
Computing Infrastructures - Notes - v1.0.0

260236

September 2024

1

Preface
Every theory section in these notes has been taken from two sources:

• The Datacenter as a Computer: Designing Warehouse-Scale Machines,
Third Edition. [1]

• Quantitative System Performance: Computer System Analysis Using Queue-
ing Network Models. [3]

• Course slides. [6]

About:

§ GitHub repository

These notes are an unofficial resource and shouldn’t replace the course material
or any other book on computing infrastructure. It is not made for commercial
purposes. I’ve made the following notes to help me improve my knowledge and
maybe it can be helpful for everyone.

As I have highlighted, a student should choose the teacher’s material or a
book on the topic. These notes can only be a helpful material.

2

https://github.com/PoliMI-HPC-E-notes-projects-AndreVale69/HPC-E-PoliMI-university-notes

Contents
1 Introduction: definition of Data Center and Computing Infras-

tructure 5

2 Hardware Infrastructures 6
2.1 System-level . 6

2.1.1 Computing Infrastructures and Data Center Architectures 6
2.1.1.1 Overview of Computing Infrastructures 6
2.1.1.2 The Datacenter as a Computer 11
2.1.1.3 Warehouse-Scale Computers 12
2.1.1.4 Multiple Data Centers 13
2.1.1.5 Warehouse-Scale Computing / Data Centers Avail-

ability . 14
2.1.1.6 Architectural overview of Warehouse-Scale Com-

puting . 14
2.2 Node-level . 16

2.2.1 Server (computation, HW accelerators) 16
2.2.1.1 Rack Servers . 18
2.2.1.2 Blade Servers . 19
2.2.1.3 Machine Learning 20

2.2.2 Storage (type, technology) 23
2.2.2.1 Files . 24
2.2.2.2 HDD . 27
2.2.2.3 SSD . 30
2.2.2.4 RAID . 38
2.2.2.5 DAS, NAS and SAN 52

2.2.3 Networking (architecture and technology) 55
2.2.3.1 Fundamental concepts 55
2.2.3.2 Switch-centric: classical Three-Tier architecture 57
2.2.3.3 Switch-centric: Leaf-Spine architectures 59
2.2.3.4 Server-centric and hybrid architectures 63

2.3 Building level . 66
2.3.1 Cooling systems . 68
2.3.2 Power supply . 71
2.3.3 Data Center availability 72

3 Software Infrastructure 73
3.1 Virtualization . 73

3.1.1 What is a Virtual Machine? 73
3.1.1.1 Process VM . 75
3.1.1.2 System VM . 76

3.1.2 Virtualization Implementation 77
3.1.3 Virtual Machine Managers (VMM) 78

3.1.3.1 Full virtualization 81
3.1.3.2 Paravirtualization 82
3.1.3.3 Containers . 84

3.2 Computing Architectures . 86
3.2.1 Cloud Computing . 86

3.2.1.1 Server Consolidation 86

3

3.2.1.2 Services provided by cloud 87
3.2.1.3 Types of clouds 90

4 Methods 91
4.1 Reliability and availability of data centers 91

4.1.1 Introduction . 91
4.1.2 Reliability and Availability 94
4.1.3 Reliability Block Diagrams 100

4.1.3.1 R out of N redundancy (RooN) 105
4.1.3.2 Triple Modular Redundancy (TMR) 106
4.1.3.3 Standby redundancy 107

4.2 Disk performance . 108
4.2.1 HDD . 108
4.2.2 RAID . 113

4.3 Scalability and performance of data centers 117
4.3.1 Evaluate system quality 117
4.3.2 Queueing Networks . 119

4.3.2.1 Definition . 119
4.3.2.2 Characteristics 120

4.3.3 Operational Laws . 124
4.3.3.1 Basic measurements 124
4.3.3.2 Utilization Law 126
4.3.3.3 Little’s Law . 126
4.3.3.4 Interactive Response Time Law 129
4.3.3.5 Visit count . 129
4.3.3.6 Forced Flow Law 130
4.3.3.7 Utilization Law with Service Demand 130
4.3.3.8 Response and Residence Times 131

4.3.4 Bounding Analysis . 132
4.3.4.1 Introduction . 132
4.3.4.2 Asymptotic bounds 133

Index 140

4

1 Introduction: definition of Data Center and Computing Infrastructure

1 Introduction: definition of Data Center and
Computing Infrastructure

There’s no single definition of a Data Center, but it can be summarized as
follows.

Definition 1

Data Centers are buildings where multiple servers and communication
gear are co-located because of their common environmental requirements
and physical security needs, and for ease of maintenance. [1]

Definition 2

A Computing Infrastructure (or IT Infrastructure) is a technological
infrastructure that provides hardware and software for computation to
other systems and services.

Traditional data centres have the following characteristics:

• Host a large number of relatively small or medium sized applications;

• Each application is running on a dedicated HW infrastructure
that is de-coupled and protected from other systems in the same facility;

• Applications tend not to communicate each other.

Those data centers host hardware and software for multiple organizational
units or even different companies.

5

2 Hardware Infrastructures

2 Hardware Infrastructures

2.1 System-level
2.1.1 Computing Infrastructures and Data Center Architectures

2.1.1.1 Overview of Computing Infrastructures

A number of computing infrastructures exist:

• Cloud offers virtualized computing, storage and network resources with
highly-elastic capacity.

• Edge Servers are on-premises hardware resources that perform more
compute-intensive data processing.

In other words, an edge server is a piece of hardware that performs data
computation at the end (or “edge”) of a network. Like a regular server, an
edge server can provide compute, networking, and storage functions.1

• IoT and AI-enabled Edge Sensors are hardware devices where the
data acquisition and partial processing can be performed at the edge of
the network.

Fog/Edge
Computing

Systems

Data Center

Embedded
PCs

Embedded
Devices

Internet of
Things

0.05x – 0.1x0.0001x – 0.0005x 20x – 50x 100x – 1000x

50
x

–
10

0x

RAM

Computation
Speedup

PC

0.
1x

 –
0.

5x
0.

01
x–

0.
05

x

Figure 1: An example of Computing Infrastructures. [7]

The Computing Continuum, a novel paradigm that extends beyond the cur-
rent silos of cloud and edge computing, can enable the seamless and dynamic
deployment of applications across diverse infrastructures. [4]

1More info here.

6

https://phoenixnap.com/blog/edge-server

2 Hardware Infrastructures 2.1 System-level

Figure 2: The Computing Continuum. [7]

In the following pages, we analyze the computing infrastructures mentioned in
the previous example.

Data Centers

The definition of a Data Centers can be found on page 5.

✓ Data Centers Advantages

• Lower IT costs.

• High Performance.

• Instant software updates.

• “Unlimited” storage capacity.

• Increased data reliability.

• Universal data access.

• Device Independence.

l Data Centers Disadvantages

• Require a constant internet connection.

• Do not work well with low-speed connections.

• Hardware Features might be limited.

• Privacy and security issues.

• High power Consumption.

• Latency in taking decision.

7

2 Hardware Infrastructures 2.1 System-level

Internet-of-Things (IoT)

An Internet of Things (IoT) device is any everyday object embedded
with sensors, software, and internet connectivity.

This allows to collect and exchange data with other devices and systems, typi-
cally over the internet, with limited need of process and store data.

Some examples are Arduino, STM32, ESP32, Particle Argon.

✓ Internet-of-Things Advantages

• Highly Pervasive.

• Wireless connection.

• Battery Powered.

• Low costs.

• Sensing and actuating.

l Internet-of-Things Disadvantages

• Low computing ability.

• Constraints on energy.

• Constraints on memory (RAM/FLASH).

• Difficulties in programming.

Embedded (System) PCs

An Embedded System is a computer system, a combination of a computer
processor, computer memory, and input/output peripheral devices, that has a
dedicated function within a larger mechanical or electronic system.

A few examples: Odroid, Raspberry, jetson nano, Google Coral.

✓ Embedded System Advantages

• Persuasive computing.

• High performance unit.

• Availability of development boards.

• Programmed as PC.

• Large community.

l Embedded System Disadvantages

• Pretty high power consumption.

• (Some) Hardware design has to be done.

8

https://www.arduino.cc/
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://en.wikipedia.org/wiki/ESP32
https://docs.particle.io/argon/
https://www.hardkernel.com/
https://www.raspberrypi.com/
https://developer.nvidia.com/embedded/jetson-nano
https://www.coral.ai/

2 Hardware Infrastructures 2.1 System-level

Edge/Fog Computing Systems

The key difference between Fog Computing and Edge Computing is as-
sociated with the location where the data is processed:

• In edge computing, the data is processed closest to the sensors.

• In fog computing, the computing is moved to processors linked to a local
area network (IoT gateway).

Edge computing places the intelligence in the connected devices themselves,
whereas, fog computing puts in the local area network.

Edge
Computing
(EC)

Cloud
Servers

Smart
Devices

Vehicle-2-
Vehicle

Intelligent Monitoring
Systems

Fog
Computing
(FC)

✓ Fog/Edge Advantages

• High computational capacity.

• Distributed computing.

• Privacy and security.

• Reduced Latency in making a decision.

l Fog/Edge Disadvantages

• Require a power connection.

• Require connection with the Cloud.

9

2 Hardware Infrastructures 2.1 System-level

Feature Edge Computing Fog Computing

Location Directly on device or
nearby device.

Intermediary devices be-
tween edge and cloud.

Processing Power Limited due to device con-
straints, sending data to
central server for analysis.

More powerful than edge
devices. However, sending
data to a central server for
analysis.

Primary Function Real-time decision-
making, low latency.
However, central server
analyzing combined data
and sending only relevant
information further.

Pre-process and aggregate
data, reduce bandwidth
usage. However, central
server analyzing combined
data and sending only rel-
evant information further.

Advantages Low latency, reduced re-
liance on cloud, security
for sensitive data.

Bandwidth efficiency,
lower cloud costs, complex
analysis capabilities.

Disadvantages Limited processing power,
single device focus.

Increased complexity,
additional infrastructure
cost.

Table 1: Differences between Edge and Fog Computing Systems.

10

2 Hardware Infrastructures 2.1 System-level

2.1.1.2 The Datacenter as a Computer

In the last few decades, computing and storage have moved from PC-like clients
to smaller, often mobile, devices combined with extensive internet services. Fur-
thermore, traditional enterprises are also shifting to Cloud computing.

The advantages of this migration are:

• User-side:

– Ease of management (no configuration or backups needed);

– The availability of the service is everywhere, but we need con-
nectivity.

• Vendors-side:

– SaaS (Software-as-a-Service) allows faster application develop-
ment (more accessible to make changes and improvements);

– Improvements and fixes in the software are more straightfor-
ward inside their data centers (instead of updating many millions
of clients with peculiar hardware and software configurations);

– The hardware deployment is restricted to a few well-tested con-
figurations.

• Server-side:

– Faster introduction of new hardware devices (e.g., HW accel-
erators or new hardware platforms);

– Many application services can run at a low cost per user.

Finally, another advantage is that some workloads require so much com-
puting capability that they are a more natural fit in the datacenter
(and not in client-side computing). For example, the search services (web, im-
ages, and so on) or the Machine and Deep Learning.

11

https://en.wikipedia.org/wiki/Software_as_a_service

2 Hardware Infrastructures 2.1 System-level

2.1.1.3 Warehouse-Scale Computers

The trends toward server-side computing and widespread internet services cre-
ated a new class of computing systems: Warehouse-Scale Computers.

Definition 1

Warehouse-Scale Computers (WSCs) is intended to draw attention
to the most distinctive feature of these machines: the massive scale of
their software infrastructure, data repositories and hardware
platform.

® What is a program at a WSC?

In Warehouse-Scale Computing the program is an internet service, which
may consist of tens or more individual programs that interact to im-
plement complex end-user services such as email, search, or maps. These
programs might be implemented and maintained by different teams of engineers,
perhaps even across organizational, geographic, and company boundaries.

8 Difference between WSCs and Data Centers

WSCs currently power the services offered by companies such as Google, Ama-
zon, Microsoft, and others. The main difference from traditional data centers
(see more on page 5) is that WSCs belong to a single organization, use a
relatively homogeneous hardware and system software platform, and
share a common systems management layer. In contrast with the typi-
cal data center that belongs to multiple organizational units or even different
companies, use dedicated HW infrastructure in order to run a large number of
applications (more details on page 5).

® How is the WSC organized?

The software on WSCs, such as Gmail, runs on a scale far beyond a single
machine or rack: it runs on clusters of hundreds to thousands of individ-
ual servers. Therefore, the machine, the computer, is itself this large cluster
or aggregation of servers and must be considered a single computing
unit.

Most importantly, WSCs run fewer vast applications (internet services). An ad-
vantage is that the shared resource management infrastructure allows
significant deployment flexibility. Finally, the requirements of:

• Homogeneity

• Single-Organization Control

• Cost Efficiency

Motivate designers to take new approaches to constructing and operating these
systems.

12

2 Hardware Infrastructures 2.1 System-level

2.1.1.4 Multiple Data Centers

Sometimes the data centers are located far apart. Multiple data centers
are (often) replicas of the same service:

• To reduce user latency

• To improve service throughput

Typically, a request is fully processed within one data center.

The world is divided into Geographic Areas (GAs). Each Area is defined
by Geo-political boundaries (or country borders). Also, there are at least two
computing regions in each geographical Area.

The Computing Regions (CRs) are the smallest geographic unit of the in-
frastructure from the customer’s perspective. Multiple Data centers within the
same region are not exposed to customers.

However, they are defined by a latency-defined perimeter, typically less than
2ms for round-trip latency. Finally, they’re located hundreds of miles apart,
with considerations for different flood zones, etc. It is too far from synchronous
replication but suitable for disaster recovery.

The Availability Zones (AZs) are finer-grain locations within a single
computing region. They allow customers to run mission-critical applications
with high availability and fault tolerance to Data Center failures. Because there
are fault-isolated locations with redundant power, cooling, and networking (they
are different from the concept of the Availability Set).

This hierarchical structure ensures efficient data management and compliance
with local data laws while optimizing network performance through strategically
placing data centers.

Figure 3: Example of Azure Availability Zones.

13

https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview?tabs=azure-cli

2 Hardware Infrastructures 2.1 System-level

2.1.1.5 Warehouse-Scale Computing / Data Centers Availability

The services provided through WSCs (or DCs) must guarantee high avail-
ability, typically aiming for at least 99.99% uptime (e.g. one hour of downtime
per year).

Some examples:

• 99,90% on single instance VMs with premium storage for a more accessible
lift and shift;

• 99,95% VM uptime SLA for Availability Sets (AS) to protect for failures
within a data center;

• 99,99% VM uptime SLA through Availability Zones.

Such fault-free operation is more accessible when an extensive collection of hard-
ware and system software is involved.

WSC workloads must be designed to gracefully tolerate large num-
bers of component faults with little or no impact on service level
performance and availability!

2.1.1.6 Architectural overview of Warehouse-Scale Computing

SERVERS

STO
RAG

E
N

ETW
O

RKIN
G

CO
O

LIN
G

SYSTEM

S
PO

W
ER

SU
PPLY

FAILU
RE

RECO
VERY

BUILDING AND INFRASTRUCTURE

Figure 4: Architectural overview of Warehouse-Scale Computing.

14

2 Hardware Infrastructures 2.1 System-level

• Server (section 2.2.1, page 16). Servers are the leading processing
equipment: different types according to CPUs, RAM, local storage,
accelerators, and form factor. The servers are hosted on individual
shelves and are the basic building blocks of Data Centers and
Warehouse-Scale Computers. They are interconnected by hierarchies
of networks and supported by the shared power and cooling infrastructure.

• Storage (section 2.2.2, page 23). Disks, flash SSDs, and Tapes are the
building blocks of today’s WSC storage systems. These devices are
connected to the Data Center network and managed by sophis-
ticated distributed systems.

Some examples:

– Direct Attached Storage (DAS)

– Network Attached Storage (NAS)

– Storage Area Networks (SAN)

– RAID controllers

• Networking (section 2.2.3, page 55). The Data Center Network
(DCN) enables efficient data transfer and interaction between
various components. The data processing ecosystem within the DCs
needs to reach the DC services from outside. Communication equipment
includes switches, Routers, cables, DNS or DHCP servers, Load balancers,
Firewalls, etc.

• Building and Infrastructure. WSC has other essential components
related to power delivery, cooling, and building infrastructure that must
be considered. Some interesting numbers:

– Data Centers with up to 110 football-pitch size.

– 2-100s MW power consumption (100k houses), and the largest in the
world is 650 MW.

15

2 Hardware Infrastructures 2.2 Node-level

2.2 Node-level
2.2.1 Server (computation, HW accelerators)

Servers are like ordinary PCs, usually more powerful, but with a form factor
that allows them to fit into the shelves (such as rack, blade enclosure
format, or tower; the differences are explained later). They are usually built in
a tray or blade enclosure format, housing the motherboard, the chipset,
and additional plug-in components.

The motherboard acts as the central hub, connecting all the crucial com-
ponents of the server and enabling them to communicate and work
together.

It provides sockets and plug-in slots to install CPUs, memory modules
(DIMMs), local storage (such as Flash SSDs or HDDs), and network interface
cards (NICs) to satisfy the range of resource requirements.

The chipsets and additional components are grouped in the following way:

• Number and type of CPUs:

– From 1 to 8 CPU socket.

– Intel Xeon Family, AMD EPYC, etc.

• Available RAM:

– From 2 to 192 DIMM Slots.

• Locally attached disks:

– From 1 to 24 Drive Bays.

– HDD or SSD.

– SAS (higher performance but more expensive) or SATA (for entry-
level servers).

• Other special purpose devices:

– From 1 to 20 GPUs per node, or TPUs.

– NVIDIA Pascal, Volta, etc.

• Form factor:

– From 1 unit to 10 units.

– Tower.

16

2 Hardware Infrastructures 2.2 Node-level

Differences between Rack, Blade and Tower

Tower Server

A Tower Server looks and feels much like a traditional tower PC.

✓ Advantages

✓ Scalability and ease of upgrade. Customized and upgraded based on
necessity.

✓ Cost-effective. Tower servers are probably the cheapest of all kinds of
servers.

✓ Cools easily. Since a tower server has a low overall component density,
it cools down easily.

l Disadvantages

✗ Consumes a lot of space. These servers are difficult to manage physi-
cally.

✗ Provides a basic level of performance. A tower server is ideal for
small business that have a limited number of clients.

✗ Complicated cable management. Devices aren’t easily routed to-
gether.

17

2 Hardware Infrastructures 2.2 Node-level

2.2.1.1 Rack Servers

Rack Servers are unique shelves that accommodate all the IT equip-
ment and allow their interconnection. The racks are used to store these rack
servers.

Server racks are measured in Rack Units, or "U". One U is approximately
44.45 millimeters. The main advantage of these racks is that they allow de-
signers to stack up other electronic devices and servers.

A rack server is designed to be positioned in a bay by vertically stacking servers
one over the other along with other devices (storage units, cooling systems,
network peripherals, and batteries).

✓ Advantages

✓ Failure containment. Very little effort to identify, remove, and replace
a malfunctioning server with another.

✓ Simplified cable management. Easy and efficient to organize cables.

✓ Cost-effective. Computing power and efficiency at relatively lower costs.

l Disadvantages

✗ Power usage. Needs of additional cooling systems due to their high
overall component density, thus consuming more power.

✗ Maintenance. Since multiple devices are placed in racks together, main-
taining them gets considerably though with the increasing number of racks.

18

2 Hardware Infrastructures 2.2 Node-level

2.2.1.2 Blade Servers

Blade Servers are the latest and the most advanced type of servers in the
market. They can be termed hybrid rack servers, where servers are placed
inside blade enclosures, forming a blade system.

The most significant advantage of blade servers is that these servers are the
most minor types of servers available now and are great for conserving
space.

Finally, a blade system also meets the IEEE standard for rack units, and each
rack is measured in the units of "U".

✓ Advantages

✓ Size and form factor. They are smallest and the most compact servers,
requiring minimal physical space. Blade servers offer higher space effi-
ciency compared to traditional rack-mounted servers.

✓ Cabling. Blade server don’t involve the cumbersome tasks of setting up
cabling. Although you still might have to deal with the cabling, it is near
to negligible when compared to tower and rack servers.

✓ Centralized management. Blade enclosures typically come with cen-
tralized management tools that allow administrators to easily monitor,
configure and update all blades from a single interface.

✓ Load balancing, failover, scalability. Uniform system, shared com-
ponents (including network), simple addition/removal of servers.

l Disadvantages

✗ Expensive configuration and Higher initial cost. Although upgrad-
ing the blade server is easy to handle and manage, the initial configuration
or the setup requires more effort and higher initial investment.

✗ Vendor Lock-In. Blade servers typically require the use of the manufac-
turer’s specific blades and enclosures, leading to vendor lock-in. This can
limit flexibility and potentially increase costs in the long run.

✗ Cooling. Blade servers come with high component density. Therefore,
special accommodations have to be arranged for these servers to ensure
they don’t get overheated. Heating, ventilation, and air conditioning sys-
tems (HVAC) must be carefully managed and designed.

19

2 Hardware Infrastructures 2.2 Node-level

2.2.1.3 Machine Learning

Deepening: Machine Learning (supervised learning)

Machine learning (ML) is a branch of artificial intelligence (AI) and
computer science that focuses on the using data and algorithms to en-
able AI to imitate the way that humans learn, gradually improving its
accuracy (source).

UC Berkeley breaks out the learning system of a machine learning algo-
rithm into three main parts:

1. A Decision Process: In general, machine learning algorithms are
used to make a prediction or classification. Based on some input
data, which can be labeled or unlabeled, your algorithm will pro-
duce an estimate about a pattern in the data.

2. An Error Function: An error function evaluates the prediction of
the model. If there are known examples, an error function can
make a comparison to assess the accuracy of the model.

3. A Model Optimization Process: If the model can fit better to the
data points in the training set, then weights are adjusted to re-
duce the discrepancy between the known example and the model
estimate. The algorithm will repeat this iterative “evaluate and op-
timize” process, updating weights autonomously until a threshold
of accuracy has been met.

The main goal is to learn a target function that can be used for predic-
tion. Given a training set of labeled examples {(x1, y1) , . . . , (xn, yn)},
estimate the prediction function f by minimizing the prediction error on
the training set:

y = f (x)

Where y is the output, f is the prediction function and the x is an image
feature.

Deepening: Artificial Neural Network

The Artificial Neural Network is a computational model inspired by
the human brain (perceptron). It consists of interconnected nodes (neu-
rons) organized in layers to process and analyze data and used to learn
data representation from data (learn features and the classifier/regres-
sor).

The learning process of a Neural Network is as follows: Neurons make
decisions (activation functions). There are wights, so the connections be-
tween neurons are strengthened or weakened through training- randomly
initialized.
The (training data) Neural Networks learn from historical data and ex-

20

https://www.ibm.com/topics/machine-learning
https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/

2 Hardware Infrastructures 2.2 Node-level

amples. Then, labeled data are provided.

Deepening: effects of ML and ANN

Deep learning models began to appear and be widely adopted, enabling
specialized hardware to power a broad spectrum of machine learning
solutions.
Since 2013, AI learning compute requirements have doubled every 3.5
months (vs. 18-24 months expected from Moore’s Law).
To satisfy the growing compute needs for deep learning, WSCs deploy
specialized accelerator hardware:

• Graphical Processing Units (GPUs) are used for data-parallel com-
putations (the same program is executed on many data elements
in parallel). In order to use parallel programming, high-level lan-
guages such as CUDA, OpenCL, OPENACC, OpenMP, and SYCL
exist. This technique allows up to 1000x faster than CPU.

• Tensor Processing Unit (TPU), where Tensor is a n-dimensional
matrix, are used for training and inference.

• Field-Programmable Gate Array (FPGA) are programmable hard-
ware devices. The device user can program an array of logic gates
(“configured”) in the field instead of the people who designed it. An
array of carefully designed and interconnected digital subcircuits
that efficiently implement common functions, offering very high
levels of flexibility. The digital subcircuits are called configurable
logic blocks (CLBs).

FPGA Applications in Data Centers:

– Network acceleration: FPGAs can offload specific processing
tasks from CPUs, improving overall network performance and
reducing CPU workload.

– Security acceleration: Encryption, decryption, and other
security-related tasks can be accelerated using FPGAs, en-
hancing data centre security while maintaining performance.

– Data analytics: FPGAs can accelerate specific algorithms in
data analytics workloads, leading to faster data processing
and analysis.

– Machine learning: FPGAs can be configured to efficiently im-
plement specific machine learning algorithms, potentially of-
fering performance advantages for specialized tasks.

21

https://en.wikipedia.org/wiki/Moore's_law

2 Hardware Infrastructures 2.2 Node-level

Advantages Disadvantages

CPU

• Easy to be programmed
and support any program-
ming framework.

• Fast design space explo-
ration and run your appli-
cations.

• Suited only for simple AI
models that do not take
long to train and for small
models with small training
set.

GPU

• Ideal for applications in
which data need to be pro-
cessed in parallel like the
pixels of images or videos.

• Programmed in languages
like CUDA and OpenCL
and therefore provide lim-
ited flexibility compared
to CPUs.

TPU

• Very fast at performing
dense vector and matrix
computations and are spe-
cialized on running very
fast programming based
on Tensorflow.

• For applications and mod-
els based on the Tensor-
Flow.

• Lower flexibility compared
to CPUs and GPUs.

FPGA

• Higher performance, lower
cost and lower power
consumption compared to
other options like CPUs
and GPU.

• Programmed using
OpenCL and High-Level
Synthesis (HLS).

• Limited flexibility com-
pared to other platforms.

22

2 Hardware Infrastructures 2.2 Node-level

2.2.2 Storage (type, technology)

Data has significantly grown in the last few years due to sensors, industry 4.0,
AI, etc. The growth favours the centralized storage strategy that is focused
on the following:

• Limiting redundant data

• Automatizing replication and backup

• Reducing management costs

The storage technologies are many. One of the oldest but still used is the Hard
Disk Drive (HDD), a magnetic disk with mechanical interactions. Due to
its mechanical movement, the solid-state drive (SSD) is the best solution
(quality-price) because there are no mechanical or moving parts, and they are
built out of transistors (NADN flash-based devices). The non-volatile mem-
ory express (NVMe) also exists, which is the latest industry standard for
running PCIe2 SSDs.

As for price classification, we can see that the NVMe is the most expensive
solution:

1. NVMe (between 100€ and 200€ for 1TB)

2. SSD (between 70€ and 100€ for 1TB)

3. HDD (between 40€ and 60€ for 1TB)

For these reasons, it is reasonable to use a hybrid solution (HDD + SSD):

• A speed storage technology (SSD or NVMe) as cache and several
HDDs for storage. It is a combination used by some servers: a small
SSD with a large HDD to have a faster disk.

• Some HDD manufacturers produce Solid State Hybrid Disks (SSHD) that
combine a small SDD with a large HDD in a single unit.

2PCIe (peripheral component interconnect express). is an interface standard for
connecting high-speed components

23

2 Hardware Infrastructures 2.2 Node-level

2.2.2.1 Files

An OS can see the disks as a collection of data blocks that can be read
or written independently. To allow the ordering/management among them,
each block is characterized by a unique numerical address called LBA
(Logical Block Address). Typically, the OS groups blocks into clusters3

to simplify the access to the disk. Typical cluster sizes range from 1 disk
sector (512 B, or 4 KB) to 128 sectors (64 KB).

Each cluster contains:

• File data. The actual content of the files.

• Metadata. The information required to support the file system:

– File names

– Directory structures and symbolic links

– Creation, modification, and last access dates

– Security information (owners, access list, encryption)

– Links to the LBA where the file content can be located on
the disk

The disk can thus contain several types of clusters:

• Metadata:

– Fixed position (to bootstrap the entire file system)

– Variable position (to hold the folder structure)

• File data (the actual content of the files)

• Unused space (available to contain new files and folders)

Figure 5: A cluster can be seen visually as an array. In this image, for example,
we’ve shown three types of cluster: metadata fixed position (azure), metadata
variable position (green), file data (orange), unused space (white).

3Clusters are the minimal units an OS can read from or write to a disk.

24

2 Hardware Infrastructures 2.2 Node-level

The following explanation introduces some basic operations on the files to see
what happens inside the disks.

• Reading. To read a file:

1. Access the metadata, variable position (because it contains the folder
structure), to locate its block;

2. Access the blocks to read the contents of the file.

1 2

• Writing. To write a file:

1. Access the metadata, variable position (because it contains the folder
structure), to find free space.

2. Write the data in the allocated blocks (cluster type: unused space).

1 2

Since the file system can only access clusters, the actual space taken up
by a file on a disk is always a multiple of the cluster size. Given:

– s, the file size

– c, the cluster size

Then the actual size on the disk a can be calculated as:

a = ceil
(s
c

)
× c (1)

Where ceil rounds a number up to the nearest integer. It’s also possible
to calculate the amount of disk space wasted by organising the file
into clusters (wasted disk space w):

w = a− s (2)

A formal way to refer to wasted disk space is internal fragmentation
of files.

25

2 Hardware Infrastructures 2.2 Node-level

Example 1: internal fragmentation

– File size: 27 byte

– Cluster size: 8 byte

The actual size on the disk is:

a = ceil

(
27

8

)
· 8 = ceil (3.375) · 8 = 4 · 8 = 32 byte

And the internal fragmentation w is:

w = 32− 27 = 5 byte

• Deleting. To delete a file:

1. Just update the metadata, variable position (because it contains the
folder structure), to say that the blocks where the file was stored are
no longer used by the OS.

Deleting a file never actually deletes the data on the disk: if a
new file is written to the same clusters, the old data is replaced by the
new.

1

X
• External fragmentation. As the disk’s life evolves, there might not be

enough space to store a file contiguously.

In this case, the file is split into smaller chunks and inserted into the free
clusters spread over the disk.

The effect of splitting a file into non-contiguous clusters is called
external fragmentation.

21 3

2 31

26

2 Hardware Infrastructures 2.2 Node-level

2.2.2.2 HDD

A Hard Disk Drive (HDD) is a data storage device that uses rotating
disks (platters) coated with magnetic material.

Data is read randomly, meaning individual data blocks can be stored or
retrieved in any order rather than sequentially.

An HDD consists of one or more rigid (hard) rotating disks (platters) with
magnetic heads arranged on a moving actuator arm to read and write data to
the surfaces.

track t

sector s

spindle

cylinder c

platter
arm

read-write
head

arm assembly

rotation

Figure 6: Hard Drive Disk anatomy.

Externally, hard drives expose a large number of sectors (blocks):

• Typically, 512 or 4096 bytes.

• Individual sector writes are atomic.

• Multiple sectors write it may be interrupted (torn write4).

The geometry of the drive:

• The sectors are arranged into tracks.

• A cylinder is a particular track on multiple platters.

• Tracks are arranged in concentric circles on platters.

• A disk may have multiple double-sided platters.

The driver motor spins the platters at a constant rate, measured in
Revolutions Per Minute (RPM).

4Torn writes happen when only part of a multi-sector update is written successfully to
disk.

27

2 Hardware Infrastructures 2.2 Node-level

0

1

4

8

12

34

28

32

30

3529

3331

27

24

21

18

25

26

17

16

23

22

20

19

13

14

15

2
3

11

10

9

6

5

7

Ro
ta
ti
on

Three tracks

One platter

Sector

Outer tracks hold
more data

Read head

Seeks across the
various tracks

Figure 7: Example of HDD geometry.

Given the architecture of the HDD, there are four types of delay:

• Rotational Delay is the time to rotate the desired sector to the
read head, and it’s related to RPM.

• Seek Delay is the time to move the read head to a different track.

• Transfer time is the time to read or write bytes.

• Controller Overhead is the overhead for the request management.

In order to reduce the delay in the HDD, the companies use a high-speed and
tiny memory (8, 16 or 32 MB) called cache (also called track buffer). The
cache is used when there is a:

• Read caching. It reduces read delays due to seeking and rotation.

• Write caching. It is divided into two different implementations:

– Write Back cache: the drive reports that writes are complete after
they have been cached. The disadvantage is that it has an inconsis-
tent state if the power goes off before the write-back event.

– Write Through cache: the drive reports that writes are complete
after they have been written to disk.

So, the caching helps improve disk performance. The critical idea under
caching is that if there is a queue of requests to the disk, they can be
reordered to improve performance. The estimation of the request length
is feasible, knowing the position of the data on the disk.

28

2 Hardware Infrastructures 2.2 Node-level

There are several scheduling algorithms:

• First Come, First Serve (FCFC). It is the most basic scheduler, serv-
ing requests in order. The disadvantage is that there is much time spent
seeking.

• Shortest Seek Time First (SSTF). It is primary purpose is to minimize
seek time by always selecting the block with the shortest seek time. The
advantage is that it is optimal and can be easily implemented. The main
disadvantage is that it is prone to starvation.

• SCAN, otherwise known as the Elevator Algorithm. The head sweeps
across the disk, servicing requests in order. The advantage is that it
performs reasonably well and does not suffer starvation. The disadvan-
tage is that the average access times are higher for requests at high and
low addresses.

• C-SCAN (Circular SCAN). It is like the SCAN algorithm, but only
service requests in one direction. The advantage is fairer than SCAN.
However, the disadvantage is that it has worse performance than SCAN.

• C-LOOK. It is a C-SCAN variant that peeks at the upcoming addresses
in the queue. The head only goes as far as the last request.

29

2 Hardware Infrastructures 2.2 Node-level

2.2.2.3 SSD

The solid-state drive (SSD) does not have mechanical or moving parts like
an HDD. It is built out of transistors (like memory and processors). It has
higher performance than HDD.

It stores bits in cells. Each cell can have:

• Single-Level Cell (SLC), a single bit per cell.

• Multi-Level Cell (MLC), two bits per cell.

• Triple-Level Cell (TLC), three bits per cell.

• And so on... QLC, PLC, etcetera.

Internally, the SSD has a lot of NAND flashes, which are organized into Pages
and Blocks. Some terminology:

• A Page contains multiple logical block (e.g. 512 B - 4 KB) addresses
(LBAs). It is the smallest unit that can be read/written. It is a
sub-unit of an erase block and consists of the number of bytes which can
be read/written in a single operation. The states of each page are:

– Empty (ERASED): it does not contain data.
– Dirty (INVALID): it contains data, but this data is no longer in use

(or never used).
– In use (VALID): the page contains data that can be read.

• A Block (or Erase Block) typically consists of multiple pages (e.g. 64)
with a total capacity of around 128-256 KB. It is the smallest unit that
can be erased.

When passing from the HDD to SDD, there is a problem known as Write Ampli-
fication (WA). Write amplification (WA) is an undesirable phenomenon
associated with flash memory and solid-state drives (SSDs) where the
actual amount of information physically written to the storage media is a mul-
tiple of the logical amount intended to be written.

Example 2

Given a hypothetical SSD:

• Page Size: 4 KB

• Block Size: 5 Pages

• Drive Size: 1 Block

• Read Speed: 2 KB/s

• Write Speed: 1 KB/s

Let us write a 4 KB text file to the brand-new SSD. The overall writing
time is 4 seconds (write speed × file dimension, 1 KB/s × 4 KB).

30

2 Hardware Infrastructures 2.2 Node-level

Now, let us write an 8 KB picture file for the almost brand-new SSD;
thankfully, there is space. The overall Writing time is 8 seconds, and the
calculation is the same as above.

Now, consider that the first file inserted on the first page is unnecessary.

Finally, let’s write a 12 KB pic to the SSD. Theoretically, the image
should take 12 seconds. However, it is wrong! The SSD has only two
empty pages and one dirty page (invalid). Then, the operations are:

1. Read block into cache.

2. Delete page from cache (set dirty page).

3. Write a new picture into the cache.

4. Erase the old block on the SSD.

5. Write cache to SSD.

The OS only thought it was writing 12 KBs of data when the SSD had
to read 8 KBs (2 KB/s) and then write 20 KBs (1 KB/s), the entire
block. The writing should have taken 12 seconds but took 4 + 20 = 24
seconds, resulting in a write speed of 0.5 KB/s, not 1 KB/s.

A direct mapping between Logical and Physical pages is not feasible inside the
SSD. Therefore, each SSD has an FTL component that makes the SSD look like
an HDD.

The Flash Translation Layer (FTL) is placed in the hierarchy between the
File System and Flash Memory. It aims to do three main actions:

1. Data Allocation and Address Translation: It efficiently reduces Write
Amplification effects (see page 30); the program pages within an erased
block in order (from low to high pages), called Log-Structured FTL.

2. Garbage collection: reuse of pages with old data (Dirty/Invalid).

31

2 Hardware Infrastructures 2.2 Node-level

3. Wear levelling: FTL should spread across the blocks of the flash, ensur-
ing that all of the blocks of the device wear out roughly simultaneously.

Example 3: Log-Structured FTL

Assume that a page size is 4 KB and a block consists of four pages. The
write list is (Write(pageNumber, value)):

• Write(100, a1)

• Write(101, a2)

• Write(2000, b1)

• Write(2001, b2)

• Write(100, c1)

• Write(101, c2)

The steps are:

1. The initial state is with all pages marked as INVALID(i):

2. Erase block zero:

3. Program pages in order and update mapping information
(Write(100, a1)):

4. After performing four writes (Write(100, a1), Write(101, a2),
Write(2000, b1), Write(2001, b2)):

32

2 Hardware Infrastructures 2.2 Node-level

5. After updating 100 and 101:

When an existing page is updated, then the old data becomes obsolete. The old
versions of data are called garbage, and (sooner or later) garbage pages
must be reclaimed for new writes to take place.

The Garbage Collection is the process of finding garbage blocks and
reclaiming them. It is a simple process for fully garbage blocks but more
complex for partial cases.

Example 4: how garbage collection works

The steps are:

1. Update request for existing data:

Block (A)

2. Find a free page, and save the new data:

Block (A)

New Data

Invalid

3. This scenario may continue until there are not enough free blocks:

33

2 Hardware Infrastructures 2.2 Node-level

Block (A)

Invalid

Block (B)

Invalid

Block (C)

Invalid
Invalid

Invalid
Invalid

Invalid
Invalid
Invalid

Invalid

4. Collect valid pages into a free block:

Block (A)

Invalid

Block (B)

Invalid

Block (C)

Invalid
Invalid

Invalid
Invalid

Invalid
Invalid
Invalid

Invalid

5. Update the map table and erase invalid (obsolete) blocks:

Block (A) Block (B) Block (C)

. Problem 1: the Garbage Collection is too expensive!

The Garbage Collection is expensive. It requires reading and rewriting of live
data. Ideal garbage collection is a reclamation of a block that consists of only
dead pages.

✓ Partial solution

Garbage Collection costs depend on the amount of data blocks that must
be migrated. The solution to alleviate the problem is to overprovision the
device by adding extra flash capacity (cleaning can be delayed) and running
the garbage collection in the background using less busy periods for the
disk.

. Problem 2: the Ambiguity of Delete

When performing background Garbage Collection, the SSD assumes to know
which pages are invalid. However, most file systems do not truly delete data.
For example, on Linux, the “delete” function is unlink(), removing the file
meta-data but not the file itself.

34

2 Hardware Infrastructures 2.2 Node-level

1. File is written on SSD

2. File is deleted

3. The Garbage Collection executes:

• 9 pages look valid to the SSD;

• BUT the OS knows only 2 pages are valid.

✓ Partial solution

New SSD SATA command TRIM (SCSI - UNMAP). The OS tells the SSD
that specific LBAs (page 24) are invalid and may be garbaged by the
Garbage Collection.

. Problem 3: Mapping Table Size

The size of the page-level mapping table is too large. In fact, with a
1 TB SSD with a 4-byte entry per 4 KB page, 1 GB of DRAM is needed for
mapping!

✓ Partial solution

Exists some approaches to reduce the costs of mapping:

• Block Mapping (block-based mapping). Mapping at block granularity
to reduce the size of a mapping table. With this technique, there is a small
writing problem: the FTL must read a large amount of live data from the
old block and copy it into a new one.

Example 5: Block Mapping

The first four writes:

– Write(2000, a)

– Write(2001, b)

– Write(2002, c)

– Write(2003, d)

And finally the last one:

– Write(2002, c’)

35

2 Hardware Infrastructures 2.2 Node-level

• Hybrid Mapping. FTL maintains two tables: log blocks (page mapped)
and data blocks (block mapped). The FTL will consult the page map-
ping table and block mapping table when looking for a particular logical
block.

Example 6: Hybrid Mapping

Let’s suppose the following sequence:

– Write(1000, a)

– Write(1001, b)

– Write(1002, c)

– Write(1003, d)

Let’s update some pages:

– Write(1000, a’)

– Write(1001, b’)

– Write(1002, c’)

– FTL updates only the page mapping information

When needed, FTL can perform MERGE operations:

36

2 Hardware Infrastructures 2.2 Node-level

• Page Mapping plus Caching. The basic idea is to cache the active
part of the page-mapped FTL. If a given workload only accesses a
small set of pages, the translations of those pages will be stored in the
FTL memory. It will perform well without high memory cost if the cache
can contain the necessary working set. Cache miss overhead exists; we
need to accept it.

✓ The importance of Wear Leveling

As we have mentioned, the wear leveling is essential. The erase/write cycle is
limited in Flash Memory. All blocks should wear out roughly at the same time.

The log-structured approach and garbage collection help spread writing. How-
ever, a block may contain cold data: the FTL must periodically read all the
live data from such blocks and re-write it elsewhere. A disadvantage is that
the wear levelling increases the write amplification of the SSD and conse-
quently decreases performance. However, to partially fix this, a simple policy
to apply is that each flash block has an Erase/Write Cycle Counter and
maintains the value of:

|Max (EW cycle)−Min (EW cycle)| < e (3)

HDD vs SSD

Exists two metrics:

• Unrecoverable Bit Error Ratio (UBER). A metric for the rate of
occurrence of data errors, equal to the number of data errors per bits
read.

• Endurance rating: Terabytes Written (TBW). It is the total amount
of data that can be written into an SSD before it is likely to fail. The
number of terabytes that may be written to the SSD while still
meeting the requirements.

37

2 Hardware Infrastructures 2.2 Node-level

2.2.2.4 RAID

RAID (Redundant Array of Independent Disks) is a data storage
virtualization technology5 that combines multiple physical disk drive
components into one or more logical units for the purposes of data
redundancy, performance improvement, or both. This contrasts the pre-
vious concept of highly reliable mainframe disk drives, which were referred to
as Single Large Expensive Disks (SLED), also called Just a Bunch of
Disks (JBOD) method where each disk is a separate device with a different
mount point.

The data are striped across several disks accessed in parallel:

• High data transfer rate: large data accesses (heavy I/O operations).

• High I/O rate: small but frequent data accesses (light I/O operations).

• Load Balancing across the disks.

Two techniques exist to guarantee these features: data striping (improve per-
formance) and redundancy (improve reliability).

Data Striping is the technique of segmenting logically sequential data,
such as a file, so that consecutive segments are stored on different phys-
ical storage devices. A small quantity of terminology:

• Striping: data are written sequentially (a vector, a file, a table, etc)
in units (stripe units such as bit, byte, and blocks) on multiple disks
according to a cyclic algorithm (round robin).

• Stripe unit: the dimension of the data unit written on a single
disk.

• Stripe width: number of disks considered by the striping algo-
rithm:

1. Multiple independent I/O requests will be executed in parallel
by several disks, decreasing the disks’ queue length (and time).

2. Multiple disks will execute single Multiple-Block I/O requests
in parallel, increasing the transfer rate of a single request.

The redundancy technique is introduced because the more physical disks
in the array, the more significant the size and performance gains, but the larger
the probability of failure of a disk.

In fact, the probability of a failure (assuming independent failures) in an
array of 100 disks is 100 higher than the probability of a failure of a single disk!
For example, if a disk has a Mean Time To Failure (MTTF) of 200.000
hours (23 years), an array of 100 disks will show an MTTF of 2000 hours (3
months).

5I/O virtualization: data are distributed transparently over the disks, then no action is
required of the users.

38

2 Hardware Infrastructures 2.2 Node-level

The Redundancy is the technique of data duplication or error correct-
ing codes (stored on disks different from the ones with the data) that are
computed to tolerate loss due to disk failures. Since write operations
must also update the redundant information, their performance is worse
than traditional writing.

Data is distributed across the drives in one of several ways, referred to as RAID
levels, depending on the required level of redundancy and performance. The
different schemes, or data distribution layouts, are named by the word RAID
followed by a number, for example RAID 0 or RAID 1. Each scheme, or RAID
level, provides a different balance among the key goals: reliability, availability,
performance, and capacity. The RAID levels are:

• RAID 0 striping only

• RAID 1 mirroring only

– RAID 0+1 nested levels

– RAID 1+0 nested levels

• RAID 2 bit interleaving (not used)

• RAID 3 byte interleaving - redundancy (parity disk)

• RAID 4 block interleaving - redundancy (parity disk)

• RAID 5 block interleaving - redundancy (parity block distributed)

• RAID 6 greater redundancy (2 failed disks are tolerated)

Note: these notes do not study the levels RAID 2 and RAID 3.

Topic Page

RAID 0 40
RAID 1 42
RAID 0 + 1 43
RAID 1 + 0 43
RAID 4 46
RAID 5 48
RAID 6 49
Comparison and characteristics of RAID levels 50

Table 2: RAID - Table of Contents.

39

2 Hardware Infrastructures 2.2 Node-level

RAID 0

In RAID 0, the data are written on a single logical disk and split into
several blocks distributed across the disks according to a striping algo-
rithm.

® When is it used?

It is used where performance and capacity are the primary concerns. These
mean that a minimum of two drives is required.

✓ Advantages

• Lower cost because it does not employ redundancy (no error-correcting
codes are computed and stored).

• Best write performance (it does not need to update redundant data
and is parallelized).

. Disadvantages

Single disk failure will result in data loss.

{ How does it work?

The key idea is to present an array of disks as a single large disk and
maximize parallelism by striping data across all N disks.

Now, we will give some metrics to understand how it is possible to calculate
access to a specific data block and compare the performance of different
RAID technologies.

To access to a specific data blocks, the formulas are:

Disk = logical_block_number% number_of_disks

Offset =
logical_block_number

number_of_disks

(4)

For example, given the following schema:

0
4
8
12

Disk 0

1
5
9
13

Disk 1

2
6
10
14

Disk 2

3
7
11
15

Disk 3

If it is requested, the logical block is 11, and the disks are 4:

Disk = 11%4 = 3

Offset = 11÷ 4 = 2.75 ≈ 3, then physical block 2 starting from 0

40

2 Hardware Infrastructures 2.2 Node-level

Note that the chunk size is critical because it impacts disk array performance.
With smaller chunks, there is greater parallelism than with big chunks,
which have reduced seek times. The typical arrays use 64 KB chunks.

To measure RAID performance, we focus on sequential and random workloads.
Assume disks in the array have sequential transfer rate S, and the info about
the disk is:

• Average seek time: 7 ms

• Average rotational delay: 3 ms

• Transfer rate: 50 MB/s

For a single large transfer (10 MB):

S =
transfer_size
time_to_access

S = 10 MB ÷ (7 ms + 3 ms + 10 MB ÷ 50 MB/s) = 47.62 MB/s

If the disks in the array have a random transfer rate R, and for a set of small
files (10 KB):

R =
transfer_size
time_to_access

R = 10 KB ÷ (7 ms + 3 ms + 10 KB ÷ 50 MB/s) = 0.98 MB/s

¡ Analysis

• Capacity: N , where N is the number of disks. Then, everything can be
filled with data.

• Reliability: non-existent. If any drive fails, data is permanently lost.
Then, the Mean Time To Failure (MTTF) equals the Mean Time To
Data Loss (MTTDL):

MTTF = MTTDL

• Sequential read and write: N × S

• Random read and write: N ×R

Where N is the number of disks, S the sequential transfer rate and R the random
transfer rate.

41

2 Hardware Infrastructures 2.2 Node-level

RAID 1

Although RAID 0 offers high performance, it has zero error recovery. For this
reason, RAID 1 makes two copies of all data (again, a minimum of 2 disk
drives are required).

® When is it used?

It is used when zero error recovery is not allowed.

✓ Advantages

• High reliability. When a disk fails, the second copy is used.

• Read of a data. It can be retrieved from the disk with shorter queueing,
seek, and latency delays.

• Fast writes (no error correcting code should be computed). But still
slower than standard disks (due to duplication).

. Disadvantages

• High costs because only 50% of the capacity is used.

{ How does it work?

In principle, a RAID 1 can mirror the content over more than one disk. This
feature gives resiliency to errors even if more than one disk breaks. Also, it
allows a voting mechanism to identify errors not reported by the disk
controller. Unfortunately, this is never used in practice because the
overhead and costs are too high.

However, disks could be coupled if several disks are available (always in an even
number). Nevertheless, the total capacity is halved, and each disk has a mirror.
Then, the question is simple: How do we organize this architecture? The answer
is the nested RAIDs: RAID 0 + 1 and RAID 1 + 0.

We define the RAID x + y (or RAID xy) as:

• n×m disks in total

• m groups of n disks

• Apply RAID x to each group of n disks

• Apply RAID y considering the m groups as single disks

42

2 Hardware Infrastructures 2.2 Node-level

RAID y

RAID x

RAID x

m

n

n

Figure 8: RAID x + y general architecture.

The RAID 0 + 1 is a group of striped disks (RAID 0) that are then
mirrored (RAID 1). So:

1. The mirroring first (RAID 1)

2. Then the striping (RAID 0)

There are necessary almost four drives. Note that after the first failure, the
model becomes a RAID 0.

0
2
4
6

Disk 0

1
3
5
7

Disk 1

0
2
4
6

Disk 2

1
3
5
7

Disk 3

Stripe Stripe

Mirror

0+1

The RAID 1 + 0 is a group of mirrored disks (RAID 1) that are then
striped (RAID 0). So:

1. The striping first (RAID 0)

2. Then the mirroring (RAID 1)

There are necessary almost four drives. Usually, it is used in databases with
very high workloads (fast writes).

43

2 Hardware Infrastructures 2.2 Node-level

0
2
4
6

Disk 0

0
2
4
6

Disk 1

1
3
5
7

Disk 2

1
3
5
7

Disk 3

Mirror Mirror

Stripe

1+0

] Differences between RAID 01 and RAID 10

Look at the following architectures:

A1

A4

B1

B4

A2

A5

B2

B5

A3

A6

B3

B6

A1

A4

B1

B4

A2

A5

B2

B5

A3

A6

B3

B6

RAID 0 RAID 0

RAID 1RAID 0+1

A1

A4

B1

B4

A1

A4

B1

B4

RAID 1

A2

A5

B2

B5

A2

A5

B2

B5

RAID 1

A3

A6

B3

B6

A3

A6

B3

B6

RAID 1

RAID 0RAID 1+0

1 2 3 4 5 6 1 2 3 4 5 6

What we can say is:

• The performance of RAID 01 and RAID 10 are the same.

• The main difference is the fault tolerance6!

On most implementations of RAID controllers, RAID 01 fault tolerance is
less. Since we have only two groups of RAID 0, if two drives (one in each group)
fail, the entire RAID 01 will fail. Looking at the architecture above, if Disk 1
and 4 fail, both groups will be down. So, the whole RAID 01 will fail.

On the contrary, RAID 10 since there are many groups (as the individual
group is only two disks), even if three disks fail (one in each group), the RAID
10 is still functional. Looking at the architecture above, even if Disk 1, 3, and
5 fail, the RAID 10 will still be functional.

Fault Tolerance: RAID 01 ≫ RAID 10
6Fault tolerance is the ability of a system to maintain proper operation despite failures or

faults in or more of its components.

44

2 Hardware Infrastructures 2.2 Node-level

So, given a choice between RAID 10 and RAID 01, it should be better to choose
RAID 10 to have more fault tolerance.

¡ Analysis

• Capacity: N ÷ 2, where N is the number of disks. Then, two copies of
all data, thus half capacity.

• Reliability: 1 drive can fail, sometimes more! In an optimistic scenario,
N ÷ 2 drives can fail without data loss.

• Sequential write: (N ÷ 2)×S; two copies of all data, thus half through-
put.

• Sequential read: (N ÷ 2) × S; half of the read blocks are wasted, thus
halving throughput.

• Random read: N × R; it is the best scenario for RAID 1 because the
read can be parallelized across all disks.

• Random write: (N ÷ 2)×R; two copies of all data, thus half throughput.

Where N is the number of disks, S is the sequential transfer rate, and R is the
random transfer rate.

It is essential to observe RAID 1. There is a notorious problem called the
Consistent Update Problem.

Mirrored writes should be atomic. Then, all copies are written, or none are
written. Unfortunately, this is very difficult to guarantee sometimes, for
example, in a power failure scenario. To solve this problem, many RAID con-
trollers include a write-ahead log, a battery backend, and non-volatile
storage of pending writes. With this system, a recovery procedure en-
sures the recovery of the out-of-sync mirrored copies.

45

2 Hardware Infrastructures 2.2 Node-level

RAID 4

RAID 4 consists of block-level striping with a dedicated parity disk.

® When is it used?

RAID 1 offers highly reliable data storage, but it uses half the space of the array
capacity. To achieve the same level of reliability without wasting capac-
ity, it is possible to use RAID 4, which uses information coding techniques
to build lightweight error recovery mechanisms.

✓ Advantages

• Good performance of random reads.

l Disadvantages

• Random Write performance is terrible due to being bottlenecked by
the parity drive.

{ How does it work?

Disk N only stores parity information for the other N − 1 disks. The parity is
calculated using the XOR operation7.

0
4
8
12

Disk 0

1
5
9
13

Disk 1

2
6
10
14

Disk 2

3
7
11
15

Disk 3

P0
P1
P2
P3

Disk 4

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

0 0 1 1 0 ^ 0 ^ 1 ^ 1 = 0

0 1 0 0 0 ^ 1 ^ 0 ^ 0 = 1

1 1 1 1 1 ^ 1 ^ 1 ^ 1 = 0

0 1 1 1 0 ^ 1 ^ 1 ^ 1 = 1

Disk N only stores
parity information for

the other N-1 disks

Parity calculated
using XOR

Figure 9: RAID 4 - How does it work?

The serial or random read is not a problem in RAID 4 because there is a
parallelization across all non-parity blocks in the stripe despite a tiny
performance reduction due to the parity disk.

7“A or B, but not A and B”

46

2 Hardware Infrastructures 2.2 Node-level

During the parity writing, the blocks are updated. The random write perfor-
mance is affected by the approach used:

• Additive parity (as known as reconstruct-writes):

1. Read all other blocks in a stripe in parallel;
2. XOR those with the new block to form a new parity block;
3. Write the new data block and new parity block to disks.

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4
0 0 1 1 0 ^ 0 ^ 1 ^ 1 = 00 0 ^ 0 ^ 0 ^ 1 = 1

• Subtractive parity (as known as read-modify-writes):

1. Read only the old data block to be updated and the old parity block;
2. Compute the new parity block using:

Pnew = (Dnew ⊻ Dold) ⊻ Pold

Where ⊻ is the logical XOR.
3. Write the new data block and new parity block to disks.

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4
0 0 1 1 0 ^ 0 ^ 1 ^ 1 = 00 1

Despite the sequential write does not suffer any performance effect from
the parity disk. Because it uses full-stripe write:

1. Buffer all data blocks of a stripe

2. Compute the parity block

3. Write all data and parity blocks in parallel [9]

¡ Analysis

• Capacity: N − 1, where N is the number of disks, and the −1 is because
one is dedicated to the parity disk.

• Reliability: 1 drive can fail. Massive performance degradation during
partial outage.

• Sequential read/write: (N − 1)×S; parallelization across all non-parity
blocks in the stripe (parity disk has no effect).

• Random read: (N − 1) × R; reads parallelize over all but the parity
drive (parity disk has no effect).

• Random write: R÷ 2; writes serialize due to the parity drive, and each
write requires one read and one write of the parity drive.

Where N is the number of disks, S is the sequential transfer rate, and R is the
random transfer rate.

47

2 Hardware Infrastructures 2.2 Node-level

RAID 5

RAID 5 rotates parity blocks across stripes.

® When is it used?

Unlike in RAID 4, parity information is distributed among the drives. This
technique is used to improve significantly the random write throughput
against the RAID 4 system.

✓ Advantages

• Improved random write despite the RAID 4 system.

{ How does it work?

The writes are spread roughly evenly across all drives.

0
5
10
15
P4

Disk 0

1
6
11
P3
16

Disk 1

2
7
P2
12
17

Disk 2

3
P1
8
13
18

Disk 3

P0
4
9
14
19

Disk 4

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

0 0 1 1 0 ^ 0 ^ 1 ^ 1 = 0

1 0 0 0 ^ 1 ^ 0 ^ 0 = 1 0

1 1 1 ^ 1 ^ 1 ^ 1 = 0 1 1

1 0 ^ 1 ^ 1 ^ 1 = 1 0 1 1

Parity blocks
are spread over

all N disks

The random write in RAID 5 is:

1. Read the target block and the parity block

2. Use subtraction to calculate the new parity block

3. Write the target block and the parity block

Thus, four total operations (two reads, two writes) are distributed across
all drives.

¡ Analysis

• Capacity: N − 1 (same as RAID 4), where N is the number of disks.

• Reliability: 1 drive can fail (same as RAID 4). Massive performance
degradation during partial outage.

48

2 Hardware Infrastructures 2.2 Node-level

• Sequential read/write: (N - 1) * S (same as RAID 4); parallelization
across all non-parity blocks in the stripe (parity disk has no effect).

• Random read: N × R; unlike RAID 4, reads parallelize over all
drives.

• Random write: (N ÷ 4)×R; unlike RAID 4, writes parallelize over
all drives, and each write requires two reads and two writes, hence N÷4.

Where N is the number of disks, S is the sequential transfer rate, and R is the
random transfer rate.

RAID 6

RAID 6 can tolerate multiple disk faults (more fault tolerance) concerning
RAID 5. It tolerates two concurrent failures.

{ How does it work?

It uses Solomon-Reeds codes with two redundancy schemes and requires N + 2
disks (where N is the number of disks). Note that the minimum set is 4 data
disks.

Unfortunately, it has a high overhead for writes (computation of parities)
because each write requires six disk accesses due to the need to update both the
P and Q parity blocks (slow writes).

0
4
8
P3

Disk 0

1
5
P2
Q3

Disk 1

2
P1
Q2
9

Disk 2

P0
Q1
6
10

Disk 3

Q0
3
7
11

Disk 4

Two parity blocks
per stripe

49

2 Hardware Infrastructures 2.2 Node-level

Comparison and characteristics of RAID levels

The following table shows eight fundamental properties of the RAID levels.

• N : number of drives

• R: random access speed

• S: sequential access speed

• D: latency to access a single disk

RAID 0 RAID 1 RAID 4 RAID 5

Capacity N N ÷ 2 N − 1 N − 1
Reliability 0 1 ∨ : N ÷ 2 1 1

Sequential Read N × S (N ÷ 2)× S (N − 1)× S (N − 1)× S
Sequential Write N × S (N ÷ 2)× S (N − 1)× S (N − 1)× S
Random Read N ×R N ×R (N − 1)×R N ×R
Random Write N ×R (N ÷ 2)×R R÷ 2 (N ÷ 4)×R

Read D D D D
Write D D 2×D 2×D

Table 3: Comparison of RAID levels.

Where the throughput is:

• Sequential Read

• Sequential Write

• Random Read

• Random Write

And the latency is:

• Read

• Write

50

2 Hardware Infrastructures 2.2 Node-level

RAID
level

Capacity Reliability R/W
performance

Rebuild
performance

Suggested
applications

0 100% N/A Very good Good Non critical data
1 50% Excellent Very good / good good Critical information
5 (n-1)/n Good Good/ fair Poor Database,

transaction based
applications

6 (n-2)/n Excellent Very good/ poor Poor Critical
information,
w/minimal

1+0 50% Excellent Very good/ good Good Critical
information,
w/better
performance

Figure 10: Characteristics of RAID levels.

RAID 0 has the best performance and most capacity.

RAID 1 (10 better than 01) or RAID 6 have the greatest error recovery.

RAID 5 has the better balance between space, performance, and recoverability.

51

2 Hardware Infrastructures 2.2 Node-level

2.2.2.5 DAS, NAS and SAN

As the last argument, we introduce three different typologies of storage
systems:

• Direct Attached Storage (DAS) is a storage system directly at-
tached to a server or workstation. They are visible as disks/volumes
by the client OS.

• Network Attached Storage (NAS) is a computer connected to a
network that provides only file-based data storage services (e.g.
FTP, Network File System) to other devices on the network and is visible
as File Server to the client OS.

• Storage Area Networks (SAN) are remote storage units con-
nected to a PC using a specific networking technology (e.g. Fiber
Channel) and are visible as disks/volumes by the client OS.

In the following schema, we can see a simple architectural comparison.

Application Application Application

File System File System

Networking

File System

Disk Storage

DASNAS SAN

✓ DAS features

DAS is a storage system directly attached to a server or workstation.
The term is used to differentiate non-networked storage from SAN and NAS.
The main features are:

• Limited scalability.

• Complex manageability.

• Limited performance.

• To read files in other machines (the "file sharing" protocol of the OS must
be used).

52

2 Hardware Infrastructures 2.2 Node-level

Windows Linux/UnixMacOS

LAN Ethernet

Linux/Unix Linux/Unix

Figure 11: DAS architecture.

Note that all the external disks connected to a PC with a point-to-point
protocol can be considered DAS.

✓ NAS features

A NAS unit is a computer connected to a network that provides only
file-based data storage services to other devices on the network. NAS
systems contain one or more hard disks, often organized into logical redundant
storage containers or RAID. Finally, NAS provides file-access services to
the hosts connected to a TCP/IP network through Networked File
Systems/SAMBA. Each NAS element has its IP address. Furthermore, each
NAS has good scalability.

The main differences between DAS and NAS are:

• DAS is simply an extension of an existing server and is not neces-
sarily networked.

• NAS is designed as an easy and self-contained solution for sharing files
over the network.

Regarding performance, NAS depends mainly on the speed and congestion of
the network.

Windows Linux/UnixMacOS

NASNAS

LAN Ethernet

• Good scalability (incrementing the devices in each NAS element
or incrementing the number of NAS elements)

hosts (computing nodes)

storage nodes

storage devices

Figure 12: NAS architecture.

53

2 Hardware Infrastructures 2.2 Node-level

✓ SAN features

SANs are remote storage units connected to servers using a specific
networking technology. SANs have a particular network dedicated to ac-
cessing storage devices. It has two distinct networks: one TCP/IP and another
dedicated network (e.g. Fiber Channel). It has a high scalability.

The main difference between a NAS and a SAN is that:

• NAS appears to the client OS as a file server. Then, the client can
map network drives to shares on that server.

• A disk available through a SAN still appears to the client OS as
a disk. It will be visible in the disks and volumes management utilities
(along with the client’s disks) and available to be formatted with a file
system.

Figure 13: SAN architecture.

Application
Domain

Advantages Disadvantages

DAS • Budget
constraints

• Simple storage
solutions

• Easy setup
• Low cost
• High performance

• Limited accessibility
• Limited scalability
• No central

management and
backup

NAS • File storage and
sharing

• Big Data

• Scalability
• Greater accessibility
• Performance

• Increased LAN traffic
• Performance

limitations
• Security and

reliability

SAN • DBMS
• Virtualized

environments

• Improved
performance

• Greater scalability
• Improved availability

• Costs
• Complex setup and

maintenance

Figure 14: DAS vs. NAS vs. SAN

54

2 Hardware Infrastructures 2.2 Node-level

2.2.3 Networking (architecture and technology)

2.2.3.1 Fundamental concepts

In the data centre, servers’ performance increases over time, and the demand
for inter-server bandwidth also increases.

A solution can be to double the aggregate compute capacity or the aggregate
storage simply by doubling the number of compute or storage elements.

The doubling leaf bandwidth is used since the networking has no straightfor-
ward horizontal scaling solution. Then, with twice as many servers, we will
have twice as many network ports and thus twice as much bandwidth.

® What is a bisection bandwidth?

Bisection bandwidth is a measure of network performance, defined as
the bandwidth available between two equal-sized partitions when a
network is bisected. This measure accounts for the bottleneck bandwidth of
the entire network, providing a representation of the actual bandwidth available
in the system. The bisection should be done to minimize the bandwidth between
the two partitions. It is often used to evaluate and compare networks for parallel
architectures, including point-to-point communication systems or on-chip micro-
networks.

Assuming that every server needs to talk to every other server, we
need to double not just leaf bandwidth but bisection bandwidth.

® How to design a data centre network?

There are many design principles to follow:

• Very scalable in order to support a vast number of servers;

• Minimum cost in terms of basic building blocks (e.g. switches);

• Modular to reuse simple basic modules;

• Reliable and resilient;

• It may exploit novel/proprietary technologies and protocols incompatible
with legacy Internet.

55

2 Hardware Infrastructures 2.2 Node-level

The Data Center Network (DCN) connects a data centre’s computing and
storage units to achieve optimum performance. It can be classified into three
main categories:

• DCN Switch-centric architectures. DCN uses switches to perform
packet forwarding.8

• DCN Server-centric architectures. DCN uses servers with mul-
tiple Network Interface Cards (NICs)9 to act as switches and
perform other computational functions.

• DCN Hybrid architectures. DCN combines switches and servers
for packet forwarding.

8Packet forwarding is the passing of packets from one network segment to another by
nodes on a computer network.

9A Network Interface Cards (NICs) is a computer hardware component that connects
a computer to a computer network.

56

2 Hardware Infrastructures 2.2 Node-level

2.2.3.2 Switch-centric: classical Three-Tier architecture

The Three-Tier architecture, also called Three Layer architecture, con-
figures the network in three different layers:

Three-Tier (or layer) “Classical” Network

Three layer architecture configures the network in three different layers:

Compute node

Storage node

Access switch

Aggregation switch

Core switch

Access link

Aggregation link

Core link

Core

Aggregation

Access

It is a simple Data Center Network topology.

• The servers are connected to the DCN through access switches.

• Each access-level switch is connected to at least two aggregation-
level switches.

• Aggregation-level switches are connected to core-level switches
(gateways).

✓ Advantages

1. Bandwidth can be increased by increasing the switches at the
core and aggregation layers, and by using routing protocols such as
Equal Cost Multiple Path (ECMP) that equally shares the traffic among
different routes.

2. Very simple solution.

l Cons

1. Very expensive in large data centers because the upper layers require
faster network equipments.

2. Cost very high in term of acquisition and energy consumption.

In the access layer, there are two possible architectures:

• ToR (Top-of-Rack) architecture. All servers in a rack are connected
to a ToR access switch within the same rack. The aggregation switches are
in dedicated racks or shared racks with other ToR switches and servers.

57

2 Hardware Infrastructures 2.2 Node-level

✓ Advantages

1. Simpler cabling because the number of cables is limited.
2. Lower costs because the number of ports per switch is limited.

l Cons

Higher complexity for switch management.

server

ToR switch

server server

ToR switch

server

aggregation switch

server

server

server

ToR switch

server

server

server

ToR switch

aggregation
switch

logical topology physical topology

Figure 15: ToR (Top-of-Rack) architecture.

• EoR (End-of-Row) architecture. Aggregation switcher are positioned
one per corridor, at the end of a line of rack. Servers in a racks are
connected directly to the aggregation switch in another rack. Exists a
patch panel to connect the servers to the aggregation switch.

✓ Advantages

Simpler switch management.

l Cons

The aggregation switches must have a larger number of ports, then:

1. Complex cabling.
2. Longer cables then higher costs.

server server server server

aggregation switch

patch panel patch panel
aggregation
switchserver server

server server

server server

logical topology physical topology

Figure 16: EoR (End-of-Row) architecture.

58

2 Hardware Infrastructures 2.2 Node-level

2.2.3.3 Switch-centric: Leaf-Spine architectures

In the following section we present two Leaf-Spine architectures: the Leaf-Spine
model and the Pod-based model (Fat Tree Network).

The Leaf-Spine architecture consists of two levels of interconnection:

1. The leaf (which is a ToR switch);

2. The spine (which has dedicated switches, aggregation switches).

In practice, servers have two interfaces connected to two ToR switches to provide
fault tolerance.

Figure 17: Leaf-Spine architecture.

Now we will explain the Leaf-Spine architecture. If m is the number of mid-
stage switches and n is the number of inputs and outputs, the Leaf-Spine
topology is as follows:

• Each switch module is bi-directional.

– Leaf has 2k bidirectional ports per module;

– Spine has k bidirectional ports per module.

• Each path traverses either 1 or 3 modules.

k ports

1

k

1

k k

k

2k ports

Figure 18: Explanation of Leaf-Spine architecture.

The advantages are: use of homogeneous equipment, simple routing, the num-
ber of hops is the same for any pair of nodes, small blast radius.

59

2 Hardware Infrastructures 2.2 Node-level

Example 7

There are 3072 servers and 3072 ports available at 10 Gbit/s. Provides
a leaf-spine design.
There are two possible designs.

1. The first consists of 96 switches with 64 ports and 32 switches with
96 ports.

64p 96p

32

32

1

96

1

32

32

32

96

96

10 Gbit/s

2. The second has only 8 switches but they have more ports: 384
(8× 384 = 3072).

4
384p

32

32

1

64p

96

1

8

32

32

384

384

10 Gbit/s

4 adjacent ports
bundeld together

Example 8

There are 6144 servers and 6144 ports available at 10 Gbit/s. Provides
a leaf-spine design.
There are two possible designs.

1. The first consists of 192 switches with 64 ports and 32 switches
with 192 ports.

64p 192p

32

32

1

192

1

32

32

32

192

192

10 Gbit/s

60

2 Hardware Infrastructures 2.2 Node-level

2. The second has only 16 switches but they have more ports: 384
(16× 384 = 6144).

2
384p

32

32

1

64p

192

1

16

32

32

192

192

10 Gbit/s

2 adjacent ports
bundeld together

The Pod-based model, also called Fat Tree Network, is another network
architecture used to increase the scaling feature respecting the leaf-spine.

It transforms each group of spine-leaf into a PoD (Point of Delivery)10 and
adds a super spine layer.

It is a highly scalable and cost-effective DCN architecture designed to max-
imise bisection bandwidth. It can be built using standard Gigabit Ethernet
switches with the same number of ports.

It is composed by a leaf of 2k2 bidirectional ports:

• k2 ports to the servers;

• k2 ports to the data center network.

In general, let k2P servers: there are 2kP switches with 2k ports and k2 switches
with P ports. Using the Fat-Tree model, the P value is 2k, so for 2k3

servers, there are 5k2 switches with 2k ports (k2 + 2k · 2k).

At the edge layer, there are 2k pods (groups of servers), each with k2 servers.

• Each edge switch is directly connected to k servers in a pod and k aggre-
gation switches.

• A Fat-Tree network with 2k-port commodity switches can accomodate 2k3
servers in total.

• k2 core switches with 2k-port each, each one connected to 2k pods.

• Each aggregation switch is connected to k core switches.

10A Point Of Delivery is a module or group of network, compute, storage and application
components that work together to deliver a network service. The PoD is a repeatable pattern
and its components increase the modularity, scalability and manageability of data.

61

2 Hardware Infrastructures 2.2 Node-level

Figure 19: Fat-Tree Network, with k = 2, 4 pods, 16 servers, 20 switches.

k

k

k

k

1

k k

1

1

k k

1

k

k

k

k

2k ports 2k ports

2k ports 2k ports

P ports

P ports

Pod 1

Pod P

P ports k2

P ports 1

Figure 20: Explanation of Fat-Tree Network.

62

2 Hardware Infrastructures 2.2 Node-level

2.2.3.4 Server-centric and hybrid architectures

CamCube is a server-centric architecture typically proposed for building
container-sized data centres.

¥ Advantages

It can reduce implementation and maintenance costs by using only servers
to build the Data Center Network. It also exploits network locality to increase
communication efficiency.

l Disadvantages

It requires servers with Multiple Network Interface cards to build a 3D
tours network, long paths and high routing complexity.

The hybrid architectures are DCell, BCube and MDCube.

A DCell is a scalable and cost-effective hybrid architecture that uses
switches and servers for packet forwarding. It is a recursive architecture and
uses a basic building block called DCell0 to construct larger DCells.

DCellk (k > 0) denotes a level-k DCell constructed by combining n + 1
servers in DCell0. A DCell0 has n (n < 8) servers directly connected by
a commodity switch.

Disadvantages: long communication paths, many required Network Inter-
face Cards and increased cabling costs.

Figure 21: DCell hybrid architecture.

63

2 Hardware Infrastructures 2.2 Node-level

BCube is a hybrid and cost-effective architecture that scales through
recursion. It provides high bisection bandwidth and graceful throughput
degradation.

It uses BCube as a building block, consisting of n servers connected to an n-port
switch.

A BCubek (k > 0) is constructed with n BCubek−1s and nk n-port switches.
In a BCubek there are n(k+1) k + 1-port servers and k + 1 layers of switches.

Disadvantages: limited scalability and high cabling costs (NICs reason).

Figure 22: BCube hybrid architecture.

64

2 Hardware Infrastructures 2.2 Node-level

MDCube is designed to reduce the number of cables used to connect
containers.

• Each container has an ID which is mapped to a multidimensional tuple.

• Each container is connected to a neighbouring container with a different
tuple in one dimension.

• There are two types of connections: Intra-container links and high-speed
inter-container links.

Figure 23: MDCube hybrid architecture.

65

2 Hardware Infrastructures 2.3 Building level

2.3 Building level
The main components of a typical data center are:

• Cooling system (blue):

– Water storage

– Cooling towers

– Chillers

– Fan coil air handling units

• Power supply (red):

– Utility power

– Transformers

– Backup generation/power distribution

– Power bus

• Computation storage networking (green):

– Networking room

Figure 24: The main components of a typical data center. [1]

The warehouse scale computer or data centre has other important components
related to power delivery, cooling and building infrastructure that also
need to be considered.

66

2 Hardware Infrastructures 2.3 Building level

Figure 25: A Rotary UPS system.

In order to protect against power failure, battery and diesel generators are used
to back up the external supply.

A UPS (uninterruptible power supply or source) is a continual power
system that provides automated backup electric power to a load when
the input power source or mains power fails. There are many types of
UPS, but in general, in the DC, the Rotary UPS system is used.

A rotary UPS uses the inertia of a high-mass spinning flywheel to provide short-
term ride-through in the event of power loss.

67

2 Hardware Infrastructures 2.3 Building level

2.3.1 Cooling systems

The IT equipment generates a lot of heat. To avoid troubles, cooling systems
have been installed. Unfortunately, they are costly components of the data
center, and they are composed of coolers, heat exchangers and cold water
tanks.

Some techniques exist to improve cooling systems without throwing away too
much money.

Open-Loop systems refer to the use of cold outside air to either help
the production of chilled water or directly cool servers. It is not entirely
free in the sense of zero cost, but it involves very low energy costs compared
to chillers.

Closed-Loop systems come in many forms, the most common being the air
circuit on the data centre floor. It is grouped by number of loops:

• One loop. The main goal is to isolate and remove heat from the
servers and transport it to a heat exchanger. So the cold air flows
to the servers, heats up, and eventually reaches a heat exchanger to cool
it down again for the next cycle through the servers.

✓ Advantages

It can be very efficient.

. Cons

– It doesn’t work in all climates;

– It requires filtering of airborne particulates;

– Can introduce complex control problems.

• Two loops. The airflow through the underfloor plenum, the racks, and
back to the CRAC (computer room air conditioning) defines the
primary air circuit as the first loop. The second loop (the liquid supply
inside the CRAC units) leads directly from the CRAC to the external heat
exchangers (typically placed on the building roof) that discharge the heat
to the environment.

✓ Advantages

– Easy to implement;

– Relatively inexpensive to construct;

– Offers isolation from external contamination.

. Cons

Typically have lower operational efficiency.

68

2 Hardware Infrastructures 2.3 Building level

• Three loops. It is used in large-scale data centres. The architecture can
be viewed in the following figure.

✓ Advantages

– It offers contaminant protection;

– It offers good efficiency.

. Cons

– It is the most expensive to construct;

– It has moderately complex controls.

First loop to the left, second loop in the middle and third loop to the right.

69

2 Hardware Infrastructures 2.3 Building level

® How each rack is cooled?

There are three ways to cool each rack:

• In-Rack cooler. It adds an air-to-water heat exchanger at the back
of a rack so the hot air exiting the servers immediately flows over
coils cooled by water, reducing the path between server exhaust and
CRAC input.

• In-Row cooling. It works like in-rack cooling, except the cooling coils
are not in the rack but adjacent to the rack.

Figure 26: In-Row Cooling Mechanism (source: Energy Start).

• Liquid cooling. We can directly cool server components using cold
plates. The liquid circulating through the heat skins transports
the heat to a liquid-to-air or liquid-to-liquid heat exchanger that
can be placed close to the tray or rack or be part of the data centre building
(such as a cooling tower).

Figure 27: Liquid Cooling Mechanism.

70

https://www.energystar.gov/products/data_center_equipment/16-more-ways-cut-energy-waste-data-center/install-rack-or-row

2 Hardware Infrastructures 2.3 Building level

2.3.2 Power supply

® What is the problem?

Data centre power consumption is an issue since it can reach several milliwatts.
Cooling usually requires about half the energy the IT equipment re-
quires (servers + network + disks). Finally, energy transformation also
wastes much energy when running a data centre.

® Is there a metric to measure energy efficiency?

First of all, no! Several metrics are helpful to understand how a data centre
spends in terms of energy.

One of the most critical metrics is Power Usage Effectiveness (PUE). It is
the ratio of the total amount of energy used by a DC facility to the
energy delivered to the computing equipment:

PUE =
Total Facility Power
IT Equipment Power

(5)

Where the Total Facility Power is calculated as:

TFP = covers IT systems + other equipment (6)

Where the covers IT systems are servers, network, storage, and other equipment
are cooling, UPS, switch gear, generators, lights, fans.

Finally, the Data Center Infrastructure Efficiency (DCiE) is the inverse
of PUE:

DCiE = PUE−1 =
IT Equipment Power
Total Facility Power

(7)

For example, the level of efficiency is shown here:

PUE DCiE Level of Efficiency

3.0 33% Very Inefficient
2.5 40% Inefficient
2.0 50% Average
1.5 67% Efficient
1.2 83% Very Efficient

71

2 Hardware Infrastructures 2.3 Building level

2.3.3 Data Center availability

The Data Center availability is defined by in four different tier level. Each one
has its own requirements:

Tier
Level

Requirements

1 • Single non-redundant distribution path serving the
IT equipment.

• Non-redundant capacity components.

• Basic site infrastructure with expected availability
of 99.671%.

2 • Meets or exceeds all Tier 1 requirements.

• Redundant site infrastructure capacity components
with expected availability of 99.741%.

3 • Meets or exceeds all Tier 2 requirements.

• Multiple independent distribution paths serving the
IT equipment.

• All IT equipment must be dual-powered and fully
compatible with the topology of a site’s architecture.

• Concurrently maintainable site infrastructure with
expected availability of 99.982%.

4 • Meets or exceeds all Tier 3 requirements.

• All cooling equipment is independently dual-
powered, including chillers and heating, ventilating
and air conditioning (HVAC) systems.

• Fault-tolerant site infrastructure with electrical
power storage and distribution facilities with ex-
pected availability of 99.995%.

Table 4: Data Center availability.

72

3 Software Infrastructure

3 Software Infrastructure

3.1 Virtualization
3.1.1 What is a Virtual Machine?

A Virtual Machine (VM) is a logical abstraction able to provide a vir-
tualized execution environment. More specifically, a VM:

• Provides identical software behavior

• Consists in a combination of physical machine and virtualizing software

• May appear as different resources than physical machine

• May result in different level of performances

Exists two type of Virtual Machine: Process VM (page 75) and System VM
(page 76).

® What’s the difference between a physical machine and a virtual
machine?

First of all, the physical machine is the computer that can host n virtual
machines.

Furthermore, every VM is based on hypervisor software (also known as a virtual
machine manager or monitor VMM, page 78). The hypervisor runs as an ap-
plication on the host operating system (hosted hypervisor) or rests directly on
the hardware of the physical machine (bare-metal hypervisor) and manages the
hardware resources provided by the host system. The hypervisor software
creates an abstraction layer between physical hardware and virtual
machines. Each VM runs isolated from the host system and other
guest systems on its own virtual environment. This is referred to as
encapsulation.

Processes within a virtual machine do not affect the host or other VMs on the
same hardware.

So, to sum up:

1. Physical machines are the computers that can host n virtual ma-
chines.

2. Each physical machine has a hypervisor (VMM) already enabled or
asleep on the hardware. It manages the resources made available
by the physical machine.

3. Each virtual machine has its own virtual environment, so they are
encapsulated, isolated environments.

Obviously, the statement is not true if there is a “virtual machine escape
attack ”, but we don’t count those extreme cases. [8]

73

3 Software Infrastructure 3.1 Virtualization

Figure 28: Operating system view if there are VMs in the physical machine
(source: ionos).

A little terminology about host and guest :

• Host: the underlying platform supporting the environment/system.

• Guest: the software that runs in the Virtual Machine environment as the
guest.

74

https://www.ionos.co.uk/digitalguide/server/know-how/virtual-machines/

3 Software Infrastructure 3.1 Virtualization

3.1.1.1 Process VM

A Process Virtual Machine, sometimes called an application virtual machine,
or Managed Runtime Environment (MRE), runs as a normal application
inside a host OS and supports a single process.

The Virtual Machine is created when that process begins and de-
stroyed when it ends. A good example is the Java Virtual Machine JVM
(see more here).

The purpose of a process VM is to execute a computer program in a platform-
independent environment, meaning it can run on a variety of hardware or soft-
ware.

The virtualizing software:

• is placed at the ABI11, on top of the OS/hardware combination.

• emulates both user-level instructions and operating system calls.

• is usually called Runtime Software.

Figure 29: Process VM.

11An Application Binary Interface (ABI) corresponds to “Operating system machine
level”.

75

https://en.wikipedia.org/wiki/Java_virtual_machine

3 Software Infrastructure 3.1 Virtualization

3.1.1.2 System VM

System Virtual Machines are substitutes for real machines and provide all
the functionalities of an actual operating system. It provides operating
system running in it access to underlying hardware resources (networking, I/O,
GUI).

With a system VM, the hypervisor will access the underlying machine’s re-
sources, giving the user the same capabilities the host device offers.

The virtualization software is called Virtual Machine Monitor (VMM).

Figure 30: System VM.

76

3 Software Infrastructure 3.1 Virtualization

3.1.2 Virtualization Implementation

Consider a typical layered architecture of a system by adding layers between
layers of the execution stack. Depending on where the new layer is placed, we
get different types of virtualization. The virtualization technologies are:

• Hardware-level virtualization. The virtualization layer is placed
between hardware and OS. The interface seen by OS and application
might be different from the physical one.

• Application-level virtualization. The virtualization layer is placed
between the OS and some application (e.g. JVM). It provides the
same interface to the applications. The applications run in their environ-
ment, independently from OS.

• System-level virtualization. The virtualization layers provides
the interface of a physical machine to a secondary OS and a
set of application running in it, allowing them to run on top
of an existing OS. It is placed between the system’s OS and other OS
(e.g. VMware, VirtualBox). We can enable several OSs to run on a single
hardware.

The properties of virtualization technologies are:

• Partitioning

– Execution of multiple OSs on a single physical machine;

– Partitioning of resources between the different VMs.

• Isolation

– Fault tolerance and security (hardware level);

– Advanced resource control to guarantee performance (managed by
the hypervisor).

• Encapsulation

– The entire state of a VM can be saved in a file (e.g. freeze and restart
the execution);

– Because a VM is a file, can be copied/moved as a file.

• Hardware independence

– Provisioning/migration of a given VM on a given physical server.

77

3 Software Infrastructure 3.1 Virtualization

3.1.3 Virtual Machine Managers (VMM)

A Virtual Machine Manager (VMM) is an application that:

• Manages the VMs;

• Mediates access to the hardware resources on the physical host
system;

• Intercepts and handles any privileged or protected instructions is-
sued by the VMs.

This type of virtualization typically runs virtual machines whose operating sys-
tem, libraries, and utilities have been compiled for the same type of processor
and instruction set as the physical machine on which the virtual systems are
running.

Note that the Virtual Machine Manager (VMM) can be referred to by different
names and also different meanings:

• Virtual Machine Manager (VMM). The virtualization software.

• Virtual Machine Monitor. A virtualization software that runs directly
on the hardware.

• Hypervisor. A VMM or Hypervisor that is also used to create, configure
and maintain virtualized resources. It provides a user-friendly interface to
the underlying virtualization software.

There are two types of hypervisor:

• Type 1 Hypervisor or Bare Metal Hypervisor (or Native Hypervi-
sor). The term bare metal refers to the fact that there is no operating
system between the virtualization software and the hardware.
The virtualization software resides on the “bare metal” or the hard disk of
the hardware, where the operating system is usually installed.

Then, the hypervisor takes direct control of the hardware.

Hardware

Hypervisor

VM

Guest OS

Figure 31: View of the Bare Metal Hypervisor.

78

3 Software Infrastructure 3.1 Virtualization

Bare Metal Hypervisors can also be built in two ways:

– Monolithic architecture. Device drivers run within the hy-
pervisor.

¥ Advantages

∗ Better performance.
∗ Better isolation.

l Disadvantages

∗ Can run only on hardware for which the hypervisor has drivers.

Hypervisor

Driver

Hardware Shared
Device

I/O
Services

VM

Virtual
Device

VM

Virtual
Device

VM

Virtual
Device

CPU,
Memory,
I/O

Figure 32: Monolithic architecture.

– Microkernel architecture. Device drivers run within a service
virtual machine.

¥ Advantages

∗ Smaller hypervisor.
∗ Leverages driver ecosystem of an existing OS.
∗ Can use third party driver even if not always easy, recompiling

might be required.

79

3 Software Infrastructure 3.1 Virtualization

Hypervisor

Hardware Shared
Device

VM

Virtual
Device

VM

Virtual
Device

Service VM

Driver

I/O
Services

CPU,
Memory

Figure 33: Microkernel architecture.

• Type 2 Hypervisor or Hosted Hypervisor. Hosted Hypervisors run
within the operating system of the host machine. Although hosted
hypervisors run within the OS, additional operating systems can be in-
stalled on top of it. Hosted hypervisors have higher latency than bare
metal hypervisors because requests between the hardware and the hyper-
visor must pass through the extra layer of the OS.
This type of hypervisor is also called hosted hypervisor. Furthermore, the
Guest OS is the one that runs in the VM, while applications run in the
Guest 0S. The Host OS controls the hardware of the system.

¥ Advantages

– More flexible in terms of underlying hardware.
– Simpler to manage and configure.

l Disadvantages

– The Host OS might consume a non-negligible set of physical re-
sources.

Hardware

Host OS

VMM

VM

Guest OS

Figure 34: View of the Hosted Hypervisor.

The data is taken from VMware.

80

https://www.vmware.com/topics/bare-metal-hypervisor

3 Software Infrastructure 3.1 Virtualization

3.1.3.1 Full virtualization

Full virtualization is a virtualization technique that provides a complete
simulation of the underlying hardware.

In full virtualization, the original operating system runs without knowing
it’s virtualized, using translation to handle system calls.

In full virtualization, the virtual machine completely isolates the guest
OS from the virtualization layer and hardware.

¥ Advantages

• Running unmodified OS.

• Complete isolation.

l Disadvantages

• Performance.

• Hypervisor mediation to allow the guest (or guests) and host to request
and acknowledge tasks which would otherwise be executed in the virtual
domain.

• Not allowed on all architectures.

Hardware
Hypervisor (VMM)

Guest OS

Apps

Guest OS

Apps

Figure 35: View of the Full Virtualization.

81

3 Software Infrastructure 3.1 Virtualization

 Guest Kernel

Hypervisor

Hardware

Privilged instruction

Trap Emulate

1

2
3

Figure 36: Full Virtualization flow.

3.1.3.2 Paravirtualization

Paravirtualization modifies the OS to use hypercalls instead of certain
instructions, making the process more efficient but requiring changes before
compiling.

Paravirtualization is a virtualization technique that uses hypercalls for opera-
tions to handle instructions at compile time. In paravirtualization, guest OS is
not completely isolated but it is partially isolated by the virtual machine from
the virtualization layer and hardware. VMware and Xen are some examples of
paravirtualization.

Guest OS and VMM collaborates:

• VMM present to VMs an interface similar but not identical to that of the
underlying hardware.

• To reduce guest’s executions of tasks too expensive for the virtualized
environment (by means of “hooks” to allow the guest(s) and host to
request and acknowledge tasks which would otherwise be executed in
the virtual domain, where execution performance is worse).

¥ Advantages

• Simpler VMM.

• High Performance.

l Disadvantages

• Modified Guest OS (cannot be used with traditional OSs).

82

3 Software Infrastructure 3.1 Virtualization

Hardware
Hypervisor (VMM)

Modified
Guest OS

Apps

Modified
Guest OS

Apps

Figure 37: View of the Paravirtualization.

Modified Guest Kernel

Hypervisor

Hardware

Hypercall

Operation

Figure 38: Paravirtualization flow.

83

3 Software Infrastructure 3.1 Virtualization

3.1.3.3 Containers

Containers are pre-configured packages, with everything we need to execute
the code (code, libraries, variables and configurations) in the target machine.
Some well-known containers are Docker and Kubernetes.

The main advantage of containers is that their behavior is predictable,
repeatable and immutable. When we create a “master ” container and dupli-
cate it on another server, we know exactly how it will be executed. There are
no unexpected errors when moving it to a new machine or between
environments.

Example 1

If we have a container for a website, we do not need to export/import
the dev/testing/production environments. We just create a container
containing the site and move it to the target environment.

Virtual machine provides hardware virtualization, while containers provide
virtualization at the operating system level. The main difference is that
the containers share the host system kernel with other containers.

Figure 39: Containers architecture.

Some characteristics of containers:

• Flexible. Even the most complex application can be containerized.

• Light. The containers exploit and share the host kernel.

• Interchangeable. Updates can be distributed on the fly.

• Portable. We can create locally, deploy in the cloud and run anywhere.

84

3 Software Infrastructure 3.1 Virtualization

• Scalable. It is possible to automatically increase and distribute replicas
of the container.

• Stackable. Containers can be stacked vertically and on the fly.

Containers ease the deployment of applications and increase the scalability but
they also impose a modular application development where the modules
are independent and uncoupled.

® Container Use Cases

• Make our local development and build workflow faster, more effi-
cient and lighter.

• Run standalone services and applications consistently across mul-
tiple environments.

• Use containers to create isolated instances to run tests. For exam-
ple, to create a db server SQL already configured to run tests.

• Build and test complex applications and architectures on a local
host before deploying to a production environment.

• Build a multi-user Platform-as-a-Service (PaaS) infrastructure.

• Provide lightweight, stand-alone sandbox environments for developing,
testing and teaching technologies such as the Unix shell or a program-
ming language.

• Software as a Service (SaaS) applications.

85

3 Software Infrastructure 3.2 Computing Architectures

3.2 Computing Architectures
3.2.1 Cloud Computing

Cloud Computing is a coherent, large-scale, publicly accessible collection of
computing, storage and networking resources. It is usually available via
web service calls over the Internet. The business is based on short or long term
access on a pay-per-use basis.

The cloud is implemented through virtualization. This involves parti-
tioning hardware resources (CPU, RAM, etc.) and sharing them be-
tween multiple virtual machines (VMs). This model ensures performance
isolation and security. The Virtual Machine Monitor (VMM) manages access to
physical resources between running VMs. The pros and cons of virtualization
are explained in the dedicated chapter 3.1 (page 73).

3.2.1.1 Server Consolidation

Server Consolidation in cloud computing refers to the process of combin-
ing multiple servers into a single, more powerful server or cluster of
servers.

This can be done to improve the efficiency and cost effectiveness of the
cloud computing environment.

Server Consolidation is typically achieved through the use of virtualiza-
tion technology, which allows multiple virtual servers to run on a sin-
gle physical server. This enables better utilization of resources, as well as
improved scalability and flexibility. It also allows organizations to reduce the
number of physical servers they need to maintain, which can lead to cost savings
on hardware, power and cooling.

In the context of server consolidation, Consolidation Management is the
migration from physical to virtual machines.

Let us just say that the characteristics of this technique are:

• Scalability. It is possible to move VMs without disrupting the
applications running in them.

• Automatic scalability. In addition to scalability, it is also possible
to automatically balance workloads according to set limits and
guarantees.

• High availability. Servers and applications are protected against
component and system failures.

86

3 Software Infrastructure 3.2 Computing Architectures

® Server Consolidation Advantages

The benefits of server consolidation are:

• Different operating systems can run on the same hardware.

• Higher hardware utilization means less hardware is needed (lower
acquisition and maintenance costs).

• Continued use of legacy software.

• Application independent of hardware.

3.2.1.2 Services provided by cloud

Cloud Computing is a model for providing convenient, on-demand net-
work access to a shared pool of configurable computing resources,
such as networks, servers, storage, applications and services. Anything that
can be quickly provisioned and released with minimal management or
interaction with the service provider.

“X as a service” (rendered as *aaS in acronyms) is a phrasal template for any
business model in which a product use is offered as a subscription-based service
rather than as an artifact owned and maintained by the customer. [2]

There is a wide variety of “as-a-Service” terms used to describe services
offered in clouds.

• AaaS - Architecture as a Service

• BaaS - Business as a Service

• CaaS - Communication as a Ser-
vice

• CRMaaS - CRM as a Service

• DaaS - Data as a Service

• DBaaS - Database as a Service

• EaaS - Ethernet as a Service

• FaaS - Frameworks/Function as
a Service

• GaaS - Globalization/Gover-
nance as a Service

• HaaS - Hardware as a Service

• IaaS - Infrastructure/Integration
as a Service

• IDaaS - Identity as a Service

• ITaaS - IT as a Service

• LaaS - Lending as a Service

• MaaS - Mashups as a Service

• OaaS - Organization/Operations
as a Service

• SaaS - Software as a Service

• StaaS - Storage as a Service

• PaaS - Platform as a Service

• TaaS - Technology/Testing as a
Service

• VaaS - Voice as a Service

87

3 Software Infrastructure 3.2 Computing Architectures

The main services provided by the cloud are shown in the image below.

• Cloud Application Layer: SaaS (Software as a Service). Users access
the services provided by this layer through web portals and may
be charged for using them.

Cloud applications can be developed on the cloud software environments
or infrastructure components.

Some examples include Gmail, Webex, Google Docs.

• Cloud Software Environment Layer: PaaS (Platform as a Service).
Users are application developers.

Vendors provide developers with a programming language level en-
vironment with a well-defined API. It has many advantages:

– Ease the interaction between the environment and applications.

– Accelerate deployment.

– Support scalability.

Some examples are Amazon Lambda and Microsoft Azure.

• Cloud Software Infrastructure Layer: provides resources to the higher-
level layers.

– Computational Resources Layer: IaaS (Infrastructure as a Ser-
vice). The vendor provides virtual machines to developers. Then
the pros and cons are related to the virtual machines.

¥ Advantages

∗ Flexibility.
∗ Root access to the virtual machine to fine-tune settings and cus-

tomize installed software.

88

https://www.google.com/intl/en/gmail/about/
https://www.webex.com/
https://www.google.com/intl/en/docs/about/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-US

3 Software Infrastructure 3.2 Computing Architectures

l Disadvantages

∗ Performance impact.
∗ Inability to provide strong SLA guarantees.

Some examples are Amazon EC2, Google Compute Engine, IBM
Cloud.

– Storage Layer: DaaS (Data as a Service). This layer allows users
to:

1. Store their data on remote disks.
2. Access data from anywhere at any time.

It allows cloud applications to scale beyond their limited server re-
quirements:

∗ High Reliability: Availability, Reliability, Performance.
∗ Replication.
∗ Data consistency.

Some examples are DropBox or GoogleDrive.

– Communications Layer: CaaS (Communication as a Service).
This layer guarantees:

∗ Communication capability: service-oriented, configurable, plan-
able, predictable, and reliable.

∗ Network security, dynamic provisioning of virtual overlays for
traffic isolation or dedicated bandwidth, guaranteed message de-
lay, communication encryption, and network monitoring.

89

https://aws.amazon.com/ec2/
https://cloud.google.com/products/compute?hl=en
https://www.ibm.com/cloud
https://www.ibm.com/cloud
https://www.dropbox.com/explore-homepage?v=v5
https://www.google.it/intl/en/drive/

3 Software Infrastructure 3.2 Computing Architectures

3.2.1.3 Types of clouds

There are 4 types of clouds:

• A Public Cloud is one that is made available to the public by a specific
organization that also hosts the service.

A third-party provider maintains the hardware, relevant software, and
licenses in a globally distributed network of data centers. You can access
exactly what you need on demand, at any scale, from any device you
choose.

The providers have a large infrastructure available on a rental basis and
provide full customer self-service. Accountability is based on e-commerce.

• A Private Cloud is used for a single organization and can be hosted
internally or externally.

Internally managed data centers. The organization sets up a virtual-
ization environment on its own servers: in its own data center, in
the data center of a managed service provider.

¥ Advantages

– We have total control over every aspect of the infrastructure.
– We get the benefits of virtualization.

l Disadvantages

– It lacks the freedom from capital investment and flexibility.

• A Community Cloud is a type of cloud shared by multiple organizations;
typically hosted externally, but can also be hosted internally by one of the
organizations.

A single cloud managed by multiple federated organizations that combine
multiple organizations allows for economies of scale, and resources can be
shared and used by one organization while the others are not using them.

Technically, it is similar to a private cloud because they share the same
software and the same problems, but it requires a more complex accounting
system.

Hosted locally or externally. Typically, community clouds share infrastruc-
ture between participants. However, they may be hosted by a separate,
dedicated organization or by only a small subset of partners.

• A Hybrid Cloud is a type of cloud that is a composition of two or more
clouds (private, community, or public) that remain unique entities but
are interconnected to provide the benefits of multiple deployment models;
hosted internally and externally.

Hybrid clouds are a combination of any of the previous types. Typically,
companies are keeping their private cloud, but that they may be subject
to unpredictable peaks of load. In this case, the company rents resources
from other types of cloud.

90

4 Methods

4 Methods

4.1 Reliability and availability of data centers
4.1.1 Introduction

Dependability measures how much we trust a system. More technically,
it is the ability of a system to perform its functionality while exposing:

• Reliability. Continuity of correct service.

• Availability. Readiness for correct service.

• Maintainability. Ability for easy maintenance.

• Safety. Absence of catastrophic consequences.

• Security. Confidentiality and integrity of data.

® Ok, but why should we be interested in dependability?

During the implementation of a product, there is much effort to make sure that
the implementation:

• matches specifications,

• fulfils requirements,

• meets constraints,

• optimizes selected parameters (such as performance, energy, etc.).

Nevertheless, even if all the above aspects are satisfied, the systems fail be-
cause something broke! The causes can be multiple: defects, process variation,
degraded transistors, radiation, noise, design errors, software bugs, OS bugs,
malicious attacks, and human errors.

Then, dependability is essential to check how much we can trust a system
despite the effects of failure. If we are not convinced, consider that a failure
may have high costs if it impacts economic losses or physical damage.
Not only that, a single system failure may affect a large number of people
and may cause information loss with a high consequent recovery cost. For the
previous reasons, the systems that are not dependable are likely not to be used
or adopted.

® It seems very important, so when should we think about
dependability?

Consistently, both at design-time to:

• Analyze the system under design;

• Measure dependability properties;

91

4 Methods 4.1 Reliability and availability of data centers

• Modify the design if required;

And runtime to:

• Detect malfunctions;

• Understand causes;

• React.

Furthermore, the failures in development should be avoided, and the design
should take failures into account and guarantee that control and safety are
achieved when failures occur. The effects of such failures should be predictable
and deterministic, not catastrophic!

® Always think about dependability, but where should it be
applied?

In the past, dependability was relevant only for safety-critical and mission-
critical application environments: space, nuclear, and avionics. Note that:

• Mission-critical systems are architectures where a failure during op-
eration can have severe or irreversible effects on the mission the
system is carrying out (for example, satellites, surveillance drones, un-
manned vehicles, etc.).

• Safety-critical systems are architectures where a failure during oper-
ation can directly threaten human life (for example, aircraft control
systems, medical instrumentation, railway signaling, nuclear reactor con-
trol systems).

However, in the computing infrastructures, the downtime is the enemy of
every data center! So it is important to consider the dependability in each
scenario in order to guarantee that everything works properly.

® Finally, how to provide dependability?

It depends on the paradigm adopted:

• The Avoidance paradigm is a conservative design; it implements a
design validation, has some detailed hardware and software tests, and is
an error avoidance-driven approach.

• The Tolerance paradigm is an error detection during system op-
eration; it implements online monitoring; if there is an error, it gives
diagnostic solutions and has a self-recovery and self-repair.

To apply these paradigms, it is necessary to work at the:

• Technological level to design and manufacture by employing reliable/ro-
bust components.

• Architectural level to integrate standard components using solutions
that allow to manage the occurrence of failures.

92

4 Methods 4.1 Reliability and availability of data centers

• Software/Application level to develop solutions in the algorithms or
in the operating systems that mask and recover from the occurrence of
failures. This guarantees high dependability, high cost, and reduced per-
formance.

Finally, all of these solutions have a common cost and reduced performance.

93

4 Methods 4.1 Reliability and availability of data centers

4.1.2 Reliability and Availability

Dependability contains the properties of reliability and availability (see page
91).

Definition 1: Reliability

The ability of a system or component to perform its required func-
tions under stated conditions for a specified period of time.

We can also calculate the probability that the system will operate cor-
rectly in a specified operating environment until time t:

R (t) = P (not failed during [0, t]) (8)

(assuming it was operating at time t = 0). Note that the time t is essential
because it is often used to characterize systems in which even small
periods of incorrect behaviour are unacceptable (e.g. impossibility to
repair). For example, if a system needs to work for slots of ten hours at a time,
then ten hours is the reliability target.

As a consequence, the unreliability Q (t) can be calculated as follows:

Q (t) = 1−R (t) (9)

The reliability probability is a non-increasing function ranging from 1 to 0
over [0,+∞).

R (0) = 1

lim
t→+∞

R (t) = 0

f (x) = −dR (t)

dt

(10)

We can observe that the probability of the reliability at the time zero is equal
to one because we assume it was operating at time zero. Furthermore, the
reliability probability function goes to zero when the time goes to infinity.

Definition 2: Availability

The degree to which a system or component is operational and acces-
sible when required for use. It can be calculated as follows:

Availability =
Uptime

(Uptime + Downtime)
(11)

The main difference between reliability and availability is that reliability
does not break down, and availability works when needed, even if it
breaks down.

94

4 Methods 4.1 Reliability and availability of data centers

Finally, we calculate the probability that the system will be operational
at time t as follows:

A (t) = P (not failed at time t) (12)

It is ready for service and admits the possibility of brief outages. Finally, of
course, the unavailability is:

unavailability = 1−A (t) (13)

® What is the relationship between reliability and availability?

The relationship with the reliability is that:

• When the system is not repairable, the availability and reliability are
the same:

A (t) = R (t) (14)

• In general, the reparable systems have

A (t) ≥ R (t) (15)

However, the relationship is more robust because if a system is unavailable,
it does not deliver the specified system services. However, it is possible
to have systems with low reliability that must be available. Then, the
system failures can be repaired quickly and do not damage data, so the low
reliability may not be a problem. The opposite is generally more complex.

95

4 Methods 4.1 Reliability and availability of data centers

¡ Metrics

Some metrics exist for reliability and availability.

• The Mean Time To Failure (MTTF) is the mean time before any
failure will occur. Moreover, it is calculated as the integral of the reli-
ability probability (eq. 8, page 94):

MTTF =

∫ ∞

0

R (t) dt (16)

• The Mean Time Between Failures (MTBF) is the mean time be-
tween two failures. It is the relationship between the total operating
time and the number of failures.

MTBF =
total operating time
number of failures

(17)

• The Failures In Time (FIT) is another way of reporting MTBF. It
is the number of expected failures per one billion hours (109) of
operation for a device. Then, the MTBF in hours is:

MTBF =
109

FIT
(18)

• The Failure Rate λ is the relationship between the number of failures
and the total operating time:

Failure Rate λ =
number of failures

total operating time
(19)

If we observe closely, it equals MTBF−1, then:

MTBF =
1

λ
(20)

96

4 Methods 4.1 Reliability and availability of data centers

® How to compute reliability? The Empirical Evaluation

In general, Empirical Evaluation is an evaluation method in which results are
derived from observation or experiment rather than theory.

Regarding reliability, let us consider:

• n0 independent and statistically identical elements deployed at time t = 0
in identical conditions n (0) = n0;

• At time t, the n (t) elements do not fail.

• Furthermore, t1, t2, . . . , tn0 are the times of failure of the n0 elements.
Note that the times to failure are independent occurrences of the random
quantity T .

The function:
n (t)

n0
(21)

Is the empirical function of reliability that, as n0 → ∞, converges to the
value:

n (t)

n0
→ R (t) (22)

® Ok, but what do we do with the reliability probability?

Well, the exploitation of the reliability probability information is used to com-
pute, for a complex system, its reliability in time and the expected lifetime.
Note that the computation of the overall reliability starts from the component
one.

97

4 Methods 4.1 Reliability and availability of data centers

] Reliability terminology

The Constant Failure rate of the reliability is:

R (t) = e−λ t

MTTF =

∫ ∞

0

R (t) dt =
1

λ

(23)

Then, to refer to it, we use the correct terminology.

• The Fault is a defect within the system.

• The Error is a deviation from the required operation of the system
or subsystem.

• Failure is when the system fails to perform its required function.

Example 1

A flying drone with an automatic radar-guided landing system. An ex-
ample of:

• Fault: the electromagnetic disturbances interfere with a radar mea-
surement.

• Error: the radar-guided landing system calculates a wrong trajec-
tory.

• Failure: the drone crashes to the ground.

98

4 Methods 4.1 Reliability and availability of data centers

Example 2: not always the fault-error-failure chain closes

A tele-surgery system. An example of:

• Fault: the radioactive ions change some memory cells’ value (bit-
flip).

• Error: some frames of the video stream are corrupted.

• Failure: the surgeon kills the patient.

However, not always the fault-error-failure chain closes:

• Fault: the radioactive ions make some memory cells change value
(bitflip), but the corrupted memory does not involve the video
stream.

• Error: no frames are corrupted.

• Failure: the surgeon carries out the procedure.

As we can see, there is no activated fault! With the same logic, a flying
drone with automatic radar-guided landing:

• Fault: electromagnetic disturbances interfere with a radar mea-
surement.

• Error: the radar-guided landing system calculates a wrong trajec-
tory, but then, based on subsequent correct radar measurements,
it can recover the right trajectory.

• Failure: the drone safely lands.

Here, there is no propagated (or absorbed error).

99

4 Methods 4.1 Reliability and availability of data centers

4.1.3 Reliability Block Diagrams

The Reliability Block Diagram (RBD)12 is an inductive model in which
a system is divided into blocks representing distinct elements, such as
components or subsystems. Each element in the RBD has its reliability
(previously calculated or modelled). All blocks are then combined to model all
the possible success paths.

The diagram follows strict rules. To represent:

• Components in series: the system failure is determined by the
failure of the first component.

Rs (t) =

n∏
i=1

Ri (t) (24)

For example, in the previous illustration, reliability is calculated as:

Rs (t) = RC1 (t)×RC2 (t)

In general, if the system S consists of components with a reliability
with an exponential distribution (the only case considered in this
course), the reliability can be calculated as:

Rs (t) = e−λs t (25)

Where t is the time and λs is the Failure in time:

λs =

n∑
i=1

λi (26)

Note that the λi value is explained on page 96 (eq. 19). The Mean Time
To Failure of a system is S:

MTTFs =
1

λs
=

1
n∑

i=1

λi

=
1

n∑
i=1

1

MTTFi

(27)

If all components are identical:

Rs (t) = e−nλt = exp

(
− nt

MTTF1

)
(28)

MTTFs =
MTTF1
n

(29)

12The RBD argument was already treated in the Software Engineering for HPC notes.

100

https://github.com/PoliMI-HPC-E-notes-projects-AndreVale69/HPC-E-PoliMI-university-notes/tree/main/software-engineering-for-hpc

4 Methods 4.1 Reliability and availability of data centers

Finally, the availability is:

As =

n∏
i=1

MTTFi
MTTFi + MTTRi

(30)

Where MTTR is the Mean Time To Repair (MTTR).

If all components are identical:

As (t) = A1 (t)
n (31)

A =

(
MTTF1

MTTF1 + MTTR1

)n

(32)

• Components in parallel: the system fails when the last compo-
nent fails.

Rs (t) = 1−
n∏

i=1

(1−Ri (t)) (33)

For example, in the previous illustration, reliability is calculated as:

Rs (t) = 1− [(1−RC1 (t))× (1−RC2 (t))]

Consider a system P composed of n components, the reliability is:

Rp (t) = 1−
n∏

i=1

(1−Ri (t)) (34)

And the availability is:

Ap (t) = 1−
n∏

i=1

(1−Ai (t))

= 1−
n∏

i=1

MTTRi
MTTFi + MTTRi

(35)

The difference between these two representations is that if a component in
the series is unhealthy, the whole system is unhealthy. Instead, in the
parallel architecture, the system can work properly if a component is
unhealthy.

101

4 Methods 4.1 Reliability and availability of data centers

] A quick recap

• Series.

Reliability:

Rs =

n∏
i

Ri =⇒ Rs = RC1 ·RC2

• Parallel.

Reliability:

Rs = 1−
n∏
i

(1−Ri) =⇒ Rs = 1− [(1−RC1) · (1−RC2)]

• Series-Parallel (component redundancy).

Reliability:

Rs = {1− [(1−RC1) · (1−RC2)]} · {1− [(1−RC3) · (1−RC4)]}

• Parallel-Series (system redundancy).

Reliability:

Rs = 1− [(1−RC1 ·RC3) · (1−RC2 ·RC4)]

102

4 Methods 4.1 Reliability and availability of data centers

Example 3: calculate the reliability of the system

® Question

What is the Reliability of the entire system knowing the reliability of
each component?

• RC1 = 0.95

• RC2 = 0.97

• RC3 = 0.99

• RC4 = 0.99

• RC5 = 0.92

• RC6 = 0.92

✓ Solution

1. Consider components C1 and C2. The reliability, which we will
call RG, is then calculated as a series:

RG = RC1 ·RC2 = 0.95 · 0.97 = 0.9215

2. Consider components C3 and C4. The reliability, which we will
call RH , is then calculated as a parallel :

RH = 1− [(1−RC3) · (1−RC4)]

= 1− [(1− 0.99) · (1− 0.99)]

= 1− 0.0001

= 0.9999

3. Consider components C5 and C6. The reliability, which we will
call RI , is then calculated as in the previous step:

RI = 1− [(1−RC5) · (1−RC6)]

= 1− [(1− 0.92) · (1− 0.92)]

= 1− 0.0064

= 0.9936

4. Finally, we calculate the reliability of the system by multiplying
each calculated component reliability:

Rs = RG ·RH ·RI

= 0.9215 · 0.9999 · 0.9936
= 0.91551083976 ≈ 0.9155

103

4 Methods 4.1 Reliability and availability of data centers

Example 4: calculate reliability without numbers

® Question

The system consists of 2 control blocks and 3 voice channels. The system
is up when at least 1 control channel and at least 1 voice channel are up.

✓ Solution

Reliability can be calculated in parallel, as it takes almost a component
to work properly. Each control channel has reliability Rc and each voice
channel has reliability Rv:

R =
[
1− (1−Rc)

2
]
·
[
1− (1−Rv)

3
]

104

4 Methods 4.1 Reliability and availability of data centers

4.1.3.1 R out of N redundancy (RooN)

An RooN (r out of n) redundancy system contains both the series system
model and the parallel system model as special cases. The system has n
components that operate or fail independently of one another and as long as at
least r of these components (any r) survive, the system survives. [5]

System failure occurs when the (n− r + 1)-th component failure occurs. [5]

But note an interesting observation: [5]

• When r = n, the r out of n model reduces to the series model.

• When r = 1, the r out of n model becomes the parallel model.

In simple terms, RooN is a system made up of n identical replicas, where at least
r replicas have to work well for the whole system to work well.

The reliability formula for the RooN system is:

Rs (t) = RV

n∑
i=r

Ri
c (1−Rc)

n−i n!

i! (n− i)!
(36)

The last part of the formula can be replaced by the binomial coefficient:

n!

i! (n− i)!
=

(
n

i

)
The components are:

• Rs: System Reliability

• Rc: Component Reliability

• Rv: Voter Reliability

• n: number of components

• r: minimum number of compo-
nents which must survive

OutputInput

.

.

.

Figure 40: General structure of RooN system.

105

4 Methods 4.1 Reliability and availability of data centers

4.1.3.2 Triple Modular Redundancy (TMR)

Triple Modular Redundancy (TMR) is a fault-tolerant form of N-modular
redundancy, in which three systems perform a process and the result is
processed by a majority-voting system to produce a single output. If
any one of the three systems fails, the other two systems can correct
and mask the fault.

The system works properly if 2 out of 3 components work properly and the
voter works properly.

The TMR Reliability RTMR is:

RTMR = Rv

(
3 ·R2

m − 2 ·R3
m

)
(37)

And the TMR MTTF MTTFTMR is:

MTTFTMR =
5

6
·MTTFsimplex (38)

® TMR: good or bad?

TMR systems can tolerate both transient13 and permanent faults14. It
also has higher reliability (for shorter missions).

The TMR reliability can be the same as the series systems if:

RTMR (t) = Rc (t) =⇒ 3e−2λmt − 2e−3λmt = e−λmt (39)

The time t is:
t =

ln (2)

λm
≈ 0.7 MMTFc (40)

Note that RTMR (t) > Rc (t) when mission time is less than 70% of MTTFc.

13In electrical engineering, a transient fault is defined as an error condition that vanishes
after the power is disconnected and restored.

14In electrical engineering, a persistent or permanent faults are a type of fault that is
present regardless of the disconnection of the power supply.

106

4 Methods 4.1 Reliability and availability of data centers

4.1.3.3 Standby redundancy

Standby redundancy is a system consisting of two parallel replicas:

• The primary replica, which operates all the time.

• The redundant replica (generally disabled) is activated when the pri-
mary replica fails.

OutputInput

To be operational, the standby system requires two mechanisms:

1. A mechanism to determine whether or not the primary replica is
functioning properly (on-line self check);

2. A dynamic switching mechanism to deactivate the primary replica
and activate the redundant replica.

Standby Parallel Model System Reliability

Equal failure rates, perfect
switching

Rs = e−λt (1 + λt)

Unequal failure rates, perfect
switching

Rs = e−λ1t + λ1

(
e−λ1t − e−λ2t

)
λ2 − λ1

Equal failure rates, imperfect
switching

Rs = e−λt (1 +Rswitchλt)

Unequal failure rates, imper-
fect switching

Rs = e−λ1t +Rswitchλ1

(
e−λ1t − e−λ2t

)
λ2 − λ1

Table 5: Standby redundancy - Quick Formulas.

In the previous table we have:

• Rs: System Reliability

• λ: Failure Rate

• t: Operating Time

• Rswitch: Switching Reliability

107

4 Methods 4.2 Disk performance

4.2 Disk performance
4.2.1 HDD

We can calculate some performance metrics related to the types of delay of HDD
(page 28).

• Full Rotation Delay R is:

R =
1

DiskRPM
(41)

And in seconds:
Rsec = 60×R (42)

From the Rsec we can also calculate the total rotation average:

Trotation AVG =
Rsec

2
(43)

• Seek Time, the time to move the head to a different track, which
is divided into several phases:

– Acceleration
– Coasting (constant speed)
– Deceleration
– Settling

The Tseek modelling considers a linear dependency with the distance. Also,
the seek average is:

Tseek AVG =
Tseek MAX

3
(44)

• Transfer time. It is the time that data is either read from or
written to the surface. It includes the time the head needs to pass
on the sectors and the I/O transfer:

Ttransfer =
R/W of a sector

Data transfer rate
(45)

The Controller Overhead is the buffer management (data transfer)
and interrupt sending time.

Transfer time and Controller Overhead are together because they are re-
quired to calculate some interesting metrics.

– Service Time TI/O

TI/O = Tseek + Trotation + Ttransfer + Toverhead (46)

– Response Time
Tqueue + TI/O (47)

Where Tqueue depends on queue-length, resource utilization, mean
and variance of disk service time and request arrival distribution.

108

4 Methods 4.2 Disk performance

proc wait
queue IOC disk

service time
response time

Figure 41: Service and response time.

Exercise 1: mean service time of an I/O operation

The data of the exercise are:

• Read/Write of a sector of 512 bytes (0.5 KB)

• Data transfer rate: 50 MB/sec

• Rotation speed: 10000 RPM (Round Per Minute)

• Mean seek time: 6 ms

• Overhead Controller: 0.2 ms

To calculate the service time TI/O, we need the following information:

• Tseek, which we already have, and it is 6 ms.

• Trotation

• Ttransfer

• Toverhead, which we already have, and it is 0.2 ms.

We also know the rotation and transfer information, but we want to know
the mean service time. Then we calculate the total rotation average
Trotation AVG:

R =
1

DiskRPM
=

1

10000
= 0.0001

Rsec = 60 ·R = 60 · 0.0001 = 0.006 seconds

Trotation AVG =
Rsec

2
=

0.006

2
= 0.003 seconds = 3 ms

Finally, the transfer time is easy to calculate because we have the R/W
of a sector and the data transfer rate. First we do a conversions from

109

4 Methods 4.2 Disk performance

megabytes to kilobytes:

Data transfer rate: 50 MB/sec

= 50 · 1024 KB/sec

= 51200 KB/sec

Ttransfer =
0.5 KB/sec

51200 KB/sec
= 0.000009765625 sec · 1000

= 0.009765625 ms ≈ 0.01 ms

The exercise can be completed by calculating the mean I/O service time
required:

TI/O = Tseek + Trotation + Ttransfer + Toverhead

TI/O = 6 + 3 + 0.01 + 0.2 = 9.21 ms

The previous service time is supposed to be only for very pessimistic cases
where sectors are fragmented on the disk in the worst possible way.
This can happen because the files are tiny (each file is contained in one block)
or the disk is externally fragmented.

Thus, each access to a sector requires to pay rotational latency and seek time.
This is not the case in many circumstances because the files are larger than one
block and stored contiguously.

We can measure the Data Locality DL of a disk as the percentage of blocks
that do not need seek or rotational latency to be found.

Thanks to the Data Locality, it is possible to calculate the Average Service
Time:

TI/O AVG = (1−DL) · (Tseek + Trotation) + Ttransfer + Tcontroller (48)

Exercise 2: data locality

The data of the exercise are:

• Read/Write of a sector of 512 bytes (0.5 KB)

• Data Locality: DL = 75%

• Data transfer rate: 50 MB/sec

• Rotation speed: 10000 RPM (Round Per Minute)

• Mean seek time: 6 ms

• Overhead Controller: 0.2 ms

110

4 Methods 4.2 Disk performance

Since the Data Locality is 75%, only 25% of the operations are affected
by the DL:

(1−DL) = (1− 0.75) = 0.25

See the exercise on page 109 to understand the values of Tseek, Trotation,
Ttransfer and Toverhead:

• Tseek = 6

• Trotation = 3

• Ttransfer = 0.01

• Toverhead = 0.2

Finally the average time for read/write a sector of 0.5 KB with a DL of
75% is:

TI/O AVG = 0.25 · (6 + 3) + 0.01 + 0.2

= 0.25 · 9 + 0.21

= 2.46 ms

Exercise 3: influence of “not optimal” data allocation

The data of the exercise are:

• 10 blocks of 1/10 MB for each block (10 blocks of 1/10 MB “not
well” distributed on disk)

• Tseek = 6 ms

• Trotation AVG = 3 ms

• Data transfer rate: 50 MB/sec

In the exercise you were asked to calculate the time taken to transfer a
1 MB file with 100% and 0% data locality:

• Data Locality equals to 100%:

– An initial seek (6 ms)

– A total rotation average (3 ms)

– Now it’s possible to do the 1MB global transfer directly be-
cause there are no blocks to seek or rotation latency:

1 MB of 50 MB =
1

50
= 0.02 seconds · 1000 = 20 ms

– The total time is:

T = 6 + 3 + 20 = 29 ms

111

4 Methods 4.2 Disk performance

• Data Locality equals to 0%:

– An initial seek (6 ms)

– A total rotation average (3 ms)

– In this case, it’s not possible to do a global transfer directly,
because each block is affected by the seek or rotation latency.
Then we have to transfer block by block and calculate the
delay:

1 MB of 10 MB =
1

10
= 0.1 seconds · 1000 = 100 ms

– The total time is:

T = (6 + 3 + 2) · 10 = 110 ms

Where 10 is the number of blocks.

Note: the controller times is not considered.

112

4 Methods 4.2 Disk performance

4.2.2 RAID

We can calculate some performance metrics related to the RAID technology
(page 38).

• Let’s assume:

– A constant Failure Rate;
– An exponentially distributed time to failure;
– The case of independent failures.

(conditions usually used to determine the disk MTTF).
The Mean Time To Failure of a disk array MTTFdiskArray is equal
to the relationship between the MTTF of a single disk and the number of
disks:

MTTFdiskArray =
MTTFsingleDisk

Disks
(49)

Large disk arrays are too unstable to be used without any fault
tolerance approach. Disks do not have huge MTTF since it is highly
probable they will be replaced in a "short time". Note that the RAID 0
has no redundancy!

MTTFRAID 0 = MTTFdiskArray =
MTTFsingleDisk

Disks
(50)

• RAID levels greater than level zero use redundancy to improve reliability.
Then, when a disk fails, it should be replaced, and the information should
be reconstructed on the new disk using the redundant information. The
MTTR is the time needed for this action! As always, the N value is the
number of disks in the array. The Mean Time To Failure of a RAID
MTTFRAID (except the level zero!) is:

MTTFRAID =
(
MTTFsingleDisk

N

)
×
(

1

ProbabilityadditionalCriticalFailuresInMTTR

)
(51)

Where:

–
MTTFsingleDisk

N
is the MTTF for the array of N disks.

–
1

ProbabilityadditionalCriticalFailuresInMTTR
is the probability of other

critical failures in the array before repairing the failed disk.
The RAID level and type of redundancy determine it.

In detail, the Mean Time To Failure of each RAID level (except the
zero) is:

– RAID 1 - With a single copy of each disk, one drive can fail, and if we
are lucky, N ÷ 2 drives can fail without data loss. Then the MTTF
of RAID 1 MTTFRAID 1 is:

MTTFRAID 1 =

(
MTTFsingleDisk

N

)
×
(

1

Probability2ndCriticalFailureInMTTR

)
(52)

113

4 Methods 4.2 Disk performance

Probability2ndCriticalFailureInMTTR =

(
1

MTTFsingleDisk

)
× MTTR (53)

Where:

∗
1

MTTFsingleDisk
is the failure rate for the copy of the failed

disk.
∗ MTTR is the period of interest before replacement.

– RAID 0 + 1 - When one disk in a stripe group fails, the entire group
goes off. Then the MTTF of RAID 01 MTTFRAID 0 + 1 is:

MTTFRAID 01 =

(
MTTFsingleDisk

N

)
×
(

1

Probability2ndCriticalFailureInMTTR

)
(54)

It is not the same as RAID 1 because the probability is:

Probability2ndCriticalFailureInMTTR =

(
G

MTTFsingleDisk

)
× MTTR (55)

Where:
∗ G is the number of disks in a stripe group.

∗
G

MTTFsingleDisk
is the failure rate for one of the disks in the

other group.
∗ MTTR is the period of interest before replacement.

– RAID 1 + 0 - To fail, the same copy in both groups has to fail, but
multiple failure can be tolerated. Then the MTTF of RAID 10
MTTFRAID 1 + 0 is:

MTTFRAID 10 =

(
MTTFsingleDisk

N

)
×
(

1

Probability2ndCriticalFailureInMTTR

)
(56)

It is not the same as RAID 1 because the probability is:

Probability2ndCriticalFailureInMTTR =

(
1

MTTFsingleDisk

)
× MTTR (57)

Where:

∗
1

MTTFsingleDisk
is the failure rate for the copy of the failed

disk.
∗ MTTR is the period of interest before replacement.

– RAID 4 and RAID 5 - To fail, two disks have to fail before replace-
ment. Then the MTTF of RAID 4 MTTFRAID 4 and the MTTF of
RAID 5 MTTFRAID 5 is:

MTTFRAID 4 = MTTFRAID 5 =

(
MTTFsingleDisk

N

)
×
(

1

Probability2ndFailureInMTTR

)
(58)

And the probability is:

Probability2ndFailureInMTTR =

(
(N − 1)

MTTFsingleDisk

)
× MTTR (59)

Where:

114

4 Methods 4.2 Disk performance

∗
(N − 1)

MTTFsingleDisk
is the failure rate for one of the other disks.

∗ MTTR is the period of interest before replacement.

– RAID 6 - Two disks failures at the same time are tolerated. Then the
MTTF of RAID 6 MTTFRAID 6 is:

MTTFRAID 6 =

(
MTTFsingleDisk

N

)
×
(

1

Probability2ndAnd3rdFailureInMTTR

)
(60)

And the probability is:

Probability2ndAnd3rdFailureInMTTR = Probability2ndFailure×Probability3ndFailure
(61)

Where:

∗ Probability2ndFailure:

Probability2ndFailure =

(
(N − 1)

MTTFsingleDisk

)
× MTTR (62)

·
(N − 1)

MTTFsingleDisk
is the failure rate for one of the other

disks.
· MTTR is the period of interest before the replacement.

∗ Probability3ndFailure:

Probability3ndFailure =

(
(N − 2)

MTTFsingleDisk

)
× MTTR

2
(63)

·
(N − 2)

MTTFsingleDisk
is the failure rate for one of the remaining

disks.

·
MTTR
2

is the average overlapping period between first
and second disk replacement (both disk not yet replaced).

115

4 Methods 4.2 Disk performance

RAID level Metric

RAID 0 MTTFRAID 0 =
MTTFsingleDisk

N

RAID 1 + 0 MTTFRAID 10 =
(MTTFsingleDisk)

2

(N × MTTR)

RAID 0 + 1 MTTFRAID 01 =
(MTTFsingleDisk)

2

(N ×G× MTTR)

RAID 4 MTTFRAID 4 =
(MTTFsingleDisk)

2

(N ×N − 1× MTTR)

RAID 5 MTTFRAID 5 =
(MTTFsingleDisk)

2

(N ×N − 1× MTTR)

RAID 6 MTTFRAID 6 =
2× (MTTFsingleDisk)

3(
N ×N − 1×N − 2× MTTR2

)
Table 6: MTTF summary RAID levels.

116

4 Methods 4.3 Scalability and performance of data centers

4.3 Scalability and performance of data centers
4.3.1 Evaluate system quality

System quality information is critical from a cost and performance perspective.
In this context, “performance” means the overall effectiveness of a com-
puter system in terms of throughput, response time, and availability.

® So how do we evaluate system quality?

There are generally two approaches:

• Intuition and trend extrapolation. Obviously, those who possess
these qualities in sufficient quantity are rare. The pros are speed and
flexibility, but the cons are accuracy.

• Experimental evaluation of alternatives. As pro has excellent accu-
racy, but as con has laborious and flexible.

The techniques are represented in the following figure.

Figure 42: Quality Evaluation techniques.

The most common and useful solution to evaluate system quality is model-
based approach. The systems are complex, so it is useful to create an ab-
straction of the systems called models. The model-based are divided into
three groups:

117

4 Methods 4.3 Scalability and performance of data centers

• Analytical and numerical techniques are based on the application
of mathematical techniques, which usually exploit results coming from
the theory of probability and stochastic process.

¥ Advantages

– Most efficient.

– Accurate.

l Disadvantages

– Available only in very limited cases.

• Simulation techniques are based on the reproduction of traces of
the model.

¥ Advantages

– Most general.

l Disadvantages

– May be less accurate, especially when considering cases where rare
events may occur.

– Solution time can also be very long if high accuracy is desired.

• Hybrid techniques combine analytical/numerical methods with
simulation.

118

4 Methods 4.3 Scalability and performance of data centers

4.3.2 Queueing Networks

4.3.2.1 Definition

Queueing Network Modeling is a particular approach to computer system
modeling in which the computer system is represented as a network of
queues. A network of queues is a collection of service centers, which represent
system resources, and customers, which represent users or transactions. [3]

Some examples of queues in computer systems are:

• CPU uses a time-sharing scheduler.

• A disk serves a queue of requests waiting to read or write blocks.

• A router on a network serves a queue of packets waiting to be routed.

• Databases have lock queues where transactions wait to acquire the lock
on a record.

Single Queues Networks of Queues Expressiveness

Network of queues

��
⌫

��
⌫

p

(1�p)

HHHY
routing probability

HHHj

to system
arrivals

����⇡

from system
departures

?

service centre

?

to queue
arrivals

?

from queue
departures

����*

server HHHHY

bu↵er

--

�

6

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 5 Queueing Networks

Figure 43: Queueing Network graphical representation.

119

4 Methods 4.3 Scalability and performance of data centers

4.3.2.2 Characteristics

Queueing models are characterized by several aspects:

• Arrival. Arrivals represent orders coming into the system. They
specify how fast, how often, and what types of jobs the station will ser-
vice. Arrivals can come from:

1. An external source.

2. Another queue.

3. The same queue, through a loopback arc.

• Service. Service represents the time a job spends being served.
The server does the job, but the number of servers can be different:

– Single server. It has the ability to serve one client at a time.
Waiting customers remain in the buffer until they are selected
for service. Finally, the next customer is selected depending on
the service discipline.

– Infinite servers. There are always at least as many servers as
there are customers, and each customer can have a dedicated
server. As a consequence, there is no queuing (and no buffer).

…

120

4 Methods 4.3 Scalability and performance of data centers

– Multiple servers. There is a fixed number of servers (c in the
figure below), each of which can serve one customer at a time.

∗ Number of customers in the system ≤ number of servers
⇒ no queuing.

∗ Number of customers in the system > number of servers
⇒ the additional customers must wait in the buffer.

…

1

c

• Queue. If jobs exceed the parallel processing capacity of the
system, they are forced to wait in a buffer.

When the job currently in service leaves the system, one of the jobs
in the queue can now enter the free service center. Service Disci-
pline/Queuing Policy determines which of the jobs in the queue
will be selected to start its service.

• Population. Ideally, members of the population are indistinguishable
from one another. When this is not the case, we divide the population
into classes whose members all exhibit the same behavior. Differ-
ent classes differ in one or more characteristics, e.g. arrival rate, service
demand. Identifying different classes is a task of workload characteriza-
tion.

• Routing. For many systems, we can view the system as a collection of
resources and devices, with customers or jobs circulating between them.

We can associate a service center with each resource in the system and
then route customers between the service centers.

After being serviced at one service center, a customer can move on to other
service centers, following a pre-defined pattern of behavior according to
the customer’s needs.

A queueing network can then be represented as a graph where the nodes
represent the service centers k and the arcs represent the possible transi-
tions of users from one service center to another. Nodes and arcs together
define the network topology.

Whenever a job has several possible alternative routes after com-
pleting service at a station, an appropriate selection policy must be
defined.

The policy is also called the Routing Algorithm. The most important
routing algorithms are:

– Probabilistic Routing Algorithm. Each path is assigned a
probability of being chosen by the job that left the station
in question.

– Round Robin Routing Algorithm. The destination chosen
by the job rotates among all possible existing destinations.

121

4 Methods 4.3 Scalability and performance of data centers

– Join the shortest queue Routing Algorithm. Jobs can query
the queue length of the possible destinations and choose the
one with the least number of jobs waiting to be served.

With important definition of routing, we can say that a network can be:

• Open. Customers can come from or go to any external environment.

• Closed. A fixed population of customers remains within the system.

• Mixed. There are classes of customers within the system that exhibit
both open and closed patterns of behavior.

An additional graphical notation is:

Example 5: Open Networks

A client server system, dealing with external arrivals (classical three tier
architecture).
Provide a QN model of the system and evaluate the overall throughput
considering that the network delay is negligible with respect to the other
devices and two different cases:

1. The only thing we know is that each server should be visited by
the application.

2. In the second case we know that the application after visiting the
web server requires some operations at the application server
and then can go back to the web server and leave the system
or can require service at the DMBS and then go back to the
application server.

122

4 Methods 4.3 Scalability and performance of data centers

Web Server
Application

Server
DBMS Server

Requests
Arrivals

Completed
Requests

Source

Sink

Web Server
Application

Server
DBMS ServerRequests

Arrivals
Completed
Requests

Source Sink

Example 6: Closed Networks

A client server system, with a finite number of customers (classical
three tier architecture and not accessible from outside).
Provide a QN model of the system and evaluate the system throughput
considering that Network delay is negligible with respect to the other
devices. Model the two different cases previously described.

• First scenario

• Second scenario

123

4 Methods 4.3 Scalability and performance of data centers

4.3.3 Operational Laws

Operational Laws are simple equations that can be used as an abstract
representation or model of the average behavior of almost any system.

¥ Advantages

• The laws are very general and make almost no assumptions about
the behavior of the random variables that characterize the system.

• Simplicity: they can be applied quickly and easily.

In the Computing Infrastructure course, then in this note, the operational laws
are applied to the Queueing Network model (4.3.2, page 119).

Operational laws are based on observable variables, values that we can de-
rive by observing a system over a finite period of time.

In general, we assume that the system receives requests from its environ-
ment. Each request creates a job or customer within the system. Finally,
when a job has been processed, the system responds to the environment
by completing the corresponding request.

4.3.3.1 Basic measurements

From an abstract system we can derive the following quantities:

• T, the length of time we observe the system

• A, the number of request arrivals we observe

• C, the number of request completions we observe

• B, the total amount of time during which the system is busy (B ≤ T)

• N, the average number of jobs in the system

From these values, we can derive the following four important quantities:

• Arrival rate:

λ =
number of request arrivals

length of time we observe the system
=

A

T
(64)

• Throughput or Completion rate:

X =
number of request completions

length of time we observe the system
=

C

T
(65)

• Utilization:

U =
total amount of time during which the system is busy

length of time we observe the system
=

B

T
(66)

124

4 Methods 4.3 Scalability and performance of data centers

• Mean service time per completed job:

S =
total amount of time during which the system is busy

number of request completions
=

B

C
(67)

We will assume that the system is job-flow balanced. Then the number
of arrivals is equal to the number of completions during an observation
period.

Note that if the system is job flow balanced, then the arrival rate is equal to
the completion rate (throughput):

λ = X

A system can be thought of as consisting of a number of devices or resources.
Each of these can be treated as a separate system from the perspective of
operational laws.

An external request generates a job within the system; this job may then
circulate among the resources until all the necessary processing has been
done; as it arrives at each resource, it is treated as a request, generating a job
internal to that resource.

In this case, we have the following quantities:

• T, the length of time we observe the system

• Ak, the number of request arrivals we observe for resource k

• Ck, the number of request completions we observe at resource k

• Bk, the total amount of time during which the resource k is busy (Bk ≤ T)

• Nk, the average number of jobs in the resource k

And we can derive the following four quantities for resource k:

• Arrival rate:
λk =

Ak

T
(68)

• Throughput or Completion rate:

Xk =
Ck

T
(69)

• Utilization:
Uk =

Bk

T
(70)

• Mean service time per completed job:

Sk =
Bk

Ck
(71)

125

4 Methods 4.3 Scalability and performance of data centers

4.3.3.2 Utilization Law

Using the formulas:

• Throughput: Xk =
Ck

T

• Mean service time: Sk =
Bk

Ck

• Utilization: Uk =
Bk

T

From:
Xk · Sk =

Ck

T
· Bk

Ck
=

Bk

T
= Uk

We can derive the Utilization Law:

Uk = Xk · Sk (72)

4.3.3.3 Little’s Law

The Little’s Law is:
N = X ·R (73)

In other words, N is equal to the number of requests in the system. Little’s
Law can be applied to the entire system as well as to some subsystems.

If the system throughput is X requests/sec, and each request remains in the
system on average for R seconds, then for each unit of time, we can observe on
average XR requests in the system.

Example 7

Consider a disk that serves 40 requests/seconds (X = 40 req/s) and
suppose that on average there are 4 requests (N = 4) present in the disk
system (waiting to be served or in service).
Little’s Law tell that N = XR ⇒ R = N

X , so the average time spent at
the disk by a request must be 4

40 = 0.1.
If we know S (e.g.) each request requires 0.0225 seconds of disk service
and we can then deduce that the average waiting time (time in the queue)
is 0.0775 seconds.

The value of Little’s Law changes depending on the application:

• Service level.

– The service time is:
R = S

Where R is the average of each request remaining in the system.
– The utilization is:

N = X ·R = X · S = U

126

4 Methods 4.3 Scalability and performance of data centers

CPU

Disks

Terminals

• Service and Queue level.

– The service time is:
R = S

Where R is the average of each request remaining in the system.
– The utilization is:

N = Flying requests ⇒ N

X
= R = (S + Tqueue)

CPU

Disks

Terminals

• Subsystem level.

– The service time is:

R = Residence Time

Residence time corresponds to our conventional notion of response
time: the period of time from when a user submits a request until
that user’s response is returned.

127

4 Methods 4.3 Scalability and performance of data centers

– The utilization is:

N = Flying requests ⇒ N

X
= R

CPU

Disks

Terminals

• System level.

CPU

Disks

Terminals
Think Time Z

Resp
Tim

e R

Rtot= Z + R

X as before

N = X(Z+R)

128

4 Methods 4.3 Scalability and performance of data centers

4.3.3.4 Interactive Response Time Law

The Interactive Response Time Law is:

R =
N

X
− Z (74)

The response time in an interactive system is the residence time minus the
think time. Note that if the think time is zero (Z = 0) and R = N

X , then
the interactive response time law simply becomes Little’s Law.

Example 8

Suppose that the library catalogue system has 64 interactive users
connected via Browsers, the average think time is 30 seconds, and
that system throughput is 2 interactions/second. What is the re-
sponse time?
The interactive response time law tell us that the response time must be
64

2
− 30 = 2 seconds.

4.3.3.5 Visit count

In an observation interval we can count not only completions external to the
system, but also the number of completions at each resource within the system.
We denote Ck by the number of completions at resource k. We define the
Visit Count:

Vk =
Ck

C
(75)

It is the ratio of the number of completions at the k-th resource to the number
of system completions.

Example 9

If, during an observation interval, we measure 10 system completions
and 150 completions at a specific disk, then on average each system-
level request requires 15 disk operations.

Note that:

• If Ck > C, resource k is visited several times (on average) during each
system level request. This happens when there are loops in the model.

• If Ck < C, resource k might not be visited during each system level
request. This can happen if there are alternatives (e.g. caching of disks).

• If Ck = C, resource k is visited (on average) exactly once every re-
quest.

129

4 Methods 4.3 Scalability and performance of data centers

4.3.3.6 Forced Flow Law

The Forced Flow Law captures the relationship between the different
components within a system. It states that the throughputs, or flows, in all
parts of a system must be proportional to each other.

Xk = Vk ·X (76)

The throughput at the k-th resource is equal to the product of the throughput
of the system and the visit count at that resource.

Rewriting Ck = Vk · C and applying Xk = Ck

T , we can derive the forced flow
law:

Ck = Vk · C ⇒ Ck

T
=

Vk · C
T

⇒ Xk = Vk ·X

4.3.3.7 Utilization Law with Service Demand

If we know the amount of processing each job requires at a resource then we
can calculate the utilization of the resource.

Let us assume that each time a job visits the k-th resource, the amount of
processing or service time it requires is Sk.

Note that service time is not the same as the residence time of the job
at that resource. In general a job might have to wait for some time before
processing being.

The total amount of service that a system job generates at the k-th
resource is called the Service Demand Dk:

Dk = Sk · Vk (77)

Using the service demand, we can rewrite the Utilization Law:

Uk = Xk · Sk = (X · Vk) · Sk = Dk ·X (78)

The utilization of a resource is denoted Uk and it is the percentage of time that
the k-th resource is in use processing a job. It is also equal to the product of:

• The throughput of that resource and the average service time at that
resource;

• The throughput at system level and the average service demand at that
resource.

130

4 Methods 4.3 Scalability and performance of data centers

4.3.3.8 Response and Residence Times

When considering nodes characterized by visits different from one, we can define
two permanence times: Response Time and Residence Time.

The Response Time R̃k (or Φk) accounts for the average time spent in
station k, when the job enters the corresponding node (i.e. time for the
single interaction, disk request):

The Residence Time Rk accounts instead for the average time spent by
a job at station k during the staying in the system: it can be greater or
smaller than the response time depending on the number of visits.

Note that there is the same relation between Residence Time and Response
Time as the one between Demand Time and Service Time:

Dk = vk · Sk

Rk = vk · R̃k

(79)

Also note that for single queue open system, or tandem models, vk = 1.
This implies that average service time and service demand are equal,
and response time and residence time are identical.

vk = 1 ⇒
Dk = Sk

Rk = R̃k

131

4 Methods 4.3 Scalability and performance of data centers

4.3.4 Bounding Analysis

4.3.4.1 Introduction

The simplest useful approach to computer system analysis using queueing net-
work models is Bounding Analysis. With very little computation it is possible
to determine upper and lower bounds on system throughput and re-
sponse time as functions of the system workload intensity (number of
arrival rate of customers).

¥ Advantages

• Highlight and quantify the critical influence of the system bottle-
neck15.

• Can be computed quickly, even by hand.

• Useful in System Sizing.

• Useful for System Upgrades.

The notation used is:

• K, the number of service centers.

• D, the sum of the service demands at the centers, so:

D =
∑
k

Dk (80)

• Dmax, the largest service demand at any single center.

• Z, the average think time, for interactive systems.

And the following performance quantities are considered:

• X, the system throughput.

• R, the system response time.

15The resource within a system which has the greatest service demand is known
as the bottleneck resource or bottleneck device, and its service demand is maxk {Dk},
denoted Dmax.

The bottleneck resource is important because it limits the possible performance of the
system. This will be the resource which has the highest utilization in the system.

132

4 Methods 4.3 Scalability and performance of data centers

4.3.4.2 Asymptotic bounds

The Asymptotic Bounds are derived by considering the (asymptotically) ex-
treme conditions of light and heavy loads. There are two possible views:

• Optimistic

– Upper bound: system throughput

– Lower bound: system response time

• Pessimistic

– Upper bound: system response time

– Lower bound: system throughput

The extreme conditions used are:

• Light load.

• Heavy load.

The bounding analysis assumes that a customer’s service demand at a center
does not depend on how many other customers are currently in the
system or in which service centers they are located.

Open Models

For the open models, the X (system throughput) bound is equal to the max-
imum arrival rate that the system can handle.

If the λ (arrival rate, page 124) is greater than the X (system throughput)
λ > X, then the system is saturated. This situation causes new jobs to
wait indefinitely.

The X (system throughput) bound is calculated as:

λsat =
1

Dmax
(81)

The R (system response time) bound is equal to the largest and smallest possible
system response time experienced at a given arrival rate (λ), which is only
examined if λ < λsat. If the condition is not satisfied, then the system is
unstable.

With the open models, there are two extreme situations to consider:

• If no customers interferes with any other, so no queue time, then
the system response time is equal to the sum of the service demands at
the centers R = D, with D =

∑
k

Dk.

133

4 Methods 4.3 Scalability and performance of data centers

• If n customers arrive together every n
λ time units, there is no pes-

simistic bound on R (system response time).

Customers at the end of the batch are forced to queue for customers at the
front of the batch, and thus experience large response times. The batch
can be extremely long N → ∞.

There is no pessimistic bound on response times, regardless of
how small the arrival rate λ might be.

The bounding analysis for open models gives the following formulas:

• Bound for X (λ):

X (λ) ≤ 1

Dmax
(82)

• Bound for R (λ):
R (λ) ≥ Dmax (83)

R

X

134

4 Methods 4.3 Scalability and performance of data centers

Closed Models

Bounding Analysis depends on the situation:

• Light Load situation.

– Lower bounds:

∗ 1 customer case:

N = X · (R+ Z)

1 = X · (D + Z)

X =
1

(D + Z)

(84)

∗ Adding customers: smallest X (system throughput) obtained
with largest R (system response time), i.e., new jobs queue be-
hind others already in the system.
Remember: in closed models, the highest possible system re-
sponse time occurs when each job, at each station, found all the
other N − 1 costumers in front of it, then R = N ·D.
In this case R = N ·D and X is:

X =
N

(N ·D + Z)

lim
N→∞

N

(N ·D + Z)
=

1

D

(85)

135

4 Methods 4.3 Scalability and performance of data centers

– Upper bounds:

∗ Adding customers: largest X (system throughput) obtained
with the lowest response time R (system response time, i.e. no
conflicts).
Remember: in closed models, the lowest response time can be
obtained if a job always finds the queue empty and always starts
being served immediately.
In this case R = D and X is:

X =
N

(D + Z)
(86)

• Heavy Load situation.

– Upper bound:
Uk (N) = X (N)Dk ≤ 1 (87)

Since the first to saturate is the bottleneck (max):

X (N) ≤ 1

Dmax
(88)

The X (N) bounds is:

N

N ·D + Z
≤ X (N) ≤ min

(
1

Dmax
,

N

D + Z

)
(89)

The R (N) bounds is:

max (D,N ·Dmax − Z) ≤ R (N) ≤ N ·D (90)

136

4 Methods 4.3 Scalability and performance of data centers

R (N) bounds.

∗ N* case: particular population size determining if the light or
heavy load optimistic bound is to be applied:

N∗ =
D + Z

Dmax
(91)

137

4 Methods 4.3 Scalability and performance of data centers

Without thinking time we have the following limits:

138

References

References
[1] L.A. Barroso, U. Hölzle, and P. Ranganathan. The Datacenter as a Com-

puter: Designing Warehouse-Scale Machines, Third Edition. Synthesis Lec-
tures on Computer Architecture. Springer International Publishing, 2022.

[2] Shantanu Bhattacharya and Lipika Bhattacharya. Xaas: Everything-As-A-
Service: the lean and agile approach to business growth. World Scientific,
2022.

[3] E.D. Lazowska. Quantitative System Performance: Computer System Anal-
ysis Using Queueing Network Models. Prentice-Hall, 1984.

[4] Jacopo Marino and Fulvio Risso. Is the computing continuum already here?,
2023.

[5] NIST. 8.1.8.4. R out of N model - itl.nist.gov. https://www.itl.nist.
gov/div898/handbook/apr/section1/apr184.htm. [Accessed 14-08-2024].

[6] Gianluca Palermo. Computing infrastructures. Slides from the HPC-E mas-
ter’s degree course on Politecnico di Milano, 2024.

[7] Gianluca Palermo. Lesson 1, computing infrastructures. Slides from the
HPC-E master’s degree course on Politecnico di Milano, 2024.

[8] Jiang Wu, Zhou Lei, Shengbo Chen, and Wenfeng Shen. An access control
model for preventing virtual machine escape attack. Future Internet, 9(2):20,
2017.

[9] Ming-Chang Yang. Lesson 2, raid and data integrity. Slides from the
CSCI5550 Advanced File and Storage Systems course on the Chinese Uni-
versity of Hong Kong, 2020.

139

https://www.itl.nist.gov/div898/handbook/apr/section1/apr184.htm
https://www.itl.nist.gov/div898/handbook/apr/section1/apr184.htm

Index
A
actual size on the disk a 25
Additive parity 47
Analytical and numerical techniques 118
Application Binary Interface (ABI) 75
Application-level virtualization 77
Arrival rate 124, 125
as-a-Service 87
Asymptotic Bounds 133
Availability 94
Availability Zones (AZs) 13
Average Service Time 110
Avoidance 92

B
Bare Metal Hypervisor 78
BCube 64
Bisection bandwidth 55
Blade Servers 19
Block Mapping 35
bottleneck device 132
bottleneck resource 132
Bounding Analysis 132

C
C-LOOK 29
C-SCAN (Circular SCAN) 29
cache 28
CamCube 63
Closed-Loop systems 68
Cloud Application Layer 88
Cloud Computing 86, 87
Cloud Software Environment Layer 88
Cloud Software Infrastructure Layer 88
Clusters 24
Community Cloud 90
Completion rate 124, 125
Components in parallel 101
Components in series 100
Computing Continuum 6
Computing Infrastructure 5
Computing Regions (CRs) 13
Consistent Update Problem 45
Consolidation Management 86
Container 84
Controller Overhead 28, 108
CRAC (computer room air conditioning) 68

140

Index

D
data blocks 24
Data Center 5
Data Center Infrastructure Efficiency (DCiE) 71
Data Center Network (DCN) 15, 56
Data Locality DL 110
Data Striping 38
DCell 63
DCN Hybrid architectures 56
DCN Server-centric architectures 56
DCN Switch-centric architectures 56
Demand Time 131
Dependability 91
Direct Attached Storage (DAS) 52
Dirty Page 30
doubling leaf bandwidth 55

E
Edge Computing 9
Embedded System 8
empirical function of reliability 97
Empty Page 30
Endurance rating: Terabytes Written (TBW) 37
EoR (End-of-Row) architecture 58
Erase Block 30
Erase/Write Cycle Counter 37
Erased Page 30
external fragmentation 26

F
Failure in time 100
Failure Rate λ 96
Failures In Time (FIT) 96
Fat Tree Network 61
First Come, First Serve (FCFC) 29
Flash Translation Layer (FTL) 31
Fog Computing 9
Forced Flow Law 130
Full Rotation Delay 108
Full virtualization 81

G
Garbage Collection 33
Geographic Areas (GAs) 13

H
Hard Disk Drive (HDD) 23, 27
Hardware-level virtualization 77
Hosted Hypervisor 80
Hybrid Cloud 90

141

Index

Hybrid Mapping 36
Hybrid techniques 118
Hypervisor 78

I
In Use Page 30
In-Rack cooler 70
In-Row cooling 70
Interactive Response Time Law 129
internal fragmentation 25
Internet of Things (IoT) 8
Invalid Page 30

J
Join the shortest queue Routing Algorithm 122
Just a Bunch of Disks (JBOD) 38

L
LBA (Logical Block Address) 24
Leaf-Spine architecture 59
Liquid cooling 70
Little’s Law 126
Log-Structured FTL 31

M
MDCube 65
Mean service time 125
Mean Time Between Failures (MTBF) 96
Mean Time To Data Loss (MTTDL) 41
Mean Time To Failure (MTTF) 38, 96
Mean Time To Failure of a disk array MTTFdiskArray 113
Mean Time To Failure of a RAID MTTFRAID 113
Mean Time To Repair (MTTR) 101
Microkernel architecture 79
Mission-critical systems 92
Monolithic architecture 79
MTTF of RAID 01 MTTFRAID 0 + 1 114
MTTF of RAID 10 MTTFRAID 1 + 0 114
MTTF of RAID 1 MTTFRAID 1 113
MTTF of RAID 4 MTTFRAID 4 114
MTTF of RAID 5 MTTFRAID 5 114
MTTF of RAID 6 MTTFRAID 6 115

N
Native Hypervisor 78
Network Attached Storage (NAS) 52
Network Interface Cards (NICs) 56
non-volatile memory express (NVMe) 23

O
Open-Loop systems 68

142

Index

Operational Laws 124

P
Packet forwarding 56
Page 30
Page Mapping plus Caching 37
Paravirtualization 82
PCIe (peripheral component interconnect express) 23
permanent faults 106
PoD (Point of Delivery) 61
Power Usage Effectiveness (PUE) 71
Private Cloud 90
Probabilistic Routing Algorithm 121
Process Virtual Machine 75
Public Cloud 90

Q
Queueing Network Modeling 119
Queuing Policy 121

R
Rack Servers 18
Rack Units 18
RAID (Redundant Array of Independent Disks) 38
RAID levels 39
Read caching 28
read-modify-writes 47
reconstruct-writes 47
Redundancy 39
Reliability 94
Reliability Block Diagram (RBD) 100
Residence Time Rk 131
Response Time 108
Response Time R̃k 131
Revolutions Per Minute (RPM) 27
RooN (r out of n) 105
Rotary UPS system 67
Rotational Delay 28
Round Robin Routing Algorithm 121
Routing Algorithm 121

S
Safety-critical systems 92
SCAN 29
seek average 108
Seek Delay 28
Seek Time 108
Server 16
Server Consolidation 86
Service Demand Dk 130

143

Index

Service Discipline 121
Service Time 108, 131
Shortest Seek Time First (SSTF) 29
Simulation techniques 118
Single Large Expensive Disks (SLED) 38
solid-state drive (SSD) 23, 30
Standby redundancy 107
Storage Area Networks (SAN) 52
Stripe unit 38
Stripe width 38
Striping 38
Subtractive parity 47
System Virtual Machine 76
System-level virtualization 77

T
Three Layer architecture 57
Three-Tier architecture 57
Throughput 124, 125
TMR MTTF MTTFTMR 106
TMR Reliability RTMR 106
Tolerance 92
ToR (Top-of-Rack) architecture 57
torn write 27
Total Facility Power 71
total rotation average 108
Tower Server 17
track buffer 28
Transfer time 28, 108
transient fault 106
Triple Modular Redundancy (TMR) 106
Type 1 Hypervisor 78
Type 2 Hypervisor 80

U
unavailability 95
Unrecoverable Bit Error Ratio (UBER) 37
unreliability Q (t) 94
UPS (uninterruptible power supply or source) 67
Utilization 124, 125
Utilization Law 126, 130

V
Valid Page 30
Virtual Machine (VM) 73
Virtual Machine Manager (VMM) 78
Virtual Machine Monitor 78
Virtual Machine Monitor (VMM) 76
Visit Count 129

144

Index

W
Warehouse-Scale Computers (WSCs) 12
wasted disk space w 25
Write amplification (WA) 30
Write Back cache 28
Write caching 28
Write Through cache 28
write-ahead log 45

X
X as a service 87

145

	Introduction: definition of Data Center and Computing Infrastructure
	Hardware Infrastructures
	System-level
	Computing Infrastructures and Data Center Architectures
	Overview of Computing Infrastructures
	The Datacenter as a Computer
	Warehouse-Scale Computers
	Multiple Data Centers
	Warehouse-Scale Computing / Data Centers Availability
	Architectural overview of Warehouse-Scale Computing

	Node-level
	Server (computation, HW accelerators)
	Rack Servers
	Blade Servers
	Machine Learning

	Storage (type, technology)
	Files
	HDD
	SSD
	RAID
	DAS, NAS and SAN

	Networking (architecture and technology)
	Fundamental concepts
	Switch-centric: classical Three-Tier architecture
	Switch-centric: Leaf-Spine architectures
	Server-centric and hybrid architectures

	Building level
	Cooling systems
	Power supply
	Data Center availability

	Software Infrastructure
	Virtualization
	What is a Virtual Machine?
	Process VM
	System VM

	Virtualization Implementation
	Virtual Machine Managers (VMM)
	Full virtualization
	Paravirtualization
	Containers

	Computing Architectures
	Cloud Computing
	Server Consolidation
	Services provided by cloud
	Types of clouds

	Methods
	Reliability and availability of data centers
	Introduction
	Reliability and Availability
	Reliability Block Diagrams
	R out of N redundancy (RooN)
	Triple Modular Redundancy (TMR)
	Standby redundancy

	Disk performance
	HDD
	RAID

	Scalability and performance of data centers
	Evaluate system quality
	Queueing Networks
	Definition
	Characteristics

	Operational Laws
	Basic measurements
	Utilization Law
	Little's Law
	Interactive Response Time Law
	Visit count
	Forced Flow Law
	Utilization Law with Service Demand
	Response and Residence Times

	Bounding Analysis
	Introduction
	Asymptotic bounds

	Index

