
Supervised Learning

Phu Sakulwongtana

1 Introduction to Machine Learning Problem

Definition 1.1. (Machine Learning Problem) Define input space and output space X ⊆ Rd and Y,
respectively. Given the training data points:

{(x1, y1), . . . , (xm, ym)} ⊂ X × Y

The goal is to infer the function fS(xi) ≈ yi, which we can use in the future data. There are 2 types of
problems, when: y ∈ {−1, 1}, the problem is classification and if y ∈ R, the problem is regression.

Definition 1.2. (Learning Algorithm) Given the training set S = {(xi, yi)}mi=1 ⊂ X × Y. The learning
algorithm perform a mapping S 7→ fS , where the new input can be predicted as fS(x).

Definition 1.3. (Binary Classification) Given the training domain to be X = R2 for x = (x1, x2) and
Y = {0, 1}, our predictor is defined as:

f(x) =

{
0 wTx+ b > 0

1 wTx+ b ≤ 0

Definition 1.4. (Mean Square Error) In most of the machine learning problem, we would like to find
the predictor to minimize the following loss (for m size dataset):

1

m

m∑
i=1

(yi − ŷi)2 =
1

m

m∑
i=1

(yi −wTx)2

This is called mean-square error (MSE).

Lemma 1.1. Given the input and output dataset, which can be represented in matrix and vector notation:

X =

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xn1 xn2 · · · xnn

 y =

y1

y2

...
ym

Given the predictor to be f(x) = wTx, then the mean-square error can be denoted as:

Eemp(S,w) =
1

m
(XTw − y)T (XTw − y)

where the dataset is S = (X,w).

Proof. Consider the MSE to be, which we can consider the matrix multiplication:

1

m

m∑
i=1

(yi − ŷi)2 =
1

m

m∑
i=1

(yi −wTx)2

=
1

m

m∑
i=1

yi − n∑
j=1

wjxij

2

=
1

m
(XTw − y)T (XTw − y)

1

Proposition 1.1. The solution to the mean-square error is given by:

w = (XTX)−1XTy

Assuming that XTX is invertible.

Proof. Let’s consider the derivative of ∇wEemp(S,w), which is given as:

∇w
[
(Xw − y)T (Xw − y)

]
= 0

⇐⇒

 m∑
i=1

∂

∂w1

 n∑
j=1

xijwj − yi

2

, . . . ,

m∑
i=1

∂

∂wn

 n∑
j=1

xijwj − yi

2

T

= 0

Let’s consider the derivative of each variable wk

∂Eemp(S,w)

∂wk
=

2

m

m∑
i=1

(wTxi − yi)
∂

∂wk
wTxi

=
2

m

m∑
i=1

(wTxi − yi)xik

Let’s consider the simpler case in 2 dimensions with w = (w1, w2)T , then setting this to zero gives us:

m∑
i=1

(xijxi1w1 + xikxi2w2) =

m∑
i=1

xikyi

for k = 1, 2. In vector notation, this is equivalent to
∑m
i=1 xix

T
i w =

∑m
i=1 xiyi or it is equivalent to matrix

notation is: XTXw = XTy, taking the inverse gives us the required answer.

Proposition 1.2. Bias term for the predictor can be added i.e f(x) = wTx+ b.[
XTX XT1
1TX m

] [
w
b

]
=

[
xTy
1Ty

]
For dataset of size m, and 1 is the vector of elements 1.

Proof. This is equivalent to modify the dataset as (xT , 1) with the same label y. Furthermore, the weight
can be represented as (wT , b). Now the linear equation (comes from the derivative) is:

(XTX)w = XT1b = XTy

1TXw +mb = 1Ty

This system of equation can be re-written as the matrix equation in the proposition, and so it is proven.

Definition 1.5. (Nearest Neighbour) There are difference approach to training the predictor. We con-
sider the set N(x; k) be the set of k-nearest (calculated using metrics) points to the point x and its associated
index set Ix i.e:

Ix = {i : xi ∈ N(x; k)}
The predictor function (for classification) is given by:

f(x) =

{
1 if |{yi = 1 : i ∈ Ix}| > |{yi = 0 : i ∈ Ix}|
0 otherwise

On the other hand, the predictor for regression is defined by:

f(x) =
1

k

∑
i∈Ix

yi

2

1.1 Bayes Estimator

Definition 1.6. (Expected Error) Assuming data is obtained by sampling iid from a fixed and unknown
probability density p(x, y). The expected error of the predictor is f is given by:

E(f) = E
[
(y − f(x))

2
]

=

∫∫
(y − f(x))2p(x, y) dx dy

Remark 1. The goal of our learning algorithm is to compute the optimal solution f∗ as we have:

f∗ = arg min
f

E(f)

However, to compute f∗, we have to know p. Please note that for the binary classification i.e where Y = {0, 1}
and for given predictor f , the error E(f) is the average number of mistake of f .

Proposition 1.3. The optiaml solution f∗ for regression problem Y = R, with square expected error. We
can show that the it is:

f∗(x) =

∫
Y
y dp(y|x)

We assume that the joint distribution p(y,x) can be decomposed as p(y|x)p(x).

Proof. We have the following decomposition of the probability:

E(f) =

∫
X

{∫
Y

(y − f(x))2 dp(y|x)

}
dp(x)

We consider fixed x = x′ and given the following stort-hand, we have e = E(f(x′)) and z = f(x′), and so
we have:

e ∝
∫
Y

(y − z)2 dp(y|x′)

The differentiation and setting this to zero giving us:

∂e

∂z
= −2

∫
Y

(y − z) dp(y|x′)

⇐⇒ 0 =

∫
Y
y dp(y|x′)− z

∫
Y

dp(y|x′)

= z −
∫
Y
y dp(y|x′)

This implies that z =
∫
Y y dp(y|x′) and so the optimal predictor is equal to what we required.

1.2 Bias and Variance of Learning Algorithm

Remark 2. Assuming that there is a relationship between (x, y) in the dataset, which is given by y = F (x)+ε
where E[ε] = 0 and finite variance. Then the optimal predictor can be shown to be:

f∗(x) = E[y|x] = F (x)

Remark 3. We want to consider the expected error by an arbitrary learner AS(x). The expected error is:

E(AS(x′)) = E[(y′ −AS(x))2]

where y′ is sample from the marginal p(y|x′).

Lemma 1.2. We can show that:

E[(Z − E[X])2] = E[Z2] + E[Z]2

3

Proof. We have the following:

E[(Z − E[Z])2] = E[Z2 − 2Z + E[Z]2]

= E[Z2]− 2E[Z]2 + E[Z]2

= E[Z2] + E[Z]2

Proposition 1.4. (Decomposing) The square error E(A(x′)) can be decomposed to:

E[(y − f∗(x′))2] + (f∗(x′)− E[AS(x′)])2 + E[(AS(x′)− E[AS(x′)])2]

Proof. We can decomposed the error of the learner E(AS(x′)) as we have:

E[(y′−AS(x′))2] = E[(y′)2 − 2y′AS(x′) +AS(x′)2]

= E[(y′ − f∗(x′))2] + f∗(x′)2 − 2f∗(x′)E[AS(x′)] + E[(AS(x′)− E[AS(x′)])2] + E[AS(x′)]2

= E[(y − f∗(x′))2] + (f∗(x′)− E[AS(x′)])2 + E[(AS(x′)− E[AS(x′)])2]

Let’s show that the second equality is actually equal to the first equation:

E[(y′ − E[y′|x′])2] + E[y′|x′]2 − 2E[y′|x′]E[AS(x′)] + E[(AS(x′)− E[AS(x′)])2] + E[AS(x′)]2

=E[(y′)2]− E[y′|x]2 + E[y′|x′]2 − 2E[y′|x′]E[AS(x′)] + E[AS(x′)2]− E[AS(x′)]2 + E[AS(x′)]2

=E[(y′)2]− 2E[y′|x′]E[AS(x′)] + E[AS(x′)2]

=E[(y′ −AS(x′))2]

As required.

Remark 4. (Bias and Variance Tradeoff) We can see that each term in the decomposition has the
following contribution:

E[(y − f∗(x′))2]︸ ︷︷ ︸
Bayes’ Error

+ (f∗(x′)− E[AS(x′)])2︸ ︷︷ ︸
Bias2

+E[(AS(x′)− E[AS(x′)])2]︸ ︷︷ ︸
Variance

The bias error describes the discrepancy between the algorithm and truth value. The Bayes error is the
irreducible noise. Finally, variance capture the variance of the algorithm between training set. We can have
the additional observation:

• Bias and Variance tends to trade-off against one another.

• Many parameter allows better flexibility to fit the data, which lower the bias. However, it also gives
rise to high-variance, and vice versa.

• This composition holds for square loss function.

Definition 1.7. (Bayes Estimator for Classification) For C-class classification (Bayes classifier), it is
given by:

f∗(x) = arg max
c∈[C]

p(y = c|x)

where the loss is 0 if we predict correctly and 1 otherwise. Furthermore, the Bayes optimal error rate is:∫ (
1− p(y = f∗(x)|x)

)
dp(x)

Lemma 1.3. For Z being a random variable with values [0, 1] and let E[Z] = µ for any a ∈ (0, 1) we have:

P(Z > 1− a) >
µ− (1− a)

a

4

Proof. Recall the Markov’s inequality:

P(Z ≥ a) ≤ E[Z]

a

=⇒ 1− P(Z ≥ a) ≥ 1− E[Z]

a

We consider the following inequality, where we consider:

P(1− Z < a) ≥ 1− E[1− Z]

a

= 1− 1− µ
a

=
a− 1 + µ

a
=
µ− (1− a)

a

Theorem 1.1. (No Free-Lunch) Let A be any learning algorithm for binary classifier (where Y = {−1, 1})
over domain X . Let m < |X |/2 being a training size. We define the loss of the function f to be:

Ep(f) =

∫
X×Y

I[f(x) 6= y] dp(x, y)

Then there exists a distribution p such that:

• There exists a function f : X → {0, 1} with Ep(f) = 0

• For dataset S ∼ pm, we have

PS∼pm
[
Ep(A(S)) > 1/8

]
≥ 1/7

Proof. This prove is abit more involved. Let’s start with proving the first point (For now we assume the
discrete distribution and finite value of X). Let C ⊂ X , where |C| = 2m. Denote YC being the set of all
possible function f : C → Y i.e {f1, . . . , fT } where T = 22m. We can construct the distribution function pi
such that:

pi({x, y}) =

{
1/(2m) if y = fi(x)

0 otherwise

for all x, y. Let’s consider Epi(fi), which is:

Epi(fi) =
∑
x∈X

∑
y∈{−1,1}

I[fi(x) 6= y]pi({x, y})

=
∑
x∈C

I[fi(x) 6= fi(x)] = 0

And so the first point is proven. Now, consider all possible combination of data points of size m in C i.e
Cm = {S1, . . . , Sk} where k = (2n)n. We construct the dataset from fi as Sij = {(x, fi(x)) : x ∈ Sj}. Now
consider the expected error of an algorithm under correction function fi i.e

ES∼pmi [Epi(A(S))] =

k∑
j=1

pi(S
i
j)Epi(A(Sij))

=

k∑
j=1

1

(2n)n
Epi(A(Sij)) =

1

k

k∑
j=1

Epi(A(Sij))

5

Note that for scalar α1, . . . , αm we have maxl αl ≥ 1/m
∑m
i=1 αi and minl αl ≤ 1/m

∑m
i=1. Consider the

value of the function fi that maximizes the error of the learner (when everything is under fi):

max
i∈[T]

ES∼pmi [Epi(A(S))] ≥ 1

T

T∑
i=1

1

k

k∑
j=1

Epi(A(Sij))

=
1

k

k∑
j=1

1

T

T∑
i=1

Epi(A(Sij)) ≥ min
j∈[k]

1

T

T∑
i=1

Epi(A(Sij))

Now, denote a set S′j = {v1, . . . ,vp} ⊂ C such that its element doesn’t belong in Sj for j = 1, . . . , k, consider
average expected risk:

1

T

T∑
i=1

Epi(A(Sij)) =
1

T

T∑
i=1

∑
x∈X

∑
y∈{−1,1}

I[A(Sij)(x) 6= y]ρi({x, y})

≥ 1

T

T∑
i=1

∑
v∈S′j

∑
y∈{−1,1}

I[A(Sij)(v) 6= y]ρi({v, y})

=
1

T

T∑
i=1

∑
v∈S′j

I[A(Sij)(v) 6= fi(v)]ρi({v, fi(v)})

=
1

T

T∑
i=1

∑
v∈S′j

1

2m
I[A(Sij)(v) 6= fi(v)]

≥ 1

T

T∑
i=1

∑
v∈S′j

1

2p
I[A(Sij)(v) 6= fi(v)]

=
1

2

1

p

∑
v∈S′j

1

T

T∑
i=1

I[A(Sij)(v) 6= fi(v)]

=
1

2
min
r∈[p]

1

T

T∑
i=1

I[A(Sij)(vr) 6= fi(vr)]

Note that p ≥ m because the dataset doesn’t have to be unique. Before further analysis, for YC , we can
partion into T/2 pairs (fi, fi′) such that fi(x) 6= fi′(x) iff x = vr for r ∈ [p], by setting fi′(vr) = ¬fi(vr)
where

¬a =

{
1 if a = −1

−1 if a = 1

Please note that Sij = Si
′

j because the effect of fi′(x) 6= fi(x) iff x 6∈ Sij . Thus, we can see that:

I[A(Sij)(vr) 6= fi(vr)] + I[A(Si
′

j)(vr) 6= fi′(vr)] = 1

Let’s consider the value inside, by the partion of list of all functions, we have:

1

T

T∑
i=1

I[A(Sij)(vr) 6= fi(vr)] =
1

T

∑
(i,i′)

I[A(Sij)(vr) 6= fi(vr)] + I[A(Si
′

j)(vr) 6= fi′(vr)]

=
1

T

∑
(i,i′)

1 =
1

T

T

2
=

1

2

This implies that:

max
i∈[T]

ES∼pmi [Epi(A(S))] ≥ min
j∈[k]

1

T

T∑
i=1

Epi(A(Sij)) ≥
1

4

6

This means that for all algorithm A′ getting a dataset S of size m, there is a function f and a distribution
p over X × {0, 1} such that:

ES∼pm [Ep(A(S))] ≥ 1

4

and so, using the probabilistic inequality, we have:

P
[
Ep(A(S)) ≥ 1

8

]
= P

[
Ep(A(S)) ≥ 1− 7

8

]
≥ ES∼pm [8Ep(A(S))](1− 7/8)

7/8

≥ 2− 1

7
=

1

7

Thus complete the proof.

Theorem 1.2. As the number of sample goes to infinity, the error rate is no more than twice of the Bayes
error rate for the k-nearest neighbour. Please note that the k-nearest neighbour attemps to approximate:

p(y = c|x) ≈ |{i : yi = c, i ∈ Ix}|
k

We consider the points that are near the evaluation points and find the class of the neighbours that has the
highest frequency.

Proof. (Sketch) We will shorten the notation as p(c|x) = p(y = c|x). The expected Bayes classifier (at x) is:

1− max
c∈[C]

p(c|x)

The expected error rate of 1-NN at x is given by:

C∑
c=1

pnn(c|x)[1− p(c|x)]

As the number of sequence goes got infinity m→∞, we have p(c|x) ≈ pnn(c|x). Now, we will show that:

C∑
c=1

p(c|x)[1− p(c|x)] ≤ 2

[
1− max

c∈[C]
p(c|x)

]
Let c∗ = arg maxc∈[C] p(c|x) and p∗ = p(c∗|x) observe that c ∈ [C]:

C∑
c=1

p(c|x)[1− p(c|x)] = p∗(1− p∗) +
∑

c∈[C]\c∗
p(c|x)[1− p(c|x)]

≤ (C − 1)
1− p∗

C − 1

[
1− 1− p∗

C − 1

]
+ p∗(1− p∗)

= (1− p∗)
[
1− 1− p∗

c− 1
+ p

]
≤ (1− p∗) [1 + p] ≤ 2(1− p∗)

The second inequality comes from the fact that sum is maximized when all p(c|x) have the same value. And
the last inequality comes from the fact that p, p∗ < 1. Thus complete the proof.

Remark 5. One can show that for k = k(m) where m is the size of the dataset, one can show that

E(k −NN)→ E(f∗)

note that k depends on the data size, as m→∞ with the condition that k(m)→∞ and k(m)/m→∞.

7

Remark 6. (Curse of Dimensionality) The rate of convergence depends exponentially on the input di-
mension. This problems occure thoughout the ML algorithms. The intuitive is that the volumn increases
exponentially with the dimension implies that the number of data required to cover the space to perform
estimate also increase exponentially: The ration between volumn unit d-dim ball centered at the origin and
1/2-unit ball at the origin is (1/2)d.

Definition 1.8. (Empirical Risk) We are given only the sample from probability p(x, y). The natural
approach is to approximate the expected error using empirical error:

Eemp(S, f) =
1

|S|
∑

(x,y):S

(yif(xi))
2

Definition 1.9. (Empirical Risk Minimization (with reguarlizer)) If we consider all possible function,
we can always find the function with 0 empirical error (remember) this is known as overfitting. To solve this
we have to restrict the function space to be H called hypothesis space, which ERM is defined as:

fS = arg min
f∈H

Eemp(S, f)

Remark 7. (Example of Hypothesis Space) We can consider the following increasing “complexity” as
for the regression in 1D as we have:

Hn =

{
f(x) =

n∑
l=1

alx
l + b : a1, . . . , an, b ∈ R

}

Choosing the correct model requires a cross-validation. Unless the prior knowledge is avaliable on f∗, we
can’t expect f∗ ∈ H, while we can’t allow too large H as it leads to the overfitting.

2 Kernel and Regression

2.1 Introduction

Definition 2.1. (Convex Set) A set X is convex if p, q ∈ X is convex if αp+ (1− α)q ∈ X

Definition 2.2. (Convex Function) A function f : X → R is convex iff for all p, q ∈ X in convex set and
α ∈ (0, 1) as we have:

f(αp+ (1− α)q) ≤ αf(p) + (1− α)f(q)

A function f is concave if −f is convex. A function is strictly convex if we replace ≤ with <.

Remark 8. (Various Comments on Convex Function) We have the following results on the convex
function, as we have:

• If f and g are convex, then f + g is convex.

• If f is convex and g is affine (linear + constant) then f(g(·)) is convex.

• Suppose M is symmetric matrix, then M is positive semi-definite matrix iff f(x) = xTMx is convex.

• Level set {x : f(x) = c} where c ∈ R of convex function f is convex.

• For f : (a, b)→ R if f ′′ ≥ 0 then f is convex.

• For f : X ⊆ Rn → R if ∇2f(x) � 0 for all x ∈ X , then f is convex.

8

2.2 Ridge Regression

Definition 2.3. (Ridge Regression Problem) Given a function f(x) = wTx with a dataset:

S = {(x1, y1), . . . , (xm, ym)} ⊂ Rn × R

Assuming the dataset is generated by the unknown function g i.e (x, g(x)). Then suppose that the vector
xi are linearly independent with m = n, then there is a unique solution, whose parameter w solves:

Xw = y

where y = (y1, . . . , ym)T and X = [x1, . . . ,xm]T ∈ Rm×n.

Definition 2.4. (Well-Posed) The solution/problem is called well-posed if: the solution exists, uniquem
and depends continuously on the data. The regularized theory allows general framework to solve ill-posted
problem (we can choose the term to penalize complex function).

Definition 2.5. (Regularized Empirical Error) We minimize the following regularized empirical error,
which is given by:

Eemph,λ(w) =

m∑
j=1

(yi −wTxi)
2 + λ

n∑
i=1

w2
i

= (y −Xw)T (y −Xw) + λ ‖w‖22
We can see that the parameter λ > 0 defines the trade-off between error and the norm of vector w (which
restricts the complexity of the model).

Proposition 2.1. Solving the regularized empirical error by setting its gradient to 0, gives us:

w = (XTX + λIn)−1XTy

Furthermore, we can show that the weight w =
∑m
i=1 αixi and the solution can be written as:

f(x) =

m∑
i=1

αix
T
i xi

where α = (XXT + λIm)−1y. This is called dual form, while f(x) = wTx is called primal form.

Proof. Starting with the derivative, we have:

∇Eemp,λ(w) = −2XT (y −Xw) + 2λw = 0

which implies the weight of the first form i.e w = (XTX + λIn)−1XTy. Now, we can also see that:

w =
XT (y −Xw)

λ

Assume the the dual form of the weight w =
∑m
i=1 αixi as we have:

αi =
yi −wTxi

λ
=
yi − (

∑m
i=1 αixi)

Txi
λ

Now solving for the value of yi, which we have:

y =

 m∑
j=1

αjxj

T

xi + λαi

=

m∑
j=1

(αxTj xj + λαjδij) =

m∑
j=1

(xTj xj + λδij)α

and so we have (XXT + λIm)α = y

9

Remark 9. (Advantage of Dual Form) The dual form allow us to gain a computational advantage for
both training and testing time:

• Training Time: Solving w in the primal function requires O(mn2 + n3) operations while solving for
dual form O(nm2 +m3) if m� n then it is more efficient that primal.

• Testing Time: Computing f(x) in test vector x in the primal form requires O(n) operations but the
dual form requires O(nm) operations.

2.3 Basis/Kernel Functions

Definition 2.6. (Basis/Feature Function) We have the function φ : Rn → RN as we have:

φ(x) =
(
φ1(x), . . . ,φN (x)

)T
for x ∈ Rn, where we call φ1, . . . ,φN are called basis function and φ(x) is called feature vector, and feature
space is defined by: {φ(x) : x ∈ Rn}

Remark 10. We can use the feature map of the data instead of real data φ(x). This gives us the many
advantages, for example:

• The map: φ(x) = (x, 1)T allow us to have the bias terms.

• The map: φ(x) = (x1x2)T allow us to consider the interaction between inputs (individual elements).

We can also consider the second order correlation if x ∈ Rn as:

φ(x) = (x1x1, x1x2, . . . , x1xn, x2x2, x2x3, . . . , x2xn, . . . , xnxn)T

now the feature vector has the size of (n2 + n)/2. However, if we consider the inner product, we will have:

〈φ(x),φ(t)〉 = (x1x1, x1x2, . . . , xnxn)T (t1t1, t1t2, . . . , tntn)

= (x1t1 + · · ·+ xntn)(x1t1 + · · ·+ xntn)

= (xT t)T

Note that O(n) but the native computation will take O(n2). This leads to decrease the computation com-
plexity (please see the dual form too).

Definition 2.7. (Kernel Function) Given a feature map φ, we define the asssociated kernel function
k : Rn × Rn → R as we have:

k(x, t) = 〈φ(x),φ(t)〉
Please note that the computing k(x, t), which it doesn’t depends on computing φ(x).

Remark 11. (Feature Map not Unique) The feature map isn’t unique. Consider the φ that is associated

with kernel k, and so φ̂ = Uφ where U ∈ RN×N . The feature can be difference in values and dimension but
gives rise to the same kernel:

(Uφ)T (Uφ) = φTφ

Theorem 2.1. (Representor) Consider the loss to be:

Eemp,λ(w) =

m∑
i=1

V (yi, 〈w,φ(xi)〉) + λ 〈w,w〉

where V : R× R → R is a loss function. If V is differentiable with respected to its second argument and w
is a minimizer of Eλ, then w has the form of:

w =

m∑
i=1

αiφ(xi) =⇒ f(x) = 〈w,φ(x)〉 =

m∑
i=1

αik(xi,x)

10

Proof. The proof is similar to the dual form. Setting the derivative of Eλ with respected to zero and we have:

m∑
i=1

V ′(yi, 〈w,φ(xi)〉)φ(xi) + 2λw = 0

Compared to w =
∑m
i=1 αiφ(xi), we can see that:

αi =
1

2λ
V ′(yi, 〈w,φ(xi)〉)

From the definition of w, we can see that:

αi =
1

2λ
V ′

yi, m∑
j=1

k(xi,xj)αj

for i = 1, . . . ,m. Finding α is done by solving the following optimization problem

arg max
α

m∑
i=1

V (yi, (Kα)i) +αTKα

Definition 2.8. (Positive Semi-Definite Kernel) The kernel k : Rn × Rn → R is positive semi-definite
if it is symmetrix and given the set of points {x1, . . . ,xn}, the matrix:k(x1,x1) · · · k(x1,xn)

...
. . .

...
k(xn,x1) · · · k(xn,xn)

is positive semi-definite.

Theorem 2.2. Kernel k is positive definite iff:

k(x,y) = 〈φ(x),φ(t)〉

for x, t ∈ Rn for some feature map φ : Rn →W for Hilber space W

Proof. We will consider only one direction. If k(x, t) = 〈φ(x),φ(t)〉, then we have:

n∑
i=1

m∑
j=1

cicjk(xi,xj) =

〈
m∑
i=1

ciφ(xi),

m∑
j=1

cjφ(xj)

〉
=

∥∥∥∥∥
m∑
i=1

ciφ(xi)

∥∥∥∥∥
2

≥ 0

Definition 2.9. (Polynomial Kernel) If p : R → R is a polynomial with non-negative coefficient then
k(x, z) = p(xT t) where x, t ∈ Rn and k positive semi-definite kernel.

Proposition 2.2. If A is an n× n positive semi-definite matrix, the function k : Rn ×Rn → R defined by:

k(x, t) = xTAt

is a generalized linear kernel and it is a positive semi-definite kernel.

11

Proof. Since A is positive semi-definite, we can write A in the form of A = RRT for some R ∈ Rn×n. Thus,
k is represented by a feature map φ(x) = RTx. As we can see that:∑

ij

cicjx
T
i Axj =

∑
ij

cicj(R
Txi)

T (RTxj)

=
∑
i

ci[R
Txi]

T

∑
j

cj(R
Txj)

 =

∥∥∥∥∥∑
i

ciR
Txi

∥∥∥∥∥
2

≥ 0

Proposition 2.3. If k : RN × RN → R is a positve semi-definite kernel and φ : Rn → RN .

k̃(x, t) = k(φ(x),φ(t))

The kernel k̃ defined to be k̃ : Rn × Rn → R is a positive definite kernel.

Proposition 2.4. Given a positive semi-definite kernels k1 and k2, ak1 is a positive semi-definite kernel if
a > 0 and k1 + k2 is also a positive definite kernel.

Proposition 2.5. We consider the following combination of kernel k1 and k2 are given as:

k(x, t) = k1(x, t)k2(x, t)

where x, t ∈ Rd is a kernel.

Proof. For the product of kernel, we have:

• We want to show that for positive semi-definite A and B where C = A�B is a positive semi-definite.

• Since A and B are positive semi-definite, where it can be factorized as A = UUT and B = V V T for
U ,V ∈ Rn×n as we have:

n∑
i=1

n∑
j=1

zizjCij =

n∑
i=1

n∑
j=1

zizj

(
n∑
r=1

UirUjr

)(
n∑
s=1

VisVjs

)

=

n∑
i=1

n∑
j=1

n∑
r=1

n∑
s=1

zizjUirUjrVisVjs

=

n∑
r=1

n∑
s=1

n∑
i=1

n∑
j=1

zizjUirUjrVisVjs

=

n∑
r=1

n∑
s=1

n∑
i=1

ziUirVis

n∑
j=1

zjUjiVjs =

n∑
r=1

n∑
s=1

(
n∑
i=1

ziUirVis

)2

≥ 0

Thus complete the proof. This proves the polynomial kernel is positive definite kernel.

Remark 12. (Several Kernels) We have the following positve definite kernel, where we have a ≥ 0:

• k(x, t) = (xT t)r

• k(x, t) = (a+ xT t)r

• k(x, t) =
∑d
i=1(ai/i!)(xT t)r

12

• Gaussian Kernel: k(x, t) = exp(−β ‖x− t‖2) for β > 0 the data x, t ∈ Rn (It has infinite dimensional
feature map)

• ANOVA kernel: k(x, t) =
∏n
i=1(1 + xiti)

Remark 13. Consider the following polynomial kernel as we have:

d∑
i=1

ai

i!
(xT t)i

Suppose we have r = ∞, this can converge uniformly to exp(axT t) showing that it is a kernel, where if
n = 1, the feature map is:

φ =

(
1,
√

2x,

√
a

2
x2,

√
a3

6
x3, · · ·

)
=

(√
ai

i!
: i ∈ N

)

Definition 2.10. (Transition Invariance/Radial Kernel) We say that a kernel k : Rd × Rd → R is:

• Transition Invariance: If the kernel has the form:

k(x, t) = H(x− t)

for all x, t ∈ Rd where H : Rd → R is a differentiable function.

• Radial, if kernel has the form:
k(x, t) = h(‖x− t‖)

for all x, t ∈ Rd where h : [0,∞)→ [0, θ) is the differentiable function.

Remark 14. The important example of a radial kernel in the Gaussian kernel as we have:

k(x, t) = exp(−β ‖x− t‖2)

which is a product of 2 kernel as k(x, t) = exp(−β(xTx+ tT t)) exp(2βxT t)

Remark 15. (Ridge Regression with Feature Map) Given the dataset X ∈ Rm×n and y ∈ Rm×1.
Starting with the basis function φ1, . . . , φN where φi : Rn → R with the map:

Φ =

φ1(x1) · · · φN (x1)
...

. . .
...

φ1(xm) · · · φN (xm)

 ∈ Rm×N

We have the regression coefficient as we have w = (ΦTΦ + λIN)−1ΦTy

Remark 16. (Kernel Ridge Regression) Given the same setting, a kernel function Rn × Rn → R, where
the kernel matrix is given by:

K =

k(x1,x1) · · · k(x1,xn)
...

. . .
...

k(xn,x1) · · · k(xn,xn)

 ∈ Rm×m

Regression coefficient is then given by α = (K + λIm)−1y as the function is:

ŷ(x) =

m∑
i=1

αik(xi,x)

13

3 Support Vector Machine

3.1 Forming Problems

Definition 3.1. (Seperating Hyperplane) Let the dataset be S = {(xi, yi)}mi=1 ∈ Rn × {−1, 1}. The
hyperplane is the set such that:

Hw,b =
{
x ∈ Rn : wTx+ b = 0

}
Definition 3.2. (Linearly Separatable) The data are linearly separatable if there exists w ∈ Rn and
b ∈ R such that:

yi(w
Txi + b) > 0

for i = 1, . . . ,m, which we call Hw,b a separating hyperplane. Note that it is a strict inequality.

Proposition 3.1. (Finding A distance from Plane) If Hw,b is a hyperplane, we also define the distance
from a point x to be:

wTx+ b

‖w‖

Proof. We consider the projection from the point x to Hw,b as we have:

p = x− w(b+wTx)

‖w‖2

To show that p is indeed a projection:

• We will have to show that p is on hyperplane

wTp+ b = wTx− w
Tw(b+wTx)

‖w‖2
+ b = 0

• x− p is orthogonal to p− x′ where x′ is any point from on the hyperplane:

(p− x)T (p− x′) =

〈
−w(b+wTx)

‖w‖2
,p− x′

〉

=

〈
−w(b+wTx)

‖w‖2
,x− w(b+wTx)

‖w‖2
− x′

〉

=

〈
−w(b+wTx)

‖w‖2
,x− x′

〉
+

〈
w(b+wTx)

‖w‖2
,
w(b+wTx)

‖w‖2

〉

=

〈
−w(b+wTx)

‖w‖2
,x− x′

〉
+
‖w‖2 (b+wTx)2

‖w‖4

= −b+wTx

‖w‖2
〈w,x− x′〉+

(b+wTx)2

‖w‖2

= − (b+wTx)(wTx−wTx′)

‖w‖2
〈w,x− x′〉+

(b+wTx)2

‖w‖2

= −b(w
Tx)− b(wTx′) + (wTx)2 − (wTx)(wTx′)

‖w‖2
+

(b+wTx)2

‖w‖2

= −b(w
Tx) + b2 + (wTx)2 + (wTx)b

‖w‖2
+

(b+wTx)2

‖w‖2
= 0

Please note that wTx′ + b = 0.

14

Now, we are left to find the distance between p and x, which we can find it to be:

√
(p− x)T (p− x) =

√√√√〈w(b+wTx)

‖w‖2
,
w(b+wTx)

‖w‖2

〉
=

∣∣b+ xTw
∣∣

‖w‖

Thus complete the proof.

Definition 3.3. (Margin) As we have the distance from a point x to the plane Hw,b to be ρx(w, b) . If
Hw,b separates the training set S, we define a margin as:

ρS(w, b) = min
i∈[m]

ρxi(w, b)

Definition 3.4. (Optimal Separating Hyper-Planes) We want to find the weight and bias of a sepa-
rating hyperplane such that the the margin is maximized :

ρ(S) = max
w,b

min
i∈[m]

{
yi(w

Txi + b)

‖w‖
: yj(w

Txj + b) > 0 for j ∈ [m]

}
Furthermore, to get the unqiue w, b, we may consider 2 choices:

• Set ‖w‖ = 1, so ρx(w, b) =
∣∣wTx+ b

∣∣ and so:

ρS = min
i∈[m]

yi(w
Txi + b)

• Choose ‖w‖ such that ρS(w, b) = 1/ ‖w‖ or:

min
i∈[m]

yi(w
Txi + b) = 1

We will consider the second case.

Proposition 3.2. The optimal separating hyperplane is equivalent to following optimization problem:

min
w,b

1

2
wTw

s.t yi(w
Txi + b) ≥ 1

for w ∈ Rn. The quantity 1/ ‖w‖ is the margin of optimal separating hyperplane.

Proof. We have following the second case:

ρ(S) = max
w,b

{
1

‖w‖
: min
j∈[m]

{
yj(w

Txj + b)
}

= 0, yk(wTxk + b) > 0 for k ∈ [m]

}
= max

w,b

{
1

‖w‖
:
{
yj(w

Txj + b)
}
≥ 1

}
=

1

minw,b {‖x‖ : {yj(wTxj + b)} ≥ 1}

Proposition 3.3. To minimize a differentiable convex function f(z) : Rn → R subjected to linear inequality
Az ≤ c. We may solve the problem with Lagragian:

L(x,α) = f(x)−αT (Ax− c)

If the optimization problem is feasible that is {x : Ax ≤ c} 6= ∅, we can show that:

max
α≥0

min
x
L(x,α) = min

x
f(x) s.t Ax ≤ c

And there is a necessary and sufficient condition called KKT for a solution (α∗z∗):

15

• Ax∗ ≤ c

• α∗ ≥ 0

• ∇xL(x,α)|x∗ = 0

• (Ax∗ − c)iα∗i = 0i for i ∈ [m]

Proposition 3.4. The dual form for the SVM is:

max
α

− 1

2
αTAα+

m∑
i=1

αi

s.t

m∑
i=1

yiαi = 0 for i ∈ [m]

αi ≥ 0

where A = (yiyjx
T
i xj : i, j ∈ [m]). The solution to the primal problem is:

w∗ =

m∑
i=1

α∗i yixi

as the weight is the linear combination of the data. Finally the variable b∗ can be determine by find the
weight xj that satisfies the condition:

yi((w
∗)Txi + b)− 1 = 0

Then we bias can be found by rearrange as we have b∗ = yi− (w∗)Txj. The point that satisfies this conditon
is called support vector.

Proof. We consider the Lagragian to be:

L(w, b;α) =
1

2
wTw −

m∑
i=1

αi[yi(w
Txi + b)− 1]

where αi ≥ 0 is Lagragian multipler. Let’s minimize L over w and b and maximized over α with α ≥ 0. We
can see that the partial derivative is:

∂L

∂b
= −

m∑
i=1

yiαi = 0

∂L

∂w
= w −

m∑
i=1

αiyixi = 0 =⇒ w =

m∑
i=1

αiyixi

Now, we can see that the optimal weight will have the linear combination term. Let’s plugging this back
into Lagragian and we have:

1

2
wTw︸ ︷︷ ︸
αTAα

−
m∑
i=1

αiyiw
Txi︸ ︷︷ ︸

αTAα

− b
m∑
i=1

αiyi︸ ︷︷ ︸
0

+

m∑
i=1

αi

Remark 17. The new point x can be classified as:

sign

(
m∑
i=1

yiα
∗
ix

T
i xi + b∗

)
One can show that the expected generalization error of SVM trained on m− 1 sample is bounded by nsv/m,
where nsv is the number of support vector.

16

Remark 18. (Linear Non-Separatable Case) We would like to minimize the following objective function:

1

2
wTw + C

m∑
i=1

Vmc(yi,w
Txi + b)

as we have Vmc(y, ŷ) = I[y = sign(ŷ)] but it is NP-Hard and so we will have to convexify the problem by
consider the hinge loss, instead:

Vhinge(y, ŷ) = max(0, 1− hŷ)

This will gives us the convex optimization.

Proposition 3.5. The hinge loss can be reformulated using the slack variable and gives us the following
optimization problem:

min
w,b

1

2
wTw + C

m∑
i=1

ξi

s.t yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0 for i ∈ i = 1, . . . ,m

This would in turn, gives us the following dual problem:

max
α

− 1

2
αTAα+

m∑
i=1

αi

s.t

m∑
i=1

yiαi = 0 for i ∈ [m]

0 ≤ αi ≤ C

We will consider the implication of KKT conditon afterward.

Proof. We now have the following Lagragian to be:

L(w, b;α) =
1

2
wTw + C

m∑
i=1

ξi −
m∑
i=1

αi[yi(w
Txi + b)− 1]−

m∑
i=1

βiξi

where αi, βi ≥ 0 are Lagragian multipler. We minimize L over (w, ξ, b) and maxmize L with respected to
the variables as:

∂L

∂b
= −

m∑
i=1

yiαi = 0

∂L

∂w
= w −

m∑
i=1

αiyixi = 0 =⇒ w =

m∑
i=1

αiyixi

∂L

∂ξi
= c− αi − βi = 0 =⇒ 0 ≤ αi ≤ C

Plugging this back gives us the dual form. Please note that both αi, βi ≥ 0

Remark 19. (Interpretation of The Results) The dual problem is similar to the eariler linear separatable
case, as we have additional box constraint. The weight is given as:

w∗ =

m∑
i=1

α∗i yixi

where b∗ is the same. For a new KKT conditon, we have:

α∗i (yi(w
∗)Txi + b∗ − 1 + ξ∗i) = 0

(C − α∗i)ξ∗i = 0

where the second equation follows from β∗i = C − α∗i . There are difference points to consider:

17

• yi(w∗)Txi + b∗ > 1 implies that α∗i = 0 where the point isn’t support vector.

• yi(w∗)Txi + b∗ < 1 implies that α∗i = C where the point is a support vector slack ξ∗i outlier.

• yi(w∗)Txi + b∗ = 1 implies that α∗i ∈ [0, C] and if α∗i > 0, it is a support vector on a margin.

On the otherhand, we have:

• α∗i = 0 then we have yi(w
∗)Txi + b∗ ≥ 1 and ξ∗i = 0

• α∗i ∈ (0, C) then we have yi(w
∗)Txi + b∗ = 1 and ξ∗i = 0

• α∗i = C then we have yi(w
∗)Txi + b∗ ≤ 1 and ξ∗i ≥ 0

Remark 20. The role of parameter C is that:

• The parameter C controls the trade-off between ‖w‖2 and the training error
∑m
i=1 ξi

• The value of α∗i is piecewise quadratic of C

• C is selected by minimizing leave-one-out (LOO) cross-validation error.

To compute the LOO error, we need to retrain the SVM no more than the number of support vector making
it fast to train. One can observe that we can use the nsv/m as an upper bound on LOO error.

Definition 3.5. (Kernelized SVM) Given the feature map φ(x) : X → W, we can replace x with φ(x)
and xT t by 〈φ(x),φ(t)〉. The result function is:

f(x) =

m∑
i=1

yiαik(xi,x) + b

The parameter can be found using the matrix A = (yiyjk(xi,xj) : i, j ∈ [m]) and the new point is classified
the same.

Remark 21. (Connection to the Regularization) SVM formulation is equivalent to the following problem:

Eλ =

m∑
i=1

max
(

1− yi (〈w,φ(xi)〉+ b) , 0
)

+ λ ‖w‖2

where we set λ = 1/(2C) and so we have:

min
w,b,ξ

{
C

m∑
i=1

ξi +
1

2
‖w‖2 : yi (〈w,φ(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0

}

= min
w,b

{
min
ξ

{
C

m∑
i=1

ξi +
1

2
‖w‖2 : yi (〈w,φ(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0

}}

= min
w,b

{
C

m∑
i=1

(
1− yi (〈w,φ(xi)〉+ b) , 0

)
+

1

2
‖w‖2

}
= CE1/(2C)(w, b)

Remark 22. (SVM for Regression) If we have the regression for the SVM, then we use the following loss:

|y − f(x)|ε = max(|y − f(x)| − ε, 0)

This would gives the following optimization problem:

min
1

2
wTw + C

m∑
i=1

(ξi + ξ∗i)

s.t wTxi + b− yi ≤ ε+ ξi

yi −wTxi − b ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0 for i ∈ [m]

18

Please note that the loss function is scale sensitive as the error below certain. This gives the sparse solution.
One can use decompositve to solve all of the KKT problems.

4 Tree Based and Ensemble Model

4.1 Tree Based Method

Definition 4.1. (Tree Method) We are interesting to partition the input space into retangles and fit
simple model in each one; for example, we have the function:

f(x) =

P∑
p=1

cpI[x ∈ Rp]

Where we hve the following:

• We partition the input space with hyper-retangle R1, R2, . . . , Rp where:
⋃P
p=1Rp = X and Ra∩Rb = ∅

if a 6= b

• {cp}Pp=1 is some real parameter with a natural choice to be:

cp = avg(yi|xi ∈ Rp) =

∑m
i=1 yiI[xi ∈ Rp]∑m
i=1 I[xi ∈ Rp]

We are interested to solving the following optimization problem:

min
R1,...,Rp

m∑
i=1

(
yi −

P∑
p=1

avg(yi|xi ∈ Rp)I[xi ∈ Rp]

)2

Definition 4.2. (Heuristic Search) It seem to be intractable, so we need heuristic approach. Let’s find
the way to split the tree. Define a pair of axis parallel half-spaces:

R1(j, s) = {x|xj ≤ s} R2(j, s) = {x|xj > s}

Then we search for optimal values j∗ and s∗, which solves the problem:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1(xi))
2 + min

c2

∑
xi∈R2(j,s)

(yi − c2(xi))
2

The inner minimizer is solved by:

c∗1 = avg(yi|xi ∈ R1(j, s)) c∗2 = avg(yi|xi ∈ R2(j, s))

For each splitting variable j, the search for best split at point s can be don by O(m) computation. Thus,
the problem is solved in O(nm) computation. The decision tree can be solved by repeatedly splitting the
tree branches.

Remark 23. (Overfitting) If we keep repeating the heuristic search process, we will overfit the data. There
are several ways to fix this:

• The following the split only if it decreases the empirical error more than the threshold. However, this
might be the best as we might find split below a bad mode.

• We might consider the maximal depth of split tree is reached. This could leads to an underfitting or
overfitting. We need to look at the data to determine the size of tree.

19

Remark 24. (Solving Overfitting) We choose the tree adapting from the data. We grows the large tree T̂
(stopping when the maximum number of data is assigned at each node). Now consider the prune the tree
with cost complexity pruining i.e looks for subtree Tλ ⊆ T̂ that minimizes:

Cλ(T) =

|T |∑
p=1

mpQp(T) + λ |T |

where T is the subtree of T̂ , where we have:

• p runs over leaf nodes of T (a subset of the nodes of T̂)

• mp is the number of data point assigned to node p

• Qp is the training error given as:

Qp =
1

mp

∑
xi∈Rp

(yi − cp)2

At the first term in Cλ is the training error.

One can show that there is a unique Tλ ⊆ T̂ , with minimize Cλ, while a good value of λ can be found by
cross-validation.

Definition 4.3. (Weakest Link Pruning) We successively collapse the internal nodes that produces the
smallest per node increase in:

|T |∑
p=1

mpQp(T)

We continue until the root the tree is produce. As now, we have a list of prunned trees. We can search along
this list for the one that miminizes the objective Cλ, and one can show that Tλ is in the produced list of
subtree, hence the algorithm gives the optimal solution.

Definition 4.4. (Classification Tree) When the output is a categorical variable, we use the same algorithm
above with 2 important modification:

• For each region Rn, we define the empirical class probability, as we have:

pnk =
1

mp

∑
(xi,yi)∈Rn

I[yi = k]

• We classify an input which falls in region n in the class with new probability as we have:

f(x) = arg max
k∈{1,...,K}

N∑
n=1

pnkI[x ∈ Rn]

Definition 4.5. (Impurity) We consider the training error Qp(T) to be called impurity, which in can be
one of these values:

• Misclassification Error : 1− ppk(n) where k(n) = arg maxk∈{1,...,k} pnk

• Gini-Index :
∑
k ppk(1− ppk)

• Cross-Entropy :
∑
k ppk log(1/ppk)

The cross-entropy or gini-index are used to growing the tree, while the misclassification error are often used
to prune the tree.

20

4.2 Ensemble Methods + Bagging

Theorem 4.1. (Chernoff-Bound) Let X1, X2, . . . , Xn be independent random variable. Assuning 0 ≤
xi ≤ 1. We denote the X =

∑n
i=1Xi and µ = E[X] =

∑n
i=1 E[Xi], then for all 0 ≤ k ≤ µ :

P(X ≤ k) ≤ exp

(
− (µ− k)2

2µ

)
Remark 25. (Motivation - Wisdom of the Crowd) A single individual might often wrong but the crowd
majority may often be corrected. Suppose each individual in the crowd h1, h2, . . . , h2T+1 of the size 2T + 1
predicts the outcome correctly with probability 1/2 + γ independent from each other. We consider the vote
of the crowd to be:

HT = sgn

(
2T+1∑
t=1

ht

)
The probability of HT being wrong is given as:

P(HT is wrong) =

T∑
i=1

(
2T + 1
i

)(
1

2
+ γ

)i(
1

2
− γ
)2T+1−i

We simplify the above using a Chernoff bound. We let X1, . . . , Xi, . . . , Xn be Bernoulli random variable
where Xi = 1 if voter i is correct and 0 otherwise. Taking k = T and n = 2T + 1 thus:

µ = (2T + 1)

(
1

2
+ γ

)
= T +

1

2
+ 2Tγ + γ

Now, we substuite the bound:

P(HT is wrong) ≤ exp

(
− (µ− T)2

2µ

)
= exp

(
− (1/2 + 2Tγ + γ)2

2(T + 1/2 + 2Tγ + γ)

)
≤ exp

(
−4T 2γ2

5T

)
= exp

(
−4γ2

5
T

)
The bound may be too crude but the probability of getting wrong, exponentially decays to zero.

Definition 4.6. (Bagging Algorithm) The idea of bagging algorithm is to reduce the variance of a
classifier by having many variances of the classifier and then voting. We have the following algorithm:

• Training data: S = {(x1, y1), . . . , (xm, ym)} ⊂ Rd × {−1, 1}

• Ensemble of size T

• Resample dataset of size M

• Classifier function hS(x)

This leads to the following pseudocode:

Algorithm 1 Bagging Algorithm

1: for t = 1, 2, · · · , T do
2: S[t] = M examples sampled with repalcement from S
3: end for
4: Return: We perform the following prediction:

H(x) = sgm

(
T∑
t=1

hS[t](x)

)

21

We may set M to be m.

Remark 26. If we set M = m, we can find the number of unique example from S are in bag S(t). The
probability that a particular example doesn’t appear in the bag is (1− 1/m)m, and please note that:

lim
m→∞

(
1− 1

m

)m
=

1

e
≈ 0.368..

so there will be around 63% examples in each dataset S[t].

Definition 4.7. (Random Forest) We observe the wisdom of the crowds argument. We can build a tree
using a subset of size k features, which is usually

√
d or log d.

4.3 Boosting

Remark 27. (Concept of Boosting) Some of the problem is easy to find the “rule of thumb” that is usually
correct. It is hard to find accurate prediction rule. To boosting algorithm is given by:

• Create a computer program for derriving rough rule of thumb.

• We can shoow a rule of thumb to fit a subset of example.

• Repeat T times.

• Combined the classifier by weighted majority votes.

There are two concerns: How do we choose the subset of examples ? At each round as we want to concentrate
on the hardest example. How do we combine the weak learner ? This can be done by weighted majority.

Definition 4.8. (Notation Used in Boosting) We have the following variables, as we have:

• Dt(i): Weight on example i at time t when
∑m
i=1Dt(i) = 1

• αt: Weight on weak learner t where αt ∈ R

• ht(·) : Rd → {−1,+1}: Weak learner that is generated at time t.

• f(·): Weighted on weak learner.
∑T
t=1 αtht(x)

• H(x) = sgn(f(x)): Final classifier.

• εt: Weight error of weak learner ht(·) at time t:

εt =

m∑
i=1

Dt(i)I[ht(xi) 6= yi]

• Weak learning will generate the output:

Dt(1), . . . , Dt(m), (x1, y1), . . . , (xm, ym)

The weak-learner will output a weaker learner ht(·) such that εt < 1/2

Definition 4.9. (Adaboost Algorithm) We have the following pseudocode for the adaboost this is shown
in the pseudocode 2.

22

Algorithm 2 Adaboost

1: Input: Training set S = {(x1, y1), . . . , (xm, ym)}
2: Initialize: D1(1) = · · · = D1(m) = 1/m
3: for i = 1, 2, · · · , T do
4: Fit the classifier ht : Rd → {−1, 1} using a distribution Dt

5: Choose αt ∈ R:

αt =
1

2
log

1− εt
εt

6: Update for each i ∈ [m], where Zt is normalization factor:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

7: end for
8: Return: Classifier is given as:

H(x) = sgn

(
T∑
t=1

αtht(x)

)

Typically εt ≤ 0.5 hence αt ≥ 0. Thus f is a linear combination of ht with weights controlled by training
error. The basic intuition for the adaboost assign a larger weight are assigned to hard examples, hence the
weak learner will focus on those example.

Theorem 4.2. Given a training set {(x1, y1), . . . , (xm, ym)} and assume that each iteration of Adaboost
the weak learner reutrns a hypothesis with a weighted error 1/2 − γ ≥ εt, then training error of the output
hypothesis is at most:

1

m

m∑
i=1

I[H(xi) 6= yi] ≤ exp(−2γ2T)

Proof. Please note that the training error is bounded as:

1

m

m∑
i=1

I[H(xi) 6= yi] ≤
1

m

m∑
i=1

exp(−yif(xi))

where f =
∑
t αtht so that H(x) = sgn(f(x)). The inequality follows from H(xi) 6= yi implies that

exp(−yif(xi)) ≥ 1. Now consider the definition of Dt where, recursively:

DT+1(i) =
1

m

∏T
t=1 exp(−αtyiht(xi))∏T

t=1 Zt

We can expand this equation, where we have:

1

m

m∑
i=1

exp(−yif(xi)) =
1

m

m∑
i=1

exp

(
−yi

T∑
t=1

αtht(xi)

)

=
1

m

m∑
i=1

T∏
t=1

exp(−yiαtht(xi))

=

m∑
i=1

DT+1(i)

T∏
t=1

Zt =

T∏
t=1

Zt

If at each iteration, we choose αt and ht by minimizing Zt, the final training error of H will be reduced most
rapidly. Recall that:

Zt =

m∑
i=1

Dt(i) exp(−αtyiht(xi))

23

Using the fact that Zt is a binary, we have that:

Zt = exp(αt)
∑

i:yi 6=ht(xi)

Dt(i) + exp(−αt)
∑

i:yi=ht(xi)

Dt(i)

= εt exp(αt) + (1− εt) exp(−αt)

Setting the derivative of Zt to zero with respected to αt, which gives us the weight:

αt =
1

2
log

1− εt
εt

Placing αt to the value Zt, and we have:

Zt = εt exp(αt) + (1− εt) exp(−αt)

= 2
√
εt(1− εt) =

√
1− 4γ2

t

Please note that γt = 1/2− εt. Hence we have:

1

m

m∑
i=1

I[H(xi) 6= yi] ≤
T∏
t=1

Zt =

T∏
t=1

√
1− 4γ2

t ≤ exp

(
−2

T∑
t=1

γ2
t

)
The final inequality use the fact that 1− x ≤ exp(x). If each weak classifier is slightly better than random
guessing, the training drops exponentially fast.

Remark 28. (Derivation of Adaboost) The boosting can be seen as a greedy way to solve problem:

min

{
m∑
i=1

V

(
yi,

T∑
i=1

αtht(xi)

)
: α1, . . . , αT ∈ RT , h1, . . . , hT ∈ HT

}
where H is hypothesis class which contains the weaker learner and the loss function is exponential for
instance V (y, ŷ) = exp(−yŷ). At each iteration, a new basis function is added to the current basis expansion

f (t−1) =
∑t−1
s=1 αshs, which we have:

(αt, ht) = arg min
αt,ht

m∑
i=1

V
(
yi, f

(t−1)(xi) + αtht(xi)
)

unlike the decision tree, where each iteration in previous basis is re-adjusted. In statistics literature, this
kind of model is called stagewise additive model. To derive the adaboost, substute V (y, ŷ) = exp(−yŷ) and
we consider the followimg optimization problem:

min
αt,ht

m∑
i=1

exp
(
−yi

(
f (t−1)(xi) + αtht(xi)

))
We define Dt(i) = exp(−yif (t−1)(xi)) as we have:

min
αt,ht

m∑
i=1

Dt(i) exp(−αtht(xi)yi)

We can see that the This equation can be rewritten as:

min
αt,ht

exp(αt)
∑

i:yi 6=hi(xi)

Dt(i) + exp(−αt)
∑

i:yi=ht(xi)

Dt(i)

= min
αt,ht

(
(eαt − e−αt)

m∑
i=1

Dt(i)I[yi 6= ht(xi)] + e−αt

m∑
i=1

Dt(i)

)
This is similar to the adaboost, which we have: ht minimizes the weight misclassification error weight by Dt
that is is propotional to adaboost Dt. Finally, minimization of αt is the same as adaboost.

24

Remark 29. (Classification and Regression) In the typical setup of classification as we have:

min
f∈F

m∑
i=1

V (yi, f(xi)) + λ complexity(f)

There are some problems with classification as we use the exponential loss. To make the class of function
F both rich and smooth, we have the function f that maps to R rather than {−1, 1} then predict the sign.
We have the typical loss function, where we have for y ∈ {−1,+1}:

• Misclassification Loss: Vmc(y, ŷ) = I[y = sgn(ŷ)]. It isn’t continuous.

• Hinge Loss: Vhinge(y, ŷ) = max(0, 1 − yŷ). It punishes the negative margin but not positive margin,
but it isn’t differetiable everywhere.

• Square Loss: Vsq(y, ŷ) = (y − ŷ)2. It unnecessary punishes predicting with increasing positive margin.

• Exponential Loss: Vexp(y, ŷ) = exp(−yŷ). It punishes negative margine and promote large positve
margin.

Thus the exponential loss is choosen.

5 Online Learning

5.1 Introduction

Definition 5.1. (Online Learning with Expert Advice) There exists an online sequence of data:

S = (x1, y1), . . . , (xm, ym) ∈ {0, 1}n × {0, 1}

The vector xt is the set of prediction of n experts at time t, which we aim to predict yt. We would like to
find an algorithm that tried to combine the prediction xt of the n expets to predict ŷt, an estimate of yt.
The loss of mater algorithm A on sequence S:

LA(S) =

m∑
t=1

|yt − ŷt|

We want to find an algorithm with a small loss.

Definition 5.2. (Regret) Recall the loss function LA(S) and we let:

Li(S) =

m∑
t=1

|yt − xt,i|

being the loss of i-th expert Ei. The aim of our algorithm should that the found of the form, such that for
all sequence S:

LA(S) ≤ amin
i
Li(S) + b log(n)

where a, b are small constant. This is known as regret as it is the loss of objective related to the best expert.

Definition 5.3. (Halving Algorithm) Suppose that there is an expert are consistent (gives correct an-
swer), we can perofrm the search on this consistent expert, in which we will have the correct prediction:

• If mistake is mad, the number of consistent experts is (at least) halved.

• For any sequence with consistent expert Halving algorithm made less than or equal to log2 n mistakes.

25

5.2 Learning from Expert Algorithm

Definition 5.4. (Weighted Majority) This algorithm for non-consistent expert, which we can perform
the prediction with larger scale. We have weight of the wrong expert is multiplied by β ∈ [0, 1).

Theorem 5.1. The number of mistake of master algorithm M , with β = 1/2 is given by:

M ≤ 2.63 min
i
Mi + 2.63 lnn

where Mi is the number of mistakes of expert Ei

Proof. We have the following quantities:

• Mt,i is the number of mistake of the expert i, Ei at the start of trial t.

• wt,i = βMt,i weights of Ei at the begin of trial t.

• Please note that w1,i = 1, and Wt =
∑n
i=1 wt,i is the total weight at trial t.

It is clear that the total weight of the minority is when it is less that 1/2Wt, but the total weight of the
majority is when it is more than 1/2Wt. There are 2 scenarios, which we have:

• If no mistake, the minority expert weight is multiplied by β as we have (Trivial Bound): Wt+1 ≤ 1 ·Wt

• If there is a mistake, the majority exper weights are multiplied by β as:

Wt+1 = Minority + βMajority

≤ 1

2
Wt + βMajority

≤ 1

2
Wt + β

1

2
Wt ≤

1 + β

2
Wt

The third inequality comes from the fact that the majority is at least 1/2Wt, making the upperbound
tighter.

This gives us: (
1 + β

2

)M
W1 ≥Wm+1 =

n∑
j=1

Wm+1,j =

n∑
j=1

βMj ≥ βMi

Note that M is number of mistakes, while m is number of running time. It is clear that W1 = n, solving for
M gives us:

M ≤ ln 1/β

ln 2/(1 + β)
Mi +

1

ln 2/(1 + β)
lnn

Setting β = 1/e yields the result, completing the proof.

Remark 30. (Notion of Regret) We would like to obtain regret bound for arbitary loss function L :
Y × Ŷ → [0,∞]. Making our notation of regre more precise:

LA(S)− min
i∈[n]

Li(S) ≤ o(m)

where o(m) denotes some function that is sublinear in m that depends on other parameter:

LA(S)−mini∈[n]Li(S)

m
≤ o(m)

m

Note that as m→∞:
LA(S)

m
≤ −

mini∈[n] Li(S)

m

The limit of the mean asympototic loss is bounded by the mean of asympototic loss of the best expert.

26

• The loss function L : {0, 1} × [0, 1]→ [0,∞) the entropic loss given by:

L(y, ŷ) = y ln
y

ŷ
+ (1− y) ln

1− y
1− ŷ

We can show that the regret with small constant with log(n)

• Arbitary loss function L : Y × Ŷ → [0, B]. The regret will be O(
√
m log n)

Definition 5.5. (Simplex and Related Entropy) We define the simplex over probability distribution:

∆n =

{
x : [0, 1]n :

n∑
i=1

xi = 1

}

We define the relative entropy d : ∆n ×∆n → [0,∞) as we have:

d(u,v) =

n∑
i=1

ui ln
ui
vi

we define the entropy loss is given as Len(y, ŷ) = d((y, 1− y), (ŷ, 1− ŷ))

Definition 5.6. (Weighted Average) We will consider a projection in [0, 1] rather than {0, 1}, and we
will predict with weighted average. One weight per expert as we have wt,i = βLi,t = exp(−ηLt,i) where Lt,i
is the cumulative loss of Ei before the trial t, while η is the learning rate. The master algorithm predicts
with the weighted average:

vt,i =
wt,i∑n
i=1 wt,i

ŷt =

n∑
i=1

vt,ixt,i = vTt xt

where the xt,i is the prediction of Ei at trial t. We start with the initialize weight v1 = w1 = (1/n, . . . , 1/n).
This gives the pseudocode:

Algorithm 3 Weighted Average

1: Input: Input v1 = w1 = (1/n, . . . , 1/n) with LWA = 0 and L = 0
2: for i = 1, 2, · · · ,m do
3: Receives instance xt ∈ [0, 1]n

4: Predict ŷt = vTt xt
5: Receives label yt ∈ [0, 1]
6: Incur Loss LWA = LWA + L(yt, ŷt) and Li = Li + L(yt, xt,i) for i ∈ [n]
7: Update Weight, for i ∈ [n]:

vt+1,i =
vt,i exp(−ηL(yt, xt,i))∑n
j=1 vt,j exp(−ηL(yt, xt,j))

8: end for

Theorem 5.2. For sequence of examples S = (x1, y1), . . . , (xm, ym) ∈ [0, 1]n × [0, 1]. The regret of the
weighted average WA algorithm is:

LWA(S)−min
i
Li(S) ≤ 1/η ln(n)

with square and entropic loss for η = 1/2 and η = 1 respectively.

Proof. We will proof the progress vs regret first, for all u ∈ ∆n. Let’s start with the assumption that yt = 1

27

and by the error Len(1, x) = − lnx, we have

d(u,vt)− d(u,vt+1) =

n∑
i=1

ui ln

(
vt+1,i

vt,i

)

=

n∑
i=1

ui ln

vt,i exp(−Len(1, xt,i))∑n
j=1 vt,j exp(−Len(1, xt,j))

vt,i

=

n∑
i=1

ui ln

vt,ixt,i∑n
j=1 vt,jxt,j

vt,i

=

n∑
i=1

ui ln
xt,i

ŷt
=

(
n∑
i=1

ui lnxt,i

)
− ln(ŷt)

= Len(yt, ŷt)−
n∑
i=1

uiLen(yt, xt,i)

This also works by symmetry with the case y = 0, and so the claim:

d(u,vt)− d(u,vt+1) = Len(yt, ŷt)−
n∑
i=1

uiLen(yt, xt,i)

is correct. Consider the telescoping sum, which we have:

m∑
t=1

Len(yt, ŷt)−
m∑
t=1

n∑
i=1

uiLen(yt, xt,i) = d(u,v1)− d(u,vm+1)

Note that for any u ∈ ∆n, espescially the unit vector, which is shown to be an upper bound, and we can see
that that d(u,v1) ≤ lnn and −d(u,vm+1) ≤ 0, and so we have proven the theorem, as:

m∑
t=1

Len(yt, ŷt)−
m∑
t=1

n∑
i=1

uiLen(yt, xt,i) =

m∑
t=1

Len(yt, ŷt)−min
i
Li(S)

≤ d(u,v1)− d(u,vm+1) ≤ ln(n)− 0

Note that we can have a unit vector ui that is the correct expert.

Definition 5.7. (Allocation Setting) On each trial, the learner plays an allocation vt ∈ ∆t , the the
nature returns the loss vector lt for example of the loss of expert i is lt,i. There are 2 models for the learner:

• We can consider the incure loss directly: LA(t) = vTt lt

• The learner randomly select ŷt ∈ [n] according to discrete distribution over [n] with probability vt,i for
each action, thus we have:

E[LA(t)] = E[Lt,ŷ] = vTt lt

The mechanism generating the loss vector lt must be obvious to the learner’s selection ŷ until t+ 1

This setting can simulate the setting where we rescue side-information xt and have a fixed loss function.

Theorem 5.3. (Hedge Theorem) For all sequence of loss vector S = l1, . . . , lm ∈ [0, 1]n. The regret of
the weighted average algorithm with η =

√
2m lnn is equal to:

E[LWA(S)]−min
i
Li(S) ≤

√
2m lnn

28

Proof. Given any u ∈ ∆n. Letting Zt =
∑n
i=1 vt,i exp(−ηlt,i), we observe that:

d(u,vt)− d(u,vt+1) =

n∑
i=1

ui ln
vt+1,i

vt,i

= −η
n∑
i=1

uilt,i −
n∑
i=1

ut,i lnZt

= −ηuT lt − ln

n∑
i=1

vt,i exp(−ηlt,i)

≥ −ηuT lt − ln

n∑
i=1

vt,i exp

(
−ηlt,i +

1

2
η2l2t,i

)

= −ηuT lt − ln

(
1− ηvTt lt +

1

2

n∑
i=1

vt,il
2
t,i

)

≥ η(vTt lt − uT lt)−
1

2
η2

n∑
i=1

vt,il
2
t,i

The first inequality uses exp(−x) ≥ 1 − x + x2/2 and the second inequality uses ln(1 + x) ≤ x. Now, let’s
consider the telescoping sum:

m∑
t=1

(vTt lt − uT lt) ≤
1

η
(d(u,v1)− d(u,vm+1)) +

η

2

m∑
t=1

n∑
i=1

vt,il
2
t,i

≤ lnn

η
+
η

2

m∑
t=1

n∑
i=1

vt,il
2
t,i

This holds for all u ∈ ∆n, it holds for a unit vector and we have the upper bound by noting that we have.
d(u,v1) ≤ lnn and −d(u,vm+1) ≤ 0 and we have:

m∑
t=1

n∑
i=1

vt,il
2
t,i ≤ m

We can set η =
√

2 lnn/m, as we have proven the thoerem, as we can set η =
√

2 lnn/m, which we have
prove the thoerem.

5.3 Online Learning of Linear Classifier

Definition 5.8. (Problem) We have the sequence of data: S = (x1, y1), . . . , (xm, ym) and the total loss is
given by L)A(S). The regret is defined as:

LA(S)− inf
u∈U

Lossu(S)

where U is a set of linear threshold function, as we will focus on the case where there exists u ∈ U such that
Lossu(S) = 0, which is a reliable case.

Definition 5.9. (Linear Threshold) The linear threshold fu,b : Rn → {−1, 1} function is:

fu,b(x) = sgn(uTx+ b)

The separating by hyperplane. The comparision class of all linear threshold function:

Uit = {fu,b : u ∈ Rn, b ∈ R}

29

Remark 31. (Assumption) Data is linear separatable by some margin γ. Hence there exists a linear
hyperplane with normal vector v such that: ‖v‖ = 1 and for all (xt, yt), which we have yt ∈ {−1, 1}, and
‖xt‖ ≤ R and yt(x

T
t v) ≥ γ

Definition 5.10. (Perceptron Learning Algorithm) We consider the following learning algorithm

Algorithm 4 Perceptron Learning Algorithm

1: Initialize: w1 = 0 and M1 = 0
2: for i = 1, 2, · · · ,m do
3: Receives Pattern xt ∈ Rn
4: Predict ŷt = sgn(wT

t xt)
5: Receives Label yt
6: if Mistake ytŷt ≤ 0 then
7: Update wt+1 = wt + ytxt
8: Mt+1 = Mt + 1
9: else

10: wt+1 = wt and Mt+1 = Mt

11: end if
12: end for

Lemma 5.1. If (wT
t xt)yt < 0 then ‖wt+1‖2 ≤ ‖wt‖2 + ‖xt‖2

Proof. We have the following inequality:

‖wt+1‖2 = ‖wt + ytxt‖2

= ‖wt‖2 + 2yt(w
T
t xt) + ‖xt‖2

≤ ‖wt‖2 + ‖xt‖2

Lemma 5.2. ‖wt‖2 ≤MtR
2

Proof. Using induction, as we have:

• Base: M1 = 0 and ‖w1‖2 = 0

• Induction step, when we have a mistake on the trial t as we have:

‖wt+1‖2 ≤ ‖wt‖2 + ‖xt‖2 ≤ ‖wt‖2 +R2 ≤ (Mt + 1)R2

If there is no mistake, then the outcome is trivial as we have wt+1 = wt and Mt+1 = Mt

Lemma 5.3. ‖wt‖2 ≥Mtγ

Proof. Observe that ‖wt‖ ≥ wT
t v because ‖v‖ = 1 (via Cauchy-Schawarz). The prove of the lower bound

wT
t v using the induction over t:

• Induction hypothesis wT
t v ≥Mtγ

• Base t = 1, we have wT
1 v = 0

• Induction step: Assume for t and prove for t+ 1, if there is a mistake as we have:

wT
t+1v = (wt + xtyt)

Tv

= wT
t v + ytx

T
t v

≥Mtγ + γ = (Mt + 1)γ

This works in the case of non-mistake.

30

Theorem 5.4. For all sequence of examples S = (x1, y1), . . . , (xm, ym) ∈ Rn × {−1,+1}. This mistake of
the PERCEPTRON algorithm is bounded by:

M ≤
(
R

γ

)2

with R = maxt ‖xt‖. If there exists a vector v with ‖v‖ = 1 and constant γ such that (vTxt)yt ≥ γ

Proof. We use the bound on the norm of the weight ‖wt‖ as we have:

(Mγ)2 ≤ ‖wt+1‖2 ≤MR2

and the inequality follows.

Remark 32. It is conveinece to express the bound in the form M ≤ R2 ‖u‖2 where u = v/γ then we have
for all u such that (uTxt)yt ≥ 1.

Remark 33. (Additional Problem) Suppose that wm+1 doesn’t necessary linearly separate S. How can
we use the PERCEPTRON to define a vector w and how long that would take ?

Remark 34. (Gradien Descent) Recalling the regularization approach to supervised learning as we have:

h∗ = arg min
h∈H

m∑
t=1

L(yt, h(xt)) + λ penalty(h)

We consider the soft-margin SVM, which we have the following loss function:

arg min
w∈Rn,b∈R

m∑
i=1

hhi(yt,w
Txt + b) + λ ‖w‖2

where hhi(y, ŷ) = max(0, 1− yŷ), which we can consider the followimg optimization problem:

wt+1 = arg min
w∈Rn

Lhi(yi,w
Txt) + λ ‖w −wt‖2

Solving this problem, gives us:

wt+1 =

wt yt(w
Txt) > 1

wt +
ytxt

2λ
yt(w

Txt) < 1

Definition 5.11. (Online Gradient Descent) We consider the online gradient descent with hinge loss

and ‖·‖22 penalty, which we have the following pseudocode:

Algorithm 5 Online Gradient Descent

1: Initialize: w1 = 0 and LOGD = 0
2: Select η ∈ (0,∞)
3: for i = 1, 2, · · · ,m do
4: Receives instance xt ∈ Rn
5: Predict ŷt = wT

t xt
6: Receives Lable yt ∈ {+1,−1}
7: Incur Loss LOGD = LOGD + Lhi(yt, ŷt)
8: Update weight wt+1 = wt + I[ytŷt < 1]ηytxt
9: end for

31

Theorem 5.5. Given R = maxt ‖xt‖ and ‖u‖ ≤ U . For the algorithm OGD with η = U/(R
√
m) as:

m∑
t=1

Lhi(yt, ŷt)− Lhi(yt,u
Txt) ≤

√
U2R2m

for any vector u.

Proof. Using the convexity of the hinge loss (with respected to 2nd argument), which we have:

Lhi(yt, ŷt)− Lhi(yt,u
Tx) ≤ (wt − u)Tzt

where zt = −ytxt[yt(wT
t xt) < 1] ∈ ∂whhi(yt,w

T
t x). For the update, we have:

‖wt+1 − u‖2 = ‖wt − ηzt − u‖2

= ‖wt − u‖2 − 2η(wt − u)Tzt + η2 ‖zt‖2

And so, we have the:

(wt − ut)Tzt =
1

2η

(
‖wt − u‖2 − ‖wt+1 − u‖2 + η2 ‖zt‖2

)
and so we have:

m∑
t=1

(wt − u)Tzt =

m∑
t=1

1

2η

(
‖wt − u‖2 − ‖wt+1 − u‖2 + η2 ‖zt‖2

)
≤ 1

2η

(∥∥u2
∥∥+ η2

m∑
t=1

‖zt‖2
)

=
1

2η
‖u‖2 +

η

2

m∑
t=1

‖xt‖2 I[yt(wT
t xt) < 1]

≤ 1

2η
U2 +

η

2
mR2 =

√
U2R2m

as we have η = U/(R
√
m) and using the result from the convex setting yields the result.

Remark 35. (Perceptron Bound) The perceptron bound can be arrived by using the analysis of the OGD
above as we have:

• If we consider the hinge, we have:

m∑
t=1

I[yt 6= sgn(ŷt)]− Lhi(yt,u
Txt) ≥

√
U2R2m

• Assuming that there is a linear classifier u such that yt(u
Txt) ≥ 1 for all t = 1, . . . ,m as we have:

m∑
t=1

I[yt 6= sgn(ŷt)] ≥
√
U2R2m

• Make OGD conservative that we only update when ytŷt ≤ 0 instead of ytŷt ≤ 1 as we have the trial
when mistake is made.

• With respect to the bound, we can ignore the trial, which the mistake is made, so we can take the
value m = M :=

∑m
t=1 I[yt 6= sgn(ŷt)], which implies that:

M ≤
√
U2R2M =⇒ M ≤ U2R2

32

• We can set η = 1 as its number doesn’t matter at all. Recall the update rule for the perceptron, when
mistake is made, with learning rate η: wt+1 = wt + ηytxt, as we have:

w =
∑

m:mistake

ηytxt

If η > 0, then we have η
∑
m:mistake ytxt. Note that the prediction made by perceptron is based on the

sign of the dot product, and so η doesn’t take on any effect.

5.4 Disjunction Learning

Definition 5.12. (Boolean Function) The boolean function f may be represented as a map f : {0, 1}n →
{0, 1} where, we have the following:

• x1 ∧ x2 = x1x2

• x1 ∨ x2 = sign(x1 + x2)

• x̄ = 1− x

Furthermore, we have the following addiitonal definiiton for the boolean function:

• Single variable is called a literal.

• Term or Conjuction is an iterated “and” applied.

• Clause or Disjunction is an iterated “or” applied.

• Monotone disjunction or conjuction implies no negated literal.

Remark 36. (Naive Weighted-Majority) The goal is to predict as well as k-literal (monotone) disjunction
(over n variables). We can consider the use of weighted majority as each experts are disjunction of various

variable and size. So, we have

(
n
k

)
total expert and weights. This gives us the following bound:

Mistake ≤ 2.63M + 2.63k ln
nl

k

where M is the mistakes of best disjunction, while we use the inequality(
n
k

)
≤
(ne
k

)k
It is clear that the time and space are exponent in k (run time). We need better algorithm.

Corollary 5.1. With the feature map φ(x) = (x, 1), we use the perceptron to learn monotone disjunction:

M ≤ (4k + 1)(n+ 1)

when k is the number of literal out of the n possible literal. And, so there exists a generic lower bound for
rotation invariance algorithm (SVM and perceptron) where M = Ω(n)

Proof. We use the following perceptron bound:

M ≤ R2 ‖u‖2

for all u such that (uTxt)yt ≥ 1. With x ∈ {0, 1}n, the the feature map φ(x) = (x, 1), claim the following
that u∗ ∈ Rn+1 separate with margin of 1, where:

u∗i =

2 i is a literal

0 i isn’t a literal

−1 i is biase weight

Such that, we have the following calculation:

33

• (u∗)Tφ(x) ≥ 1 as we have positive example yt = 1

• (u∗)Tφ(x) = −1 as we have negative example yt = −1

Note that for some x ∈ {0, 1}n, then ‖φ(x)‖2 ≤ n + 1 and we have ‖u∗‖2 = 4k + 1, thus we have
M ≤ (4k + 1)(n+ 1) as required.

Definition 5.13. (Winnow Algorithm) We define the winnow algorithm to be

Algorithm 6 Winnow Algorithm

1: Input: (x1, y1), . . . , (xm, ym) ∈ {0, 1}n × {0, 1}
2: Initialize: w1 = 1
3: Select η ∈ (0,∞)
4: for i = 1, 2, · · · ,m do
5: Receives instances xt ∈ {0, 1}n
6: Predict the value:

ŷt =

{
0 wT

t xt < n

1 wT
t xt ≥ n

7: Receives the label yt ∈ {0, 1}
8: if Mistake ŷt 6= yt then
9: Update the value:

wt+1,i = wt,i2
(yt−ŷt)xt,i for i ∈ [n]

10: end if
11: end for

Theorem 5.6. The mistake of winnow is bounded by:

M ≤ 3k(log n+ 1) + 2

Proof. Let’s consider 2 scenarios as we consider the bound on mistake:

• On a mistake, at least one element weight is doubled and the relevent weight never decreases.

• Once it the weight wt,i ≥ n, it will no longer change (it will saturated to n) and so the mistake is:

Mp ≤ k(log n+ 1)

where Mp is the bound on the positive example yt = 1

Let Wt =
∑n
i=1 wt,i. We can see that W1 = n, and so:

• On the positive mistake (yt = 1) we have Wt+1 ≤Wt + n (as we can only double it)

• On the negative mistake (yt = 0) we have Wt+1 ≤Wt−n/2 as we can only half the number of weights.

Consider the progression of weights, we can see that:

0 ≤Wm+1 ≤W1 +Mpn−Mfn/2 = n+Mpn−Mfn/2

Thus, we have Mf ≤ 2k(log n+ 1) + 2, where Mp is the bound on the positive example yt = 0. Combining
them and we have:

M ≤Mp +Mf ≤ 2 + 3k(log n+ 1)

34

Remark 37. There are several observation that we have to make:

• WINNOW is an improvement over PERCEPTRON in terms of dimension m in the mistake bound.

• The bound for linear threshold learning for the WINNOW is incompatible as the algorithm prefer
sparse hypothesis.

Theorem 5.7. Given m, let t drawn uniformly at random from {1, . . . ,m}. Let S be set of t examples
sampled from p. Let (x′, y′) be addiitonal example sample from P , then:

P(AS(x′) 6= y′) ≤ B

m

with respected to be drawing of t, S and (x′, y), where the mistake bound for A is B.

Proof. There are no more than B trials with mistake, therefore, since t is drawn uniformly from {1, . . . ,m}
there is no more than B/m probability of hitting trial with a mistake.

Definition 5.14. (Disjunctive Normal Form) DNF is a disjunction of terms, for example:

x1x4x7 ∨ x1x̄2 ∨ x2x5

All boolean function may be represented as DNF.

Remark 38. DNF corresponds to simple boolean network with a signle layer as such they may learn by a
neural network with single hidden layer.

Definition 5.15. (ANOVA Kernel) We consider the feature map to be:

x =

x1

x2

...
xn

Φ(x) =

1
x1

x2

...
xn
x1x2

...
x1x2 . . . xn

THere are 2n features. The k-terms DNF in input space is k-literal in feature space:

Φ(x)Φ(y) =

n∏
i=1

(1 + xiyi) = kanova(x,y)

Please note that it also represent a disjunction normal form.

Remark 39. (Perceptron for K-term DNF) The weight of the perceptron, we have the weight to be:

wt =
∑

q∈mistakes

αqΦ(xq)

And performing a predicting gives us:

wT
t Φ(xt) =

 ∑
q∈mistakes

αqΦ(xq)

Φ(xt) =
∑

q∈mistakes

αqk(xq,xt)

The prediction time complexity is O(n ·#mistakes) ≤ O(nm). The mistake bound is O(k2n)

35

Remark 40. The winnow weight is given as:

wt,i = exp

−η ∑
q∈mistake

αq[Φ(xq)]i

The have the log of weights that is linear combination of the past examples. We have the mistake bound
to be O(k ln 2n) = O(kn) with the prediction time to be Ω(2n#mistake), as there is no obvious fas way to
compute wT

t Φ(xt) for now.

6 Online Learning 2: Bandits

Definition 6.1. (Partial Feedback Protocal) We cosnider the following setting:

Algorithm 7 Partial Feedback Control

1: for i = 1, 2, · · · , T do
2: Predict ŷt ∈ [n]
3: Observe loss of prediction lt,ŷt ∈ [0, 1]
4: end for

We have the following goal:
m∑
t=1

lt,ŷt − min
i∈[n]

m∑
t=1

lt,i ≤ o(m)

This is the same as the regret. Please note that we didn’t get to see all loss function that is induced by the
prediction.

Definition 6.2. (Unbiased Estimation) An estimator θ̂ estimate a parameter θ of a distribution from a

sample is unbiased if we can show that E[θ̂] = θ.

Example 6.1. Suppose X1, . . . , Xn are iid random variable for a distribution with mean µ, then:

θ̂ =
1

n
(X1 + · · ·+Xn)

is an unbiased estimate of µ

Example 6.2. Suppose X is a random variable with the discrete unifrom distribution over {1, . . . , n}.
Suppose n is unknown and we wish to estimate it.

• The estimate θ̂1 = X is the maximum likelihood estimator, since L(θ,X = x) = 1/θ is maximized when
θ = x. Then we have:

E[θ̂1; θ = n] =

n∑
x=1

x

n
=
n+ 1

2

• And so, θ̂2 = 2x− 1 is unbiased estimator, which is:

E[θ̂2; θ = n] =

n∑
x=1

1

n
(2x− 1) = 2

n∑
x=1

1

n
(2x− 1) = 2

n∑
x=1

1

n
x−

n∑
x=1

1

n
= n

Remark 41. (Assumption and Estimation) Suppose, we have a distribution Di over [0, 1] for each i ∈ [n]
arms. For each arm i, we use iid sample lt,i for Di. Suppose, we play i on trials St,i ⊆ [t], then:

µ̂t,i =
∑
t∈Si

lt,i
|Si|

This is unbiased estimator of µi. Now, we can consider the usage as we have:

36

• We can use a concentration inequality that allows us to quantitatively estimate the likelihood to
estimate differently for the parameter.

• Using the observation, the algorithm UCB balances exploration and exploitation to obtain good regret
bounds for this method.

• Suppose tha tthe underlying Di is changing over time (being Dt,i):

µt,i =

∑t
j=1 E[lj,t]

t

where Si = [t]. However, if we only have St,i = [t], then we have no information about the other arms.

• We need to have simultaneous unbiased estimate for all arms S

Definition 6.3. (Importance Weighting) We have the following series of observation:

• Suppose X is a random variable over R with a mean µ. By definition, E[X] = µ and θ̂1 = X is an
unbiased estimator of the mean.

• Consider the biased coin Zp with outcome 1 with probability p. Suppse, we have the estimator θ̂0

setting to equal to X/p if Zp = 1.

• Its expectation is equal to:

E[θ̂0] = P(Zp = 1)(X/p) + 0P(Zp = 0) = (p)(X/p) + (1− p)(0) = X

This is unbiased.

Definition 6.4. (Hallucinated Loss Vector) We generalize this to obtain an unbiased estimator of lt
in the bandit setting. Given vt ∈ ∆n by the relation tha tŷt ∼ vt. The unbiased estimator lnt or kt with
respected to vt is given as: (

lht,i =
lt,i
vt,i

I[i = ŷt]

)
i∈[n]

Remark 42. (Expectation of Hallucinated Loss Vector) Observed that lht is unbiased for all i ∈ [n]
since we have:

Eŷt,vt
[lht,i] =

n∑
j=1

vt,j
lt,i
vt,i

I[i = j] = lt,i

We have unbiased estimator for all arms by only observing the single arm. We can apply the hedge to lht
requires bounded loss vector. We can use more careful analysis of the hedge.

Definition 6.5. (EXP3) Exponential-Weight algorithm for Exploration and Exploitation is given by:

Algorithm 8 EXP3

1: Initialize: η ∈ (0,∞)
2: Set v1 = (1/n, . . . , 1/n)
3: for i = 1, 2, · · · , T do
4: Sample ŷt ∼ vt
5: Observe Loss lt,ŷ ∈ [0, 1]
6: Construct Hallucinated Loss vector:

lht =

(
lht,i =

lt,i
vt,i

I[i = ŷt]

)
i∈[n]

7: Perform the update, for i ∈ [n] and Zt =
∑n
i=1 vt,i exp(−ηlht,i):

vt+1,i = vi exp(−ηlht,i)/Zt

8: end for

37

Lemma 6.1. For any sequence of loss vector l1, . . . , lm ∈ [0, 1]n, we have the following loss bound:

m∑
t=1

vTt l
h
t −

m∑
t=1

uT lht ≤
lnn

η
+
η

2

m∑
t=1

n∑
i=1

vt,i(l
h
t,i)

2

For all u ∈ ∆n

Proof. The lemma follows from the fact that EXP3 is just Hedge with lt weighted to be lht and the Hedge
inequality is proven before.

Remark 43. We can show the property of EXP3, where we consider that: we need to perform and so we
may replace hallucination losses lht with time loss l:

• We can model some of the randomness as we use the adversarial loss l1, . . . , lm.

• We have to bound the term
∑m
t=1

∑n
i=1 vt,i(l

h
t,i)

2 and tune η

Definition 6.6. (Deterministic Adversarial Model) We will to set l1, . . . , lm before running the algo-
rithm. The adversary is assumed to be complete given the prior knowledge, and:

• The limitation of near omniscient adversary is that it is non-adaptive.

• It many simulate the stochastic model by repeatedly sample the D1, . . . ,Dm in advance.

Theorem 6.1. For any sequence of loss vector S = l1, . . . , lm ∈ [0, 1]n, the regret for EXP3 with η =√
2 lnn/mn is:

E[LA(S)]−min
i
Li ≤

√
2mn lnn

where LA(S) =
∑m
t=1 lt,ŷy and Li =

∑m
t=1 lt,i

Proof. Observe that the only source of randomness are the sample ŷt ∼ vt. As previously argue, note that
E[lht,i] = lt,i, and we have:

E[vTt l
h
t] =

n∑
i=1

E[vt,il
h
t,i] =

n∑
i=1

vt,iE[lht,i] =

n∑
i=1

vt,ilt,i = E[lt,ŷt]

Similarly, we have:

E[(lht,i)
2] =

n∑
j=1

vt,j

(
lt,i
vt,i

)2

I[i = j]2 = vt,i

(
lt,i
vt,i

)2

=
l2t,i
vt,i

This implies that:

E

[
n∑
i=1

vt,i(l
h
t,i)

2

]
=

n∑
i=1

vt,i
l2t,i
vt,i

=

n∑
i=1

l2t,i ≤ n

Taking the expectation over the Hedge terms, and we have for u ∈ ∆n:

E

[
m∑
t=1

vTt l
h
t −

m∑
t=1

uT lht

]
≤ E

[
lnn

η
+
η

2

m∑
t=1

n∑
i=1

vt,i(l
h
t,i)

2

]

And, so we have using the fact that: E[lht,i] = lt,i, and the previous result with u being a coordinate vector,
we have:

E

[
m∑
t=1

vTt l
h
t

]
−min

i
E

[
m∑
t=1

lht,i

]
≤ lnn

η
+
η

2
E

[
m∑
t=1

n∑
i=1

vt,i(l
h
t,i)

2

]
And, so we have:

E[LA(S)]−min
i
Li(S) ≤ ln

n

η
+
η

2
mn

Substuite the η =
√

2 lnn/mn to prove this theorem.

38

7 Learning Theory

7.1 Introduction

Definition 7.1. (Distribution over Subset) If D is a distribution over Z then if A ⊆ Z then D(A)
denotes the probability that if z is drawn from D that z ∈ A

Definition 7.2. (Expected Error) Data is sampled iid from a distribution D over X ×Y with Y = {0, 1}.
The expected error of function h : X → Y is:

LD(h) = D({x, y} : h(x) 6= y) = P(x,y)∼D[h(x) 6= y] =

∫
I[h(x) 6= y] dp(x, y)

where we denote LD(h) = E(h)

Definition 7.3. (Empirical Error) The empirical error of h given the dataset S = {(x1, y1), . . . , (xm, ym)}
is denoted as:

LS(h) =
1

m

m∑
i=1

I[h(xi) 6= yi]

Or, we denote it as Eemp(S, h).

Theorem 7.1. (Hoeffding’s Inequality) Let Z1, Z2, . . . , Zm be iid bernoulli random variable, when for
all i, we have P(Zi = 1) = p and let Z̄ = 1/m

∑m
i=1 Zi, then for any ε > 0 as we have:

P(Z̄ > p+ ε) ≤ exp(−2mε2) P(Z̄ < p− ε) ≤ exp(−2mε2)

Theorem 7.2. Select a function h then for any δ ∈ (0, 1) with probability 1− δ over the random sample V
of size m from D, we have:

LD(h) ≤ LV (h) +

√
ln(1/δ)

2m

The generalization error of a function h may be bounded by the empirical error. We may select a predictor
h on any set S, as we may bound it on the validation on separate set of data V .

Proof. Given a predictor h, we have the differences to be:

LD(h)− LV (h) = P(x,y)∼D[h(x) 6= y]− 1

m

m∑
i=1

I[h(xi) 6= yi]

we can define Zi = I[h(xi) 6= yi]. We can see that Z1, . . . , Zm are statistical independent. Then for all
P[Zi] = LD(h) = P[h(x) 6= y]. We apply the Hoeffding inequality, gives us:

P[LD(h)− LV (h) ≥ ε] ≤ exp(2− ε2)

setting δ = exp(−2ε2m), and solving this gives us the theorem.

Remark 44. If we use the upper and lower bound m, the Hoeffding inequality would gives us:

|LD(h)− LV (h)| ≤
√

ln(2/δ)

2m

This is a nice result, but there are some drawnbacks to this bound:

• The validation bound gives a way to estimate of the confidence interval for the generalization error.
The data V can’t be used for training.

• Having small number of data, can we choose a model based on the expected error directly, without the
training data ?

39

• The bound is about the predictor, while we need to analyze the prediction done by the machine learning
algorithm.

Definition 7.4. (General Statistical Consider) Statistical model begin with an assumption that the
data is generated by the underlying distribution D not known to the learner. Assuming that we are given a
training set that is generated iid from distribution D:

S = {(x1, y1), . . . , (xm, ym)}

Definition 7.5. (Empirical Risk Mimization) Assuming we have a learning algorithm A that chooses a
hypothesis function AH(S) from a hypothesis space H in response to the training set S. We study the ERM:

ERMH(S) = arg min
h∈H

LS(h)

There are many possible empirical minimizer as we assume ERM to be an arbitrary one.

Remark 45. The traditional statistic hS concentrated on analysing:

lim
m→∞

ESm
[LD(A(Sm))]

where Sm denotes a training set of size m. For finite sample, the generalization LD(A(Sm)) has a distribution
depending on the algorithm and function class and sample size:

• Traditional Statistic: concentrated on the mean of this distribution but this quantity is misleading for
example in the case of low fold cross-validation.

• Statistical Learning Theory : analyze the tail of the distribution finding and the bound that holds in
high probability.

Definition 7.6. (Reliability Assumption) Assume that there exists a function f∗ so that for all x ∈ X ,
we have f∗(x) = y there exists a classifier that has zero error. We can now take D to be only a distribution
over X only. We consider the following loss:

LD,f∗(h) = P[h(x) 6= f∗(x)]

We can find the algorithm A so that h = A(S) such that LD,f∗(h) = 0 is small.

Remark 46. (Reason for Approximation) We can’t hope the find the function h such that LD,f∗(h) = 0
Let’s consider the ε ∈ (0, 1) that takes X = {x1, x2} where D({x1}) = 1− ε and D({x2}) = ε:

• The probability to not see x2 at all among m iid example is (1− ε)m ≈ exp(−εm)

• If ε� 1/m, we are unlikely to see x2 at all. then we don’t know its label.

So, we are only happy to see LD,f∗(h) ≤ ε when ε is user defined.

Remark 47. (Reason for Probability) The input is randomly generated (there is a small chance that we
will see the same sample over and over again). No algorithm can generate LD,f∗(h) ≤ ε for sure, and so we
allow the algorithm to fail with some probability δ ∈ (0, 1) that is user defined.

Definition 7.7. (PAC Learning) The learner doesn’t know D and f∗. It receives parameter ε and δ.
Learner can aske for training data S contrary for m(ε, δ) examples. The learner should output a hypothesis
h such that with at least probability 1− δ, it holds that LD,f∗(h) ≤ ε

Theorem 7.3. (No Free Lunch)

• Suppose |X | =∞. For any fixed C ⊂ X take D to be uniform m distribution over C:

• If the number of training example is m ≤ |C|/2, the learner has no knowledge of at least half of elements
in C.

40

Fix δ ∈ (0, 1) and ε < 1/2. For any learner A and training set of size m, there exists D and f∗ such that
with probability δ over the generation of a training data S of m examples, it holds that

LD,f∗(A(S)) ≥ ε

Proof. Consider for contradiction, assuming that the class is learnable, consider ε > 1/8 and δ ≤ 1/7. With
the definition of PAC learnable m(ε, δ) = m:

• For the consistent case, with probability greater than 1− δ, when A is applied to sample S of size m,
generated iid D, we have

LD,{∗(A(S)) ≤ ε

• However, using the NFL thoerem above, since |X | > 2m, for every learning algorithm, there exists a
D such that with probability greater than 1/7 > δ, and LD,{∗(A(S)) > 1/8 > ε

This is a contradiction.

7.2 PAC of Finite Hypothesis Class

Lemma 7.1. For any 2 sets A and B, and a distribution D we can show that:

D(A ∪B) ≤ D(A) +D(B)

Theorem 7.4. Fix ε, δ. If we have m ≥ log(|H| /δ)/ε, then for every D, f∗ with probability of at least 1− δ
(with respected to randomly sample training set S of size m), we now have:

LD,f∗(ERMH(S)) ≤ ε

This mean that we have LD,f∗(ERMH(S)) ≤ (log |H|+log(1/δ))/m. The generalization error decrease linear
in the number of samples and increase in logarithm in the size of hypothesis class.

Proof. Consider S|x = (x1, . . . , xm) be instances of training set. We will show that:

Dm({S|x : LD,f∗(ERMH(S)) > ε}) ≤ δ

Let HB be a set of bound hypothesis as we have HB = {h ∈ H : LD,f∗(h) > ε} and let M be the set of
misleading samples: {S|x : ∃h ∈ HB , LS(h) = 0} Observe that:

{S|x : ∃h ∈ HB , LS(h) = 0} ⊆M =
⋃

h∈HB

{S|x : LS(h) = 0}

Applying the union bound as we have the following union bound:

Dm({S|x : ∃h ∈ HB , LS(h) = 0})

≤
∑
h∈HB

Dm({S|x : LS(h) = 0})

≤ |HB | max
h∈HB

Dm({S|x : LS(h) = 0})

< |HB |(1− ε)m ≤ |H| exp(−εm)

Observe that Dm({S|x : LS(h) = 0}) = (1 − LD,f∗(h))m if h ∈ HB , then LD,f∗(h) ≥ ε. This leads to the
third inequality, while the last inequality, we have: 1− ε ≤ exp(−ε) and |HB | ≤ |H|. Setting the rhs to ≤ δ
and we get the required inequality.

Definition 7.8. (PAC-Lernability) A hypothesis class H is PAC-learnable if there exists a function
mH : (0, 1)2 → N and has the property of that for every ε and δ ∈ (0, 1) and every distribution D over X
and for every labeling function f∗ : X → {0, 1}.

41

• Using the training algorithm m ≥ mH(ε, δ) iid examples generated by D and labeled by f∗

• The algorithm returns a hypothesis h such that with probability of at least 1−δ, the loss is LD,f∗(h) ≤ ε.

• We call mH is the sample complexity of the training hypothesis H

Remark 48. We are now interested in the infinite hypothesis space. What is the sample complexity of a
given class ? Is there a generic algorithm that achieves the optimal sample complexity ?

Remark 49. (VC-Dimension: Motivation) Suppose, we have the training set: S = (x1, y1), . . . , (xm, ym).
We try to explain the label using a hypothesis from H. We may get difference labels:

(x1, y
′
1), · · · , (xm, y′m)

We can try to explain the label using a hypothesis from H. If this works for us, no matter the labels are
then, no free-lunch thoerem apply, as now we can’t learn from m/2 example.

Definition 7.9. (VC-Dimension) Let C = {x1, . . . , x|C|} ⊂ X . Let HC is the restriction of H to C, then
we have:

HC = {hC : h ∈ H} where hC : C → {−1, 1}

is such that hC(xi) = h(xi). For every xi ∈ C, we can represent each hC as the vector:

HC =
{

(h(x1), . . . , h(x|C|)) ∈ {−1, 1}|C|
}

and so we have |HC | ≤ 2|C| . We say that H shatters C if |HC | = 2|C| where we have:

VCDim(H) = sup {|C| : H shatters C}

VC dimension is the maximum size of a set C such that H gives no prior knowledge with respected to C.

Remark 50. To show that the VC dimension VCDim(H) = d, we have to show that:

• There exists a set C of size d which is shattered by H

• Every set C of size d+ 1 isn’t shattered by H

Proposition 7.1. (VC-Dimension of Intervals) Interval where we have H = R and

H = {ha,b : a < b ∈ R}

where ha,b(x) = 1 iff x ∈ [a, b]. Its VC-Dimension is 2.

Proposition 7.2. (Axis Aligned Rectangle) We have X = R2 as we have the hypothesis set to be:

H =
{
h(a1,a2,b1,b2) : a1 < a2 and b1 < b2

}
where we have h(a1,a2,b1,b2)(x1,x2) = 1 iff x1 ∈ [a1, a2] and x2 ∈ [b1, b2]. We can show that VCDim(H) = 4

Proof. We can find 4 points that can be shattered by H, and so VCDim(H) ≥ 4. For any poitn C ⊆ R2

with 5 points with label (1, 1, 1, 1, 0) where 0 is the point in the middle, we can’t obtain any axis aligned
rectangle, thus it can’t be shattered C. Therefore, VCDim(H) = 5

Proposition 7.3. (Finite Class) The VC-Dimension of the finite H is at most log2(|H|) as there can
arbitrary gaps between VCDim(H) and log2(|H|)

Proof. Let H be a finite class, for any set C that can be shattered, we have 2|C| = |HC | ≤ |H|, thus the
upperbound of the VC dimension is log2 |H|

Theorem 7.5. (Radon) Any set X of d+ 2 data point Rd can be partion into 2 sets X1 and X2 such that
the convex hull of X1 and X2 intersect.

42

Proof. Let X = {x1,x2, . . . ,xd+2} ⊂ Rd with the following linear equation:

d+2∑
i=1

αixi = 0

d+2∑
i=1

αi = 0

The number of unknown d + 2 is larger than the number of equations d + 1. This implies that the system
admits non-zero solution β1, . . . , βα+2 since

∑d+2
i=1 βi = 0 both:

J1 = {i ∈ [d+ 2] : βj > 0} J2 = {i ∈ [d+ 2] : βj ≤ 0}

This means that X1 = {xi : i ∈ J1} and X2 = {xi : i ∈ J2} form a partition. The last equation gives us:∑
i∈J1

βi = −
∑
i∈J2

βj

Let β =
∑
i∈J1

βi, then the first equation implies that:∑
i∈J1

βi
β
xi = −

∑
i∈J2

βi
β
xi

Please note that:
∑
i∈J1

βi/β = −
∑
i∈J2

βi/β = 1 and βi/β ≥ 0 for i ∈ J1 and −βj/β ≥ 0 for i ∈ J2. By
the definition of the convex hull, this implies that

∑
i∈J1

βi/βxi being both to convex hull X1 and X2

Proposition 7.4. (Hyperplane) We have X = Rn and the hypothesis class to be:

H = {y 7→ sgn(〈w,x〉) : w ∈ Rn}

Then, we have VCDim(H) = n+ 1

Proof. Starting with the lower bound, setting x0 to be the origin and setting xi for i ∈ [d] as the whose i
coordinate to be 1 and all the others are 0.

• Let y0, y1, . . . , yd ∈ {−1, 1} be an arbitrary set of label.

• Let w be the vector whose i-th coordinate is yi.

The classifier defined by the hyperplane of equation wTx+ y0/2 = 0, shatters x0,x1, . . . ,xd we can see that
for any i ∈ {0, . . . , d} as we have:

sgn
(
wTxi +

y0

2

)
= sgn

(
yi +

y0

2

)
= yi

For the upperbound, let X be set of d + 2 points. By Radon’s theorem, it can be partition into 2 sets X1

and X2 such that the convex hull intersects. When the set of points X1 and X2 are separated by hyperplane,
the convex hull also separated. However, it is a contradiction and so the VC dimension is proven.

Definition 7.10. (Inner Production Space) The space is the bounded sequence summable square:

l2 =

{
x ∈ R∞ :

∞∑
i=1

x2
i <∞

}

with the inner product to be {x,x′} =
∑∞
i=1 xix

′
i

Definition 7.11. (Large Margin Halfspaces) Given X ⊂ l2 and Λ ∈ (0,∞), which we define:

HX ,Λ = {x 7→ sgn(〈w,x〉) : x ∈ X ,w ∈ l2, ‖w‖ ≤ Λ, 〈w,x〉 ≥ 1}

Observe that 1/ ‖w‖ is the margin.

43

Theorem 7.6. We can show that for large margin halfspace:

VCDim(HX ,Λ) ≤ Λ2 max ‖x‖2x∈X

Theorem 7.7. (Fundamental Theorem of Statistical Learning) Let H be a hypothesis class of binary
classifier. Then there are absolute constant C1 and C2 such that the sample complexity is given by:

C1
VCDim(H) + log(1/δ)

ε
≤ mH(ε, δ) ≤ C2

VCDim(H) log(1/ε) + log(1/δ)

ε

This sample complexity is achieved by ERM learning rule.

7.3 Agnostic PAC-Learning

Remark 51. (Motivation for Agnostic PAC) Assuming that there exists f∗ may be too strong, so we
relaxed the notation, so we use the assumption that the joint distribution D be a distribution over X ×Y as
now we are going to use:

LD(h) = P(x,y)∼D[h(x) 6= y] := D({(x, y) : h(x) 6= y})

We will redefine the approximately correct notion.

Definition 7.12. (General Agnostic PAC) A hypothesis class H is agnostic PAC learnable if there exists
a function mH : (0, 1)2 → N and a learning algorithm A with the following properties: for every δ, ε ∈ (0, 1)
and m > mH(ε, δ):

Dm
({

S ∈ (X × Y)m : LD(A(S)) ≤ min
h∈H

LD(h) + ε

})
≥ 1− δ

Definition 7.13. (ε-Representation Sample) A training set S is called ε-representative if for all h ∈ H
as we have:

|LS(h)− LD(S)| ≤ ε

Lemma 7.2. Assume that a training set S is ε/2-representative, then the average output of ERMH(S)
namely hS ∈ arg minh∈H LS(h) satsifies:

LD(hS) ≤ min
h∈H

LD(h) + ε

Proof. For every h ∈ H as we have:

LD(hS) ≤ LS(hS) +
ε

2
≤ LS(h) +

ε

2
≤ LD(h) +

ε

2
+
ε

2
= LD(h) + ε

Definition 7.14. (Uniform Convergence) Let H has the uniform convergence if there exists a function
mUC
H : (0, 1)2 → N such that for every ε, δ ∈ (0, 1) and every distribution D, and we have:

Dm
{(
S ∈ Zm : S is ε− representable

)}
≥ 1− δ

where Z is the domain and m ≥ mUC
H : (0, 1)2

Corollary 7.1. From the definition of uniform convergence, we can show that:

• If H has uniform convergence property with a function mUC
H then H is agnostic PAC learnable with

sample complexity of
mH(ε, δ) ≤ mUC

H (ε/2, δ)

This follows from the lemma above.

44

• We can show that ERMH is successful against PAC learner for H.

Theorem 7.8. Assume H is finite, then H is agnostic PAC learnable using ERMH algorithm with:

mH(ε, δ) =

⌈
2 log(2 |H| /δ)

ε2

⌉
Comparing the reliable case generalization, the error will decrease in

√
m values as oppose to linear.

Proof. It suffices to show that H has the uniform convergence property with:

mUC
H (ε, δ) ≤

⌈
2 log(2 |H| /δ)

ε2

⌉
To show that the uniform convergence, we need to show that:

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) ≤ δ

Using the union bound, we can see that:

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) ≤ δ = Dm
(⋃
h∈H

{S : |LS(h)− LD(h)|} ≥ ε

)
≤ δ

≤
∑
h∈H

Dm({S : |LS(h)− LD(h)| ≥ ε}) ≤ δ

≤ 2 |H| exp(−2mε2)

The last inequality is shown by Hoeffding inequality, setting the correc m, to finish the proof.

Remark 52. (Error Decomposition) Let hS = ERMH(S), we can decompose the risk as:

LD(hS) = Eapp + Eest

We have the following error:

• Approximation Error : Eapp = minh∈H LD(h). How much risk do we need to restrict H ? This doesn’t
depend on S, while it decreases with the complexity of H increases.

• Estimation Error : Eest = LD(hS)−minh∈H LD(h). It is the result of LS being estimator of LD, while
it decreases with size S but increase with complexity of H.

This is bias and complexity: choosing H′ ⊃ H leads to decreases in Eapp while Eest increases.

45

	Introduction to Machine Learning Problem
	Bayes Estimator
	Bias and Variance of Learning Algorithm

	Kernel and Regression
	Introduction
	Ridge Regression
	Basis/Kernel Functions

	Support Vector Machine
	Forming Problems

	Tree Based and Ensemble Model
	Tree Based Method
	Ensemble Methods + Bagging
	Boosting

	Online Learning
	Introduction
	Learning from Expert Algorithm
	Online Learning of Linear Classifier
	Disjunction Learning

	Online Learning 2: Bandits
	Learning Theory
	Introduction
	PAC of Finite Hypothesis Class
	Agnostic PAC-Learning

