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In this technical note, we provide additional background on our Bayesian inference for change-point
detection in COVID-19 case numbers (Dehning et al., Science, 2020). In particular, we explore
basic properties of model-based and model-free estimates of the reproduction number, discuss what
conclusions can be drawn from Bayesian analyses, further develop our model and apply it to newly
available data, and discuss potential issues with changes in testing policies.
This technical note presents work in progress and should be considered like an internal
draft. It is not ready for submission yet, and is being frequently updated.
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I. INTRODUCTION48

After the initial release of our manuscript ”Inferring49

change points in the spread of COVID-19 reveals the effec-50

tiveness of interventions” in Science [1], we have received51

many constructive comments and interesting questions,52

and have also faced some recurring misunderstandings.53

This technical note is intended to answer the most impor-54

tant of these questions, to give additional background for55

understanding our results, and to also discuss the robust-56

ness and performance of our model in the light of newly57

available data, in particular data based on symptom onset58

times.59

The inspiration and comments we received can be60

broadly categorized into four topics:61

1. Remarks on apparent discrepancies between the62

values for the estimated reproductive number R̂63

as reported by the Robert Koch Institute (RKI)64

and the corresponding spreading rate resulting from65

our published analysis. We will explain below how66

this apparent discrepancy partly arises from the67

comparison of model-free estimates to those from68

a differential-equation based modeling of disease69

dynamics. We show how the model-free approach70

may substantially underestimate the reproductive71

number R immediately after a sudden drop in R has72

occurred. From the comments we received it seems73
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FIG. 1. Illustration of two basic compartmental models in epidemiology. The SEIR model (left) captures the basic
steps that infections passes through: A healthy person becomes infected but not infectious (leaves S, enters E); after some time
(’latent period’) the person becomes infectious (leaves E, enters I) but symptoms only show after some incubation period; after
some time the person is no longer infectious (leaves I, enters R), which can have several reasons including isolation, conventional
recovery, or death. The SIR model (right) is the most basic compartmental model and does not distinguish between infectious
and infected: A healthy person becomes infected (leaves S, enters I), immediately begins to infect other persons but only shows
symptoms with a delay. After some time the person “recovers” (leaves I, enters R), which again includes isolation, recovery, or
death.

that this very important fact related to estimating74

R, i.e. R̂, is largely unknown, and also counter-75

intuitive to most readers. This effect,together with76

the usage of alternative data (see point 3.), explains77

the apparent discrepancies between the RKI reports78

and our study. We therefore derive and demonstrate79

it in detail here.80

2. Questions revolving around the philosophy and inter-81

pretation of our modeling approach that combines a82

differential equation model of the disease outbreak,83

Bayesian parameter inference and Bayesian model84

comparison. Most frequently we were asked if and85

in what sense our results have a causal interpreta-86

tion. As we will explain below, our approach selects87

the most plausible of multiple causal explanations88

of the observed data, but does not establish strict89

interventional causality.90

3. New data have been released in the time since our91

analyses were completed. Most prominently, data92

on the times of symptom onsets (epi curve) are93

now accessible. The advantage is that the date of94

symptom onsets is closer to the infection date, al-95

lowing in principle a more precise estimation of the96

dynamics of the propagation. It brings however its97

owns source of errors, because the onset of symp-98

toms is not reported for all cases. As we will show99

below, our central conclusions remain unchanged100

when updating our model to the new data.101

4. Questions on how changes in testing capacity may102

have influenced our results. Given the data that103

have become available on the weekly (daily) number104

of performed tests, test capacity, and on delays105

between symptom onset, test and case report, we106

reanalyze in great detail the disease and testing107

dynamics, especially with respect to the timing of108

the peak in new symptom onsets. We conclude that109

all symptom onsets that are relevant for the main110

conclusions of our previous publication have been111

tested at a time when testing had sufficient capacity112

and was sufficiently constant.113

We will in the following address the issues revolving114

around the reproductive number R first, also introduc-115

ing the basic terminology of disease spreading and the116

fundamental difference between model-free and model-117

based estimation of epidemiological parameters. Next, we118

will discuss philosophy and interpretation of model-based119

estimation in the Bayesian framework and the causality120

question. We then show how our original analyses can be121

evolved to incorporate new data, in particular on symp-122

tom onset (epi curve). Last we turn to the important123

question of testing.124

II. ESTIMATING THE REPRODUCTIVE125

NUMBER126

A. Basic SIR dynamics127

Before we define the reproductive number R, we briefly128

recapitulate the basic SIR dynamics that we consider129

(Fig. 1). In principle, the course of an infection can be130

described as follows: A susceptible person (not infected131

and not immune) becomes infected but is initially not132

infectious; after some time, the person starts to be in-133

fectious but symptoms only show after the incubation134

period; eventually, the person is no longer infectious be-135

cause she or he has been either isolated, has recovered, or136
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died. The idea of compartmental models is to group the137

population into compartments; in the most simple but138

established SIR model these are susceptible (S), infected139

(I), and recovered (R). Assuming a well-mixed population140

(a mean-field approximation of everybody interacting with141

everybody), one can formulate differential equations that142

describe the time development of these compartments:143

dS

dt
= −λSI

N
(1)

dI

dt
= λ

SI

N
− µI (2)

dR

dt
= µI (3)

This assumes a spreading rate λ for infected people to144

infect susceptible people (who they meet randomly) and145

a recovery rate µ for infected people to recover. These146

differential equations can be extended to include various147

different compartments, in order to better resolve the148

temporal course of the disease, but typically keep the149

mean-field assumption of a well-mixed population unless150

evaluated on some (typically unknown) network. In this151

case, additional compartments reflect spatial information.152

Observed case numbers are always delayed from153

the true infection date (Fig. 2). In general, when154

a person becomes infected, the onset of symptoms is155

delayed by the incubation period. Upon symptom onset, it156

typically takes a few days until the person undergoes a test157

and the case is reported (although some people are tested158

before symptom onset, e.g. if contacts are traced or tests159

are performed at random “Stichprobe”). However, for160

the modeling, one is usually interested in the actual time161

when a person becomes infected — but this information162

is not directly available in real-world data. One either163

works with the reporting date or with the dates of the164

symptom onset (epi curve) that can be reconstructed165

e.g. via questionnaires and imputation methods. Note that166

even symptom onset dates are still delayed with respect167

to the true infection dates due to the incubation period.168

For the reporting dates a second delay occurs between169

symptom onset and report, unless an asymptomatic case170

is discovered in random testing. For the example models171

in the following, we synthetically generate observed cases172

— symptomatic or reported — by convolving the infected173

cases with a distribution of incubation periods or reporting174

delays, respectively (Fig. 2).175

B. Model-free estimation of reproduction number176

Rt177

Definition of R. The reproductive number R quanti-178

fies how many susceptible persons are on average infected179

by one infected person. If one infected person infects180

on average more than one other person (R > 1), then181

case numbers are growing exponentially. In contrast, if182

less than one other person gets infected (R < 1), then183
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FIG. 2. A change-point in R can lead to a transient
decrease in case numbers. To illustrate the effect of a
change point, and the delays in observing symptomatic and
reported cases, we consider an SIR model with a fast or slow
decrease of R, and generate synthetic case numbers. A: The
reproductive number R exhibits a change point from R = 3
to R = 1.15, with a duration of either 1 day (solid) or 9 days
(dashed). B: The number of new infections can show a tran-
sient decrease caused by the change point in R, even though
the underlying dynamics are always in the exponentially grow-
ing regime of R > 1. Such a decrease can be misinterpreted
as R < 1. The number of C new symptomatic cases, and D
reported cases is generated by convolving the new infected
with a log-normal incubation period (median 5 days) or re-
porting delay (median 10 days), respectively. Note that the
convolution shifts and smooths the curve of the new infected.
Nonetheless, the counter-intuitive effects of a transient de-
crease in case numbers caused by a change point, is still very
well visible (See Fig. 4 for the challenges in estimating R
around the change point.)

case numbers are declining. Therefore, R = 1 marks184

the critical transition between growth and decline of case185

numbers. Last, note that R ≈ 1 means that new infec-186

tions keep occuring at their current levels (which may be187

high, depending on when and how R ≈ 1 was reached).188

Estimating the reproductive number R in principle189

can be done in two manners, either by inferring it from190

observed case numbers, or by following infection chains191

step by step (which is not discussed here). If one infers192

it from observed case numbers, there are a number of193

possible approaches. Some approaches are summarized194

in Fig. 4 and detailed below. All of these approaches can195

be applied to the epi curve (day of symptom onset) or to196
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FIG. 3. Two different conventions to define the re-
productive number R: Infections in the future or in-
fections from the past. A: Synthetic data for new symp-
tomatic cases. The marked interval indicates an assumed
generation time of 4 days. B: The basic reproductive number
can be defined either on the left edge of the generation interval
(left, dashed line), describing the average number of future
infections that are cause at time t, or on the right edge of the
interval (right, solid line), describing the average number of
infections at time t that were caused by the past ones. C: De-
pending on the convention, the resulting curve of R is shifted
by the generation time g. Note that in both cases the R is
estimated erroneously to fall below R = 1, although in the
underlying model it was was R > 1 all the time. This is an
effect of the SIR dynamics together with a change point in
the underlying R. (See Fig. 4 for model details, and Figs. -
for other parameters).

the reported cases (day or reporting). In the following,197

we assume that they are applied to the epi curve.198

The most straight-forward definition of the reproductive199

number assumes a reproductive process with offspring200

generation, such as a branching process [2]. For this,201

one assumes a generation time g in which an infectious202

person can generate offspring infections. In the simplest203

case, one could consider that offspring infections occur204

exactly after one generation time g. This allows to infer205

the reproductive number R precisely:206

R̂t =
number of newly infected at time t+ g

number of newly infected at time t
(4)

=
Ct+g

Ct
. (5)

In reality, these newly infected case numbers Ct have to207

be approximated, e.g., by using new symptomatic cases208

or new reported cases. Moreover, the generation times g209

of each infection are widely distributed, so that using the210

average value g (or an estimate of it) is used as a further211

approximation.212
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FIG. 4. The inferred reproductive number R̂ depends
on the inference method. A, B: Synthetic data for new
symptomatic cases generated with SIR dynamics from an
underlying R with one change point of duration 1 day (solid)

or 9 days (dashed). C: Model-free inference of R̂ based on the
ratio of case numbers at time t and time t−g, marked by a red
and gray cross (inset), respectively (’right-edge convention’,

cf. Fig. 3). D: Model-free inference of R̂ following the Robert
Koch Institute convention, i.e. using the definition of C but
with averaging over a window of the past 4 days (inset, red
and gray bars). E: Same as D but averaging over 7 days. Note
the overlap of intervals. All the model-free methods (C–E)
can show an erroneous estimate of R < 1 transiently, due to
the change point in the underlying true R. F: The inferred
R̂ using change-point detection with an underlying dynamic
model (SIR) does not show a transient erroneous R < 1 period.
If the underlying dynamic model corresponds well enough to
the true disease dynamics, then this approach reproduces the
true R that was used to generate the data.

When going into detail, there are two different conven-213

tions for the timing of the estimated reproductive number214

R̂ with respect to the case numbers Ct (Fig. 3). Above, we215

consider R̂t to characterize the number of future infections216
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FIG. 5. The inferred reproductive number depends
on the assumed generation time g. A, B: We generate
synthetic data using SIR dynamics with time-dependent R in-
cluding a 1-day change point (A) that yields new symptomatic
cases with transient decrease (B) despite all R > 1. C–E: Us-

ing the RKI convention to infer R̂ (4-day average, right-edge
convention), we demonstrate how generation times g result

in different R̂ curves. In particular, we find different initial
levels of R (left plateau), differently long crossover duration
(time from left plateau to right plateau), and differently deep
transients of R < 1 (insets).

that are caused by infections at time t (left-edge conven-217

tion). Alternatively, one can consider R̂t to characterize218

the number of infections at time t that were caused by219

the past pool of infected (right-edge convention), defined220

as221

R̂t =
number of newly infected at time t

number of newly infected at time t− g
(6)

=
Ct

Ct−g
(7)

The results for R̂ are exactly equivalent, apart from222

a shift in time by exactly g. However, the distinction223

between left-edge and right-edge convention and the asso-224

ciated time-shift crucially matter when discussing changes225

in Rt with respect to interventions.226

R̂ as calculated by the RKI. Real-world data are
often noisy, and therefore averaging over a certain time
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FIG. 6. The model-based methodology yields con-
sistent results irrespective of whether it is applied to
the new reported cases or the new symptomatic cases
(e.g. obtained by nowcasting). A: Time-dependent reproduc-
tive number as inferred from case numbers in Germany [1].
B: Synthetic data for new symptomatic cases generated with
SIR dynamics from the underlying time-dependent R. C: In-
ferred R̂ from new symptomatic cases using RKI method (4
days generation time, right-edge convention) would reproduce
step-like behavior (no noise present) but drops below R = 1
(dotted line) already after the second change point (note that
curve is shifted and smoothed compared to input R, cf. Fig. 4).

D: Inferred R̂ from new symptomatic cases using change-point
detection with dynamic model (SIR) correctly reproduces the
input. E: Synthetic data for new reported cases generate with
SIR dynamics as in B (cf. Fig. 2). F: Inferred R̂ from new
reported cases (E) using change-point detection with dynamic
model (SIR) also correctly reproduces the input. Note that
both, D and F show sharper steps because of the assumed
piece-wise linear change points in the model, and that they per-
form so well because they employ the true dynamic model that
is used for the synthetic data. Both are model assumptions
that need to be justified in our approach.

window can help to smooth the estimate. This procedure
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is used in two variants by the RKI, smoothing over four
days or over seven days. The details of the procedure
are documented in detail in Ref. [3]. For both smoothing
lengths, they assume a constant serial interval (generation
time) of g = 4 days (Fig. 4) and the right-edge convention.
The four-day smoothing has the advantage that it reacts
a bit faster, the seven-day smoothing has the advantage
that it smooths better the relatively strong variations. In
particular,

R̂t,4 =

∑t
s=t−3 Cs∑t

s=t−3 Cs−g

(8)

R̂t−1,7 =

∑t
s=t−6 Cs∑t

s=t−6 Cs−g

, (9)

where g = 4 is the assumed generation duration, and the227

averaging is done over 4 and 7 days, respectively. Note228

the shift by one day in the 7-day version Eq. (9).229

Model-free methods also build on assumptions.230

Clearly, when using model-based methods, assumptions231

go into the model itself; but also when using what we call232

model-free methods, assumptions have to be made. In233

particular, the core assumptions behind the model-free234

approach to estimate R that we discussed so far are that235

every new infected person infects on average R persons,236

and it does so precisely g days after becoming infected. As237

is the case in modelling, these assumptions present a sim-238

plification of the complex real-world dynamics. Whether239

a chosen way to answer a given question is reasonable240

or not depends on the specific question one asks (every241

question may need its own model simplifications and type242

of data set), on the quality of the data, and on how well243

the relevant real-world dynamics for the question are cap-244

tured in the simplified model. For the question of whether245

case numbers are increasing or decreasing in general, the246

above method of calculating R has proven very useful.247

C. Model-free methods versus model-based248

methods to infer reproductive number.249

In order to demonstrate potential issues when inferring250

the reproductive number R, we systematically compare251

the model-free methods with model-based methods (akin252

to our analysis of λ∗ in [1]) on synthetic data from an253

SIR model (Fig. 2). With model-free methods, we refer254

to inference methods for R, which do not explicitly in-255

corporate disease dynamics (SIR). The three methods we256

presented above belong to this group. These methods to257

estimate R are straight forward and easy to implement.258

However, they might lead to biased estimates when R259

is changing rapidly. More precisely, in the following we260

show that these methods (1) smooth out fast changes in261

R, (2) produce some delay compared to the underlying R,262

(3) the estimate depends on the assumed generation time,263

and (4) around change points they may return transiently264

R < 1, even if the true value was never smaller than 1.265

While these methods have the above limitations when266

R is changing quickly, they are still very useful for an267

easy-to-obtain estimate of R.268

1. Model-free methods may smooth out fast changes.269

In Fig. 4, the R̂ that is inferred by model-free meth-270

ods undergoes a smoother change than the true R. The271

smoothing has two origins: First, when using the sliding-272

window of four or seven days (RKI methods), multiple273

days are combined to obtain an R̂ value for one day.274

Second, R̂ has to be calculated from the daily new symp-275

tomatic or reported cases (Fig. 2 C, D), because the dates276

of infection (Fig. 2 B) are not directly accessible in real-277

world data. As discussed before, symptom onset and278

reporting date are delayed from the infection date. Be-279

cause the delays vary from case-to-case, these two curves280

are smoothed out compared to the infection curve (in281

other words, the smoothing originates from the variance282

in incubation period and reporting delay, see later Fig. 10283

in the section about testing). Hence, if smoothing is not284

explicitly incorporated in the inference of R, fast changes285

appear slower than they truly are, and successive fast286

changes may appear as a long transient.287

2. Model-free methods produce delayed estimates that are288

difficult to interpret289

In our example in Fig. 4, we estimated R̂ based on290

the number of new symptomatic cases as produced by291

our synthetic disease model. The R̂ of all three model-292

free methods is shifted in time compared to the true R293

(Fig. 4 A).294

How does one interpret the shift and where does it295

come from? To interpret the shift and compare between296

the different methods, we focus on the time point where297

half of the steep step in R has been detected (gray dots).298

This shift has multiple contributions. One contribution299

originates from using the dates of symptom onset, which300

is shifted on average by the incubation period (in our301

example ≈5 days). This generates the 4–5 day shift of302

the one-day method (Fig. 4 C). Because the incubation303

period is not constant and typically asymmetric, there is304

an additional asymmetric distortion towards either direc-305

tion, depending on the shape of the actual distribution of306

incubation periods. Another source for the shift comes307

from the time average, which explains the additional (ap-308

proximate) 1–2 day shift in the four-day and seven-day309

methods employed by the RKI (Fig. 4 D, E). Because of310

the specific definition of the position of the 4 and 7-day311

window of the RKI (see eq. 8, 9), the two versions of R̂312

have a very similar average delay of 5–6 days in total with313

respect to the true R.314

Both, the variable incubation time and the time aver-315

aging also impact the start- and end-points of the change316

in a non-trivial manner. In combination, multiple sources317
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cause shifts that can point into opposite directions. While318

the sources can be identified conceptually, the combined319

effect cannot be perfectly disentangled or compensated.320

Due to multiple sources of shifts and smoothing, a321

simple post-hoc shift of the R̂-curve cannot reproduce the322

true R around a change point. For example, a shift of323

Fig. 4D by 5 days would suggest a start of the change point324

before it starts in reality (Fig. 4 A). This fact has led to325

multiple prominent misunderstandings in relation to the326

RKI data and the effects of governmental interventions.327

Instead of shifting curves to partially correct for one or328

another potential delay, an inference of R using model-329

based methods can account for this and other potential330

biases. When using a good model, such a model-based331

approach returns the correct R with the correct steepness332

and time point (Fig. 4 E, for technical details, see Methods333

in [1]).334

3. R-estimates depend on the assumed generation time.335

The assumed generation time g impacts the magnitude336

of the estimated reproductive number R̂ (Fig. 5). We337

exemplify this effect using the method of the RKI (4-day338

average), where we vary the assumed (constant) gener-339

ation time g. In particular, the chosen generation time340

(g = 2, 4 or 8) affects the initial plateau (R̂ ' 1.6, 2.5 and341

6.4 respectively), the duration of the inferred change, and342

the depth of the transient underestimation. This small343

example shows that estimating the magnitude of the re-344

productive number from observed case numbers without345

knowing the precise generation time can be challenging.346

4. Model-free methods may return erroneous transient347

periods of R < 1 at change points.348

In our examples (Figs. 4 and 5), we consider that R349

changes rapidly from R0 = 3 to R1 = 1.15 within one day350

(full lines). Such a sudden change leads to a transient351

decrease in new case numbers — despite R being always352

> 1. How can there be decrease in new cases although353

R > 1? The transient decrease results from the pool of354

infected suddenly infecting considerably less people. This355

decrease in infections causes the sharp peak and a sudden356

drop in new infections (Fig. 2 B, solid line). It then357

carries over to the number of new symptomatic and new358

reported cases, with the respective delay and smoothing359

(Fig. 2 C, D]). This transient decrease depends on the360

duration of the change point: While it is strongest for361

steep changes, it also occurs for a change point with a362

transient time of nine days (Fig. 2, dashed line).363

Naively, a transient decrease might be interpreted as364

a transient R < 1, but that is not the case here. A365

model-free method cannot distinguish between different366

causes for transient decreases in case numbers, being it367

due to transient non-linear effects (Fig. 2) or due to a368

true exponential decay (R < 1). The model-free meth-369

ods in our example (Figs. 4 and 5) correspondingly yield370

non-negligible periods of R < 1, even though the under-371

lying model dynamics have R > 1 always. Model-based372

approaches, on the other hand, can account for transient373

non-linear effects if included in the model, e.g., as change374

points, and — if the model is correct — even reproduce375

the true underlying dynamics (Fig. 4 F). To conclude,376

if one infers R in a model-free manner, by computing377

ratios of case numbers, one interprets reductions in case378

numbers as R̂ < 1 (Fig. 4 C–E). After strong decreases379

of the true R this may be an incorrect interpretation.380

5. Well chosen model-based methods can reconstruct381

complex disease dynamics382

When the chosen model describes the true disease dy-383

namics well, robust inference of the true underlying repro-384

duction number (and other parameters) is possible. To385

demonstrate the robustness of model-based inference, we386

generate synthetic data using an SIR-model as inferred387

from case numbers in Germany between March 2 and388

April 21 [1] (Fig. 6). The Bayesian model inference can389

recover the reproductive rate (Fig. 6 D, F), whereas with390

the model-free method, the recovered R is slightly biased391

(Fig. 6 C). Note, however, that the chosen model has to392

match at least approximately the disease dynamics, to393

allow a good inference. This is why we used different394

models to assess the robustness of our results in Ref. [1]395

(SIR: Fig. 3, SEIR-like: Fig. S3, SIR without weekend396

modulation: Fig. S4).397

III. WHAT CONCLUSIONS CAN ONE DRAW398

FROM A BAYESIAN ANALYSIS?399

A. Modeling background400

When the Coronavirus-pandemic arrived in Germany401

we set out to model the spread of the disease as rapidly as402

possible. Thus, our model from the start was aimed at giv-403

ing estimates with their corresponding error bounds based404

on the data available at that time. To this end we decided405

to use a Bayesian strategy as it allowed formulating well-406

documented assumptions on those aspects not available407

from data at that time. Within the Bayesian framework408

these assumptions can and should be replaced by data409

as soon as these become available, and we implement410

such an improvement below for the case of information on411

symptom onset times that have become available in the412

meantime. Given such new data it will also be interesting413

to evaluate post-hoc the assumptions and the performance414

of our model. This will also give some guidance as to415

whether to employ a model of this kind again in a new sce-416

nario (another disease outbreak or pandemic) where some417

relevant data will also not be available immediately. We418

note that taking these steps is the intended development419

in Bayesian inference.420
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We also note that all statistical procedures come with421

their own assumptions, e.g. on distribution of the data,422

models of measurements and random errors. Bayesian423

analysis is no exception to this rule; in our view the only424

difference is that modeling assumptions are not taken for425

granted based on the long-established used of a method426

(say, a t-test) but need to be formulated anew for each427

case. The fact that the assumptions are hand-tailored to428

the application case may seem subjective sometimes; yet,429

similar assumptions are being made, more tacitly perhaps,430

in other frameworks, as well. This said, it is neverthe-431

less important to question and discuss (our) modeling432

assumptions and to test the sensitivity of our results to433

these modeling assumptions. We have already concisely434

discussed our assumptions in the main manuscript [1], but435

we here give a much deeper, broader and more educational436

treatment.437

B. Bayesian inference as reasoning under438

uncertainty, bound to be updated439

The results of a Bayesian analysis at some publication440

time point T represent what we should consider most441

plausible at that time point T , given the knowledge avail-442

able at T (causes and data known at T ). These results443

represent something that we should be able to agree on444

given the knowledge at T (and some practical constraints,445

see below), but these results may change given more infor-446

mation at a later time T +∆T . Changing one’s mind with447

the availability of additional information is designed into448

Bayesian inference as “the logic of science” (E.T. Jaynes,449

[4]) from the start. In other words, scientific inference450

and the associated models are bound to be updated. The451

important question is thus not whether a model is correct452

in absolute terms, but whether it was possible to agree453

on the model (and the inference provided by it) at time454

T , and also if the inference provided at T was robust,455

for example in the sense that the credible intervals for456

the model parameters at T comprise those obtained at457

T + ∆T .458

From this perspective, it is obvious that now, more459

than a month after finalization of our published analyses460

on April 21, new data have become available and that461

the model can, and should, be improved accordingly. Im-462

portant data in this respect are data on reconstructed463

infection dates which at present take about 7 days to come464

in for at last 80% of the cases (Fig. 10), and took even465

longer during the early stages of the outbreak. We present466

results obtained using these data below and compare them467

to our published results.468

C. Conditions for plausible alternative models469

entering model comparison470

A frequent, and important misunderstanding around471

Bayesian model comparison is that one is allowed to472

formulate very many models at random and then let the473

data decide on the best model via the Bayesian model474

evidence (or the LOO-scores). This notion fails to notice475

that the model evidence p(D|Mi) is only one part of the476

decision on the preferred model. The formal equation for477

deciding between models i and j would be:478

p(Mi|D)

p(Mj |D)
=
p(D|Mi)

p(D|Mj)

p(Mi)

p(Mj)
, (10)

i.e. taking such a decision entails accounting for a-priori479

plausibility of different models, i.e. p(Mi) and p(Mj).480

While it is customary to assign equal a-priori plausibility481

to all the models being considered, this does not mean that482

just any model qualifies for use in this decision procedure.483

Rather, each model subjected to a model comparison484

needs to be well justified. This is one of the reasons why we485

did not consider for example models of sustained, constant486

drifts in the effective spreading rate λ∗ (or, equivalently487

the reproductive number R), as we did not come up488

with plausible explanations for such a behavior (except489

perhaps arguments based on herd-immunity, which seem490

implausible now, in the light of second waves of infections491

and a recent rise in λ∗ from its all-time low, and also in492

the light of country to country comparisons, Fig. 7).493

On a practical note, useful modeling also has to reflect494

certain limits on model complexity in relation to the495

available data, and also computational resources. Known496

phenomena, that can nevertheless not be modeled must497

therefore often be integrated into noise terms that are498

designed accordingly (as was done with the modeling499

of observation noise in our case, instead of using full500

stochastic differential equations). The best that can be501

done then is to investigate the sensitivity of results with502

respect to the simplifying assumptions that have been503

made.504

It is also in order to explain in simple terms how results505

of a Bayesian analysis may be interpreted: In the Bayesian506

framework probabilities are measures of the plausibility of507

statements about the world, given our present knowledge508

(see [4] for the exact mathematical derivation of this509

statement). Thus, the results of Bayesian parameter510

inference indicate credible (plausible) ranges in which we511

should assume the unknown parameters to be. Assuming512

them to be elsewhere with high probability would be513

inconsistent with the information we have. In this sense,514

these credible intervals may form the basis for decisions515

we have to take.516

D. Models as competing causal explanations of517

data518

Last, we note that the notion of causality resides only519

in the construction of the models — with different models520

incorporating different possible causal explanations of the521

data (e.g. in the form of differential equations for the522

disease dynamics). Performing model comparisons then523

selects more plausible over less plausible explanations but524
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FIG. 7. Comparison of the case numbers per one mil-
lion inhabitants of exemplary countries as illustration of
the range of possible case numbers developments. Note how
both the peak height as well as peak width of some countries
are considerably larger than for Germany, providing evidence
against saturation effects (’herd immunity’) in Germany (Data
until June 3, 2020).

does not provide a proof of causality in the strict sense525

advocated for example by Pearl [5] or by Ay and Polani [6].526

Yet, fulfilling the formal criteria for causality in this strict527

sense would need multiple replications of the pandemic528

process, each time with different settings of the relevant529

variables, such as interventions. Even when treating the530

SARS-CoV-2 outbreaks in different countries around the531

world, with their different interventions (or lack thereof),532

as replications establishiung formal casuality may remain533

an elusive goal due to multiple other variations from534

country to country. In sum, the results of our Bayesian535

analysis must be seen as a search for the most plausible536

causal model of the data, given the data available at the537

time of analysis, and as providing credible ranges of the538

parameter values relative to this most plausible model.539

Later, discussions (such as the one presented here) of540

the selected models and the inferred parameter ranges541

should then investigate and update modeling assumptions,542

and reason whether the causal model can be maintained,543

or not.544

When analyzing improved data that reflect the dates of545

symptom onset rather than case reports to improve our546

modeling, we find that both the preference for a three547

change-point model as well as the inferred parameter548

ranges do not change drastically, and we maintain our549

original interpretation of the pandemic process and the550

effectiveness of governmental interventions.551

Last, alternative models assuming herd immunity as a552

reason for the sustained observed drop in infection rates553

still do not seem plausible to us in the light of rapidly554

surging second waves or sustained high levels of new555

infections (such as in Sweden, see Figure 7).556

IV. MODEL EVOLUTION557

Modeling efforts at the beginning of an epidemic out-558

break are aimed at providing a rough but timely and559

robust description of the disease outbreak, making use560

of data that is available (and easily accessible) at that561

time. Later modeling efforts, in contrast, can make use562

of more detailed data and provide deeper insights into563

how the outbreak unfolded. While these latter models564

are useful for a better understanding after the fact, they565

cannot be applied early on due to a lack of data, and often566

cannot inform decisions sufficiently fast. However, a com-567

parison of early and later models can provide important568

insights about the robustness and usefulness of the early569

models with respect to the later ones (here usefulness570

means that the early models describe the epidemiological571

parameters and their uncertainties well enough to inform572

decisions). For the case of the COVID-19 outbreak in573

Germany, the initially available data were sorted based574

on date of reporting, where the reporting occurred after575

an unknown delay between symptom onset and report.576

Only later, data organized by time of symptom onset, the577

so-called epi curve, became available. Even after their578

initial release, these data were still updated and refined579

(see Fig. 8); also note that data for symptom onsets still580

take some time to arrive and be compiled, i.e. the delay581

between symptom onset and testing/reporting is still con-582

siderable (see Tab. II). In particular, this means that583

reliable epi curve data for the date of April 21, our analy-584

sis cut-off date in [1], were not available on that day but585

only considerably later (cf. Tab. II). Now that these data586

are available, however, we can compare models based on587

data organized by reporting date (modeling the reporting588

delay and incubation period) with models based on the589

epi curve (modeling the incubation period, only).590

A. Model updates based on time of symptom onset591

and comparison to previous results based on time of592

reporting593

Ideally, modeling of an epidemic outbreak should rely594

on data organized by infection date — yet, such data595

are rarely available outside of the analysis of individual,596

well-confined infection chains. The next best option are597

data organized by date of symptom onset — the epi curve.598

Normally, symptom onset precedes the test and report in599

time. Thus, the epi curve is only available after a certain600

delay, which can be substantial. Furthermore, the time601

of symptom onset may remain unknown for a significant602

fraction of reported cases. If so, then reconstructing the603

epi curve requires data imputation and further modeling604

(e.g. nowcasting [7, 8]), which may further delay the avail-605

ability of this curve and introduce additional sources of606

uncertainty. At the initial stages of an outbreak, one may607

therefore decide to analyze data organized by reporting608

data, and to model the relevant delays. For a comparison609

of analyses, it is important to understand how the curve610
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of reporting dates and the epi curve are linked. Both611

curves originate from the curve of initial infections by a612

convolution (see Fig. 2). The epi curve is the curve of ini-613

tial infections convolved by the distribution of incubation614

periods, while the curve based on reporting date is the615

curve of true infections convolved by the (less well known)616

distribution of delays between infection data and report-617

ing date. Technically, a report can also happen before618

symptom onset, albeit this is typically rare1. Therefore,619

the curve of reporting dates is not exactly a convolution620

of the epi curve with an additional delay distribution.621

We have reanalyzed the initial stages of the outbreak622

until April 21 based on the epi curve that has become623

available (see Figs. 17 and 19), using models with one, two624

and three change points, based both on SIR and SEIR625

dynamics (only figures for the three change points models626

are shown).627

These new results do not change our main inference628

result presented in [1]. Specifically, model comparison still629

favors the three change point models over their simpler630

counterparts (see Tab. I), and only the third change point631

leads to a value of the effective growth rate λ∗ that is632

clearly below zero. Importantly, the growth rate has to be633

sufficiently below zero to cause a notable decrease in new634

infections (Fig. 17 H). At the quantitative level, however,635

we see some evidence for a larger drop introduced by the636

first change point when using the epi curve data, and637

smaller drops induced by the second and third change638

point, especially when using an SEIR model (see Fig. 19).639

These quantitative changes are driven by the epi curve640

dropping faster than the curve reflecting reporting date641

(see Fig. 9 C). Note, however, that we did not yet include642

in our analysis the uncertainty of the epi curve from the643

nowcast data imputation, nor did we consider potentially644

missing data from future reports (cf. Fig. 8 that shows how645

the epi curve around the maximum was still subject to646

changes from nowcasts performed mid April to nowcasts647

performed end May).648

TABLE I. Model comparison: Using leave-one-out (LOO)
cross-validation, we compare the SIR and SEIR model vari-
ants using the epi curve as data (Figs. 17 and 19). Lower
LOO-scores represent a better match between model and data
(pLOO is the effective number of parameters).

Model # c-pts. LOO-score pLOO
SIR main 0 900 ± 13 6.36
SIR main 1 774 ± 14 12.72
SIR main 2 755 ± 13 12.17
SIR main 3 725 ± 15 19.66
SEIR-like 0 900 ± 14 6.65
SEIR-like 1 749 ± 12 8.05
SEIR-like 2 739 ± 13 10.28
SEIR-like 3 726 ± 14 14.04

1 In Germany, only for a tiny fraction of cases the reported symptom
onset (Refdatum) is after testing (Meldedatum): 1446 of 130027
cases in the RKI dataset of Jun 11.

In sum, we conclude that the original model based on649

data organized by reporting date was useful to understand650

disease dynamics in the absence of the epi curve and651

robust in the sense that its main results still hold.652

B. Differences between results based on RKI653

versus JHU data sources654

At the beginning of the outbreak, data were made avail-655

able on a daily basis both by Johns Hopkins University656

(JHU) and the German Robert Koch Institute (RKI).657

Both sources initially provided only reported cases (in658

text form), with the JHU resources providing data faster659

and with a better interface for automated analyses. The660

RKI resources were updated only a few days later, as in-661

formation has to be transmitted from regional agencies to662

the RKI, whereas the JHU data for Germany are gathered663

from a few reputed online media (Berliner Morgenpost,664

Taggesspiegel and Zeit Online [9]). However the JHU665

resources have been partially criticised for lacking quality666

control (see issues section on the Github page [10]). We667

therefore compared the JHU data used in [1] to the official668

RKI count (Fig. 14) and have rerun the analysis using669

the RKI reported cases (the “Meldedatum”, Fig. 15 and670

16). The differences are minor.671

V. IMPACT OF TESTING672

Our modeling depends on reported case numbers, which673

in turn depend on testing. Throughout the COVID-19674

spread, test availability, test requirements and known case675

numbers changed continuously over time (Fig. 8). Such676

an inconsistent and fluctuating data-acquisition obviously677

introduces additional sources of uncertainty. While we678

decided to exclude the effects of testing in previous models,679

concerns about results derived from data that stem from680

inconsistent testing should be taken seriously. Thus, we681

analyze possible distortions in more detail.682

During the initial outbreak of a disease, it is common683

that only very preliminary data and statistics on test-684

ing is available. This was also the case at the time of685

writing of our initial manuscript [1]. Since then, several686

improvements of the available data were implemented.687

Improvements include details such as testing statistics,688

but also an estimate of the epi curve (the number of cases689

based on the date of symptom onset) via imputation690

and Nowcasting. For the epi curve, complete data on691

symptom onset is only available for 60% of cases, and the692

remaining 40% of onsets need to be imputed based on693

the reporting date[8]. Fortunately, the publicly available694

RKI database contains both date of onset of symptoms695

and reporting for individual cases and thus implicitly also696

the date of testing, which in general is one day earlier697

than the report. Now, with new data, we come to the698

conclusion that reported case numbers — although they699

might derive from variable testing — are still useful to700
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FIG. 8. The curve of known symptom onset con-
tinuously changes over time, as the date of onset of
further reported cases is obtained. Because testing con-
firms the onset of symptoms in the past with varying delay,
the curve not only grows at its tail but over a wide time period
with each new publication. Known onsets are reproduced
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read of from respective plots) and the publicly available RKI-
database (Apr 15, May 2 and Jun 2). Unknown onsets of
symptoms, which account for 40% of total number of cases,
are not considered here. Hence the curve on displey here is
not the full epi curve.

infer the actual disease dynamics. As we will demonstrate701

below, our major conclusions remain unchanged.702

In particular, evidence for the key characteristics of703

the first wave — strong exponential growth in new cases,704

change in transmission dynamics over a limited time pe-705

riod and slow exponential decline — can be derived from706

the available data, even if changes in testing are consid-707

ered.708

To investigate the impact of testing, we first709

focus on two central quantities: i) the number of710

tests that are performed, say, on a given day or in a given711

week and ii) the fraction of the performed tests that are712

positive — a positive tests translates to a confirmed case.713

Let us consider two simple limiting cases, in which only714

one of these quantities changes and the other one remains715

constant: If a constant number of tests is performed day-716

after-day and we observe a growing fraction of positive717

test results, this corresponds to an increase of the under-718

lying case numbers. Conversely, if the number of tests719

is increased and we find a constant fraction of positive720

tests, this also implies an increase of the underlying case721

numbers2. Fig. 9 A, B shows that in Germany in early722

March both, the number of tests as well as the fraction723

of positives increased simultaneously. This simultane-724

ous increase indicates a significant growth in new case725

numbers.726

2 The second case only holds with additional assumptions: i) the
fraction of positive tests is larger than the prevalence and ii) tests
are not performed randomly, both of which were met in Germany.

A. Strong growth of new cases until week 12727

By focusing on testing before week 12 in Fig. 9 A and728

B, we can deduce a strong growth in daily new cases, as729

both the fraction of positives as well as the number of730

performed tests rise (matching the combined two scenarios731

above).732

For the time before week 12, the number of tests733

changed week-to-week and a direct link between the test734

fraction and the reported cases does not hold. However,735

we can assume a constant level of testing within one week736

(Fig. 8 in [11]). At the same time, we see a continu-737

ous increase in the fraction of positives within the week738

(Fig. 9 B). Especially going from week 11 to week 12,739

where we have both, an increase in testing (from week-to-740

week) and an overall increase in the fraction of positives741

(from day-to-day), this implies a strong growth of new742

infections.743

For weeks 12 onward, the number of performed tests744

stays roughly constant. Thus, the fraction of positive tests745

directly links to the number of reported cases, and both746

indicate a decline in the underlying (true) case numbers747

that starts in week 14. This conclusion is further sup-748

ported by the high level of testing that starts in week 12:749

Testing at a constant and high level makes the fraction750

of positives a reliable indicator of case numbers.751

Hypothetical Scenario: If we were to reject the752

above simple explanation that growing case numbers re-753

flect growing numbers of infections, there is one alternative754

scenario to explain the observed trend. As this scenario755

has frequently occurred in the public debate on the spread756

of COVID-19 in Germany, we discuss it briefly.757

The underlying assumption in this scenario is that the758

few tests that were performed during the initial outbreak759

until week 11 missed most of the actual cases, i.e. a large760

pool of infected persons would have existed unobserved.761

Then, at the same time at which the amount of tests762

was increased from week 11 to 12, coincidentally the763

effectiveness of the testing could have increased, so that764

the unobserved pool (of constant size!) is identified and,765

thus, apparent case numbers rise. Given the rigorous766

criteria (based on symptoms and risk of exposition) that767

were required from patients in order to qualify for one of768

the early tests, we deem this scenario of an unobserved769

and constant pool to be quite unlikely.770

B. The reporting delay relates reported cases to771

disease dynamics772

We here focus on the disease dynamics that shape the773

peak of the epi curve, corresponding to the maximum774

new daily infections (see again Fig. 9, C, red). We notice775

that the increase of the fraction of positives tests (gray)776

continues longer and more smoothly than the increase in777

the epi curve (red). Thus, in the following, we discuss778

that testing from week 12 on reliably describes the epi779

curve in weeks 11–13. In general, we find as a rule of780
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FIG. 9. Weeks 10 to 12 show strong growth in in the number of new cases, which was not limited by the
early testing capacity. A: Comparison of number of positive test results with the number of tests performed for each week.
Reproduced from Table 5 in [11] and extrapolated from [12]. Note: Numbers for week 10 and earlier are represented by a single
data point in the first source and individually in the latter. The week-over-week increase uses available weekly data. B: Mid-term
changes in the fraction of positive tests is more obvious in the daily data (points) than in the weekly (bars), especially in early
March. Daily values are taken from situation reports [11, 13, 14] (full dataset) and the epi bulletin [12, 15] (ARS dataset).
Weekly values, represented as horizontal lines, are taken from a situation report table and a weekly lab surveillance report (ARS
dataset). Note: the latter represents a subset of all tests. Compared to the situation report, the ARS dataset lists weeks 8 to
10 individually. C: Overlay of Panel B with the number of cases reported per day by the RKI and the estimated epi curve
(imputation and Nowcasting, as described in [8] ). The fraction of positive tests correlates with the number of reported cases
from week 13 onward, as the total number of tests reaches a constant level.
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all known onsets is shown (cf. dots in Fig. 10).

thumb that the majority of positive tests of week i have781

onsets in week i− 1.782

The key is the connection between the date of symptoms783

onset (when symptoms first show), the testing (when the784

symptom onset is confirmed or an asymptomatic case is785

uncovered), and the reporting date (when a positive test-786

result is registered). Any reported case must inherently787

be preceded by a test and according to the RKI, positive788

test results are reported within 24 hours to the responsible789

health department. Thus, the date of testing is taken790

as the day before reporting in the rest of the analysis.791

The remaining task is to reveal the connection between792

symptom onset and reporting date, i.e. the reporting delay793

for each individual case.794

In Fig. 10, we detail the reporting delay by plotting795

distributions of how many days after the symptom onset796

a case is reported. For example, if each and every infected797

person would receive a test result (become a reported798

case) exactly three days after they showed symptoms,799

then the plotted distributions would have only one entry:800

a delta-peak at three days. However, we see that most801

reports arrive 1–7 days after symptom onset, where the802

details of the (lognormal) distribution depend on the week803

of onset of symptoms.804

Heavy tails in the distributions correspond to long805

reporting delays. Until and including week 12, the distri-806

butions have heavy tails. After week 12, the distributions807

have lighter tails. This provides some intuition of the808

distributions and the meaning of the heavy tails: most809

of the symptom onsets are reported within the first week810

but some will be reported much later, so that the shape811

of the distribution still keeps changing. If the test level812

is low, more cases will be reported later and the tails of813

the distribution are heavier. This latter effect is what we814

see for the onsets during the first weeks until 11; due to815

limited testing capacities, many cases were only reported816

weeks later — once more testing was available.817

The distributions of the reporting delay give infor-818

mation about how timely the reporting is, on average819

(Fig. 11). Focusing on week 11, 20% of all the onsets820

of symptoms that were found to be in this week were821

reported very quickly, within 2.5 days (blue dashed line).822

Within 5 days, half of all onsets have been reported (red823

solid line) and within 9 days, the fraction of onsets from824

this week that have been reported rises to 80% (blue solid825

line). As a practical example, let us look at the onsets826

that occurred on Wednesday of week 11: Half of all onsets827

get reported very quickly, until Sunday, and the remaining828

half is only reported over the following weeks.829

This example also hints at a dependence of the reporting830

delay on the weekday. Clearly, less tests are performed831

during weekends. Hence, if a symptom onset occurs on832

Monday, it is more likely to be tested and reported within833

the same week than if it occurs on Friday. For later834

days of the week, the fraction of tests (and cases) that is835

performed (and reported) not in the same week but only836

in the next week rises systematically.837

The shape of the distributions (Fig. 10) and the838

weekday-dependence motivate the rule of thumb men-839

tioned earlier: 80% of all the symptom onsets that occur840

in a given week are reported by the end of the following841

week. However, due to the weekday-dependence, only842

around half of all onsets are found within the same week843

— much less during weeks 9–11, when testing was at ca-844

pacity limits. In conclusion, high test levels in week i give845

confidence in the epi curve of week i− 1.846

C. Decomposing the epi curve into weeks of testing847

Having established the delay between symptom onset848

and reporting, we can decompose the epi curve and iden-849

tify parts of the curve that stem from certain weeks of850

testing. We do so by reconsidering the reporting delay.851

We may ask: Given the test results of a chosen week,852
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FIG. 12. Testing in one week confirms onsets of symptoms that occur up to 4 weeks earlier. The extend of this
effect is analyzed based on the RKI database through decomposition by allocation of onsets of symptoms to weeks of testing. It
is assumed that the delay between the time of testing and Meldedatum is 1 day. Tue-Mon Meldedatum is taken as a proxy
for Mon-Sun testing. A Onsets of symptoms per day curves allocated to weeks of testing, weeks 12 and 13 are highlighted.
Most known onsets around the peak of the epi curve in week 11 are confirmed by the testing in weeks 12 and 13. B stacked
decomposition of the epi curve into weeks of testing. C To reveal crucial information about week-to-week change in the number
of total onsets based on one week of testing, the shape of the distributions of onsets of symptoms confirmed by that week of
testing is characterized. The fraction of onsets in the same week and each preceding week out of the total onsets confirmed by
the week of testing is calculated. This indicates, the portion of a week’s positive tests confirming onsets in the same week or in
preceding weeks (max. 3 weeks earlier). The evolution of these 4 values is plotted by the week of testing. The peak of the
epi curve can be tracked through testing results of weeks 11 to 14 as a maximum in the same-week/n-weeks earlier fraction of
onsets confirmed in those respective weeks: 52% of all cases confirmed through testing in week 11 had onset of symptoms in the
same week. Even more notable: 66% of positive tests in week 12 are linked to onsets 1 week earlier: in week 11. For comparison,
see Fig. ??



15

how are the dates of symptom onset that we found in the853

chosen week distributed over the previous weeks?854

In Fig. 12 A, B we collect all the symptom onsets855

that were found by testing in week 12 (blue), in week 13856

(orange) and in both weeks combined (dashed). As we857

see, the peak of the full epi curve (red) on March 16 is858

dominantly composed of cases that were tested in week859

12 and 13, weeks that already featured the high level of860

testing. This decomposition — which part of the curve861

stems from which tests — further confirms what we saw862

earlier: high testing in a week gives confidence in the epi863

curve of the previous week.864

With the decomposition of the epi curve at hand, we865

may pick one particular week of testing and compare the866

number of onsets in different weeks that were confirmed867

in the testing-week we picked. In other words, we are868

interested in the distribution of onsets per week seen by869

the testing in one single week.870

As viewed from one single week of testing, we distin-871

guish four categories according to the delay between onset872

and testing (Fig. 12 C): onsets in the same week as the873

test (solid), onsets one week earlier than the test (dashed),874

onsets two weeks earlier (dash-dotted), and onsets three875

weeks earlier (dotted). By comparing the fraction of cases876

in these categories week-over-week, we can reveal the back-877

log of testing. The backlog of testing corresponds to the878

last three categories; it describes how many cases were not879

tested within the same week (different dashing). Looking880

at the backlog week-over-week helps us to identify weeks881

during which the limit of testing capacity might have882

been reached or the testing policy might have changed.883

When considering the respective maxima of the backlog-884

categories (colored dots in Fig. 12), we find that backlog885

was build up especially during week 11. In week 11, most886

onsets stem from the same week (52%, maximum of the887

solid line). At the same time, in week 11 there was very888

little backlog; only few cases from previous weeks were889

found (minima of the dashed lines). In week 12, we find890

that most cases stem from the previous week — namely891

week 11 (66%, maximum of the dashed line). This trend892

continues in weeks 13 and 14, which exhibit compara-893

bly high fractions of onset 2 weeks and 3 weeks earlier,894

respectively, each pointing to week 11 (maxima marked895

by dots). Together, this (self-consistently) supports the896

strong growth of new onsets especially during week 11; a897

strong rise of cases before week 11 is less likely because it898

did not manifested in the backlog.899

D. Available data on testing900

The epi bulletin [16] outlines the different networks that901

the RKI uses to source information on testing: Voxco,902

RespVir, the antibiotics-resistance-surveillance (ARS) [12]903

and lab-accociation queries. These sources are compiled904

into weekly data-sets with total number of tests and posi-905

tive tests, which are published in the daily situation report906

once a week.907

Data from the ARS contains daily number on testing and908

a separate weekly report is published on the RKI website.909

The ARS dataset covers 25-30% of the total number of910

tests reported by the RKI, as only 62 of 180+ labs par-911

ticipate. The ARS data-set shows a mean delay between912

sampling and testing between 1 and 1.2 days except for913

weeks 12 to 15, where the delay is 1.5 days, peaking in914

week 13 at 1.8 days.915

An overview of all publicly available data on testing for916

march 2020 is presented in Fig 9. The following observa-917

tions along with additional comments are based on this918

presentation:919

• From week 8 to week 12 the number of tests rises920

week to week by a factor greater than 2. 120k is a921

combined number for weeks up to 10. Individual922

numbers of tests for those weeks has to be estimated923

with help from the ARS-subset (Fig. 9 B may26924

lab. Surveilance). Assuming ARS is representative925

the number of test performed in week 10 should926

be around 60k, 30k in week 9 and 30k in all weeks927

up to and including 8, extending the exponential928

pattern.929

• The number of tests remains on a high level from930

week 12 on. In the range of 340-430k.931

• The number of positive tests rises faster than the932

total number of tests until week 14.933

• The fraction of positive tests per week peaks around934

10%, relatively low compared with neighbouring935

countries.936

• The fraction of positive tests per day varies with937

time from 2% around March 1 to around 10% in938

weeks 13 and 14, peaking at 14% at the end of939

March. Afterwards declining to less than 2% in940

week 20 (not shown in figure). The day-to-day rise941

in week 10 and 11 is more pronounced than the942

weekly average would suggest.943

• The increase in the fraction of positive tests does944

not correlate to the rise in number of reported cases945

until week 13, but correlates with the decline in946

reported cases from week 13 on, which is expected947

as the total number of tests fluctuates around 380k948

tests per week on a high level.949

• The ARS data shows a steady day to day increase in950

positive fraction of test in weeks 10 and 11. Week-951

ends show a higher fraction, while the total number952

of tests is lower (daily total number not shown in953

the figure). Deviating from the rise in the positive954

fraction, weeks up to 8 have a 3 times higher fraction955

of positive results than week 9.956

• The maximum test-capacity per week as reported by957

the labs increased to 1M in week 19, showing strong958

growth until week 14. A week to week doubling in959

test capacity continues for two more weeks compared960

to growth in number of tests performed (not shown).961
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For the total data-set, the fraction of positive tests varies962

from 1.5 to 7.2% for different states. Not a single day of963

testing for individual states exceeded 20% positive results.964

VI. BEHAVIORAL CHANGES AND965

INTERPRETATION OF RESULTS.966

Work in progress.967

VII. SUMMARY & CONCLUSIONS968

In these technical notes, we have comprehensively ad-969

dressed questions and comments regarding our recent970

publication [1]. First, we compared direct, model-free es-971

timates of the reproduction number to the ones obtained972

from dynamical modeling. To this end, we established973

synthetic ground-truth data based on an SIR model and974

subsequently inferred the reproduction number based on975

various complementary approaches that are in practical976

use. We revealed how sudden changes in the spreading977

rate — as expected from the broad and swift implementa-978

tion of non-pharmaceutical interventions and concurrent979

changes in behavior — can lead to counter-intuitive tran-980

sient drops in new reported cases. Most importantly, we981

found that modeling of spreading dynamics can correctly982

capture effects of sudden changes in the spreading rate.983

Second, we provided extensive background on our mod-984

eling rationale, which combines differential-equation based985

modeling of dynamics with Bayesian parameter inference986

and formal model comparison. Within the Bayesian frame-987

work, we argued that based on prior knowledge, the most988

plausible models explaining the data can be systematically989

identified and also updated as new information becomes990

available. We also discussed why we do not think that991

strong effects of herd immunity are plausible given our992

present knowledge.993

Third, we analyzed additional data on the SARS-CoV-994

2 spread in Germany, which has become available since995

the completion of the analysis presented in [1]. Most996

importantly, we included data sets from the German997

Robert Koch Institute based on the reporting date as998

well as based on the onset of symptoms (epi curve). We999

analyzed the data in the framework of SIR and SEIR1000

models, and we also tested a broad range of varying prior1001

assumptions. We found our central results to be robust1002

across these varying modeling assumptions and data sets,1003

and to support the conclusions drawn in [1]. In turn, this1004

lead us to conclude that under the conditions comparable1005

to those in Germany, models based on reporting date are1006

a viable alternative for analyzing the early stages of a1007

disease outbreak, before the epi curve becomes available1008

— as long as the reporting delay is properly modeled.1009

Finally, we addressed the issue of changes in the testing1010

capacities and procedures over the course of our analysis.1011

Most importantly, we found that, while data from the1012

initial onset of the pandemic is presumably affected by1013

a rise in test capacities, the crucial part of our analysis1014

is based on a regime of comparably stable testing. In1015

particular, we concluded that the inference of the second1016

and third change point is widely unaffected by testing.1017

Overall, the analysis here evaluated the robustness of1018

our previously reported results with respect to statistical1019

and dynamical modeling assumptions as well as comple-1020

mentary data sources and provided additional support for1021

the central conclusions of our publication [1]:1022

1. combining epidemiological modelling with Bayesian1023

inference enables a robust assessment of the spread-1024

ing of infectious diseases in a timely manner;1025

2. the spreading dynamics can only be inferred with a1026

considerable delay (due to incubation periods and1027

testing/reporting delays);1028

3. applied to the COVID-19 outbreak in Germany,1029

it appears most plausible that all interventions to-1030

gether with the concurrent change in behavior re-1031

duced the effective growth rate λ∗, and that λ∗1032

dropped substantially below zero close to the time1033

of the third intervention.1034
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Jan 22 [17] JHU dashboard (ArcGIS) x x

Feb 2 [18] JHU dashboard (GitHub) x x first commit with case numbers on Feb 4

Mar 4 [19] RKI situation report (pdf) x x x

Mar 20 [20] RKI dashboard (ArcGIS) x x known symptom onsets added ∼2nd half of April

Apr 6 [21] RKI dashboard (API, csv) x x x

Apr 9 [22] RKI Epi Bulletin (pdf) x x x x x nowcasting introduced in bulletin 17/20v1,

includes Rt estimate, note the transient R < 0

Apr 15 RKI situation report (pdf) x x x x x nowcasting initially only in German

May 11 [23] RKI resources on nowcasting (xlsx) x x x x x includes Rt estimate

TABLE II. Data sources differ in availability, the detail they provide, and accessibility. For our previous study [1],
modelling needed to be fast; we used the JHU data from GitHub because it was available early, it is easy to access (machine
readable) and it is the unofficial go-to resource on case numbers. Note that some sources (red cross) need manual extraction of
the data from a plot — a process that, even when assisted [24], introduces uncertainties. Also note that only some of the listed
sources are accessible in a past, as-was state (for instance, the dashboards only display the most recent data, in real-time).
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FIG. 13. Model-based inference is consistent when based on symptom onset (top) or reporting date (bottom).
We repeated our SIR-model based inference (Fig. 3 in [1]) that used JHU data [10], now using the date of symptom onset
(red diamonds, top) [25] and the reporting date (green diamonds, bottom) of daily new cases as reported by the RKI [26].
Note: We currently do not incorporate the uncertainties that are introduced by nowcasting (red diamonds, top), compared to
using the reported cases. This leads to over-confident parameter estimates, including the effective spreading rate λ∗(t); the
shown uncertainties are underestimated. Left: Effective growth rate λ∗(t) inferred by the model. Dates of the three main
public interventions are indicated by colored circles and vertical lines. The values of λ∗(t) before and after all change points is
consistent across both data sources. Note that, when the symptom onset is used, λ∗(t) drops to zero already after the second
change point. Still, only after the third change point λ∗(t) becomes sufficiently negative to cause decreasing daily new case
numbers. Center: Daily new case numbers. Dashed lines show inferred case numbers assuming that the last two (red) or the
last one (orange) change points were excluded. The weekday-dependence in daily new reported cases is already accounted for
when using symptom onsets (top). Center, Top: Although λ∗(t) already dropped to (slightly-below) zero as of the second
change point, daily new cases do not decrease if the third change point is excluded (orange). Note the arrow: Due to the
transient decrease in new cases after change points (cf. Fig. 4) as well as the delay between symptom onset and reporting
(cf. Fig. 4), the peak that corresponds to maximum daily new infections is located already around March 16 (for symptom
onsets); yet note again that this does not mean that new cases would have declined rapidly already after the second change
point (see the orange curve). Right: Total, cumulative case numbers.
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FIG. 15. SIR model (see Fig. 3 of [1]) using the reporting date (Meldedatum) of the RKI data for inference. A: Time-
dependent model estimate of the effective spreading rate λ∗(t). B: Comparison of daily new reported cases and the model
(green solid line for median fit with 95% credible intervals, dashed line for median forecast with 95% CI); inset same data in
log-lin scale. C: Comparison of total reported cases and the model (same representation as in B). D–G: Priors (gray lines)
and posteriors (green histograms) of all model parameters; inset values indicate the median and 95% credible intervals of
the posteriors. H–I: The fitted model with two alternative forecasts. We consider in addition one scenario where only one
intervention happened (red) and one where two interventions happened (orange). Includes 50% and 95% CI.
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FIG. 16. SEIR-like model (see Fig. S3 in Supplementary Information of [1]) using the reporting date (Meldedatum) of
the RKI data for inference. A: Time-dependent model estimate of the effective spreading rate λ∗(t). Note: Due to different
model dynamics, λ∗(t) can only be compared qualitatively between SEIR and SIR models. The numeric values of the rates (µ, λ
etc.) differ between models because they reflect the duration a person remains in a given compartment. B: Comparison of
daily new reported cases and the model (purple solid line for median fit with 95% credible intervals, dashed line for median
forecast with 95% CI); inset same data in log-lin scale. Note: We currently do not (yet) incorporate the uncertainties that are
introduced by nowcasting, compared to using the reported cases. This leads to over-confident parameter estimates, including
the effective spreading rate λ∗(t); the shown uncertainties are underestimated. C: Comparison of total reported cases and the
model (same representation as in B). D–G: Priors (gray lines) and posteriors (purple histograms) of all model parameters; inset
values indicate the median and 95% credible intervals of the posteriors.
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FIG. 17. SIR model using the onset of symptoms (unsmoothed Nowcast from May 22 [25]) of the RKI data for inference.
The median of the lognormal prior of the delay between infection and onset of symptoms has been set to 5 days (right-most panel
F). A: Time-dependent model estimate of the effective spreading rate λ∗(t). Note: We currently do not (yet) incorporate the
uncertainties that are introduced by nowcasting, compared to using the reported cases. This leads to over-confident parameter
estimates, including the effective spreading rate λ∗(t); the shown uncertainties are underestimated. B: Comparison of daily new
reported cases and the model (green solid line for median fit with 95% credible intervals, dashed line for median forecast with
95% CI); inset: same data in log-lin scale. Note: We currently do not (yet) incorporate the uncertainties that are introduced
by nowcasting, compared to using the reported cases. This leads to over-confident parameter estimates, including the effective
spreading rate λ∗(t); the shown uncertainties are underestimated. C: Comparison of total reported cases and the model (same
representation as in B). D–G: Priors (gray lines) and posteriors (green histograms) of all model parameters; inset values indicate
the median and 95% credible intervals of the posteriors. H–I The fitted model with two alternative forecasts. We consider in
addition one scenario where only one intervention happened (red) and one where two interventions happened (orange). Includes
50% and 95% CI.
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FIG. 18. SIR model using the onset of symptoms (unsmoothed Nowcast from May 22 [25]) of the RKI data for inference.
The median of the lognormal prior of the delay between infection and onset of symptoms has been set to a
relatively uninformative prior (right-most panel F). The posterior of the delay has as median 7.2 days, which is close to
the expected incubation period of 5 days. A: Time-dependent model estimate of the effective spreading rate λ∗(t). Note: We
currently do not (yet) incorporate the uncertainties that are introduced by nowcasting, compared to using the reported cases.
This leads to over-confident parameter estimates, including the effective spreading rate λ∗(t); the shown uncertainties are
underestimated. B: Comparison of daily new reported cases and the model (green solid line for median fit with 95% credible
intervals, dashed line for median forecast with 95% CI); inset same data in log-lin scale. C: Comparison of total reported
cases and the model (same representation as in B). D–G: Priors (gray lines) and posteriors (green histograms) of all model
parameters; inset values indicate the median and 95% credible intervals of the posteriors.
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FIG. 19. SEIR-like model using the onset of symptoms (unsmoothed Nowcast from May 22 [25]) of the RKI data for
inference. The median of the lognormal prior of the delay between infectious and onset of symptoms has been set to 1 day
(right-most panel F). A: Time-dependent model estimate of the effective spreading rate λ∗(t). Note: Due to different model
dynamics, λ∗(t) can only be compared qualitatively between SEIR and SIR models. The numeric values of the rates (µ, λ etc.)
differ between models because they reflect the duration a person remains in a given compartment. Note: We currently do not
(yet) incorporate the uncertainties that are introduced by nowcasting, compared to using the reported cases. This leads to
over-confident parameter estimates, including the effective spreading rate λ∗(t); the shown uncertainties are underestimated.
B: Comparison of daily new reported cases and the model (purple solid line for median fit with 95% credible intervals, dashed
line for median forecast with 95% CI); inset same data in log-lin scale. C: Comparison of total reported cases and the model
(same representation as in B). D–G: Priors (gray lines) and posteriors (purple histograms) of all model parameters; inset values
indicate the median and 95% credible intervals of the posteriors.



25

Mar 8 Mar 22 Apr 5 Apr 19 May 3

0.0

0.2

0.4
Ef

fe
ct

iv
e

gr
ow

th
 ra

te
 

(t)A
unconstrained
due to
reporting delay

constrained
by data

Mar 8 Mar 22 Apr 5 Apr 19 May 3
0 k

20 k

40 k

60 k

Da
ily

 n
ew

 re
po

rte
d

ca
se

s i
n 

Ge
rm

an
y

B
Data
Fit
Forecast

Mar 8 Mar 22 Apr 5 Apr 19 May 3
Date

0 k

500 k

1000 k

1500 k

To
ta

l r
ep

or
te

d
ca

se
s i

n 
Ge

rm
an

y

C

Mar 8

103
104

Mar 8 Apr 19
102

104

106

0.4 0.6 0.8

Weekend, amplitude
of modulationD

fw 0.6
[0.4, 0.7]

1 0 1

Weekend, offset
from sunday

w 0.4
[-0.2, 0.7]

0.0 0.2 0.4

Recovery rateE
0.13

[0.09, 0.18]

10 20 30

Scale (width)
of the likelihood

17.6
[13.1, 24.2]

0.0 0.2 0.4

Initial rateF
0 0.42

[0.36, 0.51]

0 500 1000

Initial infections
I0 183.6
[47.0, 527.9]

5 10 15

Reporting delay
D 11.3
[9.0, 13.7]

0.0 0.2 0.4

Spreading ratesG
1 0.25

[0.21, 0.30]

Mar 8

Change times
t1 6.8
[3.6, 9.9]

0 2 4 6

Change duration
t1 3.0
[1.7, 5.2]

0.0 0.2 0.4

2 0.15
[0.12, 0.20]

Mar 15

t2 16.2
[14.5, 17.9]

0 2 4 6

t2 3.1
[1.7, 5.3]

0.0 0.2 0.4

De
ns

ity 3 0.09
[0.06, 0.14]

Mar 22

t3 23.6
[21.9, 25.5]

0 2 4 6

t3 4.1
[2.0, 7.8]

Data until
April 21

Prior
Posterior

FIG. 20. SIR model with reported case number multiplied by 5, to account for an eventual factor five of unknown
cases. Results are nearly identical to original non-multiplied plot (Fig 3. in [1]), showing that a constant underreporting has
a negligible effect. The median inferred spreading rates λ are about 0.01 larger. A: Time-dependent model estimate of the
effective spreading rate λ∗(t). B: Comparison of daily new reported cases and the model (green solid line for median fit with
95% credible intervals, dashed line for median forecast with 95% CI); inset same data in log-lin scale. C: Comparison of total
reported cases and the model (same representation as in B). D–G: Priors (gray lines) and posteriors (green histograms) of all
model parameters; inset values indicate the median and 95% credible intervals of the posteriors.
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FIG. 21. SIR model with reported case number multiplied by 10, to account for an eventual factor 10 of unknown
cases. Results are nearly identical to original non-multiplied plot (Fig 3. in [1]), showing that a constant under-reporting has a
negligible effect, similar to Fig. 20. The median inferred spreading rates λ are 0.01-0.02 larger. A: Time-dependent model
estimate of the effective spreading rate λ∗(t). B: Comparison of daily new reported cases and the model (green solid line for
median fit with 95% credible intervals, dashed line for median forecast with 95% CI); inset same data in log-lin scale. C:
Comparison of total reported cases and the model (same representation as in B). D–G: Priors (gray lines) and posteriors (green
histograms) of all model parameters; inset values indicate the median and 95% credible intervals of the posteriors.
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FIG. 22. Inferring R with different methods (like Fig. 4), using
a synthetic model with R = 3 to R = 0.9. A, B: Synthetic
data for new symptomatic cases generated with SIR dynamics
from an underlying R with one change point of duration 1
day (solid) or 7 days (dashed). C: Model-free inference of
R based on the ratio of case numbers at time t and time
t− g. D: Model-free inference of R following the Robert Koch
Institute convention, i.e. using the definition of C but with
averaging over a window of the past 4 days. E: Same as D but
averaging over 7 days. Note the overlap of intervals. All the
model-free methods (C–E) can show an erroneous estimate of
R < 0.9 transiently, due to the change point in the underlying
true R. F: The inferred R using change-point detection with
an underlying dynamic model (SIR) does not show a transient
erroneous R < 0.9 period. If the underlying dynamic model
corresponds well enough to the true disease dynamics, then
this approach reproduces the true R that was used to generate
the data.
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FIG. 23. Inferring R with different methods (like Fig. 4), using
a synthetic model with R = 3 to R = 1. A, B: Synthetic
data for new symptomatic cases generated with SIR dynamics
from an underlying R with one change point of duration 1
day (solid) or 7 days (dashed). C: Model-free inference of
R based on the ratio of case numbers at time t and time
t− g. D: Model-free inference of R following the Robert Koch
Institute convention, i.e. using the definition of C but with
averaging over a window of the past 4 days. E: Same as D but
averaging over 7 days. Note the overlap of intervals. All the
model-free methods (C–E) can show an erroneous estimate of
R < 1 transiently, due to the change point in the underlying
true R. F: The inferred R using change-point detection with
an underlying dynamic model (SIR) does not show a transient
erroneous R < 1 period. If the underlying dynamic model
corresponds well enough to the true disease dynamics, then
this approach reproduces the true R that was used to generate
the data.
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FIG. 24. Inferring R with different methods (like Fig. 4), using
a synthetic model with R = 3 to R = 1.1. A, B: Synthetic
data for new symptomatic cases generated with SIR dynamics
from an underlying R with one change point of duration 1
day (solid) or 7 days (dashed). C: Model-free inference of
R based on the ratio of case numbers at time t and time
t− g. D: Model-free inference of R following the Robert Koch
Institute convention, i.e. using the definition of C but with
averaging over a window of the past 4 days. E: Same as D but
averaging over 7 days. Note the overlap of intervals. All the
model-free methods (C–E) can show an erroneous estimate of
R < 1 transiently, due to the change point in the underlying
true R. F: The inferred R using change-point detection with
an underlying dynamic model (SIR) does not show a transient
erroneous R < 1 period. If the underlying dynamic model
corresponds well enough to the true disease dynamics, then
this approach reproduces the true R that was used to generate
the data.
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