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Abstract—Over the years, we have witnessed various
password-hash database breaches that have affected small and
large companies, with a diversity of users and budgets. The indus-
try standard, salted hashing (and even key stretching), has proven
to be insufficient protection against attackers who now have access
to clusters of GPU-powered password crackers. Although there
are various proposals for better securing password storage, most
do not offer the same adoption model (software-only, server-side)
as salted hashing, which may impede adoption.

In this paper, we present PolyPasswordHasher, a software-
only, server-side password storage mechanism that requires min-
imal additional work for the server, but exponentially increases
the attacker’s effort. PolyPasswordHasher uses a threshold cryp-
tosystem to interrelate stored password data so that passwords
cannot be individually cracked. Our analysis shows that Poly-
PasswordHasher is memory and storage efficient, hard to crack,
and easy to implement. In many realistic scenarios, cracking a
PolyPasswordHasher-enabled database would be infeasible even
for an adversary with millions of computers.

Keywords—password, password-hashing, authentication, pass-
word cracking, cryptography.

I. INTRODUCTION

Password database thefts are increasingly common and
continue to put users at risk. Both individuals and businesses
want passwords to be stored efficiently, yet in a way that
minimizes the impact of a password database disclosure.
Major corporations, in particular, have encountered significant
challenges in trying to protect their customers’ and clients’
identities and accounts. Reflecting the reach of the problem,
a hacker on a Russian forum was selling a database with
more than a billion password hashes obtained from different
password databases, primarily through SQL injection [1].
Some companies and organizations that have been successfully
hacked include: the Social Security Administration, Hotmail,
LastFM, Formspring, ScribD, the New York Times, Nvidia,
Evernote, LinkedIn, Billabong, Gawker, Linode, ABC, Yahoo!,
eHarmony, LivingSocial, and Twitter [1]. Globally – despite
ongoing efforts to enhance password security and adhere to
best practices – password database breaches continue.

Notwithstanding new technologies such as authentication
tags, biometric technologies, and NFC-capable devices, the
most prevalent user authentication method remains the user
password. Security experts have long advocated that user
passwords not be stored in plain text but rather, that they be
reduced to salted hashes before storing. A salted hash consists
of a secure hash and a salt. The secure hash acts as a one-
way function that ensures that an attacker cannot easily read

the plain-text passwords from disk. Salting inserts a random
value that complicates the use of tables that allow hackers to
immediately look up passwords to match most hashes. Storing
passwords with a salted hash is widely considered to be the
best practice because of the level of protection offered and
the ease of implementation (e.g., salted hashing requires no
additional hardware or client software).

However, storing passwords with a salted hash is not a
panacea. That is, when stored password data has been com-
promised, attackers have proven themselves adept at quickly
cracking large numbers of passwords, even when salted-
password hashes comprise the stored data. For example, Troy
Hunt, a security researcher, showed that cracking 60% of a
40,000-entry salted-SHA1 database can be done in a couple
of hours, using a couple of GPUs and an average computer [2].

This paper presents PolyPasswordHasher, a new technique
that makes cracking individual passwords infeasible because
the stored password-entries are interdependent. We leverage
cryptographic hashing and threshold cryptography to combine
password hash data with shares so that users unknowingly
protect each other’s password data. With a small amount of
additional work by the server, PolyPasswordHasher increases,
by many orders of magnitude, the time an attacker needs to
crack passwords.

PolyPasswordHasher is designed to be easy for organiza-
tions to adopt. Much like salted hashing, PolyPasswordHasher
is a software-only, single-server enhancement that can be
deployed on a server without any changes to clients. Poly-
PasswordHasher relies on simple primitives that are efficient
from a storage, memory, and computational standpoint. It
integrates with other forms of authentication including: OAuth,
hardware tokens, two factor authentication, and fingerprint
authentication. PolyPasswordHasher is also easy to implement;
two outside developers, whom we had no prior contact with,
independently built implementations of PolyPasswordHasher,
in different programming languages. Deploying PolyPassword-
Hasher is a straightforward software installation on a server.

The contributions of this paper are as follows:

• We describe our design of PolyPasswordHasher, a
server-side, software-only scheme that protects against
an attacker who is able to read all persistent storage
on a server, including the complete password file.

• We demonstrate the PolyPasswordHasher has similar
performance, storage, and memory requirements to
deployed systems.



• We describe a mechanism to shield some user ac-
counts, who may be untrustworthy or choose poor
passwords, as long as the passwords from a set of
protector accounts are not cracked.

• We analyze different practical scenarios and analyze
the properties and limitations of PolyPasswordHasher
in these environments.

This paper is organized into eight sections. Sections II
and III introduce the threat model and the theoretical back-
ground of password storage mechanisms. Sections IV and V
provide the design specification and implementation of Poly-
PasswordHasher. Section VI evaluates PolyPasswordHasher’s
suitability and resilience to cracking in a variety of scenarios;
it also provides information about the implementations per-
formance for different kinds of operations. We describe the
relation to PolyPasswordHasher with other related work in
Section VII. Finally, Section VIII summarizes and anaylzes
our findings described in the paper.

II. THREAT MODEL

We base our threat model on salted hashing, which is the
most widely deployed protection scheme. In salted hashing, the
user provides a username and password to the server. If a user
is locally at the server, this is typically done using a keyboard
attached to the device. If a user is remote, the password is
usually provided over an encrypted channel, such as HTTPS
or SSH. Either way, the username and password are input to
the server in plain-text.

For a server to employ salted hashing, the only requirement
is that there is software on the server that implements both salt-
ing and hashing. Notably, there are no hardware requirements
for the server (e.g., hardware tokens or additional servers) and
no client software is needed.

We assume that:

• An attacker can read all data that is persisted on disk,
including the password database. The attacker cannot
read arbitrary memory on the server. As with any
scheme that does not require client changes, if an
attacker can read arbitrary memory, the attacker can
observe the passwords in plain-text. (Fortunately, most
reported password database disclosures did not involve
an attacker with access to arbitrary memory [1], [3].)

• The server will restart periodically. All data kept in
memory is lost at this point and the server must restart
using only the data on disk – which is attacker visible.

• The attacker may have a priori knowledge of correct
passwords for some user accounts – for example, on
sites that allow outside users to register accounts.

• We assume that well known and widely used crypto-
graphic primitives, such as SHA256 and AES, are not
breakable by the attacker.

Alternative solutions that use this threat model as well
as alternative threat models are discussed in Related Work
(Section VII).

III. BACKGROUND

We briefly review the relevant properties of crypto-
graphic (k, n)-threshold schemes. Although the specific (k, n)-
threshold scheme that is used is not fundamental to our work,
we describe Shamir Secret Sharing [4], which we use to
develop explicit examples within the text.

The (k, n)-threshold scheme

Threshold schemes protect secret information (usually a
key) by deriving n different shares from this information. A
threshold scheme describes how any k shares (from a set of
n total shares) can be used to recover an original secret. The
number of needed shares, k, is called the threshold. If fewer
than k shares are known, no information about the secret is
provided.

Shamir Secret Sharing is an algorithm that describes how a
secret is divided into a set of n shares. If a threshold k of shares
are input (specified when the secret is divided), the original
secret can be reconstructed. To hide a secret, Shamir Secret
Sharing computes k−1 random coefficients for a k−1 degree
polynomial f(x) in a finite field (commonly GF-256 or GF-
65536). The kth term (commonly the constant term) contains
the secret. To compute a share, a value between 1 and the
order of the field is chosen. The polynomial is evaluated with
x equal to the share value, where the terms x and f(x) are used
as the share. To reconstruct the secret from at least k shares,
a party can interpolate the values in the finite field to find
the constant term (i.e., the secret). In practice, interpolation is
often computationally optimized so that only the constant term
is recovered.

Suppose that a secret, 235, is to be hidden so that it can
only be reconstructed if three shares are provided. Because
the threshold is three, two random terms are first generated
(24 and 182) to build a GF-256 polynomial, such as f(x) =
24x2+182x+235. Shares can then be generated by computing
x and f(x), such as: (1, 92), (2, 148), (3, 37), (4, 69), etc. A
party that has at least three shares can interpolate to reconstruct
the full polynomial of f(x) and thus, the secret (235).

It is possible to generate additional shares after recovering
the secret, (e.g., if Lagrange interpolation is performed during
reconstruction). This makes share recovery slightly more com-
putationally complex but also makes it possible (and efficient)
to generate additional shares simply by evaluating f(x) for the
specified share. This means that all shares do not need to be
created initially — they may instead be added (or recovered)
after the secret has been reconstructed.

In many cases, the secret will be larger than the size of
the finite field. A large secret can be stored by breaking it into
segments that are the size of the finite field (often one or two
bytes) and applying the above technique separately to each
segment. The same share number, x, is typically used for each
share fi(x). This simplifies — and effectively hides — the fact
that a secret has only a limited size. An integrity check can be
added to detect whether an incorrect share has been provided.
As was previously described, when given a set of any k distinct
shares, whether valid or invalid, Shamir Secret Sharing will
produce a polynomial of the appropriate length. This means
that if any share is invalid, its resulting polynomial will be
incorrect. To avoid this problem, implementations of Shamir
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Figure 1: Account verification.

Secret Sharing typically store an integrity check by appending
the hash of the secret to the secret; this check detects if an
incorrect share has been provided. When the shares are recon-
structed, the additional integrity check provides verification
that the correct shares were given.

IV. POLYPASSWORDHASHER: A NEW TECHNIQUE FOR
PASSWORD VERIFICATION

The goal of PolyPasswordHasher is to make cracking
individual passwords infeasible. It provides a way of pre-
venting an attacker from validating a password hash. At its
core, PolyPasswordHasher aims to protect password hashes
by combining a share (derived using a threshold cryptosystem)
with a salted password hash and then storing this combined
value in the password database. Neither the share nor the
password hash is stored on disk and, as we discuss in more
detail below, an attacker cannot recover either piece with only
the password database. Cracking a password that is stored
by PolyPasswordHasher requires that the attacker know a
threshold of passwords; this effectively makes the passwords
in a database interdependent. Our goal is to ensure that so
long as an attacker does not know a threshold of passwords,
no password in a database can be cracked.

To make passwords interrelate, PolyPasswordHasher func-
tions differently from a salted hash. A typical salted hash
database stores a Username, Salt, and a Salted Hash. A Poly-
PasswordHasher database, rather than storing a salted hash,
stores the secure hash XORed with the share (share⊕hash).
The resulting PolyPasswordHasher database also holds an extra
field called the share number. This field indicates which share
was XORed with which salted hash.

When prompted to validate a password, the server XORs
the salted hash with the stored data and determines whether the
result is a valid share of the threshold cryptosystem. For exam-
ple, in Figure 1, Alice has provided her password (‘fsh$t!kz’)
and the username ‘Alice’. The server and computes the salted
hash of her password (‘4298f44d...’) and reconstructs Alice’s
share (‘3e773b6f...’) using her share number (2). The server
XORs the share and Alice’s salted password hash together and
compares them to the value stored in the share⊕hash field in
the password database (‘7cefcf22...’). If they match, then the
password provided was correct.

Account creation involves creating a share and XORing
it with the salted hash of the password before storing it
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Figure 2: The basic PolyPasswordHasher algorithm showing
how an entry is created

Figure 3: An attacker: (1) Cannot obtain salted hashes (needed
to crack passwords) without a threshold of shares AND (2)
Cannot obtain a share without knowing the salted hash (pass-
word) for a protector account.

on disk For example, in Figure 2, Bob registers an account
with his password (‘Tr4mP0l1ne’) and username (‘Bob’). The
server computes a salt (‘0x5a17’) and the salted hash of
Bob’s password (‘4153f0aa...’). The server knows the secret
and knows Bob’s share number, 4. It computes Bob’s share
(‘66ef2279...’) and this value is XORed with Bob’s passwords
salted hash; that value is compared to the value stored in the
database (‘27bcd2d3...’). If these match, then the password
provided was correct.

In PolyPasswordHasher, each share protects a salted hash
and each salted hash protects a share, unless a threshold of
shares is known (as is shown in Figure 3). Suppose that an
attacker has obtained the password database and knows some
set of account passwords (x,y,z). For each known password,
(illustrated in Figure 4) the hacker can compute the salted
hash and XOR this with the database entry to obtain the
corresponding share. If the attacker does not have a threshold
of shares, the attacker cannot generate a share for another
account (e.g., ‘share a’). As a result, the attacker cannot
access share a’s password’s salted hash and cannot crack a’s
password. Or, suppose that a server has a threshold of correct
passwords. The server now has enough information to validate
a threshold of shares and can use those to recover the secret.
The server could then reconstruct any share and thus, recover
the salted hash for any account’s password – an important step
in validating passwords. Because shares protect passwords, an
attacker who does not have an adequate number of correct
passwords (and thus shares) cannot feasibly crack passwords
individually.



Figure 4: If an attacker knows some number of shares he can get the corresponding salted hashes; if he knows the salted hashes,
he can get the corresponding shares; and, if he has a threshold of these, he can get the secret.

The basic scheme, as outlined so far, covers PolyPass-
wordHashers core functions. In the remaining subsections we
address how PolyPasswordHasher checks passwords without
having a threshold of correct passwords (such as after a
restart) and how it ensures that all accounts, even those that
could be created by an attacker, are protected. To more fully
describe the full PolyPasswordHasher algorithm, we begin,
in Section IV-A, with how PolyPasswordHasher functions in
situations where the server has already validated a threshold
of correct passwords and how, after reaching this threshold,
the server proceeds to login normal users, in a phase we call
normal operation. Following this, Section IV-B discusses how
PolyPasswordHasher performs differently when a threshold
of correct passwords have not yet been provided and needs
to acquire that threshold (e.g. after a reboot). Section IV-C
discusses how the system transitions between bootstrapping
and normal operation and in Section IV-D, we describe how
unlikely situations, such as the loss of a large number of
account passwords, are handled.

A. Normal operation of PolyPasswordHasher

Given that a server with a threshold of shares can effec-
tively recover any salted hash, if every account protected a
share, every password would play an important role in pro-
tecting the security of the database. However, not all accounts
should necessarily be trusted to protect shares. For example,
a forum may allow any user to register an account and any
party, including an attacker, to register any number of user
accounts. If these accounts each protected a share, an attacker
could easily crack the password database.

PolyPasswordHasher enables one group of passwords,
which we call protector accounts, to protect the remaining
passwords in the password database; these we call shielded
accounts. Bob’s account (who we started following in the pre-
vious example) is an example of a protector account (Figure 5).
An administrator will define a threshold value of protector
accounts so that if an attacker does not know a threshold of
protector passwords, Bob’s salted hash cannot be recovered.
Bob’s password hash protects his share and in turn, Bob’s share
helps to protect the other shares (such as shares 1,2), which
in turn protect their corresponding password hashes (for root
and Alice). These shares serves to protect the full password
database, including shielded accounts (Trudy and Luke).

Since a shielded account does not protect a share, it is

Trudy’s password: Bnz$z2d@
Trudy’s AES salted hash: a9e32543, secret:  9d380eb6...

SH

SH

protector
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Figure 5: A PolyPasswordHasher store with protector and
shielded accounts. Shielded accounts are displayed with a
share number of SH.

not XORed with one. Nonetheless, these accounts are still
protected by shares, or more precisely, the secret. PolyPass-
wordHasher uses the secret as an encryption key and with
it, encrypts the password’s salted hash. For these accounts,
the resulting value (but not the secret or salted hash) is
stored in the password database. For example, in Figure 5,
Trudy’s password hash (a9e32543...) is encrypted using the
secret (9d380eb6...); the result (8198a5fd...) is stored in the
database. There are two important points to note. First, if
an attacker knows another shielded account’s password (e.g.,
Luke’s), this does not substantially help with cracking Trudy’s
password. The attacker would need to break the symmetric
encryption algorithm. Also, knowing Luke’s password would
not substantially help the attacker crack the secret or other
shares in the password. Once again, the attacker would need
to break the symmetric encryption algorithm. Thus, shielded
accounts cannot be effectively cracked unless an attacker
knows a threshold of protector account passwords.

1) PolyPasswordHasher’s algorithm: Algorithm 1 details
the processes of creating a user accounts. The relevant oper-
ations for normal operation (lines 2-13) are discussed in this
section. Bootstrapping operations (lines 14-23) are deferred to
the next section.

Creating Accounts. Adding an account works as is shown
in Algorithm 1. As the algorithm describes, the username, salt,



Algorithm 1 Account creation pseudocode.
1: function CREATEACCOUNT(username, salt, saltedPasswordHash, isPro-

tectorAccount)
2: // check whether we are under normal operation
3: if normalOperation then // Section IV and IV-A
4: if isProtectorAccount then
5: // Obtain a share from the share cryptosystem
6: shareNumber, share = SecretShares.getShare()
7: // Combine the share with the hash
8: passwordEntry = share ⊕ saltedHash
9: shareID = shareNumber

10: else // Shielded Account (Section IV-A)
11: Key = SecretShares.getSecret()
12: passwordEntry = AES.encrypt(saltedPasswordHash, Key)
13: shareID = SHIELDED
14: else // Bootstrapping (Section IV-B)
15: if isProtectorAccount then
16: raise AccountCreationError
17: else
18: shareID = BOOTSTRAP
19: passwordEntry = saltedPasswordHash
20: // Isolated Validation (Section IV-B)
21: isolatedCheckBits = saltedPasswordHash.getSuffix(IC BITS)
22: passwordEntry += isolatedCheckBits
23: store (username, salt, shareID, passwordEntry)

the passwords salted hash, and a boolean are used to indicate
whether or not the account should be a protector account. If
the account is a protector account, an unused share is found
(line 6) and the salted hash is XORed with it (line 8) before
the share number and resulting value are stored (line 23).

Since a shielded account does not protect a share, those
accounts are instead encrypted with the secret (lines 11-12).
The share field is set to a special value that indicates a shielded
account (line 13). As before, this information is then stored in
the database (line 23).

It is important to prevent users, particularly protector
accounts, from using bad passwords. Similar to many deployed
systems, PolyPasswordHasher employs simple techniques to
weed out extremely bad passwords. When creating an account,
users input a password they want to use, but PolyPassword-
Hasher checks this password to ensure that it is not too weak
(e.g., “letmein” or “password”). This is done by checking the
requested password against a list of commonly used passwords
(the 64K most popular). The proposed password will be
rejected if it is on that list. PolyPasswordHasher also enforces
constraints on the password length and composition (number
of lowercase and uppercase letters, numbers, and symbols).
The purpose is not to ensure that passwords are immensely
strong, but to prevent the use of protector account passwords
that are trivial to guess. These constraints are already common
in many systems, such as those that aim to prevent passwords
from being cracked by brute force over the network.

Process for Verifying Passwords. Assuming that the
server holds the right number of valid passwords (and thus
shares), it will be able to recover the remaining shares, as
shown in Algorithm 2. To verify a protector account (lines 4-5),
the server first computes the salted hash of the users password
and XORs it with the passwordEntry. If the passwordEntry
XORed with the salted hash is the share, then the password is
correct.

For a shielded account, password verification differs be-

Algorithm 2 Account verification pseudocode.
1: function VERIFYACCOUNT(username, saltedPasswordHash, shareID,

passwordEntry)
2: if normalOperation then
3: if isProtector(shareID) then// Section IV
4: share = passwordHash ⊕ passwordEntry
5: return SecretShares.computeShare(shareID) == share
6: else// shielded account, Section IV-A
7: // Encrypt the obtained hash and compare
8: Key = SecretShares.getSecret()
9: encryptedHash = AES.encrypt(passwordHash, Key)

10: return passwordEntry == encryptedHash

11: else// Bootstrapping, Section IV-B
12: // verify account created during bootstrap
13: if shareID == BOOTSTRAP then
14: return passwordHash == passwordEntry
15: if not passwordHash.endsWith(isolatedCheckBits) then
16: return False
17: if isProtector(shareID) then
18: share = passwordHash ⊕ passwordEntry
19: SecretShares.cacheShare(share)
20: return True

cause the salted hash is encrypted instead of being XORed
with a share. Lines 8-10 of Algorithm 2 describe how to
compare the provided password hash. The password hash is
encrypted with the secret and, if the encrypted value matches
the share⊕hash field, the correct password was provided.

Changing a user’s password / password recovery Chang-
ing a password is a similar process to that used in a salted
hash system, for both protector accounts and shielded accounts.
Similar to existing systems, the procedure for changing a
password may require validating the existing password before
allowing a replacement to be generated. Changing the pass-
word involves creating a new entry with the same username
and share number. (This is nearly identical to account creation.)
A new salt is generated and hashed along with the new
password. Since the hash has changed, the fourth field will
also change. Once the new password entry is computed, it
replaces the original stored data. The user may then log in
normally with their new account.

B. Bootstrapping After a Reboot

When a system restarts, PolyPasswordHasher cannot val-
idate or create accounts as it normally would, because a
threshold of valid accounts has not been reached. Because
PolyPasswordHasher stores shares in memory, not on disk,
these are lost during reboot. This means that a server does
not know the secret and cannot compute arbitrary shares. As
a result, when bootstrapping, neither protector account nor
shielded accounts may be verified or created using the methods
described above; account creation and verification procedures
are different when the system is bootstrapping.

1) Bootstrap account creation: New accounts may also be
created during bootstrapping. To do this, the new account is
added to the database along with the salted hash. While the
system is bootstrapping, the new account is available to use.
In the interim, these passwords will be created (line 19 of
Algorithm 1) and validated (lines 18-19 of Algorithm 2) in
the same manner as passwords stored in a system that uses
salted hashes.



Although it would be easy to support protector account
creation during bootstrap, PolyPasswordHasher does not do
so (line 16 of Algorithm 1). The reason is that an attacker
who can read the password database would also be able to
read the salted password hash. If the attacker can later read
the password database during normal operation, the attacker
could use that salted password hash to recover the share.

2) Isolated Validation: When started, a PolyPassword-
Hasher system does not have enough protector passwords
(and thus, shares) to recover the secret. At this point it is
not possible to validate accounts following the same process
as PolyPasswordHasher’s normal operation (IV-A). Here we
describe how isolated validation can be used to check logins
even without the secret. Isolated validation is a process that
leaks a configurable number of bits of the salted hash by using
a slow hash algorithm. It implements a mechanism wherein it is
possible, but extremely unlikely, that an attacker could access
an account using an incorrect password. In the next section we
discuss the isolated validation mechanism, but defer discussion
of its algorithm until Section VI-E.

As it bootstraps, PolyPasswordHasher collects shares from
protector logins. The number of logins required to recover the
secret will have been configured by the system administrator,
with the threshold normally set to a low number (e.g., three).
Once the threshold has been reached, PolyPasswordHasher
will finish bootstrapping (Section IV-B). Meanwhile, before
this threshold is reached, isolated validation makes use of an
isolated-check bits field to authenticate user passwords.

In this scheme, illustrated in the upper right corner of
Figure 6, the password database contains isolated-check bits.
These bits are used to verify logins before a threshold is
reached and the same process is used for both protector
and shielded accounts. The user’s password is hashed using
the isolated validation hash function. This function returns
a small number of bits of the hash (such as 24 bits of a
SHA256 hash) and typically involves many iterations of a
secure hash function. If the isolated-check bits field of the
password database match the isolated validation hash functions
output (line 12 of Algorithm 2), the user is allowed to log in.

For example, Figure 7 illustrates verification while the
system is bootstrapping. Bootstrap accounts, such as Wilson’s
account are validated in an identical way to a salted hash
system. Wilson’s password is salted and hashed and this is
compared with the value stored in the database. If it matches,
Wilson is logged in.

Protector accounts and shielded accounts, like those of
Trudy or Alice may also log in while the system is bootstrap-
ping (Figure 7) using isolated validation. The isolated valida-
tion hash function is computed over the provided password
and the isolated-check bits field is checked. If these values
match, the user is allowed to log in. Bootstrap accounts, such
as Wilson’s account are validated in an identical way to a
salted hash system. Wilson’s password is salted and hashed
and this is compared with the value stored in the database. If
it matches, Wilson is logged in.

Isolated validation represents a tradeoff for administrators.
Using isolated validation makes the system available imme-
diately after a reboot. However, when using a small number
of isolated-check bits, there is the potential for an incorrect
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Figure 6: This figure shows validation using isolated valida-
tion. The isolated-check bits are stored on disk. This allows
verification of accounts before a threshold of correct passwords
is provided.
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Wilson’s password: tuSc!pul!

Wilson’s salted hash: pr25zx1y

Figure 7: Wilson’s account was created during bootstrap, so a
regular salted hash is stored instead.

authentication during the bootstrapping phase. Alternatively a
large number of isolated-check bits impacts the confidentiality
of the password database in the event of a theft, by making
the passwords easier to crack. Thus in some scenarios different
settings are appropriate, possibly even for protector accounts
and shielded accounts in the same database. We explore this
tradeoff more in Section VI-E

C. Transitioning From Bootstraping to Normal Operation

As the system bootstraps, the server batches shares from
protector accounts (line 14 of Algorithm 2). After the system
has a threshold of shares, it is possible to recover the secret.
The server performs Lagrange interpolation, which allows the
server to not only recover the secret but also, to generate
arbitrary shares (both are needed to check shielded accounts).

Recall that accounts created during the bootstrap phase
contain BOOTSTRAP for their share number and have a salted
hash stored in the database. When the system recovers the



secret and transitions to normal operation, these accounts will
have their password hashes encrypted with the secret and their
share number field set to SHIELDED. This transforms these
accounts to the same state as shielded accounts that are created
in normal operation.

Also, all account logins that were processed during boot-
strapping are now checked to be certain that the correct
passwords were provided. This step is needed because it is
possible that an attacker could find a password that is invalid
and yet, matches the isolated-check bits. (We examine the
feasibility and computational cost of this in Section VI) The
salted password hash for shielded account logins are cached
in memory and the passwords are verified once a threshold is
reached.

For a protector account, if a provided password hash
matches the isolated-check bits, but the password is not correct,
the recovered share is not invalid. The incorrect share will be
detected when a threshold of shares are obtained because the
integrity check on the secret will fail. If this integrity check
fails, the administrator is notified. The system can still enter
normal operation once a threshold of valid shares are obtained.

D. Handling Rare Events

At an administrator’s behest, accounts may be switched
between shielded and protector without user intervention. To
do this, the server must be in normal operation. The server can
then recover the salted secure hash. This salted secure hash can
then be re-encoded (using a share for an account that becomes
a protector account; or encrypted, for an account that becomes
shielded) and the new entry can be stored. This transitions the
account from a protector to shielded (or vice versa).

Recovering data if all protector accounts are lost. If
not enough known threshold users can be verified, the salted
hashes are lost forever and accounts cannot be validated using
the technique we described in Section IV-B2. However, this
does not mean that the system is unusable because isolated
validation allows users to log in. Furthermore, mechanisms
like root password recovery that are done through the console
will still work, and will allow any data on the system to be
accessed.

Trusting a protector account with multiple shares.
A single account may optionally provide access to multiple
shares. To do this, a single user can have multiple rows in the
table. Each row will have a different share⊕hash entry and
thus protect a different share. Each entry must also have a
different salt to ensure that a different hash value is XORed
with each share. When the user provides their password, the
value can be used to recover the share in each row by XORing
the salted password hash with each share.

Detecting an isolated-check bits match of an incorrect
password. If the system is in normal operation, it will detect
that the password does not match. However, PolyPassword-
Hasher will always check the isolated-check bits for an entered
password (for clarity, not depicted in Algorithm 2). If the
password is incorrect, but the isolated-check bits match, this
indicates that an attacker has almost certainly stolen the
password database but has not (yet) cracked the password.
This generates an alert to the administrator to notify her of
the likely breach.

Language Lines of Code Author
C 598 Local1

Python 391 (+83) Local2

Django 786 Local1 + External1

Ruby 437 External2

PHP* N/A External3

Table I: Different implementations of PolyPasswordHasher for
different Languages and Frameworks, the PHP implementation
has not been publicly released

V. IMPLEMENTATION AND LIMITATIONS

Our reference implementation for PolyPasswordHasher is
available with an MIT license at https://polypasswordhasher.
poly.edu. It utilizes a 16 byte salt, with SHA256, to compute
password hashes. The Shamir Secret Sharing routines utilize
GF256 as the underlying field (by encoding each byte as a
separate share). The code base for PolyPasswordHasher is
120 lines of Python code. This code handles the function-
ality described in Section IV, including support for protec-
tor, bootstrapping, and shielded accounts; reading/writing a
database to disk; changing passwords; and detecting isolated
validation of incorrect passwords. PolyPasswordHasher relies
on mathematical libraries such as GF256 operations, Lagrange
interpolation, and polynomial math code – 391 lines of Python
and 83 lines of C code. Additionally, the implementation uses
standard python libraries for functionalities such as SHA256
and AES.

Several outside developers, unbeknownst to us (until they
shared their work with us) implemented versions of Poly-
PasswordHasher in Ruby and PHP. They created their imple-
mentations based on our Python reference implementation and
specification that is available in our GitHub repository. Table I
describes these outside PPH implementations. Other external
developers have uploaded fixes and improvements to our code
when they wanted it to be compatible with their environment.

A. Handling Alternate Authentication Mechanisms

Passwords are not the only mechanism for logging into
modern systems. For example, it is common for users to have
a private key to log in over ssh, biometric-based authentica-
tion holds substantial promise, smart cards are often used to
hide user credentials, and single sign-in systems like OAuth
and OpenID are commonplace and provided by many major
websites. Any practical protection mechanism needs to operate
in conjunction with such techniques.

Handling non-password logins for shielded user accounts
is trivial because it requires no changes to the system. These
non-password logins can be handled using existing login
mechanisms, without any modification.

For protector accounts, it is possible to view the authentica-
tion process as decrypting information using a secret that has
been stored by a remote party (as in fact many such systems are
implemented). Essentially, we can encrypt the Shamir Secret
Share with the users key and check that the resulting share
is correct. For example, suppose that an administrator has a
public/private keypair that is used to log in (as is common
with SSH private key or smart card based authentications).

https://polypasswordhasher.poly.edu
https://polypasswordhasher.poly.edu


Instead of XORing the Shamir Share with the salted hash of
the password, the share can be encrypted with the users private
key. When the administrator presents her public key to login,
it decrypts the original share.

Prior work on deriving a private key from (noisy) data
[34] is relevant when authenticating protector accounts using
other techniques, such as biometrics. For example, once a key
has been derived from biometric data, PolyPasswordHasher
will function in a way that is identical to the private key
authentication scheme discussed in the previous paragraph.

B. Deployment

One key issue with deploying PolyPasswordHasher is
deciding which accounts should be protector accounts and
which should be shielded. General guidelines include that
protector accounts should be assigned to users who choose
strong passwords. Ideally these are users who will log in soon
after a reboot, which will minimize the amount of time needed
to bootstrap. Although different servers may have different use
patterns, in our experience, system administrators usually meet
the above requirements. We examined logs from servers at our
institution and found that system administrators typically login
a few minutes after a system is restarted (likely because they
will check the system to make sure it is operating correctly).
Based on these practices, system administrators tend to be ideal
candidates for protector accounts.

The threshold setting is another important value for deploy-
ment. In our experience, a threshold value of 2 - 5 is sufficient,
even for systems that process thousands of password requests.
As we demonstrate in the evaluation section, even a threshold
of 2 increases password strength immensely.

Using PolyPasswordHasher results in very minor changes
to existing password authentication systems. The client tools
for password authentication do not change in any way. In fact,
because PolyPasswordHasher only impacts password storage,
it is invisible to clients. For administrators, the only change is
that when an account is created, the administrator can specify
whether or not an account counts toward the threshold.

The file format for password storage is similar to existing
systems. In systems that use a database, the share number and
isolated-check bits can simply be inserted as new columns in
the table. Many servers (such as Linux, Mac, and BSD) use the
/etc/shadow or /etc/master.password colon delimited formats.
As it is used today, the password field contains both the salt and
hash but these different portions of the field are not delineated.
With PolyPasswordHasher, additional data (such as the share
number and isolated-check bits) can also be added at a known
position within the password field (e.g., the beginning or end);
doing so will lengthen this variable length, opaque field.

VI. EVALUATION

To evaluate PolyPasswordHasher, we evaluated the feasi-
bility of its use in different scenarios. This includes issues
ranging from the efficiency of the algorithm, to the expected
security benefits from different configurations and deployment
scenarios. We frame our evaluation around the following
questions:

• How long does PolyPasswordHasher take for different
operations?

• What is the storage cost of PolyPasswordHasher?

• How much memory is needed for PolyPassword-
Hasher?

• What are the security properties of PolyPassword-
Hasher?

◦ What happens if users pick weak passwords?
◦ What isolated-check bits settings should be

used?
◦ How does the threshold affect the cracking

time?
◦ What if a poor value is chosen for the thresh-

old?

A. What is the time cost of PolyPasswordHasher?

To evaluate time costs, we examined how long it took
PolyPasswordHasher to process account verifications, new
accounts, password changes, initializations of a password store,
and transitioning from bootstrapping to normal operation. We
measured the processing speed and performance of PolyPass-
wordHasher using an early-2011 MacBook Pro with 4GB of
RAM and a 2.3 GHz Intel Core i5 processor. All operations
reflect the mean verification time across 100 runs and were
performed with the password file already present in memory.
For benchmarking purposes, each action was performed se-
quentially despite being embarrassingly parallelizable.

Figure 8 shows the time taken by different operations
(discussed below). Unless noted, the time cost of an operation
did not depend on other factors, such as the number of accounts
in the password database.

a) Time to verify an account: The mean time to verify
a protector account was around 60µs independent of the
threshold value. For example, a threshold of eight allowed
a server to verify more than 16K user accounts per second.
Verifying a shielded account took approximately 29µs and the
server processed about 35K such actions per second. Bootstrap
accounts, which use salted hashing, took just over 3µs on the
same platform.

The values presented do not include key stretching. (Except
for the case of isolated validation, key stretching is unlikely
to be used for individual account verification with PolyPass-
wordHasher.)

b) Time to create accounts or process password
changes: Account creation time was similar to the time needed
to verify accounts. Depending on the threshold value, the
average creation time varied from 77µs to 85µs. A PolyPass-
wordHasher store with a threshold value of eight created more
than 12K accounts per second. Given that there are a maxi-
mum of 255 protector accounts that can be created (at least
with a PolyPasswordHasher implementation that uses GF256),
protector account creation time is not a performance concern.
Shielded accounts were created independent of the threshold,
in about 25µs. Based on this, we calculated that approximately
40K thresholdless accounts can be created each second. This is
similar to the time it takes to generate a salted SHA256 hash
for a password (16µs). Changing a password only requires
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Figure 8: Time needed per operations in PolyPasswordHasher.
Isolated-check bits verification and transition to normal oper-
ation times are listed without key stretching.

PolyPasswordHasher to perform the same operation it uses to
create an account (and potentially also authenticate the old
password).

c) Time needed to initialize a password database: The
time to create a database varied and was dependent on the
threshold value used. However, varying the threshold from 2
to 16, varied the creation time from 380µs to 460µs. This time
cost is largely due to the need to generate cryptographically-
suitable random numbers; but this operation is only performed
once, when a new password file is created.

d) Time needed to transition to normal operation:
When the server restarts, random coefficients are computed
from the set of provided shares, with full interpolation.
The time needed to complete this operation varied between
202µs and 1.6ms, because the threshold changes in relation
to changes in the number of polynomials, as the store size
increases. Note that small thresholds were processed quickly
— a store with a threshold of 8 was unlocked in 617µs.
There is also the time needed to do the integrity check on
the recovered secret.

Computing the random coefficients and computing the
integrity of the recovered secret (via a cryptographic hash)
needs to be done once per restart for a normal server. However,
an attacker attempting to crack the database will recompute
the random coefficients and compute the hash once per guess
of protector account values. We therefore recommend that the
integrity check use enough iterations of the hash function to
increase the computational time needed to at least 100ms. This
slows the attacker down per guess (a frequent operation), while
only delaying the server slightly one time per reboot.

Recommendation 1: The integrity check on the secret
that is performed when transitioning to normal operation
should take at least 100ms to complete.

B. What is the Storage Cost of PolyPasswordHasher?

Storing passwords with PolyPasswordHasher requires that
additional information – a one byte share number – be stored

Password Original Salted Hashes PPH PPH PPH
source space space No IV (16 ICB) (24 ICB)

RockYou 134MB 260MB 265MB 275MB 280MB

eHarmony* 51.6MB 100MB 102MB 106MB 108MB

Formspring* 27.3MB 34.8MB 35.2MB 36.0 MB 36.4MB

Gawker 75.2MB 119MB 120MB 122MB 123MB

LinkedIn* 252MB 424MB 430MB 442MB 448MB

Sony 2.98MB 4.95MB 5.00MB 5.10MB 5.15MB

Yahoo 17.8MB 35.0MB 35.4MB 36.2MB 36.6MB

Table II: Disk space needed to store leaked password databases
in different formats. * Denotes breaches in which only the
salted hash portion of the database was released

for each account. This adds one byte of storage space for each
account, beyond the cost of current hash techniques. The one
byte has minimal impact on the disk space needed to store
production password databases (Table II).

If the isolated-check bits field is used, the amount of
information increases by the size of the field. For example,
with a value of 24 isolated-check bits, the total cost increases
by four bytes (one for the share number and three for the
isolated-check bits field).

C. How much memory is needed for PolyPasswordHasher?

PolyPasswordHasher uses more memory than does a salted
hash solution in normal operation. The server must store the
polynomial coefficients for the Shamir Secret Share (which
includes the secret). However, the total size of this data is
relatively small — the threshold value (2-5) multiplied by the
length of the share⊕hash field (32 bytes). As this value is
likely to be a few hundred bytes in practical deployments,
(which is smaller than the PolyPasswordHasher code will be
in memory), this should not pose a problem in practice.

During bootstrapping, additional memory is also used.
While shares are being acquired, they are kept in memory.
This has a similar cost to storing the polynomial coefficients
for the Shamir Secret Share. However, if isolated validation
is used, the more substantial cost is storing authentication
information so that it can be verified against the complete entry
to ensure that the previous login was correct. The memory
cost of caching this information will correspond to the number
of logins before bootstrapping is finished (i.e., share⊕hash *
Log-ins). The total memory cost is still rather small, even for
a server that processes many authentications. For example, a
server that processes ten thousand logins while bootstrapping
needs only 320KB of memory to store that information. Thus
the memory costs remain small, even for heavily used systems.

D. What happens if users choose extremely weak passwords?

If extremely weak passwords are used for a threshold of
protector accounts (like administrators), PolyPasswordHasher
will not provide strong protection. If there are only a few
bits of entropy in the password, the search space will still
be small, but exponentially larger. For example, if the attacker
knows that three protector accounts each chose one of 10 weak
passwords, the attacker could sweep the search space in 1000
guesses (100 seconds, given a 100ms time to verify the secret).



While this is much better than the 30 guesses an attacker would
need with salted hashing, this protection is obviously still very
weak. It is thus critical that protector accounts are secured with
strong passwords. PolyPasswordHasher performs very poorly
when weak passwords are used for protector accounts. Even
with extremely weak passwords, shielded accounts will have
some protection, so long as the protector accounts use strong
passwords.

However, independent of any storage technology, extremely
weak passwords are susceptible to guessing by an external
party without having to steal the password database. Therefore,
this is not an area that password database storage technologies
can address.

Fortunately, research has shown that users can be helped to
choose passwords that have a significant degree of randomness.
This can be done by requiring a combination of passwords that
are a certain length (8 characters), combinations of character
types (letters, numbers, symbols), and by blacklisting common
passwords [5]. Extremely weak passwords are susceptible to
guessing by an external party (without database access); as best
practice, sites should block them from use [6], [5], [7], [8]. The
combination of length, diverse character types, and blacklisting
common passwords has been shown to substantially increase
the time needed to crack passwords.

Recommendation 2: Protector accounts should have as
much entropy as a 6-character-long random password.

E. What isolated-check bits setting should be used?

Isolated validation changes the properties of PolyPassword-
Hasher, depending on the size of the isolated-check bits field.

• When isolated validation is disabled, a user may not
log in until a threshold of protector account passwords
have been provided. This makes PolyPasswordHasher
unavailable during the bootstrap phase.

• When the size of the isolated-check bits field is very
small, it is possible that authentication errors will be
made during bootstrapping. For example, if the size
of the isolated-check bits field is set to 1 bit (an
implausible and extreme example), then an attacker
typing a random password has a 50% chance of the
isolated-check bits matching and being allowed in.

• As the size of the isolated-check bits field grows, the
probability that an attacker will succeed with online
cracking decreases. However, when the size of the
isolated-check bits field is very large, if an attacker
steals the database, the confidentiality benefits of
PolyPasswordHasher are weakened. For example, in
the extreme case that the isolated-check bits field is the
size of the entire salted password hash (an implausible
example), then an attacker can use the slow, isolated
validation hash to individually crack passwords. In this
case, from a security standpoint, PolyPasswordHasher
is effectively equivalent to key stretching. The primary
benefit of PolyPasswordHasher in this case is that
it does authenticate accounts much more quickly in
normal operation than does key stretching.
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Figure 9: Time it takes to crack a PolyPasswordHasher store with
different values for isolated-check bits and a threshold of 3. The line
for isolated-check bits =8 does not fit within the axes of the graph.

Given that the size of the isolated-check bits field and the
threshold is configurable, the security properties of PolyPass-
wordHasher vary. When integrating PolyPasswordHasher into
a system, an administrator can leverage this adaptability to
better meet his expectations. In the next subsection we explain
how different configurations of PolyPasswordHasher apply to
different use cases.

1) Immediate Availability For Many Unknown Clients: In
some situations, after reboot a server needs to be immediately
available to a potentially huge number of untrusted clients. For
example, a web forum or a social media site is likely to have
this property. Availability is paramount, for a large, diverse,
and constantly changing user base.

If an attacker has his attack detected and his IP address
blocked, this may not be a major concern or deterrent.
Therefore, attackers may try to do things such as brute force
passwords, even if this is likely to lead to detection.

There is also a risk of users trying incorrect passwords
during the bootstrap phase to try to break into an account.
Most existing web frameworks deal with this by restricting the
number of password attempts from an IP address over a period
of time (10 authentications per second is common). However,
a motivated attacker with the ability to connect from many
IP addresses (e.g., a botnet operator), could still be able try a
substantial number of passwords. However, using a isolated-
check bits value of 24 bits will cause the attacker’s password
search space to be as large as the usual number of attempts
for successful online cracking scenarios.

The downside is that a large isolated-check bits field will
make it easier for an attacker to crack the protector accounts.
As shown in Figure 10, as the size of the isolated-check bits
field grows, the cracking time for a threshold of three starts to
resemble the time for salted hashes. For 24 isolated-check bits,
the time to crack a six-character equivalent random password
is around 270420 years. In summary, the isolated-check bits
setting reduces the password entropy. To provide adequate
protection, either passwords with the entropy of 8 character
random passwords should be used, or, as will be discussed
later, the threshold should be increased.

Recommendation 3: In situations where a large number



guessing Attempts
probability ICB=8 ICB=16 ICB=24

25% 76 (25.4%) 18,767 (24.9%) 4,804,150 (24.9%)

50% 177 (49.9%) 45,295 (49.9%) 11,595,559 (49.9%)

75% 354 (74.9%) 90,590 (74.9%) 23,191,185 (74.9%)

Table III: Number of attempts required to find a isolated-check
bits collision

of unknown clients will authenticate, use a setting of 24
isolated-check bits.

2) Immediate Availability For Known Clients: In many
cases, the set of expected clients is limited and known. This
includes situations like a institutional file server or mail server.
In this case, the total set of possible clients is limited and it
is assumed that an attacker cannot control a large number of
IP addresses / clients.

In this case, an attacker who brute forces accounts is much
less of a concern because he cannot obtain the IP addresses
needed and failed attempts should be flagged and investigated
by the security team regardless. Thus, setting isolated-check
bits to be 16 requires that an attacker attempt to crack
45295 passwords to have a probability of finding a collision
of about 50%, as shown in Table III. This configuration is
ideal for cases in which a lock-out policy can be enforced.
However, even if an attacker was able to find a collision during
bootstrapping, PolyPasswordHasher would be able to detect
it upon recombination. If an attacker were to find a collision
when PolyPasswordHasher is performing on normal operation,
then the break-in attempt would also notify the administrators.

The bigger concern is an attacker (possibly an insider)
stealing the database and brute forcing account passwords. By
using a small number of isolated-check bits, such as 16, the
resilience to cracking is very high. Even if there are three
protector accounts with the entropy of a 6 character password,
it would require 447.8 ∗ 106 thousand years of CPU effort to
crack these accounts.

Recommendation 4: In situations where a restricted
set of clients will try to authenticate, use a setting of 16
isolated-check bits.

3) When Short Periods of Unavailability are Acceptable:
In some situations, temporary unavailability of a server (while
bootstrapping) is not a major concern. For example, many
services load balance requests across multiple systems for
redundancy and performance. Administrators will stop and
start instances as needed. When starting an instance, the first
thing the administrators will typically do is log into the system
to validate that it is working, before moving it into production.
For such a system, the time spent in the bootstrapping phase
is small and there is no user-perceived unavailability while the
system is bootstrapping.

In this case, isolated validation can be completely disabled,
maximizing the security benefit of PolyPasswordHasher. The
CPU time it would take an attacker to crack the database is
infeasibly high for practical situations. Even with a threshold
of 3 and 5 character random accounts, the cracking time when
isolated validation is disabled (1.46∗1021 CPU years) extends
past the top of the y-axis in Figure 9. (This is more CPU

Equivalent
ICB Threshold Keyspace Recombinations

Entropy

32.45
(5 character-long,

random
password)

Disabled
3 4.632 ∗ 1029 5.559 ∗ 1031

4 3.584 ∗ 1039 7.528 ∗ 1041

16
3 1.645 ∗ 1013 1.975 ∗ 1017

4 1.943 ∗ 1018 4.080 ∗ 1022

24
3 2.331 ∗ 1010 1.175 ∗ 1010

4 7.619 ∗ 1010 9.484 ∗ 1012

38.85
(6 charater-long,

random
password)

Disabled
3 4.972 ∗ 1035 6.554 ∗ 1037

4 2.919 ∗ 1047 9.635 ∗ 1049

16
3 1.411 ∗ 1021 1.693 ∗ 1023

4 1.582 ∗ 1028 3.24 ∗ 1030

24
3 8.631 ∗ 1013 1.009 ∗ 1016

4 3.684 ∗ 1018 7.738 ∗ 1020

45.21
(7 character-long,

random
password)

Disabled
3 3.405 ∗ 1041 5.619 ∗ 1043

4 2.378 ∗ 1055 7.848 ∗ 1057

16
3 1.209 ∗ 1027 1.558 ∗ 1028

4 1.289 ∗ 1036 2.976 ∗ 1050

24
3 7.211 ∗ 1019 8.654 ∗ 1021

4 3.685 ∗ 1026 6.303 ∗ 1028

Table IV: Equivalent keyspaces and number of recombinations for
different PolyPasswordHasher configurations. Assuming 10 protector
accounts

time than would be provided by every computer working
nonstop for the estimated age of the universe.) Thus, given
our understanding of the security of SHA256 and AES, it
is infeasible for any adversary to use the password database
to crack passwords with the entropy of 5 character random
passwords that are stored in this manner.

Recommendation 5: In situations where availability im-
mediately after a reboot is not essential, isolated validation
should be disabled.

F. How does the threshold affect the cracking time?

The threshold value is directly related to the cracking time
by increasing the number of secret recombinations that an
attacker needs to attempt before he can recover the secret.
Also, on the usability side, it is also related to the time it
takes for a system to transition from the bootstrap phase to
normal operation.

We can see in Figure 10 that, when we fix the isolated-
check bits number to 24, the threshold value exponentially
increases the cracking time. (We choose a high number of
isolated-check bits because the security is lower and thus,
differences are easier to see on the graph.) If the protector
accounts pick strong enough passwords, and the threshold is
three, the cracking time increases by many orders of mag-
nitude. The regular salted hashes are expected to be cracked
in about 40 minutes, whereas, if using PolyPasswordHasher,
these hashes would be cracked in 27, 042 years.

The reason why PolyPasswordHasher provides strong pro-
tection is that even when an attacker has to guess only a few
passwords, in most cases PolyPasswordHasher’s exponential
increase in guessing time (O(V p) instead of O(pV ), will make
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Figure 10: Time it takes to crack a PolyPasswordHasher store with
different values of threshold and 24 isolated-check bits

guessing a password computationally infeasible (Figure 10).
Furthermore, it is possible to much more aggressively apply
a technique like key stretching for the integrity check of the
reconstructed secret. This is because this operation is only done
once (by the server), but is done for each guessed combination
of passwords (by the attacker). This increases the attacker’s
time cost while extending the time the server spends, by a
second or less, in bootstrapping .

Recommendation 6: Choose a threshold of 3 plus the
number of protector account passwords an attacker could
reasonably know, for strong protection.

G. What if a poor value is chosen for the threshold?

Choosing a poor threshold setting can minimize the pro-
tections of PolyPasswordHasher. If the threshold is too high,
the system will primarily be in the bootstrapping phase while
waiting for protector accounts to log in. Thus most of the
accounts will be bootstrap accounts and only be protected
by salted hashes. If an attacker steals this database, they can
individually crack these passwords.

An organization might find that there are not enough pro-
tector account logins to get the system into normal operation.
One way to mitigate this is to promote some shielded accounts
that log in frequently to be protector accounts. This would
allow an attacker who controls one or more of those accounts
to have an easier time cracking the protector accounts, but
causes bootstrapping accounts to be protected.

Recommendation 7: It is often better to have protector
accounts that frequently log in (but who are untrusted),
than those of trusted users who rarely log in.

If the threshold setting is too low, then an attacker can
feasibly crack the protector accounts and gain the ability to
individually crack accounts. This is particularly problematic
when combined with a large isolated-check bits settion. The
minimum threshold setting described in the previous settings
should be used wherever possible. This relationship can be
verified by consulting Table IV

VII. RELATED WORK

Given the ubiquity of passwords, password security has
become an important research area in both academia and

industry. Hackers have also found password databases enticing
and have devoted time and resources to figuring out new
strategies for gaining access to passwords and associated user
identities. Hackers persistence in developing ever more sophis-
ticated cracking strategies has in turn focused researchers, who
have come up with many promising solutions that each solve
different portions of the problem.

In this section, we categorize related work according to
their requirements for deployment. Solutions that use addi-
tional server hardware or servers require effort to deploy but
tend to present very strong protection. Changes that involve the
client also require effort to deploy (on clients), but in many
cases are also very effective at protecting user information.
There are relatively few solutions that only require changes on
the server side and are software only. However, these solutions,
like salted hashing and key stretching, tend to be very widely
deployed. PolyPasswordHasher is the first solution of this type
that increases attackers’ cracking effort asymmetrically more
than the increase to the server’s verification time.

A. Systems that Require Extra Servers or Server-side Hard-
ware

Multi-server Password Authentication. A wide variety of
authentication schemes use multiple servers to store password
data [9], [10], [11]. The assumption is that an attacker cannot
compromise a threshold of the servers. In contrast, PolyPass-
wordHasher uses a threshold system to hide information in
memory on a single server that can only be unlocked with a
threshold of correct user passwords.

Prior work by Gwoboa [12] hides passwords using a
trapdoor function (public key cryptography) and techniques
from threshold cryptography. It can authenticate users with
two hidden pieces of information, a user ID (likely not the
user name, for security reasons) and the password. However, a
major concern of the scheme is how the private key is stored
on the server. The authors propose splitting it amongst multiple
systems and using threshold cryptography.

Decoys. Recently, researchers have suggested an array of
techniques that employ sets of extra password entries [13],
[14]. For example, the Honeywords [14]system uses a separate
server to hold information that authenticates the correct pass-
word entry. Once attackers obtain a password database they do
not know which password entry is correct. Entering a password
that matches a hash to the wrong password entry will trigger
an alarm that notifies the administrator that there has been a
password hash file breach. However, for this to work, there
must be a separate, secure server to authenticate the index of
that entry (a one byte value). An important attribute of Hon-
eyWords is that it can also operate when the server is offline
and will check passwords and detect breaches when the server
comes back online. This is similar to the way that accounts
validated during bootstrapping in PolyPasswordHasher are re-
validated after a threshold of protector account passwords are
provided.

Using a hardware database encryption key. Storing a key
in trusted hardware (such as a USB dongle [15]) has security
benefits, but also has deployment challenges. If the hardware
stops working, the protected data is likely to be irrevocably
lost. To have backup servers, it is essential to have identical



duplicate copies of the secure token. This complicates use in
scenarios like cloud computing or even just a standard master
/ slave deployment.

Bounded Attacker. Di Crescenzo [16] proposed a scheme
for protecting password data when an attacker can only read
a bounded amount of data from storage. This entails that an
organization configure network monitoring hardware and set
up a separate server to process authentication requests. This
may pose a deployment challenge for some organizations.

Single Sign-On. Single sign-on systems such as OpenID
and OAuth have promise for organizations to securely offload
authentication to a third party. This is convenient for users, but
is far from ubiquitous for a variety of reasons [17]. Single sign-
on systems have known security issues [18], [19], but overall
can be effective when properly used. PolyPasswordHasher
integrates cleanly with such systems and can trivially allow
shielded accounts to verify with them. In addition, PolyPass-
wordHasher could be used by a Single Sign-On provider to
securely store its password database.

B. Systems That Require Client Side Changes

Biometrics. Biometric authentication is a promising field
for secure password authentication [20], [21], [22], [23], [24],
[25], [26], [27], [28], with a substantial amount of work
already done on how to store and authenticate users with bio-
metric information. Like PolyPasswordHasher, some of these
approaches use a threshold system to validate and authenticate
users, in part to deal with noisy biometric data [29], [30]. Al-
though PolyPasswordHasher also requires users to remember a
password, it does not require client-side hardware. Moreover,
prior work uses keystroke dynamics to change stored password
data [31] and relies on reading timing information as users type
their passwords during login. This method of analyzing timing
of keystrokes provides promising protections, but requires
changes to the client and server to correctly operate.

Authentication Using Tokens or Smart Cards. Much
investigation has looked at authentication systems. These sys-
tems, which use hardware tokens, are popular in banking [32],
[33], health services [34], as well as in more general con-
texts [35], [36]. These systems are extremely effective and are
widely used to limit and protect access to classified systems,
often by integrating a threshold cryptosystem to provide mul-
tifactor authentication using hardware tokens [37], [38]. There
are even client devices that one can use either as a primary
authentication source or as a second factor of authentication.

Password Managers. There are a myriad of password
managers that help users choose and manage secure per-
site passwords including LastPass, 1Password, and OnePass.
These systems store password data and lock it with the user’s
credentials. However, these third party software (and often
their servers) will know users’ passwords, which opens the
door to potential misuse. To mitigate this, several groups have
proposed cryptographic techniques that will similarly take a
user’s password and generate secure, per site passwords [39],
[40], [41]. These techniques are effective (and more secure)
but can create passwords that are incompatible with a server’s
password policy. Password manager tools require client-side
changes or support, whereas PolyPasswordHasher requires

server-side changes only. Both can be used in conjunction
safely for improved security.

Multiparty Computational Authentication. There are a
variety of schemes that perform secure, remote authentication
using computation by the client and server on legacy hard-
ware [42], [43], [44], [45], [46], [47], [48], [49], [50], [51].
These schemes have significant, positive aspects such as (in
some cases) requiring an attacker to be online to validate
communications. However, they require multiparty protocols
that require changes on clients and servers.

Non-password Authentication. Many researchers have
proposed authentication based upon non-password items such
as pictures [52]. In practice, these systems can face secu-
rity limitations if users do not appropriately choose their
authentication tokens [53]. Used with these authentication
mechanisms, PolyPasswordHasher functions well for shielded
accounts, requiring no changes to the system. However, unless
a key or hash can be derived from such mechanisms, it may
not be possible to use them to recover a protector account’s
share.

Key Exchange Schemes. There are also many systems
that implement secure key exchange [54], such as Password
Authenticated Key Exchange (PAKE) [55], [56], [57], [58],
Encrypted Key Exchange (EKE) [59], [60], [61], and further
enhancements [62]. These systems allow parties who share
a password to securely find an encryption key to hide their
communications. These systems provide excellent protection
and can handle compromises to a system’s memory, in many
cases. However, unlike PolyPasswordHasher, they typically
involve multi-round authentications and require changes to
both the client and server.

Helping Users Choose Stronger Passwords. There have
been many efforts to help users choose stronger, more mem-
orable passwords and understand what constitutes a weak
password [63], [64], [65], [66], [67], [68], [69]. Such efforts
could be quite effective in protecting users, but users will
need to adopt new password habits and strategies. We leverage
studies by [5], [70], [7], [8] to understand how to add policies
that improve entropy in protector account passwords.

Two-Factor Authentication. The use of two-factor authen-
tication [71] is provided by some popular services (typically
through an SMS or phone call). Two-factor authentication
does not change PolyPasswordHasher’s use in any way. Users
can easily get the best of both protections with simultaneous
deployment of each technology.

C. Server-Side, Software-Only

These mechanisms fall directly into the same threat model
as PolyPasswordHasher.

Key Stretching. One way to mitigate the effectiveness of
cracking salted hashes is to use key stretching techniques [72].
This involves performing multiple rounds of cryptographic
operations to validate a hash (or key). But key stretching incurs
a slowdown for the attacker, proportional to the number of
iterations. Unfortunately, it also slows the server down by the
same factor, which limits the effectiveness of the technique.

PolyPasswordHasher leverages key stretching in two parts
of the algorithm in a way that poses a much higher cost to



the attacker than the server. PolyPasswordHasher may also
use key stretching during isolated validation. This increases
the authentication time only when bootstrapping, yet increases
the time cost to the attacker for all cracking efforts. When
the server is in normal operation, there is no slowdown. This
presents an increase that is the same factor for the server and
attacker, but the server only needs to pay the cost for a short
period.

The more impactful use of key stretching is when PolyPass-
wordHasher performs an integrity check on the secret before
transitioning to normal operation. This operation is done only
once per reboot by the server, yet the attacker must perform
this operation once per guess of protector account passwords.
This causes an enormous, asymmetric increase in cracking
time for the attacker.

VIII. CONCLUSION

This work presents PolyPasswordHasher, a technique for
protecting user passwords in the event of password database
disclosure. PolyPasswordHasher is the first technique that
requires only software changes on the server and yet requires
attackers to do asymmetrically more work to crack passwords
than servers need to do to verify them. As a result, password
cracking becomes infeasible for attackers in many cases.

PolyPasswordHasher is practical to deploy and is effective
in practice. The performance of PolyPasswordHasher is similar
to salted hashing. The memory and storage costs from using
PolyPasswordHasher are negligible. So long as good password
selection procedures are followed, protector accounts increase
an attacker’s cracking effort by many orders of magnitude.
We show how configuring isolated validation in different
ways can help to optimize PolyPasswordHasher for different
configurations of services.

We have installed PolyPasswordHasher at our institution
and are gaining practical experience to uncover any usabil-
ity problems. Five different parties, two of whom had no
prior contact with us, authored an implementation of Poly-
PasswordHasher. There are implementations for a variety of
languages and web frameworks available with an MIT license
at: https://polypasswordhasher.poly.edu.
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