
Numerical Linear Algebra - Notes - v0.1.0

260236

September 2024

1

Preface
Every theory section in these notes has been taken from the sources:

• Course slides. [1]

About:

§ GitHub repository

These notes are an unofficial resource and shouldn’t replace the course material
or any other book on numerical linear algebra. It is not made for commercial
purposes. I’ve made the following notes to help me improve my knowledge and
maybe it can be helpful for everyone.

As I have highlighted, a student should choose the teacher’s material or a
book on the topic. These notes can only be a helpful material.

2

https://github.com/PoliMI-HPC-E-notes-projects-AndreVale69/HPC-E-PoliMI-university-notes

Contents
1 Preliminaries 4

1.1 Notation . 4
1.2 Matrix Operations . 5
1.3 Basic matrix decomposition . 7
1.4 Determinants . 9
1.5 Spare matrices . 10

1.5.1 Storage schemes . 10

Index 15

3

1 Preliminaries

1 Preliminaries
This section introduces some of the basic topics used throughout the course.

1.1 Notation
We try to use the same notation for anything.

• Vectors. With R is a set of real numbers (scalars) and Rn is a space of
column vectors with n real elements.

x =


x1

x2

x3

...
xn


Vectors with all zeros and all ones:

0 =


0
0
0
...
0

 1 =


1
1
1
...
1


• Matrices. With Rm×n is a space of m× n matrices with real elements:

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
am,1 am,2 · · · am,n


Identity matrix I ∈ Rn×n:

I =


1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1

 =
[
e1 e2 en

]

Where ei, i = 1, 2, . . . , n are the canonical vectors.

ei =
[
0 0 · · · 1 · · · 0 0

]T
Where 1 is the i-th entry.

4

1 Preliminaries 1.2 Matrix Operations

1.2 Matrix Operations
Some basic matrix operations:

• Inner products. If x,y ∈ Rn then:

xTy =
∑

i=1,...,n

xiyi

For real vectors, the commutative property is true:

xTy = yTx

Furthermore, the vectors x,y ∈ Rn are orthogonal if:

xTy = yTx = 0

And finally, some useful properties of matrix multiplication:

1. Multiplication by the identity changes nothing.

A ∈ Rn×m ⇒ InA = A = AIm

2. Associativity:
A (BC) = (AB)C

3. Distributive:
A (B +D) = AB +AD

4. No commutativity:
AB ̸= BA

5. Transpose of product:

(AB)
T
= BTAT

• Matrix powers. For A ∈ Rn×n with A ̸= 0:

A0 = In Ak = A · · ·A︸ ︷︷ ︸
k times

= AAk−1 k ≥ 1

Furthermore, A ∈ Rn×n is:

– Idempotent (projector) A2 = A

– Nilpotent Ak = 0 for some integer k ≥ 1

• Inverse. For A ∈ Rn×n is non-singular (invertible), if exists A−1 with:

AA−1 = In = A−1A (1)

Inverse and transposition are interchangeable:

A−T ≜
(
AT

)−1
=

(
A−1

)T
Furthermore, an inverse of a product for a matrix A ∈ Rn×n can be
expressed as:

(AB)
−1

= B−1A−1

Finally, remark that if 0 ̸= x ∈ Rn and Ax = 0, then A is singular.

5

1 Preliminaries 1.2 Matrix Operations

• Orthogonal matrices. Given a matrix A ∈ Rn×n that is invertible, the
matrix A is said to be orthogonal if:

A−1 = AT ⇒ ATA = In = AAT

• Triangular matrices. There are two types of triangular matrices:

1. Upper triangular matrix:

U =


u1,1 u1,2 · · · u1,n

0 u2,2 · · · u2,n

... · · ·
. . .

...
0 0 · · · un,n


U is non-singular if and only if uii ̸= 0 for i = 1, . . . , n.

2. Lower triangular matrix:

L =


l1,1 0 · · · 0
l2,1 l2,2 · · · 0
... · · ·

. . .
...

ln,1 ln,2 · · · ln,n


L is non-singular if and only if lii ̸= 0 for i = 1, . . . , n.

• Unitary triangular matrices. Are matrices similar to the lower and
upper matrices, but they have the main diagonal composed of ones.

1. Unitary upper triangular matrix:

U =


1 u1,2 · · · u1,n

0 1 · · · u2,n

... · · ·
. . .

...
0 0 · · · 1


2. Unitary lower triangular matrix:

L =


1 0 · · · 0
l2,1 1 · · · 0
... · · ·

. . .
...

ln,1 ln,2 · · · 1



6

1 Preliminaries 1.3 Basic matrix decomposition

1.3 Basic matrix decomposition
In the Numerical Linear Algebra course, we will use three main decomposition:

• LU factorization with (partial) pivoting. If A ∈ Rn×n is a non-
singular matrix, then:

PA = LU

Where:

– P is a permutation matrix

– L is an unit lower triangular matrix

– U is an upper triangular matrix

Note that the linear system solution:

Ax = b

Can be solved directly by calculation:

PA = LU

This way the complexity is equal to O
(
n3

)
. So a smarter way to reduce

complexity is to use the divide et impera (or divide and conquer) technique.
Then solve the system:{

Ly = Pb → unit lower triangular system, complexity O
(
n2

)
Ux = y → upper triangular system, complexity O

(
n2

)
• Cholesky decomposition. If A ∈ Rn×n is a symmetric1 and positive

definite2, then:
A = LTL

Where L is a lower triangular matrix (with positive entries on the diago-
nal). Also note that the linear system solution:

Ax = b

Can be solved directly by calculation:

A = LTL

This way the complexity is equal to O
(
n3

)
. So a smarter way to reduce

complexity is to use the divide et impera (or divide and conquer) technique.
Then solve the system:{

LTy = b → lower triangular system, complexity O
(
n2

)
Lx = y → upper triangular system, complexity O

(
n2

)
1AT = A
2zTAz > 0 ∀z ̸= 0

7

1 Preliminaries 1.3 Basic matrix decomposition

• QR decomposition. If A ∈ Rn×n is a non-singular matrix, then:

A = QR

Where:

– Q is an orthogonal matrix

– R is an upper triangular

Note that the linear system solution:

Ax = b

Can be solved directly by calculation:

A = QR

This way the complexity is equal to O
(
n3

)
. So a smarter way to reduce

complexity is to use the divide et impera (or divide and conquer) technique.
Then:

1. Multiply c = QTb, complexity O
(
n2

)
2. Solve the lower triangular system Rx = c, complexity O

(
n2

)

8

1 Preliminaries 1.4 Determinants

1.4 Determinants
We will assume that the determinant topic is well known. However, in the
following enumerated list there are some useful properties about the determinant
of a matrix:

1. If a general matrix T ∈ Rn×n is upper- or lower-triangular, then the
determinant is computed as:

det (T) =

n∏
i=1

ti,i

2. Let A,B ∈ Rn×n, then is true:

det (AB) = det (A) · det (B)

3. Let A ∈ Rn×n, then is true:

det
(
AT

)
= det (A)

4. Let A ∈ Rn×n, then is true:

det (A) ̸= 0 ⇐⇒ A is non-singular

5. Computation. Let A ∈ Rn×n be non-singular, then:

(a) Factor PA = LU

(b) det (A) = ±det (U) = ±u1,1 . . . un,n

9

1 Preliminaries 1.5 Sparse matrices

1.5 Sparse matrices
A sparse matrix is a matrix in which most of the elements are zero; roughly
speaking, given A ∈ Rn×n, the number of non-zero entries of A (denoted
nnz (A)) is O (n), we say that A is sparse.

Sparse matrices are so important because when we try to solve:

Ax = b

The A matrix is often sparse, especially when it comes from the discretization
of partial differential equations.

Finally, note that the iterative methods (explained in the next section) only use
a sparse matrix A in the context of the matrix-vector product. Then we only
need to provide the matrix-vector product to the computer.

1.5.1 Storage schemes

Unfortunately, storing a sparse matrix is a waste of memory. Instead of storing
a dense array (with many zeros), the main idea is to store only the non-zero
entries, plus their locations.

This technique allows to save data storage because it will be from O
(
n2

)
to

O (nnz).

The most common sparse storage types are:

• Coordinate format (COO). The data structure consists of three arrays
(of length nnz (A)):

– AA: all the values of the non-zero elements of A in any order.

– JR: integer array containing their row indices.

– JC: integer array containing their column indices.

For example:

A =


1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.


AA = [12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10.]

JR = [5 3 3 2 1 1 4 2 3 2 3 4]

JC = [5 5 3 4 1 4 4 1 1 2 4 3]

10

1 Preliminaries 1.5 Sparse matrices

Figure 1: Graphical representation of the coordinate format (COO) technique.
From the figure we can see the representation of the AA array, called values, the
JR, called row indices, and finally the JC, called column indices. The algorithm
is very simple. The figures are taken from the NVIDIA Performance Libraries
Sparse, which is part of the NVIDIA Performance Libraries.

• Coordinate Compressed Sparse Row format (CSR). If the elements
of A are listed by row, the array JC might be replaced by an array that
points to the beginning of each row.

– AA: all the values of the non-zero elements of A, stored row by row
from 1, . . . , n.

– JA: contains the column indices.

– IA: contains the pointers to the beginning of each row in the arrays
A and JA. Thus IA(i) contains the position in the arrays AA and JA
where the i-th row starts. The length of IA is n+ 1, with IA (n+ 1)
containing the number A (1) + nnz (A). Remember that n is the
number of rows.

11

https://docs.nvidia.com/nvpl/_static/sparse/storage_format/sparse_matrix.html
https://docs.nvidia.com/nvpl/_static/sparse/storage_format/sparse_matrix.html
https://developer.nvidia.com/nvpl

1 Preliminaries 1.5 Sparse matrices

For example:

A =


1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.


AA = [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]

JA = [1 4 1 2 4 1 3 4 5 3 4 5]

IA = [1 3 6 10 12 13]

To retrieve each position of the matrix, the algorithm is quite simple.
Consider the IA arrays.

1. We start at position one of the array, then the value 1:

AA = [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]

JA = [1 4 1 2 4 1 3 4 5 3 4 5]

IA = [1○ 3 6 10 12 13]

2. We use the value one to see the first (index one) position of the array
JA, and the value is 1:

AA = [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]

JA = [1○ 4 1 2 4 1 3 4 5 3 4 5]

IA = [1 3 6 10 12 13]

3. But with the same index of IA, you also check the array AA, which
has a value of 1:

AA = [1.○ 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]

JA = [1 4 1 2 4 1 3 4 5 3 4 5]

IA = [1 3 6 10 12 13]

4. Now we can check the next row of the matrix. So we check the array
IA at position 2 and get the value 3. But be careful! From 1 (the
previously calculated value) to 3 (the value just taken) there is the
value 2 in between. So we can assume that the value 2 is also in the
first row.

AA = [1. 2.○ 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]

JA = [1 4○ 1 2 4 1 3 4 5 3 4 5]

IA = [1 3 6 10 12 13]

12

1 Preliminaries 1.5 Sparse matrices

Figure 2: View an illustration of the CRS technique using colors to improve
readability.

Figure 3: Graphical representation of the coordinate compressed sparse row
(CSR) technique. From the figure we can see the representation of the AA
array, called values, the IA, called row offset, and finally the JA, called column
indices. It’s interesting to see how the empty line case is handled. It copies the
previous value of the array. The figures are taken from the NVIDIA Performance
Libraries Sparse, which is part of the NVIDIA Performance Libraries.

13

https://docs.nvidia.com/nvpl/_static/sparse/storage_format/sparse_matrix.html
https://docs.nvidia.com/nvpl/_static/sparse/storage_format/sparse_matrix.html
https://developer.nvidia.com/nvpl

References

References
[1] Antonietti Paola Francesca. Numerical Linear Algebra. Slides from the

HPC-E master’s degree course on Politecnico di Milano, 2024.

14

Index
C
Coordinate Compressed Sparse Row format (CSR) 11
Coordinate format (COO) 10

I
Idempotent Matrices 5
Invertible Matrices 5

L
Lower triangular matrix 6

M
Matrices Multiplication 5
Matrix Associativity Property 5
Matrix Distributive Property 5

N
Nilpotent Matrices 5
Non-singular Matrices 5

O
Orthogonal Matrices 6
Orthogonal Vectors 5

S
Singular Matrices 5
Sparse Matrix 10

T
Transpose product between matrices 5

U
Unitary lower triangular matrix 6
Unitary upper triangular matrix 6
Upper triangular matrix 6

15

	Preliminaries
	Notation
	Matrix Operations
	Basic matrix decomposition
	Determinants
	Spare matrices
	Storage schemes

	Index

