remark 23. (Collinearity) Strict collinearity means that these is linear dependence among the predictor
variables:

• XTX isn’t invertible and least square estimator doesn’t exists.
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• This may happen if the number of predictors is large compared to the observation.

The approximation collinearity is when predictors are linear dependents. This Happens when some of
predictions are strongly correlated. This can be detected from matrix plot.

• Although the least square can be computed, XTX is close to singularity, this means that some of
regression parameter estimator may be unstable and should be interpreted with care.

• σ2(XTX)−1 convariance matrix of β might have large variance entry.

6 Robust Regression

Remark 24. (Problems with Least Square Error) The least square error can be sensitive to recall that
the estimator is found by minimizing

S(β) =

N∑
i=1

ei(β)2 =

N∑
i=1

(Yi − xTi β)2

and so any residual that already has high value will have high contribution to the sum.

Remark 25. They should be a good under the normal model (efficiency) as we have: Under linear regression
with other distribution of error term (espescially with the heavy tail). They should not also be sensitivity
to outlier.

Remark 26. (Constructing a Robust Classifier) The square error can be seen as minimizes the error

variance estimator σ̂2. This means that constructing a linear regression is to minimize the scale estimator
(function that is propotional to the variation of the residual around hyperplane). The way to estimate the
size of the residual leads to difference regression estimator. There are 2 ways to make LS robust:

• Instead of using square the residual, use another function to reflect distance on Yi, we have:

N∑
i=1

|ei(β)| =
N∑
i=1

∣∣Yi − xTi β∣∣
The minimize of β is known as L1-estimator. The generalization is known as M -estimation. It can be
shown to be MLE of the double exponential. For m = 0 can be L1-estimator is β0 is median.

• We could minimize the median of the residual as we have:

MED
{
ei(β)2 : i = 1, . . . , N

}
= MED

{
(Yi − xTi βi)2 : i = 1, . . . , N

}
This is known as least median of the squares.

Remark 27. (Effect of Leverage Points) The deficiency of least square estimate and it applied to regression
outliers, but least square is also affected by leverage points. Consider a simple linear regression: least square
estimator for the slope β1 is

β1 =

∑
i(xi − x̄)yi∑
k(xk − x̄)2

=
∑
i

viyi

with vi = (xi − x̄)/
{∑

k(xk − x̄)2
}

. Hence βi is the weighted sum of the yi where the large weight is given
by observation with large (xi − x̄), which are the leverage points.

Remark 28. It can be shown that R2 is affeced by leverage poitns in the sense that good leverage points
imposing the fit (increase R2) and vice versa. We will see not far later that M -estimator aren’t much better
than the least square in dealing with leverage points but least median square-estimator is.

Remark 29. (Comments on the Least Square)
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• We have discussed earlier. Our old methods works best with one outlier. We have to use the residual
from the fitted model to find outlier.

• In term of efficiency, robust methods are designed to only slightly affected by small deviations from
model assuption and not be catastrophically affected by large deviations.

• Some robust models are not as efficient as least square. Their asymptotics variance is larger than the
one that the least square estimator holds.

Definition 6.1. (M-Estimators) Instead of minimizing on square residual, another function is the be used
with the following criterior for u ∈ R as we have:

• Positivity ρ(u) ≥ 0

• Zero for zero residual ρ(0) = 0

• Symmetric ρ(u) = ρ(−u)

• Increase for increasing the residual ρ(u) ≥ ρ(u′) if |u| ≥ |u′|

Assume we know σ, the M -estimator β̂M is defined as β̂ that minimizes:

N∑
i=1

(
ei(β)

σ

)
=

N∑
i=1

ρ

(
Yi − xTi β

σ

)
in β. Note that the least square and L1-estimator are M -estimators.

Remark 30. The differentiate with respected to β and setting the zero yields:

N∑
i=1

xTi ψ

(
Yi − xTi β̂

σ

)
= 0

where we have ψ(·) = ρ′(·). The equation can’t be solved analytically. By setting ui = (Yi − xTi β̂)/σ as we
can rewrite:

N∑
i=1

xTi wiωi = 0

where wi = ψ(ui)/ui. This is like weighted wi, which we can approximate the β̂M as solution of:

β̂M = (XTWX)−1XTWY

where W = diag(w1, . . . , wN ) as wi depends on êi and hence β̂M and we use the iteration to be:

β̂
(k+1)

M = (XTW (k)X)−1XTW (k)Y

until convergence. The value w1, · · · ,wN can be interpreted as robustness weight and can be used as outlier
identification. The observation is an outlier by M -estimator if wi is small.

• The residual êi(β) only enter through ψ(ui). If ψ is bounded, the influence of large residual on
regression is bounded as well.

• The influence on leverage point isn’t bounded because of the factor xi, unless ψ(u) = 0 or ψ(u) very
small for those observation with large xi

Remark 31. Under fiarly general condition, M -estimator can be shown to be consistent. A necessary con-
dition is that E[ψ(Z)] = 0 where Z ∼ F as F is the error distribution holds for all symmetric error if ψ is
bounded. Furthermore, √

n(β̂M − β)
n→∞∼ N (0, V (ψ, F )L−1)

where V (ψ, F ) is matrix that depends on the influenced function ψ, and true error distribution F with
L = (1/N) limXTX, which can be used to compute the test and confidence interval.
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Remark 32. Under normality, covariance matrix of the lease square error is C = σ2(XTX)−1. For M
estimators with many other ρ-functions, the covariance matrix is shown to be:

V (ψ, F )L−1 = bC

for some constant as 1/b is called efficiency of the estimator compared to least square estimator. Assuming
that the asymptotics holds approximately for finite sample, b can be interpreted as the factor with which
the number of observation has to be multiplied to arrive at same precision (with efficiency 0.5 we need 2 as
much observation)

Definition 6.2. (Bi-Square Objective Function) L1 isn’t robust against leverage point as we have the
alternative to be:

ρB(u) =


1

6

1−

1−

(
u

c

)2
3
 if |u| ≤ c

1

6
if |u| > c

wherer c is tuning constant, which we also have:

ψB(u) =


u

c2

1−

(
u

c

)2
2

if |u| ≤ c

0 if |u| > 0

c can be used to tune the robustness and efficiency. For small |u|, ψB(u) is like a line, which is propotional
to ψ-function for the least square estimator.

• If c is large, most u are small and most residual are treated in smaller way as LS-estimator. For c→∞,
the efficiency of Bi-square M -estimator converges to 1.

• If c shouldn’t too large to correct for extreme outlier. The suggested value σ2 = 1 and c = 4.658, the
usually suggested value.

7 Variable Selection

Remark 33. (Variable Selection) Consider the regression, as we have:

Yi = β0 + β1xi1 + · · ·+ βmxim + ei

for we have i = 1, . . . , N . Variable selection is where we select the variables that are relevant: This is the
same as finding coefficient βi that are zero. Very small with almost zero contribution

Remark 34. Pros and Cons There are various reasons to use variable selection as we have:

• If number of variable p is large compared to number of observation N as XTX are closed to collinearity
and estimation can be unstable.

• Simple communication is better and same observation are expensive to get the data.

However, there are various argument against using variable selection:

• As long as enough observation are avaliable, it is usually much worst to leave out, the variable that
are important.

• As βi will be zero, it is better to leave out as it is unless there is a reason to do it.
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• Some of variable are highly correlated, usually not all of these variables are needed, but the decision
about which model should be kept can be arbitary.

• It is often unstable and have to be taken with care concerning explaination and causual inference.

• It can’t be taken to granted that a variable left out is unimportant as it may be represented by another
variable.

Remark 35. (Reviewing Old Methods) Let’s consider some of the results presented in eariler parts:

• The F -test in anova table is for testing none of the explainatory variables affect the response.

• Another F -test is used to testing whether j-th explanatory variable xj doesn’t affect the response given
the other m− 1 variables in the model, so that the regression coefficient is 0.

• Computer output usually gives t-statistics and associated p-values against each of the regression coeffi-
cient. We shouldn’t deduce that we can remove several variables. If any of them gives non-significant,
we can only select one to drop with highest p-value (most non-significant)

• Reason why not dropping several: If there are 2 are highly correlated one of them is needed into model
but every single pair can be dropped as non-significant.

• If we drop one of the coefficient, the others coefficient will change. Similarly as we added variable, the
estimator remain unchanged is where there is another orthogonal columns in the X.

Remark 36. (Best Subset Selection) With m explainatory, there are 2m possible regression model:

• Starting with the best model for each explainatory variable k = 1, . . . ,m. For a fixed k, the best model
it can be defined as model with smallest RSS or model that minimize p-value of F -test by the null
hypothesis that β1 = · · · = βm = 0 against at least one of the parameter of the choosen model to be
non-zero.

• Adding more variable always decrease RSS implied that increases R2.

• The best model with l > k variable doesn’t necessary contain all k variables of the best model with
k-variables. t and F -test can’t be used to compare the best subset of difference size.

Remark 37. (Akaike Information Criterior (AIC)) For quite general model by maximum likelihood as
we have:

AIC = −2l̂(model) + 2p

as we have l̂ is the maximum of likelihood, while p is the number of parameter, where we have:

l̂(model) = −N
2

log(σ2)− RSS

2σ2
+ const

Since σ is usually unknown, we use σ̂2
ML = RSS/N instead of:

AIC = N log

(
RSS

N

)
+ 2p

Remark 38. (Other function of RSS) Penalizing large models have been suggested such that mallow Cp
and so-called “adjusted R2”, which delivers number between 0 and 1 like R2 but is maximized when σ̂2 is
maximized. However, this is soft criterion.

Remark 39. (Leave-One-Out Cross Validation) General method is fitted on the remaining N−1 points.
There are advantages and disadvantage of LOO-CV and we have:

• Advantages: It doesn’t base on any model assuption. Even if the fitted model is wrong.

• Disadvantage: Model has to be fitted N -times which gives us computationally demanding if N is large.
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This is the same as any Cross-Validation Scheme in ML.

Remark 40. (Stepwise Methods - Backward Elimiation) The best subset selection has major disad-
vantage but we had to fit all 2m possible model. The stepwise selection is a general principle that can be
applied to wide range of selection problem, where are 2 basic approaches starting with Backward Elimiation:
Start by fitting full model with all variables. Call this backward m-model as we set k = m

• Fit all k models with k − 1 variables.

• Choose best of these model with minimal RSS as backward k − 1 model

• Set k = k − 1

• Repeat

The total number of models to be fitted is:

m+ (m− 1) + · · ·+ 1 =
m(m+ 1)

2

Because backward elimiation procedure a nested sequence of models as we have the smaller models are always
sub-models of the larger one, it is possible to use t and F test to compared models.

p-value for the test comparing the backward k-models (H1) with backward k − 1-models (H0) is computed
and the algorithm is stopped with the backward k − 1-models.

Remark 41. (Stepwise Methods - Forward Selection) We can have the forward model with smaller
procedure, which we have:

• Start with k = 0, only fitting the mean to the data.

• Fit all m− k models with k + 1 variables.

• Choose one with best of these model, minimal RSS as the forward k + 1-model.

• Set k = k + 1 and go back unless k > m.

Remark 42. (General Notes on Stepwise Model)

• Backward/Forward model aren’t guarantee to arrive at the same sequence of model nor the best model.

• In experiences, Backward model generally performs better.

• Steppwise methof can be unstable as a small change in the model causes the best model to change.

• For small observation, we usually use the forward model instead.

8 LASSO

Remark 43. It deals with when there is too large data, and it is more stable than the methods mensioned.
However, it introduces some biases (which are moderate) and can be out-performed in clear cut situation (if
all regression are close to 0 or all large).

Remark 44. For computing LASSO, the original explainatory variables z1, . . . , zm are transformed to new
explainatory variable:

xij =
zij − z̄j
sj

i = 1, . . . , N j = 1, . . . ,m

where we have:

z̄j =
1

N

N∑
i=1

zij Sj =

√√√√ 1

N − 1

N∑
i=1

(zij − z̄j)2

12



This is a general practice too as now the LASSO estimator β̂L of β is defined by minimizing the sum of
square error:

S(β) =

N∑
i=1

e2i =

N∑
i=1

(Yi − β0 − β1xi1 − · · · − βmxim)2 such that

m∑
i=1

|βi| ≤ t

where t is pre-choosen. It is recommended to choose t by LOO-CV with t = ct0 where c = 0.1, 0.2, · · · , 1.
It can be shown that in the model where the variables are much less important thant some other. The
estimated LASSO regression parameter β̂Li

are reduced to zero.

Remark 45. β0 can be estimated by least-square independently of slope parameter due to the constraint In
most cases, there is either no reason why β0 should be estimated by 0 or β0 is known and doesn’t have to
be estimated.

Remark 46. LASSO is known as shrinkage method as it forces the parameter to be smaller than the uncon-
strainted least square. Furthermore:

• It can be shown that the stepwise and best subset tends to choose variable with models of which βi is
estimate to have a large value.

• There is no theoretical work on how to choose it the value t, however.

9 ANOVA Model

Remark 47. Theory of linear model applied to situation in which response Yi is modelled as dependent on
catagorical or a group member. These model are often called ANOVA model:

Remark 48. The ANOVA model is often refer to breakdown of the corrected total sum of square (CTSS)
into the sum of thE RSS of the full number + sum of square contribution explained by some of the regression
parameter.

• Sum of squares can be seen as quantifying variation and the usual variation and the usual variance
estimators under normalizing are actually sum of square divided some cosntant.

• Such decomposition play a stronger role for ANOVA models with catagorical predictors.

Definition 9.1. (One Way Layout) We have the following model:

Yij = µi + eij

for i = 1, . . . , I as we have j = 1, · · · , ni. It is the easiest ANOVA model.

Remark 49. It has been shown that this can be written down by the use of indicator variable as the
explainatory variables. The indicator of the first group is 1 for all observation in the first group and 0 for
all other observation. We have the following notation y = Xβ + e as we have:

y =

 y11
...

yInI

 X =



1 0 · · · 0
...

...
. . .

...
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 1 · · · 0
...

...
...

...
0 0 · · · 1
...

...
. . .

...
0 0 · · · 1



β =

µ1

...
µI

 e =

 e1
...
eN



The column of X denoting the I indicator variable and the roes of the n-observation.
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• This notaiton makes it possible to apply the theory above.

• It can be shown that the least square estimator above can be used to calculate the group means.

• The F-test in section above is usually applied to test the H0 : µ1 = µ2 = · · · = µI using RSS0 = CTSS
against a model where at least 2 of the group has differ mean.

Definition 9.2. (2-Way Layout) The observation are classified according to 2 factors. In this case, we
have the notation:

Yijk = µ+ αi + βj + γij + eijk

for i = 1, · · · , I and j = 1, . . . , J and k = 1, · · · , nij where we have:

• µ is interpreted as the overall expected value.

• αi is the effect of level i of the first factor.

• βj is the effect of level j of the second factor.

• γij is the interaction effect.

Remark 50. The simple model can be applied again.

• The relationship suggest an X-matrix with the first column, which corresponds to the µ contains only
ones.

• I columns corresponding to indicator variable for the level of the first factor.

• J columns corresponding to level of second factor.

• IJ columns for the interaction.

And, so we have the following 1 + I + J + IJ columns. This could be multiplied by the following vectors:

β = (µ, α1, · · · , αI , β1, · · · , βJ , γ11, · · · , γIJ)T

The simplest case I = J = nij = 2 for each i and j this giving us the following matrix:

y =



Y111
Y112
Y121
Y122
Y211
Y212
Y221
Y222


X =



1 1 0 1 0 1 0 0
1 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0
1 1 0 0 1 0 1 0
1 0 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 0 1 0 1 0 0 1
1 0 1 0 1 0 0 1


However, one can show that XTX isn’t invertible as there are too many parameter. The problem where isn’t
too small of observation but the fact that there are only IJ means. (this can be estimated and therefore
more than IJ parameter are not supported)

Remark 51. This problem of non-singularity can be solved by using the contraints is given by:

•
∑I
i=1 αi = 0

•
∑J
j=1 βj = 0

•
∑I
i=1 γij = 0 for j = 1, · · · , J

•
∑J
j=1 γij = 0 for i = 1, · · · , I

14



as we have I + J contraints of which one is redundance because if all but one of these sums are 0, it can be
shown that the last one has to be zero as well.

Remark 52. (Matrix Algebra) We will have consider the matrix algebra related to the problem:

• First constraints means that α1 = −
∑I
i=2 αi

• The column belong to level 1 is omitted from X and α1 is omitted from β and for the observation of
level 1 of the first factor because it is replaced by −

∑I
i=2 αi

• There are matrix entries −1 in the column corresponding to α2, · · · , αI

• With other constraints as X matrix are no longer simple indicator vectors, while it could be achieved
by contraining some parameter to be zero instead.

The matrix with
1 + I + J + IJ − 2− (I + J − 1) = IJ

columns result so that XTX to invertible and the least square estimator, which can be computed:

X =



1 −1 −1 1
1 −1 −1 1
1 −1 1 −1
1 −1 1 −1
1 1 −1 −1
1 1 −1 −1
1 1 1 1
1 1 1 1


β =


µ
α2

β2
γ22



All other parameter can be obtained from the constraint.

Remark 53. (ANOVA Table) All the theories above can be obtained. F-test are particularly used in many
application to find out whether:

• All interaction could be ignorned (with RSS0 computed from a model when all γij = 0)

• All αi = 0 is compatible with the data

• All βj = 0 is the compatible with the data

The ANOVA table decomposes the CTSS (which is computed from a model in which any the overall mean
µ is filled by Ȳ )

• into RSS, the full model puts the sum of square explained by the first factor, second factor, interactions.

• Unless all nij are equal (balanced design), this depends on the order of factors.

Remark 54. For variable selection, most methology can be applied, though in most application there is a
particular order in which terms are removed in the stepwise backward fashion: It is reasonable to have the
original factor in the model if there are interaction in the model involve these factors. For example, in 2-ways
layout with backward selection usually:

• It is checked whether removal if all interaction terms improves the mdodel. If not, the model isn’t
reduced.

• After removal of all interactions, it is checked removal of which of the 2 factors (all parameter belonging
to that factor) is better, and whether this improves the model.

• If so, after removal of this factor, it is checked whether removal of the other factor impress the model
even further.

This check can be done by using F -tests, AIC or LOO-CV.
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10 Generalized Linear Model

Definition 10.1. (GLM) It extends the idea underlying the linear model to situation when the reponse
is binomial, poisson, gamma and other distribution that belong to exponential family of distribution. It
consists of 3 pairs of components:

• Random Component: Independent observation Y1, . . . , YN

• Systematic Component: Linear predictor by ηi for i-th observation for i = 1, . . . , N

• Link Between Random Component and Systematic Component through the use of link function g:

g(µi) = ηi µi = E[Yi]

Using the eariler notation ηi = xTi β. The function g is called the link function as it describes how the
expected response is linked to explainatory variable off factors. The link function itself is assumed to be a
monotonics and differentiable function.

Remark 55. There are some special cases/examples of the link function related to the distribution:

• Linear Model: Linear Model discussed in previous section is the special case g(µ) = µ calling identity
link function.

• Binary data: We consider linear logistic model. Suppose, the i-th observation consists of a Bernoulli
with outcome of Yi = 1 (success) or Yi = 0 (failure). If πi is the associated probability of success. then
the under logistic regression model given by:

log

(
πi

1− πi

)
= xTi β

In this case: µi = E[Yi] = πi and so the left-handside of the equation has the link function to be:
log(1/(1− π)) is called logit of π and the link function in this case is called logit link. For 0 < π < 1,
then −∞ < log(1/(1 − π)) < ∞ with the consquence that there are no constant on the unknown
parameter β (which simplify the estimation)

• Binomial Data: Suppose that the i-th observation corresponds to specified number of ni (≥ 1) of
independent Bernoulli trails with the same xi. The distribution of the number of success Yi is Bin(ni, πi)
where µ = nπi, then the linear logistic model given by equation is still appropriate. The link function:

g(µ) = log

(
µ

n− µ

)
• Poisson data: Log-Linear Model: Now suppose the i-th observation consists of a Poisson counts Yi. If

E[Yi] = µi a log-linear regression model has:

log(µi) = xTi β

where g(µ) = log(µ) is called log-link.

Remark 56. (Exponential Families of Distribution) We will assume that the response variable is a
random Y whose pdf or pmf depends on the parameter θ and φ has the form:

f(y; θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
where a, b, c are known function, as we assume a(φ) = φ/w where w is known weight and φ is a dispersion
parameter or scale parameter, which for some distribution is known and some other is unknown, and a(φ) > 0
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Remark 57. Let’s consider the example: the common distribution, we have for w = 1 and a(φ) = φ, and so
the following distributions are:

Distribution θ φ b(θ) c(y, φ)

Poisson(µ) log(µ) 1 exp(θ) − log y!

Bin(n, π) log
(

π
1−π

)
1 n log(1 + exp(θ)) log

(
n
y

)
N (µ, σ2) µ σ2 1

2θ
2 − 1

2

[
y2

φ + log(2πφ)
]

Proposition 10.1. (Mean of Exponential Family) The mean of the expectation is E[Y ] = b′(θ)

Proof. In the following f(y; θ, φ) is abbreviated to f(y). As we have 1 =
∫∞
−∞ f(y) dy and we have:

0 =
∂

∂θ

∫ ∞
−∞

f(y) dy =

∫ ∞
−∞

∂f(y)

∂θ
dy =

∫ ∞
−∞

y − b′(θ)
a(φ)

f(y) dy

Assuming a(φ) 6= 0, then we have:

0 =

∫ ∞
−∞

yf(y) d− b′(θ) = E− b′(θ)

Gives the result.

Proposition 10.2. (Variance) Given the variance var(Y ) = b′′(θ)a(φ)

Proof. We consider the derivative of the above again and we have:

0 =

∫ ∞
−∞

{
[y − b′(θ)]2

a(φ)
f(y)− b′′(θ)f(y)

}
dy =

var(Y )

a(φ)
− b′′(θ)

Definition 10.2. (Variance Function) From the previous result, the variance of Y can be written as:

V (µ)a(φ) and V (µ)
φ

w

where V (µ) is called variance function. a can be any function of φ, and there would not be any difficulty in
dealing with any form of a, when φ is known. On the other hand, when φ is unknown matter are awkward,
unless we write a(φ) = φ/w where w = 1. As we have the following variance:

Distribution V (µ)

Poisson(µ) µ
Bin(n, π) µ(n− µ)/n
N (n, σ2) 1

11 Some GLM Theory

Remark 58. Assume that the response Y1, . . . , YN are independent from distribution with pdf given by:

f(yi; θi, φ) = exp

{
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

}
We are assuming a common parameter φ for all observation.
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Proposition 11.1. If l denotes the log-likelihood function given the data Y1, · · · , YN then the likelihood
equation are:

∂l

∂βj
=

N∑
i=1

yi − µi
V (µi)

dµi
dηi

xij = 0

for j ∈ [p]. Note that absent of φ in the likelihood equation.

Proof. The unknown parameter β and φ. Let l denotes the resulting likelihood function given the data
Y1, · · · , YN as we have:

l =

N∑
i=1

li where li = log f(yi; θi, φ) =
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

The following shows the step in obey the the likelihood equation:

∂l

∂βj
=

N∑
i=1

∂li
∂βj

= 0 for j = 1, · · · , p

Firstly, for i = 1, · · · , N and we have:

∂li
∂θi

=
yi − b′(θi)
ai(φ)

=
yi − µi
ai(φ)

∂li
∂µi

=
∂l

∂θi

dθi
dµi

=
yi − µi
ai(φ)

1

b′′(θi)
=
yi − µi
var(yi)

∂li
∂ηi

=
∂l

∂µi

dµi
dηi

=
yi − µi
var(yi)

dµi
dηi

Putting back to the likelihood function, and we have:

N∑
i=1

∂l

∂ηi

∂ηi
∂βj

=
1

φ

N∑
i=1

yi − µi
V (µi)

dµi
dηi

xij

Remark 59. We can’t solve the β algebratically. If the weight V (µi) where known and independent β, then
we can solve the non-linear equation to find β:

• Starting with β̂0 at the MLE β̂ and then we repleat the process until the convergence. The iteration
can be shown as:

(XTWX)(s−1)β̂
(s)

= (XTWz)(s−1)

where W ∈ RN×N diagonal matrix with (i, i)-th claims:

Wii =
1

V (µi)

(
dµi
dηi

)2

and z that the i-th element as we have zi = ηi + (yi − µi)
(
dηi
dµi

)
.

• The equation looks like the equation above for weighted least square estimation but with weights is
given by wii and an adjusted response variable by zi for the i-th observation.

• The iterative procedure can start with setting µ
(0)
i = yi instead of random guess β̂

(0)
.

• This is known as Iteratively Re-Weighted Least Square. At convergence, β̂ = (XTWX)−1XTWz as a

minimizer of
∥∥∥√W (z −Xβ)

∥∥∥2
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• In this case of normal distributed errp, we have the link function to be:

dηi
dµi

= 1 zi = yi

and the above procedure reduces to non-iterative normal equation.

Remark 60. The ML estimator of φ is biased. The value itself can be obtained from the Peason’s statistics
as we have:

X2 =

N∑
i=1

(yi − µ̂i)2

V (µ̂i)

The quantity X2/φ is the sume of square of zero mean and unit variance of random variable with N − p
degree of freedom. If the model is adequate, then approximately X2/φ ∼ X 2

N−p and so we have:

φ̂ =
X̂2

N − p

Please note that X2 =
∥∥∥√W (z −Xβ̂)

∥∥∥2 at convergence of W and z.

Remark 61. (Large Sample Distribution of β̂) To obtain the large sample Distribution of β̂, we use a

Taylor expansion of the log-likelihood around the parameter β0 and evaluate this at β̂:

∂l

∂β

∣∣∣∣
β̂

≈ ∂l

∂β

∣∣∣∣
β0

+ (β̂ − β0)
∂2l

∂β2

∣∣∣∣
β0

We reduce to the following ratio:

β̂ − β0 ≈
∂l

∂β

∣∣∣∣
β0

/
∂l

∂β2

∣∣∣∣
β0

with equality in the large sample limit. The numerator has expeced value equal to zero and variance I
is made up of the sum iid random variable li. The large sample limit (β̂ − β0) follows a N (0, I) random
variable divided by I. This implies that as n→∞:

β̂ − β0 ∼ N (0, I−1)

Generated to parameter vectors β̂ ∼ Np(β, I−1). This result is exact in case of normally distributed error.

Remark 62. (Covariance of β̂) The fisher information matrix is used to calculate the covariance matrix
associated with ML-estimates. The (j, k)-th element of information matrix can be written as:

E
(
∂l

∂βj

∂l

∂βk

)
=

N∑
i=1

N∑
j=1

(
E[(Yi − µi)(Yi′ − µi′)]

ViVi′

)
dµi
dηi

dµi′

dηi′
xijxi′k

where Vi = var(Yi). Let’s consider the fact that we have:

E[(Yi − µi)(Yi′ − µi′)] =

{
var(Yi) = Vi for i = i′

cov(Yi, Yi′) otherwise

and, so we have

E
(
∂l

∂βj

∂l

∂βk

)
=

N∑
i=1

xijxik
Vi

(
∂µi
∂ηi

)2

which follows that I = XTWX/φ. As this value I is defined as the negative of the expected value of Hessian,
it can be seen as a measure of the curvature of log-likelihood near the ML estimate of β:

• Flat likelihood: Low negative expected second derivative implies a low information.

• Sharp likelihood: High negative expected second derivative implies a high information.
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12 Confidence Interval For Model Parameter

Remark 63. In the case of unknown φ, we follows the same construction as before but when we want to
estimate φ, we will have to use appropriate T-test.

Remark 64. (CI of Parameter) We have the following distribution:

β̂ ∼ N (β, I−1)

Now, the standard deviation of βj is the (j, j)-th element of I−1 and, we can approximate the 100(1 − α)
percent confidence interval for βj is given as:

β̂j ± zα/2 se(β̂j)

The result can be exact if σ2 can be known.

Remark 65. Let ψ̂ = cT β̂, then we have ψ̂ ∼ N (ψ, cTI−1c), and we can construct the 100(1 − α) percent
confidence interval of ψ.

Remark 66. To test the Null hypothesis, i.e H0 : βj = 0 for some j. We can the fact that:

β̂j

se(β̂j)
∼ N (0, 1) under H0

we now obtai nthe p-value the usual way. with the usually way of applying when the φ is unknown

Remark 67. (Model Comparision) We want to compare 2 models: M0 and M where M0 is a special case

of M and let l(β̂0) and l(β̂) be maximum likelihood of the 2 models.

• Null Hypothesis: The subset of p− q parameter out of p-parameter in linear predictor are all 0, while
H1 being an alternative hypothesis that all p are not 0.

• H0 can be tested using a likelihood ratio test. If H0 is true then in lage sample limit we have:

2[l(β̂)− l(β̂0)] ∼ χ2
p−q

If H0 is false then M will mostly likely have higher likelihood than M0, hence the log-likelihood ratio
would be too large to be consistent with χ2 distribution.

Definition 12.1. (Deviance) Fitting GLMs, it is useful to have a quantity that is smaller to the residual
sum of squares in a linear model context. This is the deviate and defined as:

D = 2[l(β̂sat)− l(β̂)]/φ

where l(β̂sat) denotes the maximum likelihood of saturated model as we have 1 parameter per datum, which
is based on setting µ̂i = yi, which is the highest value of likelihood that can possibility have.

Definition 12.2. (Scaled Deviance) The scaled variance is defined as D∗ = D/φ, which depends on the
dispersion parameter. For binomial and poisson distributions the scale deviance and the deviance are the
same, and we have D∗ ∼ χ2

N−p.

Remark 68. There are difference value of deviances for each kind of distribution, which are denoted as:

Distribution Deviance

Normal 1
σ2

∑N
i=1(Yi − µ̂i)2

Poisson 2
∑N
i=1 [Yi log(Yi/µ̂i)− (Yi − µ̂i)]

Poisson (Constant included) 2
∑N
i=1 Yi log(Yi/µ̂i)

Binomial 2
∑N
i=1 [Yi log(Yi/µ̂i) + (ni − Yi) log [(ni − Yi) / (ni − µ̂i)]]
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Remark 69. In the Binomial and Poisson case, the scaled deviance may be used to test the goodness-of-fit
as we have: D∗ ∼ χ2

N−p under proposed model. Given the definition of deviance, under H0, likelihood ratio
test can be express as:

D∗0 −D∗ ∼ χ2
p−q

The dispersion parameter has to be known so that the deviance can be calculated.

Remark 70. (Model Comparision with φ) Under H0 we knew that D∗0 −D∗ ∼ χ2
p−q and D∗ ∼ χ2

N−p. If
D∗0 −D∗ and D∗ are treated as asymptotics independent. Under null and in the large sample limit, we have:

F =
(D∗0 −D∗)/p− q
D∗/(N − p)

∼ Fp−q,N−p

This is equivalent to:

F =
(D0 −D)/p− q
D/(N − p)

∼ Fp−q,N−p

Hence allow for model comparison, when φ is unknown.

Remark 71. (Other Statistics) The scores statistic U1, · · · , Up are defined as:

Uj =
∂l

∂βj

for j = 1, · · · , p where l is the log-likelihood function. Let U = (U1, · · · , Up)T , where we have the following
properties of the vectors:

• Expectation: E[U ] = 0

• Covariance Matrix: V (U) = I

• Asymptotics Sampling Distribution: U ∼ N (0, I) and UTI−1U ∼ χ2
p

Remark 72. (Wald Statistics) If β̂ is maximum likelihood estimator of β that it can be shown asymptot-
ically as:

(β̂ − β)TI(β̂)(β̂ − β) ∼ χ2
p

where I(β̂) is the information matrix evaluate at β̂ = β. Since result holds for subset of parameter, which
can be done using the submatrix. Score statistics can be used as alternative to likelihood ratio test for
multiple parameter hypothesis testing.

13 Binomial Data and Logistic Regression

Remark 73. Suppose there are N response Y1, · · · , YN are independent such that Yi ∼ Bin(ni, πi) where we
have g(µi) = xTi β for some link function g and µi = E[Yi] = niπi for i = 1, · · · , N . This includes binary
case for ni = 1 for all i. The link function is logit link, which gives the logistic model:

log

(
πi

1− πi

)
= xTi β

Other models can be used such as:

• Probit: Φ−1(πi) = xTi β where it links cumulative normal distribution from N (0, 1).

• Complementary Log-Log: As we have log[− log(1− πi)] = xTi β

The expression for the probability of success π is obtained by inverting the equation for the model, which
are given as:
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• Logistic: π = 1/(1 + exp(−η)) which is a cdf of logistic distribution.

• Probit: π = Φ(η) which is a cdf of standard deviation.

• Complementary Log-Log: π = 1− exp[− exp(η)], which is extream value distribution.

Remark 74. In the current contex, η = xTβ denotes the linear predictor for any observation:

• After β has been estimated by β̂ plugging it in to η̂ = xT β̂ giving the estimated probability that a
new observation of YN+1 is 1 given XN+1.

• The choices ensure that 0 ≤ π ≤ 1 as required. This results in the function that has properties that
−∞ < g(y) <∞ with the consquence that there are no constraints on the unknown parameter in the
linear predictor.

Remark 75. (Interpretation of Logistic Regression Parameter) If π denotes the probability of success,
when the logit link function given by log(π/(1−π)) is the log of odds on success. So the coefficient βj of the
explaination variable xj in the logistic regression model means that the rate of change of odd with xj given
the other explainatory variable to be cosntant.

Remark 76. Suppose that xi is indicator variable with just 2 levels: 0 and 1 then at x1 = 0, we have:

logit(π) = β0 + β2x2 + · · ·+ βmxm

On the other hand at x1 = 1, we have

logit(π′) = β0 + β1 + β2x2 + · · ·+ βmxm

Let’s subtract both and we have:

βi = logit(π′)− logit(π)

= log

{
π′

1− π′

}
− log

{
π

1− π

}
= log

{
π′/(1− π′)
π/(1− π)

}
The log of ratio of the odds on the success of 2 values of x1 or the log-odd-ratio. The odd on a success when
x1 = 1 is exp(β1) times the odd on success when x1 = 0 given other values being constant.

Remark 77. (Likelihood Equation) We have the general equation, which our setting follows, but for
logistic model, they reduced to:

N∑
i=1

(yi − µ̂i)xij = 0

for j = 1, · · · , p
Remark 78. (Maximum Likelihood Estimate) For the iterative procedure, we have:

(XTWX)(s−1)β̂
(s)

= (XTWZ)(s−1)

For the logistic model the (i, i)-th element of the diagonal matrix is given by:

wii =
1

Vi

(
dµi
dηi

)2

where Vi = var(Yi) = V (µi) = niπi(1− πi), which we also have:

dµi
dηi

= niπi(1− πi)

Hence, we have wii = niπi(1− πi). For the z, we have its i-th element to be

zi = ηi + (yi − µi)
dηi
dµi

where
dηi
dµi

=
1

niπi(1− πi)
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Remark 79. (Sampling Distribution) We have the following sampling distribution of β̂ as we have:

β̂ ∼ Np(β, (xTWx)−1)

Remark 80. (Deviance) For testing goodness of fit of a particular model is given by:

D = 2

N∑
i=1

[
yi log

(
Yi
µ̂i

)
+ (ni − yi) log

(
ni − yi
ni − µ̂i

)]
where µ̂i are the fitted µ̂i under the model. If model is true, then D ∼ χ2

N−p which depends provides a test
statistics for goodness-of-fit test.

Remark 81. The test for H0 = βj = 0, which we have under H0.

β̂j

se(β̂j)
∼ N (0, 1)

Remark 82. (Testing) The test for omission of the j-th explainatory variable, given other explainatory
variable in the model.

• Given the test set H0 as ν of regression parameter β1, · · · , βm are 0. We are assuming that the
linear predictor consists of cosntant terms and terms from m explainatory variable and H0 test for the
omission of ν variable where ν ≤ m.

• Let D0 and D denotes the deviate under H0 and the full model, respectively. The likelihood ratio test
is: under H0

D −D0 ∼ χ2
ν

• In the special case, we have H0 : β0 = β1 = · · · = βm = 0. Under H0 the βi’s are all equal to and the
MLE of the common probability of an success is the observed propotion of success.

This resulting deviate be denoted by C, as the analysis of deviance table as we have:

Source of Variation Deviance Df

Regression C −D m
Residual D N −m− 1

Total C N − 1

Remark 83. (Peason Chi-Squared Statistics) Given the alternative test of goodness of it. The statistic
is denoted by X2, which is based on the following table of observed and fitting frequences:

Observation 1 2 · · · N

Num of Success Y1 Y2 · · · YN
Num of Failure n1 − Y1 n2 − Y2 · · · nN − YN

with the similar table of fitted value in which Yi is replaced by µ̂i = niπ̂i. Using a common relation o for
observed frequency and e for fitted (expected) frequency. D and X2 has the form:

D = 2
∑

o log
(o
e

)
X2 =

∑ (o− e)2

e

This for of deviance D is denoted by G2. The Peason chi-square statistic is after some algebra given by:

X2 =

N∑
i=1

(Yi − niπ̂i)2

niπ̂i(1− π̂i)
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(if the model is true) has same large sample distribution and the deviance D, which is χ2
N−p. Using Taylor

series expansion of s log(s/t) about s = t up to quadratic term, it can be shown that D ∼ χ2. (It likely to
be poor if any of fitted values in 2N are small).

Remark 84. (Binary Data) If each observation has difference pattern of the explainatory variable. The
result for the estimation still holds. The deviance can be shown to be depend on the binary observation
through the fitted value and so isn’t for assessting goodness of fit.

Remark 85. (Hosmer and Lemeshow) They proposed a test obtained by groupping observations into
about g ≈ 10 groups of observation with some number per group according to their predicted probability.

• We are given 2× g table for which χ2 is calculated.

• Large sample distribution of resulting statistic if the model is the suggested to approximately be χ2
g−2.

• This is the same for binomial but it doesn’t relative in the certain cases.

Remark 86. (Checking Model Adequecy)

• Raw Residual:
êi = Yi − niπ̂i

How well the raw data is fitted

• Peason Chi-Square:

Xi =
êi√

niπ̂i(1− π̂i)

So that the chi-square statistics X2 =
∑N
i=1X

2
i . These standardized by estimated standard deviation

of Yi making them the compatible in size.

• Standardized Peason Residual:

rpi =
Xi√

1− hii
where hii is the diagonal of the hat matrix given by H = W 1/2X(XTWX)−1XTW 1/2. The variance
of this is 1 and comparable in size of X-space. For the mathematical comparison, these are better than
Xi. However, Xi is more naturally interpreted in terms of which points are welled-fitted.

• Deviance Residual: And, we have:

di = sign(êi)

{
2

[
yi log

(
yi
µ̂i

)
+ (ni − yi) log

(
ni − yi
ni − µ̂i

)]}1/2

so that the deviance is
∑N
i=1 d

2
i , the sign(êi) gives di same sign as êi.

– The interpretation is formalized how strongly observation contribute to the deviance (The stan-
dard way of measuring the quality of the overfit).

– They show to what extent the observation indicates that the model is violated and rather saturated
model is needed.

• Standardized Deviance Residual:

rDi =
di√

1− hii
Interpretation: This make the di directly naturally comparable by unifying their variance and adjust
for location in x-space.
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• Cook Statistics:

Di =
1

p
(β̂ − β̂(i))

TXTWX(β̂ − β̂(i))

The numerator of Di is the weighted sum of the square difference of the fitted logic of the πi’s with
and without i-th observation with wii as weight. The alternative Di’s are calculate in the following
form:

Di =
1

p

(
hii

1− hii

)
r2Pi

This quantity the effect on β̂ of omitting observation of the i-th.

Remark 87. (Model Selection) There are many kinds of model selection as we have:

• Akaike Information Criterion:
AIC = D + 2p+ const

where D is deviance statistic and p is number of parameter in linear predictor as LOO-CV and we can
be used as well.

• 2 models are compared by the difference of deviance: Suppose model M1 with p1 regression parameter
is submodel of M2 with p2 parameter. Let l(β̂j) be maximum value of the log likelihood under Mj and
Dj denotes the deviate of model Mj . We want to test:

H0 : M1 vs H1 : M2

Then the likelihood test statistic of −2 log likelihood ratio is:

2[l(β̂2)− l(β̂1)] = D1 −D2

Under null hypothesis has approximate χ2
p2−p1 distribution.

Remark 88. (Analysis of Variance) The regression deviance C −D can be partitioned in same way as for
normal linear model, where RSS is replaced by deviance D.

14 Contingency Tables

Remark 89. We have the following construction of table:

• Let’s the row variable called A with I possible categories and the column variable be called B with J
possible categories.

• Now we consider I × J contingency table that has been obtained by allocating a random sample of N
observation on the pair of variable A and B to IJ possible combination.

• For cell (i, j) of contingency table as we have i ∈ [I] and j ∈ [J ] as we let:

– πij is the probability that an observation being to the cell.

– µij is the expeced frequency.

• Please Recall that µij = Nπij . If the row variable A is independent of column variable B then

πij = πi+πj+

where we have πi+ is the probability observation belong to row i and the sub-script indicates summation
over the corresponding subscript. Similar for column j.
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• If A is independent of B, we have

µij =
µi+µ+j

N

where µi+ = Nπi+ and its expected frequency of the row i. Similar for the row j.

Remark 90. (Model Under Null-Hypothesis) Typical null hypothesis is H0 assuming that A and B are
independent. Taking the logarithm to get:

logµij = logµi+ + logµ+j − logN

We rewite as the sum of 3 terms, one depending on i and on j and a constant. If the variable A and B aren’t
independent then the equality doesn’t hold. Let φij then denote the difference between LHS and RHS, then
the alternative is:

logµij = λ+ αi + βj + φij

Remark 91. (Constriants on Parameter) The linear predictor in alternative hypothesis contains more
parameter than cell in the contingency table. So we need to have a constraint, which can be set by either:

• Set the parameter for one specific outcome to zero:

α1 = 0 β1 = 0 φ1j = 0 φi1 = 0

This means that for every variable categories 1 is regared as reference category.

• Make parameter sum to zero as we have:∑
i

αi = 0 and
∑
j

φij =
∑
i

φij = 0

The model of alternative hypothesis is a saturated log-linear model for 2-ways contingency table. There are
IJ effective parameter (number of parameter - number of effective constraints). This is equal to the number
of frequency in the table so every frequency can be fitted perfectly:

• The submodel (null hypothesis) is unsatuarated.

• The estimation of alternative hypothesis gives µ̂ij = nij , which is a perfect fit and G2 = 0

Compare the alternative hypothesis with model of ANOVA 2-ways, there are similar in character with
logarithm of expected response on the LHS instead of expected response. So the model is log-linear model.

Remark 92. (Parameter) The parameter in log-linear model (λ, αi, βj , φij) doesn’t have straightfoward
interpretation. It is mainly of interest whether certain parameter vanishes or not as this will imply certain
independent.

Remark 93. (Interaction) The extra term introduced is called interaction term. For testing hypothesis is
based on goodness-of-fit statistic as we have:

G2 = 2
∑

o log
(o
e

)
where o and e denote observed and fitted expected frequency. We use it rather Pearson Chi-Square statistics.

Remark 94. (Fitting Model) The models are fitting using maximum likelihood which requires the specifica-
tion of the joint distribution of the observation (observation frequency) as the joint distribution is multinomial
distribution.

• It can be shown that joint distribution of independent Poisson random variable conditioned on their
sum is a multinomial distribution.

• In practice log-linear model for contingency table data are fitted as if the observed frequency are
independent Poisson.
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Remark 95. (Goodness-of-Fit and Model Checking)

• Goodness of fit is done as for the Poisson data with G2

• Nested model compared by difference of their G2 values.

• Standardized Residual: Similar to case of logistic regression for 2-ways contingency table as we have:

– Raw-Residual as we have êij = nij − µ̂ij
– Peason or χ2-residual:

Xij =
êij√
µ̂ij

So that chi-squared statistics X2 =
∑
i

∑
j X

2
ij

– Standardized Peason Residual:

rPij
=

Xij√
1− h(ij)

where h(ij) is the leverage for the other with combination (ij) of 2 factors.

– Deviate residual can be found:

dij = sign(êij)

{
2

[
yij log

(
yij
µ̂ij

)
− (yij − µ̂ij)

]}1/2

note that D =
∑
i

∑
j d

2
ij

– Standardized Deviance Residual:

rDij
=

dij√
1− h(ij)

15 Generalized Additive Model

Definition 15.1. GAM The generalized additive model as we have:

g {E[Yi]} = ηi = X∗i θ + f1(xi1) + f2(xi2) + f3(xi3, xi4) + · · ·

where X∗i is the i-th row of X∗, which is the model matrix for any parameter model components with param-
eter vector θ and fi is smooth function over covariate xij . It is subjected to a constraint that

∑
i fj(xij) = 0

for each j.

Remark 96. The model GAM can flexibly determine the function value of the relationship between response
and some explainatory variable avoid the drawnback of modeling using parameter relationship. One can
model the discrete and continuous variable.

Remark 97. Smooth term can be represented by regression spine. Linear combination of basis function
bjk(xj) and regression parameter βjk as we have:

fj(xj) =

qj∑
k=1

βjkbjk(xj)

as we have j is smooth term for j-th explainatory variable. The regression spline of 2 covariance, which can
be written as:

fjp(xj ,xp) =

qj∑
k=1

βjp,kbip,k(xj ,xp)

Remark 98. (Problem With Polynomial Basis)
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• As the number of polynomial above, the increasingly colinear.

• Highly correlated parameter estimator leads to high estimator variance and numerical problem.

• We can use orthogonal basis as we still give the problem over a domain (but useful in a single point).

• Practical solution is the use the continuous variable can be categorized into groups based on interval
and frequency.

• Another problem comes from the cut points, in which the relationship between a response variable and
set of covariates is flat in the interval (by the assumptions).

• To overcome all issue, we can use the spine bound are typically used to determine flexibly the rela-
tionship between the continuous predictor and the outcome of interest, which avoid the disadvantage
of categorization, which are not as correlated as polynomial basis function.

• Common choices for responsibility smooth function includes smoothing spine as we can place the knots
at every data point, and referred to as full rank smoother because the size of spine basis is equal to
number of observation.

• However, this leads to as many parameter as there are data which result in expensive computation
regression.

Remark 99. (Parameter Estimation) The regerssion can overfit which we can consider the model to
maximize the following function:

l(β)− 1

2

∑
j

λj

∫ {
f
dj
j (xj)

}2

dxj

Remark 100. (Regularization) This can be written as the quadratic form β with known coefficient matrix
Sj . Let’s consider dj = 2 and for regression spine basis in one 1D as we have:

∫ {
f
dj
j (xj)

}2

dxj =

∫ {
∂2fj(xj)

∂x2j

}2

dxj

=

∫ {
∂2
∑qj
k=1 βjkbjk(xk)

∂2xj

}2

dxj

=

∫ {
βT b′′j (xj)

}2

dxj

=

∫
βT b′′j (xj)b

′′
j (xj)

Tβ dxj

= βT
{∫

b′′j (xj)b
′′
j (xj)

T dxj

}
β

= βTSjβ

The estimator of β is given by:
β̂ = (XTWX + S)−1XTWz

where S =
∑
j λjSj as β is bias due to the penalty. The value of λj is done using Cross-Validation or

generalized AIC.

Remark 101. (Inference) Let’s consider the genertic smooth model component f(xj) as the interval can
be constructed by seeking some constant Ci and A such that

ACP =
1

2
E

{∑
i

I
(∣∣∣f̂(xi)− f(xi)

∣∣∣ ≤ qα/2A/√Ci)
}

= 1− α

As we have α ∈ (0, 1) and qα/2 is the α/2 critical point from standard normalize distribution.
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Remark 102. Defining b(x) = E[f̂(x)]− f(x) and v(x) = f̂(x)− E[f̂(x)] and so f̂ − f = b+ v, and having I
be random variable unifying distribution on {1, 2, · · · , n} as we have:

P
(
|B + V | ≤ qα/2A

)
as we have B =

√
CIb(xI) and V =

√
CIv(xI). It is necessary to find a distribution of B + V and value of

Ci and A so that the requirement is met.

Remark 103. The condition above the approximately met with posterior distribution:

β|y ∼ N (β̂, (I + S)−1)

Confidence Interval can be easily obtained. Any strictly parameter model component to obtain confidence
interval is equivalent to using classical likelihood results. This is because it isn’t penalized.
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