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Overview

Precision health

Intelligence revolution

Biomedical LLMs

Application challenges

Research frontiers
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Top 20 drugs

80% non-responders

Medicine Today Is Imprecise

Wasted

1/3 health spending

$1 Trillion / year
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Cancer: Traditional Treatment

“Slash, poison, and burn”

Toxicity: High

Efficacy: Low

4



Microsoft Health Futures KDD 2023 Tutorial

Cancer: Targeted Therapy

Before Treatment 15 Weeks

Vemurafenib on BRAF-V600 Melanoma
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Cancer: Targeted Therapy

Before Treatment 15 Weeks 23 Weeks

Vemurafenib on BRAF-V600 Melanoma
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Cancer: Immunotherapy

Keytruda: immunotherapy blockbuster ($17B, 2021)

FDA approved for many cancer indications

But only work for minority of patients
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“Omics”-Informed Drug and Biomarker Discovery. Matthews et al. Proteomes 2016

Average Cost 

$2-10B, 10+ years
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Information Access Can Be Life or Death

Marty Tenenbaum

Late-stage melanoma (late 1990s)

Initial prognosis: 6 months

Saved by Phase III trial of Canvaxin
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Continuous 

Learning 

Health System

Data Producer

Provider, EHR Vendor

Insight Consumer

Pharma, Payor, Regulator
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Continuous 

Learning 

Health System

Data Producer

Provider, EHR Vendor

Insight Consumer

Pharma, Payor, Regulator
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US: Less than 3% cancer patients enroll in trials

   40% cancer trial failures due to insufficient patients   

New drug costs $2-10 billion and takes 10+ years

Data Producer

Provider, EHR Vendor

Insight Consumer

Pharma, Payor, Regulator
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Data Producer

Provider, EHR Vendor

Insight Consumer

Pharma, Payor, Regulator

  Large language models → universal structuring  

Instantly unlock top value chain
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Digital Transformation → Intelligence Revolution
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2009 − 2013: 40% → 93%

Digital Transformation
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Access

Safety

Preventive Care

What can LLMs do for 

precision health?

Digital Transformation → Intelligence Revolution
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Real-World Evidence (RWE)

Patient Diagnosis Treatment Outcome

101 Lung Cancer Gefitinib remission

202 Leukemia Imatinib resistant

303 Lymphoma Zaraparib relapse

......

Population-level “free lunch”
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Drug Discovery Clinical Trial Post-Market

Target Identification

Real-World Evidence

Drug Repurposing

Virtual Trial

Synthetic Control

Eligibility

Off-Label Use

Comparative Effectiveness

Adverse Event

Pragmatic Trial

Trillion-dollar opportunity:

Accelerate development; reduce cost; save lives
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LLM: Universal Structuring

Multi-Modal Learning & Fusion

Copilots for Precision Health

Population-level Causal Discovery

      

                 

Digital Transformation → Intelligence Revolution
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I   ll      ’  
Copernicus moment
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Large Language Models → New Patterns

Universal Structuring → Scale real-world evidence

Universal Translator → Rethink interoperability

Universal Labeler → Scale benchmark / evaluation

Universal Reasoning → “Talk to data” and make sense
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Case Study: Immunotherapy

Keytruda: immunotherapy blockbuster ($17B, 2021)

FDA approved for many cancer indications

But only work for minority of patients. Why?
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Data Producer

Provider, EHR Vendor

Insight Consumer

Pharma, Payor, Regulator

Real-World Evidence Marketplace

Advancing Health at the Speed of AI

Data Store

Discovery Engine

AI
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Overview

Precision health

Intelligence revolution

Biomedical LLMs

Application challenges

Research frontiers
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A brief history of NLP
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1940-60 1970-80

Big Bang

Computer, AI, NLP
Turing Test, 1950

AI Birth (Dartmouth, Hanover NH), 1956
Chomsky (“Syntactic Structures”), 1957

Machine Translation
Cold war: Russian to English

Demo: IBM-Georgetown, 1954
Crash: ALPAC Report, 1966

1990-2010 2010-Present

GOFAI
Statistical

Revolution

Lesson: Pretty demo not enough

Need rigorous evaluation & benchmarks

Deep 

Learning
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1940-60 1970-80

Big Bang

1990-2010 2010-Present

GOFAI
Statistical

Revolution

Rule-base
Lexicon
RegEx

Semantic Grammar

Dialog, Question-Answering
Eliza, 1964

BASEBALL (Green et al.), 1961
SHRDLU (Winograd et al.), 1973

LUNAR (Wood et al.), 1978

Still used in most “clinical NLP” 

and “biomedical NLP” today

Negation Detection

Hedge Detection

Ontology-Based Entity Linking

……

Deep 

Learning
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1940-60 1970-80

Big Bang

1990-2010 2010-Present

GOFAI
Statistical

Revolution
Statistical Machine Learning

Classification: Decision tree, Random Forest, Naïve Bayes, SVM, kernel 
methods, log-linear models, …

Structured Prediction: Dynamic Programming, HMM, CRF, 
probabilistic logic, …

Morphology, Syntactic Parsing, Named Entity Recognition (NER), 
Information Extraction, Question Answering, Machine Translation, …

Penn Treebank, 1990s
ACE, 2003

PropBank, 2005
……

Newswire / Web

Most on component tasks

Deep 

Learning
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1940-60 1970-80

Big Bang

1990-2010 2010-Present

GOFAI
Statistical

Revolution

Then: “NLP is all about feature engineering”

Deep 

Learning
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1940-60 1970-80

Big Bang

1990-2010 2010-Present

GOFAI
Statistical

Revolution

Deep 

Learning

Now: End-to-end deep learning
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Breast Cancer

……

GloVe

Word2Vec

Average

Max

Attention

Linear

MLP

Logistic Regression

......

C
o

n
te

xtu
a
liza

tio
n

CNN

RNN

Embeddings
Contextualized 

Embeddings

Scores

Features

End-to-End Deep Learning

Lung Cancer

Prostate Cancer

ELMo, BERT, ELECTRA, …

32



Microsoft Health Futures KDD 2023 Tutorial

A brief history of deep learning
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Neural Unit

Input Layer

Output

Source: Arvin Calspan Advanced Technology Center; Hecht-Nielsen, 

R. Neurocomputing (Reading, Mass.: Addison-Wesley, 1990)

Perceptron

[Rosenblatt, 1957]

First Wave

Can not represent complex 

functions such as XOR

[Minsky & Papert, 1969]
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Neural Network

Input Layer

Output

Hidden Layer

Second Wave

Backpropagation

[Rummelhart, Hinton, 

Williams, 1986]

Gradient diffusion or explosion:

Can not learn more than a few layers
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Deep Learning

Input Layer

Many 

Hidden Layers

Third Wave

SGD, ReLU, dropout, …

[Hinton, LeCun, Bengio, 

Schmidhuber, Hochreiter, …]

Big labeled data

Fast computation

…
..
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The Great Consolidation in AI

Transformer

Modality

Self-supervised learning

Prompt: Instruction following
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Transformer
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Self-Attention

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. NAACL 2019
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Dosovitskiy, et al. “An Image is Worth 

16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021.
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Molecular Transformer

Ying, et al. “Do Transformers Really Perform Bad for Graph Representation?”, NeurIPS 2021.
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Supervised Learning

Domain Knowledge

ML Algorithm

Application Model

(save lives, cut cost, revolutionize medicine, ...)

Unlabeled DataLabeled Data

Public AbundantBottleneck
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General vs Health Labeled Data

43

Two cows are grazing in the 
field.

IMPRESSION

No significant change in right 
middle and low lobe 
pneumonia. Small increase in 
left pleural effusion. ……

Biomedical and clinical domain label require expertise
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General vs Health Data Availability

44

1992

Penn Treebank

2006

Comparable datasets over a decade later
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Self-Supervised Learning

Domain Knowledge Unlabeled DataLabeled Data

Public AbundantIf Available

Task-AgnosticTask-Specific

ML Algorithm

Application Model

(save lives, cut cost, revolutionize medicine, ...)
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Neural Language Model Pretraining

The 2 mutations that were only found in 

the neuroblastoma resistance screen 

(G1123S/D) are located in the glycine-rich 

loop, which is known to be crucial for ATP 

and ligand binding and are the first 

mutations described that induce resistance 

to TAE684, but not to PF02341066

Unlabeled text
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Neural Language Model Pretraining

The 2 mutations that were only found in 

the neuroblastoma resistance screen 

(G1123S/D) are located in the glycine-rich 

loop, which is known to be crucial for ATP 

and ligand binding and are the first 

mutations described that induce resistance 

to TAE684, but not to PF02341066

Masked

Language Model

[MASK]

[MASK]

[MASK]

[MASK]

[MASK]
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Neural Language Model Pretraining

The 2 mutations that were only found in 

the neuroblastoma

GPT: next-word 

prediction

?
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Neural Language Model Pretraining

The 2 mutations that were only found in 

the neuroblastoma

GPT: next-word 

prediction

?
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GPT-3: Prompt

All tasks → Text-to-text

Prompt engineering

“Generalist AI”
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Beyond Next-Word Prediction

Supervised instruction fine-tuning

Reinforcement learning from human feedback

InstructGPT
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New arXiv Papers mentioning “LLMs”

arxiv.org/abs/2303.18223
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s
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https://arxiv.org/abs/2303.18223
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Growth of Model Size (100M → 1T+)

GPT-4?
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Growth of Data (5B → 1T)
GPT-4?
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Emergent Abilities

Wei, et al. “Emergent Abilities 

of Large Language Models”, 

TMLR 2022.
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Effects of Scale

A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the 
grass in front of the Sydney Opera House holding a sign on the chest that says Welcome Friends!

350M 750M 3B 20B

https://parti.research.google/
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Effects of Scale

A photo of an astronaut riding a horse in the forest. There is a river in front of them with water lilies.

350M 750M 3B 20B

https://parti.research.google/
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Effects of Scale

A map of the United States made out of sushi. It is on a table next to a glass of red wine.

350M 750M 3B 20B

https://parti.research.google/
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Open-Source LLM

Web-based pretraining

⚫ OPT: 125M – 175B; 180B tokens

⚫ LLaMA, LLaMA2: 7-70B; 1-1.4T tokens

⚫ Falcon: 40B; 1T tokens

⚫ Red Pajama: Replicate LLaMA training (1.2T tokens)

LLaMA + GPT-derived instruction-following data

⚫ Alpaca (7B): 52K GPT-3.5

⚫ Vicuna (13B):  70K ChatGPT (from ShareGPT)

……
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Large Multimodal Models (LMMs)

CLIP

Radford, et al. “Learning Transferable Visual 

Models From Natural Language Supervision”, 

arxiv 2021.

Contrastive learning
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Large Multimodal Models (LMMs)

FLAMINGO

Alayrac, et al. “Flamingo: a Visual Language 

Model for Few-Shot Learning”, NeurIPS 2022.

Frozen vision encoder / LM

Layer-wise gated adapter

Trained on web data: M3M, 

ALIGN, LTIP, VTP
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Large Multimodal Models (LMMs)

LLaVA

Liu, et al. “Visual Instruction Tuning”, 

arxiv 2023.

Key: use GPT-4 to generate 

multi-turn conversation for 

instruction tuning
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Large Multimodal Models (LMMs)

Latent Diffusion

Rombach, et al. “High-Resolution Image 

Synthesis with Latent Diffusion Models”, 

CVPR 2022.

Image generation: apply 

diffusion process on 

compressed latent space
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Overview

Precision health

Intelligence revolution

Biomedical LLMs

Application challenges

Research frontiers
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General-purpose Interface

LLM for language understanding and generation

T1: summarize the doctor-patient dialogue.

T2: extract PHI from the patient note.

T3: classify the PubMed abstract.

T3: what disease does the patient have?

……

A1: visit summary

A2: PHI

A3: document type

A4: disease

……

Input interface

Output interface
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Paradigm Shifts with LLMs

Specialist 

Models

Generalist 

Models

Closed-set 

Classification

Open-ended 

Generation

Representation 

Learning

Promptable 

Interface
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Specialist 

Models

Generalist 

Models

Closed-set 

Classification

Open-ended 

Generation

Representation 

Learning

Promptable 

Interface

Paradigm Shifts with LLMs
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Specialist Models

Summarization model

Entity recognition model

Relation extraction model

Text classification model

Question answering model

Text inference model

Clinical dialogue

Patient note

PubMed abstract Chemical-Disease

PHI

Patient Note

Discharge summary Diagnostic code

USMLE Answer choice

Clinical note Entail/contradict
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Summ.

NER

RE

Classi.

QA

NLI

Clinical dialogue

Patient note

PubMed abstract Chemical-Disease

PHI

Patient Note

Discharge summary Diagnostic code

USMLE Answer choice

Clinical note Entail/contradict

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Specialist Headers
task-agnostic 

base

task-specific

header

pretraining fine-tuning
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Clinical dialogue

Patient note

PubMed abstract Chemical-Disease

PHI

Patient Note

Discharge summary Diagnostic code

USMLE Answer choice

Clinical note Entail/contradict

LLM

Generalist Models
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Specialist 

Models

Generalist 

Models

Closed-set 

Classification

Open-ended 

Generation

Representation 

Learning

Promptable 

Interface
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Closed-set Classification Predefined/limited labels

Paradigm Shifts with LLMs

Summarization model

Entity recognition model

Relation extraction model

Clinical dialogue

Patient note

PubMed abstract Chemical-Disease

PHI

Patient Note
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BC5

NCBI

PubMedQA Yes/No/Maybe

Disease

Chemical/Disease

Clinical dialogue Summary

USMLE Answer

Clinical trial Structured form

LLM

Open-ended 

Generation

Paradigm Shifts with LLMs

Closed-set 

Classification
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Paradigm Shifts with LLMs

Specialist 

Models

Generalist 

Models

Closed-set 

Classification

Open-set 

Generation

Representation 

Learning

Promptable 

Interface
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Representation learning
• Expensive

• Engineering heavy

• Task-specific

Promptable interface
• Training free

• Universal interface – natural language

Improving Language Understanding by Generative Pre-Training

Retrieval-based Language Models and Applications

Frozen

Paradigm Shifts with LLMs

76

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://acl2023-retrieval-lm.github.io/
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Biomedical LLMs

PubMedBERT

BioGPT

GalacticaBioLinkBERT

GatorTronGPT

Med-PaLM2

Med-PaLM

SciBERT

BioBERT

ClinicalBERT

BioMedLM

BioMegatron

GPT-Neo

GPT-4
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Domain-Specific Pretraining

2020 2022

PubMedBERT

BioLinkBERT

BioGPT

PubMedGPT

Galactica

Med-PaLM

DRAGON

……
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Why Domain-Specific Pretraining?

Yu, et al. “Domain-Specific Language Model 

Pretraining for Biomedical Natural Language 

Processing”, Special Issue on Computational 

Methods for Biomedical Natural Language 

Processing, ACM Transactions on Computing 

for Health 2021.

PubMedBERT

In bounded-resource scenarios, 

enable more efficient learning by 

focusing on in-domain data 

79
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Why Domain-Specific Pretraining?

Yu, et al. “Domain-Specific Language Model 

Pretraining for Biomedical Natural Language 

Processing”, Special Issue on Computational 

Methods for Biomedical Natural Language 

Processing, ACM Transactions on Computing 

for Health 2021.

Shattered into pieces

Domain-specific Vocab

Preserves the integrity of
• Biomedical terms

• Amino acid sequences

• SMILES formula

• DNA sequences

• Mathematics

• Citations

• etc.

Domain-specific 

Vocab
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PubMedBERT: A Million Downloads Per Month

81



Microsoft Health Futures KDD 2023 Tutorial

Domain-Specific Pretraining → Generalist Model

2020 2022

PubMedBERT

BioLinkBERT

BioGPT

PubMedGPT

Galactica

Med-PaLM

DRAGON

……

GPT-4  

2023
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github.com/Mooler0410/LLMsPracticalGuide

83

https://github.com/Mooler0410/LLMsPracticalGuide
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Biomedical LLM: Encoder-Only

PubMedBERT

SciBERT

BioBERT

ClinicalBERT

Diagrams adapted from Retrieval-based Language Models and Applications

84

https://acl2023-retrieval-lm.github.io/


Microsoft Health Futures KDD 2023 Tutorial

Biomedical LLM: Encoder-Decoder

Diagrams adapted from Retrieval-based Language Models and Applications

DoT5: Compositional Zero-Shot Domain Transfer with Text-to-Text Models

SciFive: a text-to-text transformer model for biomedical literature

85

https://acl2023-retrieval-lm.github.io/
https://arxiv.org/abs/2303.13386
https://arxiv.org/abs/2106.03598
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BioGPT

BioGPT: generative pre-trained transformer for biomedical text generation and mining

GPT model pretrained on 15M PubMed abstracts

Strong performance on Biomedical tasks
⚫ Relation extraction (e.g., BC5CDR, KD-DTI and DDI)

⚫ Question answering (e.g., PubMedQA)

⚫ Document classification (e.g., HoC)

⚫ Text generation

86

https://academic.oup.com/bib/article/23/6/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9&login=false
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Other Biomedical GPTs

 BioMedLM (PubMedGPT)

A Domain-Specific Large Language Model for Biomedical Text

 GatorTronGPT

A Study of Generative Large Language Model

 BioMegatron

Larger Biomedical Domain Language Model

Many others……

87

https://www.mosaicml.com/blog/introducing-pubmed-gpt
https://arxiv.org/abs/2305.13523
https://arxiv.org/abs/2010.06060


Microsoft Health Futures KDD 2023 Tutorial

GPT-4

Capabilities of GPT-4 on Medical Challenge Problems

The AI Revolution in Medicine: GPT-4 and Beyond

The most powerful general-purpose LLM

Human-level performance on many tasks

GPT-4 Technical Report

• SOTA on medical competency examinations

• “How well does the AI perform clinically? And my 

answer is, I’m stunned to say: Better than many 

doctors I’ve observed.”  —  Isaac Kohane MD

Out-of-Box: Expert-Level Competency on USMLE

88

https://arxiv.org/abs/2303.13375
https://arxiv.org/abs/2303.08774
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GPT-4

GPT-4 has been pretrained on a 

large portion of the public web, 

which already contains a lot of 

biomedical text. 

89
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Med-PaLM 2

Large Language Models Encode Clinical Knowledge

Towards Expert-Level Medical Question Answering with Large Language Models

PaLM requires substantial adaptation 

to do well on USMLE

• Expensive fine-tuning specific to MedQA

• Elaborate prompt: 44 calls per problem

GPT-4-base
• No fine-tuning

• 1 call w/ basic few-shot
86.1

?
Let GPT-4 design the prompt

90

https://arxiv.org/abs/2212.13138
https://arxiv.org/abs/2305.09617
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Generalist 

Model
(e.g., GPT-4)

Task-Specific Fine-Tuning
(e.g., MedPaLM)

Domain-Specific Pretraining
(e.g., PubMedBERT, BioGPT)

Generalist Models: Superior Steerability

More specialized model

Harder to Steer

More powerful model

Easier to steer
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Prompt programming

93
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Prompt Programming

Using natural language prompt to steer LLMs

LLM for language understanding and generation

T1: summarize the doctor-patient 

dialogue.

T2: extract PHI from the patient note.

T3: classify the PubMed abstract.

T3: what disease does the patient have?

……

A1: visit summary

A2: PHI

A3: document type

A4: disease

……

Prompting

Output
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Basic Prompting: Zero-shot

Question: A 6-year-old boy is brought to the pediatrician 

by his foster father because he is concerned about the 

boy's health… what is released by the eosinophils to 

cause bronchial epithelial damage?

A. IL-5

B. IL-8

C. Major basic protein

D. Interferon-gamma

=> Answer: ____

Lack of context, low performance 

Simply feed the task input and ask for results
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In-context learning: Instruction prompting

Answer multiple choice questions about medical 

knowledge. The answer must be from {A, B, C, D}.

Instructions: 

Explain the domain, task definition and expected output

Question: A 6-year-old boy is brought to the pediatrician 

by his foster father because he is concerned about the 

boy's health… what is released by the eosinophils to 

cause bronchial epithelial damage?

A. IL-5

B. IL-8

C. Major basic protein

D. Interferon-gamma

=> Answer: ____
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In-context learning: Few-shot

Question: A 6-year-old boy is brought to the pediatrician by 

his foster father because he is concerned about the boy's 

health… what is released by the eosinophils to cause 

bronchial epithelial damage?

A. IL-5   B. IL-8   C. Major basic protein   D. Interferon-

gamma

=> Answer: A

Question: A previously healthy 32-year-old woman comes to 

the physician 8 months after her husband was killed in a car 

crash… Pharmacotherapy should be targeted to which of the 

following neurotransmitters?

A. Dopamine  B. Glutamate  C. Norepinephrine  D. Serotonin

=> Answer: D

Question: An investigator is studying cellular regeneration of 

epithelial cells… Which of the following parts of the female 

reproductive tract is also lined by this type of epithelium?

 A. Ovaries  B. Vagina  C. Fallopian tubes  D. Vulva

=>

Few-shot 

examples

Few-shot examples help 

LLMs better understand 

human intention and 

criteria for what kinds 

of answers are wanted

Tips for example selection
• Relevancy

• Contrastive learning 

(Rubin et al., 2022)

• k-NN (Liu et al., 2021)

• Diversity

• Graph-based approach 

(Su et al., 2022) 

• Q-learning (Zhang et al. 

2022)

Tips for example ordering
• majority label bias (Lu et al. 

2022)

• recency bias
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https://arxiv.org/abs/2112.08633
https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2209.01975
https://arxiv.org/abs/2211.04486
https://arxiv.org/abs/2211.04486
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2104.08786
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Reasoning: Chain-of-Thought (CoT)

• Enable language models to do more-complicated tasks

• Guide them with “meta-data” (i.e., reasoning process)

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
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Reasoning: Chain-of-Thought (CoT)

GSM8K

Finetuned 
SOTA at the 
time

Finetuned 
SOTA

Human

StrategyQA

Real model output #1

Q: Can you hide a 
basketball in a sand cat's 
ear?

A: A basketball is about 30 
cm in diameter. A sand 
cat's ear is about 2 cm in 
diameter. Thus, a 
basketball would not fit in 
a sand cat's ear. So the 
answer is no.

Increased interpretability

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
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Reasoning: Self-consistency

Self-Consistency Improves Chain of Thought Reasoning in Language Models

Q: Roger has 5 tennis balls. He buys 2 more 
cans of tennis balls. Each can has 3 tennis 
balls. How many tennis balls does he have 
now? 
A: Roger started with 5 balls. 2 cans of 3 tennis 
balls each is 6 tennis balls. 5 + 6 = 11. The 
answer is 11.

Q: Janet’s ducks lay 16 eggs per day. She eats 
three for breakfast every morning and bakes 
muffins for her friends every day with four. 
She sells the remainder for $2 per egg. How 
much does she make every day?

A:

Prompt with example chain of thought

Language 
model

She has 16 - 3 - 4 = 9 eggs left. 
So she makes $2 * 9 = $18 per 
day. 

Sample decode with diverse reasoning paths

She eats 3 for breakfast, so she 
has 16 - 3 = 13 left. Then she 
bakes muffins, so she has 13 - 4 
= 9 eggs left. So she has 9 eggs 
* $2 = $18. 

This means she uses 3 + 4 = 7 
eggs every day. So in total she 
sells 7 * $2 = $14 per day. 

The answer is $18.

The answer is $14.

The answer is $18.

Majority vote 

on the answers

The answer is $18.
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External tools: ReAct

ReAct: Synergizing Reasoning and Acting in Language Models

LLM
Reasoning

Traces

Reason Only
e.g., Chain-of-thought (Wei et al.)

ENVLLM

Act Only
e.g., SayCan (Ahn et al.)

Actions

Observations

ENVLLM
Reasoning

Traces

Actions

Observations

ReAct: synergizing reasoning and acting

Reasoning traces (to update internal belief)

Actions (to obtain external feedback)
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External tools: ReAct

ReAct: Synergizing Reasoning and Acting in Language Models

Question: What is the elevation range for the area that the 

eastern sector of the Colorado orogeny extends into?

Thought 1: I need to search Colorado orogeny, find the area 

that the eastern sector of the Colorado orogeny extends into, 

then find the elevation range of the area.

Action 1: Search[Colorado orogeny]

Observation 1: The Colorado orogeny was an episode of 

mountain building (an orogeny) in Colorado and surrounding 

areas.

Thought 2: It does not mention the eastern sector. So I need 

to look up eastern

sector.

……

Reasoning trace

Action: search

Observation

Multi-turn

Improvement on 

knowledge-intensive tasks 

(e.g., HotpotQA)
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Many more…

•Ask Me Anything: A simple strategy for prompting language models

•Progressive Prompts: Continual Learning for Language Models

•Batch Prompting: Efficient Inference with LLM APIs

•Demonstrate-Search-Predict: Composing retrieval and language models for knowledge-intensive NLP

•Large Language Models are reasoners with Self-Verification

•PAL: Program-aided Language Models

•Large Language Models Are Human-Level Prompt Engineers

•Dynamic Prompting: A Unified Framework for Prompt Tuning

•Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning

•Prompt, Generate, then Cache: Cascade of Foundation Models makes Strong Few-shot Learners

•EvoPrompting: Language Models for Code-Level Neural Architecture Search

•In-Context Instruction Learning

•Chain of Hindsight Aligns Language Models with Feedback

•Language Is Not All You Need: Aligning Perception with Language Models

•Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data

•Active Prompting with Chain-of-Thought for Large Language Models

•More than you've asked for: A Comprehensive Analysis of Novel Prompt Injection Threats to Application-Integrated Large Language Models

•A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

•Guiding Large Language Models via Directional Stimulus Prompting

•How Does In-Context Learning Help Prompt Tuning?

•Scalable Prompt Generation for Semi-supervised Learning with Language Models

•Bounding the Capabilities of Large Language Models in Open Text Generation with Prompt Constraints

Active research area!
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Retrieval-augmented generation (RAG)

104
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Inference: LLMs

Mantle cell Carcinoma shows _______

LLM

Adapted from Retrieval-based Language Models and Applications

105
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Inference: RAG

Mantle cell Carcinoma shows _______

LLM

Index

Datastore

More than billions of tokens

Unlabeled data

Unstructured data
Query

(not necessarily input to LLM)

Dense 

representations

Incorporation

Adapted from Retrieval-based Language Models and Applications

Find a small subset of 

elements most similar 

to the query
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Why RAG?

Reduce hallucination
• LLMs have bad memory on long-tail knowledge

When Not to Trust Language Models

Retrieval-based Language Models and Applications
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Why RAG?

Reduce hallucination
• LLMs’ knowledge is easily outdated 

and hard to update 

Datastore can be easily 

updated and expanded

     

   

     

         

     

Adapted from Retrieval-based Language Models and Applications
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Why RAG?

Provenance
• Straight LLMs output is challenging to verify

Mantle cell Carcinoma shows _______

LLM

CD 5+, CD 25-
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Why RAG?

Provenance
• Retrieval provides better interpretability 

and control
     

   

     

         

     

Can trace knowledge source 

from retrieval results
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Why RAG?

Privacy
• LLMs are shown to easily leak private training data

Extracting Training Data from Large Language Models

Extraction attack: given prefix, 

extract personal info.

Categorization of training examples 

extracted from GPT-2
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Why RAG?

Privacy
• LLMs are shown to easily leak private training data

Extraction attack: given prefix, 

extract personal info.

     

   

     

         

     

Store private data in 

the datastore

Extracting Training Data from Large Language Models
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Research Directions in RAG

What to retrieve?

LLM

Input

Output

Query

Document?

Text chunks?

Tokens?

How to incorporate retrieval? When to retrieve?

Adapted from Retrieval-based Language Models and Applications

Refer to ACL 2023 Tutorial: Retrieval-based LMs and Applications for details.
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Overview

Precision health

Intelligence revolution

Biomedical LLMs

Application challenges

Research frontiers
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Hallucinations

Biases / inclusivity

Data privacy

Explainability / transparency

Math/logic errors

Regulation
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Olanzapine is an atypical antipsychotic medication that has been studied for its potential use in treating 

anorexia nervosa (AN). It is not FDA-approved specifically for the treatment of AN but is sometimes used 

off-label for this purpose.

Research has suggested that olanzapine may be effective in increasing weight gain and improving 

psychological symptoms in individuals with AN. A meta-analysis of 9 studies found that olanzapine was 

associated with significantly greater weight gain compared with placebo or other treatments in 

individuals with AN (Kishi et al., 2012). In addition, olanzapine may improve anxiety, depression, and 

obsessive-compulsive symptoms in AN (Attia et al., 2008).

However, more research is needed to determine the long-term efficacy and safety of olanzapine in 

treating AN, and the decision to use olanzapine should be individualized and based on the potential risks 

and benefits.

Sources:

Attia, E., Haiman, C., Walsh, B. T., & Flater, S. R. (2008). Does fluoxetine augment the inpatient treatment of 

anorexia nervosa? American Journal of Psychiatry, 165(4), 591–596. 

https://doi.org/10.1176/appi.ajp.2007.07071145

…

Can you tell me about using olanzapine in treating anorexia nervosa? 

Please cite your sources.
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1. Turn the intent of your question into search 
queries

2. Tell GPT-4 to “Read” the top 
results

3. Ensure answers are backed 
up by the query results
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(1) Olanzapine in the treatment of anorexia nervosa: a systematic 

review .... https://ejnpn.springeropen.com/articles/10.1186/s41983-

020-00195-y Accessed 3/26/2023.

(2) Effectiveness of olanzapine in the treatment of anorexia nervosa: A 

.... https://pubmed.ncbi.nlm.nih.gov/35020271/ Accessed 3/26/2023.

(3) Olanzapine Treatment for Patients with Anorexia Nervosa. 

https://www.researchgate.net/publication/318584701_Olanzapine_Trea

tment_for_Patients_with_Anorexia_Nervosa Accessed 3/26/2023.
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LLMs Hallucinations

Zhang, Muru, Ofir Press, Will Merrill, Alisa Liu and Noah A. Smith. “How 

Language Model Hallucinations Can Snowball.” ArXiv abs/2305.13534 (2023)
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LLMs Biases

LLMs can produce biased answers because of the training set.

Source: https://www.advisory.com/daily-briefing/2023/07/24/ai-biases
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LLMs Biases

GPT-4 creating a clinical vignette 

for a patient presenting with 

each of 18 distinct diagnoses

• Yellow: model

• Red: true demographic 

distribution in the United 

States from the literature)

Caveat: Study not using GPT-4 probabilities

Zack et al. Coding Inequity: Assessing GPT-4’s Potential for Perpetuating Racial and Gender Biases in Healthcare, 2023.
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Accuracy vs calibration

Accurate model: makes correct predictions most of the time.

Calibrated model: provides reliable estimates of the uncertainty 

associated with its predictions (knows when is correct and when 

is not)
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Accuracy vs. Calibration in LLMs

GPT4 output not necessarily reflects 

true  logprob of the outcomes.

GPT4 is highly accurate in several

multiple choice components of 

MultiMedQA

Nori, H., King, N., McKinney, S. M., Carignan, D., & Horvitz, E. (2023). Capabilities of GPT-4 on medical challenge problems. arXiv:2303.13375
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Privacy and LLMs
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Differential privacy

UTILITYPRIVACY

How to build systems that can 

publicly share information 

about a dataset (patterns) while 

withholding information about 

individuals in the dataset?
ML model
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Differential privacy in LLMs

UTILITYPRIVACY

How to build LLMs that are 

robust against adversary 

attacks that aim to extract 

personal information from 

the records?
UTILITYPRIVACY

LLM

Adversary attack in precision health:  personal patient data
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Standard differential privacy is more restrictive that 

needed in LLM settings

- Only several, instead of all attributes need to be protected: 

“The patient John Smith suffers lung Cancer.”

- Differentiation is case specific

“Therapy started on 03/06/2022” from “Therapy started on 04/04/2020“  

DESIRABLE

“Therapy started on 03/06/2022” from “Therapy started on 50/40/5022“  

MEANINGLESS 

However: Consequences are catastrophic if info is leaked
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Privacy and pre-trained language models

Language model with DP

EHRs with personal data

• (Devlin et al., 2019) pre-training the unlabelled 

text using some large corpora first

• Hoory et al. (2021) : DP over selected vocabulary.

• Anil et al. (2021): privatizes the Adam optimizer.

• etc.

PRIVACY

UTILITY
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Privacy and fine tuning of language models

PRIVACY

UTILITY

UTILITY

PRIVACY Privacy/utility

Differentially Private Fine-tuning of Language Models Da Yu, et all 2021.
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Review: studies in Differential privacy and NLP
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LLMs, Responsible AI and the regulatory landscape
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MSFT Responsible AI Principles
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Use cases of LLMs for medical professionals' patients

From: The imperative for regulatory oversight of large language models (or generative AI) in healthcare
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LLMs are considered medical devices

Foundation models for generalist medical artificial intelligence135

https://www.nature.com/articles/s41586-023-05881-4
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Regulatory challenges

From: The imperative for regulatory oversight of large language models (or generative AI) in healthcare
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Causality

137
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Correlation is not causation

https://www.simplypsychology.org/correlation.html
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Real-World Evidence: Need of Causal Inference

Success recovery rates of two treatments for kidney stones: Treatment B is better 

Treatment A is better

The effect of the stones size (confounder) is masking the effect

Treatment A is more intrusive so mainly given to patients with large stones  

Charig, C. R., Webb, D. R., Payne, S. R., & Wickham, J. E. (1986). Comparison of treatment of renal calculi by open surgery, percutaneous nephrolithotomy, and 
extracorporeal shockwave lithotripsy. British medical journal (Clinical research ed.), 292(6524), 879–882.
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Type of causal questions and LLMs

Causal discovery:

“Does smoking causes Cancer?”

Causal inference:

“How much longer are Lung cancer expected to survive 

under treatment A vs placebo?”
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How to answer a causal question?

From: Causal Reasoning and Large Language Models: Opening a New Frontier for Causality

LLMs can assists in 

several steps of the 

causal reasoning loop

LLMs to identify causes

(discovery)

LLMs to structure confounders

(inference)
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The Tubingen causal discovery benchmark

J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, B. Schoelkopf:

"Distinguishing cause from effect using observational data: methods 

and benchmarks",Journal of Machine Learning Research 17(32):1-102, 2016

Which is the directionality of the 

causal effect for each pair of variables?

From: Causal Reasoning and Large Language Models: Opening a New Frontier for Causality
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Covariance vs LLM causal discovery approaches

From: Causal Reasoning and Large Language Models: Opening a New Frontier for Causality

Covariance based methods (use a dataset)

LLMs based methods (use a LLM prompt)
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Correlation is not causation. Really?

Statistical correlation between tokens

= (?)

Causation between concepts

Can Large Language Models Infer Causation from Correlation., Zhijing Jin et al, 2023.

144



Microsoft Health Futures KDD 2023 Tutorial

Real world data is affected by confounders

Cartoon by Jim Borgman, first published by the Cincinnati Inquirer and King Features 

Syndicate 1997 Apr 27; Forum section: 1 and reprinted in the New York Times, 27 April 1997, E4.

Gold standard to

avoid confounding 

Randomized control 

Trials (RCTs)
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Randomized trials vs. real word data

Randomization

Broad enrolment

Representativeness

Data quality

Sample size 

Economic cost

Time cost

Regulatory validity

(RCTs) Real world data
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Confounding correction

(RCTs)

Real world data

• Emphasis is on the data collection (randomization 

and patients selection)

• Simple data analysis (comparing groups).

• Emphasis is on the (causal) data analysis.

• Collect all possible structured and unstructured 

data.
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Paradigm shift

Confounders are not 

measured

Confounders are 

hidden in a pile of 

unstructured data

LLMs can compensate the weakness on RWD

How can this be used to super-charge RCTs?
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Regulatory view in the use on RWE/causal
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Interpretable confounders identification

Simple NLP for bag-of-words representation of patients

+

Lasso model to identify relevant confounders

Zeng, J., Gensheimer, M.F., Rubin, D.L. et al. Uncovering interpretable potential confounders in 

electronic medical records. Nat Commun 13, 1014 (2022). https://doi.org/10.1038/s41467-022-28546-8
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Real-world causal discovery engine

LLMs  superpower

EHRs structuring

Causal inference  

superpower

Experiments simulation 

with observational data

LLM as 

universal text 

structuring 

engine Knowledge

Key milestone

 Is the evidence produced by the engine correct?
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Randomized

Treatment
Response

Dataset 1: Cases and controls 

are randomized in the trial 

Treatment Response

Medical records

Treatment 

No TreatmentDataset 2: cases and control are 

observed toguether with the 

patients EHRs.

XR Covariates

Treatment 

No Treatment

R
C

T
R
e
al

  
w

o
rl
d
 d

at
a

Emulating an RCT with electronic medical records

RCT 

RWE 

?

RCTs simulation
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TrialScope

LLM
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Data curation pipeline
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11 advanced Non-small cell Lung cancer trials

Providence RWE 
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Simulation results

Accurate simulations with 

large sample sizes

Also when the results of 

the trials is reversed

Success metric

Hazard ratio
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AutoML and assisted data science

158
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AutoML and assisted data science

Raw data

Unstructured

data

pre-processing

Features extraction

Features selection

Features cleaning

Model and 

hyperparameters 

selection

Model validationTask to solve

Evaluation metric

Defined by the user

Best model

Can LLMs supercharge how we build models for precision health?
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AutoML and assisted data science

1. Provide context to the problem to solve (LLMs as subject matter expert).

2. Structure data required to solve the problem (LLM as data curator).

3. Process and create new features (LLM as data science assistant, who write 

code, interprets results, etc.).

LLM LLM LLM
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LLMs for assisted data curation

Electronic health 

records

Structured database 

of patient 

characteristics

LLM

Tinn, R., et al (2023). Toward structuring real-world 
data: Deep learning for extracting oncology 
information from clinical text with patient-level 
supervision. Patterns (New York, N.Y.), 4(4), 
100726.
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LLMs for data science coding companion

Features for a 

given problem

Generate code to 

generate new features

LLM

LLMs for Semi-Automated Data Science: Introducing CAAFE for Context-Aware Automated Feature Engineering Noah 
Hollmann, Samuel Müller, Frank Hutter. 2023 arXiv:2305.03403. 
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LLMs to facilitate the detection of data anomalies 

in databases

Source: Applying Large Language Models to Tabular Data to Identify Drift | by Aparna Dhinakaran | Towards Data Science

Existing data set

Error flags about 

without missing 

values, outliers, etc

LLM
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LLMs as subject matter expert 

Description of the 

modelling 

question

LLM

Suggestion of 

variables, their 

relationships, etc.

Example source: Causal Reasoning and Large Language Models: Opening a New 

Frontier for Causality.
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Overview

Precision health

Intelligence revolution

LLMs for precision health

Application challenges

Research frontiers
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Does it work? Is it safe?

Real-world data can provide crucial evidence

Human-in-the-loop helps mitigate risk & 

continuously improve 
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Rethinking AI for Health

167
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GPT-4 can help draft in-basket response
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The proportion of responses rated as good or very good quality (≥ 4), for 

instance, was higher for chatbot than physicians … This amounted to 3.6 times 

higher prevalence of good or very good quality responses for the chatbot. 

Chatbot responses were also rated significantly more empathetic than 

physician responses ... This amounted to 9.8 times higher prevalence 

of empathetic or very empathetic responses for the chatbot.
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Real-World Evidence (RWE) 
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Information Access Can Be Life or Death

Marty Tenenbaum

Late-stage melanoma (late 1990s)

Initial prognosis: 6 months

Saved by Phase III trial of Canvaxin
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Your task is to convert the given clinical trial criteria input into a valid logic formula. Your response should be written in the language of propositional 

logic and should accurately capture the meaning of the input. Please note that your response should also include any necessary logical connectives, 

such as "and", "or", or "not". Please keep in mind that your response should be flexible enough to allow for various relevant and creative solutions. 

You should also focus on providing an accurate and well-structured solution that can be easily understood by others.

Input:
"
-Histologically or cytologically confirmed high-grade neuroendocrine tumor that has progressed on first line therapy, excluding small cell lung 
cancer (SCLC). High grade includes any neuroendocrine neoplasm with a Ki-67 of >=20% or with mitotic count of more than 20 mitoses per high 
power field or any poorly differentiated neoplasm or any neoplasm lacking these that is deemed high grade by pathology consensus, based on 
other markers (necrosis or IHC demonstrating p53 or RB mutation).
”

Output:

Input: 
" 
Histologically confirmed metastatic colorectal adenocarcinoma with mutant APC, TP53 and KRAS genes as determined by the local CLIA-certified 
laboratory are eligible. All RAS mutations are allowed (KRAS, NRAS, HRAS). Patients with wild type KRAS, APC or TP53 are ineligible.
"

Output:
"
metastatic AND colorectal adenocarcinoma AND (APC mutation AND TP53 mutation AND KRAS mutation) AND NOT (NOT KRAS mutation OR NOT 
APC mutation OR NOT TP53 mutation)
"

Instruction

Example

Input

LLM: Universal Structuring
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“
(high-grade AND neuroendocrine tumor AND progressed on first line therapy AND NOT SCLC) AND (Ki-67 >=20% OR mitotic 
count >20 OR poorly differentiated OR (necrosis OR (p53 mutation OR RB mutation)))
“

Output

LLM: Universal Structuring
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LLM: Universal Structuring

Wong et al. “Scaling Clinical Trial Matching Using Large 

Language Model: A Case Study in Oncology”, MLHC 2023.
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Final Diagnosis
Lymph node, supraclavicular 
biopsy- Metastatic Non-small cell 
carcinoma. The biopsy 
demonstrates carcinoma with a 
desmoplastic stroma, hypocellular 
specimen with rare atypical cell. 
A: 
Lymph node: 
Metastatic carcinoma: POSITIVE for 
PD-L1 Expression (TPS > or = to 1 
%) See immunohistochemistry 
report below . …

pathology 
report

FINDINGS:
Lines/Pleura: Evaluation of the left 
lung shows the previously noted 
nodules are slightly improved. For 
example, the nodule in the 
posterior right lower lobe now 
measures 1.4 x 1 cm , previously 
1.2 x 0.9 cm (series 2 image 31 ). A 
slightly more anterior left upper 
lobe nodule now measures 1.0 x 
0.5 cm , previously 1.2 x 1.0 cm ( 
series 3 image 82). No new or 
enlarging pulmonary nodules…

imaging 
report

He reports energy is improving. 
Exercises for 15 minutes a day. No 
new pain or headaches. No 
vomiting, diarrhea, or constipation. 
No fever or chills.
ECOG status 1. 
Heart: regular rate and rhythm.
Neck: Supple
Lungs: Clear to auscultation and 
percussion 
Abdomen: Bowel sounds normal, 
no tenderness.
Back: Spine normal without 
deformity…

progress
note

EMR: Cancer Patient Journey
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OncoBERT: Oncology RWE

Preston, Wei, et al. “Towards Structuring Real-World Data at Scale: Deep Learning for Extracting Key 

Oncology Information from Clinical Text with Patient-Level Supervision”, Patterns 2023.
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GPT-4: Structure Real-World Data

Preliminary results promising 

“Read” annotation guideline → zero-shot structuring
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Dr. Rom Leidner

Target: 24 / Recruited: 2

Manual matching takes many hours

NLP: 100+ candidates in initial scan
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Drug Discovery
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Literature → Knowledge Graph
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Research Frontiers

Self verification

Knowledge distillation

Causal discovery

Multi-modal learning
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Prompt Programming

Engineering

Black art, 

lack guarantee, 

superseded by more 

supervision

Programming

Composition & Control:

self fact-check, 

tool use, 

structured resources

186
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Verification Much Easier Than Generation

P vs NP

187
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Self Fact-Check: a prompt program

Patient Chart
Problem 

List

'peptic ulcer disease--533’, 
'sleep apnea--780.57’, 

"raynaud's phenomenon--443.0", 
'memory problems--780.93', 

'gastrointestinal bleeding--578.9', 
'hemorrhage--431’, 

'amyloid angiopathy--331.82', 
'hypertension--401.9'
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Self Fact-Check: a prompt program

Extract Diseases Generate Evidence

Find Omission

Input:

Patient Chart

Output:

Problem 

List

Verify Evidence

New Omission?

NO

YES
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Self Fact-Check: a prompt program

Find Omission Prompt template: You are an expert disease inspector. 

Your job is to find all possible diseases in the given 

{text_input} exhaustively and return in a python list of 

strings. Your response should be in the form of python 

list with all the diseases that you can verify do exist in 

the {text_input}. Make sure to return the disease list 

exhaustively. Don’t include a disease if it is in the 

{diseases} list. Return only unique diseases. All diseases 

in the list must be in a string format. You must strictly 

follow the following formatting: response = [disease, 

disease, ...]. Return only the list, don’t include any other 

text.
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Self Fact-Check: a prompt program

Extract Diseases
['acute renal failure', 'coronary artery disease', 'aortic stenosis', 'end-stage renal disease', 'hypertension', 'insulin dependent-diabetes 
mellitus', 'sleep apnea', 'vertigo', 'osteoarthritis', 'skin cancer', 'abdominal hernia', 'uterine cancer', 'obesity', 'wound infection', 'aspiration', 
'Clostridium difficile colitis', 'respiratory failure', 'clinical depression']

Find Omission
['pleural effusion', 'pneumonia', 'congestive heart failure', 'tricuspid regurgitation', 'right ventricular free wall hypokinesis', 'atheroma in aortic 
arch', 'atheroma in descending thoracic aorta', 'sepsis']
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Self Fact-Check: a prompt program

Extract Diseases
['acute renal failure', 'coronary artery disease', 'aortic stenosis', 'end-stage renal disease', 'hypertension', 'insulin dependent-diabetes 
mellitus', 'sleep apnea', 'vertigo', 'osteoarthritis', 'skin cancer', 'abdominal hernia', 'uterine cancer', 'obesity', 'wound infection', 'aspiration', 
'Clostridium difficile colitis', 'respiratory failure', 'clinical depression']

Find Omission
['pleural effusion', 'pneumonia', 'congestive heart failure', 'tricuspid regurgitation', 'right ventricular free wall hypokinesis', 'atheroma in aortic 
arch', 'atheroma in descending thoracic aorta', 'sepsis']

Generate Evidence / Verify Evidence
'pneumonia’: 'left retrocardiac density concerning for 

pneumonia or atelectasis'
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Self Fact-Check: a prompt program

Extract Diseases
['acute renal failure', 'coronary artery disease', 'aortic stenosis', 'end-stage renal disease', 'hypertension', 'insulin dependent-diabetes 
mellitus', 'sleep apnea', 'vertigo', 'osteoarthritis', 'skin cancer', 'abdominal hernia', 'uterine cancer', 'obesity', 'wound infection', 'aspiration', 
'Clostridium difficile colitis', 'respiratory failure', 'clinical depression']

Find Omission
['pleural effusion', 'pneumonia', 'congestive heart failure', 'tricuspid regurgitation', 'right ventricular free wall hypokinesis', 'atheroma in aortic 
arch', 'atheroma in descending thoracic aorta', 'sepsis']

Find Omission
 ['endocarditis', 'pneumonia or atelectasis', 'mild mitral annular calcification', 'mild thickening of mitral valve chordae', 'dilated left atrium', 
'dilated right atrium', 'necrosis of abdominal wall', 'sternal wound infection']

Generate Evidence / Verify Evidence
'endocarditis’: 'transesophageal echocardiogram the previous day ruled out endocarditis'

…
…
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Self Fact-Check: a prompt program

Patient Chart
Problem 

List

'peptic ulcer disease--533’, 
'sleep apnea--780.57’, 

"raynaud's phenomenon--443.0", 
'memory problems--780.93', 

'gastrointestinal bleeding--578.9', 
'hemorrhage--431’, 

'amyloid angiopathy--331.82', 
'hypertension--401.9'

GPT-4 w. self-verification → Comparable to 

supervised state of the art

Gero, Singh, et al. “Self-Verification 

Improves Few-Shot Clinical Information 

Extraction”, in submission.
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Knowledge Distillation

LLM Distillation Test F1

GPT-3.5 - 78.2

GPT-4 - 85.0

Supervised State of the Art 93.4

Adverse Drug Event

Gu et al. “Distilling Large Language Models for 

Biomedical Knowledge Extraction”, in submission.
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Knowledge Distillation

LLM Distillation Test F1

GPT-3.5 - 78.2

GPT-4 - 85.0

GPT-3.5 PubMedBERT 92.0

Supervised State of the Art 93.4

Adverse Drug Event

LLM = Noisy Teacher 

Over 1,000 times smaller than GPT-3.5

Gu et al. “Distilling Large Language Models for 

Biomedical Knowledge Extraction”, in submission.
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Knowledge Distillation

GPT-4

Universal Structuring Model

Universal Summarization Model

……..

Cost

Efficiency

White-Box

Customization
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Universal NER

LLM Mean F1 Biomed F1

GPT-3.5 (175B) 34.9 38.1

Vicuna (13B) 13.9 9.8

UniNER (7B) 41.7 51.5

UniNER (13B) 43.4 51.2

Zhou*, Zhang*, et al. “UniversalNER: Targeted 

Distillation from Large Language Models for

Open Named Entity Recognition”, in submission.

Largest NER benchmark

43 datasets across 9 domains

Model size: 4-8%

Outperforms teach model by 7-9 points 

Biomed: by 13 points
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UniversalNER

199



Microsoft Health Futures KDD 2023 Tutorial

UniversalNER
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From Real-World Data to Discovery Engine
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Case Study: Synthetic Control

$2.5-10 billion

Average cost of an 

FDA-approved drug

Annual number of 

FDA-approved drugs

~50 = $125-500 billion

Per Year

Phase-3 Trial

Case: New drug

Control: Standard-of-care

Thousands of patients

Cost hundreds of million 

Can we reduce this cost? 
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EMR: Standard of care  Virtual control arm

Case study: Flatiron

⚫ Pfizer: Ibrance for male breast cancer

⚫ Roche: Alectinib for ALK lung cancer

Hire hundreds of abstractors

Case Study: Synthetic Control
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LLM: Universal Structuring
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LLM: Universal Structuring
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Causal Inference: Correcting for Confounders

Substantially reduces difference 

from gold RCT results
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Towards Population-Scale Causal Discovery

RCT simulation

Root cause 

analysis

Subpopulation 

analysis/fairness

Synthetic 

control arms

Simulation long 

term outcomes

Trial 

optimization

LLMs = Spark

Empower every stakeholder in precision health discovery
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Multi-Modal, Longitudinal Patient Data

Growth Area for General LLMs

208



Microsoft Health Futures KDD 2023 Tutorial

Multimodal models will be able to understand and reason about…

Images Speech Proteins DNA Molecules

Image credits: Bing Image Creator
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Case Study: Immunotherapy

Given Keytruda cohort, find exceptional responder

Need to model tumor microenvironment

https://en.wikipedia.org/wiki/Tumor-infiltrating_lymphocytes
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Multi-Modal: Beyond General Domain

Generic Domain-Specific
(1 hour on one A100)

Reference 

Example

“A photo of a lung CT scan”

https://www.nature.com/articles/s

41598-019-41510-9/figures/1
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SAM: A Lot of Growth Opportunities Ahead
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SAM: A Lot of Growth Opportunities Ahead
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SAM: A Lot of Growth Opportunities Ahead
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Biomedical Large Multimodal Models

Zhang, et al. “Contrastive Learning of Medical Visual Representations from Paired Images and Text”, MLHC 2022.

ConVIRT
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Biomedical Large Multimodal Models

Huang, et al. “GLoRIA: A Multimodal 

Global-Local Representation Learning 

Framework for Label-efficient Medical 

Image Recognition”, ICCV 2021.

GLoRIA

Global + Local Alignment
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Biomedical Large Multimodal Models BioViL

Global + Local Alignment

Radiology-specific language modeling

Boecking*, Usuyama*, et al. Making the Most of Text Semantics to Improve Biomedical Vision–Language Processing. ECCV 2022.

217



Microsoft Health Futures KDD 2023 Tutorial

BiomedCLIP 30 million PMC figure-caption pairs

Treatment with tamoxifen affects the histology of the rat 

mammary gland. Representative hematoxylin and eosin 

stained sections of the first thoracic gland of 15-week-old 

rats that had undergone the following treatments: (a, b) No 

treatment; moderate numbers of mammary gland lobules 

are present containing primary, secondary and tertiary 

ductules, as well as developing alveoli. (c, d) …
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BiomedCLIP: New State of the Art

Zhang*, Xu*, Usuyama*, et al. Large-Scale Domain-Specific Pretraining 

for Biomedical Vision-Language Processing. In submission.
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BiomedCLIP: Zero-Shot Image Classification

RSNA Pneumonia: Outperforms radiology-specific models

“Quantity has a quality all its own”

220



Microsoft Health Futures KDD 2023 Tutorial

Towards Multi-Modal Research Copilot
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BiomedCLIP Data
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BiomedCLIP Data

Multimodal Instruction-Following

GPT-4
Universal

Annotator
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LLaVA

Key Insight

Introduce a projection layer to 

convert image into text embedding

Liu*, Li* et al. Visual Instruction Tuning.

225
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LLaVA

Language Model: LLaMA

Vision Encoder: CLIP

Projection: Linear 

Liu*, Li* et al. Visual Instruction Tuning.

Family of Models

226
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LLaVA

Stage 1 

Frozen: language model, vision encoder

Train: projection

Instruction: describe image

Liu*, Li* et al. Visual Instruction Tuning.

227
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LLaVA

Stage 2 

Frozen: vision encoder

Train: projection, language model

Instruction: GPT-4 generated conversations

Liu*, Li* et al. Visual Instruction Tuning.
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LLaVA-Med

Language Model: LLaVA LM

Vision Encoder: BiomedCLIP

Projection: Linear 

Liu*, Li* et al. Visual Instruction Tuning.

229
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15 hours on eight A100s
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MedPaLM-M

LLaVA-Med [47] is perhaps most similar to our effort. The authors use PubMed and GPT-4 

[48] to curate a multimodal instruction following dataset and finetune a LLaVA model with it.

Language Model: PaLM

Vision Encoder: ViT

Projection: Linear

Instruction-following: supervised

Prompt: task-specific

Tu*, Azizi* et al. Towards Generalist Biomedical AI.
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ELIXIR Xu*, Yang*, Kelly*, et al. ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large 

language models and radiology vision encoders.

Language Model: PaLM2

Vision Encoder: BLIP-2

Projection: Q-Former

Not general instruction-following

Radiology image/report pairs

Frozen LM/ViT (~ LLaVA stage 1)

232
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Med-Flamingo Moor*, Huang*, et al. Med-Flamingo: a Multimodal Medical Few-shot Learner.

Language Model: LLaMA

Vision Encoder: CLIP

Projection: Gated cross attention

Instruction-following:

• Publications / textbooks

• Supervised (VQA, Visual USMLE)
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Multi-Modal: Universal Translator

Use text as common representation of 

knowledge & reasoning
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Population-Level Health LLM

Patient → Serialized multimodal token sequence

Initialize: GPT-101 (consumed entire public web)

Continued pretraining: 8 billion “health documents”

What is the multimodal health scaling law?

Will there be emergent health capabilities?
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Data Producer

Provider, EHR Vendor

Insight Consumer

Pharma, Payor, Regulator

Real-World Evidence Marketplace

Advancing Health at the Speed of AI

Data Store

Discovery Engine

AI
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