{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> 这个文档告诉我们:采样时,使用同轨策略的轨迹进行采样比使用均匀分布采样,可以更快逼近真实价值。\n",
    "\n",
    "> 当然,也有危险,比如一次又一次地对相同区域更新,显然局部视野。\n",
    "\n",
    "- 有1000个状态时,每个状态有1、3、10个分支;\n",
    "- 有10000个状态时,每个状态有1、3、10个分支。\n",
    "\n",
    "*解释:* 分支即状态间的通路,即当前状态可能转换成某几个状态中的一个:\n",
    "- 如,状态1可能转换为2,3,4,其有3个分支;\n",
    "- 状态2只可能转换为状态5,其有1个分支。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2020-02-01T14:45:14.997472Z",
     "start_time": "2020-02-01T14:45:14.798960Z"
    }
   },
   "outputs": [],
   "source": [
    "#######################################################################\n",
    "# Copyright (C)                                                       #\n",
    "# 2018 Shangtong Zhang(zhangshangtong.cpp@gmail.com)                  #\n",
    "# Permission given to modify the code as long as you keep this        #\n",
    "# declaration at the top                                              #\n",
    "#######################################################################\n",
    "\n",
    "import numpy as np\n",
    "import matplotlib\n",
    "%matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "from tqdm import tqdm\n",
    "\n",
    "# 2 actions\n",
    "ACTIONS = [0, 1]\n",
    "\n",
    "# each transition has a probability to terminate with 0\n",
    "TERMINATION_PROB = 0.1\n",
    "\n",
    "# maximum expected updates\n",
    "MAX_STEPS = 20000\n",
    "\n",
    "# epsilon greedy for behavior policy\n",
    "EPSILON = 0.1\n",
    "\n",
    "# break tie randomly\n",
    "def argmax(value):\n",
    "    max_q = np.max(value)\n",
    "    return np.random.choice([a for a, q in enumerate(value) if q == max_q])\n",
    "\n",
    "class Task():\n",
    "    # @n_states: number of non-terminal states\n",
    "    # @b: branch\n",
    "    # Each episode starts with state 0, and state n_states is a terminal state\n",
    "    \"\"\"\n",
    "    作者没有在一个具体的环境中迭代,而是抽象了一个环境:\n",
    "    - 有 n_states 个状态\n",
    "    - 每个 状态-动作 转移到下一个状态,这个对应表由 randint 产生\n",
    "    - reward 也由 N~(0,1) 产生\n",
    "    - 注意是环境是固定的\n",
    "    \"\"\"\n",
    "    def __init__(self, n_states, b):\n",
    "        self.n_states = n_states\n",
    "        self.b = b\n",
    "\n",
    "        # transition matrix, each state-action pair leads to b possible states\n",
    "        self.transition = np.random.randint(n_states, size=(n_states, len(ACTIONS), b))\n",
    "\n",
    "        # it is not clear how to set the reward, I use a unit normal distribution here\n",
    "        # reward is determined by (s, a, s')\n",
    "        self.reward = np.random.randn(n_states, len(ACTIONS), b)\n",
    "\n",
    "    def step(self, state, action):\n",
    "        if np.random.rand() < TERMINATION_PROB:\n",
    "            return self.n_states, 0\n",
    "        next = np.random.randint(self.b)\n",
    "        return self.transition[state, action, next], self.reward[state, action, next]\n",
    "\n",
    "# Evaluate the value of the start state for the greedy policy\n",
    "# derived from @q under the MDP @task\n",
    "def evaluate_pi(q, task):\n",
    "    # use Monte Carlo method to estimate the state value\n",
    "    runs = 1000\n",
    "    returns = []\n",
    "    for r in range(runs):\n",
    "        rewards = 0\n",
    "        state = 0\n",
    "        while state < task.n_states:\n",
    "            action = argmax(q[state])\n",
    "            state, r = task.step(state, action)\n",
    "            rewards += r\n",
    "        returns.append(rewards)\n",
    "    return np.mean(returns)\n",
    "\n",
    "# perform expected update from a uniform state-action distribution of the MDP @task\n",
    "# evaluate the learned q value every @eval_interval steps\n",
    "def uniform(task, eval_interval):\n",
    "    performance = []\n",
    "    q = np.zeros((task.n_states, 2))\n",
    "    for step in tqdm(range(MAX_STEPS)):\n",
    "        \"\"\"\n",
    "        值得学习:\n",
    "        step 是一个 0,..,20000 的自然数列\n",
    "        想通过 step 遍历 (state, action) 所有可能(均匀采样)\n",
    "        使用如下两行方法\n",
    "        \"\"\"\n",
    "        state = step // len(ACTIONS) % task.n_states\n",
    "        action = step % len(ACTIONS)\n",
    "\n",
    "        next_states = task.transition[state, action]\n",
    "        q[state, action] = (1 - TERMINATION_PROB) * np.mean(\n",
    "            task.reward[state, action] + np.max(q[next_states, :], axis=1))\n",
    "\n",
    "        if step % eval_interval == 0:\n",
    "            v_pi = evaluate_pi(q, task)\n",
    "            performance.append([step, v_pi])\n",
    "\n",
    "    \"\"\"\n",
    "    zip(*performance) 可以理解为 performance 的转置\n",
    "    实际上是 c = zip(a, b) 的逆过程,即将 c 解压为 [a, b]\n",
    "    \"\"\"\n",
    "    return zip(*performance)\n",
    "\n",
    "# perform expected update from an on-policy distribution of the MDP @task\n",
    "# evaluate the learned q value every @eval_interval steps\n",
    "def on_policy(task, eval_interval):\n",
    "    performance = []\n",
    "    q = np.zeros((task.n_states, 2))\n",
    "    state = 0\n",
    "    for step in tqdm(range(MAX_STEPS)):\n",
    "        if np.random.rand() < EPSILON:\n",
    "            action = np.random.choice(ACTIONS)\n",
    "        else:\n",
    "            action = argmax(q[state])\n",
    "\n",
    "        next_state, _ = task.step(state, action)\n",
    "\n",
    "        next_states = task.transition[state, action]\n",
    "        q[state, action] = (1 - TERMINATION_PROB) * np.mean(\n",
    "            task.reward[state, action] + np.max(q[next_states, :], axis=1))\n",
    "\n",
    "        if next_state == task.n_states:\n",
    "            \"\"\"\n",
    "            如果到达最终状态,从初始状态开始\n",
    "            即开启新的一幕\n",
    "            \"\"\"\n",
    "            next_state = 0\n",
    "        state = next_state\n",
    "\n",
    "        \"\"\"\n",
    "        评估初始状态价值\n",
    "        \"\"\"\n",
    "        if step % eval_interval == 0:\n",
    "            v_pi = evaluate_pi(q, task)\n",
    "            performance.append([step, v_pi])\n",
    "\n",
    "    return zip(*performance)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2020-02-01T16:26:59.308257Z",
     "start_time": "2020-02-01T14:45:26.584455Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1335.05it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1262.11it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1371.83it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1348.94it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1364.65it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1365.30it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1373.52it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1358.54it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1377.30it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1354.98it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1387.30it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1359.65it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1362.60it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1371.08it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1321.71it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1380.27it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1358.78it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1362.49it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1367.25it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1333.36it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1413.74it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1378.89it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1403.23it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1435.77it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1421.83it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1442.90it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1420.87it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1414.48it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1415.36it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1437.42it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1294.24it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1246.80it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1351.94it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1247.78it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1445.74it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1436.69it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1411.07it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1428.38it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1419.01it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1259.30it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1215.63it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1442.82it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1431.22it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1438.86it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1435.50it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1438.25it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1443.10it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1415.60it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1412.20it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1448.54it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1445.12it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1446.74it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1266.88it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1287.25it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1339.90it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1349.48it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1384.85it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1442.22it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1435.42it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1345.74it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1410.26it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1422.37it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1409.88it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1369.35it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1405.79it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1408.48it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1417.69it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1356.40it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1303.83it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1323.33it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1319.03it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1320.11it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1338.84it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1294.98it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1369.54it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1323.28it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1229.76it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1232.98it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1229.65it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1219.65it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1352.18it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1352.61it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1301.99it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1360.33it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1356.33it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1346.13it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1177.13it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1276.44it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1239.63it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1306.91it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1240.28it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1252.95it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:18<00:00, 1105.38it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1241.33it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1347.02it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1361.05it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1369.02it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1309.73it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1224.01it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1339.65it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1281.00it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:19<00:00, 1050.23it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1300.14it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1326.58it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1333.10it/s]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1352.41it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1335.29it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1341.33it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1349.05it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1332.70it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1354.95it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1356.63it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1349.73it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1351.97it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1356.07it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1312.36it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1360.53it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1355.99it/s]\n",
      "100%|█████████████████████████████████| 20000/20000 [00:20<00:00, 988.50it/s]\n",
      "100%|█████████████████████████████████| 20000/20000 [00:31<00:00, 629.81it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1328.42it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1380.90it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1377.01it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1387.40it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1376.82it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1384.91it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1378.84it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1383.63it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1376.26it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1372.22it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1359.65it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1368.46it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1364.73it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1373.62it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1367.25it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1372.32it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1249.20it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1359.03it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1376.63it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1379.85it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1353.57it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1366.41it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1368.00it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1389.94it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1385.29it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1375.45it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1365.57it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1357.20it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1366.84it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1371.36it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:17<00:00, 1150.16it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1362.87it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:19<00:00, 1002.67it/s]\n",
      "100%|█████████████████████████████████| 20000/20000 [00:23<00:00, 837.01it/s]\n",
      "100%|█████████████████████████████████| 20000/20000 [00:25<00:00, 798.33it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 904.51it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 915.64it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 866.52it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 938.39it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 925.15it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:24<00:00, 807.13it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:25<00:00, 792.62it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 867.08it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 846.28it/s]\n",
      "100%|█████████████████████████████████| 20000/20000 [00:24<00:00, 804.14it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 864.18it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 852.83it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 854.97it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 879.60it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 883.62it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 867.21it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 880.46it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 880.89it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 893.78it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 881.04it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 847.43it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 876.71it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 900.65it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 896.22it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 895.94it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 889.45it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 871.22it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 838.00it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 861.49it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 871.01it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 873.52it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 859.13it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:26<00:00, 741.81it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 913.57it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:24<00:00, 825.00it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 915.62it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 910.65it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 905.94it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 907.05it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 904.91it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 903.55it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 907.85it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 866.93it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 900.27it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 912.25it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 884.74it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 843.36it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 850.50it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 857.97it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 865.67it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 851.74it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 871.42it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 861.49it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 863.41it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:23<00:00, 862.81it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 889.03it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 886.40it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 899.91it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 923.67it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 892.67it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 878.15it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 901.04it/s]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 917.56it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 930.92it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 925.96it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 881.19it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:22<00:00, 904.53it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 932.72it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 917.30it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 918.03it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 921.26it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 928.68it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 926.01it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:21<00:00, 918.41it/s]\n",
      "100%|████████████████████████| 20000/20000 [00:26<00:00, 758.11it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1261.38it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1257.58it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1417.00it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1291.57it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1382.24it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1186.93it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1275.89it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1392.76it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1409.09it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1401.16it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1375.68it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1368.98it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1386.63it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1376.16it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1369.40it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1377.68it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1368.55it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1368.72it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1373.90it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1379.15it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1355.42it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1375.41it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1376.16it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1372.40it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1372.40it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1365.95it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1363.81it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1364.72it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1334.58it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1367.53it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1370.47it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1378.06it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1376.25it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1373.06it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1370.89it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1356.65it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1373.71it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1366.88it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1357.95it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1385.86it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1383.09it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1388.07it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1395.02it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1389.43it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1387.30it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1389.71it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1393.18it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1397.74it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1339.57it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1353.32it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1388.36it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1395.63it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1390.56it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1382.52it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1394.64it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1284.65it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1380.99it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1387.40it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1388.26it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1395.09it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1388.87it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1393.60it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:19<00:00, 1039.62it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1225.84it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1417.36it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1373.14it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1349.32it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1313.59it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1320.62it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1296.27it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1322.96it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1253.54it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1328.04it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1266.81it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1419.69it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1425.16it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1359.77it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1271.86it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1282.56it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:13<00:00, 1431.15it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1404.50it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1385.96it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1390.96it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1366.10it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1354.74it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:17<00:00, 1164.97it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1220.85it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:18<00:00, 1083.06it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:14<00:00, 1380.33it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:17<00:00, 1130.77it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1292.77it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:19<00:00, 1027.51it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:17<00:00, 1170.15it/s]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|████████████████████████████████| 20000/20000 [00:17<00:00, 1132.15it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:19<00:00, 1031.85it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:17<00:00, 1160.29it/s]\n",
      "100%|█████████████████████████████████| 20000/20000 [00:21<00:00, 944.04it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:19<00:00, 1039.97it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:18<00:00, 1105.75it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:17<00:00, 1119.56it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:17<00:00, 1155.24it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1214.24it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:17<00:00, 1165.50it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1220.19it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1306.54it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1270.73it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1305.58it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:19<00:00, 1037.79it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1239.29it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1289.46it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1292.30it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1302.57it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1197.28it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:17<00:00, 1127.10it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1200.67it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1260.91it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1283.78it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:17<00:00, 1150.04it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1179.73it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1258.56it/s]\n",
      "100%|█████████████████████████████████| 20000/20000 [00:21<00:00, 910.84it/s]\n",
      "100%|█████████████████████████████████| 20000/20000 [00:23<00:00, 839.04it/s]\n",
      "100%|█████████████████████████████████| 20000/20000 [00:21<00:00, 917.53it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1299.22it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1301.34it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:16<00:00, 1214.88it/s]\n",
      "100%|█████████████████████████████████| 20000/20000 [00:21<00:00, 916.12it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:17<00:00, 1147.11it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1266.39it/s]\n",
      "100%|████████████████████████████████| 20000/20000 [00:15<00:00, 1330.42it/s]\n",
      "D:\\Anaconda3\\lib\\site-packages\\matplotlib\\cbook\\deprecation.py:107: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance.  In a future version, a new instance will always be created and returned.  Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.\n",
      "  warnings.warn(message, mplDeprecation, stacklevel=1)\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAR8CAYAAACqvFHFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xtcj+f/wPHX3bmkRKGUsxLllHPOOTPmNOaU4xzGxqaxzc/Y2XHYZpgkh2EMXzNmzGEipRRyyKkkx5IiHfSp+/fHVZHOKhXX8/HooT73dV/39amNd9f1vt6XoqoqkiRJkiRJUtHQKu4BSJIkSZIkvc5ksCVJkiRJklSEZLAlSZIkSZJUhGSwJUmSJEmSVIRksCVJkiRJklSEZLAlSZIkSZJUhGSwJUmSJEmSVIRksCVJUpFQFGWKoih+iqIkKoqyLovrLoqiXFIUJU5RlMOKolR77pq+oihrFUV5pCjKXUVRPsrrvfkY31xFUTbmo30HRVHC8/scSZIkGWxJklRUbgNfA2tfvKAoijmwA/g/oDzgB2x9rslcoA5QDegIfKIoSvc83itJklSiyGBLkqQioarqDlVVdwEPsrjcHzivquo2VVUTEMFVQ0VR6qZeHwl8parqQ1VVLwK/AqPyeG8GiqLMVBTllqIojxVFCU6dFesOfAYMVhQlVlGUM6ltRyuKcjG17XVFUSakvl4G2AdYpbaPVRTFSlEULUVRZimKck1RlAeKovyuKEr51HsMFEXZmPp6tKIopxRFqVSw76okSaWRDLYkSSoO9YEzaV+oqvoEuAbUVxTFDLB6/nrq5/Vzu/fFhyiKYgdMAZqpqloW6AaEqqr6N/AtsFVVVWNVVRum3nIf6A2YAKOBHxRFaZL6jB7A7dT2xqqq3gY+AN4G2qeO+SHwc2pfroApYANUACYC8fn9RkmSVPrJYEuSpOJgDMS88FoMUDb1Gi9cT7uW270vSgb0gXqKouiqqhqqquq17AalqupfqqpeU4WjwD9A2xzexwTgc1VVw1VVTUTMsg1UFEUHSEIEWbVVVU1WVdVfVdVHOfQlSdJrSgZbkiQVh1jE7NHzTIDHqdd44XratdzuzUBV1avANEQQdF9RlC2KolhlNyhFUXooinJSUZQoRVGigZ6AeQ7voxqwM3WZMBq4iAjwKgEbgP3AFkVRbiuKskBRFN0c+pIk6TUlgy1JkorDeSBt6S4tJ6oWIhfrIXDn+eupn5/P7d6sHqSq6m+qqrZBBEYqMD/t0vPtFEXRB/4AFgGVVFUtB+wFlKzap7oJ9FBVtdxzHwaqqt5SVTVJVdV5qqrWA1ojlidH5vRNkSTp9SSDLUmSioSiKDqKohgA2oB2asK4TurlnYCDoigDUtvMAc6qqnop9fp6YLaiKGapie/jgXV5vPf5MdgpitIpNZBKQORMJadevgdUVxQl7e9BPcSSYwSgURSlB9D1ue7uARUURTF97rWVwDdppScURbFQFKVv6ucdFUVxVBRFG3iEWFZMRpKkN44MtiRJKiqzEcHNLGB46uezAVRVjQAGAN8gkspbAEOeu/cLRNL7DeAosDA1qT0v9z5PH/geiATuAhURuxABtqX++UBRlNOqqj5GJLz/ntrvUGB3Wkepwdxm4HrqsqEVsCy1zT+KojwGTqaOB6AysB0RaF1MfR95ruslSdLrQ1HVrGbGJUmSJEmSpMIgZ7YkSZIkSZKKkAy2JEmSJEmSipAMtiRJkiRJkoqQDLYkSZIkSZKKkAy2JEmSJEmSipBO7k1eHXNzc7V69erFPQxJkiRJkqRc+fv7R6qqapFbuxIVbFWvXh0/P7/iHoYkSZIkSVKuFEW5kZd2chlRkiRJkiSpCMlgS5IkSZIkqQjJYEuSJEmSJKkIlaicrawkJSURHh5OQkJCcQ9FKiIGBgZYW1ujq6tb3EORJEmSpEJX4oOt8PBwypYtS/Xq1VEUpbiHIxUyVVV58OAB4eHh1KhRo7iHI0mSJEmFrsQvIyYkJFChQgUZaL2mFEWhQoUKcuZSkiRJem2V+GALkIHWa07+fCVJkqTXWakItiRJkiRJkkorGWzlIjQ0FAcHh0Lvt3v37pQrV47evXsXet+FqXr16kRGRgLQunXrYh6NJEmSJJU+MtgqJm5ubmzYsKG4h5EvJ06cKO4hSJIkSVKpU+J3Iz5v3p/nuXD7UaH2Wc/KhC/eqp9jG41Gg6urKwEBAdja2rJ+/XqMjIwK9FwXFxeOHDmS5/Y3btxgzJgxREREYGFhgYeHB1WrVmXUqFGYmJjg5+fH3bt3WbBgAQMHDsyyjyNHjjBnzhwqVKhAcHAw7dq1Y8WKFWhpabF582a+/fZbVFWlV69ezJ8/P9P9xsbGxMbGArBgwQI2bNiAlpYWPXr0YPz48QwaNIjTp08DcOXKFYYMGYK/v3/+vzmSJEmS9BqRM1t5EBwczHvvvcfZs2cxMTFhxYoVmdosXLiQRo0aZfr44IMPCmUMU6ZMYeTIkZw9e5Zhw4Zl6PfOnTt4eXmxZ88eZs2alWM/vr6+LF68mHPnznHt2jV27NjB7du3mTlzJocOHSIwMJBTp06xa9eubPvYt28fu3btwsfHhzNnzvDJJ59Qq1YtTE1NCQwMBMDDw4NRo0YVynuXJEmSpNKsVM1s5TYDVVRsbGxwdnYGYPjw4SxfvpwZM2ZkaOPm5oabm1uRjcHb25sdO3YAMGLECD755JP0a2+//TZaWlrUq1ePe/fu5dhP8+bNqVmzJgDvvvsuXl5e6Orq0qFDBywsxMHlw4YN47///uPtt9/Oso+DBw8yevTo9Nm98uXLAzBu3Dg8PDxYsmQJW7duxdfXt2BvWpIkSZJeA6Uq2CouL5YmyKpUwcKFC9m0aVOm19u1a8fy5cuLdEz6+vrpn6uqmuf70r7O7Z4Xqaqa5fdgwIABzJs3j06dOuHk5ESFChXy1a8kSZIkvY7kMmIehIWF4e3tDcDmzZtp06ZNpjZubm4EBgZm+shvoPXpp5+yc+fOTK+3bt2aLVu2ALBp06Ysx5AXvr6+hISEkJKSwtatW2nTpg0tWrTg6NGjREZGkpyczObNm2nfvn22fXTt2pW1a9cSFxcHQFRUFCCO3enWrRuTJk1i9OjRLzU+SZIkSXrdyGArD+zt7fH09KRBgwZERUUxadKkAvfZtm1bBg0axL///ou1tTX79+8H4Ny5c1SuXDlT++XLl+Ph4UGDBg3YsGEDy5Yte6nntmrVilmzZuHg4ECNGjXo168flpaWfPfdd3Ts2JGGDRvSpEkT+vbtm20f3bt3p0+fPjRt2pRGjRqxaNGi9GvDhg1DURS6du36UuOTJEmSpNeNkt8lpKLUtGlT1c/PL8NrFy9exN7evphG9Op169YtPfAqbEeOHGHRokXs2bOnSPoHWLRoETExMXz11Vf5uu9N+zlLkiRJpZ+iKP6qqjbNrZ3M2SphiirQehX69evHtWvXOHToUHEPRZIkSZJKDBlsvYbOnTvHiBEjMrymr6+Pj48PHTp0KLLnZpVrJkmSJElvOhlsvYYcHR3T611JkiRJb7CEGNA3gSx2kJc6KSnw+A5E34CHNyA6THxeoRY4TwetkpuGLoMtSZIkSXoV4qPh9mm45Q+3TsOTCDA0y/hh2RDsehT8WZpEOLYYji2BxsPhraUF77M4xYTD5iFw91zG18tYQGAE3A2CfqtAR694xpcLGWxJkiRJUprIq7D/U+j+vZgxKQyn1sDJlfDgyrPXzG3BxApi70NEsAjEEmPEtd5LoWkByueE+cDuqRAZDJUcwN8DrBqB06gCvY1ic+cs/PYOPH0ifi7mtlCuGpSzAR19OL4MDsyB+IcweCPoGxf3iDORwZYkSZIkpfl7Flw9AImPYdTegi9NRYfBvllQ2QE6/R9UcQKrxmBYLnNbzVPYMhT++gjKWoJd96z7vLwfjs4XwZplQ7BsLP7UNYB/vwTfX8HUGoZth1qdYNNA2OsmAi/rbDbO3b8oZo8q1RfPLinLjlcPwu+uYGAKY/4W43uR84dgVEEEmOv7wNBtUKZkFdUuuQucJURoaCgODg6F3m/37t0pV64cvXv3LvS+04wbN44LFy4AsG3bNuzt7enYsWORPU+SJKlE0CSKWY78uvqvCLSqt4Uwbzj1a8HHcmyJCFwGb4R2M6BWx6wDLRBLYIPWQWVH2D5aLDc+T1XBayn8Nli8v3vn4dDXsGkALKoNC2uLQKvFBJjsDXW6gJY2DHCHspVh6wgxk/a8lGQ4uhB+cRZB2RJ7WFAT1vUWQaK/J9w4Ie571aWiTq+HTe+AWQ0YdzDrQCtN4+EweJNYTvToDtE3X90480DObBUTNzc34uLiWLVqVZE9Y82aNemfu7u7s2LFijwHWxqNBh0d+Z+HJEmlTEoKbOgnZmrGH4LyNfJ4XzL8839ieWr4H7BlGBycC7bdwKx61u0DN0HNDlCuatZ9RodBwEZwchUzTXmhbyxmZtw7i0Bj3AEoXxOSEuDPD+HsFqjfD/quAD0jkQB/5yzcCYSo69DwXbBpnrFPo/IiEHHvKmaJXHeDtq4ISHa8B2EnwHEQNHGFiEtwL0gELac9ISnuubGZgnltMfOlSQRNwrM/dY2g2Thw6C8CvPx4EikS3Z88gLhI8XXEJfH9reUC73iCftnc+6nbE0bsFLlda7vBRC/x3ksA+a9pHmg0GlxdXQkICMDW1pb169enH8L8slxcXDhy5Eie248aNYrevXszcOBAAIyNjYmNjeXIkSPMnTsXc3NzgoKCcHJyYuPGjSiKQocOHVi0aBF79+7Fy8uLkJAQ+vTpw1dffcWkSZPw8/NDR0eHJUuW0LFjR9atW8dff/1FQkICT548Yc6cOXzxxRdUqlSJwMBA+vfvj6OjI8uWLSM+Pp5du3ZRq1Yh5TRIkvRmehoHQdvBrlfhLP34rIQbx0FbX/yjO/YAGJjkfl/ARrh/Xsws6eiLhPKfW4qlqZG7My6rPY2DHePh0h6oWE8EdbqGmfs8tljc1+aj/L2HspVg+A5w7wIbB4pZsd1T4ZYfdPwc2rk9G4+BKdRoKz5yYtkA+vwIO8bBP7OhaksRvKUkQ7/V0HCwaPd8PykpEHNT5JpFXhV/PrgKUSHie6RjAHplxBJe1HXR99Hvoe3H4PgOaOcSYty/BF5L4Nx2UJMzXtPWg6Zjocd8ERjmVXVnGL0XLv9dYgItKG3B1r5ZmXciFFRlR+jxfY5NgoODcXd3x9nZmTFjxrBixQpmzJiRoc2rPoj6eQEBAZw/fx4rKyucnZ05fvx4hrMT58yZw6FDh1i0aBFNmzZl8eLFgKjHdenSJbp27crly5cB8Pb25uzZs5QvX54jR45w5swZLl68SPny5alZsybjxo3D19eXZcuW8eOPP7J0aSnf4SJJUvEJOwm7JkPUNbB0B9c/8xYYZSfyqshZsu0OLSfDxv7wx1h4d0vOsy2JsXD4G7BpAfXeFq+ZWkPXr2DPNPBf9yxhPTZCBHG3/KHJSLHU9c9s6LU4Y5/ps1qjwbRK/t+LeR0xbs8+8EsrMXP0zgao1yf/faVpMEjshjy5QgSlVZxgwBoxc5YVLS0wqyY+anfOue+UFLj0p1iS3DUJjnwPzh9AlaZi5s/Q7FmAeDtQBKIX/xRBaouJUL0NlDEXgVsZCzGT9bJ5Y5UdxUcJUrqCrWJiY2ODs7MzAMOHD2f58uWZgi03Nzfc3NyKY3g0b94ca2sxRd2oUSNCQ0NzPKjay8uLqVOnAlC3bl2qVauWHmx16dKF8uWf/TbQrFkzLC0tAahVq1b6mYeOjo4cPny4SN6PJEmvuaR4kWvk/bPYUebyhfh6y1CR1K1rkP8+U5Lhf5NF3lPvpWBiCT0WiGTzA3Og2zfZ33t8GcTeE0ttz/8D7zQKzu8Qy4t1uohxbxoIj++J2Sb73qKGlfdPYjnR/q1n9x5bDIoWtJme//eSpmpLGOQBJ34SMzyWDV6+rzRdvoSERyIAbOeWv1mjnGhpQb2+YN8HgvfBfwvgr4+fXdc3EUGXriGEnxJLku1mQItJJS6ZvSiUrmArlxmooqK8EF2/+DUU/cyWjo4OKSkpAKiqytOnT9Ov6evrp3+ura2NRqPJsa+czsMsU6ZMhq+f71tLSyv9ay0trVyfI0lSIVBVkZeTXVJ1aXPTV8x8PLgKTceIf/z1y4JJFdj5nliKGuSZ/7yfk7/ATR9Ra8lE/IJIs7Ei98f7J6hoL5KoXxRzC078CPX7g02zjNcUBd5aDr+0FrlOUddA0YZRe57t6nP5AkK94H9TxC5DU+uCz2o9r24v8VFYtHXh7Z8Lr78XKYrInbLrIRL4H4akFiBNLUIae0/symw+XiyBviFKV7BVTMLCwvD29qZVq1Zs3rw5y1mjwprZ+vTTT2nevDn9+vXL8Hr16tXx9/fnnXfe4X//+x9JSUkv/Yx27dqxadMmOnXqxOXLlwkLC8POzo7Tp08XdPiSJBW2vTPgzFaYfCL7ROziFv9QJGlXa539TEnkFTi6AM5tEwHJiF1iZ16ahoMh7oGocbVnmghy0n6xTUmG0GNi2cm4kli+K1s5Y9+HvgK7ntBgcMbndvtOXP9zmtjVVt054/VDX4l8oc5fZD3u8jWg81zY9wmUrwXDt2dcdtPRg4FrYVU7+GO8WAotjFmt0k5RRLmLyoW/m780ksFWHtjb2+Pp6cmECROoU6cOkyZNKnCfbdu25dKlS8TGxmJtbY27uzvdunXj3Llz9OmTeU1+/Pjx9O3bl+bNm+Pi4pJpBio/Jk+ezMSJE3F0dERHR4d169ZlmMGSJKmEuHFCFMQEsZT1jmfxjicrsRHg+RZEXAQjc3AYIAInqybiH9zIK/DfQhFk6RhA66li+Sqr3KxWk8VutGOLRe5O3d4iefr8DjEjomskdscdnS+Wq5qPF3lWuyaLvnv/kDnPR1tHLMWt6Qzreoo+0qq1G5QTyfStp2a94zBNs/FgXBFqtM866bpCLei1RMzM/fWR2EVXGLNa0mtDyWlJ6VVr2rSp6ufnl+G1ixcvYm9vX0wjevW6devG/v37i3sYr9yb9nOWpFxpEmFlW5En5DgAvH4Qu+Jqts+6/a3TYhbM5Yvs2xS2tEDrYaiY/QnzFvk6yYlQoQ5Y2EHwXhEINRsHrT8AY4uc+1TVZ0npIHYV1ukiShPYdoNHt+GUOwRuFMurZS3FeXn9f4UG72Tfb8wtOLsV4qMg7qGYjYt/mFrbyrNwlml3TBClGbT14INAGWy9ARRF8VdVNZtKsc+1k8GWVBLIn7MkveDIfDjyrai5VKMd/NxczMpM9Mq8pT42Ala3h0e3RHAyeIMITIpS7P3UQOsGDPtdjBHEsTMX/icCm3tBonZTXoKs56Ukw/GlYFxZJKFnlduTVjLCz0PkY/X9ufirnic+FrsH63SBjp8V71ikV0IGW1KpIn/OkvScyCsiKbtub7EEBnBxD2wdJnbYtZjwrG1yEqx/W9RgeneLKMR5L0hs6a/fL8vuCywt0IoOg6G/517j6U2iqsUf9EmvTF6DLXlcjyRJr1bqrlopG6oqkrl1DcWhu2nq9oKaHUU9qCeRz14/MAdueMFby0TCuetuUdto+xgI/C3vz71yEIL/FsFbTmLCxVEu0WEwbJsMtF4kAy0pCzLYkiTp1Qn+GxbWFP+wv+li74uq2y+uLgRsFMFTly9FJfE0iiJqLT19InbQgdileHKFKArZcIh4zcAURuwQy3q7Jomz8nKiSRSVxDcNgM2DYXFd2DcTbgc8G1t0GHivAI+esNRRVBUftk0UopQkKVdyN6IkSa/OfwtFUvKWoTB0a8at/2+KexdEXadz2yAlSezgs2kBVVuIg3b/mQ1VW0PjkZnvtbCD5hNEgFWlKex1g2rO0PXrjO30ysC7W2HbKJE0H+YN7WeBhW3Gdo/uwO8jRJHJNtPFOM5sAb+1osK4RV2R3H4nULSvWF/sJHR8R5yRJ0lSnshgS5KkV+Omr8gr6vApXNgNm999c5ahVFWUGDi+HK7sBx1DcfxLRXu4eUoU4wz+S7TV1hPn8mlls/DQYSac+x12T4GyVuIsv6xqW+kaiET5I9/ByZVwfqcIktp/IkoVhJ2E30eKo2oGeUL91GNq7HqIgPj8Ljj7u6hB1eVLkT9WQZ6FKkkvQybISyWC/Dm/AX53heuHYfoFUc7AszdE34Thf0C1VsUzpvhokUxezTl/uTbx0eDvAUF/QC0XaPtR9tWww3zgwP+JgMqogljyazYuc72m2AjRJu1g4Zyc2y6KbA7dBtZOuY83NgJOLAPfNZD8VOxUvHJAHJUzeBNUqpe39y1JUgYyQb6QhIaG4uBQuBVwb9y4gZOTE40aNaJ+/fqsXLmyUPsvTMbGxgDcvn2bgQMHFvNopFIrOgwu7hZlAPSNRRmAkbvFsSqbBorZnVctPloEfOt6gUcPkaOUm0e3xTLfDw5i15+KKFGwvImo/ZT83BFWUddFgLm2qyiP0HMRTD8vZpayKoxpbCHKHORlps9xIMy4mrdAK63vrl/Dh2fETsar/0KtTjD+sAy0JOkVkMuIxcDS0pITJ06gr69PbGwsDg4O9OnTBysrq+IeWrasrKzYvn17cQ9DKq18VwMKNH/v2WtlK4mjTTx6wsb+IoerWutXM56nT+C3d+D+JZGrdHoDrO4IjYaKc9vSztZTVXGmW7ifCFDObRPLavX7gfOHYNlQFBPd/7moHO67Wtwf5g0+q8TyXodPRYVyvZc/9SFL2S0z5qRsJej+nRijrqHcOSdJr0ipCrbm+87nUtSlQu2zbvm6zGw+M8c2Go0GV1dXAgICsLW1Zf369RgZGb30M/X09NI/T0xMTD9gOieBgYFMnDiRuLg4atWqxdq1azEzM6NDhw60aNGCw4cPEx0djbu7O23bZv2b8bp169i5cyeJiYmEhIQwdOhQvvhCnAe2ZMkS1q5dC8C4ceOYNm1ahntDQ0Pp3bs3QUFBJCcnM3PmTPbv34+iKIwfP5569erx008/sXPnTgAOHDjAL7/8wo4dO17qeySVMvcuQOxdMVvyosRY8F8P9fqIZavnmViJQ33Xvw3r+0K/leK4l6KkSYQtw0RS+KB1UK+vCLiOLRaHGZ/fJYKumHCRY/YkQtynWwacRkHrKRmPdqnSBEbvFef2HZgjamGhQONh0HH2s8CtJNF7+b+/JEnKv1IVbBWX4OBg3N3dcXZ2ZsyYMaxYsYIZM2ZkaLNw4UI2bdqU6d527dqxfPnyTK/fvHmTXr16cfXqVRYuXJjrrNbIkSP58ccfad++PXPmzGHevHksXboUEMGgr68ve/fuZd68eRw8mP22el9fX4KCgjAyMqJZs2b06tULRVHw8PDAx8cHVVVp0aIF7du3p3Hjxln2sXr1akJCQggICEBHR4eoqCjMzMx4//33iYiIwMLCAg8PD0aPHp3je5JeA5qnYoeh1xJI0YilsubjM7YJ/A0SY6Dl+1n3YWoNY/8RAdD2MWLJ0Xla0cy6JGvEM64fhrd/EYEWiDypLl+KYOrAHHEeYYXaULuLWKqzbgYV62V/yLKiiGDStpsIuizqygN4JUlKV6qCrdxmoIqKjY0Nzs7ipPjhw4ezfPnyTMGWm5sbbm5u+erz7Nmz3L59m7fffpuBAwdSqVKlLNvGxMQQHR1N+/bivDNXV1cGDRqUfr1///4AODk5ERoamuNzu3TpQoUKFdLv8/LyQlEU+vXrl364df/+/Tl27Fi2wdbBgweZOHEiOjriP5/y5UX+yYgRI9i4cSOjR4/G29ub9evX5/G7IZVKtwNg1/tw/zw0GCLOqds7QwRdLVMPa09JAZ9fRJkCm2bZ92VUHkbuEgcKH5z7LMfpxWNpCiIlBf73PlzaI6qwNxqauU35mjB4owjKXubZOvoin0qSJOk5pSrYKi7KC79hv/g15H9mK42VlRX169fn2LFjL52Arq+vD4C2tjYajSbHtlm9l/zuSFVVNcvvwejRo3nrrbcwMDBg0KBB6cGY9JrRJMKR7+H4MjCuKOo52XUXs1zbR8Pfs8TZdq2niDIHUddh4Ozc+9XRF4cJl6sqZspiwsHl/0Rtp4IGXZpE2DNdHBLccXbG426yUphBniRJbzy5GzEPwsLC8Pb2BmDz5s20aZO5arKbmxuBgYGZPrIKtMLDw4mPjwfg4cOHHD9+HDs7O0AsF/r6+mZob2pqipmZGceOHQNgw4YN6bNc+XXgwAGioqKIj49n165dODs7065dO3bt2kVcXBxPnjxh586d2eZ9AXTt2pWVK1emB3ZRUVGACBytrKz4+uuvGTVq1EuNTyrhYm7Bms4iGGr4Lkw+KQItAB29ZzlQ/3wOXkvB+2cwqQL2ffLWv5YWdP5CHD1z7RCsagffWcPaHvDP/4kDjqNvZq66npPY++Jw4MBNIlm93Yzc75EkSSpE8te3PLC3t8fT05MJEyZQp04dJk2aVKD+Ll68yMcff5w+qzRjxgwcHR0BOHv2LJaWmRNqPT090xPka9asiYeHx0s9u02bNowYMYKrV68ydOhQmjYV5UFGjRpF8+bNAZEgn90SYtr1y5cv06BBA3R1dRk/fjxTpkwBYNiwYURERFCvntxOXqqkJMPhb0WeUoPBWe90ux0gCpEmxooDj+16ZG6jrQsD1oLWe3BQbL6g87zsc52y4zRK5EuFeYudgOGnREXzE0/FdaMKYNkIrBqDVSOo2grKmGfu585ZMea4BzDQAxz6528ckiRJhUAWNS1BHj16xNixY9m2bVuR9L9u3Tr8/Pz46aefiqR/gClTptC4cWPGjh2br/vepJ9ziXR0gTjgGMCqichpej7H6uKfsOM9EeQM3SqOlclJsgZ2T4WrB2GKLxiaFXyMmkS4e04EfXcC4fYZuH9BlGJAAeumYNtdfFSqL+p67Zwonj3kNxGUSZIkFaK8FjWVM1sliImJSZEFWq+Ck5MTZcqUYfHixcU9FCk/rh8Vs1oNBotq6Ae/APfO4uvOc8WRLQfnQhUnEbSUzXojRwbaOtDvF0hOyv+sVnZ09EVAZf3c32tJCSIAu34YgveJA5oPfQVlLeHxHbBuLhLe8zJmSZKkIlKkM1uKokxQ9f66AAAgAElEQVQHxiHqLJ8DRquqmpBd+zd9Zquw7N+/n5kzM+7crFGjRnoNrJJI/pyLyeO7sLKtmP1577AovJkYC14/iMOS1WSxu7B+P1EqQdewuEecs8f3RFL+lX+gXDVwmSOCNEmSpCKQ15mtIgu2FEWpAngB9VRVjVcU5Xdgr6qq67K7RwZbby75cy4GyRpRSPT2aXFsS8W6Ga8/DIXD34F5bWjz8ctVLJckSXqNlZRlRB3AUFGUJMAIuF3Ez5MkKa+OfAc3vODtlZkDLRBV0vuveuXDkiRJet0U2a+qqqreAhYBYcAdIEZV1X9ebKcoynuKovgpiuIXERFRVMORpJJP8xR2ToIN/XI/FDn0OPh75q8EwvOuHIRji6DxCGj07sv1IUmSJOVJkc1sKYpiBvQFagDRwDZFUYarqrrx+Xaqqq4GVoNYRiyq8UhSiaZJhN9d4fI+cXTM6g6iKrvL/4njbEAEVtcPw9GFEHZCvGZc6Vmdq6xEhcDOCeJ8v5RkUFPEn3EPoJID9FxY5G9NkiTpTVeUSRidgRBVVSNUVU0CdgCti/B5RSI0NBQHh8I94+zGjRs4OTnRqFEj6tevz8qVKwu1/zQ9e/YkOjoagOXLl2Nvb8+wYcOK5FlSASTFw5ahItDqtRimnRMHI5/fCT86wb9fwaW/RDHRDf1ELlX376FCHfhnttjxlxVVhb8+FodEV3GCqi2heluo3QmcXMXOwpKe8C5JkvQaKMqcrTCgpaIoRkA84AL45XzLm8HS0pITJ06gr69PbGwsDg4O9OnTJ9fDqPNr79696Z+vWLGCffv2UaNGjTzdq9Fo5HE7r8LTJ6LoZsh/0OdHaDJSvN55LjiNhn+/FMt9II6x6f0DNBomdtiZ1YDNg8FvbdbHz1z4H1z7F7rPh5YTX9U7kiRJylJScgobvG8woIk1pkaFVBKmlCiyf01VVfVRFGU7cBrQAAGkLheWNhqNBldXVwICArC1tWX9+vUYGRm9dH96enrpnycmJpKSkpLrPR06dGDRokU0bdqUyMhImjZtSmhoKOvWrWP37t3ExcVx7do1+vXrx4IFCwCoXr06fn5+zJ49m+vXr9OnTx/GjBmDq6srY8aM4fr16xgZGbF69WoaNGjA3LlzuX37NqGhoZibm9O1a1d27dpFcnIyQUFBfPzxxzx9+pQNGzagr6/P3r170w+hlnKgqvD7CIiPFkt3lR2hsgOY2sDW4aJKer+V0HBIxvvMqsFAd2j1vjgn0K5HxppVtt2gZgeR6N7gnYyFQxMfw9+fimc1G/cq3qUkSVKO3L1C+H7fJWLik5jexba4h/NKFenUhaqqXwBfFFZ/d7/9lsSLlwqrOwD07etS+bPPcmwTHByMu7s7zs7OjBkzhhUrVjBjRsbz1fJ7EPXNmzfp1asXV69eZeHChQWa1QoMDCQgIAB9fX3s7OyYOnUqNjY26ddXrlzJ33//zeHDhzE3N2fq1Kk0btyYXbt2cejQIUaOHElgYCAA/v7+eHl5YWhoyLp16wgKCiIgIICEhARq167N/PnzCQgIYPr06axfv55p06a99LjfGLH3RAV2E2tx9Iwm/tk1RRsGrAGHAdnfX6WJ+HiRokDXb2BVW5HH1f3bZ9eOfC+Ker6zXh6qLElSsbsTE8/yf68A8MfpcD50qYOWllLMo3p1ZOGcPLCxscHZ2RmA4cOH4+XllalNfg6iTuvz7NmzXL16FU9PT+7du/fS43NxccHU1BQDAwPq1avHjRs3cmzv5eXFiBEjAOjUqRMPHjwgJiYGgD59+mBo+CyPp2PHjpQtWxYLCwtMTU156623AHB0dCQ0NPSlx/xaSHwMB74QM1Y5uXtO/Nl/FXx2C6b4iXP62n0CI3bmHGjlprKD2FHouxoeXEt9XhCc/EXkZT1/5I4kSVIx+fqviySnqMzoakv4w3hOhjwo7iG9UqXqV97cZqCKiqIoOX4N+Z/ZSmNlZUX9+vU5duwYAwcOzLadjo5O+nJjQkLGIvz6+s8qZGtra6PRaLLtByCrQrZp76lMmTLZ9q2lpZX+tZaWVq7Pee35rYXjS8HcFhrnsPEgLdiqVB+0tMG8jvgoLB0/h6A/4MAceGcD/PURGJYDl0KbVJYkSXppx69G8tfZO0zvbMvYNjVZdfQ62/3DaV0ri8PjX1NyZisPwsLC8Pb2BmDz5s20adMmU5v8zGyFh4cTHy+Wkh4+fMjx48exs7MDYOTIkfj6+ma6p3r16vj7+wOwffv2Ar2fdu3apQeGR44cwdzcHBMTkwL1+cZJ1oDvr+Lz3Gpi3QsS+VmFcRhzVspWgrYfwaU98OdUuOkDXb4EI5lPJ0lS8XqqSWHO/4KoWt6ICe1rYqinTe+GVuw7d5fYxKx/YdckpzDKw5e1XiGveLRFRwZbeWBvb4+npycNGjQgKiqKSZMmFai/ixcv0qJFCxo2bEj79u2ZMWMGjo6OAJw9exZLS8tM98yYMYNffvmF1q1bExkZWaDnz507Fz8/Pxo0aMCsWbPw9PQsUH9vpMv7IOYm6BrBncCc294NEonqRanlZBHQBWyEqq2g4dCifZ4kSZmoqsoIdx/eWenN7jO3earJffPT627t8RCuRTxhbp96GOhqAzDQyZr4pGT2nruT5T2/+YZxJDiCBfsvce9RtscpZ0tVVRKSkgs07sJWpAdR59ebfjbio0ePGDt2LNu2bSvuobxype7n7NELosOgbk9Ryf3T8KwT0ZPi4VsraDsDOn1etGO6uAf2zoDhf4glS0mSXqnTYQ/pv+IEJgY6PErQYFFWn3eb2TC0RTUqmxoU9/BeuTsx8bgsPkrrWuascX12fKCqqrgsPoq5sT6/T2yV4Z6YuCQ6LDpMFTNDLt15zOBmNnzTL/tfVveeu8Nm3zAeJWh4HJ9ETHwSjxKS0NPW4vyXORR8LiR5PRtRzmyVICYmJm9koFXiBP4G63pDXFTW1++eE2cKNh8vioVq4iEyOOu29y+Iqu2VC7cwbpbse8NHF2WgJUnFZJtfOAa6Whyb2QmP0c1wrGLKj4ev4jz/EF/tuZBlvuzrLC0p/ou36mV4XVEUBjhZ4xsaRWjkkwzXfjx0hej4JBYMaMi7zauy9dTNTG3SXL73mGlbAwl98IRyhrrUszKhm0Nlxrapyfudapeo73epSpCXpCIX8h/sngopGvjzA5Fw/uKGCJ+VYvmwyQiITT3P83ZA1kHO3SDxZ6VXEGxB5rFKkvRKJCQls+fMbXo6WGJqqEtHu4p0tKtI2IM4fj58FXevEHS0FT7tUfgz+CkpKhfvPuLMzRh6N7TExKD4C4buPXcnPSnepnzmupT9m1Rh0T/B7DgdzkddRc5ySOQTPL1DGdzUhnpWJkztVJvt/uEsOXCZ5e82znD/U00K07YEUlZfh52TnTE31s/0jJJEBluSlCbqOvw+EsrXgnp94b8FcHq9KKGQ5skDOLsNGg0VCe/6pqBnDLcDofHwzH3eCxLXzfJWuV+SpNJp//m7PE7UMNDJOsPrVSsY8f0AR3R1FFYdvY6ZkR4T29cq8PMiYxPxuhLJf5cj+O9KJJGxiQD8c+Eua12bFWsNK/8bUUzfGkiTquWY0L5mlm0sTQ1pU9ucP07fYlpnW7S0FL7dexE9bS0+6ioKnlY0MWBMm+r8fPgaE9rXpL6Vafr9Sw9e5sKdR6we4VTiAy2Qy4iSJCQ8gt9SK7i/uxk6fAo12sPfsyDi8rN2p9dBciK0SD3+RksLLBtmnyR/Nyi15IP8X02SXmfb/cOpUs6QljUrZLqmKApf9nHgrYZWfL/vElt8wwr8rBbf/su0rYEcDr5P61oVWDSoIbN61OVIcATLD10pUP8FcT0ilnGefliaGrDGtVl6UnxWBjpZcys6Hu/rDzhxLZIDF+4xuWNtKpZ9lt/2XrtamBrqsnD/s1QN/xtRrDx6jUFO1nStX7lI309hkTNbkpSSDH+MhahroshohdTfOvutgl9ai2vjDoKiBb5rxBE5Fes+u9+yEfi5i3IQzyfJq6qY2XIc9CrfjSRJr9it6Hi8rkYytVP2VdG1tBQWD2rIo/gkPtt5DlNDXXo4Zt55nps/z9zmk+1naFmzArN61MXByjT9maqqcuVeLMv+vUJD63J0rFsxyz6ealLQpKRgqKudZd3IlxUZm8goj1MoisK60c0pX0Yvx/bd6lemrIEOW0/d5Mr9WKqUM2Rsm4yrAKaGukzqUIvv913C5/oDHKqYMn3rGazKGTLnhVywkkwGW5J08Au48o845LlGu2evm1hC359hy7viQOgqTvD4tmj3PKtGoEmAiEsZE+Gjb0Dio1eTHC9JUrHZeTocVYVBLywhvkhPR4uVw50Y4e7Dh1sCiU9KpoG1KRVNDCirr5Nr4HPwwj2mbw3EqZoZa1ybYqSX8Z9wRVH4pp8DF+884sMtAeyZ2paqFZ7lS6mqyjb/cL7be5GHcUnoaiuYGOhiaqiLiaEuTtXMmNi+FhZl878sF/80mXGeftx/nMBv41tS3bxMrvcY6GrzVkMrfvMRM30/vts4y5kw11bV8TgewoL9wdhWKsvNh3FsGd+SsiUgNy2vZLAlvblUFU6ugBM/QvP3oOmYzG3q9oSmY8H7J1HHyqwG1OmasY1VauLmncCMgVV6cnwR19iSJKnYqKrKdv9wWtYsn2Ui+IsM9bRxH9WMIatP8tHvZ569rqtNJRN9aloY805Ta1zsK6Gr/Sz9wOtKJJM3naa+lQlrRzXLFGilMdDVZuVwJ3r/eIyJG/3ZMbk1BrraXLn3mM93BeEbEkXTama42FfiUUISj1LLJTyMe8q6E6Fs9g1jjHMN3mtfM0OifXKKysnrD/jzzG2u3I/FqpwhNmaG2JQ3wtrMkA3eNzgTHs3K4U40qZr3As4Dnaz5zScMp2pm9G6Q9UyfoZ42H7rY8tnOc/jfeMiEdjVpkcVybUkmg61chIaG0rt3b4KCggq13+7du3Py5EnatGnDnj170l8PCQlhyJAhREVF0aRJEzZs2ICeXs5TscVh1KhR9O7dm4EDBzJu3Dg++ugj6tUrpindS3+JZPWqrfK+Gy/+odh1ePFPsOsF3b7Lvm3Xr+HGcTFz1f37zPlX5WuBXtnMSfL3ggAFKpWeqW5JkvLH78ZDQh/EMaVT3o/gMjXUZcek1gTcfEjE40TuP0rk3qME7j1OxD80iokbT1OxrD5DmldlSDMbbkXHM369HzUtyuA5pnmuMzpVKxixbEhjRq87xWc7zmFZzoDV/12njL4O8wc4MsjJJsvlzusRsSw5cJmfDl9lw8kbTOpQiyZVzdh77g57zt4hMjaRMnra1Lcy5czNaPadu4Mm5Vl5hblv1aNbPnOoGtuU4/Oe9rjYV8xxZm9QU2s8joeg81wCfWkig61i4ubmRlxcHKtWrcrw+syZM5k+fTpDhgxh4sSJuLu7F7hifVFbs2ZN8T38wTXYMgxQxTJf66lg30ecQZidMB+Rh/X4LnT9RlRfzymBXc8I3lkPPquy3nGopQWWDTIf23P3nMj/0st9Ol2SpPy7HhGLx/FQKpsaMLlDrULNP3rRU00KejqZ/57Y5neTMnra9HTMX5BhqKed5dmAmuQUjgRHsMnnBj8eusJPh66gq61FFTNDNo5rQTmjvP3y3bFuRT50qcOyf0Wy/IAm1nzWsy4Vcti5V9PCmJ+GNmFi+xgW7g/m+32XANDX0cLFviJvNbCiY92K6Ut9ySkqdx8lEB4Vh7aWQtPq+T8iTFEUxrfLesfi83S1tdj5vjM6Wgr6Ojn8/V5Clapg69jvl4m8GVuofZrbGNP2nZyjZI1Gg6urKwEBAdja2rJ+/XqMjHKfLs6Ji4sLR44cyfCaqqocOnSI3377DQBXV1fmzp2bY7CVkJDApEmT8PPzQ0dHhyVLltCxY0fWrVvH7t27iYuL49q1a/Tr148FCxZk24+xsTETJkzg8OHDmJmZsWXLFiwsLAgMDGTixInExcVRq1Yt1q5di5lZxiniDh06sGjRIpo2bcrff//NZ599RnJyMubm5hw4cAA7OztOnDiBhYUFKSkp2NracvLkSczNC+EQUp9VoKUDLnPEwdDbRoFZdWg1BWq7gG4Z0DVMDXgUOP4DHPoGTK1h7H4RoOWFhR30XpL9davGcGpNxiT5e0EieV6SpGxpklNI0KRgrJ/3f44Cwh6y6uh19l+4iwKkqBCbqOGTbnZZBlya5BS+3HOBfUF3aV6jPJ3sKtLBziJD4JGSonIjKo5zt2K4dOcRd2ISuBuTIGacHiXw5Gkyne0rMaObLXUri7Nk455q+OvsHXo6Wma7rJdfOtpadK5Xic71KnEzKo7NvmGcv/2I+QMa5LvEwYcudTDU06ahdTla1cr7sptDFVM8xzTHLzSKu48S6GBXMcufj7aWQpVyhlQpZ5ivcb2s/Pw3UtKU3pG/QsHBwbi7u+Ps7MyYMWNYsWIFM2bMyNBm4cKF6Yc7P69du3ZZHkadlQcPHlCuXDl0dMSPxdramlu3buV4z88//wzAuXPnuHTpEl27duXyZVGqIDAwkICAAPT19bGzs2Pq1KnY2Nhk2c+TJ09o0qQJixcv5ssvv2TevHn89NNPjBw5kh9//JH27dszZ84c5s2bx9KlS7PsIyIigvHjx/Pff/9Ro0YNoqKi0NLSYvjw4WzatIlp06Zx8OBBGjZsWDiBVkIMBG4ChwHg/AG0el8sKZ5YLo6teZGWjihWWr8fvLUMDEwzt3lZli8kySc8goehWc+ESdIbRFVVwqLiCLr1iHO3Yrh87zEPYhOJjk/i4ZOnPEoQhxEvHdyItxtXybEv35AoFv8TjE9IFCYGOrzfoTYjW1dj2cEr/HLkGrpaSnqBzDSxiRre33Sao5cjaG9rgW9IFH+dvYOiQAPrcjSoYsrV+7EE3YrhcerByLraChXLGlDZ1AB7SxPa21mgrShs9btJj2XH6NvQimmdbfG/8ZAnT5MZ1DTrv1cLyqa8EZ90r5t7w2xoaSkFqun1MjNVUtZKVbCV2wxUUbGxscHZ2RmA4cOHs3z58kzBlpubG25ubgV6TlZHC+Q2Le7l5cXUqVMBqFu3LtWqVUsPtlxcXDA1FQFFvXr1uHHjRrbBlpaWFoMHDwbEe+zfvz8xMTFER0fTvn17QMy0DRqUfRmDkydP0q5dO2rUEFt3y5cX/6OOGTOGvn37Mm3aNNauXcvo0aNzfE95FrAJnsZCy7SaV9pQrw/YvwW3/CHyCiQ9EecTPo2DpDhxILTDgMKvtG6VOoOVliR/77z4WibHS2+Y2EQNp2885FRoFH6hDwm6HcPjhGdBTO2KZbEoq0918zKYGelhaqjL30F3Wbg/mO4OlbOty3Q7Op6Ra30wM9Jjdi97hjSvmj7T8VVfB5JTVJYfuoq2lhYfdhb5U3djEhiz7hTB9x7zfX9HhjSvSkqKyvnbjzh06T6Hg++z3T8c20rG9GlkRQNrUxyqmGJbqWyG5PQ0UzrVZtV/1/E4HsKes3coZ6RHtQpGNKue94Rw6c1UqoKt4vJiwJNVAFQYM1vm5uZER0ej0WjQ0dEhPDwcKyurHO/J6ewnff1nU87a2tpoNJo8jQNyD/KyG0tW99nY2FCpUiUOHTqEj49Plt+nfEtJFsfm2LR8thswjaKAdVPx8aqkJ8kHiNmse6kbKmTZB+kNcDMqDs8TofiGRnH+9iOSU1S0tRTqWZrwVkMrHKuY4mBlim1l4yzzbZrXKM+wNT5s8gnLVGcpzff7LqGqsH1S60zLVlpaCt/2c0STovLDwcvoaCu42FdktMcpHsUnsXZUM9rbWqS3dbQ2xdHaND0oy6tyRnrM7F6X0a2r89Phq2z2DWNi+7pFmismvR5ksJUHYWFheHt706pVKzZv3kybNm0ytSmMmS1FUejYsSPbt29nyJAheHp60rdvXwB27tyJr68v332Xcddcu3bt2LRpE506deLy5cuEhYVhZ2fH6dOn8/XslJSU9Of+9ttvtGnTBlNTU8zMzDh27Bht27Zlw4YN6bNcWWnVqhXvv/8+ISEh6cuIabNb48aNY/jw4YwYMQJt7UJIbrz8t6hj1WVewfsqDGmV5G+nVpK/e07skDTJeVlEkkq7sAdxDF7tzYPYpzSqWo7JHWrRrHp5mlQzy3OOjXNtc9rWMefnw1d5p6l1pt12/jei2H3mNh90qp1tfpCWlsL8AQ1ITlFZuD+Y5f9ewcxIj20TW1PPyqTA7/N5FU0M+LKvA5/2sMdAV54OIeVOBlt5YG9vj6enJxMmTKBOnTqFsjuwbdu2XLp0idjYWKytrXF3d6dbt27Mnz+fIUOGMHv2bBo3bszYsWMBuHbtGiYmmf/CmDx5MhMnTsTR0REdHR3WrVuXYUYrr8qUKcP58+dxcnLC1NSUrVu3AuDp6ZmeIF+zZk08PDyy7cPCwoLVq1fTv39/UlJSqFixIgcOHACgT58+jB49uvCWEE/+AibWUPetwumvMFg1Sk2STxIzW5Uc5MHQUrG68eAJX/91EStTA7o7WNK8Rnm0C/HMvJtRcbz760nik5LZ9b5zgYIat2529PnpOL8eC+GjLs9SRlJSVOb9eYHKJgZM7JBz/pG2lsKiQQ3R1Va4cj+WFcOaYGladMnbhnqlb1ecVDyUnJahXrWmTZuqfn5+GV67ePEi9vaFf0p6aTN8+HB++OEHLCwsiqR/Y2NjYmMLd6fn8/z8/Jg+fTrHjh3L8nq+fs53g2ClM3SeB22mFeIoC+jsNtgxDt47Cmu7Q9PR0D2H+l2SVISu3n/MsDU+PElMJik5hURNChXK6NGlXiVRC0mB6xFPuB4RS0jkE0Iin6ClKJiX1cfCWA+LsvpYGOvTIPXYlxeDtNvR8Qxe7U1MXBK/jW+JQ5WCbzh5f9NpDgff579POqbvvNvuH86MbWf4YXBD+jXOuUK7JL1qiqL4q6qaa86KnNkqJTZu3FjcQ3hp33//Pb/88kvh5GoB+PwCOobQZGTh9FdY0nLHzu8ATbyY2ZKkAtoZEM4W35v8NLRJno9RuXD7ESPcfVAUhT8mtcbazJAjwRH8ff4uf565zZZTN9PbmhjoUNPCmFY1K6AoChGxidyKTuBMeAwPYhNJUaFqeSNGtqrGO81sMDHQ5W5MAkN/PUn0kyQ2jmtRKIEWwEddbfn7/F1+OnSVuX3q8yRRw4K/L9HIphx9G8olean0ksHWG6ZFixYkJiZmeG3Dhg1FOqs1a9YsZs2aVTidPYkUM0iNhoJRCduWXL6mSJIP3Cy+lsnxUgHdjo5n9s4gnjxNZvQ6X7a81yrXPKiAsIe4rvWljL4Om8a1oKaFMQC9GljSq4ElCUnJnAqNwkBXm5rmZShfRi/bBO+k5BQOXLiHx/EQvv7rIj8cuMxAJ2uOXY0k4nEi68e2oKFNuUJ7v7VSj6rZ5HODsW1qsOVUGPcfJ7JqhFO2BzxLUmkgg603jI+PT3EPoWD8PSA5EVpMLO6RZJaWJH/DS9T0snj5+jiSpKoq/7criBQVvn7bgbm7zzNhgx9rRzXLtoK2z/UHjFl3igrG+mwa1yLLs/oMdLVpWydv6Qi62lr0dLSkp6Ml58Jj8Dgewm++Yehqa+E5pjlO1Qq/5MGHLrbsOH2Lz3aewyckin6Nq9A4H2ftSVJJJLdRSKXHg2vg+yvU7AgVS2ggk1Zvy9wOdPK/UUF6MzxKSGL5v1fwPBGabfmWv87d4d9L9/m4qy3DW1Zj/oAGHL/6gI9/P0NKSsZ7YhM1/PjvFVw9fKlsasDvE1rl6VDk/HC0NmXJ4EacmOXC/mntaFZEBS8rmxowyrk6x65Eoq0ofNLdLvebJKmEkzNbUsmXnCSqwh9dANp60OHT4h5R9tLytuQSopSFuKcaPE/cYOXRa8TEJwFiR9/nvewzLOVFxz1l7u7zNLA2ZVTr6gAMcLImIjaR7/ddwqKsPnN61yNRk8ImnzBWHL7KgydP6VKvEt/1d8z3sS75kde8sYKY1L4W+87dxbV19SLdTShJr4oMtqSS7eYp+PMDuH9BVIbvsQBMci70WqzSg60GxTsOqURJ1CSz2SeMnw5fIzI2kY52FnzUxY7t/jdZ4xXCo4Qkvu3niE5q1fJv/rrIw7gk1o9pkf4awIR2Nbn/KJG1x0OIiUvC+/oD7sQk0Ka2OR93tX1tltvKGelxZEYHmaclvTZksJWL0NBQevfuTVBQUKH22717d06ePEmbNm3Ys2dP+ushISEMGTKEqKgomjRpwoYNG9DTy9sp73m1cuVKjIyMGDlyJJcuXWLIkCEoisL27dupVevlz9EqVCkp8Pcs8F0tgqshm6Fuz+IeVe4q1IKh26Ba6+IeiVRCXIuIZfx6P65HPKF5jfKsHN4k/cw5hyommBrpsfzfKzyK17Ds3Ub4hT5km384kzrUylS3SlEUZveyJzI2kR0Bt2hctRyLBzWkde1COGu0hJGBlvQ6kcFWMXFzcyMuLo5Vq1ZleH3mzJlMnz6dIUOGMHHiRNzd3QuliOrzJk58lly+a9cu+vbty7x5eavErqoqqqqipVXE6X6h/4HvKmjiCt2+Af2yRfu8wmTbtbhHIJUQ/12O4P3fTqOnrYXHqGZ0sLPIsFyoKAofdbHF1FCXr/ZcYJynH2FRcVSvYMSHLlkfJaOlpbDknYZMbF8Le8uy8qgYSSoFZIJ8Hmg0GlxdXWnQoAEDBw4kLi6uwH26uLhQtmzGAEJVVQ4dOsTAgQMBcfDzrl27cuxn3bp1TJkyJf3r3r17c+TIEUAUKv38889p2LAhLVu25N69ewDMnTuXRYsWsXfvXpYuXcqaNWvo2LEjAEuWLMHBwQEHBweWLl0KiNk9e3t7Jk+eTJMmTbh58ybGxsbMnDkTJycnOnfujK+vLx06dKBmzZrs3r27wN8f7pwRf3aeW7oCLUlC/L+81iuEUR6+VClnyK73nelYt9onS4QAACAASURBVGK2gdHYNjVYMLABx69GcuNBHN/2d8z2QGYAHW0t6lmZyEBLkkqJUjWzdXjdau7fuF6ofVasVpOOo97LsU1wcDDu7u44OzszZswYVqxYwYwZMzK0KYyDqB88eEC5cuXQ0RE/Fmtra27dupXHd5LZkydPaNmyJd988w2ffPIJv/76K7Nnz06/3rNnTyZOnIixsTEzZszA398fDw8PfHx8UFWVFi1a0L59e8zMzAgODsbDw4MVK1ak992hQwfmz59Pv379mD17NgcOHODChQu4urrSp0+flx43IIItE+uSV0tLknLxVJPCnP8FseXUTbrUq8TSwY0ok4czAt9pakNlEwPuxMTTutbrtywoSW+yUhVsFRcbGxucnZ0BcWzO8uXLMwVbhXEQdVZbwAvym6uenh69e/cGwMnJKf2cwux4eXnRr18/ypQpA0D//v05duwYffr0oVq1arRs2TJD3927dwfA0dERfX19dHV1cXR0JDQ09KXHnO7OWbCUSeZS0boeEcvRyxH0aWhFhRx28D3VpHDl/mPqVjbJ8WzB8IdxTN8ayKnQh0zpWJuPutjmK/eonW3RHMclSVLxKlXBVm4zUEXlxYAnqwCoMGa2zM3NiY6ORqPRoKOjQ3h4OFZWOe+809HRISUlJf3rhISE9M91dXXTx6qtrY1Go8mxr5zOyUwLwLLqW0tLK/3way0trVyfk6vEWHhwFRwGFKwfScrBlXuPeffXk0TGPuW7fZfo29CK0c41MiSlX773mK2nbrIz4BZRT57iUMWEeX0cMhXzVFWV7f7hzPvzAqqqsmxII/o2ksfLSJIklKpgq7iEhYXh7e1Nq1at2Lx5M23atMnUpjBmthRFoWPHjmzfvp0hQ4bg6elJ3759gf9n777D4y6u/Y+/Z1e7WvXuIstykbsxrhiM6YTQu+nN9CQEkvBLIYTctHuTm9wQWhJC74RgWqimu2GaC+5Vruq9l23z+2NtB2PLlm1tkfR5PY+etVa73zlaqxydOTMDr776Kl988QV/+MPuBxsPHjyYv//97wSDQYqLi/niiy8OevzjjjuOmTNncscdd2Ct5dVXX+WZZ545pM/poJSvAqwqWxI2oUQrdHbgE9cewYdrynl5cTGzFhdx5JBMThzVh3dWlrFsex0up+GUMX2ZlJ/BI/M3ceGDC5kxOY+fnTaKnJR4qpraufOVFby3upypgzO5++LxXb6hqIh0b0q2OmH06NE89dRT3HzzzQwfPrxLVgcee+yxrF27lqamJvLy8njsscc49dRT+eMf/8ill17KXXfdxcSJE7n++usBKCwsJDU1dY/rTJ8+nSFDhjBu3DgOO+wwJk2adNAxTZo0iZkzZzJ16lQAbrjhBiZOnNg104IHomx56Lb/+MiOK73CxoqdiRa8cNNRFOQkc+LIPvzk26N44cttPP3pVv73nbWM6JvMXWeO5vyJA3ZNMV42NZ8HPtrIYws28e7KMi4/Kp+XFxfR0OrnzjNGcf0xQ/c5zSgivZPZ19RRpE2ZMsUuWrRot/vWrFnD6NGjoxRR7Ljyyiu55557yMnpmT0du/0///v7sPYt+Okm0Gor6UIbKxq59OHQ+aAv3HQUw/ok7/EYfyBIaX0beRkJHfZMFlY28evXVzF/QxVj+qdyzyUTGNlPq2ZFehtjzGJr7ZT9PU6VrW7i2WefjXYIkVO2ozleiZZ8jdcf5HvPLWZaQTbXHzPkgJ+/prSBqx4LTbO/cNORe020ILStwv6mAQtyknn6uqmsKW1kWJ9k3HHaRUdEOqafEBJbAj6oWKPjbnqobdUtPPPpFnyB4H4f+00vLtrOB2sq+N2bq7nn/fX7XNDxdSV1rfzspeWcef98AP5545EM63PoVShjDGNyU5Voich+dYvKlrVWm/f1YLv90qxcCwGv+rV6mEDQ8sQnm7n7vfW0+gJsqW7hl2eN6fTz23wBHvhoA5MHZTA0O4n7PtxAmz/AHaeN6vBnQ12Ll7/PKeTJhVvAwsyjh3DLiQX73OJBRCQcYj7Z8ng8VFdXk5WVpYSrB7LWUl1djcfjCd1RuqM5XpWtHmNdWSM/fXk5y7bXcfKoPmQmuXlswWYmDEzn7PGdO1T82c+2Ut7Qzr2XTOTIIZnEuxw8NHcT7b4g/3XWmF17WVlrWV3awJvLS3n2s600tfu5YGIePzplOHkZWiEoItER88lWXl4eRUVFVFZWRjsUCROPx0NeXl7ondJl4EoMHegs3VpDm49H52/mwTkbSfG4uP+yiZx9eH98AcumqmZ+9vJyRvZLYUTffU/pNbf7eXBOIdOHZTGtIAuA3517GJ44J48u2EybL8CVRw3i7RWlvL2ilC3VLTgMnDy6Lz/+9kg1rotI1MV8suVyuRgy5MCbYaWbKlsOfQ8DR8fnwkl4lNS10uYL0C/NQ6K74x8Nbb4A7f4gLqfB6TC4HA4cDkNVUztfbq7h8801fLmlhjWlDQQtnD9xAL88awyZSW4A3HGGv18xiTPvX8B3nlnMv78/nRSPq8Pxnly4hepmL//v2yN33WeM4RdnjsbjcvLXjzfywpfbcToM04ZmcdNxBZw6tq+mC0UkZsR8siW9SDAIZStg/KXRjqTbWVPawD+/2MbyonpmHj2Ycyfkdnravc0X4L4PN/DwvE0EgqH+uZT4OPqkxtM31YO1UNvipa7FR12rlzbfns3tDgM7norH5WBSfga3njSc40bk7LHbOkDfVA9/vXwiVzz6OT+etYx/XDl5r/HWt/p4aG4hJ4/qw6T83a9jjOHHp45kcHYSvkCQU8f225XQiYjEEiVbEjtqN4O3Sf1andTi9fPm8lKe/3wbX22vwx3nYEB6Aj/811c8/ekWfn3OWA7PS9/nNRZvreWnLy2jsLKZiybnMa0gi/KGdsob2qhobKO8oR0D5GUkMm6Ai/REF+mJbuLjHASCFn/Q4g9Y/MEgKZ44pgzO5LDctE6t0DtqaBY/P30U//3WGh6at4nvHL/n1PFjCzbT0ObnR6eM6PA6Mybn7XcsEZFoUrIlsaN0WehWKxH3qandz0NzC3nyky00tvspyEnil2eN4YKJA0hLcPHSkiL+NHsd5/z1Ey6anMdPThtJnxTPbtdo9Qa4+711PPbJZnLTEnj6uqlROQT5+mOGsHRbHX+avZZ1ZY1cesRApg7JxBhDTbOXxxds5oxx/ThsQFrEYxMR6SpKtiR8Pn8I1s+Gy2eBsxNfamXLwREHfXRiwN74A0H+tWg797y/nqomL2eM68fMo4dwxOCM3abgLp4ykNMP68dfP97I4ws28+9lJWQkunAag9NpcBpDY5uf6mYvVxyZzx2nj9pnz1Q4GWP404zDyUp28+qSYl5dWsyQ7CQuOWIg22taaPH6uX0fVS0Rke4g5o/rkW7K3w73jIXmSjj7fph8zf6f88wF0FQB310Q/vi6EWstH6+r4Pdvr2VjRRNTB2dy55mjmTBw31OEAJurmnn2s600t/vxBy3BHVN/xsAlUwZy9LDsCHwGndPqDfD2ilL+9eV2vthSA8AFEwfwl0smRDkyEZG903E9El2rXg0lWsl9Yc4fYNxF4N7HPkfWhipbw78duRhjWHlDG59tquazTdV8WljNluoWhmQn8dBVk/n2mL6dbn4fkp10QJuHRlOC28mFk/O4cHIeGyua+GBNORdOUj+WiHR/Srak61kLn/8DskfC2ffCE6fDZ3+H437c8XMay0LJWS9uji+pa+WphVt4b3U5m6uaAUjxxHHkkExuPr6AGZPzcDl7x9Eww/okd3h2oYhId6NkS7pe0SIoWQpn/BkGHQ0jz4BP7oPJ10JS1t6fU7Zj5/j+PSvZqmxsZ/bKUt5fU0F2kptjR2Rz7PAcsr+2B9TK4noenb+JN5eXYoHjhmdzxZH5HDU0i9H9U3E6dHKCiEh3pmRLut4XD0F8Koy/LPT+yb+CB6fBvP+D0/9378/ZuRKx72GHPLy1lofmbSI7OT4q2wLUNHuZvbKMt1aU8GlhNUEbms5bWVzPK0uLARibm8oxw7JZWVLPJxurSXI7uebowVw7fbCOlRER6WGUbEnXaiyHVa/BETdA/I5poD6jYOKV8OWjcOTNkLmXEwFKl0HmUPCkHnIID84t5E+z1wGhqblbTxoWsXM1F2yo4sanF9HqCzAkO4lbThzGWYfnMqJvMtbCqpIG5m2oZN76Sh5bsJns5HjuOH0Ul03NJy0hOisCRUQkvJRsSdda/AQEfTD1xt3vP+FOWD4LPvpvmPHYns8rWw65kw55+H9/VRzaY2p8LnFOw1/eX09di4+7zhy967DicJm/oZIbnlrEkOwk/nzReMbmpu6W5BkD4/LSGJeXxi0nDqPNFyDOYYjrJX1YIiK9lZIt6Tp+Lyx6PLSi8JsHSaf2h2m3wPw/w9Hfh9yJ//lYay3UbYPJMw9p+M82VfOTWcs5ckgm/3fR4bgcDtISXDz+yWbqW3388cJxYUts5q2v5ManQ4nW8zce1aljYzwunf8oItIbKNmSrrP639BUDlNv3vvHp/8gVPl6/TYYfCx4G6G9MTT1CIe0c/zGikZuenoR+VmJPHzVFOLjQonMf501hoxEN395fz0NbT7uvWQCNc1ettW0sK2mha3VLZQ3tFHX4qW+1Uddq4/6Fh+WUF/VxIHpTMhPZ3xeeocHG89bX8kNTy+iICeZ5284kgydzyciIl+jTU2l6zz6LWipge8vAkcHFaTFT8Kbt4MrAdzJEJ+MjU/Bl9iPuBmP4PCkHPCwFY1tnP+3hXgDQV793tF7bTB/8pPN/PqN1Xvc73Ia+qZ6yEh0k5bgIi3RRVqCi0DAsqyojvXljbsOWM7LSGBUv1RG9UthZL8URvVLoai2lZufXcywnGSeU6IlItKraFNTiaziJVD0JZz2x44TLQhNFU66BowhGLR8tLaCv83ZyNKVdSSs+4SCPkkMy0lmeN8UBmUl0u4L7qg2ealr9VHX4qPVF6DNF6DdF6TNH6Ckro0Wr59/3TStw5V8M6cPYVBWEou21pCfmcjAzEQGZSXRL9Wzz60VWrx+VhTV89X2OpYX17OurJGP11UQCP7nj5Sxuak8e70SLRER2TtVtqRrzJoJG96H29fsd0WhPxDkrRWl/P3jQtaVN5KXkcAlUwZS1+pjQ0UThRVNFNe17vYchyFUeUpwkeCOw+NyEB/nwONykuBycvW0wUwr6GAPry7W5gtQWNnE+vJGqhq9XDQlj/REJVoiIr2NKlsSOetmh47nOf5n+0y0gkHLq0uLue/DDWyraWF4n2TuuWQ8Zx+eu0fjenO7n+21LSS64khLdJESHxf21YSd5XE5GZubxtjctGiHIiIi3YCSLTk0rXXw5g+hzxg4tuPjeBZurOJ/3l7DqpIGDhuQykNXTeaU0X07TKCS4uMY1e/Q99wSERGJNiVbcmje/QU0VcClz0PcnlNpGysa+cPba/lwbQUD0hO479IJnH14bsxUqURERMJNyZYcvA0fwFfPwjG3w4A9NyR98cvt/PzVFSS6nNxx+ihmHj1Ye0uJiEivo2RL9m35LHAnwYjTdl9l2NYAb9wG2SNDvVrf0OYL8Kd31zJxYDoPXz2lU5t8ioiI9ERKtqRjrbXwyo2AhZxRMP2HMG4GOF3w/i+hsRSufx9cnj2eOmtxEVVNXv56+SQlWiIi0qvpUDbp2JZPABuaJnTEwWvfgfsmwOw7Q5uTTrsF8vZc8eoPBHl4XiET89M5ckhmxMMWERGJJUq2pGNb5kNcApxwB3xnAVw+CzIGwWd/g6xhcOIv9vq0t1aUsr2mle8eX7DbQcwiIiK9kaYRpWOb50H+kRC340zAEd8OvZV8BUk5oSN3vsFay4NzChnWJ5lvje4b4YBFRERijypbsnfNVVCxOnRg9DflToC0AXt92pz1lawta+Q7xxdoewcRERFU2ZKObJkPwNvNI1j42gqCNlS1CgYhaC3HDM/mnPG5e0wTPjinkNw0D+eMz41G1CIiIjFHyZbs3eb5BFxJ3DbXkuApIT7OicOAwxh8gSCzFhfxwZoK/vu8w0hLcAGweGsNX2yu4ZdnjcEdp6KpiIgIKNmSjmyZz6q4sSQnJrDgZyeRHP+fL5VA0PKPuYX85f31LNlay/2XTWDyoEwenLOJ9EQXlx4xMIqBi4iIxBaVH2RPDaVQtZ43Gwq4fvqQ3RItAKfDcMuJw5j1nWk4HHDxQ5/xX/9eyQdryrlm2mCS4pXDi4iI7KRkS/a0ZQEAy12Hc830wR0+bFJ+Bm/ddixnHd6fpz/dSoLLyTVHd/x4ERGR3kglCNlD7eoPcdpEph1zIqke1z4fm+pxce8lEzhtbD+cDqPd4kVERL5ByZbswVc4l68Yw8zpwzr1eGMMp4/rH+aoREREuidNI8puCjespY+vBIYcS1rivqtaIiIisn9KtmQ3n3zwCgCTTzgnypGIiIj0DEq2ZJcN5Y0klnxKS1waqfkToh2OiIhIj6BkS3Z54MMNHO1YTdyQY8ChLw0REZGuoAZ5wVrL459s4asVX5EbXwXDToh2SCIiIj2Gkq1ezh8I8us3VvHsZ9v4XX4xVABDjot2WCIiIj2Gkq1erKHNxy3PLWH+hiq+c3wBV7a8Bs19IGdktEMTERHpMZRs9VLba1q4/qkv2VTZzB8vHMclk/Pgnvkw+BgwJtrhiYiI9BhKtnqhbdUtXPDgQrz+AE9fN5WjByXDy9dBYymMPD3a4YmIiPQoSrZ6GX8gyA//tZR2f4BXvns0w1N88PS5sP0zOOW3MO6iaIcoIiLSoyjZ6mX+9nEhS7bVcd+lExjuqoRHZ0B9Ecx4Ag67INrhiYiI9DhKtnqRJdtquf+jDZw7IZdzs4rh0UvBWrjmdcg/KtrhiYiI9EjaubKXaGr386N/fUW/VA+/H7UFnjobPGlwwwdKtERERMJIyVYv8ds3VrGtpoXnxi0h6bVrod/hcP0HkFUQ7dBERER6NE0j9iBtvgDryxvpm+ohJzkehyO0hcPslaXMWrSNWYPfZPCXL8Cos+DCR8GVEOWIRUREej4lWz3EwsIqfvHqSjZXNQPgjnOQl5HAwIxE1mwr59nUB5lS9gkc+V049X/A4YxyxCIiIr2Dkq1urrbZy/+8vYaXFhcxKCuRP180nlavn+21rWyvaaGmuoLHHf/NWO86OPUPMO170Q5ZRESkV1Gy1Q0U1bawprSRFE8cqR5X6DbBxUdry/ndm2toaPXxvRMKuO3k4XhcX6tYWQsvXgX1G+Hip2DMudH7JERERHopJVsxzFrLi4u28+vXV9PqC+z1MRPz0/nDBeMY1S91zw8ufgLWvAGn/E6JloiISJQo2YpR9a0+7nxlBW+tKGXa0Cxu//YIvP4gjW0+Glr9NLT5yEmJ56zDc3E69nKWYcUamP1zKDgJpn0/8p+AiIiIAEq2YtKiLTX84IWvKGto4yenjuQ7xxfsPaHqiK8VXroO4lPgvH+AQzt8iIiIREtYky1jTDrwKHAYYIHrrLWfhnPM7qyp3c+Dczby4JxCBmQk8NJ3pjExP+PAL/TeXVCxGq54GVL6dn2gIiIi0mnhrmzdB8y21s4wxriBxDCP1y15/UGe/3wrD3y0kepmLxdMGsBvzhlLisd14Bdb8yZ8+Who6nD4t7o+WBERETkgYUu2jDGpwHHATABrrRfwhmu87igYtLy+rIS731/H9ppWpg3N4menj2LCwPSDu2B9Mbz+feg/AU7+VdcGKyIiIgclnJWtoUAl8IQxZjywGPiBtbY5jGN2G2X1bdz87GKWba9jTP9UnrpuHMcNz8aYA+jN+qZlz0NrbegYnjh31wUrIiIiBy2cndNxwCTgQWvtRKAZuOObDzLG3GSMWWSMWVRZWRnGcGLH6pIGzvvbJxRWNHHPJeN589ZjOH5EzqElWgBVGyElF7KHdU2gIiIicsjCmWwVAUXW2s93vP8SoeRrN9bah621U6y1U3JycsIYTmz4eF0FF/1jIcbArO9M4/yJebvOMDxkNYU6WFpERCTGhC3ZstaWAduNMSN33HUysDpc43UHz362lRueWsTg7CReu2U6o/vvZSPSQ1FdCJlDu/aaIiIickjCvRrxVuC5HSsRNwHXhnm8mOQLBPnT7LU8Mn8zJ43qwwOXTSQpvotf+tZaaK1RZUtERCTGhDXZstZ+BUwJ5xixbkN5I7e/uIwVxfVcPW0Q/3XWGOKcYSgoVm8K3WYq2RIREYkl2kE+TAJBy2MLNvHn99aTHB/Hg1dM4vRx/cM3YE1h6FaVLRERkZiiZCsMtlQ18+NZy1i0tZZvj+nL7y8YR3ZyfHgHrS4EDGQMCe84IiIickCUbHWR7TUtzFlXwZx1lczfWEV8nIN7LhnPeRMGHPqWDp1RUwhpeeDyhH8sERER6TQlW4egxevn/g838sGacjZWNAGQn5nI5VPzufn4ofRPS4hcMFqJKCIiEpOUbB2CB+cU8o+5hRw7PJvLpuZz4sgchmQnRaaS9XXWhipbh10Y2XFFRERkv5RsHaTGNh9PLdzCaWP78Y+rJkc3mJYaaKvXSkQREZEYFM4d5Hu05z/fRkObn++dGAMJjlYiioiIxCwlWwehzRfg0QWbOWZYNofnpUc7nB0rEVFlS0REJAYp2ToILy8porKxne+dECPJTU0hGAdkDI52JCIiIvINSrYOkD8Q5KG5mxg/MJ1pBVnRDiekuhDSBkKcO9qRiIiIyDco2TpAb60oZVtNC987oSDyqw47UlOofi0REZEYpWTrAFhreXBOIcP7JHPK6L7RDifE2tC5iOrXEhERiUlKtg7Ax+sqWFvWyHeOL8DhiJGqVnMleBtV2RIREYlRSrYOwN8/LmRAegLnTMiNdij/oZWIIiIiMU3JVid9uaWGRVtruem4obicMfSyaY8tERGRmBZDWUNse3dlGe44BxdPGRjtUHZXXQjGCen50Y5ERERE9kLJVict2VbL4QPSSHA7ox3K7moKIWMQOF3RjkRERET2QslWJ7T7A6wsbmDSoIxoh7InrUQUERGJaUq2OmFlcQPeQJBJ+TFwNM/XWQs1m9SvJSIiEsOUbHXC0m21AEzKj7HKVmMZ+JpV2RIREYlhSrY6Ycm2WvIyEuiT6ol2KLvbtRJxaHTjEBERkQ4p2eqEJVvrYq+qBdpjS0REpBtQsrUfJXWtlDW0xV6/FoQqWw5X6BBqERERiUlKtvZjyc5+rZhciVgIGYPBGRftSERERKQDSrb2Y8nWOjwuB6P7p0Y7lD1pJaKIiEjMU7K1H4u31XL4gPTYOqIHIBgMJVvq1xIREYlpMZZBxJY2X4DVJfVMHBSD/VqNJeBv00pEERGRGKdkax9WFtfjC1gmR3slYtlK+OqfoX21dtJKRBERkW5BndX7EDPN8e/9AjbNCf27/3gY/m3wtoTeV8+WiIhITFOytQ9LttaRn5lIdnJ8dAOp2ggFJ8HgY2HDezD/brBBiPNAal50YxMREZF9UrLVAWsti7fVMr0gK7qBeFugoQgmXwPH3h56a6mBwo/AlQgOzQSLiIjEMiVbHSiqbaWysT36U4i1m0O3mV9rhE/MhHEzohOPiIiIHBCVRTqwJFYOn97ZCK/eLBERkW5JyVYHlm6rI8HlZFS/lOgGUqNVhyIiIt2Zkq0OLNlWy+F5acRFezPT6kJIygFPDO5gLyIiIvulZGsvQpuZNjA52v1aoF3iRUREurlOJVvGmEHGmG/t+HeCMSbKc2vhtbyoHn/QRr9fC0KVLfVriYiIdFv7TbaMMTcCLwEP7bgrD3gtnEFF287m+In5UT6mp70Jmsp2X4koIiIi3UpnKlu3ANOBBgBr7QagTziDirY1pQ0MSE8gK9qbmdZsCt2qsiUiItJtdSbZarfWene+Y4yJA2z4Qoq+wsomCvokRzsMrUQUERHpATqTbM01xtwJJBhjTgFmAW+EN6zosdayqbKZodlJ0Q7la4dNaxpRRESku+pMsnUHUAmsAG4G3rbW/iKsUUVRWUMbLd5AjFS2NkFyP4iPgVhERETkoHTmuJ5brbX3AY/svMMY84Md9/U4hRXNABTkxEhlS/1aIiIi3VpnKlvX7OW+mV0cR8worGwCYFhODFSTago1hSgiItLNdVjZMsZcBlwODDHGvP61D6UA1eEOLFoKK5tIjo8jJyXKKxHbGqC5UpUtERGRbm5f04gLgVIgG7j7a/c3AsvDGVQ0FVY2UZCThDEmuoFoJaKIiEiP0GGyZa3dCmwFpkUunOjbVNnMtKFZ0Q7jPysRs4ZFNw4RERE5JJ3ZQf4oY8yXxpgmY4zXGBMwxjREIrhIa2r3U1rfFjsrEQEyh0Q3DhERETkknWmQ/ytwGbABSABuAB4IZ1DRsrkyxlYipuaBKyHakYiIiMgh6MzWD1hrNxpjnNbaAPCEMWZhmOOKip0rEYfGykrELK1EFBER6e46k2y1GGPcwFfGmD8RapqPgdJP19tU2YTDwKCsxGiHEqpsjTk32lGIiIjIIerMNOJVOx73faAZGAhcEM6goqWwspn8zETi45zRDaS1FlprtO2DiIhID9CZZOs8a22btbbBWvsba+3twFnhDiwaQts+xMAUYvXO5nglWyIiIt2ddpDfIRC0bKpqZmgsNMfv3GNLlS0REZFu72B2kE+lB+4gX1zbitcfjJHKViEYB2QMjnYkIiIicoi0g/wOhVWhlYgxscdW9UZIy4O4KB8ZJCIiIodsvzvIG2O+BbRaa4PGmBHAKGBFpAKMlMKKHclWLFS2agrVryUiItJDdKZnax7gMcYMAD4ErgWeDGdQ0VBY2UxGoovMJHd0A7E21CCvfi0REZEeoTPJlrHWthDa7uEBa+35wJjwhhV5hZVNsbGZaUs1tNersiUiItJDdCrZMsZMA64A3tpxX6d2nu9ONlU2xc4xPaDKloiISA/RmWTrB8DPgVettauMf11UfAAAIABJREFUMUOBj8MbVmTVt/ioavLGTr8WqLIlIiLSQ+y3QmWtnUeob2vn+5uA28IZVKTtWokYC8lWdSEYJ2QMinYkIiIi0gU6U9nq8XauRIyZDU3T88HpinYkIiIi0gWUbBFaiehyGgZmxsAB1JXr1a8lIiLSg+w32TLGTO/Mfd3ZpsomBmUl4XJGOfdsLIeKVZB/VHTjEBERkS7TmezigU7e120VxspKxMIPQ7fDToluHCIiItJl9nU24jTgaCDHGHP71z6UCjjDHVik+AJBtla3cOrYftEOBTa8D0l9oN/h0Y5EREREusi+ViO6geQdj0n52v0NwIxwBhVJ22pa8Adt9Dc0Dfih8CMYdSY41EonIiLSU+zrbMS5xpgFwDhr7W8iGFNE/edMxChPIxYvhrY6GPat6MYhIiIiXWqfJRRrbQDIjFAsUbGpqhkg+pWtje+DcUDBidGNQ0RERLpUZ47dWWqMeR2YBTTvvNNa+0rYooqgwoomclLiSUuI8r5WG96HvKmQkBHdOERERKRLdSbZygSqgZO+dp8FekSyVd3spU9KfHSDaKqA0q/gpLuiG4eIiIh0uc4c13NtJAKJFl8giDsuyg3pG7Xlg4iISE+132TLGOMBrgfGAp6d91trrwtjXBHT7g/ijvZmphu15YOIiEhP1Zks4xmgH3AqMBfIAxrDGVQkRb2yFQyEtnwY9i1t+SAiItIDdea3+zBr7S+BZmvtU8CZwLjwhhU53mhXtooXQ2stDNeWDyIiIj1RZ7IM347bOmPMYUAaMDhsEUWYLxCM7pmIG94LbfkwVFs+iIiI9ESdWY34sDEmA7gLeJ3QrvK/DGtUEeT1R3kaccP7kHcEJPbo7cxERER6rc5kGR9aa2uttfOstUOttX2A98IdWKT4AjZ6la2dWz5oFaKIiEiP1Zks4+W93PdSVwcSLd5oNsjv3PJB/VoiIiI9VofTiMaYUYS2e0gzxlzwtQ+l8rUtILq7UIO8ic7gu7Z8GB+d8UVERCTs9tWzNRI4C0gHzv7a/Y3AjeEMKpKi1iBvLRR+DCNO1ZYPIiIiPViHyZa19t/Av40x06y1n0YwpoiKWoN87WZorYH8oyI/toiIiERMZ7KM840xqcYYlzHmQ2NMlTHmyrBHFgHBoMUfjFKDfPGS0G3upMiPLSIiIhHTmSzj29baBkJTikXACOAnYY0qQryBIEB0KlslSyHOA31GR35sERERiZjOZBmuHbdnAP+01taEMZ6I8u1MtqJR2SpZCv3GgdO1/8eKiIhIt9WZLOMNY8xaYArwoTEmB2gLb1iR4fVHqbIVDEDJV5A7MbLjioiISMTtN8uw1t4BTAOmWGt9QAtwbrgDiwRfwAJEvmeraj34mtWvJSIi0gt05rgerLW1X/t3M9ActogiKGqVrZKlodsBSrZERER6ul69wdPOBnlXpDc1LV4C7mTIGhbZcUVERCTiOky2jDHTd9zGRy6cyNrZIB8fjcpW/wngcEZ2XBEREYm4fWUZ9++47dEbmkKEe7b8XihbAQPUHC8iItIb7Ktny2eMeQIYYIy5/5sftNbeFr6wIsMXiEKyVbEaAu1aiSgiItJL7CvZOgv4FnASsDgy4URWVBrkdzbHayWiiIhIr7CvsxGrgBeMMWustcsiGFPEeKNR2SpZAgkZkDE4cmOKiIhI1HQmy6g2xrxqjKkwxpQbY142xuSFPbII2FnZimiDfPHS0BSiifAKSBEREYmKzmQZTwCvA7nAAOCNHfd1ijHGaYxZaox58+BCDJ+Ib2rqaw31bGkKUUREpNfoTJbRx1r7hLXWv+PtSSDnAMb4AbDmoKILM28gAESwZ6tsBdiAmuNFRER6kc5kGZXGmCt3VKicxpgrgerOXHzHdOOZwKOHEmS4+Pw7K1sRmtLTzvEiIiK9TmeSreuAi4EyoBSYseO+zrgX+CkQPKjowmxng3zEKlvFSyC5H6TmRmY8ERERibr9no1ord0GnHOgFzbGnAVUWGsXG2NO2MfjbgJuAsjPzz/QYQ7Jrq0fItWzVbJEU4giIiK9TDizjOnAOcaYLcALwEnGmGe/+SBr7cPW2inW2ik5OQfSCnbofJGsbLU1QNUGTSGKiIj0MmHLMqy1P7fW5llrBwOXAh9Za68M13gHI6LH9ZQuA6wqWyIiIr1MhE9gji07K1txjgg0yGvneBERkV5pv8mWMaavMeYxY8w7O94fY4y5/kAGsdbOsdaedbBBhkt7IIg7zoGJxAajJUsgPR+SssI/loiIiMSMzlS2ngTeJbSpKcB64IfhCiiSfH4bueb4YjXHi4iI9EadyTSyrbUvsmP7BmutHwiENaoI8QYCkWmOb6mBuq1KtkRERHqhzmQazcaYLMACGGOOAurDGlWE+Pw2MhuaVqwO3fYdF/6xREREJKbsd58t4HZCZyMWGGM+IXRUz4ywRhUhvh09W2FXvjPZGhP+sURERCSmdGZT0yXGmOOBkYAB1llrfWGPLALaA8HIbPtQsQo86ZDSP/xjiYiISEzZb7JljLn6G3dNMsZgrX06TDFFjM8fjEyDfPlq6DsWIrHqUURERGJKZ6YRj/javz3AycASoNsnW95ITCNaCxVrYPyl4R1HREREYlJnphFv/fr7xpg04JmwRRRBvkAEKlt128DbGKpsiYiISK9zMJlGCzC8qwOJBq8/Aj1bu1YiKtkSERHpjTrTs/UGO7Z9IJScjQFeDGdQkeINWBLcYU62yleFbvuMDu84IiIiEpM607P156/92w9stdYWhSmeiPJGokG+YnXomJ74lPCOIyIiIjGpMz1bcyMRSDSE9tkK8wrB8tXQR1OIIiIivVWHyZYxppH/TB/u9iHAWmtTwxZVhIS9suX3QvUGGHVG+MYQERGRmNZhsmWt7fHzXr5wb2patR6CfuijneNFRER6q870bAFgjOlDaJ8tAKy128ISUQSF/bienc3xWokoIiLSa+030zDGnGOM2QBsBuYCW4B3whxXRLSHe+uHilXgcEHWsPCNISIiIjGtM5nG74CjgPXW2iGEdpD/JKxRRYgvECQ+rJWt1ZAzEpyu8I0hIiIiMa0zmYbPWlsNOIwxDmvtx8CEMMcVEWHf1LRitfq1REREernO9GzVGWOSgXnAc8aYCkL7bXVrgaAlaAlfz1ZrLTQUQ18lWyIiIr1ZZzKNcwkd0fMjYDZQCJwdzqAiwesPAoSvslWxJnSrPbZERER6tc5Utm4CZu3YNf6pMMcTMd7AzmQrTJua7lqJqMqWiIhIb9aZsk4q8K4xZr4x5hZjTN9wBxUJOytbYWuQr1gN8WmQOiA81xcREZFuYb+ZhrX2N9bascAtQC4w1xjzQdgjCzNfIMzTiOWrQ1UtE+bjgERERCSmHUimUQGUAdVAn/CEEzk7k62wNMhbG+rZ0kpEERGRXq8zm5p+1xgzB/gQyAZutNYeHu7Awi2sDfL1RdBer34tERER6VSD/CDgh9bar8IdTCR5w1nZqlgdutVKRBERkV5vv8mWtfaOSAQSaTsrW+5wVLZ2rkTsM7rrry0iIiLdShi3T49tvoAFwljZSs2DhPSuv7aIiIh0K7022Qprz9bOlYgiIiLS6/XaZCtsqxEDPqhar5WIIiIiAvTiZKvdH6Yd5Ks2QNAHfdUcLyIiIr042dpV2erqacTylaHbvod17XVFRESkW1Ky1dXTiGXLwemG7OFde10RERHplnptshW2BvmylaEtH5yurr2uiIiIdEu9NtkKS2XLWihbAX3Hdd01RUREehnr92OtjXYYXaYzO8j3SO3hqGw1lUNLFfRTsiUiPZu1Fvx+gu3t2LY2jCcBZ3JStMOSMGtZtAjvli2kXXghxnTxArMdfCUlbLnySgyG1DPPJPWsM4kfMSJs40VCr022dm5qGt+Vla2yHc3x/dQcL9Fhg0GMo2cWrINeL20rVxI/dCjOdG0YfLB8paU0vDMbZ3o6SUcdiSs3t9PPbVu3jsp77qX5iy+wbW0QDO76mHG7SZ8xg6wbb8DVv384Qu9SvrIy6l58kbZ168m+8QYSJkyIXizlFTS++y4Ns2fjLysj5bTTSD//POKHx07vb/uGDVTc/Rea5swBoGXJUvr/9jeYuK5NI/y1tWy74UaCjU0kTJhA9eOPU/3II7iHFZB25pmknn027ry8fV7DBoP4iopw5+d3aWyHotcmW2Hp2SpbHrrVSkSJIF9xMQ2zZ9Pw9ju0rVtH2plnkHnd9XhGjujwOcHmZozHg3E6D2isQEMDlffei7e4mKSpU0k86ig8o0cfVIIXbG0lUFODv6aWYFMjzowM4vr2xZmevusv2EB9PU3z5tH44Uc0z59PsLkZZ1YW/X/za1K+9a29Xtf6fNS//gb+6moSJ03EM24cjvj4A45v1+fc1ETL55/TunIl7vxBeMaOIb6g4IBfu0jwlZfjSEreo8Jk/X6a5s2j7l8v0jR//m5JkmvgQBKPnErSkUeROGkicbm5e1QQfMXFVN7/APWvv44jJYX0887DkZqCw+PBuOMx8W7a166l9sUXqZ01i/QLLiDrxhtx5w0AQr9A21asoPWrZbRv3IgjKQlnZgZxmZk40zNwZqRjfX6CLS0EW5oJtrRgW1sx8R6caak4U1NxpKXhTE3DNSCXuMzMfb4O/tpagk1NxGVn40hI+M/rEAzS/Omn1P7znzR9PAeCQRypqWz56CMyrrqSPj/4AY6k3V+7YFsb9a/9m4Z33iHxyKlkXnklztTUzv1/lJTQ8M5sGmbPJtBQjztvIK6BebgHDsQ1IA9/TTWNb79Dy+LFYC3xI0cSP3w4NU8/Tc3jj+MZN460888j7Ywz9vsHhnfrVho//hjPyJEkHnFElyVBvvJyKh94gPpXXsWRmEjO7bcTbG2h+sF/EKivZ8Bf7j6k76+vC7a2UvTd7+ErKmLgo4+QNHUq/poaGt99l/q33qLyvvupvP8Bko4+mvSLLiLlpBMxbveu57dv3Ej9629Q/+YbBJtbGDF/3m4fjyYTS3OiU6ZMsYsWLYrIWH9+dx0Pzi2k8PdndN1FX7oOtn8JP1rRddeUHslXUkLpf/2KYFsrqWecQeppp+33F8jXBerqqH/9dRreepvWZcsA8IwbR/yI4TS8Mxvb0kLScceSdf0NJE49Auv10rp4MU2ffELzwk9pX7MGXC7cubm48vNxD8zDlTeQpGOm4xmx9yStaf4CSn/5S/yVlbgHDsS7ZQsAzrQ0Eo88kuTjjiXltNNwJifv/XOuqKD2mWdomP0u/qoqbGvrXh9nXC7i+vTBkZpK+/r1EAjgzMkm5YQTSZx6BNWPP0H7mjWknnM2/e68c9cvIRsM0vD2O1Q+cD++rdt2u55n3DgSJ08mYfIkEidM2OcvLuv10rZuHc2ffELTggW0frUM/P7dY0xIwDNqFJ7Ro0L/H41NBBsaCDQ2EmxsINjWjvV6d3vD5cKRmBh6S0rCkZhI4pQpZH/vux3+srKBANWPPU7LZ5/R9xd3El9Q0GHMZb//PXUv/Cv0f5KRgWvgQNx5eTjT02j84EP8FRXE5eSQduEFpF94IcGWFlo+/5zmz7+g5csvCTY0hJ6bmYln3GEkjD0Mz2GH0fLFF9Q+9xw4HGRefRVZN9yAMy1tr3H4ioupevRR6l96GWstSUdPw7d1G96tW0MPcDhwDxxIsL2dQE1N6HU5CM6MDOILCnAPKyC+YBhYS3thId7CQtoLCwnU1u56rCMpibjsbJw52fgrK/Ft3YYzI4P0GReSfsklONPTqfzLPdQ+/zyu3Fz6/eY3JB97DP7aWmqff57a554nUFODKy8PX1ERjuRkMi6/nMyZ1+zxPWutxV9SQuPHc2h4+21alywBQt+b7oF5eIuK8W3fvlt87mEFpJ5+Oqmnnbbr/9dfXU3Dm29S98qrtK9bBy4XSVOnknzySaScdBKufv12/b83fvQRdS++SPPCT//z+qSnhx57yikkHX00xuHAV1xM++bNeDdtxrtlC8Hm5p1B74weG7QQ8GP9gVDPlN9H69KvsIEAmZdfTtZ3biYuIwOAmmeepfx//ofEI44g7+9/w5mSstvr0L5hA+1r1pB8wgkdfr3s9tr5/RR9/1aa5s5lwL33knrqt/d4jK+khLpXXqXu5Zfxl5bizMoi/fzzcGZl0/DGG7StXg0OB0nTp5N2ztmknnpq2JMtY8xia+2U/T6utyZbv397DU9/uoW1vzu96y761yMgaxhc9s+uu2YPZAOBQ6oK2GCQYGMjgfp6AnV1BOrqQn8Rt7Vh29p23LYTbGsN3ba3YVvbCLa34erXn7TzzsUzcuSBjWktgaoq/LW1u8YM1NcTbGzCmZqCMzMz9Fd6ZibOzKx99q40f/opxbf/P6zXS1z/fng3FoLTSdL0o0k780ySTz65w4Ql0NRMzVNPUvPEkwSbmogfNSqUrJ1+Gu6BA0OPqauj9oUXqHn6GQI1NbgHDcJXVoZtbweXi8SJE0mcOhXb3o53+3Z827fj3b591y/bhAkTSL/4YlJPPw1HQgKBpmYq/vhH6mbNwl1QQO7//oGEcePwlVfQ8vlnNH/2Oc2ffYq/pBSTkEDqqaeSfuEFJEyZgjGG9k2bqH78cRr+/To2ECD5uONwDx684zXLwJmZiSM5mUBtHf7ycvwV5fgqKghU1+AZO5aUk0/CM27cruqZ9fmo+sdDVD30EHEZGfT77W8AqLz3PtrXrSN+5EhyfvgDEiZMoHXpUloWL6Z10WJaV63alTS5hw4lYeIEEidOJK5/f7wbN9K2Zi1t69bRvnEj+HwAeMaMIWn6dJKOOYaECePxFRXRtmoVrStX0rZyFe3r12OcThypqThTUnbcJmM8CRi3C+N243C7MW431h/YUbkJvQXq62hdtJj4kSMZ8Of/22PKyFdeQcnPfkbLZ59h4uPBGPr+4k7SZ8zYrfLkKy+n+LYf0LpsGRlXXklc3z74thfhKyrCW1SEv7ycxCOnknHxxSQffzzGtedKaRsI0LZmLa3Ll9G2YiVtK1fSXlgYqoA5HKSdfx453/9+p6cHfWVlVD/6GE3z5xE/fDgJ48eTcPh4Eg4bu6tyZK0l2NxCoLaGQF196LVKStyVkJr4eKzXG/o+q68n0NBAoL4e3/bttG8MJVXtGzfu+rp1pKURX1BAfMFQ3AUFOFPT8FdXhb5vK6vwV1Vh4pyknX8+KaeeiuMbv4Rbliyh9K5f4t20icSpU2ldvhzb1kbyCSeQdf11JEyZQvvatVQ99DCN776LiY8nfcYMnOnpeDdvpn3zJrxbtmJbWgCIHzEi9L15xul7TGcFmprwFRVh3G7ihw7t8HW01tK+Zg31b75F04cf7kpaPWPH4hk7lsYPPyRQXU1cbn8yLrqI1DPPpG3dOhrfe5+mjz8m2NSESUwEnw+742saQsnqbtW5nV9PTmfoZ3OcE+OMw8TF4R4yhOzvfXevU3f1b75FyR13ED98OAMf+ge+omIaP/yAxg8+2PUHjyMlhazrriXjqqs7/LloraX0rruof/kV+v3qv8i47LIOXxMIfb02L1hA7YuzQtOagQCesWNJO/ccUk8/nbicnH0+vysp2dqPX7++ileWFLH816d2zQW9LfCHAXDcT+DEO7vmmt2Ev6aGupdeJtjYQNKxx5I4ceIeP9D9NTW7/lLzlZSQ/8jDJIwfv8/r2kAA79attK1ZQ/vatbStWUv7unX4a2ogENh/YA5HaJrD48F44nHEe/AWFYHPR/yY0aSfdz6pZ5+16y81GwwSqK0N/fVbUop3U+GuH+rewkKCO36IdkbiEUeQcfllpJx88q6/rKy1VD/yKJX33ot76BDyHngA9+DBtK9fT8Obb1H/1pv4S0pDCdHkySQfdxzJxx2Lu6AA295O7XPPU/3IIwTq6kj+1snkfP/7eEaN6jCGXdMf784mfvhwkqdPJ3HKlD2mSXbyV1VR/+ab1L04C++mTThSUkg9/XSaFyzAV1pK5nXXknPbbXutwlhraVu+nLqXX6HhrbcINjfjGpSPe2A+zQsWYDwe0i84n8yZM7usj6J11SpKf35nqPoFuPLzybntNlLPOH2v05rB1lbaVq6kZclSWpeG3gL19bs+7szJxjNyFJ5RI4kfPZqko44iLiurS2LtSNPcuZTc+QuCjY30+clPyLjyCowxNM6ZQ+nP7yTY1ka/u35B0jHHUnLHz2j59DNSTjuN/r/9Dc7UVFq+/JKiH/4I29pK/z/8Ya/VgIMVbG6mbe1a4rKycA8e3GXX7Uo7/wgCcGZnH3IDdbC9nap//IO6l14i+fjjyZo5k/hhw/Z4XPumTVQ//Aj1b7wBwSCu3FzcQ4fiHjKY+CFDSJwypcv7ray1eDdtovHDj2j68ENaV68m+bjjyLj4IpKOOWaPP2CDXi8tn35K09x5OBITcA8ZinvIENxDBu/6mdcVmubPp+jW20JVymAQ4uJIOvJIUk75FvEFBVQ/8SRNH32EMyODrJtuIuOyS3F4PFivF19FBb6SEhrffY/a554j+3vfJee22w5ofH9lJcHW1qj1ZynZ2o87X13Be6vKWHTXKV1zwaLF8OhJcPEzMOacrrlmjGtbs4aaZ56l4c03Q99ocXHg9+NISSH52GNIPuEEHImJ1L32Gk1z5oLfj+eww3ZVhvIff4yEww/f67Xr33qLsl//hmBjY+gOl4v44cPwjBhJXL9QX8+ut7S00LRMQgImPh5HQkIoIXC59vjh66+tDSU2r74aKjm7XMQPGxbqHaqu3mO6KK5PH9wFQ4kvGIZ78GDisjJ3G9uRnEywoQF/TS2B2hr81TX4ioqof+01fMXFOHOyd/3FWXnvvTS+/wGpZ5xO/9/9bo+kxwaDtH71FU0ffUTT3Hm0b9gQ+tRzc7E+H/7KSpKmTw9VbcaFb8WrtZbWxYupffFFGme/i6t/f/r/4Q8kTprYqecHW1tpfO896l56Ge+2baTPmEHGFZcf0DRpZwW9Xupe+BeOxATSzj13r1Wbjlhr8W7egr+inPhhw4jLzu7y+DrDX11N6Z2/oGnuXJKOOxb34MHUPv1MqOL1l7t3TS3ZYJDqxx6j8r77ieuTQ9qZZ1H9xBO48/LI++sDe00KJLwCDQ2hipzHE/GxrbUxszqvddky6l57jcRJk0g+/vg9etpaly2j8r77aV64EGdGBsblwl9Z+bUpTEi/+GL6/ebXMfM5dZaSrf34yaxlLNhYxac/P7lrLrj4SXjjB3DbV5A5pGuuGQOCra34KytDU3b1DQTq6wjU1tEw+x1aFy3GJCSQdu45ZF55JXH9+tP86UKa5syhae683f7iTDv7bNLOPw/PiBH4SkvZetXVBOrryX/8cRLG/WdBgfX7qbj7L9Q88QQJEyeSfvHFeEaPIn7o0C6fe29bt476V16lfdMm4rKzicvJ2fXm6tcX99ChnW6E/aZdZe7n/0nTvHmhHypOJ31/+hMyrr66Uz9QfCUlNM1fQNO8eVifl+wbbyTxiCMOKp6DFWxrw7hcMdkM3pNYa6l74QXK//eP2PZ2Mq64gj4//cleq4ity5dT/P9+jG/7dpJPPpncP/5vh9POIrGk+YsvqHvhBUxCAq7+ubj698eV2x/Xjt7R7pZogZKt/frhC0tZur2OuT85sWsu+NaPYdkLcMc26AFL773btlHz1NPUvfLKXhuZXQMGkHHFFaRfeMFemx9tMEjbqlUEGhpImjp1j4qDr7iYrVdfQ6CxkfwnHidh7Fj8tbUU/+h2Wj77jIwrrqDvz34aMytJDoW3qCi0kmnKFBIndq46JL2Td8sW/FVVJE7Z98/uQFMTrUu/Imn60T12qw+R7qCzyVbv3fohEOzibR9WQN+x3TrRstbSunQpNU88SeMHH0BcHGlnnknikUfiTEvDmZ4WWoKdmkpcdvY+f8gbh2OfU12uAQPIf+optl19Nduuu55+d/6civvuI1BVTf/f/570C84Px6cYFe68PLJvvDHaYUg34B48uFP9Uc7kZJKPPSb8AYlIl+i9yZbf4u6qZCsYhPJVMP7SrrleF/OVlRGoqQmt5qmrJ9BQH1qm3tBIoLGBYEMjgYYG/GWltG/YiCMtLdTIeMXluPr0CVtc7rwB5D/9FFuvvpqSn91BXP/+DHruud2mFUVERLq73ptsBYK4umr3+Lot4G2MuZ3jW1espPKee2heuHDvD4iL27FcPQVnahpxffqSfumlpJ9/Po7ExIjE6M7LY9DTT1P34iwyr7k67Ku/REREIq3XJls+f5D4rqps7TqmJzbORGwvLKTy3vtofP99nOnp5Pzwh7gLhuJM/c9UoDM1FZOYGBMNie68PPrc/qNohyEiIhIWvTbZ8gaCeFxdlWytAOOAPmO65noHyV9dTcWf76b+3//G4fGQfcstZF47UyuVREREoqjXJlu+QJBUTxd9+uUrQzvHuxL2/9gw8ZWVsW3mtfhKSsi8+mqybr6pSzeuExERkYPTa5Mtr78LVyOWrYSBkd3/6Ou8RUVsm3ktgdpa8p98gsRJk6IWi4iIiOyu++5TcIi8gSDurmiQb62F+m3QNzrN8e2bN7P1yqtC+1Up0RIREYk5vbay5QsEu2brh/JVodt+ez92JpzaN2xg67XXQTDIoKee3Oc5eSIiIhIdvTbZ6rJpxLIVodsIb/vQtm4922bOxMTFkf/M07vOTxMREZHY0muTLV/Ads00YtlKSMqB5L6Hfq0DGfa3v4U4J4OefQb3oEERHVtEREQ6r/f2bHVZZWt5qF8rgvtVtSxeTOvixWTfdLMSLRERkRjXe5OtrmiQD/igcm3EpxCrH3kUZ0YG6TMujOi4IiIi4eYP+nl29bMsLOng9JNuqFdOI1pr8fqDuJ2HWI2qWg8Bb0Sb49vWradpzhyyb7sVR0L09vUSERHpauXN5fx03k9ZUrEEgGsPu5ZbJ96Ky+GKcmSHpleMIbalAAAgAElEQVQmW/6gBTj0ytbOY3oiuO1D9WOPYhITybz88oiNKSIi3U/QBvm89HMGpQ4iNzk3KjH4gj5a/a20+Fpo8bfgC/gYkjYEt9O9x2MXFi/k5wt+Tqu/ld8e/VtWVq3kiZVPsKR8CX867k+7fQ5BG2RhyUJeWv8SARvg1om3MiJjRCQ/tQPSK5Mtrz8IcOg9W2XLwRkP2ZH5D/YWFdPw1ttkXnUVzvT0iIwpIiLRV9NWw4rKFSyvWs6KyhWUNpcyY8QMLht12V4Tl+2N2/nVwl/xZdmXxDniuHjExdx4+I1kJ2Tv8Vh/0M/SiqVUtFQQ74zH7XTjdrqJd8ZjMARsAH/Qv+stLT6N8TnjOzxbt6athkeWP8IrG16hxd+yx8cT4hI4qv9RHDPgGI4dcCw5iTn8/au/8+iKRylIL+Du4+9maPpQzh9+Pkf0P4JfL/w1F71xEb+b/jvG54zn1Y2v8tL6lyhuKibTk0nABrjojYu4ZOQl3DLhFtLi0w79Be9ivTLZ8gVCydahV7ZWQN8x4IzMy1jzxBPgcJA585qIjCci0lV8QR+zN8/mg60fUJBewJR+U5iQM4FEV+JBX9Mf9PPw8ocprCtkeMZwRmaMZETmCHKTcjtMBA5UeXM5X5R9wcqqlYzPGc9J+SfhifPs9bGb6zcze/Ns6r31JLmSSHIlkexKJtGViC/go7qtmqrWql1vvqCP9Pj03d7cTjf17f+fvfMOj6s68//nTu+SZtSrZTVbcpM7NjbGpjqGUEJLQkJJWbLhSbKbZEnZxpKyvzSyCZuQSrIhYCBkMfYCNhgwNrj3omb1NpJGo+n93t8fYw8IS7YsS2BH58Mjrp+5d855752Ze773fd/zHg/uiDu5DbvpCfTQ5e8CQCWpqEivwG6w88O9P2R9/Xr+YcE/sKZ4DZIkISsyT9U9xU/3/xS1pOahxQ/R6G5kff16/tr0Vz4585PcM+sejGoju3p38Wrbq2xt34o74j6v61JiK+HWilu5sexGHEYHAL6ojz8e/yN/PPZHwokw15deT6mtFJPWhEljSn3W+5z7eKvzLV7veB0Au8HOYHiQm8pv4ptLvolR826KzHXTrqPGXsNXt32VL73+JTQqDXE5zsKchXx5/pdZU7yGQCzAzw/+nPX163mp5SUerH2QWytuRa1Sn/fnPVlIiqJ82DakWLhwobJ3795J76fPG2bxd1/jkZtm8cml45zNpyjw/6bDzHVw488m1sARiLtcNK1eg23dR8j/zncmvT+BQCCYCIKxIH9t+it/OPYHegI9ZBuzcYVdJJQEGpWG2ZmzWZCzgGm2aeSZ88g155JjzkGv1p+13aHwEF/d9lV29ewiz5xHT6Antc+itVCZUUl5ejnlGeWUp5dTkV5BuuHsEQFFUegOdHN04Ch7evewq2cXrd5WgNQgb9FauHbatdxQdgPzs+fjjrh5qeUlNp7cyFHXUVSSCpPGRCAWQOHM8dWitZBpzMRhdKBVafFEPAxFhhiKDBGKhwBQS2rS9Glk6DNI06eRZcqixlHD7MzZVDuqU6JlR9cOfrj3hzQNNbEgZwGfrv40Txx7gv19+7m84HL+9bJ/JdecC0Crp5X/PvjfvNT6EladFRTwxXyYtWZWFq7kquKrqMioIJqIEk1EiSQiROUosiKjUWnQSJrkVqWhxdPCcw3Psb9vPxqVhtVFqynPKOfJE0/iiXi4puQavlj7RUrTSs96rZs9zWzv2s5+536uKrmKG8puGPX4aCLKb4/8Fl/Mx60Vt1KWfmZtyfrBer63+3vsc+5jpn0mv77m15Pu5ZIkaZ+iKAvPedxUFFud7iCX/+fr/L+PzeH2hUXja8TTBT+phrU/hMWfnVgDR6Dv0UdxPf4rpm/aiH769EnvTyAQXPrIisxgeHCYV2Gi6Q308krrK9QN1qU8OVadFavOSn+on6frnmYoMsT87PncP/t+VhSsIBgPcrDvIHt697DHuYdjA8dIKIlh7doNdq4supJPVX+K6enD73lN7iYe3PogzqCTf73sX/lo+UcJxAI0uhtpcDfQ4G6g0d1I41AjvqhvWJv55nzyLHnkmfPIt+Rj0phoHGqkbrCOusG61PEmjYmFuQtZnLuYpXlLKUsvY79zPy+cfIEtbVsIxUPkmHJwhVzElThVGVXcUHYDa0vXkmXKQlEUQvEQgViAQCyAWqUm05g5zGvzfiKJCJFEBIvWgkoaW+QlLsd5vvF5Hjv4GIPhQaw6K/+06J+4sezGEb17dYN1/O7I79CpdVxdcjVL85eeU9iORvNQM881PseGkxvwRDwsz1/Og/MfpMZRM672JgJFUXil9RV2dO/g4WUPT5iHczSE2DoLLQMBrvzhGzx6xzxuqi0YXyP1L8NTd8B9r0Dx0ok18H0k/H6aVq/BvGQJhT/7r0ntSyD4W2AgNIBWpb1ocjcSclJITGRYQ1Zk/DE/nogHb9SbCjm1e9tp8bTQ6m2l1dua8pac9qhkm7LJNGaiVWlTnhdFUVBQ0Kv1WLQWzDozVq0Vs9ZMmj4Nh9GBw+DAbrBj0ppwhVxsadvCSy0vpWaN5ZpzicQj+KI+4ko8ZecVhVdw36z7mJ8z+rqtkUQEZ8BJT6CH3kAvvYFeWr2tbGnbQiQRYWXhSu6puYeFOQt5veN1vvHWNzBpTTx65aPMzZo7aruKotAX7KNpqImmoSZaPC30BHro9nfTG+glnAgDoFfrqcyoZIZ9BjPsM6h2VFNlrxp1BlwwFuTV9ld5te1Vptmmsa5s3YeenO2L+nip5SVWFa0i25T9gfYdSUToC/ZRZB2n8+ISZqxia0rmbE1IgvzpZXpyJl/BD61/BtnrxfHZz0x6XwLBpUrzUDNbO7aytX0rRwaOYNQY+VT1p7h31r2YteYP3B5Zkdnv3M/G5o1sbttMMBbEYXSQY8ohy5hFlimLDEMGerUeo8aIQW3AoDFg1VlxGB1kGpKhJo1Kg6IodPo7Odh3kEP9hzjUf4hGd+MZ3iAACYl8Sz6laaUsyFlAkbWIYDzIQGiAvmAf/cF+DvcfJq7EkU7/d+rpP5qI4o/5UwJtJIwaI9FElISSoCytjC/O+yLXl15Psa0YSAqccCKML+pDQiLLlHXOa6VX6ym2FafaOM3XFn2N9fXrebruae575T6mp02n2dNMjaOGn175U3LMZ1+5Q5Ikcsw55JhzWF6wfNg+RVFwR9z4oj4KLAVoVGMfDk1aEzeW3ciNZTeO+T2TjVVn5faq2z+UvvVq/ZQUWufDlBRbE5Ig33sY7NNBb50gq0ZGSSQYfPJPmBYtwjjng1/sWiC4WHGFXBzsO8j+vv1s69yWyq2Z5ZjFg7UP0uhu5PHDj/Nsw7N8Ye4XuKXylnHV6nGH3bzT/Q6H+g+hklQYNUZMWhNGjRGjxohercegNqDX6FOzt97ufptNzZvoDnRj1BhZU7yGPHNeUuyE+mn3tbPXuRdv1HvWviUkMgwZQHKGFyTDW3Oy5nBPzT3YDXZsehtpujRsehvp+nQKLAWjJnCPlbgcJxAL4Iv68EQ8uMIuXCEXrrCLwfAgZq2Za0quoSKj4kybJSl1bS4Uu8HOA3Mf4N6ae3mx+UWeqnuKj5Z9lG8v/fYFn6MkSdgNduwG+wXbKRCciykptiIpz9YFxHJ7j0De5Isf/7ZtxLt7yPn6P016XwLBaRRF4eTQSXb17qLL34U34k2FqrxRL4WWQj5V8ykW5iwcc06EM+Bkff163u5+m0xjJvmWfAosBRRYCiiyFlGWXnZW74I77OatrrfY27uXA30HUuJKp9IxP2c+n5j5CVYVrUolBAN8qvpT/Gjfj3hk1yP86cSfuK3yNtQqNbIik5ATJJQEkiRh0Vqw6WxYdMl8o1gixq7eXezo2sHRgaMoKBg1RlSSilA8hKzIZz1XlaTisvzLeHD+g6wuWj1qvpSiKKk8nVA8RDgexhv1Dpux1h/qJyEnmJU5i7lZcylPL5/0WVYalYY0fRpp+jQKrYWT2tdYMGgM3FZ5G7dV3vZhmyIQjIspKbYu2LMV9oK7BWo/MYFWjYz76afRZGVhXbN60vsSTG26/d3s6tnFzp6d7O7dzUBoAEiGjWw6Gza9DZvORqG1kMP9h7nvlfuY5ZjFvbPuZU3xmhEFgKIoHOo/xJMnnuTVtldJKAlqs2vpDfSyz7kPf8yfOtaqtbI4bzGX5V3G0vylFFuL6Qn0sLV9K6+1v8b+vv3IikyaPo3arFpurriZ+dnzqXZUj1hnCGB21mx+f+3vebPzTX6878f8YO8Pxnw9VJKKOZlzeGDeA1yefznVjmrUKnVyBQo5SigWSgqkRDglmCLx5AyuGfYZI9Yzej+SJGHQJMOHF0t+mUAgmHimpNg6nbOlG2/OlvNYcjvJy/REOzsJbHuLzAf+Dkl7aS9VIBhOXI7T6esknAincnVOh6IMasOkz6CRFZnmoWb29+1nn3Mf+/v20xvoBcBhcLAkbwlL85ayJG/JiJWnw/EwG05u4A/H/sA/vvmPFFmLuLrkahQUYokYMTlGNBGlbrCOE4MnsGqtfGLmJ7hzxp0pT4miKHijXrr8XTR7mtnTu4d3ut/htfbXAMjQZ6Rq/5Snl/OZ2Z9hddFqZjpmjnmmFiQFzaqiVawsXMlgeBC1pEatUie3kjqVaO6L+lJ/siIzL3veiAJIkiT06mTIMB1RXFggEJybKSm2LtizdTo5Pnf2BFk0MkPr14MkkX6bcJ1f6uxz7uNA34HkrCh3clZUVI6OeKxVZ6XGUcOszFnMcsxiVuYs0g3ptHnbaPG00OxpTr4/EWVt6VquLL5yzLlI7d52nmt4jhdOvpDKAcoyZjE/Zz731NzD4tzFlKeXn1PsGTQGbq+6nVsrbmVrx1aeOPoEvz/6e7QqLTq1Dq1Ki1atxWFw8O0l3+aGshvOCKVJkpQKVVU7qlk3fR2KotDua0/lSFVmVLK6eDUltnHWw3sPKkk1qrfJpDV94DO4BALB1GFKiq0Lno3YewhMDrDmTaBVw5GjUYae+wuW1VeizZu8fgTjwx12s8+5j6ahJq4supIqe9WIx/UGevn+7u+nvDW55lzK0su4LP8yytLLsGqthBNhwvFwatvp7+TYwDGeOPrEsCn076XAUkBMjvFa+2s4DA5uKr+JWytvHXFGUEyO8UbHGzxT/ww7e3ailtSsKlrFqqJVLMheQKG1cNyeNLVKzdUlVye9WopywR45SZIosZVQYivhzhl3XlBbAoFAcLEwNcXWRHi2cmfDJIZ6fK9sJuF2k3HnXZPWh2DsOANODvQdYK9zL3t793LSczK177GDj7E8fzn3zbqPRbmLkCSJuBznyRNP8tjBx1AUhS/N/xK3V92OTWcbc5/heJh6dz1HB47ijXiZljaN0rRSSmwlGDVGEnKCHd07eLb+WX5/7Pf89uhvmZc1D51al6z+fKoKtCvswhPxkGvO5YvzvsjNFTdPihdnskOfAoFAcKkyJcVWLJEs5DeunK1EDPpOwJLPT7BVw3E//TTa4mLMyy6b1H6mEr6oj2AsiFGbnJb+/tCbrMiE42FC8RD9oX4O9B3gQN8BDvYdTC0FYtKYqM2pZV3ZOhbmLKTIWsTzjc/zpxN/4v7N9zPLMYubym/i2YZnqXfXs6JgBd9c8s1xzegyaAzMzZo7atFGtUrNysKVrCxcSW+gl782/pXt3duJyTGMGmNqnbW52rmsKV7D5QWXX1RrhQkEAsFUYUqKrVSC/Hg8WwMNkIhOanJ8uL6B0L59ZH/ta0iqC1ws+xLldBFHjaTBprdh0pjG7DlRFIW9zr3sd+6n3ddOm7eNDl9HKkfpNBqVBqPGiEbSpGaVvZ9sYzbzsudxd/Xd1GbXMsM+44zyBJ+d81nurr6bDSc38MSxJ3hk1yNkm7L5yaqfpBaHnWxyzbk8MO8BHpj3wKT3JRAIBILzY0qKrdMJ8uPK2foAkuOH1j+NpNORdsvNk9bHxUp/sJ8Xm1/khaYXaPY0p15XS2qsOivp+nRWFK7grqq7KLKdmZ90dOAoj+57lF29uwDINmVTYivhyqIrKbYVY9VZU1P2T/8llESqCKNBY0h5heZkzSHfnD8msfTehPGjrqOUp5d/KFXLBQKBQHDxMSXF1gV5tnqPgMYAjjMrJ08EciCA54UN2K6/Hk1GxqT0cTFxeu2yA/0H2NC0gR3dO5LT7rPm8Y3F30Cv1uOL+vBGk0U1ewO9PHXiKf50/E9cUXgFd828i8vyLqPV28rPDvyMLW1byNBn8NDih7i5/OZJW3x3NNQq9VnXahMIBALB1GNqiq3EBVSQ7z0M2dWgnpxL53lxI3IgQMZdl+5MrIScoNvfTYu3BVfIdcb+QCzASc9JTg6dpGmoCV/UByS9UPfPup8by25kWtq0UdvvC/bxTP0zPNvwLG9seYMCSwG9gV50ah0PzH2AT9d8WniVBAKBQHDRMDXF1unSD+ebD6UoSc/WzMlbfNT9zHr0M2dimHvpeEdC8RAvNL3A7t7dtHhaaPe2j1pD6jRp+jTK0spYW7qWsvQyqjKqmJs1d0wJ3NmmbL5Y+0U+O+ezvNL6ChtObuCKwiv47JzPjqlqt0AgEAgEHyRTUmzFEjJatYRKdZ6eLW8XhNyTlq8VaWwkcvwEOd/61iUxjd4ddvN03dP8ue7PDEWGUuvbrShcQamtlNK0UrJN2UgMPxedWofdYL/gc9Sr9dxYdiM3lk2e+BUIBAKB4EKZkmIrGpcvMDl+cmYiel7cCGo1trXXT0r7E0WXv4s/HPsDf238K+FEmFWFq7h31r3Mz5n/YZsmEAgEAsFFx5QUW7GEPP7keCTIqZ5wmxRZxrPxRczLl6FxOCa8/YnAE/Hw+OHHearuKQDWTV/HPTX3UJZe9iFbJhAIBALBxcuUFFvRhDJOz9ZhsE8HvXXCbQrt30+8u4fsr3xlwtu+UKKJKE/VPcXjhx/HH/VzU/lNfGHeF8g1537YpgkEAoFAcNEzNcVWXB5f9fjeI5A3b+INAjwbXkQymbCuWTMp7b+XhJygaaiJDEMGWcasEXOnYokYzZ5mjgwc4TdHfkOXv4vl+cv5yoKvjLoOoEAgEAgEgjOZkmJrXGHEsAfcrVB794TbI0ejeF95BeuaNahMk1cXqtHdyIvNL7KpeRN9wT4AjBojRdYiSmwl5Jvz6Qv20TjUSKunNbUIcmVGJY9f9TjLCpZNmm0CgUAgEPytMiXF1rg8W85jye0kJMcHtm1D9nhIu/GGCW87GAvyXMNzvNj8InWDdaglNcsLlvNg7YOE4iHave20+9ppdDfyRscbZBmzqMioYFXRKirSK6jIqKAsvQyVNDWXDRIIBAKB4EKZkmIrlpDRas6z7EDP4eQ2d9aE2+N5cSNqhwPzZRO76PTBvoN8a/u3aPe1U+Oo4aHFD3HdtOtwGC/OBHyBQCAQCP4WmZJiK5oYh2erax9YcsGaN6G2JHw+/K+/TvoddyBpJubjiCVi/Peh/+Z3R39HjimH31zzG5bkLZmQtgUCgUAgEJwfU1NsjafOVtdeKFwIE1xs1Ld5M0o0OmEhxPrBer61/VvUu+u5ufxmvr7o61h0lglpWyAQCAQCwfkzNcVWQsaiP49TDw7CYPOkJMd7NryIrqQEw6zzD08qioIz6OS46zjHXcc55jrGzp6dpOnS+Nnqn7GqaNWE2ysQCAQCgeD8mJJiK3a+YcSufclt4cKJtaO3l+Du3WR+8e/Pa+maYCzILw//kg1NG3CFkws9qyQV09Omc2vFrfz9vL8nw5AxobYKBAKBQCAYH1NSbJ13GLFrHyBNeI0t76ZNoCikrVs3puMVReG19tf4/u7v4ww6ubrkahbkLKDGUUOVvQqjxjih9gkEAoFAILhwpqTYiiWU86uz1bkXsmaAwTahdnhe3Ihx7lx0JSXnPLbD28F3d3+X7V3bqcyo5IdX/JB52ZNTYFUgEAgEAsHEMSXF1nl5thQl6dmasXZCbYg0txCpqyPnm98463GyIvP7o7/nF4d+gVpS8/VFX+euGXehUU3Jj04gEAgEgkuOKTliR8+ngry7BUKDUDCx+Vq+zZsBsF5zzajHDIQG+MZb32Bnz06uKr6KhxY/RI45Z0LtEAgEAoFAMLlMSbGVTJAfY0J656nk+IIFE2qDd/MrGOfNQ5s78mLOb3e9zTe2f4NgLMi/XfZv3FJxy3kl0QsEAoFAILg4mJJrsETj5+HZ6toLWhNkV09c/+3tRI6fwHrttWfsi8kxfrLvJ3z+1c9jN9h56iNPcWvlrUJoCQQCgUBwiTJlPVtjztnq3JuchaieuEt1OoRou+bq1GuBWIBNzZt4qu4pmoaa+Fjlx/j6oq+LGYYCgUAgEFziTJrYkiSpCPgjkAvIwK8URfnpZPU3VmRZGftsxHgUeg/Dks9PqA3eVzZjmD0bbUEBje5G1tevZ2PzRgKxAFUZVfx41Y+5uuTqczckEAgEAoHgomcyPVtx4B8VRdkvSZIV2CdJ0hZFUY5PYp/nJCbLAGPzbDmPQCI6oflasa4uwkeOYP3SF/i7LX/Hju4d6FQ6rp12LbdX3c7crLkiZCgQCAQCwd8Qkya2FEXpAXpO/dsnSdIJoAD4UMVWNJ4UW2OqIJ9Kjp+4mYjeLVsA+LZmI0d6B/jy/C9zS8UtouK7QCAQCAR/o3wgOVuSJE0DaoFdI+z7HPA5gOLi4km3JZZQAMYWRuzaB5YcSCucsP6dm/6XjlwNTdYAv1n9G2qzayesbYFAIBAIBBcfkz4bUZIkC/AX4MuKonjfv19RlF8pirJQUZSFWVlZk20OscR5hBG79iZDiBMU1nvrwP8iHannyCwL/3P9/wihJRAIBALBFGBSxZYkSVqSQutJRVGen8y+xkoqjHguz1bIDa6mCcvXerbhWV783bcB+OTfP0ZpWumEtCsQCAQCgeDiZtLElpTM8v4tcEJRlB9PVj/nSzTl2TqHt6rrVL5W4YXna+3p3cPD7zzMNS0WtOVl5M6cf8FtCgQCgUAguDSYTM/WcuBuYLUkSQdP/U3sAoPj4LRnS38uz1bXfkCC/AsL9cUSMR7Z+QgzlFwKTnpJu/a6C2pPIBAIBALBpcVkzkbcDlx0NQzGnLPVuRcyK8GQdkH9PXHsCZo9zfw2eDsof8Z67ehrIQoEAoFAIPjbY8ot1zOmnC1FSSbHX2AIscPXweOHH+fqkqvJ2d2MrrQUfUXFBbUpEAgEAoHg0mLqia2xeLaG2iDouqDkeEVR+M6u76CW1Hy1/HME9+zBes01omCpQCAQCARTjKkntsbi2ercm9xegGdrc9tmdnTt4MHaBzG+dQASCWxrP/SUNYFAIBAIBB8wU05spYqans2z1X0ANAbIrh5XH/6on//c/Z/MtM/kzhl34tm0CV15GfpKEUIUCAQCgWCqMeXE1mnP1lnDiL2Hk0JLrR1XHz878DMGQgP8y2X/gtI3QGjvPmxr14oQokAgEAgEU5ApJ7ZOz0YcNYyoKNB7FHJqxtX+wb6DPF3/NHdU3cGszFl4X3oZgDQRQhQIBAKBYEoy5cTWOYua+p0QGoScWefdtj/q56G3HiLPnMeX5n8JAO+mTRhqatBNmzZekwUCgUAgEFzCTD2xda4EeefR5HYcnq3v7f4ePYEevrfie1h0FqJtbYSPHhWJ8QKBQCAQTGGmnNhKhRFHy9lyHktuz1Nsvdz6MhtObuBzcz6XWmDa+9JLANjWXj8+YwUCwbhQFAVFUT6UvmPRyIfWt0Aw2fgGB2jasxOfa+DDNuWSYtIqyF+snNuzdQxsBWCyj7nN3kAvD7/zMHMy5/D5OZ9Pve7dtAnjggVo8/IuyOYPk1g0gkarm1LJ/d0NJ+htaqBi6XKs9swP25wJQ5YTdNUdp2HnDtoO70dnNJGem09GXj4Zufmk5+Zjsdsx2tLQ6vSp9ymKwlBvN90NdXTVH6enoQ6VWkP5oqVULL4MR1HJpHw/YpEwGp3+vNrua23m+LatnNj+BrIsU75wKZVLllE8ey5qzfgmvJwNT18vzuYm+ttb6W9rZaC9BU+fk/ScPGauWMXMy1eRkVcw4f2eJhzwM9jVgauzA1dnG97+fswZdjLy8knPzSMjNx9bVg5qzfnd6kN+H0e3bubwqy9jsFi49u++RGbxtFGPlxMJvAP96IxG9CbzsP5i0QiDXZ24OttxdbThH3RRNGsuFYsvQ28yn9FWIh6j9dB+Gne9TdDrIRGPIyfiyW08gaOwiBnLVlI8e955n9eFEI9GCfm9RPx+wgE/4UCAWChIUc0cLHbHB2bHh4WiKBx9Ywtv/OE3RENBAKyZWRRUVZNfNZP8ihk4CovR6HQT3rd3oJ8Tb73Oie1vYLBYuPyOT1FYff6pPh8m0sX0BLZw4UJl7969k9rHz7c28sPNDTR+5/qRZyT+YjnY8uETz46pvYSc4DObP8Nx13Geu+E5imxFAIQbGmi58aPk/Ms/Y//4xyfyFCaFWDSC82Rj8obY1ZG8OXZ14HcNYHVkUbl0OVXLVpBbVvmBCK+h3h7q33kLU3o6mUUlOAqL0RmM59VGIh6nv62F7oY6ehrr6GmqR6c3MOfqtVSvvPKM9gY62tj+9P9wcu9OACSViorFy6i9bh0FM2rGfd5yIkHY70NvtnyggwMkB+Pexnoad79D096dBD1DaLQ6imfPJRGP4+7pxjfQj6LIw96n0esx2dIwWKz4BvoJ+bwA6M1m8ipmEA2F6G44AYpCRl4BFYsvI6ukFP+gC+9AP96BfnwD/cQiYewFRWSVTCOreBqZxdNIz81DpVIP609RFNw9XXTVH6er7jjd9Sdw93RhL0gOrFXLVmLPP1O0KLKMp7+Ppt1vc3zbVvrbW1GpNUyfvwiNTkfz/t1EQyH0JjNlCxZTMnc+aVk5WDOzsNjtZ9gxFmQ5QfO+PRx4eQPtRw8DIEkqMvILyBpTcCEAACAASURBVCqeRkZ+Ad31J2g/dhgUhbzyKmauWEVWcSmKIpO85SY9b4l4jFg4QiwcIhYJEw2HATBabZhsaRhtaRitNlQqFe6eLga7u3D3dOHu6WSwqxO/e/Ddz0ynx5aZhd/tIhoKpV5XqTWUzJ7LjOVXUL5oKTqjadRz629v5cDLL3LirTeIRyMUzKjB3dNFJBhg5cfvofa6G5BU7943FUWhYecOdqz/H9w9XanXtQYjerMZlUqNd6CPUyeNSq1BbzYT8npQa7WUzlvIjOVXUFq7gN6mRurefpPGnTsIB/wYLFbSsnNRadSoNRpUag2SJNHb1EAkGMBotZ26L63Enl9IYMiN3+3CPzhIwD1I5JQgSH4+0qlrpCM9Jy/5kJGbh9GWNuLvWpFlXF0d9DTW09NUT09jPa6O9jN+J5D8rSz56G0suOHmYQ8pI5GIx+lrPUl3/Qm66o/jcTqJRcLEohHi4eRWazBSddkKalauJrf8zPttyO+j7dB+ek82YMlwkJFfiD2/IHmt1Of/fR4L/kEXm3/1M1oO7KWwehZLb74TV2cbXfUn6K4/nvoeSpKK9Lx8sopKcBSVkF1axvTahWe1K+gZYs+Lz6PICayOLKyOTCz2TCwZdjrrjnHszddoP3oIFIWCGTV4+nrxD7ooW7iEFXfdg6OwaFh7nj4nbUcOMNTbw8pP3Dsp1+O9SJK0T1GUcxblnHJi68eb6/nZ6000f3eEUgzxKHw3H5Z9Ea76tzG199sjv+XR/Y/y8LKHubni5tTrfY8+iutXv6birW1oHBP/1CPLCQJDbtQaLVqdHo1Oh6RSoSgK0VCQwNAQwSE3AY+bsN+PzmTCaLagt1gwWKyoNVr6Wk6eGtyO4Ww+iZyIA6DVG7AXFGIvKCI9Jw9ncyOthw4gJ+LYsrKpXHo5tqxsAu5B/IOD+N0uAu5BEonEqUHChtFqw2hLQ2cwJkM6spwcaGQZjd5AUfVscssqzvgR9rU2s/uF52h4Z/sZNzZbVg6OgkIklYpYJEIsEiYeiSTDNrKCpJKQJAlJpUYCvP19xGNRACwZdvIqZuAd6MPZ3ITOaKJm1RrmXfMRNDodbz/zZ45v24rWYGDRjbdSvmgpx958jSNbXyESCJBVUkr1iiuJR6P43S58rgH8g4MEPW5UGg0anR6t3oBWn/wsIqEgYZ+XoNdDJBAAkgONvaCQzKISMouT4sNid6DVn3qvwYBGpyfk89LXepK+lmb6W5vpa20mFgmTXVpGblkFOdMryC2rwJyegSLLRIJBIkE/Yb+fwJCbvtbm5Ptbm/E4e1Ofaen8RVQuWU5p7YJhQjMei+Hp62Wot4fAkJuQ10PI503+eT2Y0tLJr5pJQVU19vzC1GDrdw9ycu9OGne/Q/vRQyjyKa+x0YgtMxtbVjZqrRZXRzvunu7U5ympVKjVGiS1GpVahUqlJhGPp56WDRYr+VUzyS4ppbPuGJ0njoGikD2tjKplK5AkKflQ0NmOq7ODWCQpUPIqqqhesZqqZSswWm2pc2s/cpCGnTs4uXcn4YA/dd6SSoXVkYnRmoYcjxGPxUjEY8SjUSRJwlFYTHZpGdmlZeSUlmGypXPszVc58MpGPM5erI4s5l6zlmlzarEXFp0x0PoGB6jbsY0Tb71Of1vLeH7mI6I3m7HnFZKRX4CjsBhHYTGZRcXYMrNT94CQ14O7p5shZw/97a007tqBt78PjVbH9AWLmbFsJRqdDk+fE0+/E2+fE3dvN/1tLWi0OmauWEXtdTeQVVJKYMjN5sf/i+b9eyiZU8t1D3wZi91B25GDvPXnP+BsbsRRWMy8a9ehyAnCAT+RgJ+wP0AiHiMjLx9HYQmZRcWk5+ajUqvpbWqgbseb1L/zFoEhN0gSKApavYHyxZcxY/lKSmbXjvhwEo/FaD24j7odb3Jy327i0ciI10mj1yMhofDuGJeIxobdV3RGE1ZHJoosk0h5z+JEwyHikWS7BrOF3IoqcssqsGQ4MFgs6M0WDGYLkiSx66/P0Lj7bWxZ2az8xL1ULr08NbaE/D56TnmEkx7zxpS9tqwcMouKh/32tQYD3j4nJ/fuIh6LkpFXQPXK1RTOqKGz7hgtB/bS01iPosioNRoS8XjqXFRqDWk5uacekpL2nbZTo9Oh1mpRazSoNVrUWi1avQGd0YTeZEJnNKIzmtDq9ag0yeMkSUJRFE5sf4Otv/8liVicFR//NLXXrjtDcHv7++g92cBARxsD7a0MdLQx5OwFRcGeX8jKT97H9PmLho25iixz+LVXeOupJ4iFw6jUmhE/y7TsHKpXrqF65WrSc3KJRcLs/78N7H7hOWLhMLNWX820ObW0Hz2cElkAVkcW9z76y3MK4AtFiK1R+P5LdfxuRwsNj4yQR+U8Br9YBrf+FmZ/7Jxt1Q3WcdfGu7iy+Ep+dMWPUl8kRVE4ee116AoLKf7dbyf6FADY8qufc/i1l4e9ptZoQJJIxGJjbket0ZBbXkl+VTUFVTPJKpmO1ZF5hhANB/yc3LuL+re30XbkIHIigaRSYc6wYzn1p1KpCfl9wwZrOZEY3uGpmyokB43imrmUzKnFmpnJgZc30npwHzqjkblXr6X2+huIR6O4OtqTP+KONtzdXSCREihJkaNPDTKKLJ8SdgoWu4P8yhnkVcxInZOiKPQ2NXDglY3Uv/0WciKefGJWScy7dh1LbrotNVBDMpR1YvsbHHh5IwPtrUDS62CxO7A6MjGlpSMnEu8Kv0iEeDSCzmhKCU6j1YbBYsXvdiVvRO1t+Fz9Y/p80nPyyJpWilZvwNncxGBXZ2qw0BmNSU/ICL/h9Jy8pFCYNp2c0jIKqmdN6k0n5PfhH3Rhy8waMTQUi0YY7Oygv72Vod5uEvE4iiwjywnkhIwkQVbJ9FOCrmDYzdw3OEDDO9upe3sbvU0NAJgz7EmRcUpsFFbPwp5feFYbE/E4Q73dKa+bd6AP7ymvnVqjRaPVJgcljTbpFW1vwdXRNmxAAyiYUc3862+kfNFlY/YkuDo78LtdyYcBSQJJQkJCpdGgMxjQGoxoDclBF1kh5PcS8ibFbtDnRY7HSc/Nw55fOKo35mwoikJ3Qx11O96g/p3thLye1D61RoMtK4e07ByKauYwe/U1w34Dp99/+NWXeeOPv0Gj05FVPI2O40ewZmax/PZPMnPFqnF7CTuPH6X10H6yS8soW7AYrd4w5vdHwyGa9+8h5PVgyXAk70d2O+b0jBHDxol4DG9/H+7eboZ6exjq7cE/6EJSq08JkeSfRqcjq2Q6eRUzyMjLP+f1bj96mDf++Gv621oomFGDPb+ArvoTDHZ1AElhnz2tjIKqmal77dlCj5FggIZdOzi+bSudx4+mXs+ZXkFp7UJK5y0gt7yCSCCQ9HZ2dyY9nr3dhHynQ50BwgE/sXBo1H7OhlqjQaXREguHyK+cybUPfHlE7/JoxCJhWg/u562n/oC7p4ui6tlccff95Ewvp6+1mVd//Rg9TfUU1cxhzf0PYM8vJBzw4xvoP/Uw68JeUEjhjJph94PTBL0edj2/noOb/w85EUerN1BUM5uSObWUzK7FXlD4gURhhNgahYdfPM6zezs48u/Xnrnz8DPw/GfhCzshe+ZZ25EVmbv/7246/Z1suGkDafq01L7QkSO03nY7ed/5Dum33jLRp4CzuYk/ffMrVC69nIKqauLRCPFolHgsiiLLmNLSMadnYE7LwJyejt5iIRoKEfb7Cft9RAJ+ouEwWcXTyJleft4x9kgwQDwaxWiznfUGqygKiVgMSaU65XVSIUkSQa+HjmOHaT10gLbDB1LCw2hLY8HajzL3mrUYzJYLukZjITDk5ujrWwj5PMxf+1FsmdlnPRe/24XRYpuQnIRwwI+ro52gdygp0E556mLhMDqTiexp08kqKT1DuETDIfpaTuJsbsLT70RvMg97gjXa0sgsKh5R8Pwt4B90odHpMVgm//sBycHZ1dmR9BL2OSlfuISc6eUfSN+ThZxI0FV/HJVKjS07G0u6fcTBbCQGuzt56ec/YqjPydKb72DuNWvRaCc+F+5SRJYTHH19CzvW/wk5Hk/mMVXOJL9yBrlllUkhPQ48fU76Wk+SXzkTc3rG+duVSBCPRUnEYiTi8VPbGLFwmGgoSCQUIhoKEg0GiUUj7x4Xj5GIxbDnFzB7zbXjEtOQfMg5/NrLvPPsnwn5vBRVz6bzxDGMNhur7r6fGZevuiBR5O3vwzfoIresfFLyMs+FEFuj8M//e5RNR3rY/89Xn7lzy7/Azl/AN7vPWT3+2YZnefidh/nu5d/lhrIbhu1zfv8/cT/5JBU7tqO22UZpYXwoisIzD38DV0c79//Xry/5QfV0rs5gVyclc+ad11OtQCD44FEUBTmR+MDzDy8VTofTxypgpwqRYIDdLzzH0de3ULH4Mi6/89Mf2EPTZDJWsTXlfi2xhDx6QVPnMciqOqfQGgwP8ui+R1mYs5B109cN26fIMt6XXsK8cuWECy2Apt3v0Hn8KFd95guXvNCCZOKqPb/wnCEggUBwcSBJkhBaZ0GIrJHRm8ysuOvTrLjr0x+2KR8KU+5bEY3LZy/7MIbK8T/e+2OCsSDfXvrtM2eK7NtH3OnEdv3E19aKx2K8+eTvcBQWM3v1CGFQgUAgEAgEFx1TT2wl5JFLPgRc4Os5ZzHTfc59vHDyBT5V8ynK0svO2O/ZuAnJZMK6+sqJMjnFgZc24HH2surTn520Kb4CgUAgEAgmlqkntuLyyNXjx7BMT0yO8cjOR8gz5w0rXnoaJRrF9/LLWNesQWUavZbNeAgMudn5/NNMn7+IaXNqJ7RtgUAgEAgEk8eUC7zHEqOEEVPL9IweRvzziT/TNNTET6/8KSbtmWLKv30HCY+HtHUfmShzU7z9zJPEo1GuuPv+CW9bIBAIBALB5DHlxFY0MZpn6xiYs8Ay8vT/3kAvjx18jCsKr+DKopFDhN6NG1Gnp2NetmwiTaa/rYUjWzdTe906kUguEAgEU5xoOM5Apx+tTo3epMFg1qI1qCelrpQsK4R8UYLeU3+eCJJKYtqsTAyWsZdaiMcSBD1Rgr4oBrMWS7oejW786TAhX5S2Yy7ajrrwDoTRaFVotCrUp7Zag4YrPzlj3O1PNFNObMXiysg5W86jZ/Vq/e7o74jLcR5a/NCIX2g5EMC3dStpN9+ENIF1Z2KRMK/88r/Qm0ws/dhdE9auQCAQ/K3ibPESDsQorrH/TazrqigKri4/7ccGaT/uoqfJg5wYXrZJUkkYLFryy9Iome2gZFYmJtu7NQHjsQRd9UO0HB6g7egAarWKrGIrmUUWsoqtZBVZURTo7/Ax0OGjv93PQIcP70BopLrJqFQShTMzKF+Qw/R5mehNWhRZwdMfSrUx0BkgMBQmMBQlHDiz2LbBosWSoceSrketVSOp3l1aSVKREpN6kxa9SYPOqGHIGaTtqAtnqxcUMNl0OArMJOIK4WCcRCxBPCZfdJ/7lBNbkYRMuu59YigRh/46WPSZEd8TiAXYcHID1067lkLryJ4l32uvoYTDpK1bN+L+8SDLCf7vZz/C2dLER//xWxgt1glrWyAQCCDpJemsc9NZ7yYt00j1iny0Z/E4ePqDhP1xsqdZL7oBze8O8/bzJ2nc4wQgrzyNK+6qwlEwcj2noDdKf4ePrCLrMGFyLuKxBO6eIK5uP0FPlLA/RigQI+yPEQnEsGUZmT43i6JqO1r98GvpHQjRsMdJ4x4nQ71B1O/xxqg1KlQjpLmE/VFCvqRYcRRYmLu6iPyKdGRZIRKMEQ7EiQRiBIYidJwY5OSBZKHo7BIrRTPtDDmDtB8fJBZJoNGrKa62IwF9bV6a9vWNeI62TAOZRVbKF2ZjTtNjStNhsukxp+kIB2I07eujaV8fW/94gjeelHAUWBjqCxILJ1cNUaklMvLMWB1GcsvSsaTrMKXpMVmT7/e7I/jdYfxDEXzuCHI8uW6ooihJcacoxCIJIsH4cGEpQc40G4vXlVIyy0FWkRVJdXF9D0diyomtWHyE2YiDzRAPj+rZ2tS8iUAswJ0z7hy1Xc/GjWjz8zHWTlzy+rY//Z6mPe9w5ac/S/mipRPWrkAgGJ1wIEZ/m4/c8rSzio4LIRZN0HFsEAWFopl2dIYP7lasyAqu7jO9JGqtikRMZt8rbcy/ppialQWp81cUhc4Tbg693kHbERcAGbkmalYUULU0F4P53QfYREymq8FN6+EB+tp9GMxaTDYdJpsOo02H0ao9ZUfSFllWUGSFSDBOOBBL/vljRIJx0rON5FdmUFCZgSVj9OWm4rEEB1/tYN9LrSgyLFw7DUuGnp3/28z67+xh9qoCFt8wHb1RQyIh03bExYm3e2g/6kKWldT55Fekk1+ZTs40G4mYQjgQJeRP2hP0RnH3BBjo9DPUF0KR3xUAao0Kg0WLwaJFb9TQeniA+p29qLUqimbaKZ2bSTyaoGG3E2dLclH3vPI05l1dRCKhkIjJxGMyiZiMHJfhfdpBo7NSUJlBcbUdc/rZl91SFIWBTj9tR1y0Hhlg3yttmGw6KhfnUDo3i4KqdDTad7/X4UAs6cnq8CeXzSpKerv0ptEjNLZMI9klNi67uYy+Vh+N+5wMtPuYsSSXzFNeMnu+GfVoZZbOA0VRiEdlIsE4kWAs+T2yXvgqHh80U66C/NU/fpPKHCuPfWL+uy8efR6euxc+/xbkzRl2vKIo3LLhFrQqLevXrR/xSS4+OEjjipU47ruP7H/8hwmx88ArG9n6u19Se90NrL73zJmPgksHRVboahzCnKYjI3fyCtEGPBF8rjBZJVbUI4XKL5CgN0pvswdnixe9SUP18vzzytm42An5ohx8rYMjb3QSCyfQGTVULs6henk+WcXvepWj4TjtxwZpOdRPZ50bg0WLPc9MRp45uc01YU7Xozdqhj1xxyIJWo8McHJ/H21HXcSjyUrjaq2K4mo7ZbVZTJuTDMfEogmGnEHcvQHcPUlvQc50G/kV6ZjTzhxsEzEZV7efIWcQrUGD0aLFYNZitGrR6NUMdPjpbhyiu3GInqYhIsHkeo+OAgvFNXZKahzklqXhbPGyZ1MLnXVujFYttdeUoDOoObS1E3dPAKNVS83KAqwZBo5t76av1Ytaq6JiYTa509PoOD74rgdFpyK7xEYskiDoiRD0xYYJlJFQaSSM5qRo0Rk0DPYEUramZRspqMzAaj99/u+uRVv3Tg/egTDTa7NYfms5tszkQuvhQIxdLzRz9K0ujFYdpXMzaTnYT8iXHLSrluRSNNNOf4cvdW2i4cRIpgFgdRhwFFjILLTgKLDgKDBjyTCg0amGjQ2JhExP4xAthwZoPtSPfzC5wLKj0ELlohzKF2ZjcxhH62ZCiYbjaHXqS8L7cykilusZhSt+8Dq1Rek8eud7PFCv/Qds/wl8qwc0w29k+5z7uOfle/j3Zf/OLRUjr3M4+Oc/43z4Pyh94QUMVZUXbOPJfbt54QePUDp/IR/96rfGvSaV4MNFkRWaD/WzZ2Mrri4/ALnT05i5PI/yBdlj9maE/TGCvijJ9YslOLWNBGP0NnvpbfbQ2+zB5woDYDBrKVuQTeWibPLK0sd9kw16o7QeGaC7YYjeZg+e/uSCtiqVhCwraHQqZi7PZ96aotTg9l7khEwskhQtIz2kJBIy/e0+uhuG6GvzAaDWSmg0p8IpWlXS85FIej/kRNIDYs8zU1zjwFFgHrHdgCdCd+MQgaFI6r2n21FrVVjtBmyZRmwOAyabjqA3yoEt7Rzb1kU8LlO+IJvy+dk0H+rn5P5+EjGZrGIrpXMz6Wv10nHCTSIuYzBrKaq2E4skGOwJ4B0IwXtvpxLJ5GWTFp1Rg7snQDwmY7RqKavNpmx+FpIkcfJgP80H+gkMRVCpJEzpOvzuSKotSQKVJul1AkjPMZFfnkZGnhl3T4C+dh+D3YEzcnhGIi3bmPTelKdTOMM+qreou3EoJboAMouSoauKhTmote8K+f52H8fe6qJ+t5N4JIE5Tce0OZlMm5NJYVXGsARoRVYIB2KE/MlwmEolpXJ0VGoJnVGDVj88yVuWFVydfroa3HTVu+luHFkM2fPNXH5bBUUz7SOeT1+bl21PN9Df7mPanExmXpZHcY0d1fseSk7319/hQ6tXY7BoU8LVYNaOK6E7mW8VQKWWsOdd+qt+CIYjxNYoLPveaywvz+QHt81998U/3wnuVvj7nWcc/7U3v8aO7h28dttrGDUjP4m0fvwTyD4f01/ccMH2OZubWP9vD2EvKOSOf/3+uBcvFYyfWCRBNBwf0YMwFt4vstJzTCy4roSQL8aJt7tx9wbR6FSUz88me5rt1CLdyUFHUkHIH2OoN5j0bDiDhP1nJpa+F3OajtyyNHKnp2FO19NysJ+WQwPEYzKWDD1ltdlYMw0YTBp0pxJN9SYNemMy4fS9T73egRDNB/tpPthP70kPigJGm47cUluqj+xiK57+EAe3tNOwx4kiK5QtyKa42oF3IIS7J4DbGWSoL4gcV9Aa1ClxY8syotOr6W3x0nPSQzySHDhtmQbUGlUylBI//aegkkClVqFSJwdkIClETp13cY2Domo7clxOem6aPAw5g2P+rNQaVSpHpGpxDvOvKxnmfQwHYjTucXJsezeuTj9Wh4Hpc7MonZdJXlnasME6Hk3g7k16o4LeaDLsEYgRPrW1ZRkpn59NXkU6qvcJYEVWcLZ5aT7Qj98dISPXREZu0kuWlm1EUkkMtPvpanTTc+o8o6E4erOG7GJrMsG52EZGnolETE6GvnzJEFgkFMeeZx7VK3Y2nK1eFFkhp9R21vysaCietDvPNKl5XIqSFM6pUUtJ/qk00jn7VZSk8J4Mr69g6iLE1mh9PLKFa2ty+c7Ns9998SezoWgxfOy3w47tD/ZzzXPXcNfMu/j6oq+P2F60s4uTV11F1le+QubnP3dBtkWCAf7wtS8C8PFHfoQlY+SnNMH5EwnF8blCqZBE8r6c9BKF/TFcXX5cnX4GuvxJD44CGXlmps12MG12JrnTbcMGVjkhE/BEU0mevsFw8t+DYQZ7Anj6QqRlG1n0kVIqFuWkBldFUXC2eDnxdg+Ne52pZNL3Y7Rqycg1k55jIj3HhDk9maOgyMApcaDRqcmeZsVqN5wx0ETDcVoPD9C4x0n7scFUXsqISKAzaNDoVAQ9USAZXpo+L5PSeVlkFlpGHcj87giHX+/g2LYuouEEkkoiLctIeo6JjFwTBosW/2AEryuEtz+E1xUmEZOx55spqEgnvzKD/Ir080pODgxFaD/uou3oIJ11g6nPVG/SkFee9NrkV6STnmNMCjVVUqhJKolYNIHPFcbnCuMdCKW8gbOuKBjRO3caRVEI+WIYrdqLIilclhXC/ovHHoFgqiIWoh6F6PsT5MMe8LTDwnvPOPYvjX8hrsS5o+qOUdvzbtoEgO0jay/Yttef+BX+QRd3/ccPpozQGuwJ0LCrl+6mIWwOIxl5ySd6e54ZW5bxDA/AuYiG4zibvXQ3DaVCOz5XODUgn420LCOOQgtVS3LR6NS0H3Nx6NUODmxuR2/SkFuWRiQQx+8OE/BEz8g/0RrUWDIMpGWdElkLs88IU0iSRO70pIdo5R2VRELxU0/rp2fhKOiNmrMmp44FnUFD5eJcKhfnIidkIqE4kUA86W0JJZOPo6E40VDSixcNxYlGEtjzzEyfl0Va1tjySSwZepbdUs7CtdMIDEWwOYzDwkzvR1EU4jH5ghLPzel6Zi7LZ+ayfOSETF+bD41OhT3fcs7vi1anxn4qt+p8kCTpvAThZKNSXVz2CASCszP1xFZCRv/eGRLO48nt+2YixuU4zzY8y/L85ZTYSkZtz7txI8baWnSFF1ZstHH32xx78zWW3noneeVVF9TWxU7AE6Fxj5OG3U76233JGTDFVroa3NTv6k0dp9aqKKzKoHRuJtNmZ54xC0dRFPzuCAOdfnqaksm//W0+ZFlBUkmkZxuT045L07BmGrA5jBjMya+8kvofaPVq7PnmM3Koaq8uJhKK03F8kNYjA/S1+TDZtBRUZWC1G5L1YTIMWOzJrd54fj8ntVaFSTv5A6ZKrcJo0WG0TF5fOoMGXe65z1+SpAmd4adSq8idnjZh7QkEAsFkMOXEVizxvqKmo6yJ+EbHG/QF+/j2km+P2la4vp5IYyM5//LPF2RT0DPEll8/RnZpGUtvGd2LdqlxOlHZOxDCOxA+tU2GklCSNWAuv60iVccFkrkf7t4ggz0B+jt8tB0ZoO2oC6gnu8RKySwHkVA8FfKLBJIeK5VaIrvExrxriimoSCe3LG1CptPrjZpkwvSCkVcWEAgEAoHgXEwpsZWQFRKyMnxtROdRMKSDLX/YsU/XPU2+OZ+VhStHbW/oL38BrRbbddeN2yZFUdj8q58TDQW5/u//AbXm0p5KL8sK7cdcHN/eTesRVyrUZrRqsWUaySlNY+ayPMrmZ49YBkFn1JBTaiOn1MZM8lBur2CwO0DL4QFaDg2wZ1MrGp0KR4GFsvnZZBZYcBQmKyBPVk0kgUAgEAguhCkltmKJ5NTpYZ6ttnegYP7pjGkAmoea2dW7iy/N/xLqUcouyOEwnhc2YLv6KjT28edXHd+2lZN7d3LF3feTWTR6uPLDRE7IuLoC9DZ76DnpwdniQZHBlnV6Cr0RW5YBd2+Qurd78LsjGK1a5l1VRPmCbNJzTOP2MkmSdKqejYWF108jGoqj0avPO5dLIBAIBIIPiykltiLxpNhKebaG2mGgHhZ8ethxzzc+j1al5ebym0dty7d5M7LHQ/rt4w/7efv72Pr7xymsnsWCtR8ddzsTSTyarBk00OlnoDM5Q6+vzZsqwGhO05E7PQ21VoV3IETrERchb3IGGxIUz7Rz+W0VTJuTOSHVg9+P7jzzogQCgUAg+LCZUiPXac+W7lS9Hhq3B0hJdAAAIABJREFUJLflVw87blvXNhbnLsZhdIzalnv9M2hLijEtWTwuWxRZ5uVfPIqiKFz3wFeQVB9M7ZdoOE79zl6a9vURDcffnQUnKyTiMr7BSCr0p9GrySwwU708n9zpaeRMt41YZiAWSeAdCKE3abBkiLpgAoFAIBC8l6kptk57XJpeg7RiyKxIHdPl76LF08JtlbeN2k6kqYnQvn1kf+2r465xc3DL//1/9u47Pqoq7+P456T3TgklhA6hSq9WFMTewd77rrq7j+sWV5+tz7rVXXVt2BsqqKiIFQFReu8lkEYS0nudOc8fM7AJJNQMk2S+79drXgx37tz7u3cm5Mu5555DxuYNnHvnj4ju2OmEtnE8inIq2Lgoi20/ZFNX7SC+awQRccGu0ZvdIzn7+fvRb0yoayqKbhFEJ4Qe0+jjgcH+zU70KiIi4ut8KmzV1jfos1VfC3sWwdCrG/XXWpq1FIBJXSc1u53i996DwECiL730hOoozslm8Zsvkzx8JEPOPu+EtnEs6moc7NmQx7bvs8nYWoRfgKHPyI4MOaPbUUeEFhERkZbhU2GrUQf59B+gtvywS4hLspbQNaIryVHJTW7DWVND8YcfETnlHALim7/M2BzrdPL5s0/i7x/AeXf+qMUDj8PhJGNLITtW5LJnfR71ta4pW8Ze3IuUSV00EKKIiMgp5lNhq1EH+V1fgl8g9Jx88PU6Rx3Ls5dzce+Lmw1BBzrGx1599QnVsPbzT8ncuompdz9AZHzCCW0DoKq8lqLsSsoKqigrrKbUPQVJfkY51RV1BIcF0H9sZ/qN6XRSkxGLiIjIyfGpsFXncHX8DvL3c/XX6jEegiMPvr5m/xqq6quY2GVis9soPtgxfuxx778oZx9L3nqFnqeNYtCZU475fdXldeTsKSEvvcz1yCijvLCm0TqhUUFExoXQY3A8vUd0IGlQvEfuBhQREZHj41Nh60CfrYiaHNi/Bc79XaPXl2YtJcAvgLGJTQepmtRUKletouPPfnrcdw9ap5PP//Mk/gEBnHvn/Ue9fFicW8me9fns2ZBHzu4SrAUMxHQMI7F3DB3OjCS+azhRCaFExAYToAE9RUREWiWfClsH+mwl5CxxLejTuHVpSdYSRnYcSVhgWJPvL579rqtj/GXNj7/VnLULPiZr22am3fsQkXFNXz60Tsu6rzLYsnQfxbmVAMR3jWDk+cl0HxhLQvfIFpmCRkRERE4dn/rNfaBlKzZ7MUR1hY4DD76WU5HDruJdXDKy6cFFnTU1lHz4IZHnHH/H+OLcHJa8/Rq9Rowm5fSzm1ynpqqer17ewt4N+XTpG8OQM7uRPDSeqPjQ49qXiIiItC6+FbYcTgKoJzJrKQy5vMkhHyZ2bbq/VtmXX+EoKSH26ubH32qKtZavXnwaP38/ptx+X5OXD4tyKpj/n42U5lVx+ox+DD6jq4ZlEBERaSd8KmzVOZyMNDvxrys77BLi0n1L6RTWiT4xfZp8b8lHHxHYpQth48Yd1z63fvctaRvWcs6t9zR592Hqujy+emULAYF+XPLQcLr0jT2u7YuIiEjr5lNhq7beyRn+67F+AZheZx5cXues44d9PzA1eWqTLUr1eXlULF1K/B13HFfH+MrSEr599QUS+w1g2LnnN95mrYNV8/eyekEaHXtEMu2uIUTGaaobERGR9sanwladw8mZfuup7TKa4JCog8s35G2gvK682VHjS+fPB6eT6IsvOq79LX7jJWoqKzjvjvsPhjSn07J9WQ4rPk6lvKiGARMSOWNmPwICdTehiIhIe+RTYcu/PIcUvzQqet5AcIPlS7OWEmCaH/Kh5KN5hAwaRHDv3se8r7SN69i86GvGXnYNCUnJAKRvKeD7ObspyCqnY49IptySQtd+umwoIiLSnvlU2OqY5+oE7zykv9Z3Wd8xrOMwIoMiD3tPza5dVG/ZQqdf/uKY91NXW8NXLzxNbGIXxl52Nft2FrFq/l4ythYRlRDCebcPos+IjhrVXURExAf4VNjqkreUXBtDdOKQg8vyq/LZWriVB0Y80OR7SuZ9DP7+RE2ffsz7Wfb+2xTnZjP5up8z78lN5KSWEBoZyMQr+zDkjG74B2pkdxEREV/hU2ErsK6MhY7hXBXw3/5RB4d8aGKKHut0UvLJx4RPmEBAwrHNY5izeycrP/6A0JhhrJxfR0RcNZOv6cfAiYkEapR3ERERn+NTYeu9gf/i2UU7mdHg8t0P2T8QHxLPgLgBh61fuWoV9fuy6fjQT45p+zVVlcz54x+xNpSoTucyenp/+ozuhL+/WrJERER8lU+FrTqHkwD/xq1LqcWpDIgf0OSQD6Uff4wJCyPynKZHfW/IWsvsx/9GdXke/SffywX3nqE+WSIiIoJPNbnU1DsJatDKZK0lsyyT7hHdD1vXWVND6YLPiTr3XPzCmp4rseF25v3jPfL2Liex/xQuuO98BS0REREBfCxs1TmcBAX895BLakooqyuje+ThYat84bc4y8qIOsrYWtZavnl1BbtWzCY8NomrH216Sh4RERHxTb4Xthq0bGWUZQA0GbZKPv6YgA4dCD/C9DzWWr57dzvrv3wJP3+45vFHCQgMbPnCRUREpM3yqbBVW+8kMODoYau+qIjyxYuJuvBCjH/TdxA6HU6+fWs7a+bPwdZnMfXu+4ntnOi54kVERKRN8rEO8rbJlq1ukd0arVe2YAHU1TU7PU99rYMvZm1m9+qN1NcsY+CkM0mZfJbnChcREZE2y6fCVk29k8BDwlbH0I6EBDSeALr4gw8J7teP4AGHDwdRXVHHp09vIDu1kKDARQTFxXPObfd6vHYRERFpm3zqMmKd4/DLiIe2alXv2EH1hg3EXHH5YR3dywqrmfuX1exPL6XXkEzKC/dxzq33EHyUuxVFRETEd/lU2KqtdxLcoGUrsyzzsP5aJXM/gIAAoi5qfAmxKKeCOU+spqK4hrOuS2TnDx/Td+wE+oxqevJqEREREfCxsOVq2XK1VlXXV7O/an+jli1bV0fJvHlEnnUWAXFxB5dXldXyyVPrcTqcXPrTEWz8+g38AgI4++a7TvkxiIiISNviU2GrtsHQD5llmUDjOxHLFy3CUVhI9BWXH1xWX+dg/n82UlFSywX3DiNvz0rSN65j8sybiIiLP7UHICIiIm2Ob4WtBh3kmxr2oXjOXAI6dCBi0iTANY7Wwte3kZNawpSbU4iMt3z72osk9hvAsHPPP/UHICIiIm2OT92N+PYd4zjQ5z2zvHHLVn1eHuWLFxN/6y2YANdpWTV/LztW5DL24l70GdmRBc/8g5rKCs67436Mn0/lVBERETlBPhW2YsODDj7PKMsgIjCCmOAYAErmzQOHg+jLXJcQd67KZcXHe+g/tjMjz+9BxuYNbF70NWMuvYqEpGRvlC8iIiJtkM82z2SUZdA9sjvGGKy1FM+ZS+iIEQT36knu3lK+fmUriX2iOet611hbi954mciEDoy7YoaXKxcREZG2xGfDVmZZ5sE7EavXr6c2NZWYyy9zz3e4g9DIQM6/ewj+gX7sWvkDuak7mXDltQQGBXu5chEREWlLfDJsOZwOMsv/O8ZW8Zy5mNBQIqedz74dxeSkljJyWg9CI4JwOh0snf0GcV26kXL62V6uXERERNoanwxbuZW51Dvr6R7ZHWdlJaXz5xM1bRr+EeGsXrCX0KggBkxwTSq9dcm3FGSmM/Ga6/FrZlJqERERkeb4ZNhqOOxD2Zdf4qyoIObyy8jdW0rG1iKGT+lOQKA/jvo6vn/vLTr27E3fMRO8XLWIiIi0RT4ftko+mkdgUhKho0ax+rO9BIcFMPj0rgBs/PoLSvNymTTjRg31ICIiIifEJxNERlkGAX4BJNSFULFiBVFTp1KYXcGe9fkMPasbQSEB1FVXs2zuO3QbOJjkYSO8XbKIiIi0UT4btrpGdKVq8RKoryfy3Cms+TyNgGB/hp7l6jS/9vNPqCguYuKMGzAHRkIVEREROU4+GbYODPtQ+uWXBHTuTE3n3uxcuZ/Bk7sQEhFIdUU5Kz96n56njaLbgEHeLldERETaMJ8LW9ZaMsoySA5MpOK7pUSecw7rvszA+MHwKUlYa1ny5itUV5Qz8ZobvF2uiIiItHE+F7aKa4oprysnZXcttroa/4lns/WHbAaOTyQ8Jpjlc2ez4esFjLrocjr17O3tckVERKSN87mwdeBOxG6rM/GPjmZHYQLWCaed14MNXy1g6btvMHDyWZx+7c3eLVRERETaBZ8MW/4OS+iKzYSfdTa71uTRY3A8+1PX8tWLz9Bz+Eim3v2AhnoQERGRFuFziSKzLJOUdAtlFTjGTKG8sIaouHw+/dcTdO7Tl4se+gX+AQHeLlNERETaCZ9LFRllGZy5OwQTBvsDk3DWr2LtZ3OI6dyFyx55nMCQEG+XKCIiIu2Iz7VsZZSkM3x7HRGTJ5O2tRhb/zXBYWFc8cvfEhoR6e3yREREpJ3xubAVuHUPkaV1BJ0+hX07tlFXlc3Yy64hMj7B26WJiIhIO+RTYau6vpq+Gwtw+vtRkDCY+uq1BIaEkXL6Wd4uTURERNopnwpbGaUZjNluqR7el9SN+3DW7WTI2ecSFBLq7dJERESknfKpsJWzcTmdiyHwrNPZs24hYDlt6oXeLktERETaMZ8KWzXfLMIJmH7nUFO+nk69hxLTOdHbZYmIiEg75lNDP4R/v5nd3f1xrtwMtpJxl13q7ZJERESknfOZsGWtZeHF3SitKafLhoUEhibQe9Qob5clIiIi7ZzPXEY0xrCiey3+8f2oq86m14hzMMZ4uywRERFp53wmbAHMuXgO/XdGA0GMuXS6t8sRERERH+BTYauqpIS81HWExQ6nY1K8t8sRERERH+BTYWvtgk/BOug7boq3SxEREREf4TNhy1rL5m+/wS+gJwPGDfB2OSIiIuIjfCZsGWPoPeZ+wmKnkNgnxtvliIiIiI/wmbAFsD+9jh5De+Mf4FOHLSIiIl7k0XG2jDHTgCcBf+BFa+3/eXJ/RzPj12OorqzzZgkiIiLiYzzWxGOM8QeeBs4HUoCZxpgUT+3vWPgH+hEeHezNEkRERMTHePJ62hhgl7U21VpbC7wDXOLB/YmIiIi0Op4MW12BjAZ/z3Qva8QYc6cxZpUxZlVeXp4HyxERERE59TwZtpqaC8cetsDa5621o6y1ozp06ODBckREREROPU+GrUyge4O/dwP2eXB/IiIiIq2OJ8PWSqCvMaanMSYImAHM8+D+RERERFodjw39YK2tN8bcD3yOa+iHl6y1mz21PxEREZHWyKPjbFlr5wPzPbkPERERkdZMQ6mLiIiIeJDCloiIiIgHKWyJiIiIeJDCloiIiIgHKWyJiIiIeJDCloiIiIgHKWyJiIiIeJDCloiIiIgHKWyJiIiIeJDCloiIiIgHKWyJiIiIeJDCloiIiIgHKWyJiIiIeJCx1nq7hoOMMXlAmod3kwDke3gfrZmOX8ev4/ddOn4dv46/ZfWw1nY42kqtKmydCsaYVdbaUd6uw1t0/Dp+Hb+O39t1eIuOX8fvrePXZUQRERERD1LYEhEREfEgXwxbz3u7AC/T8fs2Hb9v0/H7Nh2/l/hcny0RERGRU8kXW7ZEREREThmfCVvGmGnGmO3GmF3GmEe8XU9LMcZ0N8YsNMZsNcZsNsY84F7+uDEmyxizzv2Y3uA9v3Cfh+3GmKkNlrfJc2SM2WuM2eg+zlXuZXHGmC+NMTvdf8a6lxtjzL/cx7jBGDOiwXZucq+/0xhzk7eO53gYY/o3+IzXGWNKjTEPtvfP3xjzkjFmvzFmU4NlLfaZG2NGur9Tu9zvNaf2CJvXzLH/xRizzX18HxhjYtzLk40xVQ2+B882eE+Tx9jceWxNmjkHLfadN8b0NMYsd5+D2caYoFN3dEfXzPHPbnDse40x69zL29V3wDT/O691//xba9v9A/AHdgO9gCBgPZDi7bpa6NgSgRHu55HADiAFeBz4WRPrp7iPPxjo6T4v/m35HAF7gYRDlj0BPOJ+/gjwZ/fz6cBngAHGAcvdy+OAVPefse7nsd4+tuM8D/5ADtCjvX/+wOnACGCTJz5zYAUw3v2ez4DzvX3MRzn284AA9/M/Nzj25IbrHbKdJo+xufPYmh7NnIMW+84D7wIz3M+fBe7x9jEf7fgPef1vwG/a43eA5n/nteqff19p2RoD7LLWplpra4F3gEu8XFOLsNZmW2vXuJ+XAVuBrkd4yyXAO9baGmvtHmAXrvPT3s7RJcCr7uevApc2WP6adVkGxBhjEoGpwJfW2kJrbRHwJTDtVBd9ks4BdltrjzQwcLv4/K21i4HCQxa3yGfufi3KWvuDdf3L+1qDbXldU8durf3CWlvv/usyoNuRtnGUY2zuPLYazXz+zTmu77y7FeNs4H33+1vdOTjS8bvrvxp4+0jbaKvfgSP8zmvVP/++Era6AhkN/p7JkQNJm2SMSQZOA5a7F93vbjZ9qUEzcHPnoi2fIwt8YYxZbYy5072sk7U2G1w/nEBH9/L2ePwHzKDxP7C+8vkf0FKfeVf380OXtxW34vrf+AE9jTFrjTGLjDGT3cuOdIzNnce2oCW+8/FAcYPw2tY+/8lArrV2Z4Nl7fI7cMjvvFb98+8rYaup663t6jZMY0wEMAd40FpbCvwH6A0MB7JxNStD8+eiLZ+jidbaEcD5wH3GmNOPsG57PH7cfUouBt5zL/Klz/9ojveY2+y5MMb8CqgH3nQvygaSrLWnAT8B3jLGRNGGj/EIWuo739bPzUwa/6erXX4Hmvid1+yqTSw75Z+/r4StTKB7g793A/Z5qZYWZ4wJxPWle9NaOxfAWptrrXVYa53AC7iazKH5c9Fmz5G1dp/7z/3AB7iONdfdHHyguXy/e/V2d/xu5wNrrLW54FuffwMt9Zln0vgyXJs4F+4OvhcC17kvf+C+dFbgfr4aVx+lfhz5GJs7j61aC37n83Fdago4ZHmr5675cmD2gWXt8TvQ1O88WvnPv6+ErZVAX/cdJkG4LrfM83JNLcJ9fX4WsNVa+/cGyxMbrHYZcOCulXnADGNMsDGmJ9AXV2fANnmOjDHhxpjIA89xdRTehKv2A3eX3AR85H4+D7jRfYfKOKDE3eT8OXCeMSbWffnhPPeytqLR/2Z95fM/RIt85u7Xyowx49w/Xzc22FarZIyZBvwcuNhaW9lgeQdjjL/7eS9cn3fqUY6xufPYqrXUd94dVBcCV7rf32bOATAF2GatPXgZrL19B5r7nUdr//k/2R72beWB646EHbhS/a+8XU8LHtckXE2cG4B17sd04HVgo3v5PCCxwXt+5T4P22lwl0VbPEe47iRa735sPlA3rn4XXwM73X/GuZcb4Gn3MW4ERjXY1q24Os/uAm7x9rEdxzkIAwqA6AbL2vXnjytYZgN1uP4neltLfubAKFy/rHcDT+EeALo1PJo59l24+p8c+DfgWfe6V7h/LtYDa4CLjnaMzZ3H1vRo5hy02Hfe/e/KCvd5fQ8I9vYxH+343ctfAe4+ZN129R2g+d95rfrnXyPIi4iIiHiQr1xGFBEREfEKhS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEhEREfEghS0RERERD1LYEpEWYYy53xizyhhTY4x5pYnXzzHGbDPGVBpjFhpjejR4LdgY85IxptQYk2OM+UlLvfc46rfGmD7Hsf63xpjbT2RfIuJbFLZEpKXsA34PvHToC8aYBGAu8CgQB6wCZjdY5XGgL9ADOAt42Bgz7WTfKyLSGihsiUiLsNbOtdZ+CBQ08fLlwGZr7XvW2mpcAWmYMWaA+/Ubgd9Za4ustVuBF4CbW+C9jRhj+hhjFhljSowx+caY2e7li92rrDfGlBtjrjHGxBpjPjHG5BljitzPu7nX/wMwGXjKvf5T7uUDjDFfGmMKjTHbjTFXN9j3dGPMFmNMmTEmyxjzs+M5vyLSdilsicipMAhYf+Av1toKYDcwyBgTC3Rp+Lr7+aAWeO+hfgd8AcQC3YB/u7d5uvv1YdbaCGvtbFz/Pr6Mq8UsCagCnnKv/ytgCXC/e/37jTHhwJfAW0BHYCbwjDHmQC2zgLustZHAYOCbI50wEWk/FLZE5FSIAEoOWVYCRLpf45DXD7x2su89VB2u8NTFWlttrf2uuYKttQXW2jnW2kprbRnwB+CM5tYHLgT2WmtfttbWW2vXAHOAKxvsO8UYE+VuhVtzhG2JSDuisCUip0I5EHXIsiigzP0ah7x+4LWTfe+hHgYMsMIYs9kYc2tzBRtjwowxzxlj0owxpcBiIMYY49/MW3oAY40xxQcewHVAZ/frVwDTgTT3pczxze1bRNoXhS0RORU2A8MO/MV9ya03rr5YRUB2w9fdzze3wHsbsdbmWGvvsNZ2Ae7CdZmvuTsQfwr0B8Zaa6OAA5cazYHNHbJ+BrDIWhvT4BFhrb3Hve+V1tpLcF1i/BB4t5n9ikg7o7AlIi3CGBNgjAkB/AF/Y0yIMSbA/fIHwGBjzBXudX4DbLDWbnO//hrwa3en9AHAHcArLfDeQ2u86kAnd6AIV2ByuP+eC/RqsHokrn5axcaYOOCxQzZ36PqfAP2MMTcYYwLdj9HGmIHGmCBjzHXGmGhrbR1Q2mC/ItLOKWyJSEv5Na5w8ghwvfv5rwGstXm4LqP9AVfIGQvMaPDex3B1ek8DFgF/sdYuONn3NmE0sNwYUw7MAx6w1u5xv/Y48Kr7EuDVwD+BUCAfWAYcus0ngSvddyr+y92v6zx3bfuAHODPQLB7/RuAve5Lkne7z5GI+ABj7aEt4SIiIiLSUtSyJSIiIuJBClsiIiIiHqSwJSIiIuJBClsiIiIiHqSwJSIiIuJBAUdf5dRJSEiwycnJ3i5DRERE5KhWr16db63tcLT1WlXYSk5OZtWqVd4uQ0REROSojDFpx7Kexy4jGmP6G2PWNXiUGmMe9NT+RERERFojj7VsWWu3A8MB3BO3ZuGadkNERETEZ5yqDvLnALuttcfU3CYiIiLSXpyqsDUDeLupF4wxdxpjVhljVuXl5Z2ickRERERODY+HLWNMEHAx8F5Tr1trn7fWjrLWjurQ4agd+kVERETalFPRsnU+sMZam3sK9iUiIiLSqpyKsDWTZi4hioiIiLR3Hg1bxpgw4Fxgrif3IyIiItJaeXRQU2ttJRDvyX2IiIiItGaaG1FERETEgxS2RERERDxIYUtERETEgxS2RERERDxIYUtERETEgxS2RERERDxIYUtERETEgxS2RERERDxIYUtERETEgxS2RERERDzIo9P1iIiIiG8rKK9h075SNmWVsCe/gol94pk+JJHgAH+P7M9ai9OCv5/xyPZPhMKWiIiInLBvt+/ntR/ScDgt/n4GP2Pw94M6h2Vbdin7SqoPrhsdGsj7qzP5/SdbuXp0d64bm0S32LAWreftFRnMXZPJrJtGEx0W2KLbPlEKWyIiInLc6h1O/vnVTp5auIsu0SEkRAbjcFocTovTWvyMYVRyHIO7RjG4azSDukQTGRzA0t35vP5DGs8t2s1zi3Zz9oCOzByTxBn9OhDgf3K9m9ILKvn9p1s4LSmGyJDWE3FaTyUiIiLSJuwvq+bHb69lWWoh14zqzv9eMoiQwGO7LDi5bwcm9+1AVnEVby9P552V6Xy1dT8dIoO5fERXrhrZnT4dIw6uX1vvJL2wkr35FfTvHEn3uKZbwpxOy/+8vx4/Y3jiymH4taLLiMZa6+0aDho1apRdtWqVt8sQERHxqIXb95NeUMn143q0SN8ip9Py9bb9jE6OJSYsqAUqbN4Puwv48TtrKauu4/eXDuHKkd1Oant1DicLt+3n3VWZLNy+H4fTclpSDLFhQaTmlZNRVIXD6coqkSEBvH7bWIZ3jzlsOy99t4fffrKFJ64cytWjup9UTcfKGLPaWjvqqOspbImIiLhkFlXy+g9p3D65Fx0igz2yjzeWpfHoR5uwFsb2jOOfM4aTGB16Utv86+fbeWrhLuLCg3jk/AFcOaLbMbXsVNc5WJ9RzIo9hWSXVuN0XwZ0OC0Oa6lzOKmpc1Jd76C6zkl1nYOt2aUkJ4TzzHUjGNA56qTqPlReWQ0frs3iw3VZOJyW3h0i6JkQTq8O4XSMDOGXH2ykqKKW129vHLh255Uz/cklTOqTwIs3jcKYU9OqpbAlIiJyHHbtL+eGWcvJLqkmJTGKd+4aR1RIy3Wwttby5Nc7+edXOzl7QEfOS+nEbz/ZQlCAH3++YihTB3U+oe1+sDaTh2av54KhieSUVLM6rYhRPWL5/WWDDwtDJZV1bMxFOnndAAAgAElEQVQqYcXeQpanFrA2o5jaeifGQFxYEP5+ptEjwM8QEujvfvgREuBPckI4D53bj4jgU98TaV9xFTOeX0ZRRS2v3TaG05JiqXc4ufLZH9hbUMEXD55Ox6iQU1aPwpaISDuVXlDJS0v3MKhLFGN6xpEUF3bK/id/KqQVVPCfb3cT4G9ISYwmpUsU/TtFEhrkmaECADZmlnDTyyvwM4Z7z+zNH+dvZWSPWF69dcwx90U6EofT8ti8TbyxLJ0rR3bjT5cPIdDfj9S8cn78zlo2ZZVyw7ge/OqCgce1v9Vphcx8fjkjesTw2q1jCfAzvL86kz99tpXS6npunpBMx8hgNmaVsDGrhLSCSgD8DAzqEs3YnnGM7RXPmOS4VnPn3tHsK65i5gvLKCyv5dXbxvDD7gL+8vl2/j3zNC4a1uWU1qKwJSLSDlXVOrjsmaVsyyk7uKxTVDCjk+MY1SOWLjGhxEcEkxARRFx4EBHBAW0miFXU1PPUwl3MWrLnYKtKWU094AoHvTpEMGN0d26d2LNFOz8vTy3gtldXER0ayBu3j6VnQjgfrcvigXfWcV5KJ565bsRJ3SVXU+/godnrmL8xh7vO6MUj0wY0+kxq6h389fPtvLBkDwM6R/LKLWPoHH301pmMwkoufXopkSEBfHjfxEZ9tYoqanni8228vSIDgK4xoQzpGs2QbtEM7RbN0G4xRIe2jXDVlOwSVwtXQXktNfUOzhvUmaevHXHK61DYEhFpZ6y1/PS99XywNouXbh5N15hQlu8pZMWeQlbuKSSntPqw94QG+nP9uCQenNKPcC9c9mmopLKOeRv2ERcWRHJCGMnx4YQHB2Ct5cN1Wfxp/jb2l9Vw+YiuPDJtAB0ig8ksqmLzvlK2ZJeyLLWAFXsKmTKwI3+7avhxtcRU1zlYubeQqJBA4iOCSIgIJiTQn2+25XLPG2voFhvKG7ePbdR36uWle/jfj7dwzaju/N8VQ44ptBaU17B5Xyl78itIzSsnNb+C7Tll7C+r4dcXDOT2yb2afe/C7fv50VtriQ4N5PXbxtCrQ0Sz65ZV13HFf74np6SaD+6bSO9m1s0sqiQ00J/4CM/0P/Om7JIqZj6/jIpaB58/eDpx4Z69MaApClsiIu3M2yvS+cXcjTxwTl8eOrdfo9esteSW1pBXVkNBRQ0F5bUUVNSwZV8pH67bR5foEP73ksGcm9KpRWuqdzj5/adbWbh9Pw9N6cclw7s0GUoW78jj4fc3HBYIO0YGEx4cwJ78CoZ2i+bxiwcxIim2yX1Za3nl+738cf5WOkWF8J/rRjKkW/RRa3Q4LTfMWs73uwsaLY8IDqCqzkFKYhSv3DK6yUByoOP5vWf25uFpA5rdx6asEmZ9t4eP1++j3n3nXERwAL06hNMzIZwLhiRy3jH0ydqYWcLNL6/AAq/cMpqh3Q6/666q1sG9b65m8c58Xr1lDJP6Jhx1u+1VZW091XVOrwQtUNgSEWnVPt2QjcNaLj7GPiabskq4/D/fM7ZnHK/cMua4hgtYnVbIL+duYntuGeemdOJ/Lx5El5iTu/sNXC1V9721hu925dM9LpSMwipG9Yjl8YsHMbirKwRV1tbzx/lbeWNZOn06RvDnK4YQGhjA3oIK9uS7Hrml1Vw0rMsx30G3Nr2I+95cQ355LY9elML1Y5OO2Or09MJd/OXz7Tw8rT/9OkZSUFFDfnkt+eU1BPr78aOz+xDZTEd4ay2//GATb69Ip3tcKCOTYhnZI5YRPWLp1ymSb7fn8eKSVJbvKSQ8yJ+rR3dn6qDO9OoQToeI4BO6hLsnv4IbZi2nqKKW528cxcQ+rjCVmlfOG8vSeX91BqXV9fz+0sFcP67HcW9fWo7ClohIK7VgUzb3vLkGazmmX5gllXVc8O8lOJyWT388+YT+F1/ncDLruz3886sd+BnD/0ztz03jk0+471NqXjm3v7qKjKJK/nDZEK4c0Y33VmfwxILtFFbWMnNMEucO7MTjH28mvbCS2yb25GdT+7dIZ3Nw9Ul66N11fLs9j8tHdOX/Lh9KUMDh/apW7S3kmueXccGQRJ6cMfyEwo/DaXlreRrf7y5gdVoR+8tqANfcew6npWtMKDdPSOaaMd1b7O7F3NJqbpy1gj35Ffz4nD4s31PIkp35BPobzh+cyI3jezAqOa5F9iUnTmFLROQEfLt9P//32TZ+dl5/prTwJTdwtcrMeH4ZAxOjiAsP4ptt+484CKPTabnjtVUs3pnH7LvGN3uJ7VhlFFby6Eeb+HZ7HmOS43jiyqEkJ4Qftp61lnUZxeSX19I9LpTusWEH+3x9tzOfe99cTYC/H8/dMJLRDX7pl1TV8c+vdhycK69bbCh/vWoY43rFn1TdTXE6Lf/6xjWUwvhe8Tx7w8hGnb6LK2uZ/uQSAvz9+PTHk5ptvToe1lqyiqtYnVbEpqwShnWPYdqgzic9zUxTSirruO3VlaxKK6JLdAjXjk3i6tHd6Rh56oY2kCNT2BIROU755TVM/cdiiiprcVq4cXwPfjn9+G7FP5L0gkoue2Yp4cEBzL13AhHBAdzx2iq+25XPP68ZziXDuzZaf9f+Mp5YsJ0vtuTy+EUp3DyxZ4vUYa3l/dWZ/PaTLdQ5nPx82oCDrVwF5TV8sDaLd1ZmsGt/eaP3xYUH0S02lM37SunTIYIXbxrV7NQpO3LLWLQ9j5ljkzw+HtPcNZk8/P4GenUI55VbxtAlJhRrLXe9vpqF2/cz554JTfZ9aguq6xxsyCxhRFKMRwKdnByFLRGR42Ct5Y7XVrN4Zx5z75nAB2uzmPXdHvp1iuDJGacxMPHkRsourqzl8v98T2FFLXPumXDw7rGqWgc3v7yCVWlFPH3taUwbnEhaQQVPfrWTD9dlERroz71n9eHeM3u3+BAOOSXV/GLuBha6W7k6RAbzxZYc6hyWEUkxzBidRN9OEWQWVZFRVElGYRWZRZUkRofw6IUpLdJS1FKW7srn7tdXExbsz8s3j2FVWiG/+WjzUe8AFDkZClsiIsdh9sp0fj5nI49emMJtk1wtSIt35PHT99ZTUlXHw1P7M3VQZxKjQw5rYcgtrWbJznyW7MxjWWoBHSKDGZMcz9hecYxOjiM82J8bZq1gXXoxb9w+ljE9G/e1Ka+p58ZZy9mYVcJ5KZ1ZsDmHQH/DTROSuev03h6906phK1eAn+HyEd24ZnR3+nWK9Ng+PWVbTim3vLySsup6ah1OJvaOZ9ZNo1vVhMTSvihsiYgco7SCCs5/cgnDu8fwxm1jG/1yLiiv4eH3N/D1tv0ABPgZusWGkhQf7hqZO7OE7bmuAUYTIoIY1yuegvJa1qQXUVPvdC8PJr+8hidnHH6p8IDS6jquf3E527LLuHZsEvee2fuUTjtS6661qU7mbUl2SRW3vLySkqo6PvnRpHY5vpS0HgpbIiLHoN7h5Jrnl7Ejt4zPHzy9ySERrLWsSiti9/5y0gorSS+sJL2gkuySKvp3jmRy3w6c3rcDAzpHHgxqNfUONmaWsHxPIav2FnJm/47cNCH5iLVU1zmorHV4bcyg9qLe4aSm3un1QVyl/TvWsKVvooi0aeU19QQH+BF4gp2Hn1ucyuq0Ip6cMbzZsaeMMYxOjmt0193RBAf4Myo57rhuzz8w4a+cnAB/P3Uml1ZFYUtETpnvd+fz+0+28usLBjKhT/OjXq/PKOZ3n2whNMiflMQoBiRGMjAxit4dIsgpqWZ1WhEr9xayOq2I7blldIwM5taJPZk5NumwcY6staxJL+btFelsyyklLCiAiGDXIyzIn/dXZ3Lh0MRjHlxUROR46TKiiJwS1XUOzvvHYtILK/Ez8IvzB3L75J6H3WH39op0HvtoM3HhQcRHBLEzt5xah6s/kZ8B90woRAQHcFpSDKclxbI6rZCluwqIDA7g2nFJ3DqxJ6FB/ny4Nou3lqezLaeM8CBXS1N1nYPymnoqauopr3HQNSaEV28d02gSXxGRY6HLiCLSqjy9cBfphZW8eOMo5qzJ5A/zt7Ihq4Q/XzGEsKAAquscPPbRZmavymBy3wT+NeM0YsODqHM42ZNfwdbsUnbkltEpKoRRPeLo3zmy0ZQ1GzNLeG7xbl5YnMpL3+0hwM+PqjoHQ7pG86fLh3DxsC7qwyMiXqGWLRHxuF37yzn/ycVcNLQLf79mONZa/rNoN3/9fDv9OkXy2EWD+NNnW9mQWcJ9Z/XmJ+f2P665/xpKL6jk5e/3UOdwcvWo7m12MEsRaf10N6KItChrLUt25vPvb3ZSWlXPtMGduXBoIn2PMh6TtZaZLyxjy75SvvnZmSQ0uBV/8Y48fvT2Wkqq6ogMDuBvVw/jvEGdPX0oIiItQpcRRQRwTUGTcJJjDX2/K5+/f7nj4Bxt3eLC+Nc3O3ny65307xTJBe4O5k3NsffhuiyWpRbyh8sGH1bH6f068MmPJjHruz3cOL4HvdyjqouItCdq2RJpp9IKKvjdJ1v4aut+fnvJIG4cn3zc21idVsRfPt/GstRCOkeFcN/Zfbh6VDeCA/zZX1rNZ5ty+HRjNiv3FmKAS0/ryoPn9CMp3jVfXkllHWf/7VuS4sOYc/cEjeQtIu2KWrZEfFRVrYNnvt3Fc4tTCfAzDOoSxW8/3kJKYtQxj/lUU+/gb1/s4IUlqSREBPP4RSnMGJPUaAyojlEh3DQhmZsmJJNTUs1LS/fw6vd7mbduH1eN6s6Pzu7D0wt3UVRZy2u3jVHQEhGfpZYtkXbC6bQs2JzDHz7dSlZxFZcM78Ivzh9IWLA/lzy1lPKaej790aSjTgGzNbuUh2avY1tOGdeNTeKX0wce8118uaXVPL1wF2+vSMdgqHM6uXViTx69MKUlDlFEpFVRB3kRH+BwWlbtLeSzTTks2JRDTmk1AxOj+N+LBzWa7Hh7ThmXPbOUlMQo3rpjXJPz3zmclheXpPK3L3YQFRrIE1cO4ewBnU6orsyiSv799S5255Xzyq1jiNCQCyLSDilsibRTB0ZEn7smk88355JfXkNQgB9n9OvAhUMTuWBIYpNTlXyyYR/3v7WWG8f34LeXDD64vM7h5KstubywJJU16cWcl9KJP10+RBP4iogchfpsibQzpdV1jUZEDw305+wBHZk2uDNnDeh41NajC4d2YUNmCc8vTmVotxgm9I7nnRXpvLMyg/1lNXSJDuEvVw7lypHdDhvVXURETpzCloiHbcoq4alvdgHQr3MkAzpH0r9zJD3iwo5psty0ggqeXriLj9dnU1XnYHDXqBMeEf3hqf3ZlFXCL+ZuwOG0WODMfh3449genDWg4wkPJCoiIs1T2BLxkJySav76xXbmrMkkJjSQ2LAgvtiSc3Buv6AAP2aM7s5jFw1qNuTsya/g6ud+oLy6nkuGd+HasUknNSJ6gL8f/555Gj99bz0DE6O4dkwS3ePCTnh7IiJydApbIsdg1/4yXv0+jYfO7Udc+JEnLK6sree5Rak8vzgVh9Ny5+Re3HtWH6JDA6muc7BrfznbcspYllrAaz+kkV9ewz+uGU5wgH+j7WQUVnLdC8twOC3z7p941JHaj1V8RDCv3DKmRbYlIiJHp7AlPq2ytp6C8tojtu7kl9dw88srySyqYkt2KW/ePrbReFMN7cgt46aXVpBdUs0FQxN5ZNqARtsOCfRncNdoBneN5sqR3RjQOZLff7qV8prVPHv9CMKCXD+S2SVVXPviMspr6nnnzvEtFrREROTUO3qHEZF2qqrWwTXPLeOcvy3i0w3ZTa5TXefgztdWkV9ew4NT+rImvYgH3lmLw3n4Xbxbs0uZ8byrJer9u8fz9LUjjnqJ7vbJvfjzFUP4bmceN85aQUlVHXllNVz3wnKKKup4/baxpHSJapHjFRER71DLlvgkp9Pyk3fXsWlfCf06RnL/22vILx/ETROSD65jreXh9zewJr2YZ64bwfQhiUSFBPLbT7bwu0+28NhFKQfv2tuUVcL1s5YTGujPW3eMo2cTcwQ255rRSUQEB/Lg7LXMdIe17JJqXrttDMO6n3j/LBERaR0UtsQn/f3LHXy2KYdfTR/IDeN7cP9ba3ls3mb2l1Xzs/P6Y4zhya93Mm/9Pv5nan+mD0kE4NZJPdlXXMWL3+2hS0wId57em/UZxdwwazmRIYG8fce4g/MCHo8LhiYSHuzP3W+sxmnhlZtHM/oYp9YREZHWTWFLfM4HazN5auEurhnVndsn98QYw7PXj+DRjzbx9MLd7C+tYXzveP751U6uGNGNe8/s3ej9v5w+kOzSav44fxvl1fW8vHQvMeGBvHX7uJO6s+/M/h2Zd/8kauudDO4afbKHKSIirYRGkJc2r6SqjrAgfwKPYcyqVXsLufaF5ZyWFMPrt41tNG2NtZZ/fLWTf329E4AxPeN445B1Dqiuc3DjrBWs2FtIj/gw3r5jHF1iQlvuoEREpNXTCPLiE77YnMODs9cRGRLAzDFJXDsmqdmJlvfmV3DX66vpEhPCs9ePPCxEGWP4ybn9SIwOYcGmHP5xzfAmgxa47ip84cZRvLR0DzPHJNE5+siTO4uIiO9Sy5a0SdZanl2UyhOfb2NI12jiwoP4dnseAX6GqYM7c9P4ZOLCg1iTVsSqtEJWpxWxO6+CqJAAPrhvIr07RHj7EEREpI1Ty5a0WzX1Dn4xdyNz12Rx4dBE/nrVMEIC/dmbX8Eby9J4d1VGo6EcYsICGZkUy+UjunH+4M70UtASEZFTSC1b0qbkl9dw9+urWZVWxENT+vHjc/ocNmlyVa2D+RuzqXc6Gdkjjt4dwjWxsoiItDi1bEm7k1NSzZXPfk9eWQ1PXXsaFw7t0uR6oUH+XDGy2ymuTkREpGkKW9ImlNfUc8srKymqqOWdO8dxWlKst0sSERE5Jgpb0urVO5zc/9YaduSWMeumUQpaIiLSpmhuRGnVrLU8/vFmvt2ex+8uGcyZ/Tt6uyQREZHj4tGwZYyJMca8b4zZZozZaowZ78n9Sfvz4pI9vLEsnbvO6MW1Y5O8XY6IiMhx8/RlxCeBBdbaK40xQcCJz2UiPuezjdn8Yf5WLhiSyM+nDvB2OSIiIifEY2HLGBMFnA7cDGCtrQVqPbU/aZuKKmp5euEu5qzJpN7hHobEPUpDRU09I5Ji+NvVw/Dz09ANIiLSNnmyZasXkAe8bIwZBqwGHrDWVjRcyRhzJ3AnQFKSLhP5iqpaBy8t3cOz3+6morae84ck0inSNeWNxRW6woL8uW1SL0IC/b1ZqoiIyEnx2KCmxphRwDJgorV2uTHmSaDUWvtoc+/RoKbtn8NpeW9VBv/4age5pTVMGdiJh6f1p1+nSG+XJiIiclxaw6CmmUCmtXa5++/vA494cH/SBvz24828+kMaI3vE8tS1IxidHOftkkRERDzKY2HLWptjjMkwxvS31m4HzgG2eGp/0vp9vTWXV39I4+YJyTx2UYqm0BEREZ/g6bsRfwS86b4TMRW4xcP7k1Zqf1k1D7+/gQGdI/nF9AEKWiIi4jM8GrasteuAo17LlPbNWsv/vLeB8pp63rlzHMEB6vAuIiK+QyPIi8e98v1eFu3I49cXDKSvOsKLiIiPUdgSj9qWU8qfPtvG2QM6cv24Ht4uR0RE5JRT2BKPqa5z8MDb64gKCeSJK4eqn5aIiPgkhS3xiJKqOu5/ay3bc8v461VDSYgI9nZJIiIiXuHpuxHFB63LKOb+t9aQU1LN4xelcGb/jt4uSURExGsUtqTFWGuZ9d0e/rxgGx0jQ3j37vGMSIr1dlkiIuJLnE4oSYfYZG9XcpDClpw0ay1ZxVU8Pm8LX23N5dyUTvz1ymFEhwV6uzQREfElFfnwwd2QvQ7uWwFhrWOWEoUtaVa9w8nctVnklFRjAD8/gzFgMBRW1LC3oJL0gkrSCyupqnMQ6G/4zYUp3DIxWZ3hRUTk1NqzGObcAVVFMO2PENp6rqwobEmT1qQX8asPNrE1u7TJ14MD/OgRH0ZSXDiT+ybQIz6Mcb3iNY6WiIicWo56WPwELHoC4vvA9e9D5yHerqoRhS1ppKSyjj9/vo23V6TTKTKEZ68fwbkpnbHW4rTgtBZrXWHLz0+tVyIi4kWl2TDnNkhbCsOuhel/geAIb1d1GIUtOeijdVn89uMtFFfVcdvEnjx4bj8igg98RRSsRESklZlzG+xbB5c+C8NneruaZilsCQCv/bCX33y0mWHdY3jtssEM6hLt7ZJERESal/a9q0Vr2p9bddAChS0BPt2QzWPzNjNlYEeevX4kAf4a61ZERFq5JX+DsAQYcaO3Kzkq/Vb1cd/vzueh2esYmRTLv2eOUNASEZHWb99a2PUVjL8PgsK8Xc1R6TerD9uUVcKdr60mOSGMF28aRWiQv7dLEhERObolf4fgaBh9m7crOSYKWz4qvaCSm19eSVRIAK/eOoaYsCBvlyQiInJ0edth68cw9k4IaRv9ixW2fFBeWQ03vrSceqeT124bQ2J0qLdLEhEROTZL/g6BoTD2Hm9XcswUtnxMSVUdN760gtzSGmbdNJo+HTUIqYiItBFFe2HjezDyFgiP93Y1x0xhy4dU1tZz6ysr2b2/nOdvHMnIHq1nKgMREZGjWvok+PnDhPu9XclxUdjyETX1Du56fTVr04v418zhTO7bwdsliYiIHLuyHFj7Bgy/FqK6eLua46Kw5QPqHU4efGcdS3bm839XDGXa4ERvlyQiIgLWwvYFUJF/9HWXPgnOepj4oOframEKW+2cw2l5ZO5GPtuUw28uTOHqUd29XZKIiAjUVrqm23n7Gnj5fCjf3/y6a16DZc/AaddDXM9TV2ML0Qjy7VRuaTXvrszgnZUZZBVX8eCUvtw6qe19QUVEpB0qTod3roOcjTD6dlj3Frx6Edz8KYQnNF534/sw78fQZwpM/6t36j1JClvtiLWW73bl8+aydL7cmovDaZnUJ4FHL0xh6qBO3i5PREQE9n4H794Ijjq4djb0mwoDL4a3robXLoGbPoawONe62z6FuXdCjwlw9esQEOzd2k+QwlY7UVJZx0/eXcfX2/YTFx7E7ZN6MnNMEskJ4d4uTURExGXFC7DgEYjrBTPegoS+ruW9zoCZb8NbM9yBa55rSp73boYuw12hrA1My9Mcha12YMu+Uu5+YzXZJVU8emEK149LIjhAU++IiEgrsvgv8M3vod/5cPlzh4/+3vtsVwB7Zya8PN01plZCP7jufQhu22NCqoN8Gzd3TSaXPbOUmnoH79w5ntsm9VTQEhGR1uX7p1xBa+g1MOPN5qfZ6TvFdbkwf6dreIcbPvjvJcU2TC1bbVRtvZPffbKF15elMa5XHP+eOYIOkW3zWraIiLRjK16AL34FKZfCJc+4BiU9kv7T4J7vIaIDhLaPwbcVttqo33/qClp3nt6Lh6f2J8BfjZQiItLKrHkN5v8M+k+HK14E/2OMHR36ebauU0xhqw3aX1bNOyszmDmmO7+cPtDb5YiIiBxuw7uuIRt6nwNXvQL+gd6uyGsUttqgl5fupd7h5K7Te3u7FBERkf8qzYbt812P3d9A8iS45o02O2RDS1HYamNKq+t444c0zh+SqGEdRETEe6x1zVeYtxUyV7sC1r41rtdik2H8/XDGz9v0kA0tRWGrjXlzWTplNfXcc4ZatURE5BTLWOGaDDpvm+tRXfLf17qOgnN+4+qf1WEAGOO9OlsZha02pLrOwazv9jC5bwKDuzZz26yIiEhLq62Ar38Ly5+D4CjoPBgGXwkdB7qCVccUCI/3dpWtlsJWGzJnTSb55TXcc+Zwb5ciIiK+IvVbV0f34jQYcyec8xgER3i7qjZFYauVSS+oxM8PusU2vsZd73Dy3KJUhnWLZnwv/e9BREQ8rCLf1Zq15lWI6w23fOaao1COm8JWK2KtZeYLy8grq+GeM3tzz5m9CQl0Df722aYc0gsr+eX0ERhdBxcRkZZWlgtpS92P72H/FjB+MPEBOPMXEBjq7QrbLIWtVmR9ZglZxVWkJEbx5Nc7+WhdFr+7dDCT+iTwn29306tDOOeldPZ2mSIi0lY56mHta5CzESoLoLLQ9WdFPlTsd60TFAHdx8LgK1yd3TuleLfmdkBhqxVZsCmHAD/DW3eMZVNWKY9+tIkbZq1gbM84tmSX8sQVQ/HzU6uWiIicgMxV8PGDkLsRwuIhLMH1Z1wv6D7GdakweSJ0HnbsI73LMdHZbCWstSzYlM343vHEhAUxqW8Cnz0wmWcX7eaZhbvpHBXCJad18XaZIiLS1lSXuPperZwFkYmuQUYHXKihGU4hha1WYkduOXsLKrnj9F4Hl4UE+vPglH5cNao7TqclOOAok3eKiIg0tOUjmP8/UJEHY++Gs38FwZHersrnKGy1Egs25WAMnJvS6bDXusaoU6KIiByn9bPhgzshcRhcOxu6nObtinyWwlYr8dmmbEb1iKVjZIi3SxERkbYudRF8dB8kT4br50JAkLcr8ml+3i5AYG9+Bdtyypg2ONHbpYiISFuXuxlmXw/xfdyTQCtoeZvCVivw+eYcAKYOOvwSooiIyDEr3QdvXgVB4XD9+xAa4+2KBF1GbBUWbM5hSNfow0aNFxEROWbVpa6gVV0Kt34G0d28XZG4qWXLy7JLqlibXsy0wRqsVERETpCjHt69EfK2wdWvQuch3q5IGlDLlpd9sTkXQGFLRERO3PdPQupCuPgp6HOOt6uRQ6hly8sWbMqhb8cIenfQDOoiInICcrfAt//P3p3HRV2tDxz/nGEVWdxwIdxzQcWV1AK3NPWmuYVliWuu3TZvklr92m63m2mblWU3tyzNtLSu1/K6J4kaJqKFmgsKai6gqCDLzJzfH1/lurCMyMww8Lxfr3kBM9/v+T6AwsM55/s8b0KzAdB2mLOjEfmQZMuJ0jJy2H4kVWa1hBBCFI/FDN89bhQq7fO2s6MRBZBlRCda+/ufWDX0at9DBdcAACAASURBVC7JlhBCiGLY+j6c2AWDF0DFas6ORhRAZracJCvXwnfxJ6hdpQLNg/ydHY4QQghXc+3yYfOBzo5GFEJmthwo12Ll54Nn+T7+BP/9/RSXss0806MRSpqBCiGEuBWyfOhSJNlyAKtV89aa/Xwdl0xaRg5+3u70Ca1Fv9ZB3N2gqrPDE0II4Wpk+dClSLLlABv3n+aTzYfoEVKDh8KC6dIkEC93N2eHJYQQwhWdTpTlQxcjyZYDfLblCEEB3nwc1RYPN9kmJ4QQopgsZlgpy4euRn7z29ne4+nEHk5lZHg9SbSEEELcnm0fwYlf4f4ZsnzoQuS3v53NizlCRU83Hr6rjrNDEUII4crO/gEb/gFN+0LzQc6ORtwCSbbs6M/0LL7ffYKH7qpNQAUPZ4cjhBDCVVmt8N0T4FHBWD6Uu9hdil33bCmlkoCLgAUwa63D7Hm90ubz2CSsWjPqnvrODkUIIYQr2/EpJG+DAZ+AnxTCdjWO2CDfTWt91gHXKVUyc8x8uf0YvZrXpE5VH2eHI4QQwlWlHYH1r8Kd90GrIc6ORhSDLCPayTc7U0i/nMuYTjKrJYQQopi0hu+fBOUGD7wny4cuyt7Jlgb+q5TaqZQaZ+drlRpWq2ZuzBFa165E2zqVnR2OEEIIV7V5OiRtgZ5/h4BgZ0cjisney4jhWusTSqnqwFql1D6t9U/XHnAlCRsHUKdO2bhjb/2+0ySlZvJhrybSikcIIUTx/DQDNv0TWj0C7UY6OxpxG+w6s6W1PnHl7WlgBdA+n2M+1VqHaa3DAgMD7RmOw3y25TB3VKpA7+ayiVEIIUQxbHkbNrwOLR+G/h/J8qGLs1uypZSqqJTyu/o+0BPYa6/rlRYJKefZfiSNkffUw12KmAohhLhVMe/C+tcgdDAM+BhM0t7N1dlzGbEGsOLKMpo7sFhr/aMdr1cqzNl8GD8vd4a0r+3sUIQQQrian9+Hda9Ai0ijzIMkWmWC3ZItrfVhoJW9xi+Nks5m8MPek4zr3BA/byliKoQQ4hb88hmsfcmoDj9wDrhJ++KyQta5StCnWw7jbjIxOryes0MRQgjhSpJ3wA9ToFEvGPQvSbTKGEm2SsiZi9ks35nCg+3uoLq/t7PDEUII4SounYGvRxilHQZ9KolWGSTf0RKyYOsRci1WxnZq4OxQhBBCuAqLGZaPgstp8NhaqFDJ2REJO5BkqwRcyjazKPYovZvXpEGgr7PDEUII4So2vm4ULe0/G2q1dHY0wk5kGbEELNl+jAtZZiZ0aejsUIQQQriKff8xyjy0Gwlthjo7GmFHkmzdphyzlbkxR+jYoAqtasv0rxBCCBukHoIVEyCoDfSe7uxohJ1JsnWbvos/zp8XsmRWSwghhG2yLsBXQ40aWoMXgofcVFXWyZ6t22C1aub8dJiQWv50aVw2Wg0JIYSwI6sFvh0LZw/AsBVQua6zIxIOIDNbt2HLwbMcPH2JCV0aSMNpIYQQRVv/Ghz4Ef4yHRp0cXY0wkEk2boNa377k4qebvRuIQ2nhRBCFGH3Uvj5PWg3Cu4a4+xohANJslVMWms2JJ6mU6NAvNyld5UQQohCpMTB909C3Qi4fwbIaki5Inu2ium3Exf480IW3UOqOzsUIYQQpUXqIchMMza9e/iARwXIyTQ2xPvVhIc+BzfpnVveSLJVTOsTT6MUdGsqyZYQQpRrmWmwZznsXgwnduV/jKevsSG+YlXHxiZKBUm2imn9vlO0rl2Jar5ezg5FCCGEo2kNB9fDrwtg/49gzYUaodDrDajWBHIzwZxlvM3JhPqdoEYzZ0ctnESSrWI4dSGLhJR0ons1cXYoQgghHO18MqyebNxVWDEQ2o+D1o9AzVBnRyZKKUm2imHDvtMAsl9LCCHKE6sFts+BDa8DGnr+AzqMlz1YokiSbBXD+sTT3FGpAk1q+Dk7FCGEEI5wcjd8/xScjIdGPeH+mVKQVNhMkq1blJVrIebgGR4Oqy2FTIUQojxIWAYrJ0CFKhA5H5oPlNIN4pZIsnWLth46S1aule4hNZwdihBCCHuLmw+rJkG9CHh4EVSo7OyIhAuSoqa3aF3iaSp6utGhQRVnhyKEEMKefn4fVj1jLBsOXSaJlig2mdm6BVI1XgghygGtYeM/4KcZxpLhwE/B3dPZUQkXJsnWLZCq8UII4aJ+/w42vnHlA3Vlz5Uy7iT0qwn+QeAXZLw9Hgdx86DNMHjgfTDJH9fi9kiydQukarwQQrggcw6secFIsILaGDNXaOOtORvSj0PKL5CZ+r9zOj5uFCiVjfCiBEiydQvW7ztFG6kaL4QQrmX3YkhPhqHLodF9BR+XmwUXTxoJWGATSbREiZEN8ja6WjVe7kIUQggXYsmFLW9DUFu4s0fhx3p4Q5X6UL2pJFqiREmyZaONUjVeCCFcz+4lcP4YdJ0qCZRwGkm2bLROqsYLIYRrseTCTzONfVqNejo7GlGOSbJlg6tV43uEVJeq8UII4SoSlsL5o9BlisxqCaeSZMsGsYdSycq1cq/s1xJCiNLDaoXVz8HKx+HSmetfs5iNWa1araBxb+fEJ8QVkmzZYF3iKXw83egoVeOFEKL02PgP2DHH2Jf1UXtI+PpKWQdgz9dw7ojMaolSQZKtImit2bDvNJ0aVZOq8UII4SgnEyArveDXd30BW2ZC2+EwcStUbQjfjoXFD8G5JKP6e81QaHK/w0IWoiCSbBXh95MXOJmeJSUfhBDCUeLmw5xO8FEHOPDfm18/vBn+/TQ06Ap93oHqITB6DfR+E5Ji4IN2kHZYZrVEqSHJVhHyqsY3kZIPQghhd798ZjR/btDVaPy8eLCxJ+vyeeP1M/th6TCo2gge+txotwNGS52OE41ZrgZdjUeTPs74DIS4iVSQL8L6fadpFVyJQD+pGi+EEHa1/VP4IRoa/wUeWmg8t3k6xLwHhzbCfa/BhtfA3QuGfg3eATePUaU+RH3j2LiFKILMbBXi9MUsdiefp4cUMhVCCPva9rGRaDXpY8xYuXsZj+4vwZh14O0P344x7jp89CuoVMfZEQthM5nZKsSmfcatxPc2lf1aQghx29KOwPrXwOQOvtXBt4bxNu2wMYPVtC9Ezgd3z+vPu6MtjP8Jtn8CtVrDHe2cE78QxSTJViHWJZ4iKMCbkFpSNV4IIW7L5fOw+GG4cBx8qsKlU2DO+t/rzfrDg3P/twfrRu5eEP60Y2IVooRJslWArFwLW/44S2S7YKkaL4QQt8NihmUjjRms4SuhXoRRDyv7Ilw6DTmXjDINJimvI8omSbYKsO1wKpdzLdwr+7WEEKL4tIYfnoPDG6H/R0aiBUZJBm9/4yFEGScb5AuwPvE0FTzcuLtBVWeHIoQQrmv7HIibaywBtolydjRCOIUkW/nQWrM+8RQRjarh7SHT2kIIUSwH/gtrphkb37u/4uxohHAaSbbyse/Pi5xIz5KSD0IIUVynfoflo6FGCxj0KZjk140ov+Rffz427DsNSNV4IYQolounjB6FnhXhka+Mt0KUY7JBPh+JJy9Qp4oP1f29nR2KEEK4lpxMWDIEMlNh1A8QcIezIxLC6STZysextEzqVvVxdhhCCOFarFZYMQ5O7IIhiyGotbMjEqJUkGXEfBxNlWRLCCFu2bqXIfHf0OsNaHq/s6MRotSQZOsG5zNzSL+cS72qssdACCFstnMBbJ0Fd42BjhOdHY0QpYosI97gaGomAHWqyMyWEEIUSWtI+BpW/Q3uvA96TzcKlgoh8kiydYOk1AwA6lWTmS0hhCjUuST4z7NwcB0Et4fIeeAmv1aEuJH8r7jBMZnZEkKIwlnMsO0j2PhPo59h7+nQfqz0NhSiAJJs3eBoWiY1/L2kcrwQQuTnzz2wcqLxtsn9cP8MCAh2dlRClGqSbN3gaGoGdWVzvBBC3OyPtfD1CPDyg4cWQcgDsj9LCBuU+mQrNzeXlJQUsrKyHHK9ia0r4O1uIjEx0SHXE+Dt7U1wcDAeHh7ODkUIUZCdC2HVJKjZAh5dBn41nB2REC6j1CdbKSkp+Pn5Ua9ePZSd/4KyWDW5J9Kp6e8t1eMdRGtNamoqKSkp1K9f39nhCCFupDVs+idsng539oDBC4yZLSGEzWyqs6WUqquU6nHl/QpKKYf9T8vKyqJq1ap2T7QAcixWADzdpfyYoyilqFq1qsNmLoUQt8CSC9/91Ui02kQZfQ4l0RLilhU5s6WUGguMA6oADYFg4BOgu31Duy4Gh1wnxyzJljM46vsrhLCR1Qr7V8OWmUbrna7ToMsU2Z8lRDHZsoz4V6A9sB1Aa/2HUqq6XaNykrxky02SLSFEOZSbBQlLjUrwqQehUl14cC6ERjo7MiFcmi3JVrbWOufq7INSyh3Qdo3KSXLMFtxMCvdrkq2kpCT69u3L3r17S/RavXv3Ztu2bURERLBq1aoSHbsk1atXj7i4OKpVq8Y999zD1q1bnR2SEOJ2HN4MW96G7Avg6WssC3r5gbsXHFgDl05BzZZGgdKQ/lKkVIgSYMv/os1KqeeBCkqp+4DHgX/bNyznyDZb8XLQEmJ0dDSZmZnMmTPHIdcrCZJoCeHC/txrNIo+uA7874DqIZB9Cc4fg+yLkHMJarWCQZ9C/S6yZChECbIl2ZoKPAbsAcYDq7XW/7JrVAV49d+/8fuJCyU6ZrMgf15+oDlgbJD38bj5S2I2mxkxYgS7du2icePGfP755/j43F6F+e7du7Np0yabjz969CijR4/mzJkzBAYGMn/+fOrUqcPIkSPx9/cnLi6OP//8k7feeovIyPyn/Ddt2sRLL71E1apV2b9/P507d2b27NmYTCaWLFnCG2+8gdaaPn36MH369JvO9/X15dKlSwC89dZbLFq0CJPJxF/+8hfGjh3L4MGD+fXXXwH4448/GDJkCDt37rz1L44QouScT4aNb8DuJeDtD/e9Bu3Hg4fccS2Eo9gyjfOk1vpfWuvBWutIrfW/lFJP23oBpZSbUmqXUqr0rpUBVq3JNet8N8fv37+fcePGkZCQgL+/P7Nnz77pmBkzZtC6deubHk899VSJxPfEE08wfPhwEhISGDp06HXjnjx5kpiYGFatWsXUqVMLHWfHjh28/fbb7Nmzh0OHDvHtt99y4sQJpkyZwoYNG4iPj+eXX35h5cqVBY7xww8/sHLlSrZv387u3bt57rnnaNiwIQEBAcTHxwMwf/58Ro4cWSKfuxCimJJ3wEftYe83cM8T8FQ8hD8tiZYQDmbLzNYI4P0bnhuZz3MFeRpIBPxtDyt/V2eg7CHXbEWTf7JVu3ZtwsPDAYiKimLWrFlMnjz5umOio6OJjo62W3yxsbF8++23AAwbNoznnnsu77UBAwZgMplo1qwZp06dKnSc9u3b06BBAwAeeeQRYmJi8PDwoGvXrgQGBgIwdOhQfvrpJwYMGJDvGOvWrWPUqFF5s3tVqlQBYMyYMcyfP5933nmHpUuXsmPHjtv7pIUQxZd6CJYMAb+aMGwlVK7r7IiEKLcKTLaUUo8AjwL1lVLfX/OSH5Bqy+BKqWCgD/AP4G+3EafdXa2xld+erRtLE+RXqmDGjBl8+eWXNz3fuXNnZs2aVUJR5h+Dl5dX3vtaF37vQn6fS1Hn3Ehrne/X4MEHH+TVV1/l3nvvpV27dlStWvWWxhVClJCMVPgy0ihIOnS5JFpCOFlhy4hbgbeBfVfeXn08C/S2cfz3gOcAa0EHKKXGKaXilFJxZ86csXHYkpddSI2tY8eOERsbC8CSJUuIiIi46Zjo6Gji4+NvetxqojVt2jRWrFhx0/P33HMPX331FQBffvllvjHYYseOHRw5cgSr1crSpUuJiIigQ4cObN68mbNnz2KxWFiyZAldunQpcIyePXsyb948MjMzAUhLSwOMtju9evVi4sSJjBo1qljxCSFuU24WfPUIpB83ipBWbejsiIQo9wpMtrTWR7XWm7TWd2utN1/z+FVrbS5qYKVUX+C01rrQHdJa60+11mFa67Cry1jOkGO2YlIKd9PNMzYhISEsXLiQli1bkpaWxsSJE2/7ep06dWLw4MGsX7+e4OBg1qxZA8CePXuoWbPmTcfPmjWL+fPn07JlSxYtWsT779u6inu9u+++m6lTp9KiRQvq16/PwIEDqVWrFv/85z/p1q0brVq1om3btvTv37/AMXr37k2/fv0ICwujdevWzJw5M++1oUOHopSiZ8+exYpPCHEbrFZYMR6Stxt3Fdbp4OyIhBCAsmHZqSPwARACeAJuQIbWutA9WEqpfwLDADPgjbFn61utdVRB54SFhem4uLjrnktMTCQkJKToz+Q2JZ3NIMdipXEN57ai6NWrV17iVdI2bdrEzJkz7VrXa+bMmaSnp/P3v//9ls5z1PdZiDJt7Uvw8/tw398hvGRuzhFCFEwptVNrHVbUcbZskP8QGAIsA8KA4cCdRZ2ktZ4GTLsSTFdgcmGJlrPlmK2lok2PvRItRxg4cCCHDh1iw4YNzg5FiPIlNwvWTIO4eXDXGLjnSWdHJIS4hk2lgbXWB5VSblprCzBfKVWmqltqrcmxWPHzLhuVkvfs2cOwYcOue87Ly4vt27fTtWtXu103v71mQgg7O/sHLBsJp/bCPU9B95elIKkQpYwt2UWmUsoTiFdKvQWcBCreykW01puATbccnYPkWjRWnX/ZB1cUGhqaV+9KCOHisi7A8Z1GxXe/G/Zz7l4KqyYZrXYeXQaNZa+kEKWRLcnWMIyN9E8Ak4DawCB7BuVoV8s+lJVkSwhRRlhyYckjcDTG+Ni3htG3sFZLuHDCqApf5x548DMIuMO5sQohCmRLsjVAa/0+kAW8CnClgnzxbocrhXLMFkCSLSFEKbP2JSPR6vEKuHvDyd1wMgEObQBthc7R0GWqNIsWopRzRAX5Ui/HbEWh8HSTZEsIUUrsXgrbZkPHxyFi0vWv5WYZjaMrVnNObEKIW1JgdqGUekQp9W+uVJC/5rEJGyvIu4pssxVPd5VvVfSkpCRatGhR4tfs3bs3lSpVom/fviU+9lVjxozh999/B2DZsmWEhITQrVs3u11PCFFCTu6Gfz8F9ToZjaNv5OEtiZYQLqSwma2tGJvhq2FUjr/qIpBgz6AczSj74ObQa0ZHR5OZmcmcOXPsdo3PPvss7/25c+cye/Zsm5Mts9mMu7ssTQjhcBmp8FUU+FSDyPng5uHsiIQQt6nICvJAD2CL1nozRvIVDJSZ+4qvln0obL+W2WxmxIgRtGzZksjIyLw2Nbeje/fu+PnZXkB15MiRLF++PO9jX19fwChU2rVrVyIjI2natClDhw7N63XYtWtX4uLieO2114iJiWHChAlER0eTlZXFqFGjCA0NpU2bNmzcuBGABQsWMHjwYB544AF69uzJpk2b6NKlCw899BCNGzdm6tSpfPnll7Rv357Q0FAOHTp0218HIcQ1LGZYPhIunYKHF4Gv87pqCCFKji1TFz8BnZRSlYH1QBzwMDDUnoHl64ep8OeeEh1S12iBpeW0Qvdr7d+/n7lz5xIeHs7o0aOZPXs2kydPvu4YRzeivtauXbv47bffCAoKIjw8nJ9//vm63okvvfQSGzZsYObMmYSFhfH228ZE5Z49e9i3bx89e/bkwIEDAMTGxpKQkECVKlXYtGkTu3fvJjExkSpVqtCgQQPGjBnDjh07eP/99/nggw9477337Pq5CVGurH0JjvwE/WfDHW2dHY0QooTYsiNcaa0zMco9fKC1Hgg0s29YjmOxGrNAXoXMbNWuXZvw8HAAoqKiiImJuemYkmpEXRzt27cnODgYk8lE69atSUpKKvT4mJiYvKKnTZs2pW7dunnJ1n333UeVKlXyjr3rrruoVasWXl5eNGzYMK/nYWhoaJHXEULcgl8XwbaPoP14aOP4v2WFEPZjy8yWUkrdjTGT9dgtnFfy/vJmiQ+ZkZkDaZmFLiPeuHE+v4309p7Zcnd3x2o16oFprcnJycl7zcvLK+99Nzc3zObC+4QX1g+zYsXr69VeO7bJZMr72GQyFXkdIYSNjsYaxUkbdINebzg7GiFECbNlZutpjB6HK7TWvymlGgAb7RuW42SbrxQ0LWQZ8dixY8TGxgKwZMmS65boriqpma1p06bl2/amXr167Ny5E4DvvvuO3NzcWxr3Wp07d85LDA8cOMCxY8do0qRJsccTQtyGc0dhaRRUrguD50vNLCHKoCKTLa31T1rrflrr6Vc+Pqy1LjPt5HPMVjzcTJhMBe/5DwkJYeHChbRs2ZK0tDQmTpx429ft1KkTgwcPZv369QQHB+c1oN6zZw81a9a86fixY8eyefNm2rdvz/bt22+agboVjz/+OBaLhdDQUB5++GEWLFhw3QyWEMJBsi8aFeKtufDIUqhQ2dkRCSHsQBW2pORoYWFhOi4u7rrnEhMTCQkJsds1k85mkGux0qiG7XcG2lOvXr3yEq/yxN7fZyFKHasVlg6FA2sgajk0vNfZEQkhbpFSaqfWOqyo48r9fLVV63z3YDlLeUy0hCh30g7Dpjdh/2r4ywxJtIQo44pMtpRS4Vrrn4t6zlVpylDRMCFE6aU1HN4E2z8xZrNM7hDxN2g/1tmRCSHszJaZrQ+AGwu+5PecS9IaCtmuJYQQt0drSPgaYt6FM4lGZfjO0XDXY+B38/5MIUTZU2CydaXcwz1AoFLqb9e85A84treNXWmUkgbUQgg7yEg1ehzuWwU1Qo1ipS0eNHobCiHKjcJmtjwB3yvHXLt7/AIQac+gHMmqZeOaEMIODq6DlY/D5XPQ8x/Q8XEwyR92QpRHBeYZWuvNSqkYIFRr/aoDY3IoraEU7Y8XQri63Muw7hVjb1ZgCER9AzVDnR2VEMKJCp3U0VpblFJVCjvG9WmUbJEXQpSEQxuMHq5n90OHCdDjFfCo4OyohBBOZsuc9i6l1PdKqWFKqUFXH3aPzEGKmtlKSkqiRYsWJXrNo0eP0q5dO1q3bk3z5s355JNPSnT8kuTr6wvAiRMniIwsM6vHQpSss3/A4odh0UCwZBuzWX+ZLomWEAKwbbtSFSAVuLYQjAa+tUtEDqZx/DJirVq12Lp1K15eXly6dIkWLVrQr18/goKCHBvILQgKCmL58uXODkOI0iUzDTa/Bb/8C9wrwH2vGTNa7tKRQQjxP0UmW1rrUY4IxBbTd0xnX9q+Eh0z0Ks+T7eOLvQYs9nMiBEj2LVrF40bN+bzzz/Hx8en2Nf09PTMez87OzuvwXRh4uPjmTBhApmZmTRs2JB58+ZRuXJlunbtSocOHdi4cSPnz59n7ty5dOrUKd8xFixYwIoVK8jOzubIkSM8+uijvPzyywC88847zJs3D4AxY8bwzDPPXHduUlISffv2Ze/evVgsFqZMmcKaNWtQSjF27FiaNWvGhx9+mNfXce3atXz88cd8+22ZyMmFuFl6CnzaFTJToe1w6PYC+FZ3dlRCiFLIlqKm3sBjQHMg735lrfVoO8blODZskN+/fz9z584lPDyc0aNHM3v2bCZPnnzdMTNmzMhr7nytzp0759uMOjk5mT59+nDw4EFmzJhR5KzW8OHD+eCDD+jSpQsvvfQSr776Ku+99x5gJIM7duxg9erVvPrqq6xbt67AcXbs2MHevXvx8fHhrrvuok+fPiilmD9/Ptu3b0drTYcOHejSpQtt2rTJd4xPP/2UI0eOsGvXLtzd3UlLS6Ny5cr89a9/5cyZMwQGBjJ//nxGjSo1eboQJe+HKZB9CcZuhKDWzo5GCFGK2bKMuAjYB/QCXgOGAon2DKogU9pPKfEx9x5PLzLZql27NuHh4QBERUUxa9asm5Kt6OhooqMLnyG7ccyEhAROnDjBgAEDiIyMpEaNGvkem56ezvnz5+nSpQsAI0aMYPDgwXmvDxpkbKFr164dSUlJhV73vvvuo2rVqnnnxcTEoJRi4MCBec2tBw0axJYtWwpMttatW8eECRNwdzf++VSpYtxDMWzYML744gtGjRpFbGwsn3/+uY1fDSFczL7VRu2sHq9KoiWEKJItydadWuvBSqn+WuuFSqnFQJlp4Kd10Xcj3tg7Mb9eirc6s3VVUFAQzZs3Z8uWLcXegO7lZewPcXNzw2w2F3psfp/LrTYj1wX0kxw1ahQPPPAA3t7eDB48OC8ZE6JMycmAH54zyjrc/VdnRyOEcAG23I2Ye+XteaVUCyAAqGe3iBxIa23TBvljx44RGxsLwJIlS4iIiLjpmOjoaOLj42965JdopaSkcPnyZQDOnTvHzz//TJMmTQBjuXDHjh3XHR8QEEDlypXZsmULAIsWLcqb5bpVa9euJS0tjcuXL7Ny5UrCw8Pp3LkzK1euJDMzk4yMDFasWFHgvi+Anj178sknn+QldmlpaYCROAYFBfH6668zcuTIYsUnRKm36U1IT4YH3gM3D2dHI4RwAbZMPXyqlKoMvAh8j1FV/v/sGpWDXJ3QKSrZCgkJYeHChYwfP55GjRoxceLE27puYmIizz77bN6s0uTJkwkNNYoeJiQkUKtWrZvOWbhwYd4G+QYNGjB//vxiXTsiIoJhw4Zx8OBBHn30UcLCwgAYOXIk7du3B4wN8gUtIV59/cCBA7Rs2RIPDw/Gjh3LE088AcDQoUM5c+YMzZo1K1Z8QpRqf+6F2I+MDfF1Ojo7GiGEi1BFLSEppeprrY8U9VxJCAsL03Fxcdc9l5iYSEhISElfCgCL1cpvJy5QK6ACgX7Ov1X7woULPPbYYyxbtswu4y9YsIC4uDg+/PBDu4wP8MQTT9CmTRsee+yxWzrPnt9nIUqE1QrzekHaIXgiDnzKeL1nIUSRlFI7tdZhRR1nyzLiN/k8VyYKLtk6s+Uo/v7+dku0HKFdu3YkJCQQFRXl7FCEKHm7PoeUHdDzdUm0hBC3pMBlRKVUU4xyDwE3VIz355oSEK7s6pxeKcm1SsyarSOa9wAAIABJREFUNWuYMuX6Ozfr16/PihUr7LqXaufOnXYbWwin0dpow7P2ZagbAa0ecXZEQggXU9ierSZAX6AS8MA1z18ExtozKEe5uoSa3511rqxXr1706tXL2WEI4dqsVqO8w5a34WQ8+AUZm+LL2M8LIYT9FZhsaa2/A75TSt2ttY51YEwOU9qWEYUQTma1woXjcOQn+Pl9o6F05frwwCxoNUTa8AghisWWuxEHKqV+Ay4DPwKtgGe01l/YNTIHKKvLiEIIG1w6A0c2Q0ocpB02HuePgiXHeL16c3hwLjQbAG5SM04IUXy2/ATpqbV+Tik1EEgBBgMbAddPtsroMqIQIh/mbEjaAoc2wuHNcGqP8bxHRajSAKo3hab3GzNZgU2N0g7ys0EIUQJsSbauVu27H1iitU4rK8mJLTNb1zZgLilHjx5l0KBBWCwWcnNzefLJJ5kwYUKJjX/V/fffz+LFi6lUqRKzZs3i448/pm3btvlWuheiTEvZCSvGQ+of4OYJtTtA95egQVeo1RpMbs6OUAhRhtmSbP1bKbUPYxnxcaVUIJBl37Acw1l7tmrVqsXWrVvx8vLi0qVLtGjRgn79+hXZjPpWrV69Ou/92bNn88MPP1C/fn2bzjWbzdJuR7g+cw789BZseQf8asFDi+DOHuDp4+zIhBDlSJF1trTWU4G7gTCtdS6QCfS3d2COkLeMWMSuLbPZzIgRI2jZsiWRkZFkZmbe1nU9PT3z+hlmZ2djtVqLPKdr165cLfh69uxZ6tWrBxiFSgcNGkTv3r1p1KgRzz33XN459erV4+zZs0yYMIHDhw/Tr18/3n33XdLS0hgwYAAtW7akY8eOJCQkAPDKK68wbtw4evbsyfDhw1mwYAEDBgzggQceoH79+nz44Ye88847tGnTho4dO+a16RGiVDr1G3x2L/w0w9jc/vhWaNZPEi0hhMPZNHWhtT53zfsZQIbdIirEn2+8QXbivhIbz2zVmOo2QL1cePeh/fv3M3fuXMLDwxk9ejSzZ89m8uTJ1x1zq42ok5OT6dOnDwcPHmTGjBm3NasVHx/Prl278PLyokmTJjz55JPUrl077/VPPvmEH3/8kY0bN1KtWjWefPJJ2rRpw8qVK9mwYQPDhw8nPj4eMGplxcTEUKFCBRYsWMDevXvZtWsXWVlZ3HnnnUyfPp1du3YxadIkPv/8c5555plixy2EXZxOhPjFsP0T8A6AIUuMvVhCCOEksk5E0cuItWvXJjw8HICoqChmzZp1U7IVHR1NdHS0zdesXbs2CQkJnDhxggEDBhAZGUmNGjVuOXaA7t27ExAQAECzZs04evTodcnWjWJiYvjmG6MxwL333ktqairp6ekA9OvXjwoVKuQd261bN/z8/PDz8yMgIIAHHjBKroWGhubNiAnhdOkpsGe58Ti1B5QJmg+Ev7wFFas5OzohRDlXWAX5cK31z0opL611tiODKkjN558v0fHSL+dwNDWzyGXEG28IyO8GgVud2boqKCiI5s2bs2XLFiIjIws8zt3dPW+5MSvr+i1zV5ckAdzc3DCbzQWOA/9bPr3W1c+pYsWKBY5tMpnyPjaZTEVeRwi7O/UbrH0JDq4HNNwRZiRYzQeCb3VnRyeEEEDhe7auZghlsqAp2L5B/tixY8TGGl+GJUuWEBERcdMx0dHRxMfH3/TIL9FKSUnh8uXLAJw7d46ff/6ZJk2aADB8+HB27Nhx0zn16tXLa4ezfPnttabs3LlzXmK4adMmqlWrhr+//22NKYRDZZyFVZPgkwg4vhO6ToOndsHY9dBhvCRaQohSpbBlxFyl1HzgDqXUTRmD1vop+4XlGHnJVhHHhYSEsHDhQsaPH0+jRo2YOHHibV03MTGRZ599FqUUWmsmT55MaGgoAAkJCdSqVeumcyZPnsxDDz3EokWLuPfee2/r+q+88gqjRo2iZcuW+Pj4sHDhwtsaTwiHMefAjjmw+S3IyYD246DLFGkMLYQo1VR+S0oASqlqQA9gOvDSja9rrUv8N3RYWJi+esfdVYmJiYSEhJT0pQBIy8gm5dxlmtb0x9O9yBsz7e7ChQs89thjLFu2zNmhOJw9v8+ijMhMgwV94PTvcOd90OsfENjE2VEJIcoxpdROrXVYUccV1hvxLPCVUipRa727RKMrJUpbb0R/f/9ymWgJUSRLLnw9HFIPyt2FQgiXY8t0TqpSaoVS6rRS6pRS6hulVLDdI3MA6Y0ohAvQGlZHG612+n0oiZYQwuXYkmzNB74HgoA7gH9fec7lSW9EIVzAjk9h53yImAStHnZ2NEIIcctsSbaqa63na63NVx4LgEA7x+UQpW0ZUQhxg4Pr4cep0KQP3HvT1lEhhHAJtiRbZ5RSUUoptyuPKCDV3oE5giwjClGKnTkAy0ZBYAgMmgMm59/EIoQQxWHLT6/RwEPAn8BJIPLKcy5Pa41CyTKiEKWJ1nBoIyweDG4e8OhX4OXn7KiEEKLYimzXo7U+BvRzQCwOp5ElRCFKDa3hyGbY+E9I3gb+d8AjS6BSHWdHJoQoBayZmZhTU3GvWhWTj2s1lC/XvRG1LnoJMSkpib59+7J3794SvXbv3r3Ztm0bERERrFq1Ku/5I0eOMGTIENLS0mjbti2LFi3C09OzRK9dEkaOHEnfvn2JjIxkzJgx/O1vf6NZs2bODku4Iq3hyE+w6U04thX8guD+mdB2OLh7FX2+EKLMy9q/n+QxYzGfOQOA8vHBvWpV3KtWRVXwRl/OwpqVhb58GWtWFphMNNq4wclR/085T7a005YQo6OjyczMZM6cOdc9P2XKFCZNmsSQIUOYMGECc+fOve2K9fb22WefOTsE4Yq0hkMbjGrwydvArxb8ZYaRZHl4Ozs6IUQpkfnLLyQ//ldMPj7UfOUVLBcvYDmbijk1FXPqWXRWNiafCrhVqYLJ2xvlU6HUzXy5VLK15esDnE2+VGLjZZstVKhegWajWhR6nNlsZsSIEezatYvGjRvz+eef43Ob38ju3buzadOm657TWrNhwwYWL14MwIgRI3jllVcKTbaysrKYOHEicXFxuLu7884779CtWzcWLFjA999/T2ZmJocOHWLgwIG89dZbBY7j6+vL+PHj2bhxI5UrV+arr74iMDCQ+Ph4JkyYQGZmJg0bNmTevHlUrlz5unO7du3KzJkzCQsL48cff+T555/HYrFQrVo11q5dS5MmTdi6dSuBgYFYrVYaN27Mtm3bqFatWvG/gMJ1aQ0H1sBPbxl9Df3vkCRLCJGvC2vXcuLZyXgEB1Pns3/hERTk7JCKpcgN8kqpGkqpuUqpH6583Ewp9Zj9Q3MMW+a19u/fz7hx40hISMDf35/Zs2ffdMyMGTNo3br1TY+nnrK9hWRqaiqVKlXC3d3IgYODgzl+/Hih53z00UcA7NmzhyVLljBixAiysrIAiI+PZ+nSpezZs4elS5eSnJxc4DgZGRm0bduWX3/9lS5duvDqq68CRmPs6dOnk5CQQGhoaN7z+Tlz5gxjx47lm2++Yffu3SxbtgyTyURUVFRe4+t169bRqlUrSbTKq7N/wJzOsORhyDgDfd8zGkh3GCeJlhDiOueWfs3xp5/BOySEul9+4bKJFtg2s7UAo4jpC1c+PgAsBebaKaYCdXqocYmOdyw1k8u5liKPq127NuHh4QBERUUxa9YsJk+efN0x0dHRREdH31Y8+fWpLGqZMyYmhieffBKApk2bUrduXQ4cOAAYs2cBAQEANGvWjKNHj1K7du18xzGZTDz8sFEwMioqikGDBpGens758+fp0qULYMy0DR48uMBYtm3bRufOnalfvz4AVaoYzYFHjx5N//79eeaZZ5g3bx6jRo0q9HMSZVRWOiwZApfPQf/Z0PIh425DIYS4wpqdTdaePVxY81/OLVpExS6dCX733VK3LHirbEm2qmmtv1ZKTQPQWpuVUkVnKC5Ao226G/HGhCe/BGjGjBl5szfX6ty5M7NmzbIpnmrVqnH+/HnMZjPu7u6kpKQQVEQmX1AjcQAvr/9tLnZzc8NsNtsUBxSvqn5Be+Bq165NjRo12LBhA9u3b8/36yTKOKsVVkyAc0kw/HuoF+7siIQQpUTmL79waUsMmTt3kpWQgM7NBSAg8kFqvfwyysP1/yizpc5WhlKqKldqgCqlOgLpdo3KQWy5GxHg2LFjxMbGArBkyRIiIiJuOiY6Opr4+PibHrYmWmAkON26dWP58uUALFy4kP79+wOwYsUKpk2bdtM5nTt3zkteDhw4wLFjx2jSpInN17zKarXmXXfx4sVEREQQEBBA5cqV2bJlCwCLFi3Km+XKz913383mzZs5cuQIAGlpaXmvjRkzhqioKB566CHc3NxuOT7h4n6aAftXQ683JNESQgBgSU/nePRzHB02nNR589DmXCoPG0bw7I9oFLuVoNdfLxOJFtg2s/U3jN6IDZVSP2O06om0a1QOYtTZKjrdCgkJYeHChYwfP55GjRqVyN2BnTp1Yt++fVy6dIng4GDmzp1Lr169mD59OkOGDOHFF1+kTZs2PPaYsT3u0KFD+Pv73zTO448/zoQJEwgNDcXd3Z0FCxZcN6Nlq4oVK/Lbb7/Rrl07AgICWLp0KWAkfFc3yDdo0ID58wtuixkYGMinn37KoEGDsFqtVK9enbVr1wLQr18/Ro0aJUuI5dH+H2HTG9ByCLQf5+xohBClwKWYnzn5wguYU1Op9uQTVB01yuWXCgujCluGyjtIKXegCcZE0H6tda49ggkLC9NxcXHXPZeYmEhISIg9LsfhM5fQGhpW97XL+CUpKiqKd999l8BA+7Sl9PX15dKlkrvT80ZxcXFMmjQpb5bsRvb8PgsnOnsQ/tUNKteDx/4LHhWcHZEQwomsmZmcnjmTc4uX4HlnQ4LenE6FFs2dHVaxKaV2aq3DijquyJktpdTwG55qq5RCa/15Eed5Az8BXleus1xr/XJR13MkrV2ngvwXX3zh7BCK7c033+Tjjz+WvVrlTfZFWDoUTO4w5EtJtIQo5y4nJHA8OprcY8lUGTWKwGeexlSMlRhXZMsy4l3XvO8NdAd+BQpNtoBs4F6t9SWllAcQo5T6QWu9rXihljwNmFwl2yohHTp0IDs7+7rnFi1aZNdZralTpzJ16lS7jS9KGa1h7zew7hW4cByGrZSWO0KUY9piIfXTTznz4Ud41KhBnYULqNi+vbPDcihbeiM+ee3HSqkAYJEN52ng6m9wjyuPotcsHehqI+ryZPv27c4OQZRlyTvgx2lwPA5qtoSBc2RDvBDlgLZYUPnc/JR7/DjHn5vC5Z078e/Th5ovv4RbPvuPy7riVJDPBBrZcqBSyg3YCdwJfKS1LlW/6aURtRAl5MIJWPMC/PYt+NY06mi1GgImufNUiLJK5+RwYe1azi1ewuVff8Wjdm28GjfCq1EjvBs3xpqRwak3p4PWBM14i4AHHnB2yE5jy56tf/O/GSkT0Az42pbBtdYWoLVSqhKwQinVQmt9XUdnpdQ4YBxAnTqOXWowSj9ItiXEbcnJhEWDjBpaXabAPU+BV+m/6UQIUbhLW7aQuX077kFBeNaujUdwMB533IElNZVzX3/N+WXLsZw9i0edOlQZOZLcEyfI/uMPLm3YaNTWAyq0aUPQjLfwDA528mfjXLbMbM285n0zcFRrnXIrF9Fan1dKbQJ6A3tveO1T4FMw7ka8lXFvl1GE05FXFKIM+uE5OLMPor6BO7s7OxohRAlIW7jQmJUCY2biKqWMh9b4du1K5UcfoWJ4OMr0v7Kd1uxscg4fxpyaRsWOHVDuLtWG2S5s2bO1uTgDK6UCgdwriVYFoAcwvThj2Yum6KKmSUlJ9O3bl7179xZx5K3p3bs327ZtIyIiglWrVuU9f+TIEYYMGUJaWhpt27Zl0aJFeHp6lui1P/nkE3x8fBg+fDj79u1jyJAhKKVYvnw5DRs2LNFriTJu91LYtQg6PSuJlhBlgLZaOT1jJmnz5+N3Xw+C3noLy4WL5KYkk5OcTG5yCihFwIABeAbfke8YJi8vvKWUz3UKTLaUUhfJf0O7wtj/XtQOt1rAwiv7tkzA11rrVUWc41DOLP0QHR1NZmYmc+bMue75KVOmMGnSJIYMGcKECROYO3duiRRRvdaECRPy3l+5ciX9+/cvtMH0tbTWaK0xmWxpPiDKtDMHYNUkqHMPdH3e2dEIIW6TNSeHk1OncWH1aioPHUqN56eh3NwwVaiAR43q+LRr5+wQXVaBvzG11n5aa/98Hn42JFporRO01m201i211i201q+VbOi3z+iNWHS2ZTabGTFiBC1btiQyMpLMzMzbvnb37t3x8/O7Ph6t2bBhA5GRRoH+ESNGsHLlykLHWbBgAU888UTex3379mXTpk2AUaj0hRdeoFWrVnTs2JFTp04B8MorrzBz5kxWr17Ne++9x2effUa3bt0AeOedd2jRogUtWrTgvffeA4zZvZCQEB5//HHatm1LcnIyvr6+TJkyhXbt2tGjRw927NhB165dadCgAd9///1tf31EKZd7GZaNBA9viJwLbrJMIERpp7UmJymJc0u/Jm3RF6T/5z9kxMaStX8/OcnJJI8Zy4XVq6k++VlqvPhCvncXiuKx+SekUqo6Rp0tALTWx+wSUSE2LviU00cPl9h4GdkWqterT9C4xws9bv/+/cydO5fw8HBGjx7N7NmzmTx58nXHlEQj6tTUVCpVqoT7lfXt4OBgjh8/buNnc7OMjAw6duzIP/7xD5577jn+9a9/8eKLL+a9fv/99zNhwgR8fX2ZPHkyO3fuZP78+Wzfvh2tNR06dKBLly5UrlyZ/fv3M3/+fGbPnp03dteuXZk+fToDBw7kxRdfZO3atfz++++MGDGCfv36FTtu4QJ+nAqnf4Oh34B/4c3ShRDOYzl/noytW8mIjSXj563knjhR8MEeHgTNmEHAA30dF2A5YcvdiP2At4Eg4DRQF0gEXLe+/i2qXbs24eFGraCoqChmzZp1U7IVHR1NdHT0bV0nv9ZJtsy8FcTT05O+fY3/NO3atcvrU1iQmJgYBg4cSMWKFQEYNGgQW7ZsoV+/ftStW5eOHTteN3bv3r0BCA0NxcvLCw8PD0JDQ0lKSip2zMIF7PoCdi6AiEnQqIezoxFCFCAzLo7k8ROwZmRg8vXFp2MHqox5jIp3341bQACWtDTMqWlYzqVhTkujQstWLt06pzSzZWbr70BHYJ3Wuo1SqhvwiH3Dyl+3kSXXxFZrzZ7j6dTw9y7y2BsTnvwSoJKY2apWrRrnz5/HbDbj7u5OSkoKQUGFzxq4u7tjvXKLLUBWVlbe+x4eHnmxurm5YTabCx2rsD6ZVxOw/MY2mUx5za9NJlOR1xEuKisd1jxvJFt1I6Dbi0WfI4RwisxffuHY+Al41KxJrddfp0LL0JvuCnSvUgWvO50UYDljyy7nXK11KmBSSpm01huB1naOy+6uphW2zBsdO3aM2NhYAJYsWUJERMRNx0RHRxMfH3/Tw9ZEC4wkrlu3bixfvhyAhQsX0r9/fwBWrFjBtGnTbjqnXr16xMfHY7VaSU5OZseOHTZf70adO3dm5cqVZGZmkpGRwYoVK+jUqVOxxxNlyKGNMPseiF8MEX+DYd/KPi0hSqlrE626Cxfg07aNlF9wMluSrfNKKV+MptJfKqXex6i35dKuTuLYskoXEhLCwoULadmyJWlpaSVyd2CnTp0YPHgw69evJzg4mDVr1gAwffp03nnnHe68805SU1N57LHHADh06BD++bQ4CA8Pp379+oSGhjJ58mTatm1b7Jjatm3LyJEjad++PR06dGDMmDG0adOm2OOJMiD7EvznWVg0wGgk/dha6PEyuJeP5rFCuJobEy33wEBnhyQAVdjSEYBSqiJwGSMxGwoEAF9eme0qUWFhYTouLu665xITEwmxQ70Os8XK7ycvEBRQgWp+pf8XR1RUFO+++y6BZfQ/jr2+z6KYzv5h1M+KXwIZZ+Duv8K9LxoJlxCiVMr85ReOjRuPR1AQdRfMl0TLAZRSO7XWYUUdZ8u84jhg2ZWq8QtvO7JSIm8Z0UUqyH/xxRfODkGUddmX4PfvjCTrWCwoN2jcC8Kfhjodiz5fCOEQ6f/5D6fefBOdkWnstbVYjLe5uXg2bCiJVilkS7LlD6xRSqUBXwHLtdan7BuW/d3KMqIQZd7RrfD1cGMWq+qd0ONVo5G0X01nRyaEuEJrTeqcOZx57328W7XEp01bMJlQbiZQJkwVvKn00EO4V63q7FDFDWxp1/Mq8KpSqiXwMLBZKZWitXbpe771lbktaUQtyr2dC419WZXrwuCFUPce+StEiFJG5+Rw8uVXSF+xAv9+D1Dr9dcxlXArN2E/t3J7wmngTyAVqG6fcPJnNIwu2R/+MrNVehS1b1DYicVslHLYMQcadofIeVChkrOjEqJcsqSnk5OSgs7MxKNOHdyrV8/7vWdJTyflqafJ3L6dak88QbW/Pl7ivxOFfdlS1HQixoxWILAcGKu1/t3egV3l7e1NamoqVatWLdF/XJJslQ5aa1JTU/H2LrremShBmWmwfBQc3gR3P2EsG0opByEc5sKa/3Jh1b/JSTlObkoK1osXr3tdVaiAZ926eNatS/b+/eQcP07QW9MJkO4cLsmWn651gWe01vH2DiY/wcHBpKSkcObMmRIdN8ds5fTFbCxpnnh7SP8nZ/L29iY4ONjZYZQP5mzYsww2vwUXTkD/j6BNlLOjEqLc0GYzp2e+TdqCBXgEBeHZ6E582rTBIzgYj+A7MPlUJDf5GDlJSeQkHSV7/360xULdeXPxuesuZ4cvismWPVtTHRFIQTw8PKhfv36Jj7vzaBpjv4xl4ej2tGksd22IMi7jLMTNgx3/gozTUL05jFwldxkK4UDmtDSO/+1ZMrdto3JUFDWmPIfy8MjnyHCHxybsq9yuG+RajHVEDzdZRxRlWEYqbPg77F4C5iy48z645wmo30XW0IVwoMu//UbKk09iOZtKrX/+k0oDBzg7JOFA5TjZMvoJerjZUkRfCBd0aAOsmGDsz2r9KHR8HKo3dXZUQpQrlkuXSP/2W06//Q5uVapQd/FiafZcDkmyJcmWKGvM2bD+NYj9EAKbQtQ3UDPU2VEJUW5orbkcH8/5Zcu58MMP6MuX8enYkTvenik1sMqpcpxsyTKiKIPOHIBvRsOfe+CuMXDf38HTx9lRCVGm6ZwccpKTyT58mOw//uDiDz+Q/cdBlI8PAX37UGnwYLxDQ6VcQzlWjpMtmdkSZcyhjbDkESO5GrIEmt7v7IiEKJNyUlLIiIkhY2ss2QcOkJOcDBZL3uveoaHUfO1V/O/vg5tvRSdGKkoLSbYk2RJlwbkkWDYSqtSHYSukzY4QJUhbrWT8vJVLmzeTERNDTlISAB5BQXiHhuLXuxdeDRrgWb8BnvXr4ebr69R4RelTjpMtWUYUZUROJnwVBWh4+AtJtIQoIdpi4eJ//8vZ2R+T/ccfKG9vfNrfReVHH6ViRASe9evJ0qCwSTlOtmRmS5QBWsO/n4ZTe2HoMqja0NkRCeHytMXChdU/cPaTT8g5dAjPhg0JmjEDv573YfLycnZ4wgWV32TLLMmWKAO2fwJ7voZuL0Kj+5wdjRAuLyM2lj9f+zs5R47g1agRd7z7Dn49e6LcpNOIKL5ym2yZrbKMKFxcUgyseQGa9IFOzzo7GiFcmjUjg9Nvv825xUvwrFuXO95/H7/7eqBM8ge5uH3lNtnKkWVE4cpOxMPXI6BKAxj4CcgvBCGKLWPHDk4+/wK5x49TZeRIAp95GpO3t7PDEmVIuU22cs1XZ7bkl5RwERf/NJpI7/7K2KPlHQBDFoO3v7MjE8LlaK3JPXaMtC++5NyiRXjUrUPdLxbh066ds0MTZVC5TbbMVismBW4mWUYUpVxKHGz6p9F+R1vhjnZw/0xo8SD4VHF2dEK4BJ2by+U9e7i8axeZu3ZxeVc8ltRUACoPG0b1Sc9g8pECwMI+ym2ylWOx4i6zWqK0O7oVvogELz+ImAQth0BgY2dHJYRLsFzKICNmCxfXrefS5s1YL14EwKNuHXw7daJCmzb4tL8Lr/r1nRypa7NYLSRfTKZeQD1nh1JqldtkK9es8ZRkS5Rmx7YZiZZ/EIxcJfWzhMiH5fx5so8cwXL+PJb09Ly3Wb/9RmbsNnRuLm6VK+N33334du2CT7t20p+whP1929/55o9v6NOgD1PumkJl78o2n5uUnsSchDlU9a5K97rdaRXYCpPK/3fz+azzZJgz8Pf0p6JHxQKPK43KbbJltlpxlzsRRWl1bDt88SD415JES4gbaKuVjK2xnF++nIvr10Nu7vUHKIVH7dpUHjoUvx7dqdCmjZRusJNvDnzDN398Q/ua7VlzZA2xJ2KZ1n4aver1KrTgq9lqZuFvC5kdPxt3kzs51hwW/r6Qqt5V6VanG91qd0Oh+D31dxLTEvk99XdOZpzMO9+kTPh6+OLv6U+zqs2Y1G4SwX7BjviUi6XcJlu5FqtsjhelU/IvRqLlWwNGSKIlxFW5p05xftlyzn/7DeYTJ3ELCKDyI0PwDQ/HrXJl3AICcKtUCZOfn5RscIDfzv7GG9vf4O5ad/Nxj485lH6Il35+ieifovnPkf/wfx3/j+o+1W86LzE1kZe3vkxiWiI96vTg+Q7PU8G9AluOb2H9sfWsPrya5QeW5x1fz78erQNb82jTRwnwCuBCzgUu5FzgYs5FzmefZ1PyJn5K+YnxrcYzotkIPNw8HPllsInSWjs7hjxhYWE6Li7OIdeavGw3sYdS+XnqvQ65nhBFyr4IhzfDyongUxVGrTaWEIUQZB86RNKjQ7FeuEDFu++m0uBIfLt3x+Tp6ezQXIrZamZT8iZ83H3oUKsDbqbizfidyzrHw6seBmBp36V5S4dmq5kvE7/kg110+QY0AAAgAElEQVQfoFAE+wVTrUK1vMdl8/+zd99hUlbXA8e/0/vObO+dpfcOsiAIdkUs2DUCmogaG4ZEjSUxtliiKMYWxSA2LBFFRZrUpcNSFnZZtve+O7287++P0c2PACLIFpj7eZ55wJ135p4XcOfsPfee62Jx/mJsOhsPjX6IKalHNmP2BDxsq96GRqWhT0QfzNqfP2uy2lHNM5ufYXnpcjKsGTw8+mFGxI04qfs6UQqFYpssy8OPd11Iz2yJMqLQpRwNcGhVcG1WWQ7U7A3uNgxPD5YORaIlCAD4amopvfVWFBoNGV8tQZcZmsdSBaQAda46qh3VOHwORsaN/MWzOLIss6J0BfN2zONQyyEAogxRXJR+EZdkXkKviF6HXVvnqqO0tRStSkv/qP6HrY8KSAHmrplLvauef1/w78PWaKmVam7udzMTkyeyMG8hNY4a6t317KjdQZ2zDq/kZWrmVB4Y8QBWnfWosepUOsYmjv3Ffy5xpjhenPgia8rX8OSmJ5nx3QwuzbyUB0c9iElj+sXv05FCOtkSZUShyzQegrfPA0ctaEyQNAyy50DKKEgZA9ru8Q1CELpawG6n7Le/RWpuIeXf753xiZYsy9Q4ayhsLgw+WgopbimmylFFrbOWgBxovzbRnMidQ+7kwvQLf3ax+KaqTby0/SV21+8m3ZrOC2e/gAIFSwqX8P7+91mwbwFZ4Vkkm5MpbSulvK0cd8Dd/vooQxQTkycyOWUyI+JG8Nqu19hYtZHHxjxGv6h+Rx0zJSyFB0c9eMS9eSUvOlXHnC85Pmk8I+JG8Gbum2ys3Nhh45yMkC0j3vreVsqbXHxzd3anjCcI7Rz18PYUcDUFm5ImjQRVyP7cI4Q42efDvnYtup490SYdvsBZ9nop+93vcGzeQvJrr2HOHtfh8Xx96Gse3/g4fSL6MCF5AhOSJpBhzfjZxd4nyy/5KWopIq8xj7yG4CLw/KZ87D57+zUR+gjSrekkmBKIM8URZ4oj3hSPN+Dl9dzXyWvMo2d4T+4eejfZidkoFAravG3srtvNrvpd5FTmsL12O3GmOGYPms0lmZegVv73+02zu5lvi7/l60Nf0+ZtIzksmRRLCimWFJItyTR7mllRuoK1FWtx+V1YNBbafG1ckXUFj4197JT/mZwqfsl/2H12lF9aRgzZZOs372ym0eHlyzs7/n9eQWjndcCCS6BmH9z8JSSP7OqIBKHLeA4VUTl3Lu7duwEwjhmN7corsUyejEKrpeqPf6TlP18S/+ST2C6f1uHxLC9Zzpwf5tAzvCcyMvsb9wPBGaSzEs5CQqLeWU+9q546Vx0N7gZUChUmjQmj2ohJY8KkMRFpiCTJnESCOYFEcyKJ5kR8ko+i1iKKWooobimmqKWIQy2H8AQ8ABjUBnqG96R3RG962HqQacsk05ZJhP7YjYslWWJZ8TLm7ZhHaVspfSP74vF7ONRyCBkZBQoybZlM6zGNq3tf/atmetx+NzlVOawoXYHL7+Jv4/7WrWaOuopIto7j+rdycPskPr39l9eFBeFXCfjhw+vg4Pdw9fvQ+8KujkgQuoQsyzQtWkTt359DqdMRM3cu/ppqmhd/iq+iAqXVir5vH5wbc4i+526ifve7Xz2m3WunzlVHuvXoDUzXlK/h7lV30y+yH29MeQOjxki1o5o15WtYU76GzdWbMagNRBmiiDZEE2WIItIQiSzLOHwOHH5H8FefgzpnHRX2CnyS74hxFChIMCeQFpZGhi2DvpF96RvRl9Sw1JNerO6TfHxe8DkfH/iYGGMMg6IHMTB6IAOiBhx3cbnw64hk6zimv74RpQI+vG1Mp4wnhDhZhi/vgh3/hotfhOEzujoiQegSvppaqh56CMe6dZiys4n/2xNoYoLtAWRJwpmTE+yf9f1ybFddSeyf//yzJbxDzYdQKpTH7F4uyRJfFn7Ji9tepNHdyOj40dwx+A4Gxwxuv2ZT1SZmL59Npi2Tt897G4vW8qvvU5Il6l31VNgrKG8rR6PUkG5NJyUsBYPa8KvfX+gexG7E4/AFJMy6kL19obOtfjqYaI3/g0i0hJAk+/00f/IJdf94CcnjIe7RR7Bdc81hiZRCqcQ0diymsWORvF4UGs1RE61mdzNLi5byxcEvyGvMA2BY7DCm95zO5NTJaFXBdhD7Gvbx5KYn2VW3i4HRA7mu93Us2r+IG7+5kbMSzmL24NkE5AB3rbyLlLAU3pjyxilJtCDYdDPGGEOMMYYhMUNOyXsKp6+QzTbEbkSh0xxaDT88DYOvh4kPHvdyQegOcuty+fuWvyPJErcPvp2zEs466UXibWvWUPX0UwQOFeMekIn2wbsxDMj+2ff73/5ZsiyzsWoji/MXs7psNT7JR5+IPvxx5B/xBDx8cuAT5q6dS/jmcC7rcRkOn4NP8j8hXB/OX8/6K5dmXopSoeTGvjfy8YGP+deef3H90uvRKDUkmhN589w3seltJ3V/gnA8IVtGPP8fa0iNNPL6jced/ROEk+duhdfGgloHv1sHGlE+ELq3Fk8LL21/icX5i4k2RKNRaaiwVzAibgT3Dr2XAdEDjniNt6QEx+bNqGw21JFRqCIj2OItYO3WT+n/4VZ6HLBTFQ4LJynZkqUAhQKlQklqWCq9wnvRK6IX4xLH0Su811ETsG0123h5+8tsr91OuC6cizIu4rIelx3WG0qSJXKqcvjkwCesKlsFwLW9r+X2wbcTpg074j2dPicf7P+ArTVbeXTMo8SZxEkNwokTa7aOY9Lzq+kTH8ar1w3tlPGEEPWfO2Hn+zBjGSR3TkdjQTgZP61temHrC7R6W7m+z/XMHjwbrVLLJ/mf8Hru6zS6G5mSOoVZA2bRO6I3UmMT9a/Op+njj8HvP+r7ug1q8i8bRGDauSRHpBNtjKa0tZT8pvz2R4W9Aggey3Je2nlckH4BmbZM9jbsZd6OeayvWE+0IZrfDvwtl2ddftxGnvWuevySXyRQQocTydZxZD+7kuGpEbx49eDjXywIJyP/O1g0HcbdC5Mf6+pohBAkyRLba7ZjUBtIMCdg09kOmzmqd9WzvWY7O2p3kFOVw8HmgwyOHszDox8+bNYIwOFz8N7e93h377sEnA4u36bhoo0+ND4Jz8UTaL00m8/3fkh9RSHpgXAmmYfRL6IvEdOnow4P/9/QDtPobmRF6Qq+K/qOLTVbkGSJRHMiFfYKrDorM/vP5Jre14iF5UK3I5Kt4xjz1Aqys6J49spBnTKeEGKcjTB/DBgj4LbVwTKiIHQSSZZYUbqC+Tvnc7D5YPvXjWojCeZgc8zS1lJK20oB0Kv0DIweyCWZl7SvbTqWis8/ovHvz6NubGNvfwtvjnVRGRl8LtGcyG0Db+OSzEvQKE/uMOB6Vz3LipextmItA6IGcGPfG0/ZonVBONXEbsTjCJ6NKBbICx3km7ngrIfrPxaJltBpZFlmZdlKXtv5GgeaDpAWlsaT457EpDFRaa+kwl5Bhb2Cakc1mbZMpveazpCYIfSJ6HPc0pzkcFD91ydo/eILzAMHEvvKH+kzdAjne+3srt+N0+dkfPL4k06yfhJliOK6PtdxXZ/rftX7CEJ3ErLJltcvoRXJlvBreJ2w4WXQhUF42o+PVDi4AnZ/DGc/CPFi5lQIkmWZFk8LNc4a6lx11DnrUClVpFhSSA1LPazE5/Q52Vm3kx21O9hes50KewWR+kgiDZFEGaKIMkQRpg3D6Xdi99pp87Vh99opbCmkoKmA1LBUnsp+igvSLjjpRpn/nzsvj4p778NbUkLU7NlEzb4dhTr48WHWmhmTIPoVCsLPCdlkyy/JaFSn/qwrIYSsfR7WPnfk1xUqiB8M2fd1fkxCt+Hyu9hWs40NlRvYWLmRktaSo3YU/0mYNozUsFQCcoADjQcIyAGUCiW9wnsxMHogLZ4WKuwV7KrbRZO7CZngEhCdSodZY8aitWDT2XjirCe4KOOiU3IunCzLNC18n9pnn0UVHk7KO+9gGj3qV7+vIISakE22RBlR+FWaimHDPBgwHS54BpqKgl9rKobWShg9G45TlhFOH06fkw2VGxgUPYhoY/Qxr2twNfDVoa9YW7GW7TXb8Uk+tEotw2KHkZ2Y3d7kMsYYQ7QxGl/AR2lbKcUtxZS2lVLSWoIkS8wcMJOhMUMZFD3oqMet+CU/Dp8Do9p43PLfyQjYHbR9/z3Nixfj2rYN04TxJDz1FOqIY5/TJwjCsYVksiXLMr6ALJqaCidv2cOgVMOUx4OL4I0RkDisq6MSTjFZlvmu5Due2/IcNc4aVAoV4xLHMS1rGuOTguuTZFlmS/UWPsn/hOWly/FLfnqG9+T6PtczJmEMQ2OGolfrjzlGmjWN8UnjTygutVKNVWc9qXvyVVZS8cAfkH0+9L16ouvZC12vnuiysvDk5dH8xRe0fb8c2eVCk5JC7J8fJvy66066oakgCCGabPml4PS7VpQRhZNx6AfIWwKT/gxhCV0djdBBDjYd5KnNT7G5ejN9Ivrw4KgHya3L5cvCL/mh/Aci9BFMSpnE1uqtFLcWY9FauKbXNVzV8yoybBldHf5RecvKKL35NwTa2tD360fb98tp/mTxYdcoLRasl1yC9bLLMAwZLJIsQTgFQjLZ8gUkAFFGFE5cwA/f/hFsqTDmzq6ORjiFZFmmzlVHaWspK8tW8kHeBxg1Rh4e9TBX9rwSlVLFpJRJ3DnkTtZXrOezgs/4ouAL+kX142/j/sa5qef+7AxWV/MWF1Pym1uQXS5S3n0HQ79+yLKMv64Oz4F8PPn5aBLiMU+ahFIndtAKwqkUmsmWPzizJcqIwgnb9g7U7oOrF4Km+36wCsfX5G5iWfEycqpyKG0rpaytDJffBYACBZdnXc7dQ+8mXH94Q061Us2E5AlMSJ5AQAqckt1+Hc1TWEjJb34D/gAp7y1A3yvYsFShUKCJiUETE4M5e1zXBikIZ7DQTLak4MyWKCMKJ8TZCCufgPTx0Pviro5GOAlOn5NVZav4+tDXbKzciF/2k2xJJtOayaj4UaRYUkixpJBhy/hFR72cDomW+0A+pbfcAkolqe8tQJeV1dUhCULICc1kS5QRhZOx6knwtML5z4BYx9Lhap21lLSWUOOsocZRQ62zljpXHW6/m4AcICAF8Mt+JFnCG/DiCXjaH96AF0mW0Cg1aFQaNEoNaqWaakc1Lr+LOFMcN/W7iQvTLzziWJrTmbe4GE9hYfDXoiK8xcW49+WhMptJefdddBnpXR2iIISk0Ey2RBlROFGFq2Dr2zB8JsT27epoznjfFX/H3DVzCciB9q+ZNWaijdEY1UZUShUqRfChVWoxaUzoVXq0Ki16tR6tUotCocAv+fFJvvZfR8aN5Py08xkaO/Rnj6Q53bhyc6n7xz9wbNjY/jVVVBTatFSsF19M5K2z0CYnd2GEghDaQjPZ+rGMKJqaCsclScHmpaufhMgeMPHBro7ojLeidAV/XPNHBkUPYvbg2cQYY4g1xmLUGLs6tG7HfSCfupdfxr5iBarwcGLm3I9x1Ci0qamowsK6OjxBEH4UmslW4Kdk68z5yVboAPY6+OxWOLQq2Lz04hdBd2SDSeHUWVO+hjk/zKFvVF/mT56PSWPq6pC6Bdnvx9/QiL+uDn9tLf7aWpybN9P6zTcoTSai7/494TfehMos/rwEoTsKyWTLHxBlROE4itfDpzPB1QSXvAxDbxLrtH4lT8DDtuptHGw+yIi4EfSO6H1YD6f1Feu5Z9U99AzvyWuTXxOJFiD7fNQ8+3eaFi2CQOCw5xQGA5GzZhE5cwYqm62LIhQE4ZcIyWTL275AXnx4hjyvE4rXQnPpfx8tZVC5AyIy4PrFENe/q6Ps9qod1eQ35WPSmDBrzJi1ZswaM3afnfUV61lbvpZN1ZvaWysAxJvimZQyiYnJEwlIAe5edTcZ1gzemPIGYVpRAvM3NlJxz704N2/GevnlGAb0Rx0Tgzo6OvhrZCQKjTgSShBOByGZbPn8P7V+EDNbIc3nhvcuhfItwf9W6cCaBLaUYMPSCX8AnaVrY+zmqh3VvLX7LT4t+BS/5D/mdYnmRKZmTiU7KZssWxY5VTmsLFvJ4vzFvJ/3PgA9bD1489w3T/oYmjOJe/9+ymffgb++noRnn8F66aVdHZIgCL9CSCZbPx3XI8qIIUyWYcnvg4nWpfMg61wwxYDyzP434Zf8LClcwkcHPiLeFM+YhDGMTRhLkiWp/Rqnz8mmqk2srVjLhsoNaJQahsYOZUjMEIbFDCPJkkSNs6Y9yQKY1mMaF2dcjCfgwe6zY/fasfvsqBQqRieMJj0s/bCS4bSsaUzLmobT52Rj5UZy63O5se+NRzQQDUWt335L5Z8eRBUWRur772MYIGZWBeF012HJlkKhSAbeA+IACXhDluWXOmq8EyHKiALr/wG5H8HEh4PrsU5zsiyzpnwNK0pX0D+qP9mJ2cSb49ufl2SJ74q/Y/7O+RS3FpMVnsWehj0sL10OQIolhZHxI6m0V7Klegs+yYdRbWRU/CgkWWJ5yXI+K/gMgChDFM2eZiCYZM0aMIsE88mdEWnUGDkn9RzOST3nV/4JnP48h4poePstWj79DMPgwSTNexl1dHRXhyUIwinQkTNbfuB+WZa3KxQKC7BNoVB8L8vyvg4c8xcRZcQQt38pLH8c+l8B4+d0dTS/2t76vTy/7Xm2VG9Br9Lz+cHPAci0ZjIucRyZtkwW5i0kvymfHrYe/GPiP5iUPAmA4tZiNlRuYGPlRpYeWkqsKZZre19LdlI2Q2OGolVpgWCyVthcyI7aHWyv3U6YNozf9PvNSSdZQpAsy7i2bqXhnXexr1yJQqsl4uabiL7/fpRabVeHJwjCKdJhyZYsy1VA1Y+/b1MoFHlAItDlyZYoI4awmr3Bdg4Jg2Hqq6f1DsPytnJe3v4y3xR/Q4Q+ggdHPciVPa+ktLWUdRXrWFexjkX7F+GTfKSGpfJM9jOcn37+Yc08063ppFvTub7P9T87llKhJCs8i6zwLKb3mt7Rt3bG8FVW4tiYg2NTDpLdgdJgQGk0oDQaUegNODZswL17NyqbjajZswm//jrUkZFdHbYgCKdYp6zZUigUacAQYNNRnrsNuA0gJSWlM8L5f8f1nL4ftMJJcNTDomuCi96v+QA0hq6O6ITVOGpYV7GOtRVrWVO+BpVCxa0DbmVG/xmYtcEeYJm2TDJtmdzc72acPieFzYX0ieyDWhmSSzQ7lSzLONatw75qFY4NG/EWFwOgioxEHR2N5HIiO11ILheS04k2JYW4xx7FOnUqSsPp9+9REIRfpsO/+yoUCjPwKXCPLMut//u8LMtvAG8ADB8+XO7oeAC8oowYeso2w3/uAEct3LIUwuKP/5puwCf52FW7i7UVa1lXsY78pnwA4kxxXNXzKmb0n0GsKfaYrzdqjAyIHtBZ4YY0T2Eh1U88gXNjDgqjEeOI4diuuRrTmLHoemYdtkEAgonZ/35NEIQzU4cmWwqFQkMw0XpfluXPOnKsEyHKiCHEY4cVf4HNb0BYIlz3ESQO6+qoCEgBNldvpsXTQqQhkgh9BJH6SMJ0YdQ561hfuZ51FevYWLkRu8+OWqFmSOwQ7ht2H+MSx9HD1kN8UHcTAbuD+vnzaXzvPZRGI7EPP0z49KtQHGfNlfj7E4TQ0ZG7ERXA20CeLMsvdNQ4J0OUEUPEweWw5N5gk9KRt8I5j3R536wqexWfH/yczw9+TrWj+ojn1Qo1fjnYryrGGMN5aecxLnEco+NHt5cJhc7nOVRE4zvvgFqFKsyKKiwMlc2K5HbT8M/X8dfVYb3yCmLuvVesuRIE4QgdObN1FnAjsFuhUOz88WsPyrK8tAPH/EV+KiOKma0zlCzD0jmw5S2I6gkzvoWU0Sf0Fn7Jf8JrnFx+Fx/t/4j397+PSqEizhRHvCmeOFMcEfoINlRuYH3FegDGJIxhzvA5ZFgzaHQ30uBqoMHdQIOrAavOylmJZ5FlO7L0JHQuWZZpXryYmiefAkCp1xNobT3s6Bx9v34kvTIPw6BBXRWmIAjdXEfuRlwHdMtPip/KiGLN1hlq7XPBRGvU7TD5MdDof/FLZVnmua3PsTBvITadjXhTPAnmBBLNiSSZk+gf1Z+e4T3RqP57TIov4GNxwWLezH2TOlcdo+JHEamPpNpRzfaa7dQ6a/HLfmKMMdw28DamZU0j0Zx46u9bOKUCzc1UPfIobcuWYRw9moRnnkYTG4ssy0gOB4HmFmSXE21GBgqVqqvDFQShGwvJ7Uk/9dkSZcQz0L4vYeUTMGA6nP/UCbV2kGWZl7a/xHv73uO8tPOwaC1U2ispaCrgh7If8EpeAHQqHX0j+zIwaiDRxmgW5S2i0lHJ0JihPDv+WYbHDT/sfQNSgCZPEzadTewIPE04Nm2mcu5c/PX1xMy5n4gZM1D8eLqAQqFAZTajMouyriAIv0xIfudvX7OlFMnWGaVqF3z+W0gcHjyC5wRLcG/kvsHbe95mes/pPDz64cNKeJIsUe2oZnf9bnLrcsmty+WD/R/glbz0i+zHo2MeZUzCmKOW/VRKFVGGqF99e8KpFWhpoWnRIuxr1iI5HEhu939bMzgcaFNTSfvgA3FcjiAIv1poJluSjFalFOthziRtNfDBdWAIh2sW8VHhf5CQmNZjGnr18cuIC/Yu4JWdr3Bp5qU8NPqhI/5tKBVKEswJJJgTOC/tPAC8AS/VjmqSLcni39JpxF9fT+OCBTQt+gDJ4cAweDCalGSUekN701F1dDTh116L0mTq6nAFQTgDhGay5ZdECfFM4nPDR9eDqxFmfMui8hU8tTm4oPmN3DeY0X8GV/a8EoP66E0jP9r/Ec9tfY5zU8/l8bGPH9Zh/edoVVpSwjqnEa9wYgLNzbj27gVJQg4E2n915myiefFiZK+XsAvOJ/LWW9H36dPV4QqCcIYLzWQrIImdiGeKphJY9hCUb4Hp77HCV8/Tm59mYvJEbuhzA6/nvs6zW57lrd1vcUu/WxiXOI5qZzVVjiqq7FWUtZXxbfG3TEiawNPZT4s1VWeAQGsrRVdcia+i4sgnNRqsUy8lcuZMdOnpnR+cIAghKSQ/WXySLJKt05kkwaFVwR2HB74Jrs2a/Di7otOY+91MBkQN4Jnxz2BQGxgZP5JtNdt4fdfrPL/teZ7f9nz726gUKmKNsVyaeSmPjHnksB2GwulJlmWqHv4zvpoaEl98AU18PKhUoFCiUClRx8SIPliCIHS60Ey2/BIaUUY87bg9dj5dOZfYovWMqytGb4iE7Pth+C2UKALctfRGYo2xzDtn3mElw2Gxw3jj3DfYXbeb0rbS9nYOUYYoMZN1hmn+8EPali0j5oE5hF1wQVeHIwiCAIRqsiXKiKed+oot3L3sNnKVfjCByZLJpNTJnJ8xgV5qDbd/dxsAr01+jQh9xFHfY0D0AHFO4BnMnZdHzVNPYxqfTcQtt3R1OIIgCO1CM9mSZDGzdbqQJPLXPsmdBxfRrFTyfMbVWDIn823xt3xf8j1LipaiQIFOpeOt894SC9ZDlORwUHHvfaisVhKefrq9J5YgCEJ3EJrJll/MbJ0WmktZ88UtPCBXY1breHfiy/RNyQaCx908POphNlRuYGXZSqakTmFQtDguJVRV/+WveEtKSHnnHdQRR5/ZFARB6CqhmWyJMmK34fa7qXRUUuesQ0ZGSbD/maJmL7lrnuAli55exjjmXfw+saa4w16rUWmYkDyBCckTuih6oaME2tpwbNyILiMDbWbmMfuYyT4fTR9/TMt//kPUHXdgGj2qkyMVBEE4vpBMtvyijNhlttVs4+MDH1NuL6fSXkm9q/7YF4cZmBQ3mqcmvYRRY+y8IIUuIft82Neto+XLL7GvWInsDR6PpElNwTLpHCyTJmIYMiSYiK1ZQ9vq1TjWrUdqa8M4ciRRs2/v4jsQBEE4upBMtrx+CbWY2epU3oCXV3a+wrt73iVcH06WLYvxSeNJMCWQaEkk1hiLUqFEqjuA/N1DSPowdBc+z6C0Sb+4yahwegrY7dTPe4WWJUsINDaistmwXXUVlnPPxXuokLYVK2lcuJDGd95BabEg2e0gy6iiorCcOwXz2WdjHj9eHAYtCEK3FZLJll+SMWjEN+bOcqDxAA+ue5D8pnyu6nkVc4bPOfpMVVUufPUn0IfBDV+DNanzgxU6lb+pibJbb8Odl4flnHOwXjYV87hxKLRaAEyjRhJ+7bUE7HYca9diX7cOTVw85rPPRt+vr1gILwjCaSEkky1fQMKiD8lb71QBKcB7+95j3o55hGnDePWcVxmfNP7oF9fsg39fBloz3LxEJFohwFdTQ+nMmfjKykl6ZR6WiROPea3KbCbsggtE7yxBEE5LIZlxeMVuxFNKlmX21O8htz6X8rZySttKKWsro7ytHJ/k45yUc3hkzCPB/ldb/wWrnwaVDnSW/z4qd4BSAzd/CeFpXX1LQgfzlpZSOmMmgcZGkt94A9OokV0dkiAIQocJyWTLL8loRbL1qwSkADvrdrK8ZDnLS5dT7agGwKA2kGJJIdOaydnJZzM4ejATkycGd5PlLYGv7oPkkRCRAZ428LSCswGisuCSlyEys4vvTOho7vx8SmfOBK+PlAXvYhggGs0KgnBmC8lkyxeQUIvdiCelrK2MRXmL+Lb4W+pd9WiVWsYmjuX3Q37P6PjRRBmijr5Nv2wLfDoLkobDjV+AVuwuDDWB1lZaliyh/uV5KLRaUhb+G11WVleHJQiC0OFCM9kSZcQTtrN2Jwv2LmBl2UqUCiUTkydybuq5ZCdlY9KYfv7FjYfgg6vBEg/XfigSrRAiyzKunTtp/vgTWr/5BtntRj9wIInPP4c2ObmrwxMEoRuTZZmA34/X5cTnduF1uzFZbRittmO+JuD3Ub5vLw0VZQy94JJOjPbnhWayJcki2foFZLO3uLgAACAASURBVFlmVdkq3t7zNrl1uVi0Fm7pdwvX9r6WWFPsL3sTRwMsvBJkGW74FExRHRu00G20rV5N3fMv4CkoQGk0Yp06FdtVV2Ho36+rQxMEoRvyeT2U7c3l0PatFO/aRlt9HVIgcMR1EQlJJPXpT1Lf/iT16Y9CqaRox1YObd9Cye6d+NwuNDo9AyZNQaPTd8GdHCk0k62AJJqaHkets5a/5vyV1WWrSbYk86eRf+KyHpedWHNRnws+vBZayoM7DMV6rJAge73UPv88jQveQ9sjk7i//gXrhReiNB1nBlQQhJDj83rYv+4HDm7ZSOmeXPxeD2qdjtQBg+k1ehxagxGN3oBWr0ejN9BaV0N53h72b1hD7opvD3svc2QUfcZNIGPoCFL6Deo2iRaEarIlyojHJMsynxV8xvNbn8cn+ZgzfA7X97ketfIE/6nU5sF/7oSKbTB9AaSIY1RCgbekhIr77se9dy/h119PzB8eQKnTdXVYgiB0M267nZ3Lvmb7N1/iam3BGhNL/4lTyBw6gqS+A1D/2GvvaEZcegWSFKCupJjyfXsI+H2kDx5GVEraMY/26mqhmWyFeBlxQ8UGPjzwIRathSRzEkmWJJItyejVep7b8hybqjcxIm4Ej415jJSwlBN7c78H1j4Pa18INie96h3oO7VjbkTocG2rVuEtLkETG4M6JgZ1bCzqmJijJlAtX31N9aOPglod7Js1eXIXRCwIQnfW1ljP9qVfsuv7b/C5XaQPHsaIqVcGy4EnkCgplSpi0zOJTT89KiYhl2zJshyyZcTC5kKe2/oc6yrWEW2IRqlQssS5BBm5/RqTxsQjYx7hiqwrTvyYnNJN8OVdUH8ABl4N5z0FpshTfBdCZ6l//Q3qXnzxqM8pdDpQqVCoVMEu7ioVgcZGDEOHkvjc39EkJHRytIIgdGfOlmZyPv+I3O+/QQpI9BqbzYhLryAmLaOrQ+sUIZdsBSQZWSakZrYaXA3M3zmfTws+xag2Mmf4HK7tfS1alRZPwEOFvYLytnJqnbWMSxxHnCnuxAbwe2HF47Dx1WDn9+s/hSwxq3G6kmWZuhdeoOHNtwi7+GJiH/wTgYYGfDW1+Gtr8dfWEGhrg4CELAXAH0AOBNCmpRFx4w0o1CH3bUUQhGPwOB1s/epztn31BX6fl34TJjNq2nRssSf4OXOaC7nvin4pOItzJiZbVfYqPjv4GY2uRpo9zbR4W2jxtFDSWoI34GV6r+ncPuh2wvXh7a/RqXRkWDPIsJ7kTxctFfDJb6B8M4yYBZMfB5351NyQ0OlkSaL6L3+h+cOPsF1zNXGPPIJCqUQdESF6YglCiPH7fMhS4IQXmvvcbhqrKijJ3cGWLz/FbW+j55hszpp+PREJoXkUW8glW96ABHDGlREr7ZX85tvfUOOswaq1YtUFH7HGWAZEDeCGvjecfEJ1LIWr4NOZwXVaV74D/S8/te8vdCrZ56PyTw/S+tVXRN46i+j77uu2i00FQTj1/D4f1QUHKNu3m7J9u6nK348sS6T0H0SPEWPIHD4Kk+2/P6xLgQCNFWXUFBVSV3KIhopyGivKaK2rbb8mbfAwxl19I7EZPbrilrqNkEu2fP6fkq0zZ2ar2lHNjO9mYPfZ+eCiD+gb2bdjB5Sk4CL4VX+D6N4w/T2I7tmxYwodyrVnL3Uvvohj/Xqi77uPqNtu7eqQBEHoJFUFB9j8n08o3rkdv88LCgUxqRkMOjd48PvBLTl8/+YrfP/WqyT07EN0Siq1JUXUFRfh93oAUGt1RCQkkdCzD/0nTiEyMZmolLSQncn6XyGXbJ1pZcQaRw0zv5tJi6eFN899s+MTrZaK4CL4whUwYDpc8g/Qiv5J3Zm/vh5lWBjK/9lKLQcCtK1YQeN77+Haug2l0UjcY48Rfs3VXRSpIAidRZZlyvbmsunzjyndswu92cLAyeeT3H8QSb37oTf/dznIhBtnUV9azMEtORRs2Ujeuh+ITk1n4OTzic3oQWx6JuEJiSiVqi68o+4t5JIt748zW2fC2Yj1rnpmLZtFg7uB16e8Tv+o/h03mCzDzkXw7Z9A8sFFL8DwGSDKTN2WKzeXupfn4Vi3DhQK1HFxaFNS0KYko7KF07p0Kb6KCjSJicT8cS62K65AZbF0ddiCIJwiPq8HV0sLnv933I3P7cLV1saeVcuoKjiAyRbOhBtmMHDKBWj1hqO+j0KhIDo1nejUdMZceW0n38WZIeSSLd+Pa7a0p/HMlsvv4lDLIR5a+xA1zhpen/I6g6IHddyArVWw5G4o+A5SxsJlr0JEaGzXPR259+2j7uV52FevRmWzEXXHHQB4y0rxlZbRtmJlsE3DsGHEzP0DlkmTxA5CQThN+dxuqgvzqSw4QM2hAuxNjbhaWnC2NuN1uY75urDoGM6ZOZv+Z0/+2QaiwqkRct9hT7cyojfgZWXpSrbWbKWktYTi1mKqHdUA6FV65k+ez5CYIR0zeMAPuz6AZQ8F2zuc/zSM/C0oT48/u1Djq6qi5sknaft+OUqrleh77iH8hhtQmY8s80pe7xFlRUEQTg9VBQfYu2Yllfl51JcUI8vBSQRbXDxhUTFYe/TEaLVhDLNiCLOiN5nQ6g1o9AY0ej1ag5GwqGiUKlH26ywhl2ydLmXEQ82HWFywmCWFS2j2NGPWmEm3pjM8djhpYWmkWdMYFD3oxHti/RI+F+x8H9a/DM0lkDwaLpsvzjbsxhw5m6i4915kj4eoO+8k4uabfrYkKBItQTi9BPw+8jdtYMfSL6k6eACNTk9Crz6Munw68Vm9iO/RC4MlrKvDFI4h5JKt7l5GXFG6ggV7F7CjdgdqpZpJyZO4oucVjI4ffeId3U+UuwW2vA05r4GjFhKHwXlPQq8LxWxWNyXLMo0LFlD79+fQpqWRNG8euoz0rg5LEITj8Hk9+NxujGHWY14jSQEaykop3LqJnd8vxdHUSHh8ApNu+S39JpyD1mDsxIiFXyPkkq3uWkZ0+V08s/kZPi34lNSwVO4fdj+XZF5CpKEDjrup2A5Lfg+Oegh4gyXCgCf4e4DMc2DcvZA2TiyA7wZkWUZyOI8oB0ouF1V/foTWr77CMmUK8U89ddSSoSAI3YPX7aJox1byc9ZzaMcW/B4PRquNmLQMotMyiE5NR2c0UlWQT2V+HtUHD7Svu0odOIRzf3sX6YOGBY/IEk4rIZds+bphGfFg00EeWPMAhc2F3DrgVmYPno1a2UF/NeXb4N/TQGeBHueASgdqHai0oDFAz/MhYXDHjC2csEBbG+V3/R5nTg5KsxlNYmL7w7llC54DB4i+914ib7tVNCAVhG7I63ZRuG0zBTnrKdq5Db83mGD1Gz8JW1wC9aXF1JYUUfrVF0gBPwAKhZKo1DT6jJtIQq8+JPbqizUmtovvRPg1Qi7Z+m8H+a7/yUCWZT4/+DlPbXoKo8bIP6f8k7EJYztuwLLNsPAKMEbAzUvAltJxYwm/mq+2lrLbfovn4EEiZ81EcrnxVVbiKy/HmZODQq8n+Y3XMWdnd3WogiD8Pz6Pm6IdWzmwYS2HdmzF7/VgCo+g/8Qp9Bx9Fom9+x7Rkyrg99FQXobH6SA2PVOUCM8wIZds+QPBMmJXrdmSZZmiliK21W5jVekq1lasZVT8KJ7OfpooQ1THDVyaAwuvBHN0MNGyiq6+3Zm3pITSmbPwNzaS/NprmLPHHfa8LMsgy6KcIAgdTJZl3A47jqZG1BotOrMZndHYniwF/D6aqiqpLyuhobyUupJiSnfvxOdxY7Ta6D9xMr3GZJPYq+/P/v+qUmuISRMtdc5UIZds/bRAvjPLiC2eFpYWLWVT1SZ21O6g0d0IQIQ+gruH3s0t/W5B1ZGdd4vXw/tXQVh8MNEKS+i4sYRfJNDSQsUf/kCgvgHT+GwsEyagHzAAhUqFa+9eym69DSSJ1HffwTBw4BGvVygUYj2dIJxiAb+f4l3bKdy2iZbaGtoa6mlrqMPv8RxxrdZgRGs04mxuQgoEgGD5zxYXT59xZ9NrbDZJffuLruoCEIrJVicukM9vyueD/R/w9aGvcfldJJoTGZc4jmGxwxgaM5TUsNSOW2fTWgnF66B4LexeHJzJunkJWDqgVYRwQgItLZTOmIk7Px9Dv340vP4GDa/9E1V4OKYxY7CvXo3SZiXlrbfFzkJB6AS1xYfYt2YFeet+wNnSjM5kIjw+kajkFNIHD8MSGYU5PIKA34/HYcftsONxOPA4nZjCw4lKSiEyOZWIhCTRIFQ4qtBLtvwd2/pBlmVWlq3k/bz32VK9BZ1Kx0UZF3Ft72vpHdG7Q8ZsV5cPG18JJlmNhcGv6a2QNQUufA7MMR07vnBcgeZmSmfMxFNQQNLLL2GZOJFAczP2deuxr/kBx5q1aDMySHr1FTSxYkGsIHSkyvw8lr81n7qSIpQqNZnDRtJ3/CTShwxDpdZ0dXjCGST0kq0OLCO6/C4e3fAo3xR9Q7wpnnuH3cvlPS7Hpred8rGOkPtx8EgdhRLSsoPnFqZnQ2x/ENPY3UKguZmSGTPwFhwk6ZV5mCdMAEBls2G9+CKsF1+ELMtiV6EgdILi3B3857knMFltTJrxO3qPHS+aggodJvSSrQ4qI5a3lXPPqnvIb8rnriF3MaP/jI5r3/D/+dzw7VzY9m7w3MIr/xVcmyV0GX9TEwQCKM1mFDodCoUCf1MTpTNm4i0sJOnVVzCPH3/U14pESxA6XsGmDXz98rNEJCZzxYN/wWQL7+qQhDNc6CVb/p9aP5y6D7WNlRt5YM0DSLLEq+e8SnZSJ23FbzwEH98E1bvhrHtg0p9BFXJ/pd2G5HJR/+qrNLzzLvy4YBa1GpXJhCzLyG53MNESrRoEocvsWb2cZf98mbisnlw+9zH0ZnNXhySEgJD7ZPadwj5bsiyzYO8CXtz+IhnWDF6a+BIpYZ3Uu2rv5/Dl74Nlw2s/gl7nd864wlE5cnKoeuRRfKWlWC+/HH3/fkh2B5LdHny4XFinXYZp5MiuDlUQzgiyLNNaV0tN0UECfj/W6BjComMxWW3HbLGwfel/WLXgTVIHDmHq/Q+h0es7OWohVIVcsnWqjuuRZZlntzzLwryFnJt6Ln89668YNZ3QhM7dCt/8AXZ9EDy78Mp3IDy148cVjirQ0kLNs8/S8ulnaFJTSHn3XUyjR3V1WIJwxgn4/ZTu2UXF/r1UFxZQU1SIu631iOtUGg1hUTHozWYCPj8Bv4+Az4ff78PeUE/WyLFc+PsHUGvEAnih84RcsuU9BWVEWZZ5fuvzLMxbyA19buAPI/7QOWttSjbC57dBSzlMmAvjHwCV+IbRmQJ2O+69+3Dv2YN77x4cG3MItLYSeessou64A6X4SVkQTojH6aRi/14MYWFEJiYf1jldlmVqiwrZt2Yl+zeswdnSjFKlIjI5lR7DRxOb0YO4jB6odTpa62tpra2lpa6G1rpaPE4HKosalUaDSq1BpdEQHp/IiEsuR6kSm4aEzhVyyZYvIKFWKk46OZJlmZe2v8SCfQu4tve1nZNoBXyw+mlY90LwiJ0Z30GyKEd1Bn9dHY5Nm3Fu2oRz61a8RUXtz2kSEjCOGkXUbbei79u3C6MUhNOL226ncNsm8nPWUZK7g4Df3/6cJTKayKRkrLHxlO/bTUN5KSq1msxho+gzfhJpA4cctZdVVLKY4Re6r5BLtvyS/KtKiK/ufJW397zN9J7T+dPIP3V8ouVpg0XXQMk6GHwDXPB08BBpoUPIsoxr505al3yFY9MmvIXBfmVKiwXjsGFYL70Eff/+6Pv1Qx0R0cXRCkL3J8sy9sYGaooKqS06SGX+fsr25iIFAlgioxl07kVkDB2Bz+2mobyUhooyGspKqdi/j+i0DCbPuoNeY7LFQnbhtBZyyZbXL510j63Xdr3G67mvc0XWFTw0+qGOT7TcLcHzDCu2wbTXYdA1HTteCJN9PlqXLaNxwXu4c3NRGAwYhw/HNu0yjKNGo+/bB4UoPQjCL9JUXUnhlhxKdu+kpqgQV2tL8AmFgsjEZIZddBlZo8YSl9nzsO+jPUaM7qKIhdNBTVErrfUuDBYNhjAtRosWnUmDAnA7fDhavDhbPDhbvXjdAQZO7D5nAIdcsuULSCfVPX7hvoXM3zmfqZlTeWTMIygVHXzcj6sJ/n05VOfCVe9A36kdO94ZTpYk6ue/hnPLFtQxMWhiY1DHxKKOjcVbWkLT+4vwV1ejTU0l9s8PY7vsMpQmU1eHLQjdis/rYct/PqX64AEsUdFYY+IIi47BGhOL5A9QuH0zhVs30VhRBkBkUgqZw0YSk5ZBTHoPolPT0OoNXXwXocPr9pO7qpz4DCuJvbpfLzFZlqksaCZvQxURCSb6jUtAZzxyHXJrvYsNnx2kcHvdEc8Fj4lVIP24+e0nSqWCARMSUSi7R+/CkEu2/IETLyNurNzI37f+nUnJk3h87OMdn2g5GuDfU6HuAFy9EHpd0LHjneHkQICqRx6h5dPP0PXqha+8nLbaWmSfr/0a45jRxD36COYJE465bVwQQllJ7k6Wv/0qzdVVRCalUFVYcMRuQKVKRVKf/gyacgGZw0ZhjRFHTnWVsn2NrFq4n7ZGNwAZQ6I564oehEUdPdn1uv0gg9Zw8mmBLMk01TipPtRCzaEWmmtdxKaHkdovkrgeVlQ/fvbKkkxRbj3bvyuhpqgVjV7FgZxqtn5dTJ+z4hk0KZmwKANet5/t35awc3kZCgWMvCSdjCHRuO0+nK1eXG0+XG1epICM0arFZNVhtGoxhgV/310SLQjBZMsXOLEyYllrGXN+mEOGNYMns59E1dFH39hr4b2pwYal13wAWZM7drwznOzzUTl3Lq1LvyFq9u1E3XUXCoUCWZIINDfjr6lBodejSxcHPguhq760mK9f/jtet5v0wUNJGzSMlP4D0RqMOJqbWP3eW+xf/wPh8Qlc+dATpA4cDAR3ErbW19JSW4MU8JPSfxB6U2ivrZIlGZngzMqJaq514mz1Epse1p6YnCiPy8+GxQXsW1+FLdbI1HuHUF3YwrZviynZ3cCgyckMOz8VrV5Nc42T4t31FO+up6qgBUmWCY8zEZceRuyPD4NFS1ujm7YGN22NbuwNblwOH8hHjltb3IrHGdzsoDOqsUYb2LWijB3LStHoVST3jiA61UL+pmqaqp2ERemZcG1Peo+Jp6naya4VZexZXcHuVeWkDoiitqQVZ4uXniNjGTMtE3P46bvbWyHL8vGv6iTDhw+Xt27d2qFj3LloO/sqW1k55+zjXuv0Obl+6fXUOmv58KIPSQ5L7rjAZBkOLIVv5oKjHq77EDKOH6NwbJLHQ8U992JftYqYOfcTOWtWV4ckCN3OwS05LH3lebR6PbGZWZTtycXncaNUqUno1Zu6kiL8Hg8jpl7FqMuuOupOQCGoeHc9P3xwAHujB6VKgVqjRKVVodYoMdt0RCWZiUq2EJVsJiLBhBSQKd/fRNm+Rkr3NdBaH5yF0hnVpA2IImNINMl9I9Boj/9DfsAvUbKngbUf5eNo9jB4SgojL05H/eNr7U0eNn5xkPxNNRjDtGh0KlrqXABEJJhIGxCJWquipqiVmqJW3A7fUcfRGtQYw7T875JltVZFdIqFuIww4jKs2GKMKJQKvG4/5fubKNnbQOmeBuxNHiITzQw9P4UeQ2NQ/k9SaW/ysHt1OfvWVWKNMTDuqiziMqwn+lfRaRQKxTZZlocf97pQS7Z+9+9tFNU7+O7eo59N9xNJlrhv9X2sKlvFPyf/kzEJYzouqMaiYJJV8B1E94Gpr0DScf/uhJ8hOZ2U3XEHzo05xD7yZyKuu66rQxKETueyt3Fwy0YiE5OJ79HrsBK5LMvkfPYhGz5+n7jMLC6d8xCWiCgCfh8V+/Mo3rWN4l3bMYVHcPZNs4hM7MAfNruJgF+itd6Fo9mDwaLFEqH/RWU1l93L2o8KKNhSQ0SCicwh0QT8En6vhN8n4fcFaGtwU19ux+cOHuWlUCpQAJIko9apSOoVTkrfCIxhWopz6ynKrcfj9KPWKEnsFU5YlAGTLVgeM9l0aPQqGisd1Ja0UVfSSn2FHckvE5FgYtJNfYhNO/qh2tWHWti85BAKpYK0AVGkDogkLPLw0qIsy7TWu6g+FJypskTqsUTosUTq0f2aMqMs42zxYrRqz5hzYEWydQwz391Cdaubr3//8+fTvbbrNebvnM8Dwx/gpn43dUwwPjdseBnWPg9KNZz9Rxj1O9Go9Gd4Dh5EFRmJOvzoiz3lQIC2Zcuon/8ansJC4v/2N2zTLuvkKAWha7XW1bLt6y/YvXIZPk9wtsQUHkGP4aPoMWIMcT168v3r88jftJ6+2ROZcttdITVjJcsyLbUuqgqbqS1uo7nWSUudC3ujm//9SNQZ1ZjD9VgidEQkmIlOCc5MWaMMoICDW2tZ81E+XpefYRekMez8VFTqo5cAZUmmtcFNfXkb9WV2ZEkmuU8EcZnWI14TCEhUFjRTtKOOioJmHM2e9hLd/6fVq4hOtRCTEkZMWhjpA6NQacS6087yS5OtkFuz5Q1Ix10gv6Z8DfN3zufSzEu5se+Npz4ISYI9n8KqJ6CpGPpNg/OehLCEUz/WGUIOBKj9+3M0vvsuqNWYzhqL9cILMZ9zDiqzGcntpuXzz2n41zv4ysrQpqaS9MorWCZN7OrQBaFTyLJMXUkRW5d8xv4Na1AoFPQ+awKDz7uI5uoqDm7eyN41K9n1/TcoftzkM+GGGQy7eNpRZxmkgMT+jdU4W70k9Q4nJtVyRMnnZHicvqPuODueQECieFc9AAlZNgyWE0sOm2uclOxpoOpgM5WFLbhavUCwLGaLNRKXYcU6Og5btAFTuB5Xmze4RqnRQ1ujm9Z6F6V7G9t3vWn0KszhepqqHMSkWph0Ux8iE39+vZpCqcAabcAabSBzSMzPXqtSKUnuHUFy7//28/N5AziaPThbPLgdfiLiTVijDd1qIbhwdCE3s3XtGzkEJJmPf3f0sqAsy1y15Cq8kpdPLvkEnUp36gb/aV3Wyiegdh/EDoBz/wKZk07dGGegQFsbFfffj2PNWmzXXI3KbKZl6VL8lVUotFpMY8bg2rOHQEMD+oEDiZw1E8s554i+WMIZYe8PK8hbtxpbXALRKWlEp6YRlZyKRqenoaKM8ry9VOzfS3neHuyNDWj0BgZOPp+hF1xKWFT0Ye/l83ooyd1J6Z6dZA4d1b7Q/X9VFjSz5sN8Girs7V/TGtQk9QonuU84EYlmJL9EwC8T8En4/QE0OjVJvcOPur5IloNrk7YuLaayoJn4HlaGnptKav/I4yYKAZ9E3sYqtn9XQluDu/3r4fEmErNsJPS0EZ1swRyhQ605fOzWehcHt9VycFstdaVtAFgi9cT3sJLQw0Z8po3wOOMvTlYCPomGSjv1ZXbqytpoqnaQNiCKgZOST2pBvHD6EzNbx+ALSGiPMcULsK1mGweaDvDomEdPbaJVtBaWPwYVWyEiE678F/SdBqLNwM/ylpZSdvtsvCUlxD3+OOFXTwcg+r77cO3cRevSpdhXrkTfty+Rs2ZhHDnijFkLIIQ2WZbZ8PFCcj77CGtMLFUFB9jlcrY/r9Eb8LmDC5zN4REk9ulPct/+9Bo7/qg7AmVZxtUmgSIdoy2K5jotmoJmopLNaPXBjwJHs4cNnx0kf3MN5ggdF/x2APFZVsr3N1Ge10hpXiOHdh7Z6+gnaq2StIFR9BgWQ2q/SFQaJSV7Gti6tJiaolZMVi2DzkmmcEctX8/PJSLBxJApKWSNiD2ijObzBNi7toKd35fiaAnu0Mu+uicGs4aK/CYqC5o5sKmaPWsq2l9jsGiwROgxR+hxNHuoKQq2pohJC+OsK3uQMST6iPVJJ0KlURKTGkZM6tHXQwnCsXTYzJZCofgXcDFQK8ty/1/yms6Y2Zr6yjpsRi0LZhz9bMH7Vt/HpqpNLL9qOQb1KWq+t+9L+PgmCEuEs+fCoOtAFXJ57s+SPB4IBBeO/rTNxbVrFxV33wNA4ksvYRo9qqvCE4T/a+++w+Oq7gTuf89UjTTq3eqSe2/Y2KaZagglkBBqgCRA6iYkm2yyyfvussm72ZBsSDYhwEJCDUsLkBBCsTHFxgaDe5OLrN57H0097x/3ysi2JDeNVeb3eZ55dOfqlnPOvaP56ZxzzzltoVCQnvY2upqb6Wpppru1mZjEJKYsWYbVdmSzWjDgZ/XDv2Pv+neZvfISLr7zm1isVrqam2iqLKOpopyulhYyp0wle8Zs4tPSj/knIxgM0VjWSfX+NhrKOmms6MTTZTxhphSf9k1SkJgeTdKkGKOZLKhZcGkuC1flHVNL1d/XqbPZg9VuwWq3GE/c2Sx0t3s5tLWJ0m2NeLr82J1W3IlO2up7cSc5WXRZHtOXZ2KzWwkGQ5RsbmTb6gpaanqIjnfgcjsI+IL4fUEC3iB+Xwgd0mRNTWDRFflkT0s8Jo+hYIimym7aGnrobu2jq9VLd5vx02a3ULQwlcmL0olPlYFURXiMhZqtJ4AHgKfCeI6T5h9mUNO67jrWVq7l9lm3j1ygVbMFXr7beLrwtlfBEX38fSKIr7KSpt/+D51vvMExPVMBR1EROQ/+AUeeTDIrzpxQMHRa/ZN0KERLTRW1B4qp3b+P2oP76GioI9T/D8UAMQmJzL14FXMvvhx3YhJ9Pd28+uufU7VnJyu+cCtLr7sBpRTdbV7qSkPU7I+j5kAOnc2p1JVHUVncSHJ2LynZbmKToqgv7aSquJWaA23Gk28KkjJjyJuTQnpeLGn5cSRPctPX66epsoumyi4aK7poKO8ke3oiKz4/mfjUwf9OKaVISI8mIf3Y3ydmxJAzPYnzbphCzcF2SrY00lrTw8ovTmfa0owjaq6sVgvTlmYwdUk6lXtaKd5QSzCosTut2B0WbA4rdqeVvNnJZE5OGLKcLVbLOg5/LgAAIABJREFU4fGghBjLwtpnSymVD7w2lmq2Lrn/fSanuXno1kXH/O7+Lffz5J4nefO6N8l0Z57+ydor4dGLwO6CO9eCO/X4+0SIQHMzzQ8+RNsLL6DsdhK/cD22NLPDqHlPKmcU8Z+9BmusTLwtzoxQSPPhK4fY8XYlDpfxFJo7yUlsYhRxqS5mnjNp2Eff60oOsuaPT9JedwB/n9Hk54qLZ9LUGaTk5BKbnEJscirupGR6Ouzs27idmuJ1dDQUg7IQkzgTX28Dfm8LybnXEJsyD1B4unyHx0RyRtuYNCWB5Cw37Y29tFR3097Qe8T/KnEpUeTMSCJnRhJZ0xKJipEnnIUIh7FQs3VClFJ3A3cD5Obmhv18gdDgNVuegIeXDrzERbkXjUyg1dcB/3cDBLxwx2sSaJmC3T20Pv44LY8/jvZ6SfjC9aR8/evY04Z/MkeIU6W1pmJ3C1veqMDXF2D5dZPJm518zHY+T4DVj+2hYlcLU85KJyraRleb0SzVUGoM8rjr3Wou+fLMY2pb2upqePepJynbuhFUFA7XNFbcsJxpyxeQkJ55TPPXoW2NrH50D1rH4HBdRVLe+fh6ttHbtgOA7Fl34IovRJtPviVNimHWeVlkT0skOdt9TGdsvy9IW10Pnc19pObGSrOZEGPMqAdbWutHgEfAqNkK9/l8gcGHfvhH6T/o9HVy8/QRGPwyGIAXvwTNB+DWlyB12ukfc5wL9fXR9uxztDzyCMG2NmJXrSL1O9+WaXJE2OiQpmxHM5vfKKepsovYpCisdguvPbCDyYvTOOf6KcTEGw/BdDZ7+MeDO2mr7+X8m6cx+7ysY45XubeOd5/ey8u/2sj8S/NYtCofX28Pm/76ArvWrkZjxRm7jHNuvIEd7zSwe0OQorNijwm0SrY0svpPe0jPj+Wqf5o/YNDMK/F7+wj4/bjcJ1eba3dYpeO2EGPYqAdbZ5o/GMJ+1NyIWmueKX6G6UnTWZR+bPPiSQmF4I0fwKG1cPXvI37KHe330/7yKzQ/+CCBhgZili8n9bv34JozZ7STJiYIHdL09frp7fAZr04vPR0+9m+qp7W2h7hUl9Fv6OwMCMHW1RVsfqOcqr2tLLu2iMSMaN74393okOaqb887PK5Rb2cHVXt2UbVnB5W7d9JW9+lTbx+9YLwAlLJiccwla8YlrPrqUmKToiiYl8Vf79/K3367jc9+dwEp2UbwdHBzA2se20tGQRxX/tO8w08B9rM7o7A7x+/8b0KIwUVcsDVYM+LH9R9T0l7CT5f/9NSHDegfQ+vdn0PDblhxDywM08jzY1zI48Gzaxeebdtpf+kl/JWVuObPZ9J998kTheK0+b1BGso7qStpp/5QB/WlHfj6ju14npgRzcVfmsnkRal0tzZTtvVj2upr6W5tIT27kbqDNbz1YDtae7FY7MQkRLP20ShsDicBn5eW6krAGGIhZ+ZsZl1wMXanEx3SNFZ2cGhrA0G/xuqYwpKr5rH4ivzDnerjU1189nsL+Ov92/jbb7ZzzXcX0FbXw5rH95JRGMeV3zo20BJCTFxh+7QrpZ4FLgBSlFLVwL9rrf8UrvOdKP8gzYjPFD9DojORKwqvOPkDag0la43R4Gu3QVIhXPcozLl+hFI89gW7uuj58EN6N2/Gs3Ubffv2QcCYViJq9mzSH3oQ9wUXyPhX4oT0dHipLm6l9mA7fb0BAr6gMcecL4jfG6S90WP0ZTKfsptyVjqJmTHExDuJjnPgirXTVLGLqj3b2Pb6y6x+qBzfwPGpnFG4k5JJzUsmGMjE77ORmhON1gECXi8BnxdlsTDjnAvImTWX9MLJWG3H/qnsau1j8xvlTD0rnaypx04fFZ8azWe/t4BXfr2Nv96/FZ8nQEZRvARaQkSgsH3itdY3hevYp8N3VDNidVc171W9x51z7jz5QUybS+Bv34SqjyA+F675A8y9ccKPoaWDQfp276b7gw/o+WADnp07IRhERUXhmjOH5C9/GdfCBbjmzRtyDkMh+vX1+GkoN4YrqC5upaWmB4CoGDvR8Q5sdmMogCi3HXdSFIULUsksSiCjMO6YaV/qDu7nrYceo2bfHhwuFym5Bcw4dyVpeQWk5OaTnJ2DMzpmRNIdmxTFylumD7tNf8D1t99sIyXHzRVfnyuBlhARKOI+9Uc3I76w/wUsysIN0244uQOVrYfnbwWLFT7za1hwG9gm9kSuwY4O2l54gbY/P0OgoQGUImrWLJLvuhP3OefgmjsXFUGT2YrBaa1pb+il7lAHnc0eHC4bTpcNZ7QdZ7QNpaCpqpumik4aKrroNIc0sNosZE6OZ9m1GeTMSCIl233C06i01dfywbNPceCjD4iOT+DiO7/B7JWXDlojdaYlpEVz68+WYbEqqd0VIkKN/l+iMygY0gRDGtuAmq0tDVtYmL6Q9Jj0Ez/Q1qfhtXsgeTLc/Dwk5o98YscQX0UFrU89TfvLL6M9HqKXnU3aD35AzIrlUnM1Tnk9RjOv3WkdkTndmqu7KN/VQn2p0YfK2xM47j7uJCdpeXHMXJFJWl4cGUXxg86rN5y+7m42/uUZdqx+HavNzrLP38TiK6/F4RpbgwcfPRWNECKyRFSw5Q+GAA7XbGmtKe0o5TOFnzmxA4RCsPY/YMNvoXAlfOFJiIoPV3JHVbC9na5336PrzTfpXrcObDbir7ySpNtvI2r68E0nYmwK+kOU7mhi38Y6KotbwRxoxe604nDZcEQZwwcUzEshZ2bScZu7+rr9HPiknuKNdTRXGRMWJ2ZEUzg/lYzCeDKL4klIi8bvC+LtDeDzBPD2+gkGNMlZbqLjTr0WNBQKsmvtaj54/mm83d3MufBSll1/M+7EpFM+phBChEtEBVsBc4BAhxlsNXua6fZ3UxhfOPyOoSC0lhqBVvHfYdGX4IpfgXVijcrsb2ika+3bdL/9Nj2bPoZgEFtGBslfvZvEm2+WgUfHiKA/xP5N9dSXdZCWG0tGUQJJk2IGraEK+IO01PSw/6N6Dnxcj7c3gDvRmKcuym3H5wng6wvi6wvQ1+2nfHcz+zfVY7EpsqclUTAvhfgUFwF/kIA/dLijes2Bdsp2NhEKaFJzYzn3hqlMWZyGK/bYAMoRZRvRfkrVe3fzzpOP0FReSvbM2ay8/W7S8o/zGRZCiFEUUcGWP2DUbPU3I5Z2lAJQEH/UwJpdDbDrRWjcawzj0LQfAn2Agst+Dmd/4/BkyROBZ8cOWp54gq7VayAYxJGfT/JXvkLsJZcQNXuW9DMZI3yeALvX17BjbRW9HT7sUVaKN9QB4HDZyCg05rzr7fTR2eKhs8lDT4cPMJqxCuenMGP5JLKmJw7ZdBgKhqg71EHZjmbKdjTx/v+1DLpdVIyd2edlMWN55uExpEZSY3kp+zeuo6+7m2AwQCgQIBgI4OnqpGrPTmKTU7nynh8y9exz5P4UQox5kRVsHdWMWNZRBnBkzVZPCzx+ObQegpg0SJ8FZ90JaTMh+yxInXrG0x0OOhika+1aWp94Es/WrVhiY0m6/XYSrrsWR1GRfIGdYcFgiK6WPjqbPHg9AZRSWCwKZQFlUdQd6mD3+zX4PAGypydy8R0zyZ6eSGdzH/WH2qk91EH9oQ6qituIiXcQl+IiZ0YScaku4lNd5M5KPqH58SxWC1lTE8maakxI3FbfS1+3H5vDgs1uxeawYLVbiHLbsZ7GRM2D8fb2sn/jOnaufYuG0oNYrDai3G6sNjtWmw2L1YrVbvTLOuvqz8ngn0KIcSOygq2jmhFLO0qJsceQFm02j/l64dkboKMa7ngd8leMVlJHTO/mzbQ89jih3l50wI/2G69gcwuBxkbs2dmk//jHxF93HVb3yDwSHyn8viCttT0kZ8Vgs594x+6eDi91JR3UHWqntbaHzmYPXa3ew/PgDUYpKFyQxsLLco+YkiXeDKamnW3M56m1HrFAWSlFUuap3xNdLc3U7N9rTEHj85ljWPkI+LxorQ+/0CF6Ozoo+eQj/N4+UnLyWHnH3cw4d+VJT1sjhBBjUWQFW0c1I5Z1lFEQV2B8OYWC8PJdUL3Z6Pg+zgMt7ffT9Ic/0PLIo9hSUrDn5KBsNixRLpTNhjM/n9jLVhF78UUo68k9ARaptNa01vZQubeVqr0t1B7sIBgI4XDZKFqQytQl6UyaemQTXdAfoqW2m6bKLupLO6gt6Tg81IHNbiFpUgzp+XFMOctFfGo08akuomLsaK0JhTRoCIU00XEOYpOOX5Mz2jWSPk8vBz/+kL3r3qFyz05j0N+jWKxWlMWCUhaUUiiLwmqzM235ecy96DIyJk8d9XwIIcRIiqxg66hmxNKOUpZmLDW+EN78Eex7DVbdBzOvGc1knjZfeTk1P/gX+nbtIv5z15Hx4x9jiZFaq1PV0+Fl9/s1FG+so6fdC0BiZgyzz88iLS+Wqr2tlGxtpHhjHTHxDgoXpuH3BGiq6qatrscImoAot53Monhmn5dF5uR4UnNjR7wp7nT0tLdhtdmJcrsH/b3Wmpp9e9i7/l06mxpxuqJxRMfgjHbhcMXQXl/LwU8+JOD1Ep+ewbLP3UTR4qW43LHYHA5sTic2hwOLRYJ7IURkibBgy/jSs1st9Ph7aOxtpDChEDb+Hj5+BJZ9C87+2iin8tRprel4+WXq//PnKLudrN/+lrhVl412ssasxopOPvlHOa11PWRNSSB7RiLZ05IOD0nQVNXFjrVVHPykgVBIkzc7mSVXFZAzI+mIWqapSzI43xekbGczBz5uYM+6GpzRNlJzY8mbk0xqTiwpOW7iU11jssZGa82W115h/bNPokOa9KLJ5M6eR96c+UyaOoPu1hb2rn+HveveoaOxAbsziuScXLqam/B5evH29uL39uGMiWHmuSuZee6FTJo2Y0zmVQghRkOEBVv9NVvqcOf4go5GePs+mHUtXPKz0UzeKdGBAL1bttL9zjt0vfsu/spKopcuZdJ9v8CekTHayRuTmiq7+Pi1Msp3NuOMtpFZFE/p9iaKNxpP9iVnu3FEWakr6cDmtDLr3CzmrswmIX3ogTJtDitTFqczZXE6wWDI6Nw+DoKNvu5u3nzoNxzavInJZy0jNS+fil07+OTVl/j4ry9itdsJ+v2gFLmz57H8+luYsmQ59qgjmzRDIWMiaKm1EkKIY0VosGX5NNja+w9ImwWffRgsY6dJZyiBtjZ8JSV4Dx0ygqx16wh1dKDsdqKXnU3KV79K/GevmRD9sELBEOoEghatNd1tXlpre2itM15tdT3okCY63kl0rJ3oeCeuWAfV+1op22EEWUuvLmDuyhwcLhuhkKapsovqfa1UFbfR2+Fl2XVFzFwx6YSe4htoLDUNDqe+5AB//+19dLe2sPL2u1hw+dUopVh+/S14e3upLt5N1Z6duOLimXHOBcSlpA55LAmyhBBiaBEWbH3ajFjWUYZNWcmp3QMrfwL2sfMYudaaYGsr3pJDeA+V4Cs5hNcMsIItn457ZE1MJHblStwXrsS9YsWE6ZeltWb3+zVseKmEoD+EzWnF7rBgd1qxOayEgpqAP0jQHyLgDxH0hQ73iwJwxTlIyozGarXQ1dpHQ3knfV0+tDbGo1pyVQFzL8zB6fr09rdYFOn5caTnx7FoVf4o5PrkhIJBOpoasFgsWGw2rFYbFqvN6Bs1zPyUwYCftrpaSrd+wobn/0xMYiI3/sd9ZE6ZdsR2zuhoihYtoWjRknBnRQghJrwIC7Y+bUYs7Sgl25GAHQ1FK0c5ZQbt91P/05/RtWYNwfb2w+stbjeOokLcF5yPc/IUnJOLcE6ejC0jY1w0VZ2MoD/E+8/tp3hDHTkzk0jPj8PvCxLwBo2fPqOJzmY3xnuy2a1YHRZik6JIyowhKTOGKPexNVGhkMbT5cPhsp30/HtjSUt1FXvef5u969+lp6110G2c0TG4k5KNV2IyUbGxdDY20FJdSVt9LTpkfA4KF57Fqm9+T4ZXEEKIMIvQYMuo2SoMYcxtOGnB6CYMI9Cq+d736FrzNnFXXYVr9iwckycbQVVa2oQLqgbT0+7ljf/dRUNZJ4suz2PpVYWoEZgkGYyaq5h454gcK1z8fX1s+uuLNFWW4U5Mwp2YTExiEu6kJLqam9nz3tvUlexHWSwULFhM0aKlWKxWY3T1YIBQIEjA56W7rZXu1ha621poqa7E09VJXGo6yVk5TFm6guTsHJKzc0nNK4iI+0oIIUZbhAVbRlOTUiEqOytZ2euHgvNglPubGIHWP9O15m3Sf/xjkm774qim51RU7G6hpbabhNRo4tOMgTZtJ1GDVF/awRv/uwtfX5DL7prN5EWRNQ9j+Y6tvP3HP9DR2EBydi51B/fj6ew4Ypvk7FzOv/XLzDh3JTEJiaOUUiGEECcrwoIto2ar1VtLQAco7G6FRaPbhKj9fmr++ft0rVlD+o//ddwFWp0tHtY/f5Dync3H/M6d6DQDL2Owzv4gzOGy0d7QS1tdL6213bTW9dJY0Yk70cnV355Pctbg4zxNRL2dHbz31B8pXv8uiZlZ3PDvvyB75mzA6F/V095Gd2srNodDaqKEEGKcishgq85TCUCBzz/i/bW616+n7v/9N2IvuoiUr30VW+rQT3Bpv5+a7/+ArtWrSf/XH5F0220jmpZwCgZD7FxbzcevGZN5L//cZGYsy6SzxUNHo4f2xt7DP8t2NOHp8g96nKgYO0mTYphzfjaLP5N/0k/+jVf+vj6KP3iP9c89ha+3h7Ovu4Gl195wROd2q81OXEoacSmRVcsnhBATTUQFWwGzGbGu1wy2ojMgqXC4XU5K55tvUvODf8GWkkLbc8/R/tJLJH3xVpK/8hWsCQmfpqOlhZ6NH9Lxyiv0bNxI2o9+SNLtt49YOsJFa01vp4+Gsk4+/nspLTU95M9N4bwbpx4e5DPKbT9i7r5+Pk+AjiYPHU0e+nr8JKZHkzQpBlfs0E/OjUfBQID2hjpc7lhccfFH1ERprWkoLWHXO2+xb8P7+DweMqdM49K7/4mU3PzRS7QQQoiwiqhgy2fWbFV3lZIWDOEuunjEjt324ovU//u9uBYsIOehBwm2tdH0+wdo+eOfaHv2OZJu+yKhPi89Gzfi3bcPAEt8POk/+QlJX7x1xNJxOrTW+DwBPF1+PN1+PF0+PF0+2hp6aanuprm6m75uo4bKnejk8q/NoXD+0DV3AzlcxojqqbkT58k3rTXNVRXUlxygobSEhrISmivKCfh9ADhcLhLSJ5GQkUlsSiqVu7bTVFGGzeFk6tkrmHPRZWRNmylNg0IIMcFFVLAVMIOtmrZiCnw+KByZJsSWxx6n8Ze/JObcc8n+3f9gcbmwxsWR9d+/Ivmuu2j6/e9ofvAhlN2Oa+FCUu+5h5gVy4maOXPUBh8NBUO01ffSWNFFU2UXTZWdNFd1E/CHjtnWareQPCmGgnkppGS7Sc5yk54fd1Id4CcSX5+H4vXvsWPN6zRVGIPjOlwu0gqKmHfpFaTmFeDt7aG9vo72+lqaKkop+eRDUnLyuegr32D6ivOIiomcfmlCCBHpIirYMp5G1FT0VnOV33wS8TRov5+mBx+k5aGHib18FVn33Yc6akDJqGlTyXngAfy1tVgTErBEDz3ly5nQ3dbH9jVV7N1Qi99rTLFid1pJzY1l1rlZuJOMkdaj3HZcbjuuWAcxCU4sIzQEw3ijtSYUDBAMBOhoqGfn2jfZu+4dfB4PqXkFXHznN8iZNY/EjEzUMDMQaK2lBksIISJURAVbvmAIZeuiRwcodGVAdNJJ7R/s6MCzfTu9W7fh2boVz65d6L4+Eq7/PBn33jtsLZV90qTTTf5paavvYevqSg5sqkdrmLI4jdxZyaTlxZKQFj1i41mNR97eHprKy2gsP0Sj+bO9oZ6g308oGDhiW6vNxrRl5zLv0ivInDL9hAMoCbSEECJyRVSwFQhq3I4qAAoyF53wfsHuHhrvu4/2v/wFtAarlagZM0j4wvXELF2K+8ILR+3LVIf04ZHVA74gvr4gfT1++rr99HX78HT7aarsomxnM1abhVnnZjH/khzikl2jkt6xorW2moObNnJg0wYayw4dXh8dn0BaQRE5M+dgcziw2u1YbXYsNhvO6Ggmn7WM6Lj4UUy5EEKI8Saigi1/MERB1G7KgMKiVSe0T89Hm6j78Y/x19eTeOutxF50Ea65c8LWHNjT4cVqsww7BIKvL8D6Fw5S8knDoH2sjuaKtbNoVR5zV+YQHTexnv47UX093TRXVVCxczsHN22gpdp4IjVzyjRWfOFW0gsnk1ZQJIOFCiGEGHERF2wlRpXRGAqRWnTJsNuGentp/PX9tD3zDI68PPKe+TPRC8I7rU/l3hbeemQ3yqJYenUhs87LOqavVHN1F289uof2xl5mLM/EneA0J2o2Jmm2O6243Hai+l8xdqy2ofsSjWe+Pg9Ve3ZSsWs7/j4v9igndocTuzMKm9NJT3sbLVUVNFdV0tXSZOykFNnTZ7HyjruZsmQ5sckpo5sJIYQQE16EBVuaoL2VQks0ym6MCxXs6MCzcyeh7m5CPT2EenoIdnfT8eqr+CsqSbzti6R997tYXOFtdtv9fjXrnj94eCLldc8doHhjHefdOJWMwni01uxZX8sHLxzEGWPjmnsWkD0tMmphgoEAPk8vPo8HT1cnVXt3Ub59M9XFewkFA9icTqKiY/B7vfi93sP9rKx2O0lZOWTPnE1KTh4pOXmkF06W2ishhBBnVEQFW9GeWuocIc6OywXAX19Pxc234K+tPWZbR14euU8+SczSJWFNUyik2fCXg+x8p5r8Oclc8pVZ2J1WSrY0suHFg7z0yy3MWJGJzxPk0NZGcmclcdHtMyd0c2AoGGTH22+w+e8v09vefnjcqoGSs3NZeMXV5M9bSNb0Wdjsnza7BgMBAj4vdmcUllEaWkMIIYToF1HBVmbHBhodNgoyFhFoaaHyS18m2NFB9oN/wJGTgyUm5vBL2cJfNL6+AKv/tIeKXS3MuyiH5Z+bfLjZcMridPJmJ/PJP8rZubYKDSy7togFl+RO6CcHq/fu5p3HH6apspzsmbOZevY5OF3ROFwuHK5oHNHRZBRNJS5l6MFUrTYb1jNw/YQQQogTEVHfSFG9H4EDCmPnUPmVO/HX1ZH7x0eJXrw4LOfTWtPd5qW5upvW2m56O4ynA709xgjtXa19eHsDnH/zNGafl3XM/o4oGys+N5lZ50wiGAiN+wma/d4+aor30FpXQ0xCIrHJKcQmpxKTmEhPexvr/vw4+za8T2xKKld971+ZsmS5DJkghBBi3IuoYKuNZpw+zaR7H8N36BDZDz00ooGW1xOgZn8bNfvbaK7upqWmG2/vp+M0OVw2omJsRLkdRMc5SJoUw/Rlmcfte5WQProDoZ4qHQrRWFFGxc5tVOzcRs3+vQT9x05IrSwWlLKgLIqzP3cTS675HHZn1CikWAghhBh5ERVs/S12Jf/y/Gvo6oNk/fY3uM9ZcVrH01rTUNZJ5Z4WqopbaSjvQoc0NoeFlGw3kxenk5IVQ3J2LMmTYnC4IqO4Q6EgBzdt5KOXnqO5qgKAlJw85l/6GfLmLiAtv5Dejna6Wprpammiq6WZgM/H/MuuJCE9Y5RTL4QQQoysyPj2B3QgwK0vr2dOhWbSL39O3CXDD/1wIj7+exmbXy9HKUjNi2PhZbnkzkwivSB+wg63EPD7qd2/l1AwSFJWNrHJqYeb+kKhIPs3ruejl5+ntaaKpKwcLv3qtylYsBh34pGj9cckJJKaVzAaWRBCCCHOqIgJtrBaKUsNsi0/l19cffVpH27P+ho2v17O9LMzWHH9lGEHIR3vOpubKN++hdJtm6nctR2/t+/w7+zOKBInZZGclUN9aQlttdWk5ORx5T0/ZMrS5Vgs8jSgEEKIyBYxwZZSiq3L/xNvsO/4Gx9H+a5m3n/2ALmzkrjgi9OxWideLVZvZwfF699jz7q1NJWXAhCbksrM8y6kYMEiHK5oWmuqaK2ppqWmiuriPUTHxxsd289aNuykzEIIIUQkiZhgC4Cgm2hL7GkdorGik7ce3U1yVgyX3TV7QgVaoWCQsu2b2f3u25Ru/YRQMEB64RTOu+VLFC48i6SsnCOeDsyZOWcUUyuEEEKMDxEVbPmCIWLtp57lzmYPrz2wA5fbwZXfmocjamwXX8Dvp7mijI6mRnJmzRlyAuXezg52rnmD7Wtep6etlej4BBZcfhWzz7+IlNz8M5toIYQQYoIZ29HCCPMHQzhOoSYqGAjRVNXF2ieKCQU1V35vHjHxzjCk8MTpUIi2+loCPh8Bn4+g30fA76e3o536QwepP3SApvJSggFj6AllsZAzay7Tzj6HyUuWER0XT3NVBVtf/xvF698j4PeRP38RF9/5TQrmL5JBQYUQQogRElHfqNMz4kiLO36Q5PMEqNjdQn1ZBw1lnTRVdREKaKx2C1d/ez5JmTFnILVDCwYC/O1XP6Ns+5ZBf2+PcpFeWMSCy68mc/JU3EnJlG7dzP4P17Hm0Qd4+08PkpydS3NlOTaHk5nnX8jCy68hOTvnDOdECCGEmPiU1nq003DY4sWL9ebNm0ft/FprSjY38sGLB+nt9GGzW0jNiyW9IJ6MgjgyJyeM+pyEWmvWPPJ7dr2zmmWfv4nU/EJsdgdWmx2bw44z2k3ipEmDPgWotaapoowDH31AdfFuCuYvZu7Fq3DFxo1CToQQQojxTSm1RWt93NHRI6pmazjtjb2se+4AVXtbScuL5bK7ZpNeGDfmOsBveuUFdr2zmqXX3sDy6285qX2VUqTlF5KWXxim1AkhhBDiaBEfbAX9IbatqWDz6xVYbIpzb5jK7POzDk8IfdLHCwSo3LWdtIIiYhKGnoanv5bJHhVFQnrmCc0BuHf9u2x4/mlmnLuSFTfcekrpE0IIIcSZFdHBltaa1x/eSeWeViYvSuOc66dw2ai5AAARXUlEQVQQk3DqHd9ba6t5/fe/pqH0IBarjclLljH/ksvJnjnncDDV29HO3nXvsPu9t2mprgTAnZRM9ozZh19JWdnHBF+Vu3fy1kP/Q86suVz2tW/LBM1CCCHEOBHRwdbeD2qp3NPKOddPYd5Fp945XGvNzrff5L2n/4jN7uDSr36bluoK9ry3lgMfridxUjazzruQhtISDm3ZRCgYJHPKNC6561uEQiGq9+6ias9O9m14HzBGZU/IyCQxYxIJmZOITUrhg+eeIjFzElf/84+x2ibuaPVCCCHERBOxHeQ7Wzw899OPScuP45rvzEedYrNhb0c7bz38P5Ru/YS8uQtY9fV7cCclA+D3eTnw4QfsWPM6dQf344qNY+Z5FzLnwktJzs494jhaa9ob6qjeu5vmqgra6mpor6+lo7GBUDBITGISN//sv4lLTTvtvAshhBDi9EkH+WForXn36X0AXPjF6UMGWn6fl6byUnPcqoO019WiMYJThbFPW0Md/j4PK2+/iwWrrjpimhq7w8ms8y9i1vkX0dncSExC4pC1UkopEjMmkZgx6Yj1wUDg8L6OKNdp510IIYQQZ1ZEBlt71tdSva+NpVen8d5Tv6F2fzE2pxOb3YHd6cTmcOL19NJSVUEoGAQgJiGR5OxcLNYjh1TInTmHZZ+/6bgjrcelnFqNlNVmOyYAE0IIIcT4EXHBVmezhw1/OUhs4iE+fOFhQsEgU89egdaagNeL3+cl4PMSHRdPwVXXkVE0hYwiY2BQ6ZQuhBBCiJMVUcGWDmneenQjnraX6G6oJGfmHC756j9JzZEQQgghwiZigi0dCvH6A09Tuf0VrHYbl9z1LeZceOkRfayEEEIIIUZaxARboZCmdNvHRCcUcsv/9yN5qk8IIYQQZ0TEBFtWm5U7/vu/UFYH7oSo0U6OEEIIISJExARbALHJMuGyEEIIIc4s6bAkhBBCCBFGEmwJIYQQQoSRBFtCCCGEEGEkwZYQQgghRBhJsCWEEEIIEUYSbAkhhBBChFFYgy2l1Cql1H6lVIlS6kfhPJcQQgghxFgUtmBLKWUF/gBcDswEblJKzQzX+YQQQgghxqJw1mwtAUq01qVaax/wHHBNGM8nhBBCCDHmhDPYygKqBryvNtcJIYQQQkSMcAZbapB1+piNlLpbKbVZKbW5qakpjMkRQgghhDjzwhlsVQM5A95nA7VHb6S1fkRrvVhrvTg1NTWMyRFCCCGEOPPCGWx9AkxRShUopRzAjcCrYTyfEEIIIcSYYwvXgbXWAaXUt4C3ACvwmNZ6T7jOJ4QQQggxFoUt2ALQWr8OvB7OcwghhBBCjGUygrwQQgghRBhJsCWEEEIIEUYSbAkhhBBChJEEW0IIIYQQYSTBlhBCCCFEGCmtjxnUfdQopZqAijCfJgVoDvM5xjLJv+Rf8h+5JP+Sf8n/yMrTWh93RPYxFWydCUqpzVrrxaOdjtEi+Zf8S/4l/6OdjtEi+Zf8j1b+pRlRCCGEECKMJNgSQgghhAijSAy2HhntBIwyyX9kk/xHNsl/ZJP8j5KI67MlhBBCCHEmRWLNlhBCCCHEGRMxwZZSapVSar9SqkQp9aPRTs9IUUrlKKXeVUoVK6X2KKW+Y66/VylVo5Tabr6uGLDPv5rlsF8pddmA9eOyjJRS5UqpXWY+N5vrkpRSa5RSB82fieZ6pZT6nZnHnUqphQOOc7u5/UGl1O2jlZ+ToZSaNuAab1dKdSql7pno118p9ZhSqlEptXvAuhG75kqpReY9VWLuq85sDoc2RN5/pZTaZ+bvFaVUgrk+XynlGXAfPDxgn0HzOFQ5jiVDlMGI3fNKqQKl1CazDJ5XSjnOXO6Ob4j8Pz8g7+VKqe3m+gl1D6ihv/PG9udfaz3hX4AVOAQUAg5gBzBztNM1QnnLBBaay7HAAWAmcC/w/UG2n2nm3wkUmOViHc9lBJQDKUet+yXwI3P5R8B95vIVwBuAAs4GNpnrk4BS82eiuZw42nk7yXKwAvVA3kS//sB5wEJgdziuOfAxsMzc5w3g8tHO83HyfilgM5fvG5D3/IHbHXWcQfM4VDmOpdcQZTBi9zzwAnCjufww8PXRzvPx8n/U738N/NtEvAcY+jtvTH/+I6VmawlQorUu1Vr7gOeAa0Y5TSNCa12ntd5qLncBxUDWMLtcAzyntfZqrcuAEozymWhldA3wpLn8JPDZAeuf0oaPgASlVCZwGbBGa92qtW4D1gCrznSiT9NFwCGt9XADA0+I66+1Xge0HrV6RK65+bs4rfWH2vjL+9SAY426wfKutV6ttQ6Ybz8Csoc7xnHyOFQ5jhlDXP+hnNQ9b9ZiXAj8xdx/zJXBcPk30/8F4NnhjjFe74FhvvPG9Oc/UoKtLKBqwPtqhg9IxiWlVD6wANhkrvqWWW362IBq4KHKYjyXkQZWK6W2KKXuNtela63rwPhwAmnm+omY/343cuQf2Ei5/v1G6ppnmctHrx8vvozx33i/AqXUNqXU+0qpc811w+VxqHIcD0bink8G2gcEr+Pt+p8LNGitDw5YNyHvgaO+88b05z9Sgq3B2lsn1GOYSik38BJwj9a6E3gIKALmA3UY1cowdFmM5zJaobVeCFwOfFMpdd4w207E/GP2KbkaeNFcFUnX/3hONs/jtiyUUj8BAsAz5qo6IFdrvQD4HvB/Sqk4xnEehzFS9/x4L5ubOPKfrgl5DwzynTfkpoOsO+PXP1KCrWogZ8D7bKB2lNIy4pRSdoyb7hmt9csAWusGrXVQax0CHsWoMoehy2LclpHWutb82Qi8gpHXBrM6uL+6vNHcfMLl33Q5sFVr3QCRdf0HGKlrXs2RzXDjoizMDr5XAreYzR+YTWct5vIWjD5KUxk+j0OV45g2gvd8M0ZTk+2o9WOemebrgOf7103Ee2Cw7zzG+Oc/UoKtT4Ap5hMmDozmlldHOU0jwmyf/xNQrLW+f8D6zAGbXQv0P7XyKnCjUsqplCoApmB0BhyXZaSUilFKxfYvY3QU3o2R9v6nS24H/mYuvwrcZj6hcjbQYVY5vwVcqpRKNJsfLjXXjRdH/DcbKdf/KCNyzc3fdSmlzjY/X7cNONaYpJRaBfwQuFpr3TtgfapSymouF2Jc79Lj5HGochzTRuqeNwPVd4HPm/uPmzIALgb2aa0PN4NNtHtgqO88xvrn/3R72I+XF8YTCQcwovqfjHZ6RjBf52BUce4EtpuvK4CngV3m+leBzAH7/MQsh/0MeMpiPJYRxpNEO8zXnv50Y/S7WAscNH8mmesV8Aczj7uAxQOO9WWMzrMlwJdGO28nUQbRQAsQP2DdhL7+GIFlHeDH+E/0KyN5zYHFGF/Wh4AHMAeAHguvIfJegtH/pP9vwMPmtp8zPxc7gK3AVcfL41DlOJZeQ5TBiN3z5t+Vj81yfRFwjnaej5d/c/0TwNeO2nZC3QMM/Z03pj//MoK8EEIIIUQYRUozohBCCCHEqJBgSwghhBAijCTYEkIIIYQIIwm2hBBCCCHCSIItIYQQQogwkmBLiAlOKTVfKXXFyW6nlLpaKfWjETh/glLqGwPeT1JK/WW4fUbgnIuVUr8L5zlGwtFlcxL73auU+n4Y0nOHUuqB42xzgVJq+UifW4iJTIItISa++Rjj0JzUdlrrV7XWvxiB8ycAhwMKrXWt1vrzw2x/2rTWm7XW3w7nOUbIEWUzTlwASLAlxEmQYEuIMFJK3WZOjLtDKfW0uS5PKbXWXL9WKZVrrn9CKfWQUupdpVSpUup8ZUyoW6yUemLAMbuVUr9WSm01908117+nlFpsLqcopcrNkbF/CtyglNqulLpBKbVEKbVRGRPTblRKTRtiu8O1HMdJ8+/M45QqpQYLon4BFJnH/ZVSKl8ptdvc/w6l1F+VUn9XSpUppb6llPqembaPlFJJ5nZFSqk3lTHZ+Hql1PTjlPsFSqnXzOV7zXJ8z0zjoEGYUupSpdSHZrm+qJRyK6XilVL7lVLTzG2eVUrddZzrMGhalVLpSqlXzHthh1k7dETZmNv9QCn1iVnW/zEgfT8x0/I2MG2IPDwx8BoopboHlMc68/x7lVIPK6Us5u++pJQ6oJR6H1gxYN+rlFKbzGvxtpn+fOBrwHfNNJ+rjBHKXzLT/IlSaoW5//nmNtvNY8QOd82EmNBGezRYeclror6AWRgjVqeY7/tHNP47cLu5/GXgr+byE8BzGCMeXwN0AnMw/inaAsw3t9MY898B/BvwgLn8HuboyEAKUG4u39G/jfk+DrCZyxcDLw2x3R0Djj1cml800zgTKBmkHPKB3YO9N89RAsQCqUAH5gjYwG8wJpkFY0ToKebyUuCd45T9BcBr5vK9wEbAaZZLC2A/avsUYB0QY77/IfBv5vIlwIcY07m8OWCfoa7DoGnFmK+uPz9WIH6QsrkUeMS8ByzAa8B5wCKM0a+jzetXAnx/kHw/AXx+wPvuAeXRhzEyuhVYgzEdTSZQaZa9A9gwIB+JfDqi+J3ArweU5/cHnOP/gHPM5VyMaVTAuGdWmMtuzHtOXvKKxFf/RJtCiJF3IfAXrXUzgNa61Vy/DGOyWDCmGPnlgH3+rrXWSqldQIPWeheAUmoPxhfzdiDEpxPN/hl4mZMTDzyplJqCETDYT2Cf4dL8V21M/rtXKZV+kmkBeFdr3YUxH1kHxpc0GMHFXKWUG6PZ6kWlVP8+zpM8xz+01l7Aq5RqBNIxpjnpdzZGsLjBPIcDI8BCa71GKXU9xpQf8wbsc8x1OE5aL8SYZw2tdRDoUMacbANdar62me/dGHPZxQKvaHPeQ6XUqcxb+bHWutTc/1mMaU8CwHta6yZz/fMYkxSDMQHv88qYc9ABlA1x3IuBmQPyG2fWYm0A7ldKPQO8rAfM1ydEpJFgS4jwURjBzPEM3MZr/gwNWO5/P9TntX//AJ92DYga5nw/wwhwrjWbhd47gTQOdU44Mp3q6A1PwNH5HFgGNow8tWut55/CsQc7R5Bjy1IBa7TWNx29o9ncNgPwAEkcGaQNpEcgrQr4L631/x6Vhns4sXvp8D2gjOjHcVT6jk7vYOv7/R64X2v9qlLqAowarcFYgGVaa89R63+hlPoHRj/Aj5RSF2ut951AHoSYcKTPlhDhsxb4glIqGaC//xFGk9aN5vItwAcneVwLRhMQwM0D9i/HaG5iwO8BujBqRvrFAzXm8h3DbDfQ6aR5uOMel9a6Eygza5dQhnnm8rVKqf861WMP8BGwQik12TxutFKqv4bnu0AxcBPwmFKqvybwmOswXFox7oevm+utSqk4ji2bt4AvmzVkKKWylFJpGE2c1yqlXGat0VVD5KOcT++Baziy1nKJUqrADB5vwLiGm4ALlFLJZr6uH7D9wPvk9gHrj07zauBb/W+UUvPNn0Va611a6/uAzcCw/eyEmMgk2BIiTLTWe4D/BN5XSu0A7jd/9W3gS0qpncAXge+c5KF7gFlKqS0YTVM/Ndf/N/B1pdRGjD5I/d7FaObZrpS6AaMJ8L+UUhsw+u8Mtd1Ap5xmrXULRvPc7v5O4KfgFuArZjnuwQgkAIow+radFrMZ7Q7gWTOPHwHTzYDrTuCftdbrMYKe/8fcbajrMFRavwOsNJuItwCzji4brfVqjD5QH5rb/QWI1VpvxWiy3A68BKwfIiuPAucrpT7G6C/WM+B3H2J0yN+N0ST4ita6DqPG6kPgbWDrgO3vxWgOXQ80D1j/d4zAb7tS6lyMe2Ox2aF/L0YHeoB7zHztwKgVfGOINAsx4fV3fhRCjBNKqW6ttXu00zEWKKX+DHy3v8/RGT73uLkOZjPg97XWV452WoSIRNJnSwgxbmmtbx3tNAghxPFIzZYQQgghRBhJny0hhBBCiDCSYEsIIYQQIowk2BJCCCGECCMJtoQQQgghwkiCLSGEEEKIMJJgSwghhBAijP5/5zMOGQ+YRmYAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 720x1440 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "num_states = [1000, 10000]\n",
    "branch = [1, 3, 10]\n",
    "methods = [on_policy, uniform]\n",
    "\n",
    "# average accross 30 tasks\n",
    "n_tasks =  30\n",
    "\n",
    "# number of evaluation points\n",
    "\"\"\"\n",
    "每根曲线有100个结点\n",
    "即要评估 MAX_STEPS / x_ticks 次初始状态价值\n",
    "\"\"\"\n",
    "x_ticks = 100\n",
    "\n",
    "plt.figure(figsize=(10, 20))\n",
    "for i, n in enumerate(num_states):\n",
    "    plt.subplot(2, 1, i+1)\n",
    "    for b in branch:\n",
    "        tasks = [Task(n, b) for _ in range(n_tasks)]\n",
    "        for method in methods:\n",
    "            value = []\n",
    "            for task in tasks:\n",
    "                steps, v = method(task, MAX_STEPS / x_ticks)\n",
    "                value.append(v)\n",
    "            value = np.mean(np.asarray(value), axis=0)\n",
    "            plt.plot(steps, value, label='b = %d, %s' % (b, method.__name__))\n",
    "    plt.title('%d states' % (n))\n",
    "\n",
    "    plt.ylabel('value of start state')\n",
    "    plt.legend()\n",
    "\n",
    "plt.subplot(2, 1, 2)\n",
    "plt.xlabel('computation time, in expected updates')\n",
    "\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.0"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
  },
  "varInspector": {
   "cols": {
    "lenName": 16,
    "lenType": 16,
    "lenVar": 40
   },
   "kernels_config": {
    "python": {
     "delete_cmd_postfix": "",
     "delete_cmd_prefix": "del ",
     "library": "var_list.py",
     "varRefreshCmd": "print(var_dic_list())"
    },
    "r": {
     "delete_cmd_postfix": ") ",
     "delete_cmd_prefix": "rm(",
     "library": "var_list.r",
     "varRefreshCmd": "cat(var_dic_list()) "
    }
   },
   "types_to_exclude": [
    "module",
    "function",
    "builtin_function_or_method",
    "instance",
    "_Feature"
   ],
   "window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}