{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "Braginskii coefficients\n", "=========================\n", "\n", "A short example of how to calculate classical transport coefficients\n", "from BragiƄski's theory.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "from astropy import units as u\n", "\n", "from plasmapy.formulary import ClassicalTransport" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll use some sample ITER data, without much regard for whether\n", "the regime is even fit for classical transport theory:\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "thermal_energy_per_electron = 8.8 * u.keV\n", "electron_concentration = 10.1e19 / u.m ** 3\n", "\n", "thermal_energy_per_ion = 8.0 * u.keV\n", "ion_concentration = electron_concentration\n", "ion = \"D+\" # a crude approximation" ] }, { "cell_type": "raw", "metadata": { "raw_mimetype": "text/restructuredtext" }, "source": [ "We now make the default :class:`~plasmapy.formulary.braginskii.ClassicalTransport` object:\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "braginskii = ClassicalTransport(\n", " thermal_energy_per_electron,\n", " electron_concentration,\n", " thermal_energy_per_ion,\n", " ion_concentration,\n", " ion,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These variables are calculated during initialization and can be\n", "referred to straight away:\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "print(braginskii.coulomb_log_ei)\n", "print(braginskii.coulomb_log_ii)\n", "print(braginskii.hall_e)\n", "print(braginskii.hall_i)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These quantities are not calculated during initialization and can be\n", "referred to via methods. To signify the need to calculate them, we\n", "call them via ().\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "print(braginskii.resistivity)\n", "print(braginskii.thermoelectric_conductivity)\n", "print(braginskii.electron_thermal_conductivity)\n", "print(braginskii.ion_thermal_conductivity)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "They also change with magnetization:\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "mag_braginskii = ClassicalTransport(\n", " thermal_energy_per_electron,\n", " electron_concentration,\n", " thermal_energy_per_ion,\n", " ion_concentration,\n", " ion,\n", " B=0.1 * u.T,\n", ")\n", "\n", "print(mag_braginskii.resistivity)\n", "print(mag_braginskii.thermoelectric_conductivity)\n", "print(mag_braginskii.electron_thermal_conductivity)\n", "print(mag_braginskii.ion_thermal_conductivity)" ] }, { "cell_type": "raw", "metadata": { "raw_mimetype": "text/restructuredtext" }, "source": [ "They also change with direction with respect to the magnetic field. Here,\n", "we choose to print out, as arrays, the (parallel, perpendicular,\n", "and cross) directions. Take a look at the docs to\n", ":class:`~plasmapy.formulary.braginskii.ClassicalTransport`\n", "for more information on these." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "all_direction_braginskii = ClassicalTransport(\n", " thermal_energy_per_electron,\n", " electron_concentration,\n", " thermal_energy_per_ion,\n", " ion_concentration,\n", " ion,\n", " B=0.1 * u.T,\n", " field_orientation=\"all\",\n", ")\n", "\n", "print(all_direction_braginskii.resistivity)\n", "print(all_direction_braginskii.thermoelectric_conductivity)\n", "print(all_direction_braginskii.electron_thermal_conductivity)\n", "print(all_direction_braginskii.ion_thermal_conductivity)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The viscosities return arrays:\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "print(braginskii.electron_viscosity)\n", "print(mag_braginskii.electron_viscosity)\n", "print(braginskii.ion_viscosity)\n", "print(mag_braginskii.ion_viscosity)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }