{ "cells": [ { "cell_type": "markdown", "id": "6bde01a5", "metadata": {}, "source": [ "## Introduction: \n", "\n", "In the development of a cancer diagnosis prediction model, I utilized a K-Nearest Neighbors (KNN) classifier with 3 neighbors. My primary goal was to optimize the model to accurately identify cancer cases, reducing the number of false negatives, that represent undetected cancer cases. I focused on improving recall, which measures the model's ability to correctly identify positive cases.\n" ] }, { "cell_type": "code", "execution_count": 204, "id": "d13293ad", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 205, "id": "ae14f335", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(r\"C:\\Users\\Teni\\Desktop\\Git-Github\\Datasets\\KNN\\breast-cancer.csv\")" ] }, { "cell_type": "markdown", "id": "3f15e75a", "metadata": {}, "source": [ "### Data Info Analysis \n" ] }, { "cell_type": "code", "execution_count": 206, "id": "1fcdea81", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
iddiagnosisradius_meantexture_meanperimeter_meanarea_meansmoothness_meancompactness_meanconcavity_meanconcave points_mean...texture_worstperimeter_worstarea_worstsmoothness_worstcompactness_worstconcavity_worstconcave points_worstsymmetry_worstfractal_dimension_worstUnnamed: 32
0842302M17.9910.38122.801001.00.118400.277600.30010.14710...17.33184.602019.00.16220.66560.71190.26540.46010.11890NaN
1842517M20.5717.77132.901326.00.084740.078640.08690.07017...23.41158.801956.00.12380.18660.24160.18600.27500.08902NaN
284300903M19.6921.25130.001203.00.109600.159900.19740.12790...25.53152.501709.00.14440.42450.45040.24300.36130.08758NaN
384348301M11.4220.3877.58386.10.142500.283900.24140.10520...26.5098.87567.70.20980.86630.68690.25750.66380.17300NaN
484358402M20.2914.34135.101297.00.100300.132800.19800.10430...16.67152.201575.00.13740.20500.40000.16250.23640.07678NaN
\n", "

5 rows × 33 columns

\n", "
" ], "text/plain": [ " id diagnosis radius_mean texture_mean perimeter_mean area_mean \\\n", "0 842302 M 17.99 10.38 122.80 1001.0 \n", "1 842517 M 20.57 17.77 132.90 1326.0 \n", "2 84300903 M 19.69 21.25 130.00 1203.0 \n", "3 84348301 M 11.42 20.38 77.58 386.1 \n", "4 84358402 M 20.29 14.34 135.10 1297.0 \n", "\n", " smoothness_mean compactness_mean concavity_mean concave points_mean \\\n", "0 0.11840 0.27760 0.3001 0.14710 \n", "1 0.08474 0.07864 0.0869 0.07017 \n", "2 0.10960 0.15990 0.1974 0.12790 \n", "3 0.14250 0.28390 0.2414 0.10520 \n", "4 0.10030 0.13280 0.1980 0.10430 \n", "\n", " ... texture_worst perimeter_worst area_worst smoothness_worst \\\n", "0 ... 17.33 184.60 2019.0 0.1622 \n", "1 ... 23.41 158.80 1956.0 0.1238 \n", "2 ... 25.53 152.50 1709.0 0.1444 \n", "3 ... 26.50 98.87 567.7 0.2098 \n", "4 ... 16.67 152.20 1575.0 0.1374 \n", "\n", " compactness_worst concavity_worst concave points_worst symmetry_worst \\\n", "0 0.6656 0.7119 0.2654 0.4601 \n", "1 0.1866 0.2416 0.1860 0.2750 \n", "2 0.4245 0.4504 0.2430 0.3613 \n", "3 0.8663 0.6869 0.2575 0.6638 \n", "4 0.2050 0.4000 0.1625 0.2364 \n", "\n", " fractal_dimension_worst Unnamed: 32 \n", "0 0.11890 NaN \n", "1 0.08902 NaN \n", "2 0.08758 NaN \n", "3 0.17300 NaN \n", "4 0.07678 NaN \n", "\n", "[5 rows x 33 columns]" ] }, "execution_count": 206, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 207, "id": "54b305b2", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 569 entries, 0 to 568\n", "Data columns (total 33 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 id 569 non-null int64 \n", " 1 diagnosis 569 non-null object \n", " 2 radius_mean 569 non-null float64\n", " 3 texture_mean 569 non-null float64\n", " 4 perimeter_mean 569 non-null float64\n", " 5 area_mean 569 non-null float64\n", " 6 smoothness_mean 569 non-null float64\n", " 7 compactness_mean 569 non-null float64\n", " 8 concavity_mean 569 non-null float64\n", " 9 concave points_mean 569 non-null float64\n", " 10 symmetry_mean 569 non-null float64\n", " 11 fractal_dimension_mean 569 non-null float64\n", " 12 radius_se 569 non-null float64\n", " 13 texture_se 569 non-null float64\n", " 14 perimeter_se 569 non-null float64\n", " 15 area_se 569 non-null float64\n", " 16 smoothness_se 569 non-null float64\n", " 17 compactness_se 569 non-null float64\n", " 18 concavity_se 569 non-null float64\n", " 19 concave points_se 569 non-null float64\n", " 20 symmetry_se 569 non-null float64\n", " 21 fractal_dimension_se 569 non-null float64\n", " 22 radius_worst 569 non-null float64\n", " 23 texture_worst 569 non-null float64\n", " 24 perimeter_worst 569 non-null float64\n", " 25 area_worst 569 non-null float64\n", " 26 smoothness_worst 569 non-null float64\n", " 27 compactness_worst 569 non-null float64\n", " 28 concavity_worst 569 non-null float64\n", " 29 concave points_worst 569 non-null float64\n", " 30 symmetry_worst 569 non-null float64\n", " 31 fractal_dimension_worst 569 non-null float64\n", " 32 Unnamed: 32 0 non-null float64\n", "dtypes: float64(31), int64(1), object(1)\n", "memory usage: 146.8+ KB\n" ] } ], "source": [ "df.info()" ] }, { "cell_type": "code", "execution_count": 208, "id": "2857dac8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "B 357\n", "M 212\n", "Name: diagnosis, dtype: int64" ] }, "execution_count": 208, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.diagnosis.value_counts()" ] }, { "cell_type": "code", "execution_count": 209, "id": "d04dd32f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['M' 'B']\n" ] } ], "source": [ "print(df.diagnosis.unique())" ] }, { "cell_type": "code", "execution_count": 210, "id": "958c79f6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "id int64\n", "diagnosis object\n", "radius_mean float64\n", "texture_mean float64\n", "perimeter_mean float64\n", "area_mean float64\n", "smoothness_mean float64\n", "compactness_mean float64\n", "concavity_mean float64\n", "concave points_mean float64\n", "symmetry_mean float64\n", "fractal_dimension_mean float64\n", "radius_se float64\n", "texture_se float64\n", "perimeter_se float64\n", "area_se float64\n", "smoothness_se float64\n", "compactness_se float64\n", "concavity_se float64\n", "concave points_se float64\n", "symmetry_se float64\n", "fractal_dimension_se float64\n", "radius_worst float64\n", "texture_worst float64\n", "perimeter_worst float64\n", "area_worst float64\n", "smoothness_worst float64\n", "compactness_worst float64\n", "concavity_worst float64\n", "concave points_worst float64\n", "symmetry_worst float64\n", "fractal_dimension_worst float64\n", "Unnamed: 32 float64\n", "dtype: object\n" ] } ], "source": [ "print(df.dtypes)" ] }, { "cell_type": "code", "execution_count": 211, "id": "0f530925", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "id 0\n", "diagnosis 0\n", "radius_mean 0\n", "texture_mean 0\n", "perimeter_mean 0\n", "area_mean 0\n", "smoothness_mean 0\n", "compactness_mean 0\n", "concavity_mean 0\n", "concave points_mean 0\n", "symmetry_mean 0\n", "fractal_dimension_mean 0\n", "radius_se 0\n", "texture_se 0\n", "perimeter_se 0\n", "area_se 0\n", "smoothness_se 0\n", "compactness_se 0\n", "concavity_se 0\n", "concave points_se 0\n", "symmetry_se 0\n", "fractal_dimension_se 0\n", "radius_worst 0\n", "texture_worst 0\n", "perimeter_worst 0\n", "area_worst 0\n", "smoothness_worst 0\n", "compactness_worst 0\n", "concavity_worst 0\n", "concave points_worst 0\n", "symmetry_worst 0\n", "fractal_dimension_worst 0\n", "Unnamed: 32 569\n", "dtype: int64" ] }, "execution_count": 211, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.isnull().sum()\n", "\n", "# There are no null data" ] }, { "cell_type": "markdown", "id": "02931756", "metadata": {}, "source": [ "\n", "### Data Exploratory Analysis \n", "\n" ] }, { "cell_type": "code", "execution_count": 212, "id": "fa6dc28e", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 213, "id": "90e010a9", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGbCAYAAADuu2vDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAflklEQVR4nO3df0zU9+HH8dcJclXK3QTKHRdPylLarAWbBhqVtBUVUVK0rSa6mXbasqZOJSFIbNE/xpYNnN9UbWpGts6KP+ow2aRtprVirHSEmCGZq9qtsZmumHIldXgHjB2Wfr5/NP2k56/2FLw38Hwkn6T3+bzvc+9PshtPP/f53Dksy7IEAABgkHGxngAAAMCVCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxomP9QRuxpdffqlPP/1USUlJcjgcsZ4OAAD4DizLUk9Pj3w+n8aNu/E5khEZKJ9++qn8fn+spwEAAG5CR0eHJk+efMMxIzJQkpKSJH11gC6XK8azAQAA30UoFJLf77f/jt/IiAyUrz/WcblcBAoAACPMd7k8g4tkAQCAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgnPhYTwDRufulA7GeAm6j8xsfj/UUACAmOIMCAACMQ6AAAADjRBUodXV1mjp1qlwul1wul2bMmKF33nnH3r5ixQo5HI6IZfr06RH7CIfDKisrU2pqqhITE7Vw4UJduHBhaI4GAACMClEFyuTJk7Vx40adOHFCJ06c0OzZs/XEE0/ozJkz9pj58+ers7PTXg4ePBixj/LycjU2NqqhoUEtLS3q7e1VSUmJBgcHh+aIAADAiBfVRbILFiyIePyrX/1KdXV1On78uB544AFJktPplNfrvebzg8Ggtm/frt27d6uwsFCStGfPHvn9fh05ckTz5s27mWMAAACjzE1fgzI4OKiGhgb19fVpxowZ9vpjx44pLS1N9957r55//nl1dXXZ29rb23X58mUVFRXZ63w+n7Kzs9Xa2nrd1wqHwwqFQhELAAAYvaIOlFOnTunOO++U0+nUypUr1djYqPvvv1+SVFxcrDfeeENHjx7Vyy+/rLa2Ns2ePVvhcFiSFAgElJCQoEmTJkXs0+PxKBAIXPc1a2tr5Xa77cXv90c7bQAAMIJE/T0o9913n06ePKlLly7pT3/6k5YvX67m5mbdf//9Wrp0qT0uOztbeXl5ysjI0IEDB7Ro0aLr7tOyLDkcjutur6qqUkVFhf04FAoRKQAAjGJRB0pCQoLuueceSVJeXp7a2tr0yiuv6Le//e1VY9PT05WRkaGzZ89KkrxerwYGBtTd3R1xFqWrq0v5+fnXfU2n0ymn0xntVAEAwAh1y9+DYlmW/RHOlS5evKiOjg6lp6dLknJzczV+/Hg1NTXZYzo7O3X69OkbBgoAABhbojqDsn79ehUXF8vv96unp0cNDQ06duyYDh06pN7eXlVXV2vx4sVKT0/X+fPntX79eqWmpuqpp56SJLndbpWWlmrt2rVKSUlRcnKyKisrlZOTY9/VAwAAEFWgfPbZZ3rmmWfU2dkpt9utqVOn6tChQ5o7d676+/t16tQp7dq1S5cuXVJ6erpmzZqlffv2KSkpyd7Hli1bFB8fryVLlqi/v19z5sxRfX294uLihvzgAADAyOSwLMuK9SSiFQqF5Ha7FQwG5XK5Yj2d24ofCxxb+LFAAKNJNH+/+S0eAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYJ6pAqaur09SpU+VyueRyuTRjxgy988479nbLslRdXS2fz6cJEyaooKBAZ86cidhHOBxWWVmZUlNTlZiYqIULF+rChQtDczQAAGBUiCpQJk+erI0bN+rEiRM6ceKEZs+erSeeeMKOkE2bNmnz5s3atm2b2tra5PV6NXfuXPX09Nj7KC8vV2NjoxoaGtTS0qLe3l6VlJRocHBwaI8MAACMWA7Lsqxb2UFycrL+7//+T88995x8Pp/Ky8v14osvSvrqbInH49Gvf/1rvfDCCwoGg7rrrru0e/duLV26VJL06aefyu/36+DBg5o3b953es1QKCS3261gMCiXy3Ur0x9x7n7pQKyngNvo/MbHYz0FABgy0fz9vulrUAYHB9XQ0KC+vj7NmDFD586dUyAQUFFRkT3G6XRq5syZam1tlSS1t7fr8uXLEWN8Pp+ys7PtMdcSDocVCoUiFgAAMHpFHSinTp3SnXfeKafTqZUrV6qxsVH333+/AoGAJMnj8USM93g89rZAIKCEhARNmjTpumOupba2Vm632178fn+00wYAACNI1IFy33336eTJkzp+/Lh++tOfavny5frwww/t7Q6HI2K8ZVlXrbvSt42pqqpSMBi0l46OjminDQAARpCoAyUhIUH33HOP8vLyVFtbqwcffFCvvPKKvF6vJF11JqSrq8s+q+L1ejUwMKDu7u7rjrkWp9Np3zn09QIAAEavW/4eFMuyFA6HlZmZKa/Xq6amJnvbwMCAmpublZ+fL0nKzc3V+PHjI8Z0dnbq9OnT9hgAAID4aAavX79excXF8vv96unpUUNDg44dO6ZDhw7J4XCovLxcNTU1ysrKUlZWlmpqajRx4kQtW7ZMkuR2u1VaWqq1a9cqJSVFycnJqqysVE5OjgoLC4flAAEAwMgTVaB89tlneuaZZ9TZ2Sm3262pU6fq0KFDmjt3riRp3bp16u/v16pVq9Td3a1p06bp8OHDSkpKsvexZcsWxcfHa8mSJerv79ecOXNUX1+vuLi4oT0yAAAwYt3y96DEAt+DgrGC70EBMJrclu9BAQAAGC4ECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjBNVoNTW1urhhx9WUlKS0tLS9OSTT+qjjz6KGLNixQo5HI6IZfr06RFjwuGwysrKlJqaqsTERC1cuFAXLly49aMBAACjQlSB0tzcrNWrV+v48eNqamrSF198oaKiIvX19UWMmz9/vjo7O+3l4MGDEdvLy8vV2NiohoYGtbS0qLe3VyUlJRocHLz1IwIAACNefDSDDx06FPF4x44dSktLU3t7ux577DF7vdPplNfrveY+gsGgtm/frt27d6uwsFCStGfPHvn9fh05ckTz5s2L9hgAAMAoc0vXoASDQUlScnJyxPpjx44pLS1N9957r55//nl1dXXZ29rb23X58mUVFRXZ63w+n7Kzs9Xa2nrN1wmHwwqFQhELAAAYvW46UCzLUkVFhR555BFlZ2fb64uLi/XGG2/o6NGjevnll9XW1qbZs2crHA5LkgKBgBISEjRp0qSI/Xk8HgUCgWu+Vm1trdxut734/f6bnTYAABgBovqI55vWrFmjDz74QC0tLRHrly5dav93dna28vLylJGRoQMHDmjRokXX3Z9lWXI4HNfcVlVVpYqKCvtxKBQiUgAAGMVu6gxKWVmZ3n77bb333nuaPHnyDcemp6crIyNDZ8+elSR5vV4NDAyou7s7YlxXV5c8Hs819+F0OuVyuSIWAAAwekUVKJZlac2aNdq/f7+OHj2qzMzMb33OxYsX1dHRofT0dElSbm6uxo8fr6amJntMZ2enTp8+rfz8/CinDwAARqOoPuJZvXq19u7dq7feektJSUn2NSNut1sTJkxQb2+vqqurtXjxYqWnp+v8+fNav369UlNT9dRTT9ljS0tLtXbtWqWkpCg5OVmVlZXKycmx7+oBAABjW1SBUldXJ0kqKCiIWL9jxw6tWLFCcXFxOnXqlHbt2qVLly4pPT1ds2bN0r59+5SUlGSP37Jli+Lj47VkyRL19/drzpw5qq+vV1xc3K0fEQAAGPEclmVZsZ5EtEKhkNxut4LB4Ji7HuXulw7Eegq4jc5vfDzWUwCAIRPN329+iwcAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxomP9QQAAF+5+6UDsZ4CbqPzGx+P9RSMxhkUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMaJKlBqa2v18MMPKykpSWlpaXryySf10UcfRYyxLEvV1dXy+XyaMGGCCgoKdObMmYgx4XBYZWVlSk1NVWJiohYuXKgLFy7c+tEAAIBRIapAaW5u1urVq3X8+HE1NTXpiy++UFFRkfr6+uwxmzZt0ubNm7Vt2za1tbXJ6/Vq7ty56unpsceUl5ersbFRDQ0NamlpUW9vr0pKSjQ4ODh0RwYAAEasqL5J9tChQxGPd+zYobS0NLW3t+uxxx6TZVnaunWrNmzYoEWLFkmSdu7cKY/Ho7179+qFF15QMBjU9u3btXv3bhUWFkqS9uzZI7/fryNHjmjevHlDdGgAAGCkuqVrUILBoCQpOTlZknTu3DkFAgEVFRXZY5xOp2bOnKnW1lZJUnt7uy5fvhwxxufzKTs72x5zpXA4rFAoFLEAAIDR66YDxbIsVVRU6JFHHlF2drYkKRAISJI8Hk/EWI/HY28LBAJKSEjQpEmTrjvmSrW1tXK73fbi9/tvdtoAAGAEuOlAWbNmjT744AP94Q9/uGqbw+GIeGxZ1lXrrnSjMVVVVQoGg/bS0dFxs9MGAAAjwE0FSllZmd5++2299957mjx5sr3e6/VK0lVnQrq6uuyzKl6vVwMDA+ru7r7umCs5nU65XK6IBQAAjF5RBYplWVqzZo3279+vo0ePKjMzM2J7ZmamvF6vmpqa7HUDAwNqbm5Wfn6+JCk3N1fjx4+PGNPZ2anTp0/bYwAAwNgW1V08q1ev1t69e/XWW28pKSnJPlPidrs1YcIEORwOlZeXq6amRllZWcrKylJNTY0mTpyoZcuW2WNLS0u1du1apaSkKDk5WZWVlcrJybHv6gEAAGNbVIFSV1cnSSooKIhYv2PHDq1YsUKStG7dOvX392vVqlXq7u7WtGnTdPjwYSUlJdnjt2zZovj4eC1ZskT9/f2aM2eO6uvrFRcXd2tHAwAARgWHZVlWrCcRrVAoJLfbrWAwOOauR7n7pQOxngJuo/MbH4/1FHAb8f4eW8bi+zuav9/8Fg8AADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIwTdaC8//77WrBggXw+nxwOh958882I7StWrJDD4YhYpk+fHjEmHA6rrKxMqampSkxM1MKFC3XhwoVbOhAAADB6RB0ofX19evDBB7Vt27brjpk/f746Ozvt5eDBgxHby8vL1djYqIaGBrW0tKi3t1clJSUaHByM/ggAAMCoEx/tE4qLi1VcXHzDMU6nU16v95rbgsGgtm/frt27d6uwsFCStGfPHvn9fh05ckTz5s2LdkoAAGCUGZZrUI4dO6a0tDTde++9ev7559XV1WVva29v1+XLl1VUVGSv8/l8ys7OVmtr6zX3Fw6HFQqFIhYAADB6DXmgFBcX64033tDRo0f18ssvq62tTbNnz1Y4HJYkBQIBJSQkaNKkSRHP83g8CgQC19xnbW2t3G63vfj9/qGeNgAAMEjUH/F8m6VLl9r/nZ2drby8PGVkZOjAgQNatGjRdZ9nWZYcDsc1t1VVVamiosJ+HAqFiBQAAEaxYb/NOD09XRkZGTp79qwkyev1amBgQN3d3RHjurq65PF4rrkPp9Mpl8sVsQAAgNFr2APl4sWL6ujoUHp6uiQpNzdX48ePV1NTkz2ms7NTp0+fVn5+/nBPBwAAjABRf8TT29urjz/+2H587tw5nTx5UsnJyUpOTlZ1dbUWL16s9PR0nT9/XuvXr1dqaqqeeuopSZLb7VZpaanWrl2rlJQUJScnq7KyUjk5OfZdPQAAYGyLOlBOnDihWbNm2Y+/vjZk+fLlqqur06lTp7Rr1y5dunRJ6enpmjVrlvbt26ekpCT7OVu2bFF8fLyWLFmi/v5+zZkzR/X19YqLixuCQwIAACNd1IFSUFAgy7Kuu/3dd9/91n3ccccdevXVV/Xqq69G+/IAAGAM4Ld4AACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYJ+pAef/997VgwQL5fD45HA69+eabEdsty1J1dbV8Pp8mTJiggoICnTlzJmJMOBxWWVmZUlNTlZiYqIULF+rChQu3dCAAAGD0iDpQ+vr69OCDD2rbtm3X3L5p0yZt3rxZ27ZtU1tbm7xer+bOnauenh57THl5uRobG9XQ0KCWlhb19vaqpKREg4ODN38kAABg1IiP9gnFxcUqLi6+5jbLsrR161Zt2LBBixYtkiTt3LlTHo9He/fu1QsvvKBgMKjt27dr9+7dKiwslCTt2bNHfr9fR44c0bx5827hcAAAwGgwpNegnDt3ToFAQEVFRfY6p9OpmTNnqrW1VZLU3t6uy5cvR4zx+XzKzs62x1wpHA4rFApFLAAAYPQa0kAJBAKSJI/HE7He4/HY2wKBgBISEjRp0qTrjrlSbW2t3G63vfj9/qGcNgAAMMyw3MXjcDgiHluWddW6K91oTFVVlYLBoL10dHQM2VwBAIB5hjRQvF6vJF11JqSrq8s+q+L1ejUwMKDu7u7rjrmS0+mUy+WKWAAAwOg1pIGSmZkpr9erpqYme93AwICam5uVn58vScrNzdX48eMjxnR2dur06dP2GAAAMLZFfRdPb2+vPv74Y/vxuXPndPLkSSUnJ2vKlCkqLy9XTU2NsrKylJWVpZqaGk2cOFHLli2TJLndbpWWlmrt2rVKSUlRcnKyKisrlZOTY9/VAwAAxraoA+XEiROaNWuW/biiokKStHz5ctXX12vdunXq7+/XqlWr1N3drWnTpunw4cNKSkqyn7NlyxbFx8dryZIl6u/v15w5c1RfX6+4uLghOCQAADDSOSzLsmI9iWiFQiG53W4Fg8Exdz3K3S8diPUUcBud3/h4rKeA24j399gyFt/f0fz95rd4AACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgnCEPlOrqajkcjojF6/Xa2y3LUnV1tXw+nyZMmKCCggKdOXNmqKcBAABGsGE5g/LAAw+os7PTXk6dOmVv27RpkzZv3qxt27apra1NXq9Xc+fOVU9Pz3BMBQAAjEDDEijx8fHyer32ctddd0n66uzJ1q1btWHDBi1atEjZ2dnauXOn/vvf/2rv3r3DMRUAADACDUugnD17Vj6fT5mZmfrhD3+of/3rX5Kkc+fOKRAIqKioyB7rdDo1c+ZMtba2Xnd/4XBYoVAoYgEAAKPXkAfKtGnTtGvXLr377rt67bXXFAgElJ+fr4sXLyoQCEiSPB5PxHM8Ho+97Vpqa2vldrvtxe/3D/W0AQCAQYY8UIqLi7V48WLl5OSosLBQBw4ckCTt3LnTHuNwOCKeY1nWVeu+qaqqSsFg0F46OjqGetoAAMAgw36bcWJionJycnT27Fn7bp4rz5Z0dXVddVblm5xOp1wuV8QCAABGr2EPlHA4rH/84x9KT09XZmamvF6vmpqa7O0DAwNqbm5Wfn7+cE8FAACMEPFDvcPKykotWLBAU6ZMUVdXl375y18qFApp+fLlcjgcKi8vV01NjbKyspSVlaWamhpNnDhRy5YtG+qpAACAEWrIA+XChQv60Y9+pM8//1x33XWXpk+fruPHjysjI0OStG7dOvX392vVqlXq7u7WtGnTdPjwYSUlJQ31VAAAwAg15IHS0NBww+0Oh0PV1dWqrq4e6pcGAACjBL/FAwAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA48Q0UH7zm98oMzNTd9xxh3Jzc/WXv/wlltMBAACGiFmg7Nu3T+Xl5dqwYYP+9re/6dFHH1VxcbE++eSTWE0JAAAYImaBsnnzZpWWluonP/mJfvCDH2jr1q3y+/2qq6uL1ZQAAIAh4mPxogMDA2pvb9dLL70Usb6oqEitra1XjQ+HwwqHw/bjYDAoSQqFQsM7UQN9Gf5vrKeA22gs/m98LOP9PbaMxff318dsWda3jo1JoHz++ecaHByUx+OJWO/xeBQIBK4aX1tbq5///OdXrff7/cM2R8AE7q2xngGA4TKW3989PT1yu903HBOTQPmaw+GIeGxZ1lXrJKmqqkoVFRX24y+//FL/+c9/lJKScs3xGF1CoZD8fr86OjrkcrliPR0AQ4j399hiWZZ6enrk8/m+dWxMAiU1NVVxcXFXnS3p6uq66qyKJDmdTjmdzoh13/ve94ZzijCQy+Xi/8CAUYr399jxbWdOvhaTi2QTEhKUm5urpqamiPVNTU3Kz8+PxZQAAIBBYvYRT0VFhZ555hnl5eVpxowZ+t3vfqdPPvlEK1eujNWUAACAIWIWKEuXLtXFixf1i1/8Qp2dncrOztbBgweVkZERqynBUE6nUz/72c+u+pgPwMjH+xvX47C+y70+AAAAtxG/xQMAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA48T0t3iAG7l48aJSUlIkSR0dHXrttdfU39+vhQsX6tFHH43x7ADcjOeee+47jXv99deHeSYwHd+DAuOcOnVKCxYsUEdHh7KystTQ0KD58+err69P48aNU19fn/74xz/qySefjPVUAURp3LhxysjI0EMPPaQb/flpbGy8jbOCiQgUGKe4uFjx8fF68cUXtWfPHv35z39WUVGRfv/730uSysrK1N7eruPHj8d4pgCitWrVKjU0NGjKlCl67rnn9PTTTys5OTnW04KBCBQYJzU1VUePHtXUqVPV29srl8ulv/71r8rLy5Mk/fOf/9T06dN16dKl2E4UwE0Jh8Pav3+/Xn/9dbW2turxxx9XaWmpioqK5HA4Yj09GIJAgXHGjRunQCCgtLQ0SVJSUpL+/ve/6/vf/74k6bPPPpPP59Pg4GAspwlgCPz73/9WfX29du3apcuXL+vDDz/UnXfeGetpwQDcxQMjXfmvKP5VBYxODodDDodDlmXpyy+/jPV0YBDu4oGRVqxYYf+66f/+9z+tXLlSiYmJkr46PQxg5PrmRzwtLS0qKSnRtm3bNH/+fI0bx7+b8RU+4oFxnn322e80bseOHcM8EwBD7ZsXyT777LN6+umn7a8TAL6JQAEA3Dbjxo3TlClT9NBDD93wo9v9+/ffxlnBRHzEAwC4bX784x9zTRm+E86gAAAA43A1EgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4/w8M64ClBd+7ewAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.diagnosis.value_counts().plot(kind='bar')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 214, "id": "154bb01e", "metadata": {}, "outputs": [], "source": [ "diagnosis_mapping = {'M': 1, 'B': 0}" ] }, { "cell_type": "code", "execution_count": 215, "id": "6084800c", "metadata": {}, "outputs": [], "source": [ " df.diagnosis = df.diagnosis.map(diagnosis_mapping)" ] }, { "cell_type": "code", "execution_count": 216, "id": "3897692f", "metadata": {}, "outputs": [], "source": [ "# # if the datatype is not in string format\n", "# df['diagnosis'] = df['diagnosis'].astype(str)\n", "\n", "# # Strip any leading/trailing spaces and convert to uppercase\n", "# df['diagnosis'] = df['diagnosis'].str.strip().str.upper()\n", "\n", "# # Create the mapping dictionary\n", "# diagnosis_mapping = {'M': 1, 'B': 0}\n", "\n", "# # Apply the mapping to the 'diagnosis' column\n", "# df['label'] = df['diagnosis'].map(diagnosis_mapping)\n", "\n", "# # Display the DataFrame to check results\n", "# df" ] }, { "cell_type": "code", "execution_count": 217, "id": "e4e94604", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
iddiagnosisradius_meantexture_meanperimeter_meanarea_meansmoothness_meancompactness_meanconcavity_meanconcave points_mean...texture_worstperimeter_worstarea_worstsmoothness_worstcompactness_worstconcavity_worstconcave points_worstsymmetry_worstfractal_dimension_worstUnnamed: 32
0842302117.9910.38122.801001.00.118400.277600.30010.14710...17.33184.602019.00.16220.66560.71190.26540.46010.11890NaN
1842517120.5717.77132.901326.00.084740.078640.08690.07017...23.41158.801956.00.12380.18660.24160.18600.27500.08902NaN
284300903119.6921.25130.001203.00.109600.159900.19740.12790...25.53152.501709.00.14440.42450.45040.24300.36130.08758NaN
384348301111.4220.3877.58386.10.142500.283900.24140.10520...26.5098.87567.70.20980.86630.68690.25750.66380.17300NaN
484358402120.2914.34135.101297.00.100300.132800.19800.10430...16.67152.201575.00.13740.20500.40000.16250.23640.07678NaN
\n", "

5 rows × 33 columns

\n", "
" ], "text/plain": [ " id diagnosis radius_mean texture_mean perimeter_mean area_mean \\\n", "0 842302 1 17.99 10.38 122.80 1001.0 \n", "1 842517 1 20.57 17.77 132.90 1326.0 \n", "2 84300903 1 19.69 21.25 130.00 1203.0 \n", "3 84348301 1 11.42 20.38 77.58 386.1 \n", "4 84358402 1 20.29 14.34 135.10 1297.0 \n", "\n", " smoothness_mean compactness_mean concavity_mean concave points_mean \\\n", "0 0.11840 0.27760 0.3001 0.14710 \n", "1 0.08474 0.07864 0.0869 0.07017 \n", "2 0.10960 0.15990 0.1974 0.12790 \n", "3 0.14250 0.28390 0.2414 0.10520 \n", "4 0.10030 0.13280 0.1980 0.10430 \n", "\n", " ... texture_worst perimeter_worst area_worst smoothness_worst \\\n", "0 ... 17.33 184.60 2019.0 0.1622 \n", "1 ... 23.41 158.80 1956.0 0.1238 \n", "2 ... 25.53 152.50 1709.0 0.1444 \n", "3 ... 26.50 98.87 567.7 0.2098 \n", "4 ... 16.67 152.20 1575.0 0.1374 \n", "\n", " compactness_worst concavity_worst concave points_worst symmetry_worst \\\n", "0 0.6656 0.7119 0.2654 0.4601 \n", "1 0.1866 0.2416 0.1860 0.2750 \n", "2 0.4245 0.4504 0.2430 0.3613 \n", "3 0.8663 0.6869 0.2575 0.6638 \n", "4 0.2050 0.4000 0.1625 0.2364 \n", "\n", " fractal_dimension_worst Unnamed: 32 \n", "0 0.11890 NaN \n", "1 0.08902 NaN \n", "2 0.08758 NaN \n", "3 0.17300 NaN \n", "4 0.07678 NaN \n", "\n", "[5 rows x 33 columns]" ] }, "execution_count": 217, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 218, "id": "8d53a49d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
iddiagnosisradius_meantexture_meanperimeter_meanarea_meansmoothness_meancompactness_meanconcavity_meanconcave points_mean...radius_worsttexture_worstperimeter_worstarea_worstsmoothness_worstcompactness_worstconcavity_worstconcave points_worstsymmetry_worstfractal_dimension_worst
0842302117.9910.38122.801001.00.118400.277600.300100.14710...25.38017.33184.602019.00.162200.665600.71190.26540.46010.11890
1842517120.5717.77132.901326.00.084740.078640.086900.07017...24.99023.41158.801956.00.123800.186600.24160.18600.27500.08902
284300903119.6921.25130.001203.00.109600.159900.197400.12790...23.57025.53152.501709.00.144400.424500.45040.24300.36130.08758
384348301111.4220.3877.58386.10.142500.283900.241400.10520...14.91026.5098.87567.70.209800.866300.68690.25750.66380.17300
484358402120.2914.34135.101297.00.100300.132800.198000.10430...22.54016.67152.201575.00.137400.205000.40000.16250.23640.07678
..................................................................
564926424121.5622.39142.001479.00.111000.115900.243900.13890...25.45026.40166.102027.00.141000.211300.41070.22160.20600.07115
565926682120.1328.25131.201261.00.097800.103400.144000.09791...23.69038.25155.001731.00.116600.192200.32150.16280.25720.06637
566926954116.6028.08108.30858.10.084550.102300.092510.05302...18.98034.12126.701124.00.113900.309400.34030.14180.22180.07820
567927241120.6029.33140.101265.00.117800.277000.351400.15200...25.74039.42184.601821.00.165000.868100.93870.26500.40870.12400
5689275107.7624.5447.92181.00.052630.043620.000000.00000...9.45630.3759.16268.60.089960.064440.00000.00000.28710.07039
\n", "

569 rows × 32 columns

\n", "
" ], "text/plain": [ " id diagnosis radius_mean texture_mean perimeter_mean \\\n", "0 842302 1 17.99 10.38 122.80 \n", "1 842517 1 20.57 17.77 132.90 \n", "2 84300903 1 19.69 21.25 130.00 \n", "3 84348301 1 11.42 20.38 77.58 \n", "4 84358402 1 20.29 14.34 135.10 \n", ".. ... ... ... ... ... \n", "564 926424 1 21.56 22.39 142.00 \n", "565 926682 1 20.13 28.25 131.20 \n", "566 926954 1 16.60 28.08 108.30 \n", "567 927241 1 20.60 29.33 140.10 \n", "568 92751 0 7.76 24.54 47.92 \n", "\n", " area_mean smoothness_mean compactness_mean concavity_mean \\\n", "0 1001.0 0.11840 0.27760 0.30010 \n", "1 1326.0 0.08474 0.07864 0.08690 \n", "2 1203.0 0.10960 0.15990 0.19740 \n", "3 386.1 0.14250 0.28390 0.24140 \n", "4 1297.0 0.10030 0.13280 0.19800 \n", ".. ... ... ... ... \n", "564 1479.0 0.11100 0.11590 0.24390 \n", "565 1261.0 0.09780 0.10340 0.14400 \n", "566 858.1 0.08455 0.10230 0.09251 \n", "567 1265.0 0.11780 0.27700 0.35140 \n", "568 181.0 0.05263 0.04362 0.00000 \n", "\n", " concave points_mean ... radius_worst texture_worst perimeter_worst \\\n", "0 0.14710 ... 25.380 17.33 184.60 \n", "1 0.07017 ... 24.990 23.41 158.80 \n", "2 0.12790 ... 23.570 25.53 152.50 \n", "3 0.10520 ... 14.910 26.50 98.87 \n", "4 0.10430 ... 22.540 16.67 152.20 \n", ".. ... ... ... ... ... \n", "564 0.13890 ... 25.450 26.40 166.10 \n", "565 0.09791 ... 23.690 38.25 155.00 \n", "566 0.05302 ... 18.980 34.12 126.70 \n", "567 0.15200 ... 25.740 39.42 184.60 \n", "568 0.00000 ... 9.456 30.37 59.16 \n", "\n", " area_worst smoothness_worst compactness_worst concavity_worst \\\n", "0 2019.0 0.16220 0.66560 0.7119 \n", "1 1956.0 0.12380 0.18660 0.2416 \n", "2 1709.0 0.14440 0.42450 0.4504 \n", "3 567.7 0.20980 0.86630 0.6869 \n", "4 1575.0 0.13740 0.20500 0.4000 \n", ".. ... ... ... ... \n", "564 2027.0 0.14100 0.21130 0.4107 \n", "565 1731.0 0.11660 0.19220 0.3215 \n", "566 1124.0 0.11390 0.30940 0.3403 \n", "567 1821.0 0.16500 0.86810 0.9387 \n", "568 268.6 0.08996 0.06444 0.0000 \n", "\n", " concave points_worst symmetry_worst fractal_dimension_worst \n", "0 0.2654 0.4601 0.11890 \n", "1 0.1860 0.2750 0.08902 \n", "2 0.2430 0.3613 0.08758 \n", "3 0.2575 0.6638 0.17300 \n", "4 0.1625 0.2364 0.07678 \n", ".. ... ... ... \n", "564 0.2216 0.2060 0.07115 \n", "565 0.1628 0.2572 0.06637 \n", "566 0.1418 0.2218 0.07820 \n", "567 0.2650 0.4087 0.12400 \n", "568 0.0000 0.2871 0.07039 \n", "\n", "[569 rows x 32 columns]" ] }, "execution_count": 218, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.drop(df.columns[-1], axis=1, inplace=True)\n", "df" ] }, { "cell_type": "code", "execution_count": 219, "id": "1c3b00b9", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAPaCAYAAABh7Kh8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUddbA8e/MJDPpvQIh9N67Cgg2LCjFgmLB3ruvumtbdV1Zdde29oaiIthAFAFBBBQBpfdeEtJ7mSQzmfL+cQhJyAwgJZNyPs+TRzL3zs0vyJ2Ze+4pBrfb7UYppZRSSimllFKqATP6egFKKaWUUkoppZRSR6MBDKWUUkoppZRSSjV4GsBQSimllFJKKaVUg6cBDKWUUkoppZRSSjV4GsBQSimllFJKKaVUg6cBDKWUUkoppZRSSjV4GsBQSimllFJKKaVUg6cBDKWUUkoppZRSSjV4GsA4Rm63m+LiYtxut6+XolSzo+efUr6h555SvqPnn1JK1aUBjGNUUlJCeHg4JSUlvl6KUs2Onn9K+Yaee0r5jp5/SilVlwYwlFJKKaWUUkop1eBpAEMppZRSSimllFINngYwlFJKKaWUUkop1eBpAEMppZRSSimllFINnp+vF6CUUuokcDqgvAAMRgiO9vVqlFKq4bBb5cs/ECyhvl6NUs1HRTE4KsAcAuYgX69GNREawFBKqcauMAXWfAabvwG/ABh0C3QcBWGJvl6ZUkr5jr0UcnfBr/+BrM0Q2Q7OfBjiukFAmK9Xp1TTVZYPmRth6X+g+AC06A/DHoCo9uAf4OvVqUZOAxhKKdWYFeyHD8+F0qzqx76/D5KGwBWfQGiC79amlFK+4nLC7sXw5TXgdstj+Xtg90K4+HXoNUEvpJQ6FWylsPpj+PmZ6sfy98CWb+Ha76DtMJ8tTTUN2gNDKaUaK4cdVr5bO3hRJXUFZKyv/zUppVRDUJIJ399bHbyoad6jUJpd/2tSqjmw5sAvz9V93OWE2ffIuanUCdAAhlJKNVZleVI24s2aTyTIoZRSzU1ZrrxGelJZDiXp9bsepZqL7K0SrPCkYK/061LqBGgJiaojNb+MF+dtIyzQn0dGdSE8yN/XS1JKeWIwgPEIL+NGf2nqqZRSzc3RXvsMpvpZh1LNjfEo55Z+LlEnSP8FqVoqnS6un/IHv+3KZda6NK7/+A8qnS5fL0sp5UlQDPS52vv2ATeCSePUSqlmKCgawlp43mYJ0/5ASp0qsV3AZPa8La4rBEbV73pUk6OfbFUts9elszvHyr/H98TmcPH07M1MW5nCpNPb+HppSqnDmfyg33Ww6WvI2117W+fR8kGhobDmSUq33QqBkRAcB5ZgX69KKdVUBUbD1d9A3k7JVCtOh+VvQuE+GPuWBjCUOlVC4qRRbtYmadjpsIGfBQ78CV0uhpBYX69QNXIawFC1fLX6AD1ahJEcLRcWwzrG8MYvu7hyUBIWP023VKrBCW8F182G3b/A+i9kjOrg26BFX/kQ0RAU7INvboIDq+R7ox/0ux5GPAIh8b5cmVKqKSrLl9fDRc9BZZk8FtUOLvkfhCZKZoZJy2OVOiX8A6HNUNg2B1a8Wd1It9Mo6H+Db9emmgQNYKhDiisq+XNvfq1si0t6t2TpzvXM25TJmD4tfbc4pZR34a2g37XQfazUlpqPM7PBmiud+UsyJPgREn/iQZCSTPj8MsjdWf2YywGrPpB1nvW43JlRSqnjVZYvkw+KDkBYS8jZCvMfq71P/h6YPhHuWAbmIN+sU6nGwlYK1mwZ1W4OlqBfaOLR+1sAlBfBvL/Bth9qP75jPjjvhUs/gCAtI1HHTwMY6pAVu/Nwut30ahV+6LGWkYF0TQjlq1UHNIChVENnCT3+5xYdgK9ugAN/VD8W3wOunAaRySd23JrBi5r+fA8G3QwRrY//+Eqp5q04XUYz7loo34/6F6ya4nlfWzHsWQr9rqm/9SnV2Fhz4NdXYOXb4D7YBy8oCiZMg1YDj95bqywHts/xvG33z1JOqgEMdQK0iac6ZHVKAdEhZuLDAmo9fnqHGH7fnUteqc1HK1NKnVLlBfDd3bWDFyD1q19eKx9mjtfhvTlqqiyXnhhKKXU8bFZY+Ex18AIgrBXk7fL+nLQ/T/26lGrMts09WPpRo4l/WT58OhaKUo/+/PKi6rIRj9sLT3SFqpnTAIY6ZF1KIe1jQuo8PqhNFG43/Lw12werUkqdctZc2POL520Z62X78TpS9oafBfw1lVspdZysOdLEuKbSTIhs6/05Cb1P7ZqUasxKMmHpi563OSpg14KjHyMg7MS2K3UUGsBQALjdbjanF9M2tm7tfFigPx3jQ1i0XQMYSjVJ9tIjby8vOP5jR7SGCC9BjL6TtImnUur4VVqlp05Naz+Dwbd63t8/CDqcferXpVRj5XIcOcsia8vRjxEcA+29nGetT4cgnUKiTowGMBQA6UUVlNoctI7yfDe0V6sIlu3Kxek6QkqYUqpxCgiX5p/eBMUc/7HDWsC1M2UufBWDAXpcBsMfAv8A789VSqkjMYfIxIOaMjeCsxKG3Fl70khoAkz6Xpp8KqU8M1kgtrP37UmDj36MwEiZ+NNmeO3HW58G49+D4OgTW6Nq9rSJpwJgR2YJAEmRgR63d28RxterD7AprYjeSRH1uDKl1CkXHAs9r4AN0+tu63CObD8R0e1h0myw5kkTveBYuUMTEH705yqllDeh8TDoNlj2au3HFzwFwx6CO1dKw0C/AHndCU2UAKpSyrOQWDj7aZh+Vd1tgZEyHvVYhLeEKz6RMq/yAnlucAwEafBCnTgNYCgAdmaXEOBvJDrE8zjDDrEhWPyM/LkvXwMYSjU1llA49xkw+sGGL8DllIyMrhfDqMkQFHniPyMkXstFlFInl18AnHYXOO3w5wfyX5D09f43QESSBFCVUscu+TQY/Sos/AdUFMlj8d3h0g/lnDpWQVE6bUSdEhrAUADszS0jMTwQo5c7E34mI+1ig1m1L5+bh7Wr59UppU650AS48EUY/n+SJWEJlTuWJzKaVSmlTrWQODjrKRh8G1QUgzlIauwDNcNLqeMSGAl9r4WO50BZAfiZJXPiRLMxlTpJNIChANibayUu1HP2RZVO8aH8vjuvnlaklKp35mCIOkL3fqWUaojMgWBu4+tVKNV0mPwgPEm+lGpgtImnAmBfnpXE8CM302sfG0JOiY3Moop6WpVSSimllFJKKSU0gKGwOZxkFVUQF3b0AAbA+gOF9bAqpZRSSimllFKqmgYwFOmFFbiBWC8NPKtEBvkTEeTP5rSi+lmYUkoppZRSSil1kAYwFGkF5QDEHqUHhsFgoHVUEFsyiutjWUoppZRSSiml1CHaxFORVliGAYgONh913+SoIFbtLzj1i1JKeeashJJMsJeAX6DMVddJIUqppsyaC+X54HJBYIRMTVJKeed2Q0mGjEE1+utIU9WkaABDcaCgnKhgM36moyfkJEUF8f2GDEoqKgkN8K+H1SmlDrHmwrovYOmLMurUYIQuo+H8yRDeyterU0qpk8vlhKzN8N2dkLlRHotsC5e8Dq0Ggn+gb9enVENkK4E9S+DH/5MgBkDSYBjzBsR08u3alDoJtIREkVFUQXTI0bMvAFpFBgGwM7v0VC5JKXU4pxM2fAkLnpDgBYDbBVtnw4xroDTbt+tTSqmTrTAFppxfHbwAKNgLn46FvN0+W5ZSDVrGephxdXXwAiB1JUy5AApTfbcupU4SDWAoMosqiAw6tgBGy4hAjAbYkVlyilellKqlNB2WvOB5W/paKDpQv+tRSqlTyeWE9V+A3ep529L/gM3DNqWas7J8WPCk523WXNj3W/2uR6lTQAMYiowiKSE5FmY/I/FhAezSDAyl6pfNChWF3rdnb623pSil1ClXWQ77f/e+PW0V2PWziFK1VJZDxgbv2/csrrelKHWqaA8MRWZRBUPaRR/z/onhAezJ0Q8NStUr/wAw+UsTT0/CW9bvejwpyYKyXLCXQVA0hMSBJcTXq1JKNTYul7yORLT2vk9YC/A78vQ0pZokpwNKM6E0B3BBcByExoPJDEY/OTcKUzw/N6ZjvS5VqVNBMzCauZKKSqx25zFnYAC0iAhkV46mbSpVr4LjoOcVnrcFRUN0h/pdz+FytsMnF8Hbp8OH58Ab/WHBU9qbQyn11zgq4cAf8NG50OUi7/sNf1gmkijVnFSWw+5F8M5QeH8EvH8WvDUENn0LFSUSyBj2kOfnGk3QbWx9rlapU6LRBzAmT57MwIEDCQ0NJS4ujrFjx7J9+/Za+1x//fUYDIZaX0OGDPHRihuW7BIbwDH3wABIDA/kQEEZNofzVC1LKXU4cxCc9QQkn1H78eAYuHYWhPkwA6MoDaZeArk7qx9zu2DVh7DqI+9ZI0opdbjiVJg6Bgr2wfa5cN5zkn1WxWCE4Y9Cy/4+W6JSPlOwD76YAOUF1Y/ZS2HmbZC7Tb7vfCH0m1T7ef6BcOUXOrFMNQmNvoRkyZIl3HXXXQwcOBCHw8Hjjz/Oeeedx5YtWwgODj603/nnn8+UKVMOfW82H/sFe1OWVVwBQETQsY9ETQgPwOWG1PwyOsSFnqqlKaUOF9YCrvgESjIhZ4fcaYlsK48bDL5bV+52WZMny9+EPldDRFL9rkkp1ThtmQ0O+WzC2k8lC+OKTw++xrihzTAITQCLfv5QzYzDDivfkxsEnix9CS79SMo3z30WTr8HsjaBOQRiOst546fXP6rxa/QBjHnz5tX6fsqUKcTFxbF69WqGDx9+6HGLxUJCQkJ9L6/ByzmODIyEsAAA9uVqAEOpehccK18JPX29kmo5271vsxVXX4wopdSRuFyQvqb2Y9vmyFdwrFyIdTxfgxeqeXKUQ/Zm79tzd0JlmfSeCoyQL+15oZqgRl9CcriioiIAoqKiaj2+ePFi4uLi6NSpE7fccgvZ2VqXDZBdbCPQ30SAv+mYnxMZ5I/Fz8i+PO2DoVST4nLKHZ6/Kq6r920BEeAXeNxLUko1Aw6bBC+MRmg5wPM+1hwICNPGnar58g+SHhZ9roaO50rDzppiu8g+SjVxjT4Doya3282DDz7I0KFD6dGjx6HHL7jgAi6//HKSk5PZu3cvTz75JGeddRarV6/GYvH8Rmiz2bDZbIe+Ly4uPuXr94Ws4goi/0L5CIDBYCA+LEADGOqUaS7nX4NhzYW8XfDnB1JL2+tKSBokpSnHIrqT9OAoTqu77Yx7JW1VNQp67ql643bLpITtP8KeXyCiDfS/HrpeAoufl2aFhzvrSQg+9qlpjY2ef8orlxOKDkiGhTUHIpLhqi9g9Sew7QfZZ/jDOvlLNQtNKoBx9913s2HDBn777bdaj0+YMOHQn3v06MGAAQNITk5mzpw5jB8/3uOxJk+ezDPPPHNK19sQ5JbaCP+LAQyA+DALKXllp2BFSjWf869BsObCoudgdXWPILbPhdiucM03xzaeNbwFXPcdfDUJsg6mtxr9YOAt0PdaMDWpt5omTc89VW9ytsOU82s3I/zzPRj7Lty4EKZPkAs2AHMwnPM0tPKSndFE6PmnvMrcCB9fCPYaNw9XfQQXvy6NsntfCTGdfLc+peqRwe12u329iJPhnnvuYdasWSxdupS2bdsedf+OHTty88038+ijj3rc7ikKnpSURFFREWFhYSdt3b428f0VOF1u7j/nr73ofbZiPxvTilj6yMhTtDLVnDWX869BSP1Txp56cuaj0u3fdIwlZqU5UJYrd04DoyAkVi48VKOh556qF2X5MG2CjEs9nMkf7l4FJou8njgdknUR0vQbEOr5pzwqzYaPL4LcHXW3mUPgtqWSkaE3C1Qz0ej/pbvdbu655x5mzpzJ4sWLjyl4kZeXR2pqKomJiV73sVgsXstLmpKcEhvtYv96ullcmIX0zeU4nC78TE2ulYryseZy/tU7a5401TQYIShaggtrPva+/+qPof8NEOb9tbKWkFj5Uo2WnnuqXpTnew5egNxNztwIXS8+9teeJkLPP3VIZblkSLoqwV7mOXgBUvZZkgHR7et3fUr5UKMPYNx1111MmzaN7777jtDQUDIzZZRfeHg4gYGBlJaW8vTTT3PppZeSmJjIvn37eOyxx4iJiWHcuHE+Xr3v5Zba6Ns68i8/Ly40AIfLTVaJjZYR2qBPqQatskJGqf34sHT4N5qg82i48CWwlXp/nsMGNIkkPaVUQ+JyHnm7XXtsqWasKE1Goq6fJu/DV00/8v4O25G3K9XENPpb52+//TZFRUWMGDGCxMTEQ18zZswAwGQysXHjRsaMGUOnTp2YNGkSnTp1Yvny5YSGNu8xXJVOF4VllUQE/vUeGLGhcocgNV/7YCjV4OXtgo9GVY8ndDlh63cw/SroNcH787qMhoC/HuBUSqkjCoiAqHbet0d3kEwMpZqbkkz44krpS1UVmKgohJA4z/sbTUc+l5Rqghp9BsbRWngEBgYyf/78elpN45JvteMGwo8ngBFSHcAY0q7pdgRXqtGrKJYmnS5H3W1pqyE0EVr0hfS1tbcFhMOwB8GsGVZKqZMsNB4u/A98fhm4XbW39b0Gtv4AIfEQkeSb9SnlK3m7IXND7cf+/ABGPAY/3F93/+GPQrCWbqrmpdFnYKjjl1sqkd3jmUJi9jMSGeRPaoGHMWdKqYbDXgL7l3nfvuItuPJzOPdZaQIWHCt9L25dDJFH7ymklFLHxT8IrpwGHc6WnjzxPeCCFyG+O/z+qtx1Vqq52fdr3ccOrILUlXDFp9D2TAiKkhsPV02HQbfo6FTV7DT6DAx1/PJK7QCEBfz1AAZIGUmaBjCUatgMfnJxYCv2vD0wCsJawmn3QK8r5W5oYCT4B9TvOpVSzYvBALPukPGPXUbLZJI/P6huVuinr0GqGQr10rh2/Rew7ze4Ya6UjfgFSCBDqWZIAxjNWJ5VMjDCAo/vn0F0sIUDBdoDQ6kGLSQOTr8H5jzoeXu/a+W/RqOkdSulVH0IT5ILsRVv192WPBSCYup/TUr5WtvhYPTzXPbZ+UJ5T/fTSTWqedMARjOWV2on0N+Exc90XM+PCTGzNrXw5C5KKXVyGQxyd3PXItj+Q+3HL3gJIlqf2PFtpVBeIH8OipLRrEqp5svlgtJMuQDzs0gvC09CE2HiVzD1ErCVVD8e0RrGvAFB2kBYNUOhiXD9j5C/B/wDoXC/jDQPiISh92vwQik0gNGs5ZbaCTuOBp5VYkItZBZV4HS5MRkNJ3FlSqmTKjQeLnkNih+B3b+AJRTajZALi+OtnXW7ZbrJwqdh+48HAyWXwNlP6jx6pZqr0mzY8CUsewWsuTJN5NxnIfkMCIyova/RCIm94Y7fIW2tvJ607AuxXSCshU+Wr5TPVRTCnl8kM6miEOK6wfkvQEJ3PS+UOkgDGM1YbqmNsIDj/ycQE2LB4XKTXVJBYrhOKlCqQQuOka/E3kff11kp49v8AsHkJUOrcD98cE51oz03sGUm7FsCtyyGyGTvx7fmgtOuNbxKNSXWXFjwD1g/rfqxvF0wfSJc8gZ0Og+M/rXPeaNJMi5ONBNMqcasKmvJWQk/Pgw7a0xPzN4C0y6XhrdhLX23RqUaEA1gNGP5pTZCj7OBJ0gAAyC9UAMYSjUJ9lIo2A8r34P8XdBqkIw0jEgGU423C2clrP7E85SAsnzYMAOGPlQ3+FGWDynLYc0n0OFciGwjU0+C4yBc7ywp1ShZcyBri6S71wxe1LTwKTAHwe9vwFmPQ8v+0ixYqeauMBVKMqAsT86JmsGLmub9DVr2897kU6lmRMeoNmM5pXbCj7OBJ0gPDID0Qp1EolSDVlEsH5KKDoDd6nkfhw12LoB3zoA1H0u3899ehrdPh4y1hx2vCHbM8/7ztv8ItqLaj9mt8OeHMra177UybeDzy+C9M+Hz8TImzlF5Qr+mUqqeWXPh539CZTmYzHD5JzD0Qcn2qqksXxoTpq+Bzy6FDV9Bpc03a1aqocjZDj88IEF/DGAwwcCbweyhtLMwpXavGKWaMQ1gNGP5VvsJZWAEmf0IMps0gKFUQ+VyQc4O+PZWeK0nvNYbZt8H+Xvr7luaJSMN3e7ajzsqYObtUJJV/ZjJv249e00BEWA6rNFYaY4ERIY+CF/fCDnbqrdlb4WPL5SyFKVU41GYImNQt82Bj0bBV5MgdSWMeRPaDKu9r7HGDZOFT4E1C6WaraID8MP9MOQOKE6HGRNhyij584RPIaZT7f0NRinBUkppAKM5y7faCTuBAAZIGYkGMJRqoAr3wQdnwY65EphwOWDTV/DReXLhUVPBfrmL6kneLijPr/4+IBxOv9f7zz39HrAcNo2kKAU6nQ+bvpb+F4dz2OCP98DhYZtSqmGyW+G7u2DtVAl2AuxfBjOuhTPuldcKgKTBkLGu+nmV5dLwU6nm6sAqGPZ/8M1NkrXocsrX9h8lyH/+v6U5dpXOF9bNbFKqmdIARjNVbndSXukk7ARKSACigs2kF1WcpFUppU4ah026mHtKOS3Nhq3f1862cB6lfMPlrP19y/7Q+6q6+/W/wXOjUJMFYjpAxnrvPyN1Bdg1RVapRsHthoK9Mu7xcE47/PG+ZGeEJsDIx6WErCaT3k1WzVhpFuz8qXoMeU3lBbBrIbQ/S76PbAujnpcJYkopbeLZXOVZpfb0RDMwooLNmoGhVENUUSQfgLzZ+r30oggIk++j2kmKt8tRd9+wFnWnhYTEwXn/giG3w5Yf5E5R10sgvKXnySJhLeRubWgiZG32vKbwVjKZRCnVOOz+xfu2fb/BmY9A74kw+25pUlglJF4a+CrVXMV0grWfet++7zcY/jAMuh0SeugIVaVq0ABGM5VvlTTtsMATC2BEB5tZl+IheqyU8i2jn/Si8CYwSpruVQmJhbP/AQuerL2fwQCjX/Pc+Tw4Wr4S+xx9PaGJ0PF8ydzwFlg5/T4wB3veppRqWAwGCWR6Exgh2RkmC2RurH7czwKXf6zTFFTzFtXuKO/RkdB+pGZdKOWBlpA0U3lVAYyAE4thRYeYyS+rpKLSefSdlVL1JyhKelF4c9pd4F8j28EcDP2uheu+g+ShEJ4EXUbDrUugzRm1a3GPh8kPkgZBYl8Y+YQ0JKtiNEl6bGznE/sZSqn61fca79t6T5TzvWV/OOsp6HKRlJLcsQJaDTzx1xSlGrPQBBh8m/ftp9+twQulvNAMjGYqv1QCGCcyhQQgKlgmDWQWVdAmRu+cKtWgtBkK3cbBlpm1Hx98B8R2qbt/YCS0GyEZFQ6bBDUsHsa5HS//AIhuJ13Xe14KmZvkIia+h9zJ1ewLpRqX8NZw7j/rZm4lnwH9roOI1nKOD38InA4JZCqlJBOp1SDoMxHWTau9re+1EvxTSnmk7yTNVL7VTqC/CbPfiSXhRAdLCnpmsQYwlGpwQuLgvOfgtDtg249SMtJtDIS1hKBI78870ojUk8ESIl9R7U7tz1FKnVqB4dD/eug0CrbOhopi+XNEMkQk1d5XgxequbBbpVm2vRTMoQcD9EF19wuNl15Sg2+HLd/LY90ulgxIT72klFKABjCarTyr/YQnkIA08QTJwFBKNSAuF2Rvhm9vlZGpLfpKw84WfSCyja9Xp5RqKgxGyN8LaWvkgm3tp3LBNu49SOgpJWJKNRfFGfDzs7BxhkzvMvlDn2tgxN+kbORwQVHy5Wl6l1LKIw1gNFMFVvsJTyABCPA3EWwxkaEBDKUalqIUmHJB9RjVfb/Kf7fNgRt/gtaDPT/P5YLKMsnW8DN73kcp1bzZrdIo2M8Cudth+pW1xzKXF8DHF8LtyyCqre/WqVR9Ki+EVR9JtkX3cbB9ngT1Vk8BRwVc+JL2tVDqJNAmns1UntVOyAk28KwSHWwhs0hHqSrVoGz9vjp4cbhFz9adPe92Q8F++P11mH6VjD1MWyvjWJVSCqDoAKyZCtMnwtc3wJ4lkLcb8NCQ026FTd/UDmwo1VS53WDNAVcl5O6Q78e9A4Nule0bZkBpjm/XqFQToRkYzVSe1XZSMjBAykjSNQNDqYbDWQn7l3nfnrkJKsulaWeV3B3w4XlQUVj92IYZMGqyNOM7mc08lVKNT2EqfDIaCvZVP7ZtDvS4DEY+Boueq/uclN/BcXftiUdKNUU52+GjUbXfQzd9AyP+Dr0myPtpRYHXpyuljp1mYDRTeaV2Qk9SBkZkkFlLSJSqL7YSKMmUVFVvTP4Q42HKSJWIJPALgKI0yNgAuTthzoO1P3hV+ekxKM060VUrpRoTlxNKsuTcdzrBYYcVb9cOXlTZ9DVEdwRLWN1t0Z3l9Uippqy8AOY85Pk9dMkLMi71nKchKKa+V6ZUk6QZGM3UyeqBAZKBsSld08yVOqVspRJoWDJZMigi28CZj0JCL88TRfpMhOWvy4XI4c5/AVL/kDIRaw5M+Az2/Va9PSgKel8lx7ZbIXs7RLc/Zb+aUqoBKUqDjV9KqUhABPSeCJ3Ph/hucP5k2DIbUpbXfs6uhdDmDNg+t/oxgxH6T9ImnqrpqiiWHheOCrAd/BxsDoGgaCjLlfdPtwv2L4c9i+Wc6HEZhLf06bKVauw0gNEM2R0uSmyOkzKFBGSUam6JjUqnC3+TJvUoddK5XLB3Ccy4urqevDgNpl4Co56H/jfUHdEWkQQTPodvbpIPUSAfns78G5iD4ZOLqo9Vs0a9y2gYfAe4HVLv7rBBSKxc1OiHLqWatqI0+HQMBMfCef+EihJwOSTzojQL1n4OPcbL2MdZt0spGsg+fjXKRPyDYPx7dUepKtUUVJZD3i5Y9E9IWSnvkYPvhMReULhf3jvDk+S9d9E/JcBRnAYLnoL10+Hqr/X9VKkT4PMAhsvlYteuXWRnZ+NyuWptGz58uI9W1bQVlNkBCD2JGRhuILvERsuIwJNyTKVUDSUZ8P19npvhLXxagg7m5NqP+wdCh7PhzpVy8eEoh+gOckd1zkO1j5W/W7ItHBUw4EYozYTv760OfAB0ugAu+g+EtzoFv6BSqkHYtQDCWkkG1ze3yESiKp0vhBGPymjmpMFw3r+k9Ayg80XQagD0uVomk0S2gZAEnWSkmqb0dXIToCrD0c8Ckclyw6BmmVV0e2nkCbD4eflv9hbJeOw9oT5XrFST4tMAxooVK5g4cSL79+/HfdgHc4PBgNPpIfVZnbC8UglgnMwSEoDMonINYCj1Vzhscqdm6/fyoabNUGg3Qu7cGGp09S/Pl1IPT5x2KEyRD0+HM5nlDmjNu6Cl2ZC1sfZ+f34oqeElmWAwwaw75Lg17ZgLLfrAsIfBpCnhSjU55UWw7nM4+x/w6VhpBlzT9h8htgu0PVMywgbeBMExENMJ3JWSBdbxXJ8sXal6U5wOcx6oXZ459H746Ym6PWLydsPPz0rmY839130OXS7S5thKHSef5vvffvvtDBgwgE2bNpGfn09BQcGhr/z8fF8urUnLt1YFME5SE89DAQzbSTmeUs2C0yF1sW8NhoX/kA7ls++Bd4dDzrba+xqOEjAw/oVz2T8Iog7rZ1GUCn+8B8lnQPrqusGLKivf0YaeSjVVRiO0Pxsy1tcNXlRZ8zH0ukL+vO83uOA/UsK293fw0xsYqomzl0lGZPbW2o9HtpWbEJ6krwVqZ5hj8pOSTqXUcfFpBsbOnTv5+uuv6dChgy+X0ezkWSXQEBZ4cjIwgs0mLH5GMorKT8rxlGoWSjLgy2vrXiiUF0iK9rUz5e4mSFPNyDaeJwCYQ/5aWYd/kHRD7zNRmo+tnyF3U/cuBVux3F3yprwAStKlHCW8laTN/lV268FO7QZpdHY8x1BKnTzWXMniKsmShp0r3vC+b1m+vOYAWEJh36+w+iO4fZmWi6imyeUCa7ZkUDjK5Tzpey10OEcyJfN2SQ+YIzn8fX7QbXX7VimljplPw3+DBw9m165dvlxCs5RXasdsMmLxOzn/+w0GA9HBZrKKdZSqUsesMEUCBp5kboCyvOrvQxNg/Pu1m+SB3MEZ9y6Exh/bz7TmwuopMHUMfHkd/PQkJA2E0a+COVT6ZrQc4P35MR0hdSVMvxoyNoLDy11aT1wu+aA3+z74X394a4hknhSmHvsxlFInV2k2/P6GvN788Y7U9cceYQRzXFfJ2AIpeds6G66YKneglWpqSrLkvHh/JHx+Kez9Td6P7WXS7+LL66QENKJ17bLPmowmKees0uE8SOxTL8tXqqnyaQbGPffcw0MPPURmZiY9e/bE3792RkCvXr18tLKmLd9qJyzQD4O3F9vjEBlsJqNIAxhKHbNK65G3H37HJrEv3PG71M4e+BNiOksNekTr2h+OvP68CvjzA1g8ufqxsjxY+h8YeAvctQJC4sA/WI5ZmFL3GCP+DiHx0McBW2bJ7xDbWT7QgTQGLcmQiyK7FcISISgWAkKhcB+8fxZUHBw1V1kOK96G7fPg+h+0OahSvpC+DtoNhy8nVQdUAyLkfCw6UHf/M/8Gv/wLzrgfItrALb/I+W86ORmdSjUY1jz44UHY/oMEIQbfIQH/7K3Qczy0OxN+e1lKRNZPl/GoG7+qe5w+V0P+Hug4CgbdIg2zj/Wmg1LKI58GMC699FIAbrzxxkOPGQwG3G63NvE8hfKsdsJPUvlIlcggDWAo9ZdEtZc7Np4miwRFQ2Bk7cf8/KWj+cjHZVqIySJ1tMeqNEs+bHmy+iM47U4JhMR0gGtmwtxHYM8iWV9IPJz1pPz303HVPTKW/w/iusHVX0FoC8kc+eJKCWKAZIgMvAWGPQi/v1kdvKipYK+Ur/SZeOy/i1LqxNlK4cBKqCiunQ320xMyOeHXl2HPL/JYaCIM/z8oL4QJn0JwnJS2KdVUlaRL8MJggDFvwe5fYOFT1e/ZEckymWve36WH1FXT5b179cfyHu0fCINuhSF3SRB/wE3gH3DEH6mUOjY+DWDs3bvXlz++2cortRFykhp4VokKNrN6f8FJPaZSTVpwnNzRWfFW3W3nv1Cd1XA4o+lgszwPgY8jKcuTqSeeuJySNRHVTr6P6QCXT5GpJIUpMgElIhk+G1e3wWf2Flj0HIz4G3xyce0LIbcL/ngXotp4n6ICsPFr6D5W+nOciKIDkLlRvuK6SppueCvvqb1KNWcuJ/S4XFLhaypOk6BG0mAYdLPsZyuBVR9B2mo4/V4Y9pBv1qxUfdm/XP7b6QLI3AQbptfeXrhfJnZd8BJ8fYOUk9z+m4wid7ulx0VIvPZ5UuoU8GkAIznZw9g/dcrlWe2EWU5uBkbUwR4YLpcbo1EvFpQ6qoBQuQhI6AlLX5JAQXwPOOcZaNlPAhWHs+ZC7k65kHBUQO8rJQMiIEzu/ByJ/2ETAsJaQO+roNUgyfYw+Us/itBEabJZ1Wgzfa3U+PaZ6D0Akr4GUlZ47+nx68twwQuw9TvP2y2hYDjK21FJpvz+DhsER0sAqGYTtJzt8MloCcRUCYyE6+dAfPcjH1up5sTllICiNQdydkgmRbcxMPh28A8Bf4s07I3vJvtv+BK2/VD9/NVTYODNEBjhk+UrdcqVZMrY8Gu/k1LI3700trXmSrlkSJxMC9v/O7TsK+/lSqlTxqcBjCpbtmwhJSUFu732nb1LLrnERytq2nJLbfRsGX5SjxkVbMbhcpNfZicmRKPNSh2T4BgJDLQ/W7qY+wXIxbkn1hyY/0Ttu0BbZ0OLfjDyMbCEQUIPMAd7fn5QjGQl5O6Ace/Jz1r5LmybA0mDoPs4WPg0dL4AWvSHuf8n4xTbDIMLXoS9i73/HkExdUe/Hr72iDbet59xn3R5z98jHxxjO0tJSkis3MnK3gIzrpHtIKUuZ9wnF1zBMRK0+GpS7eAFyEXY9Ilw4zwJzCjV3FlzJVOpJBPWT5O6/Qv/K4HB7T9CYi+Y85BkYYAEPk+/R147lr4kj9lKvI9ZVaox8/Z+M/AmGPU8zH+s7nMK90tAvdP5sP4L+P01mDRH+1wodQr5NICxZ88exo0bx8aNGw/1vgAONZfUHhinRn6pnbCAk5+BAZBZVKEBDKX+qmP5oJO9tW4KK0j2Q9oq2L0Izn4a2pzh+fkhsXD5VMmS2DAd/ni/elvONinjuHwKzD6YHn7G/ZIF8sP9kmJ+6Qew+N+ej+12SZNRb8JbSWCmzTAZu3jo8SQY/qh8QHx3eO3JK60Gy3rcTvj4IglGVHHa5WIqvBX0myQXZdlbPf/sgn1QmqMBDKVKcyHtT7lb7HZJ4HHRP2Ws8tc3wBWfwlfXQ2VZ9XMqy2HJi3Dxa9KDJ2+3ZGwcntGlVFNQlOr5/WbF23KetBooTbRrim4vY87ju8Ov/5HHynI1gKHUKeTTMar33Xcfbdu2JSsri6CgIDZv3szSpUsZMGAAixcv9uXSmiybw0mJzUHYSW7iWTOAoZQ6AmuO3OHZ9xtkb5NO50fjsEuTMG82fg2dL5LGm0fqNREYIRcnNYMXVSrLpNSj//Ww7DUJdCz6J1zyhtyNdTmh9Wmej3v6PdCqPwTHet4+8gn5gHfZhzDpBxj2MNy8CEa/IutNWw0X/kf2qXJgpfQHObCq9ofJmhb/W+4kO47yulNZfuTtSjUHxWlSy2/0h99fh1UfyoSExf+Wi6+01bWDFzWtfBf6Xit/HvZ/3nv0KNWYpa32/n6z8l3oe03tx8KTIL4nJJ8Gs26vfrxSPwsrdSr5NANj+fLlLFq0iNjYWIxGI0ajkaFDhzJ58mTuvfde1q5d68vlNUn5VinTCQ88uf/rwwP8MRkNZBTri7ZSXhWmSKOv9BqvbclDYfx7EN7S+/PcTu8XFiAX6CZ/yNokkwWqAgll+TJ9pKIYAsKlTGX/796Pk7oSTrtbLnQCI6XfRtpqSD4Dlr0K5z4L66bBhhkSNGg9BM54QJp+BoRLv4mvb4CszXI8/yAZu9jpPPk+JB4CIuUO8L5fJXgR1x2KD8Cv/4XRL8MPD0hJS0wnGeeYsd77eksy5O5YUJQ0SvPUo8Nokp+nVHNmt0qfmJ6Xg71EyrSyt0jj3swN0gMjb5f35+ftkoynYf8nZSeeevQo1Zg5bDJW2JuSjNrTwVr0k8ykTV/Bb69WP27y914KqpQ6KXwawHA6nYSEhAAQExNDeno6nTt3Jjk5me3bt/tyaU1WXqkEME52CYnRaCAqyExmkd7pVMoja66kZ6cfFpjd/xt8fy9c+qH3pnj+gdJwc9fPnrd3PFeCDyYzGA++rBemwMzbYf8y+T6um4x0Mxwl8c5gkGBEVVbDlu/krlPmRvjzQ/mQd8230msja5MESNwOafTX/wa47ruDzTYrpLFozS7sDrtknky/qnbWRNJgOP95aRZ62RTJNtn0rXxAbHem97WGJsqHxcBIOP0+WPpi3X0G3uI9M0Sp5qIsX4KkC5+GnK0Q1RbGvFl9bhQdgA5ne39+dAcZ/bx7sYw97nS+NCJWqimwWyFtjbxPehOaINO4rpgq78nBcdK7aev3tfc77R7ZppQ6ZXxaQtKjRw82bNgAwODBg3nxxRdZtmwZzz77LO3atTumY0yePJmBAwcSGhpKXFwcY8eOrRP8cLvdPP3007Ro0YLAwEBGjBjB5s2bT/rv0xjklsodypNdQgJSRpJZ5GVKgVLNXVWphCe7FkrN7JEkny5ZCYermiCwbQ70ulLq2q258NUN1cELqG6816KP95/RZqgEWPpeI2UpILXyGKTJ5/Y50HYorPkY3h0mI+Rm3y2BmZB4eY5foDT8a9EXIlrXHiFXkg7Tr6xb8pG6Uu58db4QppwvGR4526TJoDm49l2vms58VIIY/oEw+DYpQ6nKtgiKhvOekzvGlpAj/tUq1aSVF8prwScXwZaZcm5tnyuNCnN2wICb5bWp1UDvo4wH3wbf3gLrPoNvb4ZcvcmkmpDidHmPTOjp/f1m6IMw92HJokxZLu+NAZFQUSTbg2Ol4fVpd9aekKWUOul8GsB44okncLlcADz33HPs37+fYcOG8eOPP/L6668f0zGWLFnCXXfdxYoVK1iwYAEOh4PzzjsPq9V6aJ8XX3yRl19+mTfeeIM///yThIQEzj33XEpKSk7J79WQ5Z6iDAyAiCB/0gs1A0Mpj7zV1VaxHeX1KKwlXDtLSjJCE+UCvc9EydyY+4ikgp/5CJgDZRpH2qraz281QIIgOxfCkDvqHt8SBiMeg+IMCT7sWiCPd7lYJn3sXyY9KirLYf1hzUQdNpjzIMR2lDtS3qSs8D6KNTgOfnqi7nSDX/4F496FyLbVj5n8pdFo14slYwRkjQNugluXwL1r4bZfYcid0rxUqebMmgPz/y4TFg43/+8w4AYJFC55UcrZwlpUb/cLgOEPS4ZGzRKTJS8c/TVLqcaiNFveV1NXen6/GXybTPmylcq23hPlPbhFH7ht6cH3nKWa8adUPfFpCcmoUaMO/bldu3Zs2bKF/Px8IiMjD00iOZp58+bV+n7KlCnExcWxevVqhg8fjtvt5tVXX+Xxxx9n/PjxAHzyySfEx8czbdo0brvttpP3CzUCuaU2gi0mzH4nP3YVHWxma6Z+oFHKo6Aj1MQajGA5htHG4S1h+CPQ71oJJORsh12L4Px/Sy+JsIOTNkqzaj+v5+USlJj3N8muyN8rU0U2fiUXN0lDpHlnWZ6kyc68XS52IpKhz1Ww7HXJhjjvOVj9see1uV2wZzHEdoFVH0PeTikNadlPaudBLoK8CU2QEa+Hy94Kcx+V0hKTv2RvBMdIwOPwu1xGY+2LL6WU3CEuy/e8zV4KRSkygWTHPNj0DVz0smRyOcqlme/66XXT5HO2g70MLFpGohoxp10aQf/2X2g5QDIZ7aXSmDo0UfpGmcywZRb8/E84+ykpp7JEQmiMHCPsCP2rlFKnhE8DGFV27drF7t27GT58OFFRUYfGqR6PoiJJ5YqKigJg7969ZGZmct555x3ax2KxcOaZZ/L77797DWDYbDZstuo7hcXFxce9poYkt8RGRKD5lBw7OsRCZlEObrf7mANQSnnSJM+/4FhoNxL2/FJ3W/dxx54pYDJVBwRiOkLX0RJscNcYO12zaaXRBL2ugGlXyH4Go6S4FqRIYCOyrezjckvzzd2LpMFfj8ukNOXHh2H3wd4bQdHSyMybojT48wPZx26VKQdVzT2jO3ifYgLyIdGbgr3S6LPrxUf/+1EnpEmee81ZSY5ckB2JKUAypzpfKBdjRQcgrgssfBb+9DL9KKaTpsmfAnr+1SOnA3J3SQnnrp+hZX95fyzYB3Meqrt/8hlyo8BkhkAN3CnlSz4tIcnLy+Pss8+mU6dOXHjhhWRkyAfjm2++mYce8vDicRRut5sHH3yQoUOH0qNHDwAyMzMBiI+vPY85Pj7+0DZPJk+eTHh4+KGvpKSkv7yehiin1EbYSZ5AUiUq2Ex5pZPicscpOb5qPprk+RcUJU3zOl9YXfZgMEoQ4bx/Hd+dzPJCmdIx5yH4chJs/lYuPszB8mEMJLtiz5Lq9PG9S2DaBPjzfWmWOesO2f+zsbBmqjQE7Xox7F8ufTlG/l3KU4Y/LP+99EOY+KWUcPgHVq8lJF7uWoW1lDuzgZEw/n0Jzsy6S+4AR7eH2K6ef5fgWO8N1Ix+ENNZ0nePl9Mpfze5O6EwtW6pigKa6LnXXBWmQnGqpMd7S2u3hElm0/zHJFBpL5PghCUUBt3sfdrImY9q9sUpoOdfPSrLk2DEyrfl+10L5YaAN70PNp82mmr3dlJK1TufBjAeeOAB/P39SUlJISioOpI/YcKEOqUhx+Luu+9mw4YNfPHFF3W2HZ4RcLQsgb///e8UFRUd+kpNTf3L62mIckpsp6T/BUgAAyCjWPtgqBPTVM8/wlvC2Hfg7lXSq+Ge1TD61erSj7+ioljKOb64Si4kOp4HMV2kTj1zI4x+BS75n/xMTw1Cc3dA6h+yf95uyZrI3ABLX4LF/4ZdP0kj0EobTPgcDqyCj0bBF1dKNkfGOinr8A+UD3Pj3oWvb5R+HNt+gLWfSZNAkwXiu1eXp1z9FfS8onpaSngruPxjySYZ86bU3B/uzEek5n7BU3Ix9leVZsPyN+CdofDGAHj7dFj6n7qlNqrpnnvNTd5uGWnsdsGKt+G8f9YNRhgMcMELcr52Oh+6XyqjVavKsCKSJVhZs/zNEgrj3pNSMXXS6flXT1xOyUxyOeS9CWQKSWwXz4H0lgOkB0ZQtPZVUqoB8GkJyU8//cT8+fNp1apVrcc7duzI/v37/9Kx7rnnHmbPns3SpUtrHS8hIQGQTIzExOqLhOzs7DpZGTVZLBYslqYXYc0psdE2JviUHDu6KoBRWEGXhLBT8jNU89BUzz8AAsPl60SVZEBlGZz1BKz5BHpeBuu/kKyKqikfLfvBuPdl3OnhjTertD5NghOeFKfJWuc9KqMTa9r1M2CAwXdIAGPjl1Do4XV72aswcUZ1886IJLj4VVm30w7mkOoATkIvuGOZjGtNXQGhLaT8Zf/vsOngVJTASLn763eMpXD2Mlj+pqyjiq0Ylvxbap9HPad3kmto0udec1GYCqs+kqypjPVykbZlNlw1XXpc5OyQMao9L5deF/E9pH9N6ko534wH7235B0jZ222/Sq8ct0syOUITJGtDnXR6/tWD0my5AbDhS3BVynvgnsWybfa9EvwvSpV+GAYj9Luuuj/GaXf6dOlKKeHTDAyr1Vor86JKbm7uMb+Au91u7r77br799lsWLVpE27Zta21v27YtCQkJLFiw4NBjdrudJUuWcPrpp5/YL9AI5ZTYiAw6NT0wIoLMGA2QUVRx9J2VUt5VVsjFddWdIU9ydkigYtYdEN1Jelf8/nrtEaVpa+DTMdLTIsrDaGqDEc56EtZO9f5zXI66wYsquxZC97FyIVQ1dtWTlBVy4ZO/B5a9ASvfkSaffgG1s09MftIro/fV0Ga4BCtm3yP7V1n5zl/LnLDmwIq3PG9bO/X4MjqUaqhKs2WMcpthMvZ02Wsw9AHY/iPMuFZKp9oOl2yMxf+WHjX5eyQokbez7vGMJsniatFHAqIRSRq8UI2XNU8CETvmwtIXZCT44Nurs5MqCiVzaeNX0OFsyQpsNxJmTJTx4Fo6olSD4NMAxvDhw5k6tfqDs8FgwOVy8dJLLzFy5MhjOsZdd93FZ599xrRp0wgNDSUzM5PMzEzKy8sPHfP+++/n+eefZ+bMmWzatInrr7+eoKAgJk6ceEp+r4bK7nBRWF5JRNCp+fBhMhqICjaTUaQlJEodF6dDSjrm/Q0+PA8+HScfpDxdZIclwu//kz93HyPBC0+KDkD2NpjwKXQfX33xkdBLSjeCor2PQzQYjt53In+vTDlw2r3v43JIUKYwFZIHg80KOxdA+lpJdT9c+irJmFj7qRy7JnupZJ4cq7I872tzuyTAoVRTUZotPW2yN8u5U7gfts+RqUNRbSUDY+XbUvs/9i25kPtqkgQ7Nn4l042UaqoKU2S6SFVGXlm+ZCtd/gkk9pHHjH4S8O82Tm4QlOVLplKLPj5atFLqcD4tIXnppZcYMWIEq1atwm6388gjj7B582by8/NZtmzZMR3j7bel+c6IESNqPT5lyhSuv/56AB555BHKy8u58847KSgoYPDgwfz000+EhjavtOHcUknhPlUBDJA+GOmFmoGh1HHJ2wkfnC0TPEAuPr65WT5IXfQfGR9apThdLsABMMhdV2+yN0sQwRwENy+SIEB4K/kQt+83OON+WDy57vN6Xem9iV8V/wDppdFmGOz71fM+nS+Cov0yivHP96sfX/mO9O4Y/Ur1ZBWQLAxvzMHg/xemH9RsNOrteEo1ZnYrlOZIoM7PIneRc7ZXb9/4tQQL+98A4UmAW6YPGUzSq6ZKVPujny9KNTaV5ZLR6CiHXQsgsXft98udP8m47gE3SLZSSAJkbZTgvMEgmYGXfyxZSkqpBsGnGRjdunVjw4YNDBo0iHPPPRer1cr48eNZu3Yt7du3P6ZjuN1uj19VwQuQLIynn36ajIwMKioqWLJkyaEpJc1JdklVAOPUlJAARAaZSS/UOzhK/WUVRfDTE9XBi5q2zJSa3JpqNrssL5BpAt7EdoH102DzTLnAiesKEa3hzL/JuNROo+CCl2SSCEhWxrCHoM0ZsPdXCU540uFsCV7sWSTTSjyl17YbKf0vrLm1gxdVdv4kU1JqimpXO6BR0+Dbq9d5LIJiJNvEk6h23qczKNUYlGRKQ9r83fDrK5LFlbW5biPCvN3y+vLVJPj5WcnEKiuQZr5VznpCpiUp1VSU5sAvk+HNQbDuC5nGVVEspVM1FaXKefHVJMjZKtOyfvo7DLxF3m80eKFUg+LTDAyQJpvPPPOMr5fRLGQXS2ZEROCpy8CIDrGwOb3o6DsqpWqrKJYxht5smwst+lZ/H9tZAgYOm6R+D7hB6t0PFxgpAYwBN8Lp90rWhutg5obDBj88AC47nHaPTAjxC4CSLMnSwAU7FsDwR+ROVM1eGO1GwqBbZVLJ2U/Bqilw5TRJx923DAIjYMBN0GU0/Pay9zIVkB4VnUZVZ5iEtYBrv4Mvr5E7YyD9OvpeJwGMY23gCdIx/vIpMHWMlNMcejwOrvxCP5iqxstulQa33S4BawGc+TCU58v0kFaDYPHz1c1zaxr6oFzI/fyUfO8fCCP+Lj0ulGoqnJWwegr8/hoEx0G/68FdCRUl8t619KW6zwmMhNZD4OdnoN1Z0GqAvJcppRoUnwcwKioq2LBhA9nZ2biqPlQfdMkll/hoVU1TVokNk9FA2CkMYMSEmMksqjjqmFql1GEMBknpdjs8b/czy+i38kK5mA+KgYv/BzNvhZ3zq5tpbvpaLk7g4IjSqbB3CSx6rrp3RIt+MP5d+P0tGHiTdGLP2yXlIvP+LlM6QC5szvwb7JwnzT7tVskU8Q+QySVf3QAJPeVu1savYPtc6DUBzn1WAiBxPaRBoMksae3eVBRKiUtNMR3gutmSuVFZBoFREow4nokh0R3gpgVytzl7K8R0kgCQtywPpRqDkky5QIvpJOUhX14j2RcAyafDZR/D7Lukhh/k/D7tXkgaLK8h5/5TGuIajBLcC4z02a+i1ElXkim9oTqcB+f/C7b/AL88D06bNOfscSls/rb6/TKsJUz4DLK2w8jHISBCmtYqpRocnwYw5s2bx3XXXUdubt3abYPBgNPp9MGqmq6sogoig/wxnsLAQnSwBZvDRUFZJVHBp65URakmJyASuo2tHhd6uE7nyTjQDTMkgNB7ogQPblkkY0fXTZOLmDPuk9rdoGhJB09fD/Mfq32s9DWSkXD5J9IIdOd8uOJT+OLKGn01kNrhhf+Q+t9vbpS7tP5BsPI9MADj3pFgx5yHZH97Kaz6sPr55z4LSUOk/r7zBdWj6g7X/hz5sHi4kDj5OhnCWshXuxEn53hK+VJpNnw5Sfra9JogkxNqloPs/10CjuM/kMBFZTlEtoFKmwQsv75RxhF/fYPsf91sn/waSp0ylVbJRDr7SXkfXPBU9bbv7pZsvolfSgDPHCLBcXOYNPM0+rTCXil1FD49Q++++24uv/xyMjIycLlctb40eHHyZRVXnLIRqlWiQ+T42gdDqb/IEiw16J76O5x+L2z7ERY8CW4n9LlGLuxtxYARhj0owYu1n8G7wyUr45PRkiWx8Km6xwPpm+FywNbZ0OkC2DKrdvCiptWfSCPO/culdGTCZzDhc2g5QIIX3qaChLWQC6ySDIjvLt3fD2cOhjPukaCMUurYFKdLo8Ez/yZlX2c9ISVcIx+vDvplrIdpl0sG1PI3JXuqaD/Mf1xS43fMlf1aDZaMJKWaEv9gOO85KV8MipIg/di3JAPR7ZLSxc8vhx0/waaZ4LBLw04NXijV4Pk0AyM7O5sHH3yQ+Pi/0JBNHbfM+ghgHMy6SCssp0fL8KPsrZSqJaot3PwzbP9RJnYExcCQ22V2/YyJMrGj95Ww8BmZUAIQ0xFGvwbRHSFjraSTl2TKHVdLqKSIH85kloyIA2vk+9AEudjxpmCv3MUKb127HjgoCvpcC6s+qPucsJZgDpU7X2PelNGwY96AtZ/Dtu8leNLhXMnSiGx73H9lSjVL+Xth0C0SHFzwpGRVFKZI886xb8OPD0v5lsspo5CHPywNPnctlODH8IelvOTcf0rpmfaCUU2NyQyOCikjydsl72PBcTDyMdjfCdZPl/1yt8PFrwFGGU+ulGrwfBrAuOyyy1i8ePExTxxRJyazqIK2Mad2ZGBYoD/+JgMZmoGh1PGJSJIGY32urp4U8NUkKd0YdIuUebhqZKjl7oTPxsl41IvfgPxdcofJ5ZA7TwER1f0njCa5cEnsLWMWA8MkhTZ9ndyBTVnueU1x3SCmM1hCaj/uHwhn/p8ESbZ9X/14VDtJXS8+AHPulykgV34hE0s6nCtjWy0hMgEk4AjTU5RSdZUVQFQbOXccFdKgtyxXztPCFPj+Pjj/3zDjGnkNiWwjI5r3L5NMquEPy+M3zJMLOr3jrJoap0NKSMrzoc1Q6fuS0AN2/wKz75FsjN2LpBQrsQ8UZ0Nid1+vWil1jHwawHjjjTe4/PLL+fXXX+nZsyf+/rWbS957770+WlnTlFFUwYA2p3ZEmtFgICbEQpoGMJQ6fgZDjWCBW2p0u4+VPhcuD+V1DptM/2g/QhpTbpghz+lzNVz2EXx+maTMXvI/2DYHFv+7+rlGPzh/MnQ4C9Z9Lp3bD1/L0AfqBi+qhCbCmP9JGUthysGxpG6ZgLBroeyTtlqak/adeGJ/L0o1d6U5kLpSMq5s+2HW7ZJtVaX1ELjgBTkXYzpC8lAJckR3kKkK5kDfrV2p+mAvl6D6lu9kmkhVk06AftdJ1tHKd+T9cfmbktUYHCvljEqpRsGnAYxp06Yxf/58AgMDWbx4ca2pFQaDQQMYJ1FJRSWlNsehEo9TKTrETHphxSn/OUo1aeVFYC+RAEPf6+Tu6qJnve+fuUH6TMx5sPqxNZ/Ih7MrPoNlr0BRmgQwanI5YO4jcN33MO49+OlxSTEHaQR69lNQmnHktQZGgilVLqYcFbU/MIL09bBopoVSJ6wsV9LhYzpIr5vDx6SmrIDYrhDXBfrfCHFdIXOj9LzQ4IVq6hx2KRWxFcPCp+tuXzMVLn5d+sHEdYVrvoXo9lJuopRqNHwawHjiiSd49tln+dvf/oZRUxhPqYwiCSjEhFhO+c+KDrZwoNBLUz+lGpOKYrDmyAWAn0U+8ITES+nEqeKohLwdMP8J2PuL9Jjofx1kbJTsirxdnp8X0VruzB5u/XToNk76T3x2mefnut2wawEExsD49+XDXFmeNAd0uyBry5HX7HbLFJWLXpEpKrt/rh3EOPefnht4KqWOzm6V1yLcMmq57XBp0Ht48KLKhhlw3XfynOJ0mU7S5cJ6XbJS9a4wBfJ2S7D8j/e977f2U+hzFbQYIH2aNHihVKPj0wCG3W5nwoQJGryoB1VTQaqmhJxKMSFmNqcXnfKfo9QpVZYHy9+C3/5bfTFu8oeL/wddL/ZeUlFDVnEFZXYH/iYj0cFmAs3H8JKbvwveHykXJ22GQYs+8OG50tDz/MneR5H2urJ6JOLh/ngPRvzNc0PPKsXpcoz5j8GeX6of7zdJSkiO9Lyts6WExVkJXS6GIXdKHb7BKE06242QUhSl1F9TsA9naS7ZhhjsphBaUonfkn9LRpY3lWUSZC3cL3X/Hc+RLCmlmqqCvbBnKe4Df2LwD5Dmtt6UZkNiXzAZISS6/taolDppfBo5mDRpEjNmzPDlEpqN9MIKjAaICPI/+s4nKCbEQm6pnYpKHYWrGrHUP+HX/9TOJHBWSplEwb4jPrW4vJK5GzMY/9bvjPzPEs76zxL+MXvz0Zvb2kph0XPVd1YH3ixpsG63ZIJkbJAGfMYagRCTGS58CQ6sBHup5+PaS8DlglYDvf/sdiOlvGTQzbUf3zDd+3jV4gz44iqY+6g0Bc3fA7+/BrPvljvAN/0kvTtqTi45EocNClIge5vcTfN2h1mp5qDoAPklZUzdFcBFU3Yyc/V+eT1I/UOywbyJbCuZWt/cDN/eKg0NlWqqyotx712OIzwZw9pP5b2o1QDv+7caKO9JQTHS2Fop1ej4NAPD6XTy4osvMn/+fHr16lWniefLL7/so5U1PakFZcSEWPCrh2yXqjKVjHqYeqLUKVFWAEtf9L79j/fhov9IRoYHv+/O5Y7P1xz63u508eWqA2zNKOaj6wcRG+qllMtWVDvDwmCUWt5DB34delwKV06TUakhcTI9JH29TCPxpu2ZgEsyI1J+r9ujIjRRjhMcDft/lxT1vUtlm8NWO5DgsIPbKXd4U1dCxrq6P684HdZ9IVkfx6okC5a/AX++L00J/YNg0G0w5A4I1VHbqvmx5R/g051hvLJIRiaf184Pv68WyPnrtENsF8jZVveJw/8Plv5H/pyzTTKwznrC6+uVUo1aeT4Fbc4j/Kf75Pt9v8IZ98Hqj6XXRU0ms2QUhiTKmHGlVKPk0wyMjRs30rdvX4xGI5s2bWLt2rWHvtatW+fLpTU5BwrK66X/BXDo4uxAgfbBUI2U03bkFNTCfXIB4UFWcQXPzdnqcdvGtGJS8mucFw4bFOyHHT/B5pnSPf1oY0U3fQPTroCfn4awVjKytGU/6DUBgjxMGQpNhG5jJIti41fSqDO6g2wzGKD92dIfY88SCRps/Bq6jK5+vskM5iCZfrBnCXxzI8y4WvazhHpPTd/4pTQcPBa2Elj0TwnQVE1UqCyTxqOLJ0tmilLNictBtimet3/df+gho8tRHXz86Uk47zk5t6syssJawuhXpaFv1qbqY635RDK4lGpq7GW4Tf7syCzGVBXsd7thwVNw6QfQ+rTqfRN6wqQfIKYTBJ/aiXxKqVPLpxkYv/zyy9F3Ag4cOECLFi20V8YJSM0v837X9ySLDjZjANIKdJSqaqTMIdCyf/U0jsO1GQZ+nht5ltmdHDjCv/21KQX0T46UC/Xdi+DrG2VyB8i8+r7XwZKDY05dDgiIgIpCzwcLOhg8iEyW9UyaA8tehS2zpNlft0sksPHd3TDqeakTXvoSDLpFAhsGI6QslzWMeRPy9kjgwK/Ga0W/SWAKgPl/lwBIlV0/yx3gsW9JGcnhTH4S5Ck6ID8nJN57um5pjoxw9fgXNhXOuPeYeo40GrZSsGZD/l5plBrRWv5/mHz6lqwaEoOJIqeZisrq8q19pSa6RLaV87i8AL68Vs7vyz+WAGVMZ1jwBOxcUPtYlWV1s66UauyK06EwlbLgJL7fbqVTm9FEVWUOZm2GWXdC/0lw2l24AyIxhMRBbCffrlkpdVI0iohAt27d2Ldvn6+X0ahVlZDUBz+TkegQM2lHq/dXqqGyhMCZj8qFd51todDjMvASUPU3GbD4eX9pjQ8LkD8UHYAZ11QHLwD2/Qbx3SBpiHz/x3vSBPPwBpgGI4x5u/Zkj9A4iGovY08vnQIXvwouJ0ybIGUes26H856X2vi5j8KX18nPX/4mxPeA4BhY9QF0OFvGrQ65A0a/Ln8PeTtrBy+q5GyD/csPlqgcpt/1sOlb+OYmeP8sWPa6lIl4Up7nvc+Gywll+Z63NUbWXPj1v/C//vDZePj4Qnj7NNi7GCp1/LRC0t7zdxNort10++XlReSc+Xz160FluaTJz7gG1n8BqSsgoVfd43U8HwLCT/26laoPbrdMBpt9L7hd+LvtlFVUkB47FMKTqvez5kgp1Xd34wpJkLHgSqkmoVEEMNx65+CElNoc5JXaSQgPqLefGR1iOeJdaKUavOgO0ogyql31Y4m94Ya5EJHk9WkxIRYu7dfK4zaLn5E+SRHyzcavPF+0z7wd+t8gqa6JfaXXxC2L5U5rYh/oebnMrg8Ml7uwNflbDgZGJkrzvo1fVZe6FKbItJAb50PyGRIECY6VeuDznpO7tgX7pUlo0mBJs7UXy/FWfeT972nzTOh8QfX3RpOMU201QMpwWg6A0S9DRYFMJrHm1T2G/1F65ZibUC+dvUvht5dr/7+3lUigqSjVd+tSDUNJJvz4MKx8jyi/CvomVQcedmSV8vK2KLIu+w5Xq4FyDocmSpCx21iY8xC06Fv7eP5B0v+iKWUwqeat6ACs/QzOeRpMZsz7l3B9z0BumpXBrou+pLzPjfKeYTJj63opZZN+whTeQno8KaWaBM1XbQb25VoBSAirvwBGTIiF1HztgaEaMf9AaWZ5wzwJFBhN0u8hOOaITwvwN3HP2R3YnF7E+gPVDcQsfkamXD+Q+DCL3EHy1nSzsgx+uA/uXQfDH4KKYijLkZKQ9mfJRe70q+Tu6+A7pFFmzSkf6evkv5FtJUskf2/1xfIf70qw4bS7pVbeaZfshl8mQ0Ao3LwAyotg/TTI3iqlDUlDpCeIN06b9ODoeK40+Dz7KWnGOafG6NXlb0gpSst+EtSo+UGyoljujHU8D3b+VPf4Cb2O+nfeaJTmwJIXPG9zOaS/yV9pfKqaFocNfn8DOl0AbieRmz7m1Yuv4+ov7IduCHyxLo81GSFMu+Idoku2y2jkDTOq/10FxUgvDHspdBwFZz4irwVKNRW5O2Hw7RIQNwdD2+G0yf6WmweM5sKp+7i425VcesGNmIyQU2HkNP8ogsxBvl61Uuok0gBGM7A/TwIJ9RnAiA2xsHzPMTbwU6ohC43/y1MwEsMD+WDSAA4UlLM2pZD4MAu9WkUQH2bB7HewD0S7kbD5Wy8H6APl+TB1jAQbNn0tKbOHW/k2DLyxdgAjsTdc/ZWMknM5IL679NpY8yn0uQZCE2RbcZpkPrgq4bQ75cLHXg6fXCTjYgGyt0gg46wnZMSqJ50vhPXT5aIpNBHydktWxuHWfALj35ffI6GHlKns/gXWfw5GfxhwE/S8AmbfVT31JLINXPGJZIo0Ba7KI2dZZG+Rcbfa76l5Ks2SwGl8N8mW2r+M5Py9fH31k+wpMbE1u5y20UF0Zi9RMydC7vbaz4/rBtHt4ZZFErQMCG9a2UtKgbyH7ZgHfa+WmwsxnQmf9zeu6l3IOddezx8ZDnbl2xnS0kxn6yoiKvsBTeQ9RCkFaACjWdiTU0qIxY+QgPr73x0baiG72Ibd4cJ8hH4ASjVVsaEBxIYG0Le1lykd7UdI5kGZh5KKs5+EL66UGt6odp6DF1VSVki5B0j2RPoa+OmJ2iUK/SfBjXNh8Qvwzhlw1lOQu6Nu48zu46WcZO6j1Y8V7pdjtegL6Wtr7x8UDQNvgvdGSrBk+P/Byne8r3Xzt3DGAxI8+WycBFKq7F0iGSa3LoG0NRDdDiLaQFii18M1On4BENcdDvzheXvyUA1eNGcVxdDrCvj8cmnUeVDC5m9I6DGe07uNk/Nh7cy6wQujn2RVhcTV75qVqk+FKfI6Gt4Kfn1Z3u+GPgg9LyNk/YeEbPiItjGdJGNxxT6ZRGLRIJ5STU2j+KRkOLyBnfpLdueU0jLC88SEUyU21IIbyCjSPhhKeRTRWvpptBpU/VhYS7jyCynrKEyRx472+mf0r/5z/m6Y/1jd3hqrP5HSksyNks0QEud56sfmb8FkgYjk2o//+H8ypeSsJ+QOb1jLg306vge7tbpBoDnE+8QUgPJCmZiy4avawYsquxfJ7933ahl/15SCFyBjbs952vM2Sxh0Oq9el6MajsrCdNwuh9T21wheHLLpWykv++JqCUiOflUytUITpf/Fbb9K9pVSTVVFEe4fH5HeLwX7JHgBMm671SC44EWI7ymBwJjOcP0cSF/vfdS3UqrRahQZGNrE88TszC6lRUT9lY8AxB0c2XqgoJzkaI1+K+VRbGeYOEMCFq5KGZkalghf3VC9T8Z6aD1EMi0OZzBA0sEASEUxrHjL+8/a+oN8wLOESt+KvtdKaUrlYUHGDTNk/Orv/6t+zFYijdMyN8uYV5O/BCBspTKidfx78NurstbkMyB/j+c1dBolwZU1n3hf558fyFQT//p9zao3CT3hsikw92GZSAKS+j/+PQhv7du1KZ8ospYTXJ6PwWCUbKoW/aovzmraMR8G3SwlWtlbpSQrfy8k9mp6wT6lDuOwFuA36BZwlEkWRki8lF253TD3EYjpKBPCIttKmWLGhoMllhrAUKqpaVAZGMXFxcyaNYutW7fWenzLli0kJyd7eZY6EpfLze6cUlrUcwZGdLAZA2gjT6WOJigKYjpAXNfqi5DWg6u3r/4Yhv2f5zGI5/1LPsS53dJ7ojjd889oO1xKPX57RcZ2TrtCmvxN+Kz2KFaQDIrD6+b9A+XnbJkJC/8hPS+6jZEmoPm74dtboGV/+fA4+DYJkhwuOFZKVAwmWa/HdZ4Jg26Vsa15u+pOWWkKAsLk7+7WpXD7MrhrJVw3WwIbWj7S/JTmELTmffyW/FvKQgLCJdA48au6F15uJ3QfCxu/hqH3w4bp0phX+1yoJs6Vvx9T+hoJuOfskPety6ZAm6HVO+XuhMWT4Y93ZPpOj/HSL0Mp1eT4NAPjiiuuYPjw4dx9992Ul5czYMAA9u3bh9vtZvr06Vx66aUAJCV5H1mojiwlv4yKSheto+q3A7OfyUh0iJm0Qi0hUeov63Q+/PxPCTJYcyRocNlHsGcJpK2WEo4ht0NUe9zmYDLziygoC8Ew/C2iCtYT/8dkuUMLUppw+j0wfWJ1c05npdzFPbAKLngBvryu+mcnnyF3rmq68D/S7+LWxRKA2L0IZt0hPSvO/Jt8aFz2quyb2BuumCq9MHb+JPt3GyPlJ5HJ4HRInf/h0ziGPijNSL+9pTpw0WYoXPK/2qNsmwKjCcJbypdqvmwluBZPxj8wUsYO//hwjX/7w6Wc7OsbZHIPQM8Jcv6MfRMComQc740/SVBMqSbKXZSOsWA3LP9fdWZSaIK895z7LHxyibxXVuk9EaJ08o5STZlPb/csXbqUYcOGATBz5kzcbjeFhYW8/vrrPPfcc75cWpOxLbMEoN4DGCB9MDQDQ6njEJ4E1/9QPf4wazN8db2Uklz+CYx5A1r2p8wUwuLtOYx5ZxUXfriDC97fzKU/h/LHsI+wtz1bntt7gpRlVAUvaipKldKQ2M7yfUC4TAMJipZARLdxMtGg6xiISIKE3hAYdXCkbASs/0ICLFdOgz4TpUSk3yRJ5R3/Ady3UcbBXlwjCGHyk/KV8BqB6YSecjG/4KnaWRf7fpMPp8VpJ/kvWCnfc5ZkY8xYJz1pFv7jsH/7S2HmrXKBBtD6dAlUpKyAihJY+ARc+pFkbinVRJWUWnGX5cLXN9YuqyrJhB/ul/8OurX68ZhOMhlLKdWk+TQDo6ioiKioKADmzZvHpZdeSlBQEBdddBEPP/ywL5fWZGzNKCY80J/wQP+j73ySxQRbSNEAhlLHrMBqJ89qp6DMTkRgB6KvW0xUZQY4KmTMaWiC9J84aF9uGTd98ieuGhUZBwrKuXr6Pubd8l/al14pZR2fX+79h6Ysh4ReMrJ0yJ3yffdx0hgwezOEtYKAUAl2bJoFm74CkxkG3CjZHT88IA1B+10v001q1uJ7uzMckSQNTDd+JT03Tr8Hfnne875FqdJ7I0yzFVTTUW53kOMII+yCd4j4+lLPOxWmSLnVRS9LkC93p5xTsV0OThxJkICgUk2Rw06J3U3QgVXeywl/ewVG/UvGqvaeCF1Ha2abUs2AT9/5kpKSWL58OVFRUcybN4/p06cDUFBQQEBAE23gVs82phXRJjrIJ5NcYkMtbN9VUu8/V6nGpLi8EqfLTXmlk4e+Ws/y3dVjVfu1juCVCX1oFROEyVj7HC6zOXjzl121ghdVHC431opK3CMfw1CwT2rpbcWeFxASD4NukwulkgwJRmRtliDDkDtln8JU6Z1RNRkF4MCf0GaYpLDjgtAWEBp/7L94RBKccZ9kY9iKpKu8Nwf+1AkdqskosNr5fOV+Xv95F99cmUhEzfPqcPm7YeAt0psm+XRNjVfNgrOykqwSG99vzOKWrF+975i5EQKjcV8+FcPqj2RCiVKqyfNpAOP+++/n6quvJiQkhOTkZEaMGAFIaUnPnj19ubQmY2NaEWe0j/bJz44JtZBdYqOi0kmAv8kna1CqocopsbF6fwEf/LqHC3oksmRndq3gBcCalEIemLGeR87vRMe4UKJDLIe2Wa0lbMnwHJR4ZHg8Hbe+iWH9x9BqoJR3LJ7seSHtR8KPD0HPy2H2PdWP5+6U7Aqjv0wV8XSRte9XsGZDx3P/6q8vjCYIiZVmoAER3kewRrc/vuMr1QAt35PHf37aAUCpwyClWxVFnncOCJcgRnQHCI6px1Uq5Ru5pTYqykp57Zd9pBbZmZjcAQ9toUV4S9x5uzDYSyBtjecG0kqpJsenoco777yT5cuX89FHH/Hbb79hPNiBvV27dtoD4yTIKConp8RGu5gQn/z8qlGq6drIU6lackttPDlrI7d/tppV+wtoExPE0h25Hvddk1JAmd3FZytTsFU65cHCVAIrsmkdWTdTzd9kYHRbA4HrP5YHDvwpAYB2I+oefPjDsGcx9L0GFj7tebF2q5R5eLP6Y3DYvW8/FiHxcNpdnrf5B0Lr007s+Eo1EFl5RbyyYMeh7z9cV05Jn1s87+wfJBkX390pQT6lmrhyu4OVe/KwuwzMXJ/FH3vzyW97sQS7PXAPfQiD0QQ/PAgX/Fumeimlmjyf51oNGDCAcePGERJSfZF90UUXccYZZ/hwVU3DupRCANrH+SaAEXvwbvGBAg1gKFXTvlwr8zZnHfre5nAdcf8yu4N3l+wiu8QmwYJ9vxKy9j3uHlj33G4fG0JQ+u+1H5x1J3Q4B674VAIF5zwNV38FpVnwx/vgFwBleXWOJdxwxBI0A9hOsFTM5CfNP3sc1gsgIAKu/U77X6imIW835U5q9Yb6eUceGxPHY+s8tva+gZEw/j349b8yIvlEzzGlGoGcUhtRwWbKyqw4XG5cbvj37yXkjv5EAnpVDAYYeDOGqHawagrcOA/iuvlu4UqpeuXTEpIbb7zxiNs/+uijelpJ07QmpYDYEAtRwWaf/PzoEAtGA6QWaCNP1bSUVFRitTmx+BmJ/Avnl9Ppwul28+2aA7Uet/gZMRikDYUnwWY/yuwuisorSfIrlDTZtZ/S2RDKc6PG8s+fMw4FQcx+RkICD8vMcNrhpyfkeXHdYOQT8NlYcB3M6PBydwuQkak9L5dmaZ50HgVfXgtn3A+tB0vK+/EIjYeL/gtnPgq5O+QCLrINhCYeeX1KNQYVRbDiXcr6/J0OcSFsTpfyL7cbrpuxn0dH3Mt5V91PTPlegv0N4HbB0pcgY7083wd9rJSqby6XG5PRQGBgMGaTEbvTxdxthZTYI3l07E/E2NMw2EuJTO6JuSIXQ3Q7GP+ulo4o1cz4NIBRUFC7q3BlZSWbNm2isLCQs846y0erajr+2JdPp3jfZF8AmIwGYkIspOZrBoZqGqw2B7uyS/nPT9vZkl5My8hA7ju7I31bRx4xUFhaUUlKQTmfLd9PTIi5TuPN5XvyOLtLHAu3Ztd57unto1mXWghwsJeMW656HDbC/niFyzrv5cy7XiAtKwejAVqE+mEOGuJ5IbYSKcnYvbA6eAGQvxfiu0vzzsOlroRznoFN30Lh/trb2gyT8az7l8nXFZ9Ct0u8/j0cVWCkfFWNdVWqqbCVUnnGvfjb/LhteDvunb7u0CaHy82/FmXymsXEvGs7Evzl+WAvrX5uQi8ZX6xUE+VwutifW8L/ftnDb7tyuaxfKy4f0JLPV6YC8NueIn7bU0SoxY+erVryWoKL2Kh2Un6olGp2fBrAmDlzZp3HXC4Xd955J+3atfPBipqOcruTzWnFXHdask/XERNiIU17YKgmwO128/vuPG79dNWhTIk8q52bPlnF/ed05JZh7Qi21H1JLbM7mLMxg0e/2QhAWKAfz4/tyfQ/Uw/t8+ny/bx+VV+MBgMLtmYdOv6ITrFce1oy93yxlj5JERIk8YuQjITItlCwl4Dts0hyV5DUdhis+ghGPg6bl0pGxLJXay8mMBLOew6+vkG+N/lD+7OgogQu/Qg+GlW7kabRDy54ESqtMPYt2LsUdi4AP4uMrEvsBR+Prt5//mOQNFCyJhoLZyVYc+SOtzkUAo8zg0Qpb/L34N76A3sTRzNmyjKuPS2ZR0Z15u3FuyixSSAxKSqQ/13WhcQFV9cOXpiDYfQr2sBTNWk7s0oY+9bvOFxunC437/+2l5ev6E253cV369NxHoz6d2sRwgtjOhNrLqs9slsp1aw0uAHiRqORBx54gBEjRvDII4/4ejmN1pqUAhwuN10Swny6jpgQM6n5WkKiGr+s4goen7nRY5nH/xbtYnzPGIIDbXU+VOWW2Hhs5qZD3xeXO0grLOfcbvEs2CJ9MGwOF/d+sZZbh7fj/87rxN7cMkwmA6v25XP3tLVEBZt5dUIfCWBYSyRAMOwhmH23HHTHPBlLOu59mPOApJ2fcR9c/gls/lYu0NsMl2DF/uVw6YfSnNNglO1pq8BRAdfPgfS1sPtnmXrQ6QKZgPDTk5CyHJIGQbszpRbZ5AcVxXDZB3KcXT/Dn+9LMKSxBDCK0mDlO7B6ilw0tjkTRv0TYrqAn29K71QTk7cbPjyX0l43MHlbNuWVTrLzi7j29HBumBQOJn/K/aPJM0RidNnIH/kC0Zs+xFiUIs1r258Fi/4Jl/wPIlr7+rdR6qQrLq9k/e40fry2JUH2fJx+QWwtNvPcgh0M6xDDj3efhq04l6BAC5HBAUT728Ev6OgHVko1WQ0ugAGwe/duHA6Hr5fRqK3ck0dYgB+tIgN9uo7YUIvXUY9KNSaFZZXSRNMDp8vNnpQUWv95J4x7BxJ6HqpZ35RefOjuUZWX5m/nHxd3Z2TnWGavT6fU5uCijkFcnGyl5fzrCO7/ENtKwogJMPPBdf1pFxdCYvjBc7nSKg03Ww2Ca2bKCNT8PbDmU+h+aXXN/LLXIKwVXPk5bJsjJR5L/i3bkofCoFskE8N9sIHo7p/hz/dg4pdw/gsSlPjhQRh0swQvAFL/gNJs6VUx91HI2yWPGwzQfTyMfbv6wr+iGFyV0oizIfawKM6AaVdAVnVwib2L4f2z4JZf5P+hUifCVirTfcryKG4/msVL0nlsZAIT/JcSPm0yOOT1JDAoGvMlH1IQ1pVKpwNDSJxkArU/Cz65WM7RlBUawFBNkn95DmNy3iFw0aeH3o9aRbal+5iPuGZ2HuFmJw/HrIBVC3Cffg9Ed4JgLalSqjnzaQDjwQcfrPW92+0mIyODOXPmMGnSJB+tqmlYsSefzgmhGHzc+Cs21EJuqZ2KSufB+n2lGieT8cjnktnPCIX7KFn/HdmG1vy+t5C40AA6xIXw6oTePD5rE9aD6eIOl5snv9tEq8hApt3QjzCLkVB7NqZFT0PRflque52WIx+DmCSwHOxjYyuV4MRPj0uWRHAsDLoVrpoB5QVS+lFZJgGDqjKQbpfI3dtdC2svdvCt8N1d1cGLKpXl8P19kolRUSQlIodPJxn5OHx3N5RkVD/mdsOmb6Qeue0I2PoDrHhT1tz1Eug94dRefJUXyXoNBhmjZw4++nOyt9QOXlRxVsJPT8HlH2s5iTohldYCHIHxOAY/iCG8Fe1jixkbm074hp8lCGgOlfNr7aeEfHUFIZN+gC8vrO7m225E9Tma+gf0usJnv4tSJ529DEpzseycizGuLVw2BVwO2Po9bPuBFt9dzn/On8XyVJu8v6T+gSFrkwSYlVLNmk8DGGvXrq31vdFoJDY2lv/+979HnVCivKuodLI2tYCJg3x/tybm4CjVtMJy2sf6rqGoUicqMthMx7gQdmaX1tkWZDbR2mKlcOCDTLWP5NdZW7jnrI78tCWL937dQ8uIAD6aNJBv1qTx5arq3hcWPxOBe+YS0baXNNEc966UdvgHgiUUl8tNkdVGsKMQ/4zVGKZfVf1DrTnwy78gbTW06AuLJ0OXiyWzYulLEuBoNwJWvl17sSazfEj0NpYxf4+UVkwZJRdSEz6r3hYYCW5n7eBFTWs+gY7nwYyrqx8LCIPyPDj9vpNTs+x0QmmGBCzMIfJ7zH9csieMJgmYnP0URB2lj9LW771v27tYSko0gKGOU0lBNqaKUkp6XEehM4BWxnKeOyeOOFM+JJ8mmRnWXAhPgiF3QOcLpBQs+QzY9xu07Fe7qa6OiFRNjMNagMFRjik4Dn77L2RulPLEnpfJ+863t9DCtpfzO3WE1QevF0oy5b0vrIVvF6+U8imfBjB++eXkRFGXLl3KSy+9xOrVq8nIyGDmzJmMHTv20Pbrr7+eTz75pNZzBg8ezIoVK07Kz29o1qQUUOl00zXRt/0vAGKrAhgFGsBQjVtMiIVXJvRhwrvLsdqrJ3gYDfDK6FbErX+BjT0e5Zt5OTx+YVdumbrq0GjT1fth9voMnhzdlbO7xvHz1mxMRgPPnxtL7JIH4UBvuOQN8iv9sTlDMWPEZa8gKzODlrZdZEd2I9vZFtPly4h1ZhO3cjJ+aX/IAnbMg/6TIK47DP8/yUBoO1zKO+xWydDYMEPuYIFc5Dsrj/i7um3F5I58CX97CRH2UojtAjnbJChSmOr9iXarBBa6XgydRkFsN9j2g2SOLHlBgiuRyRJ4OB5l+bBlFvz8rGSbXDUdpl8tfwaZrLJ5ppTL3PzzkbM+gqK9b7OE6dhKddyc2TsI3vsLxugOWEqyiQqKwe5sT79WIbD0J1g3rXrnolRpfnvmIxK4DE2E8FYy6njmrbKPXwB00MlsqulIzSslwhRASOku+OaG6qyjyjJYM1XeM857jvCS3YRUpNd+z6o5QUsp1Sw1yB4Yf5XVaqV3797ccMMNXHrppR73Of/885kyZcqh783mptugbeWefEIsfiRF+b7JUVSIGaMBnUSimoSuiWHMvX8Yc9ansXJvIe0jTVzZLYBW617BHRDBh+vKuP70Nrwwb9uh4EVNL87bzjvX9McPJ/cPCadV9hJSz3qDksCWGPIqmbsplSnL9tIiPIjbzmzHkHgjP6bF8c8ZG6iolONFBPnz2sWvMTjoXwTs/EEOXJIF18+h2O4keNvXmH56XLIsQAIWwx6C0+6GbXOwtR6OIaYr5rAWUJxe95cMjmEfLbljtT9X9IpibJSZkAnTMa+bCus+g8g23v+CLGHS/DO6I4QkwtRLak9UWPOxTDvpfCH4B/z1/wG7FsAPD8ife10B67+oDl7UVJoN2+dKiY23QETPy+DX/3jeNvBmCdYo9RdV5u3H35qFO201zH0EE2AC/M0huG6YJ/9mPVn+Flw7U7IzOp4rDXqtuRKQvPIL6WejVBNwIL+MPKuN6IBiDD89jsfO2BnrwRyMJSEW4/f3VT9uCdXXZqVU/Qcw+vXrx88//0xkZCR9+/Y9Yo+GNWvWHNMxL7jgAi644IIj7mOxWEhISPhLa22s/tibT+f4UIwN4A6in9FIVLCZtAINYKjGz2Q00DoqmNvP7MCNySvwX/5fjF/+DM5KSgY/QHamgxYRgezOsXp8vs3hAkcF/235C+WWMWxteRl5ZZWUFTr59uctxIcH8u/xvXlgxjr+PXcbk8f34PF5B2odo7Cskpu+2sePd/+PwD534+ewEhPsR7rVSGThVkzzHq39Q11OWPIizmu/Y3H0lXy+qQLLokquGfUjnYt/J2bBvdXBDiB/5Au89qeV90dHEr/qJcy//QBGE+4el2G47ntpzBmRDIX76/6CQ+6EX1+GFn3g56chJA7cMVCwT7a73TDrDrjrD8nE+CuKM2DhM9XfJ/SCle9633/bHOh7jfd+GGEtYdTzcve7psQ+MPAmGTGr1F+QU2zFZYomOn8pfql/SPCs6uLM7cKYtcnzxRpIoM9ghIS+8m9zzNvybzesBYQmNMxGuEr9RZVOF3nFJVj8/QmoyJGyEW/S1mDseJ6UjFQ5/wUIjT/1C1VKNWj1HsAYM2YMFouUFdQs8zjVFi9eTFxcHBEREZx55pn861//Ii4urt5+fn2pdLpYm1rA+L4N525NdIhFMzBUk2IwGrHEd4JW/aVfApUEZ63hrLZjvF6ftIkO4sqBrWkZFUJ+/B38Z+Feftz4Bw6Xm+hgMzcPa0tFpYtZ69K4cWgb3G54b+lej8dyuNxMXZlGepEff+x1cu2QFozvWUHIqje9L3rF26wIephF27IBmLs5iwt7dOLZMZ8Ts+Ae3HE9KBzyMK+vN3L/gACSvr6wuhmoy4Fh3ecyqWTcezD6FWkOmn6wLtnkDwNuhjZDYcm/KRn8ADkxI1mbWYmfyUDvWCOxm94neOOnMq41b9dfD2A4yqE4rfp7e6n05CjyUtISFAPGIwQhAsKg77XQ/mwZJVuWD11GQ1wXuWBU6i8oLrORXeLAhJPl5T1x9f2IPvH+xOz4grDVb4LTdvTmsuZgCAiRr6P1cFGqESoss5MYGUalvQJrZQSh/oHSPNqTyLa4d/8iU3liOkkD6fge0sdJKdWs1XsA4x//+IfHP59KF1xwAZdffjnJycns3buXJ598krPOOovVq1cfCqYczmazYbNVj0wsLm4co0C3pBdTUemic0Kor5dySHSwmQMFHtK8lfKiUZx/wTFwxr3QawKU5WP0t3CxMYnlewtpFRnIgYNZRxY/I8+N7UGn+BDSCsrJLHXw6sIdrEkpOnSoPKudF+Zt52/nd6G4vJKLerXA7XYza12at5/O3jwryVHBlNocvL1kL90jXXQs9t6fwlScSsvDYrY/bspm4qCBDL3+R0oqnJzzcSpDksOI3fapBC8i25LX/17KIjpjctmI2TIVc8Z6aDVYavQNBpzmUCr9w7Bb8wlzV5J/3v94byO882vKoZ9jNMDjZ9/E5YNiCPvjFQli/FUmf0kfrmo+unkW9LsOMjd43n/IbdUjXb0JCJOvuMeOvF8z0ijOvQbG6XSRa61k7qZM3ly8i5gQC1cNSiLAHkZc9wdo2/YsomddLSOQQ+KhNKvuQRJ7a2q8avLnX4DBRX6lmyU7i+iVGE6P3tfgt+r9ujsajLiTBkH3cdLk1j8QAiPqfb1KqYbJ6OsF1IcJEyZw0UUX0aNHDy6++GLmzp3Ljh07mDNnjtfnTJ48mfDw8ENfSUlJ9bji47d6fwH+JgNtY45hjGA9idEMDPUXNcTzz+5wkZpfxrbMYlLyyyizOaS5XmQytOwLcd1oFR3CkHbRPH5hV0xGA+1igvn0psH8sTefaz/8gye+28ySHbnce3anQw1ua3r/1z1cMTCJfblWflifToc4780ue7QIp8xeXfrx0y4rzpaDvO5fHj+AjTl1m59NXZGCbctcSgikqKySYa38CN63AGuPa1g+YhrXrO7AsM8KOedrOy9a7iIzcSTsmAO/vgRuF1n2ALq8tpsxs+zs92vDuvCzagUvAFxu+OfCdPa2vgws4RDXtXqjNQ/S18Hif8PS/0DWFhkLe7iQBBh4a/X3OdvkjnWXi+ruO+z/pA+H+ssa4rnXkBWXV7I7p5S0wnLe+GUXp7eP5vlxPfltZx53fr6GiR+uYvKWGA5c9TOsnorzso8lEFdTSJxkNgXH+OR3UA1HUz7/3G43xZWwPauEGatSufyD1ezsdDOuhF61dzQYcY99G/yCMITEyvQqDV4opWowuN3eEp5PjcjIyCP2vagpPz//Lx/fYDDUmULiSceOHbn55pt59NFHPW73FAVPSkqiqKiIsDDfT/fw5u5pa9iZVcrTl3T39VIOWbAli09+38eOf12Ayej7vhyq4Wto519OiY2PftvDlN/3UVHpws9oYEyfFjw8qgsJ4XWbURZYbaQXVVBR6eLmT/6koKz21I/WUUE8dmFXbv9sdZ3nvnV1P8x+Rh79egNvXd2PCe/VnZZkNhn5+MaBbM8o4ZkftgDgbzKw5o62hE4ZDk577SeYzByYsICzPsnA7qzdXHR4xxjePaME9/4V/D3nHHrG+XNz/iv83vUxJn5Rt4SlT6tQ3h8VQOzn50JgJJWT5tLx1T2c1l4CN0/P3syq/R4CEMAlPWN5qVcmls5nkV3hR4G1HGdpHpHWPcSv+g/GAytlx9PvgaEPSgPDmkoyYc5DMtkEpC/A2c9A68Gwe5EElDqdLyUg+oH3uDS0c6+h+313Lu1ignnqu82s2JvHaxP6cuunq6h01v5o1ToqiBkXWyj2jyHcz0V8zm8YcndATGeZlpM0CAJ0bG9z15TPv/TCMlLyy7nq/RWHSi1DLX68elEivYJyCc9YhjEkBr+4zrjDWmGwhJ6c0dtKqSan3ktIXn311UN/zsvL47nnnmPUqFGcdtppACxfvpz58+fz5JNPnrI15OXlkZqaSmKi9xdGi8XitbykIVuXWkivVhG+XkYtMSFmnG43WcUVtIgI9PVyVCPQkM6/cruDd5fs5oPfqi/mHS4336xJI99q5+UJfYgMql2qEBlsIdjix4vzt9cJXgCk5JexL9dK9xZhbE6vThH2NxkI9DexL8/K7SPaExrgx9OXdOflBdspLpdsi4SwAJ4Y3ZU3Fu3ihjPaHHpupdPN+tJwBlzzPQFz7oHcHbIhpiPF573K40tK6wQvAK7oG0/gwruh6AAPThjL/y0o5oLzn+AfMz2kuQPrDpSQUhFNbEAElBdg2L2Qc7sO4YqBSSzblUtOqc3j8wAyShxUJI9kW5aD+6b/yb48KS2LCTHz3LkvMyzxC4LTlsnI184XQvLptQ8QmgCX/A/OehJyt8so1Mg2MnoyyXv2iTp2Denca+iyisvxMxopr3SSVVzBZf1a8fHv++oEL0DO+T8rOpCZUcrY6BQMK96BkFjY9iOc908NXiig6Z5/TkcltkoXz83ZUqtPVInNwU3fphIZ5M+rE24j1t9Gh1A7ZkswhGkvIqWUZ/UewJg0adKhP1966aU8++yz3H333Yceu/fee3njjTdYuHAhDzzwwDEds7S0lF27dh36fu/evaxbt46oqCiioqJ4+umnufTSS0lMTGTfvn089thjxMTEMG7cuJP3izUAeaU2DhSUM75vS18vpZaYg6nyGUXlGsBQjU5uqZ2pyz1M3AB+2Z5DXqmtTgADILvYxk+bPQcBAJbszKFv68haAYzzuyfQJiaIN3/ZxcW9W7Avt4z5mzJ5fmxPTCYDRoOBovJK3li0i22ZJVw9uLoRptlkxN9iYZupMyl936NbpAvcbrYV+RHnl8TmrLpTnTrHh9C7ZSj4B0NlGclzruaVUR9SHhDPzuzdXte+PKWM/tHtIW01fnsXc9+IK3n8++10iAuhV8tw9ud57nlzRvsYylx+XPneMsorq8tZckvt3D5zPzNuuY/tAZfRIsRIV4cfLSrLMfgf9poRFCVfcV28rk+pUy0lv4xKh4vJP27lv5f3ZkjbSDolhPPFH9770Py0JYeXOm8l8Lt7ZDpQ3k7oegkkn1GPK1eq/pWUVWLAxaY0zz09CsoqWbg1m1uGtcFmdmMObTh93JRSDU+9BzBqmj9/Pi+88EKdx0eNGsXf/va3Yz7OqlWrGDly5KHvH3zwQUCCJW+//TYbN25k6tSpFBYWkpiYyMiRI5kxYwahTewFcsMBaQrYLtZ73bwvRIfIxV1aYQX9/+LgAaV8rai80mPmQpX0wgo6xIXW2j+nxEZOSQVBZu+jD4PMJuyO6uP2SQrnvnM6smhrNved05G0gnISwgP4Y18+y/fk1Xm+v8mAxV/aGPkZDUwe35OPftvL8I6xPP59eq19W0cV8PIVffhlezZzN2Zi9jMyulcifVtH8PB3O3jx4unErX+TgLTltJp+Ngdu347FzyhjXz2ICTKB/eCo2NBEQill/YEitmeV8O41/Zm/OavO31mIxY9x/Vry9eoDlFc6MRkNnNM1niHtonC63Czals3rv+yha2IYTy3YS3igP1/c3JJuLTXoqRqWzKJy0grKCDKbePC8ToSZKriyfwLppW7aRAexNbPE4/PiwixYY/tiHnQHJrcDelwKUW21eadq0pxFmZidLlyuYJ65pDu/bM9myY6cOhO74kIlczHUkQM0rc/nSqmTy6cBjOjoaGbOnMnDDz9c6/FZs2YRHR19zMcZMWIER2rlMX/+/ONeY2OyMa2IEIsfcaENK/0wyOxHkNlEhjbyVI3QkYIQAFHB1dkXuaU2Xlmwg89XpjC0QzSPjOrMjqxS9uZZ+X59OmX26qyDiYNaU1rhoGfLcFpEBJAYHkCZzUGZ3cmcDRn0TorAZISrBiXx2YqUOj/32iHJWG0O/n5BFzrFhzJl2V5+25XLFQOk6ZvJaKBVZCAOp5uU/DIWbs2iRXggt53ZDofLzc9bs3hrsWRZ3DKjkvvOvoNM/3FcdG4Q0XlrubRXNNPW5NT5uSajgdPahMGSbfJAl4swWrMwGqCi0sW7S/fw+lV9ee3nHWzNkAu5vkkRPD++J3GhFlbvL6B1VBDPje3B/M2ZvLd0D34mAxf1TGRw22iySmRCSVF5JTdNXc3MO08nIVyDGKrhcDhdtIgIwOWG7BIbt0zfzYGCcrokhPDYRV2ZtTaNb9bUnSA0ulcLZu3P47IzHiMitOE02lbqlKko4UBlCF+v3MO3G+U947zu8Uw6rQ2PfrOB7BIpOTQY4Nxu8YS6y2RSj1JKHYFPAxjPPPMMN910E4sXLz7UA2PFihXMmzePDz74wJdLa5Q2phXRNib4mJuk1iedRKIaq+gQC8M7xbJ0R92L+TbRQbUChr/vzuXzlSnccWZ7OiWE8v6ve0kvKqdrYhhvTOzHtJX7Wbg1mwt7JrA318r61EJuO7MdlQ4Xe3PLuOeLNbgOxmKn/5nKuV3jeOyirsSFBvDhb3spKq8kMsifa4ck0yoyiOl/pHDfOZ246/M15FmlceemtCL+OaY7LSOD2JFZgsXfSHJ0MCEWE1e9vxKjAcb2bckNZ7TlutPaYDDA3I2Z+JmMPL8okxJ7Avflvcfdgx5jTVow27Ksh34/k9HAm+PaEG/derCB5tOw7QcigltzVucRLNyWy++780gtKOOawcncd3YwBgN0SQglOToYp8tNx/gQbhzaloe+XF+rX8Y7S/awaFs2z4/veeixjKIKckpsGsBQDYrd6cbPaODHjem8NH/Hocdzdtn4dVceL17Wi725VtakFB7a9vCozkQG+bM/v4KMUicReoNZNQOpZUau/nDlobHiAFOW7WPBliz+Na4nt0xdhcEA/xzTA7PJiNkScPTx10qpZs+nAYzrr7+erl278vrrr/Ptt9/idrvp1q0by5YtY/Dgwb5cWqO0Ka2IAcmRvl6GR1HBZjKKKny9DKX+svBAfyaP68Ftn62uVb/bKjKQD68fSFyYTCHJK7Xx5qLdjOnTAqPRwAMz1h3ad39eGQu2ZPHmxL5cOySZbZklpORZ+b9RndmfZ8XfZOT+GWsZ0i6aa4ZInVVYoB9g4Ip3ltOjZTj/uLgbAf4m/IwGIoP8eeir9SSGB/LlnylMGJjEW4t3Ex1spndSOKn55Tz45ToKDzYQ9TMaeG5sDy7t15KRXeJYsCWLu6etodLpxuJn5LL+rUgIDyAkwES21YXTP4gWMy/jk3PfYI8xmd9S7SQEGxjWyo/43dOwdB1F5c1LKa5wENRiCKEVWTzeMY71B0rIKbWRml/O5Llyt+2Ji7pyRnvJqDMZDVw7JJn3f93rsdnnjqxSNqcV0SEuhF3ZpQCUVDjq7KeULzhdbvbnWckttWH2M/Hqwp0e93tx3jY+vmEQ3645QKDZj8Fto4gPs/DlqlQ+XbGfa0/TWkrV9FWUlTJnY1at4EWVAwXl7Mgq4d/jexIfFkC53UFkIGAOqv+FKqUaHZ8GMAAGDx7M559/7utlNHqFZXYyiipIjm6YaanRwWbSNQNDNVItI4OYcv0gsoor2J9nJTE8kJYRgcTXGKFa6XSRXVLBoxd04Zapq+ocw+ly89ycrXxw3QCSooJoERHI3lwrP27IYEDbKC7p3YLeSRE88vUGrHYH395+OkUVlTxyfheCzH44XC7e/GUXReWVvHRZL+47uxMb0opoGRHI8I4xdIoPwWQ08t26dMDA0xd3J7fUxr/nbsPhcvO3bzcy+64zeG3RTn7emn1oXTaHi89XpuByu7mgRyJrUwrJP/tGYrf9QPz31xAfHMNpMZ0gy4Y9vz0lA+5ikzOeBz/byp0DIxmbNwU2TaNtZFtmXvY+v6Sb+Hmfg/gwC9ee1obWUUGEBPgf+nn+fkZ+2Z5d5++nysKt2QxqE8Wu7FIMBkjUxr+qgcgvKSfA34jT6SLTWulx2ghIU9oCqw0/o4E+LYIIMpvILKrgo2X76BAXQpSHpr9KNSkOGwdK3fywId3rLvM2ZXL/2e2JCXATHR9BZKgGL5RSx8bnAYwq5eXlVFbWHjfY2Gde16ctBycZtGmgAYyoYDNrUwp8vQyljltsqIUgs4nYUDNgODRdp0qIxZ9hnWLIKq7A6fJ8YXOgoByHy02IyUh+qZ3tmSV0aRFGXqmd83skcMvU1QC8dFkvvllzgM//SDnU6Cwq2MzkcT2JDjVz1+dryCquzmCIvKwXP2zIYEmNMpeZa9MY2TmOf1zcnSe/2wRIsKJm8KKmr1Yd4Lu7z6BrYhhpZgeR/W/Cb/WHYM3FHt+P/Wf8lynry1g3u4SWkQ4ev7AbPUOKCFwyTQ5QsJdW08/h2hb9uCK+N35th2IKDAeDEagRwDAasfgZvf49m/2MVLqkAej4vi2JDtaLPeV7pRV2Su0u5m3OZMGWLG4Z1u6I+8cai3kwZiXuFueyIdfKrZ9uwmQ08MoVvYlpYH2qlDrZsqwuSm0OzCbvPaTMfkb6WdIIjEgiwFgIaABDKXVsfBrAKCsr45FHHuHLL78kL69ul32n0+nhWcqTrZklmE1GEmvcEW5IokPM5JdVUlHpJMD/yE0RlWpoHE4X+/LKeGXBDpbsyCHYYuK6Iclc2j+JhIPnXEiAH7cNa8/mDM9j4g4dy+ViY1oRHeNDcONm8o/bmH7rYN5ZsgeAfq0jyC218dnK2o0786127puxlg8nDawVvGgfG0ypzcHGtCIeHtWZTvGhVDpdmP2MLNiShZ9Ryl0yiyrIs9Yt26hel5vU/DKe+m4zBgM8cdZELrpyAnG5K1gbfQlXf7wVx8HAzJaMYhZsyeL5i9oxvvNYArbPqj5Q+hos6Wtg1zyYOAP2/go9x4NZgqvRIWauHpLMs99v8biOy/q1IjTQjzG9W5AYHojR2PB6+qjmJauogvJKJ9d+9MehdHg3Mlmn1Fa3xKltTDBRgUYsbYeQbq3ggxWF3DOyPRf3aUmrSL1IU02b0+WmrNLFrDXpjO6VyBovN68mDUnCHBNIgNEJoS3qeZVKqcbM+22wevDwww+zaNEi3nrrLSwWCx988AHPPPMMLVq0YOrUqb5cWqOzLaOYpKiG+2E/OljuOGVqHwzVCO3NtTL6f78yZ2MGpTYHWcU2XvppB7d/tprsYvk3nVNi4+dtWXRvEeY1w6B9bAhrUwq54/M1XPT6b2QX27i8fyuKyh3syy0D4LL+rfj4930en19R6WJdaiFdE6s7AJ7bLZ7fduby6oQ+/LQ5k1umruLOz9dw+6ercbshJtTCud3icbjcxB7lzm9UsJlrhiTTOiqIf/6cxcjPC1gRP5GHZu89FLyo6el5+8jpc7fngzkqwJoDu+ZDaXXWh8Fg4MIeCfRsWTfD7oIeCThcbq754A+u+fAPzn1lCU/M2njo79gTt9tNemE5P2/N4v2le/h1Zw4ZRVqupk4Oq82B3eVi+p8ptWr5P/l9H0+O7sbhb7kB/kZeHt+ZuO8nYSgvIMGRyf8m9uWuszqSHB2MqYG+Ryt1MjhdbrKKy8kpqeDj5fsID/RncNuoOvud1i6aPknhVJhCIFSnjiil/hqfZmB8//33TJ06lREjRnDjjTcybNgwOnToQHJyMp9//jlXX321L5fXqGzNKG7Qd3aqRk1mFFXQJqZhlrko5UmprZKX5m+notJVZ9u61EK2Z5UQFxbA2pQCXl6wk4yiCp4a3Y3HZ22qta/Fz8gj53fm+R+3AlLOMXnuNt6+ph+Lt2XTKSGE7VklRASZa2VYHC41v4zYEAtbkRGlZj8j4/q15KnvNrEvr+zQfg6Xmy9XpRIa4Ee3xFD6J0eQZCmnY1wIOw82yKxpYHIku3Os7Mu1ctPQtgT6m3jqu80U25wem7AB2J0u9pWZSbKEga125omr80WUuAIJ6n8L/mlrIartoW0J4YG8P2kg61ML+XJVKmaTkYmDW1NgtbN6fz7PXNKdwjI7s9alM2ttOmaTkacv6U6Que5b1rbMEq56f8WhhqUALcIDmHbLEH2tUSes0GrD7nAxa23tWv6Ve/OJCPLnw0kD+WV7NvvzyugcH8oVA1rRZv71UJQKJRmY9v2Oqd1Q3yxeqXqUb7WTX2ojo7ichVskaP3YzI384+LujO/XioVbswA4p2s8g9pEEunKIzREG9oqpf46n2Zg5Ofn07atfKgNCwsjPz8fgKFDh7J06VJfLq1Rcbrc7MoupXVUww9gZBbrnVHVuJSUO1i8ve4I1So/bMigpKKSj5btBeCLP1JZf6CI96/rz5g+LRiQHMn1p7fh/esG8P7SPeyvEWQA+Hr1ATDA2D4tMRokS6ntES68OyeEklojoLAlvZggs1+t4EVNX/yRQlJkMB+Ob0Xc7Im8f3E0ydG1Xys6xYcweWxXJs/dym+7cnnqu81M/zOV58b2OOrfj9vooUdFYCQZve7kkll2XtwaSWrM6XV2SQgLYFT3BN66uh+vXdmXpMhAQgL8Sckv541Fu/hpSxY3DW3L4xd15ds1aeSU1A3qZBVXcNPHf9YKXgCkF1Vw7/S15B+hZEapo8ktLcfhBqvdcznr/M1Z3DJ1FbEhZi7ulchlA1rSdtEd+O1ZCOc8A6s+gj5X1fOqlap/TqeLHzdm4Gc0EB1swXWweZPN4eKxmRt5deEOwgP9CQ/0563FuzDgxt/SMEuelVINn08DGO3atWPfvn0AdOvWjS+//BKQzIyIiAjfLayRSckvo8LhIqkBBzAC/E2EWPx0lKpqdAwGAwFm7y+VYQF+UvNb4yLny1Wp3PvFOm4a2oabhrYF3Nzw8Z+s2l+3Fjg1v4yIIDPfrklj8vhe/Lgpg5uHtq2zH0ggsG9SBHtzrYce25VTSuYRSibK7E78/QxYC7IgfR1tvr+cL0cWM/Pq1rx5cSKzr2nN56dnkeTYj9lY/Xuu3l9AcUUlDqeLVpGeJ4GYTUYSExIoGvwQRLWD0ARsfW+i4Or5/FkYzrnd4/l2XRbjP9pEar7nAIvFz4TZz8j+vDJu/uRPFm3LJqfUxub0Yp6YtYk9OaVcPSSZUg/jVHNKbKR7eU3ZcKCIvFK7178XpY6ktNyOtcLFZytSeO3nnYzqkeBxP4fLTefEMAa2jaKVMx2jrRCu/Q7SVkN4a4hsU6/rVsoXskpspOaW4HC5uWXqaoa0i6m1PaOogq9XH+Dr1Qfo1zqSSIuLgHAtHVFKHR+fBjBuuOEG1q9fD8Df//73Q70wHnjgAR5++GFfLq1R2Z4pqeRJXi4yGoroYDMZhRrAUI1LdIg/Ewe29rp9XN9WhAX4c1HPxFqPJ0cHsXh7LnM2ZlBS4fA6maRLQigp+WXM2ZjBjD9TuOH0NgxoE8nTF3cjLKC6ZKJbYhgvX9Gb1SkFPHNJ90NBBbcLWh7h3A/wN5JVZCOw6lDF6cT/cB19Z5/LRSsm0mvW2cTOvQVXZTlPjO5W67lzN2USHWLmydHd8PNQu/+3C7pQVOGkstNFMOLv5F81lw3dH+a2H/L514/b2JxezHPjejCicyzT/0ih0lm3DAcgu6SCf8zejKe/osXbc7isb0vCA/3rbCupqKz7hBpsDs8/T6kjySwqJ7+sksIyO5VOF7EhFs7rFucxkHd6+2haRwbhX7SPAFcphsF3wLrPoPs4OPdZCI7x8BOUalpsDid3jOzIZytTOK19NAH+Ru4e2b7OftHBZu45qz1hJs/vh0opdSx81gOjsrKS2bNn8+677wIwcuRItm3bxqpVq2jfvj29e/f21dIanZ1ZJYQG+Hn8gN+QRAabtbmeanT8TSYmnd6Gn7dnszOrdu+Iu0Z2oEVEAEajgdG9WjBl2T4yDzacvKBHInaHkwVbsnj32v58ty69TiNMk9HADWe0xWCAgclRtI0JIiLITF6pnR4tw/jkhkFklVRg9jMSE2Jh3qYMvluXwd0jOzDleplGEhHkT3F5JS0jAkkrrHt+XTmwNXM3ZXD6yBgICIeKItlQWS5fAH4B2APjiHFamHrjIL5alcr3GzJwON20CoGcSiuf3DiIr1cfYFtmMa2jgrj9zPZ0iA0hNNAfShwUuXvw2VYnLy9Yc+hn55TaWL47j3+O6cHyPbkUWO3EhdVNGy4ud9QpgfEzGnhydDcC/E38d8EOKhxOxvdtxRkdo0kIDcBkMpIQHojBwKFRszVZ/IwN/jVRNTx5pTYqKl243W5WpxSyNaOYkAA/ckvtvH1NP37anMUv27Ox+Jm4enBr4sMs7D+Qxqj198HlH0NMJ2g/EswNNyNSqZPNgGRhnNYumplr03hnyW6GdYxlzr1D+eDXPezIKuXMjrFMGNiSyAADhuAIXy9ZKdWI+SyA4e/vz6ZNmzAYqu/qtW7dmtatvd/pVJ5tzyqhVURgrb/Lhigq2KxTSFSjlBgRyKc3DmbDgUJmr08nItCfCQOTSIqSgIPd4cJggGm3DGZndikbDxQSEeRHRFAQNoeLj5ft45UJfZj849ZDJQ8JYQE8O6Y7b/6yi8v6t6JtbDDfr0/ny1WpVDrlinxQmyieGdP9/9m77/A4qquBw7/tTbur3mXZluXeCy6AMcWAMWB6r4FA6BASSCAFSICEfCEECL2Z3pvpBuOGce/dltV7l7bX74+xZcuS3JC0K/m8z6Mn8czu7N1FV7Nz5txzyK9x8s3GCnKSrLx4VTo/76rDGwji9AW4bvYKEix6Hj1vBA99sYW8aiXIolIpXT0uPSaLM55czBXHZDDwhIeJ+7Zt15CG4/7MqlodRY3NvL28iLNHpXOlWc/whDBZn55HlrOaqtOeZUBCKiMy7Jw9Ko1Ekxo89eDWgTWVBp+Vp+e1X7vo8bnb+Mf5I1F38DdK004u4H1nDGHhjmp+2LK3g8nSXXX0S7TwfxeOQqdWkWY3csHYTD5YVdLm+TdNyyHZduCuK0K0FSYYCnPFy8taLXn8YUsVs0anM7F/PFNzk/AHwyRbDazeXsQVluUw4XqISQVNRGujC9HtSutdFNW6WFFYz1PzdrZsX1FQz6s/5fPy1RNYvLMGnUZFhsGL1mg9wNGEEOLgInqmveqqq3j55Zf5xz/+Eclh9HjbK5ujuoDnHvEWPetKGiI9DCGOSKrdSKo9lVOGpLRqV1zW4Oa5BXm8v7IYjz/EqEw7988cwouL8jlxUBLD0m3M315NRZOH207OJc6sJ0yYjFgTT8zdzrxt1YzKjCUYDvPWsqKW4+o1am6alsM9H65nQ2ljy3aDVs1zV44jxqDln19vxRsIUdbo4Z6P1vObE3LIijfj8QfJTY7h/ZUlzN9WxbB0G1XOIItrhnDFBZ+SuPz/0NRuIxTXn+rxv+WDskQGoCfWFKCm2cu/v9vOy1ePZxg7oVxZ5pf88YWcefEP/G5eHecPjaGhaB21+nQcATV2m5cKjxZfB0tE6l1+7EYdCTHtFPwEYk16xvSJZU1RAwCJMXriLPpWwYs98mucfLWhnJ1VDib0jeO30weSEWfilcX5NHkCSoryyQM4a2Q6Bq3msP87i6OXx+en1unn+QV57dZr+mxtGTOGp/HwF1vIjDNz5dh4xprmo82aBIn9JXghjjq+QJCCGicJMYZWwYs96l1+nv5xB30TLJwxLJmAwY5WK5lxQohfJqJnW5/Px0svvcTcuXMZP348FkvryvuPP/54hEbWcwSCIfJrnEzJif51tvEWJTXeFwih10a0/IoQR2zf4EVlk4dfvbaCrbvr0ABsKG3kfz/mcecpuXyxvpzfnTqIH7dV8cHKEv748QaGptm4aVoOLy7cxbzd3U1GZcVyy1t7l16Y9RqevmwM32wsbxW8AKWuw2/eWMWc245j1z7FPCubvDw4ZzOgLE3532VjeH9FMTqtmicuHs13myqIt1g589MGrh33EDlD1BQ2hXj16waSrB7iE7xYDFrqd3f0+GJ9GcebPt77wkEfCTs/4A+n3Yqjvop7lpj5KU/pvKLXqHjuinEH/NysRm2HWWJxFj3/OG8kFz63hCZPgCk5iczdXNHhsb5cX86NJ/TnwTmbOX14GrecOICLxmfhDYQw6tSkWI2t/jsJcSiqHD7yqhx8taHj372F26s5bkAiV0zOxuP34RpxJb6QmvSwdLwRR596pw+VCn7c1jbYvMeP26p559c5JNqMGPUSvBBC/HIRDWBs3LiRsWPHArB9+/ZW+6J9OUS0KKxz4Q8qd3OjXbxZufta1ewhMy76M0aEOJjtlc0twYt0u9IWdNbodD5fV8ajX28lzW7EHwwxJSeBM0akUuf0U1Tr4rFvt1Jcp9SfyE4wE2/R0+xVumxo1Sr+e8lo1Kj4dG1Zu6/rDYRYX9JIVryp5Tj7CobC+AIh1GoVdU4fd7+/jrum5zIyw45Wo+J/C3bh9AVRq+CUISlcMSkblQr++tmmlmOUNXjwWc3smzMRU7OeHLuKa9+pY01xU8t2XzCMyx/EZtTS1E63kKx4E0nWAy/nGJgSw5e3H8/XG8sJhsKsLW7o8LHBUBjN7gDFvK2V3DA1h/Qe8DdQRK+iWif1Lj/+YKjDgrsAYcL8dvpA3lpWyPXH96ewsZkhqiKIHdrhc4TorVz+IKEwuDtoNQxKjaIkq4FEiwQvhBCdI6IBjB9//DGSL98r7CkqeKAuBNEi3qJcClU0SgBD9A7ztlaRYNHzl7OG4g2EWFvUwDebKjg+N4mqZi+frS3js7Vl/OH0wRzTL56Hv1xPVbMHrVpNZpyJ+2cOoc7po9kTwKLX4PQFOXVYCgu31zA5J+GAXTQqGt3kJMa0G8DQqlXkplhpdCvZFNUOL/d9spH+iRZmjUnjk5uPxe1XAhj+UIj8GhdP/rCDwn0KaU7to0ent9A88S6MDXnodn5NKGkwDp+qVfBij9d+KuDPZw7lDx9vaHUBaNCqeeLiMXuLdwb80FQKO+dC1RboMwn6TEYVq9QU+fXx/fEGgvy0s5ZvN1W2+95PGZrMz3m1ALi8HX9xFuJQFNY6WV1UT3aChSV5tZw8JJmvN7afhXHasFSeX5jHtEHJmAONDFGXYbYnStFOcdRpcPlw+4MkxRgY3Seuw8cd0y8em1FLjKn9JYRCCHG4ZMFmD7ezqpkYg5bYHlBtf8/69z1dGoTo6dLtJh6/aBQPzNlM/j7LOZ5fuIu/njUMfzDMt5sq+Pfcbbzxq4m8eNU4ahw+nN4A/RItXPXKcqqavZw2LJULx2fx2pICZgxP5Z4PNzAwxUpmnImS+vY79wxIjiE7wcLCHdVt2o/eeEIOgX3qUcwanc45ozPYVePApNNQ6/Syo6qZ8dnxXPT8Mtz+1oGSM0emcdKIbB5eejJbavwMTdJx5cV/JMvkI7+u/fm7srCeOIueObcey8drStle0cyYPnGcOyZjb/vJUBBKV8Ab50Jg93FWvgzmBLj2a0gahEqlwqjTMjzDzoTsOFYU1rd6nSSrgRnD0/jVaysAGJ5hZ+7mCsZnxxNnkS/I4vBUNLopqnPxzcZKThuWwuKd1Txy7kh+yquhyd06m+jEQUmY9Voc3gDD0iwkqCtRxaZAbFaERi9E5Dg8flbm17O5vIkJfeM4e5SSfbgvo07NfWcMJt4iBZWFEJ1HAhg93M4qBxlx0d+BBMCk02DUqaUTieg1Th+eyj+/2doqeAFKyuxDczbx5nUTGZpmJTfFSoxRy4erSnhjaSE3TM3htSUFVDUr6+bnbq7g/y4cxdmj0rEadbj9Qd5ZXsTN0wZw3ycb2rzu8AwbNQ4fC7dX89LVE3h/RRGbypvIjDVz0YQsSutduP1B/jZrOI1uH4FQmOtmr2gJdKhUcPXkvkzNTeLJS8fwr2+3sX13NtdF4zI5dVgKZz6zrCWTYkUBvLVKxStXjSHd3nFhzB+2VHL/CUn8ccYQ/MEgeo2mdS2K5nJ497K9wYs9XLXw0fVw5SdgScTtC2I1aHn68rHM21rF7CUFePxBThyczLSBSdz/6QYCoTDTBiaxs8rBP77Zym+n53L9cf0xG+S0Jg5Ng8tHk9tPdZOH4Rk2km0G7jltMH/7YjNPXzqWbzdVsHhnDTEGLZcd04d+iRb0GhV/mjmUFH8JqvgcKdwpjkr1Ti8ufwhvMMSJg5JJjzPh9oc4pl88H64qoc7pY0LfOC4an0WK1dCy5E8IITqDnHl7uO2VDtLt0b98BJS6JgkWw97q7n43OGtAbwFTnHJV1dmCAfA2gdagvI4Qv5A3EESrVqNRqwiHlQyL9pw4OJkQSgGz/3y/A6NOzaxRGTx/5XhUhPnfj3srtofC8PsP13PV5GwyYk3kJFnYXN7ElvImHjl3BM/M30lJvRuDVs2s0emcMSKNW99eg8Mb4KedNfxhxmBmjkxnXUkDj3y1hT/NHMLj323nhIHJHNMvgYue/7nV2MJheG1JAcfnJpIVZ+Khs4fh8AUJh8Ok2U1c+fKyNnUAAqEwv/1wIx/+ZjLjsmNZVdjQan9mnIk/nzkEt0rFprJG4i16kq0G9Op9Ah6NJeBunVHRomYbVW4V6woqeHNZEf5giPPGZnLioGROGZJCk9vP3M0V/P7DddhMev5w+mASrXr+8JES4Hnyh52cMyaTPhLAEIeossmDQashxqjjuyWF/Pu77VwyIZM/zRzCS4vySIoxctMJOeQmx1Dv8pFsM+D2BdB66zDo1RK8EEctpzfAzioH760oZmeVg3HZsfxp5lDmbq5g+pAUrCYtaTYjGXEm0mJleZUQonPJ2bcHC4XC7Kp2MPYAaw+jTbxZR0XBVnjhFihbA+y+SDLFQ7+pMHQWDJoBuiMMygT9sGsBbP8aCn6Cmu0Q3r1G3p4JQ2bBlFvBlt4p70ccHcLhMKUNbr7fXMn87dVkxZm4fGI2eq0af7Btwb8kq4GLx2dx9SvLWwIBHn+I91YWs6a4nv9cPLrNc4KhMK/+VMD64gbuPX0wN7yxijeWFjI0zcZvTsghzqzHqFNj0Kr51WsrW1qWOn1BbCYdf/18E7EmHb8/bRAjM+wEJ2RR5/Txyk/5Hb6vFxfu4s9nDcWk1xIfYyAQDOH2B1s6keyvxuFjV42Txy8cyS3vrGVjqVILY1CKlb+cNZQ/f7qxpTOKSafht9MHcsG4zL1LO3yODsdSPeMlfv/ZThbsqGnZtiSvlkEpVl64ahw5yTGgSsVs0OLyBpmzvoxNZXtrcQRCYUrr3T2ipbSIvDqHh0a3n0DQx41vriK8exq/u6KEuZuruPGE/ozLjmNzWTOJMXrKmzy4fQHeX17I7+MXwtgLIvsGhIgQt9fPqqIG7nh3bcu2VYUNXPLCUm4/OZexfWLZUNrE4DQrZq1kXgghOp8EMHqw0gY3nkCoRxTwBKCxlNi6tZR7AzBAB5NvAUuSkolRn68ENDZ/CgY7jLoExl4JqSMOftxQCIqXwoYPYdPHyh3emFRIGwX9TwRTrJKyXrMd1ryhrLmf8RiMu7qr37HoJfKqnVzw3BIa9rmwf2NpER/+ZjKDUqxsq2xu9fhLJmTx/MJd7XYz2F7poKTezYxhKQxJt2M1atlW0czn68pw+YKsKmogNzmGf184iv/+sIPN5U08NGczZ41K49wxmdz6ziqmDkzk9OGpGLQamj1++iVa+Nus4VQ2eXhh4S5iThnIm0sLmJqbTFVTx+0dK5u9FNQ48QRC/Pf7HRTVuXj2irEH/Cx8gTAbiht481QVVfrhNHqCJMTF8qs31lHn8rU8zu0P8vBXW0iLNXLmyN0Bw7h+SqZVeL/PxZ7FOu1wFuzY0ub1tlU28+maUq6ekk0gGOIv+3RK2Z9B2jOLQ+ANBPAFwyRa9PyUV8uzl4/F5Q3w7opilhfUU+v08chXW/nPxaNpdPupcnhJt5u4bvYqXr8gA5tuFFjTIv02hOh2Ll+AOpeflQV1PHXpaEDF+pJGPlhVTIPLz7++3caLV43nx62VzBieQry1h3w/FUL0KBLA6MF2Vu3uQNIT2gdWb4G5fyWBaew0joKT/tx6f9/jYMyVSneCHXNhw/uw/HlIGgyDzoDsKZAwQFlqEgpAUxlUboLCn2DHd+CoVIIhOSdB36kQ37/tkpSck2DMVUoAY87t0FAEJ+83DiH20+Dycf8nG1oFL/a458P1/P2c4Vz+8rJW1+SDU208NW9nm8fvsWhHNZcc04d/fLOVWoePsdlxPHv5WJ5bsIs4iw61Sqnc/vwVY/GHwqhVKorqnKTZDLx1/SQ+XFnCQ3M24/QFOXZAAml2E6//XMCy/DoA9Do154/NIjFGac/qD4a4eko2FoMWFSqqm728+lM+IzLsJNuMXPhc6yUmezqi7M9m1BIIhXhnVSknXZDLwCWP0xw3hIKYs7nuuP6Y9GpsRh2vLilo6RLyf99uY2K/BKWNqiUJJtwIy59rdVx3zmm8uaqmzevt8fm6MmaNzsBi0NIv0dKm5giA3aQj1W7s8BhCgJJN1eD0KfNVBeP7xlPe6MbjV3P/zKF4/EGueHkZ/mCYdcUNnD0qHY1axf9+3MmbVw6jn8kF9glds+RRiCjX7PbjD4Q4YWAybn+QnCQL8WYdJwxM5Okfd7J0Vx3bK5v508yhJFskoCyE6BoSwOjBdlY5MGjVLd09olZdHsz9C8SkEJcwjuotYUJh5aKsDVsGjLsGxlwBpauhYBGsfAUWP97+sWOzd7dhnALJQ0B1kBOm3gxTblOWkCz6P6X7weSbf/FbFL1Xg9vfEhjY364aJ+EwfHDjZB75agurixqINetIjNFjNWhp9gbaPMeoUzOxXzyBUJgbp+awaEc1X6wvZ96WKl771QTizTqWF9TzwOebWoIIdpOOR84dTmmjm0e/3sqW8r0ZHwu317BsVx3PXzmOrRXNePxB+idaCIcgRJhLJmQxJM3KY99sayka2jfBzB9mDKFPvIkHP9/canxvLyvi7lMH8dAXrbcD/PbUQby1tAidRoXKnEjDCQ8yf3sNz3+8sWVMJp2Gv549FJtRy7ebKimodeHf0xHFaIOpv4OUIbDgMSVgmTQIxl5L4Ju2QYk9AqEwZY1uXly4i7+cNZRb31rdKsCi06j432VjSbZKpXtxYBWNSlefOocfs0GD2xegpN7NMz/mUdHk4cJxmbx53UQufmEp6bFGVuTXMmNEGv+elYPVpAe9ZF6Io5PTG2BlYT2FtU4m9E3AYtDw0qJ8Eq16Zo3O4LaTctlasZp+iWbizHoMhh5wc00I0SNJAKMH21HVTGacqf1AQLRwN8APDyk1LsZeRXyNlkDYR407TLL5AONWayHrGOUnHFYyLJrLwecEtUbJxLBngj7myMY1/HzwNMJ3f4L00UqGhxDt2LcdaXtKG9xcNCGLxy8ahcsX3N3pI8xF4zN5+aeCVo/tl2jhwbOH8fHqEr7eqBT/PG1YKi9eNZ77P93Av77Zxt/PHc7vP1zf6nmNbj8Pf7mFv549rFXwYg9vIMRrPxVwwbhM+iaYqXV4sZk03P7uWv7vglH8/sP1rTJECmpd3PHuGj675VhWFbUOzizaUUNmnIlnLh/Le8uL2FXrJCcxhkuO6cMPWyv5eVctn948he2Vzbz+cwH1Lj+zRmdwx8kWHvh8ExVNHu77eAMvXz2B77dUkWY3ot23An1MEoy9GgaermRTafSYYpK5YFwpi3e2n4Vx6tBUnl+wiwXbq6lx+Hj6srGsK2lga0UzQ1KtnD06nYxYE1qN3PETHatuVupeGHVaal0+nl9UgsMbYGpuEq9cM4F3lhcpdWfSbYzPjmVcdhxJMXr6xITB0HNqTQnRFaqaXOQkxdDsCfD8wjwMWg2zRqeTHmtiR6WDVJuBS8ZnMTjVRmK031gTQvRoEsDowXZURXkHknAIFv0bAl4Yfz1ojSQYlYvBckeY5EOttadSgTVV+elMY69W6mJ8fAPcvBQMRxgMEb2aLxgmJymGvOr2C1COzVYubCwGLbN/LuTVnwpQq+DVa49hZWE960oaAeXX+IGzhnLne2upc+6tFfH5ujJ+zqvlsQtGcu1rK6h1+Np9naHpNr7roOMJwOKdNfzpzKFUNHqoc/mJNWm597RBvLqkoE3JCVCCHh+vKWXmiDQ+W1feat87y4v5emMFj5w7HJc3yPrSRu79aD2Nbj9/OXMI87ZW8+S8HS2Pn7e1ioxYE/88fwQ3vLEKbyDEwh3VTO6fwKzR6STb9lvasXtON3v8uHxBDC4fE/rGMzTNxubyplYPTbcbOXZAAi8t3gXAhtJGrn1tBWOyYrn1pAGcOCi5datWITrg8AQw67W8tDif138ubNk+b2sV2QlmnrtiHCsL63hx4S6ev2o8sUYt1m0fwqgz5PwgjmoBv59QWM2d761ma8XeIPqXG8o5a2QaN0zNweULcP64TMx6DXpdx+22hRDil5LbVT1UOBxmZ6WD9Ggu4LntKyhbDcMvAJMdgHiTcqFR4TzwXe1uodbAlDvAWQXzH430aEQUqmr28MiXm7nrlNx2+9hfMiFLqe0AuP0hzDoN7/56Il/fcTwalYoHzx7GW9dP5Prj+/HY+SNZUVDXKnixR7XDy4qCOib3T9i73GI/Hn8Iq1HX4VhjjFo2lTZyxcvL+O17a/lhazUjs2LZVtE2Y2OP9SUNnDGi/ZT4JreffonKRdu2imaGpdt4/spxTM5JbBW82KO0wc1Hq0uZOVI5XlmDhwvHZ3DykOQ2j3V6A6wtqueWt9dw1lOL+dVrKymqdfLcFWO59/RB5CbH0C/Rws3Tcnj8otH88eMN6DVqzhiRyjVT+nLykGTWlzbyr2+30eBuP+BzuOqcPsob3dS7Oud4IrrUNHvQqlV4AyEW7Wib6VNY62L2kgJ+f+ogyps8WA1adE6l8DQGa/cPWIgo4vQG+Xh1CXaTjqun9OX8sRnYTMo90Dnry6lzetGowazXEK9rJ2IuhBCdSDIweqiqZi/N3gCZ0VrA01EFK19V6lMkDWzZbNWDVg0Vzig5wdnSYMRFsOw5pfZGYm6kRySiiMMTYPHOWvRaDS9eNZ43fi5kfUmD0iZ1QhbD0m0YdreJ8wdDLNpZzYlDkrnsxWXU7g5UxJp1XDQ+k2HpNl5e3HFL08U7a7hkQh/KGtzt7l9RUMctJw7gtSUF7e4/d0wGn6wtBZTWqi8s3MXxAxLJjDNR2sExs+MtpNiMnD4slW/2ye7QaVS8du0EQuEw4/vGM7F/AvEWPRaDlid/aBu82OObjRU8ftEoPl5dyoS+cRw7IJF4S+u6FKFQmEU7avjNm6tatlU1e7n0pWX8eeYQLj+mDzOGp+IPhrEaNdz13jrG9onj/HGZfLWhnC3lTeQmx/DK1eNbjflINbh8rC5s4N9zt1FY66J/kkVpRZsZi93UccBI9BxFtU5WFtbz6ZpSQmG4ZkpfrEYtf/50Y6taKp+vK+OKSdkMSbWhVUPqGyfAjQtBK8VhxVHMXY/Dr2dSTgJhYFVhPfEWPY+cO4JNpU08uyCPD1aVcO9pA9FrVOjNUfq9VAjRa0gAo4faUbm7A0m0ZmAsfwG0esg9rdVmtUpFglFFeTRkYOwx9BzY8S3M+xtc9HqkRyOiiFajRq1SUsxXFtRxzpgMThqcTKPbz1vLirjsmD5kJ1gw6rTEGLT8+cxh/Oq1FTS59xbvbHD5eWFhPiMz7MQYOv6TG2PQMr5vbIdtT88fm0GyVc/d0wfy77nbsRq0JMToqXH4yE4wMyUnkdn7BDfizDr8oRCXHNOn3SKkKhVcNTmbepePUVl2LhifydbyZmKMWo4fkMDcLVU8vyCPepefeIuem6flcOH4TNztdCfZwx8KoVarsJm0jMiwY2wnjbiiycP9n2xo9/n//GYb04el0jdxb7r+zScOoLjOzXWzV7QshVmWX8f7K0t46erxbQIkh8PjD/LhqhL+/uXe9q3rSxq58uXlPHLuCC4cn4FOI6nQPVlJvYu7P1jHioL6lm2Ld9YwKtPOo+eN4PZ317Zs9wVCqFXw+9MGEb/9Q7jyE6VQtBBHMS86nN4Qt72zplU3rq83VnD98f24YmIfKpu9mPVa4qX0hRCiG0gAo4faUdWMVqMi2RqFd4bK1kDRzzDqEtC1HV+8UUWFI0oyMAC0Bhh5CSx5EsrXQ9rISI9IRIk4s44TByXzw9YqmjyBVuvmtWoV2QlmgkrVTuItOtYV+1oFL/b15Lyd3HZSLisL69vdf9XkbJrdAZrdfv51wUj+/uUWGt3Kl8W/nDWUykYP0/+zkFtOHMBXtx9HaYOHojong1KsWI067npv7e4CooqzR2cwe0khQ9Ns3H7yAJ6dn4c/qDzApNPw4NnDsJm0nPPMT/iDYVJtRkZl2RmcauOlxfm8s7y45Vh1Th9//3ILzR4/pwxN5tkFee2+hyk5CZQ2uPjvxWNItuqJMbTNYGhw+VqyU/bnC4YorXfRJ35vgZysODO/eWNVmzoevmCIP368gY9vnkLK/jU2DlF1s5d/fbut3X0Pf7mZEwYmkhF3qMV6RDRaWVDXKnixx7qSRsoaPa3qrpw4OAm1SkX/eD3mBjcYbEogXoijlbuBareeh79qv5X4S4vyeeWaCbh9ATQqFSqDdIISQnQ9CWD0UDuqHGTEmtpdlx9R4SCseAni+kJq+4GAeJOKUkcUZWAA5JwMGz5Qio5eNDvSoxERVufw4g2GMOk0/HHGYLaUN1HW6GnZr1bBg2cPY2NpI5P6x1PW4ObLDeU4PG2/4O2xvdLBgOSYNss1AGaOSKXZEyAzzsxXGyvIiDPx1vUTcXoD+IMh6lx+HpqzmWSrgQl94/n166taLQvpE2/m7+cM56731rYEB9JsRuZtrWTB9mrOGpnGc1eMo97lQ6NWY9ZrWJpXQ6xZR4rNyO9PG4QvEKKg1sWpQ1M4+38/tfsenpmfx/ljM5k2KIn526pb7TNo1dx7+mDyaxyk2Y0dXvgfrODm/p1Eah3eVmn++yptcFPn9B15AMPhxRto/2+R0xek1umTAEYPFQ6HKa138fY+gbj9fbWhnGmDkthc3oRZr+G30wdhVzlI+fBCcJTDkLO6ccRCRJ86d5gmj5+F7dSN2WNTaSMXjMskNkaCF0KI7iEBjB5qe0UzGdFY/yJvPtQXwKSblRz1diSYVKyu6DgNPSLUGqW16s//g5qdkDgg0iMSEVDv9LGioI7/fL+d4jo3uSkx3DdjCM9dOY41RQ2sL2kgMcbApP4JfLa2lNtOyqXZE+DqV5dT2eThb7OGd3jsxBg9m8saue64flw5OZsv1pcBcPyAJEIoGRBXvryM+t13uZ5bsIshaVb+cd4IHv16KwA3Tcvh719ublPToqjOxWPfbuXXx/fnH98ojy1tcJOTFENxnZs568uZs74ci15DKAxuf5BLj8mistHDw+cM556P1lO5e+nKsHRbS1bJ/vzBMA0uP49dMJLvNlXyyuJ8Gt1+JvVP4OIJWfy4rZLzx2SRGd/xRX+8WU+feDNFda42+2IMWtLtrYMRwfZaqOwjdJD9B6I/SNtVrSbKAsTikBXXufh6Y8UB2yAHgmFiDFouGJfBDVNzSLboiH18BBCGS9/r/M5XQvQkoQB+jZFmj6vdTlZ76LVqLAZZaieE6D7ShaQHCofD7KhykBltdwaDflj7JqQOh9isDh+WYFRR4Qr/oguPLpFzEphiYdmzkR6JiACXL8Bbywq54Y1VbClvxuENsKaogQuf/5kdlQ6GpFqxmXQU17tYsK2KO08ZSL9EC+tLGtlR6aDJHcDjD5GTZGn3+Nce24/3V5bw47YqPlpVwsmDUzh3dCZ6nZokq4Er9gle7LFnHHsKe2bFm9le2X47142lTeQk760d8cOWSm6eltPqMU5fELc/iFat4tJj+jAw1crDX21pCV4A6A5yUW/QqUm0GEi1GbloQhZ3njIQi0HLjW+s4j9zd3LrO2vIr3bw+s8FvLeiiPwaJw7v3mU1yTYj/71kNAZt69dRq+A/F49usywuzW5q89g9EmP0xFuOPMU/waInMab952fEmkj4BfU1ROQ0uf08Pnc7X6wv58yR6R0+7sxRaUzoG8c9pw1CG/JjrFoNY66C3yyBvscpgW0hjlLBYJDKJi9Ob4Bxu9uFt+fYAYntLhcUQoiuIhkYPVC1w0uj2x99HUh2zgVHNYy67IAPizepCISgxh0m2RxFdzg1ehg4A9a8CSf9CUwdn7BF71PT7OWJ79vvsPHQF5v5+o7jue2kAQRDYDdp0Ws1hMNhPl9X1vK4x77Zyn8uHs2Li3axeGcN4TBYDVpuPWkAwVCYZfl1JMToiTPruf71lRi0au47YwgrCurw+Nu/U7yqsIHh6TYW59Xi7eAxe1gNWu44OZfsBDN2k46fdtTwxEUj+cuczS21ORJj9Dx49jCc3gAxRl2bgEhFo4d+iRbya5xtjp+TFINeq6akwc0fP95AtaNtwdG1xQ1sqWjm0a+24vYHUangL2cO5fyxmdh2d/UYkWHn2zun8vGaUtYU1TMgOYbLjulDZrwZ3X7BiiSrgT/NHMKfP9vUartKBY+cO4KUX1AHKMVm5JnLx3Lly8tbLSUx6tQ8fdmYI16aIiKrxuHli/XlBEJhfjt9IDlJFvKqW/8+94k3k5tsRatR43T7yfBsw5A+AvqMl7oXQgD1njBP/7iDa6b04+ZpOdz81uo2S+7OHZNBYoz+oEsDhRCiM0kAowfaXqFccGTGR1EAI+iH9e8pBTCtKQd8aIJJuUApc4RJjrIkEgbNgA3vw5q3YMqtkR6N6EZljR4CHSydaHT7qXP6GJ5hb7VdpVIRZ957sVPr9HHLW6u55Jg+XDU5m1AY+iVa2F7RTFmjB51Gxfebq3jvxklsKWvizukDKax1dViHAeDbTRU8ePYwFuf9jEmvQaWi3XRejVqFOxDkx21VWAxarj+uH0/+uJP5N4/gy5snsb3Ggz8YxukL8NyCXWwobeS1aye0Oc7zC/P4+znDufv9da2KbSbG6PnLmUO47MVlPHzO8HaDF3vkVTtIjzWRV+0gHIYH52xmfN94Ruz+/LQaNX0TLdx5ci6eQBCDRo2mg8wPo07D2aPTGZhi5al5OyiodTE0zcZtJw0gJynmF31xVqtVjO4Ty7d3TmXO+jI2ljYxJiuWGSNSo3OJnjiowlon1c3elrn82/fX8ub1E5m7uZI568qBMKcOTWVc3zh2VTvom5BEQvE3GHKPBaM1soMXIkr4g0Hc/hBVzT5m/1zAOaMzePGq8Xy8upRVRXXEm/VcckwWx+YkkmqXv5VCiO4lAYweaHtlM3qN+hfdeex0efPAWQOjrzjoQxNNygVHmSPE6OQoS9E1xSmpwyteUup4qGWV1dFC38EyhT10HdRDuHhCFh+tLuH04amk2oyU1Lt5/ecCXly0ixun9ue1JQX8nFfLrSfmMPeuE9hZ7cAfDPHQOcO56PmfSYwx8Ovj+zN3c2Wr4549Kp2zR6dj0Kix6LXMvXMqOysdnDkijTnry9uM47wxGczdVMn6kkYAhqbZ+NWUbHQGCz/mNXD/pxvbPCcQCqNVq1oFbkrq3Tw0ZzMPzRoGKhXrixvon2RhUIqVO95bS3mjB28whE6jaulqsr8Ei4Emd+vlMK//XMCj541Au8+cUqtVmPVafIEQFfVu/KEQZr2mzTISu0nPxP4JDE234fYFMes1xBg7J2VZr9HQN9HCbSflEgyF0Mic77G8/gCNLh9JVgMvXDkOly/IF+vLOOd/P/HIuSN4/KKR1Dp8uPwBEix60u2JhH0ObLlTwJ4R6eELETUqGr2owmH+MGMwtQ4fWo1S5+L04SnMGp2O3aTD4w+i10rmhRCi+8k3tR5oe2UzGXGm6EnZCwWVrIXU4QfNvgCI0YFBowQwotLAGVCfDwULIz0S0Y1SbUZspvZjuv0SLa0yLVo/z8Cr10zA6w+xcEc1apWK564Yx3XH9WVsdhw/59USa9ZxzphM+iZaOGVICllxZv793TZcviBFdS5ijFqGpO29+3vrSQPom2CmweUjr8bJX+ds4ncfrqek0c1vTx3EbScNwKhT/nyb9RquPbYvE/vH8+6KopZjfLm+nIsm9MGtUuo43DC1f5sCmd9uquCSY9rWq9lV42T+9mo2FDfw865aap0+Hv5qC4W1SuHNH7dWM2N4WrufR4xBS5xF1yZDo6LRg7+dgooVjR4e/XoLpzy+gGn/ms8Fz/7Md5sq2gRAAKxGHck2Y6cFL/YnwYueKxAMUVLvpskb4MdtVSzJq+U/c7fTJ97Mvy8cxX2fbOCi55fy5YZy+iXE4PAGMOnUZMeawJ4Z6eELEWXCLC+sZ11xAxtLG3lu/k5WFNRT3ezj8bnb+fUbK7GZdKTaoy2NVghxNJAMjB5oS0UTmXFRlLJXuBiaK2D4BYf0cJVKRZJZRUlzlBXx3CN5KMRmw8pXof+0SI9GdJNkq4FnLhvHta8tb5VZYNFrePKS0SS3Uw/BHwyxLL+eW99Z3bKsY2NpE3PWl/HcFWNZtquWP80cwunDUls6c7h9AaqavczfvrcN6V8/28j/XTiKNUUNrCyso1+CBW8gyIerSli6q67lcWuLG3hjaSGvXjOBs0alU9Hoocnj54v15by2pKDV0pIhaTH4gmFeW5LPsl21JFoN3HHKQOpdPv6xu6vJh6tK+N9lY0m3m3h+4S4a3X5sRi2XHtOHfkkW/vjxBoal2+iXaOGxgvqWY3+2tpRnLh9Lfo2TDaWNLdtjDFr+deFInp2f1+azOnFQMkZt64yrGoeX299Zw/KCve+xqM7FDW+s4tnLxzJjRPtBEiH2V9XsocHt5+1lRWwtV4L8vzttEGuLG/h8XRk3T8uhtMHDpcdkKYVoY/T4AiEMVql1JMS+qprcVDX7WFlQz7L8WuwmHeeOUYJ8VQ4Pk/rHc+KgZBItUrhTCBEZvSKAsXDhQv71r3+xatUqysvL+eSTTzjnnHNa9ofDYR588EFeeOEF6uvrmThxIv/73/8YNmxY5AZ9hEKhMDsqHZwzOlrSXcOw4UNIzD2sFNxEo4rS5ijNwFCpIPdUWPWasizGkhjpEYluoNWoOaZfHHPvOoFP15aypbyJ8dnxnDa843oIVU0e7v1ofZuaFMFQmPs+3sint0whPdaEap+WwtUOH0V1LnRqNb7dGQlNngA3vLGKyf0TuOOUXF5dXMD0YSmtghd7FNa6+GRNKWoVZMVb+N0H69o8JsVm4IapOVz43JKW4qC7apwsz6/jkglZXH98P15alM+IDDtZcSaMOjXPXTEWm0mHVqVi4Y5qFm2v5sWrxuP1B/n9B+tbHd8bCHHHu2t57oqxxBh1bC5rJMVmpG+Chd99sLZlGcse8RY9pw5LafU5AJQ1uFsFL/b1ty82MyY7jlQppCkOorbZw/ZKB9fNXtnSAnhXjZNFO2q4a/pA9Fo1pw5LxaxTAmj3fLiOvBoXX952XCSHLURUqnP6ufbV5TR59naPWl3UwGnDUhnTx845ozLQqCE1VrIvhBCR0SvyZZ1OJ6NGjeLpp59ud/9jjz3G448/ztNPP82KFStITU1l+vTpNDc3d/NIf7mSejcuX5Cs+Cg5cZSuhrpd0G/qYT0twaymJFqXkMDuzIuwUphUHDX0WqUewp2nDOSZy8fy66n96RNvRtPBcq2qZm+rFqH7qnZ4aXD721y051U1M39bFacPT23znJ3VDkIhyIgz8f1+NTH29cmaUqxGHcFQmDFZsW32/+rYfjz2zbZ2O5u8u6KYKTmJDEq1cucpA7nkhaX86rWVXPriMmY+uZhfzV7B6cNTeerSsZwyJAVvINTue3T5AqTaTYzOiuWyidmcPCSFrHgTD5w9nOEZNkCJBU4dmMQHv5ncbtvntcUNHb7HskYPzg4+WyH2qGh0s6PayX0fb2gJXuzr6Xk7OH9sJtsrmqlscrO1spmVRQ08cu6IdrOqhDia1TR5+L/vtrUKXuzx7aYK+ibE0OzxY9RFWf0yIcRRpVdkYMyYMYMZM2a0uy8cDvPEE09w//33c9555wEwe/ZsUlJSePvtt7nxxhu7c6i/2NaKJkBpARcVNn6kZF7E5xzW05JMKpaXR3EAw2iHPpNg9etKMU9VlNQbEd2mM+ohtNctJBSGL9aX8+JV41lRUEd5owdQalQMS7dRUOMkxWaktMF9wGOrVPDgnE08dv5ICmpdzFlXhtsfZNqgJI7PTeTR3ctE2rOprJHHLxzFr2avwOkLttpX2uDhqldW8N6Nk0i2GjlhYBJXTc7m9Z8LWx5j0Kr57yWjyYhtfQGo12oYlRXL6786hkZ3ALUK4sz6lvap+0u2Gjoco1atQi3zThxEYa0Ts15L2e55tD9/MEydUynsGQzBhuIGPr35WAYkx3QYmBTiaNXsCzBva1WH+5fuquWaKX1JiqYi8kKIo06vCGAcSH5+PhUVFZx66qkt2wwGAyeccAJLlizpMIDh9XrxevcWoWtqaurysR6KrRXNWI1a4sxRsPawLg/K18GoSw77Aj/ZrKLZB43eMHZDlH6JHDAdvv8rlK2GjHGRHs1RJVrn3/7izHosek2bIEBijJ4bp+agVavYXNaI3aQUn9Rp1OQmWwmGwtz70XoePHsYO6uUriRajZo73l1LYoyef10wijiznh+2tP9F8tShKSzaXkNCjJ7yJg9j+8Ry6rAUQqEwoXD4oAV+Y006NGoVlU3tt0LNr3FS5/CRbDWSEGPgd6cO4popfdlS3oRZr2FAipUUqwG9tv27cPEWA/GWjoMTewxPt2PUqdvNFDltWCqfry1jQr84RmTYsXZR4U7RWk+Ze80ePy5vALtZj8sbPOBjNWoVGXEmTBo1I6blYDO1X5BXiEiL5PwLBkP4AiHUKhWh9qLvKN24THq1BP+EEBHVK5aQHEhFRQUAKSmtu2OkpKS07GvPo48+it1ub/nJympbqT8SNpc30Sfe3CYtPSI2fqK0HU0ZcdhPTTIr4y+J1joYAGmjwZwIa96K9EiOOtE6//ZV4/Dy8eoSfnfaoFbbs+JNPH7RaL5YX8bp/13EGU8u5rQnFvHWskLqnT4SrXr+MGMw5Y0ebnhjFV9uKOfYAYk88f323cf18c2mCoakWRmf3bbAYGaciYsmZGE3afnTzKFsKm3E6Qty13trOf2/i7j8pWWEwzCxX3yHY++baKGoznXA9+cN7J2bNpOO/kkxzByZzomDlS4qHQUvDkeyzcArV0/AsF8L24EpMVw4PpNnF+zksheXsXhHDeEOvlCLztUT5p7TE6DB5efRr7dyxn8XtZwX22PQqhmaZsOoVZNkM0rwQkS1SM2/cDhMcYOLRpefU4Z23E3uzJHpmA/SclwIIbraUfNXaP8L/nA4fMAgwB//+EcaGxtbfoqLi7t6iIdkc1nHX9S6lbNaaTOafSwcQap9kll5TnE0BzDUGsg5SSlS6m8/PVl0jWidf/sqrHXy5LydbC5r4oUrx3Hq0BQGpsTwj/NG8rsP1rFun0KWDm+ABz7fzMId1Zj1Ws4Znc47v57ItEFJaNUqKps8rTqfvLeimH9/t40Hzh7GP88fweisWIam2bjtpAE8cPYw7v1wPTeckMNv31vLeWMzufXt1WwqU+7U3X5yLg/N2cxN03KwGdsm2d120gDWFDWgVqvQdnAXzahTkxDT9Rd6eq2G8f3i+P63J/D4haN47IIRfPCbyTx49jAe/nJLS2bGXz/f1GG2iOhcPWHuOb1+5m+rIjvBwpWT+/LpmhL+MGMwek3bc9HfzhmOzajFbtJhkHX7IspFav6V1rtpdgd49Jut3DJtAL8/bRDH7BcEv2JSH+IteixGCQIKISKr1y8hSU1VCuVVVFSQlra3JV9VVVWbrIx9GQwGDIaDp0B3J4c3QFGdizNGtC3+1+22zAGNHjKPbGmFTQ8mLRQ1RXEAAyDnZNjwPmz9AkYcWptY8ctF4/zb3yerSwH4YFUJ32ysYObINI7pF09lk4eq5rYX21q1im83VXBCbhKJViNGvYY/zRzKkrwazPq2f4oX76zlzKcWMzAlhn+eP5J5W6tYnl/HU/N2cvaodF5enM/UgUl8uaG8JVtCq1aREWvi5121NLh9PH3ZWBZsr2ZNUT0JMQZmjUpnYKqV62av4JjaeK47vh/PL9jV8pomnYZZo9M5b2wG/mAIh8dPTBcv3dBrNKTHmhiSbuOtZYW8vKiAhBg9N0ztT3Wzl8e+3UZVs5cmt59Uu6y77mrRPvd8gSANngBbyptZVVhPis3AVZP70ujy89LV4/l6Yzlby5vJijdz9ZS+uH0BtFq1ZF6IHiFS8y+/xoFBp+GCcZn85bON+IIhThuWyh0n5/LBqmJOG5rKoFSrUptIlo8IISKs12dg9OvXj9TUVObOnduyzefzsWDBAqZMmRLBkR2+LeXKHda+CZbIDsTvgu3fQOYE0B7ZBYVKpSLFrKIw2gMY9gxIHirLSERb+3yHa/YGeHdFMXM3V7K5rO2a5YvGZ/HCVePJjDPz33k7+DmvBpc3iEGjIjPOTLLNgFHX/p9jbyDExtImnpq3k2X5SsvRAckxrC9pZEByDBv2yfSwGrUtwZMt5c1c/epydlQ2MzY7jjiznj99tpEmt5/iOjcfrS7l7FHp/OXMoWTEmhiSZuXla8bj9AW45tUVnPvMEp74YQel9QdeatIZdlQ1c/6zS3hzaRHbKptZklfL7z9cT3G9i+uO6weAViNfmgVsKmvirKcW8/Zy5Xdl4Y4abn93LYV1Lr7dWE6tw8fdpw7EbtLi9AR4ZkEe+k4oyCtEb5YWa+Jf327j/k82sqa4gU1lTTw+dzv3frSeqyb15YWFuwgDZr1kMQkhIq9XnNUdDgdr165l7dq1gFK4c+3atRQVFaFSqbjzzjt55JFH+OSTT9i4cSPXXHMNZrOZyy67LLIDP0ybShvRapRiZBG14zsIuKHPLwsAJVvUFDRGeQADYMApsOtHaCyJ9EhEFDlvTGabbWeNSqdvYusA4yUTssiINfKr11bwwsJdvPpTAZe+uIwb3liFSq3in19vwesP8scZQ9rUwjVo1fxhxmBeW5LfanuDy0ey1UC9y0/SPp08HN5Aq3+Hw7BwRw0vLcrn/ZXFODwB3LsLjk7oG8ePW6sZnRXL/TMH8+8LR3Hj66uYs64cly9Ig8vPS4vyufLl5ZQ3Hrgjyi/R6PLx18824vK1LcT4zvJipuQkMLF/PPEWuYN+tKtodPOnTze2qs+yx/ML8zhzVDpzt1Ti8AaxGHR8s6mC/gkWYtpZSiWEUNQ6vGyvbGZFQX2bfSX1br7ZWMGxuQkYteoOO0oJIUR36hUBjJUrVzJmzBjGjBkDwG9/+1vGjBnDX/7yFwDuuece7rzzTm6++WbGjx9PaWkp3333HVarNZLDPmybyproE2dGG8m7SaEgbP4UUkeCyf6LDpViVpHfEwIYfY8DrQHWvhPpkYgokp1g5uxRe5elDUiOIRyGFJux5S6VTqPi1GGp/Of7HW2ev7a4gXeXF/H0ZWN4eXE+mXFGXrxqPOeOyWBC3ziumJTNp7ccy2s/FZBX7Wz13Dnry7lyUjZfbyjnvLEZLdv9wTCVTR4GpbT/t+3MkWl8vbGC8dlx3HLiAJ5fkIdeq+a7TVW8sDCfZm+gzXN21ThZ1c4X287S6AmwLL/j428obeTfF4wi1iwBjKNdg9vfUutlf+EwFNS6OG5AIumxRlTAOyuKuGJyNtp2amMIIcDh8eP0Bfh495LI9ny5oZwzhqdh0aujo4C8EOKo1yvO6tOmTSMcDrf5ee211wBlucIDDzxAeXk5Ho+HBQsWMHz48MgO+gisK2mgX2KEl48ULgZHNfSd+osPlRajptwRxhOI8u4COjNkHwdr3oBQDwi4iG6REGPgL2cO44UrxzE5J4FfH9+f2T8X8PS8Hfzn4tHEW/SMz45n8Y7qDo/x+tJCAiH43amD0GvUJMboOWN4KhdNyGJIqpVAMERmOxlX1c1eUmONXDQ+k20Vzdw4tX9L9sZ/v9/B/TOHMDJzb4BRpYIzhqdy28m5XHNsX64/vh+3vb2GZm+AQDDE2OxYftpZ0+E4P15Tir+du97dwW7SkRkNhYtFxHj8QfKqHPgO8juoVsFDs4Zx+7trlLl42ZjoKHotRJRyeAM4D9KGWKVSlo7EWqQGkRAiOkheZQ/h9gXZWeVg6sCkCI4iDBs/goQBYEs7+MMPIs2iIgwUNIYYnBDl6ypzT4G875UATr9fHrwRvUOi1cDJQ1KwmXSoVVBU68IXDPGfudv585lDyYw18eGqjqvIOzwBdlY5KK5zcdqwVH7cVsXWimaGpdsYnGrl9x+u48apA8hNsfLCwl3UOX1kxJr41XF9Wb6rjhMHJePyBwkEQ5wx4li2VTbj8QfRqOGx80fg9IWod/nIjDWRHmtqSf8Nh8M4fEq2hUatRqNSYTrA2ma7SYuqi8LddpOWyf3j+XlXXbv7j8+N5N88EWmhUJgVBXUU1joZnRXHiAw7G0ob2zxOpYLRWbHUO/3cPX0QIzLspMcaO6XdrxC9lccfxOUNcMrQFL7fUtXuY84ZnYHdJJcLQojoIX+ReohNZY2EwtA/MSZygyhfB7V5MO5XnXK49BjlimhXTwhgJA8Dexasmi0BDNGKRq1iSJqVwloXA5Jj2FzexNaKZu56by1ZcWZuO2kA761sv37KpP4JVDR56BNv5ownF7Ws7f9wlZJ5MPvaCVQ1e5nVP42puYk0ewKY9BoWbq/mie93cPvJuRTVOpWL/3AY9e5Cl3ajjttOzuXGN1YBMLl/PM9dOb7ldbPizDx96Vh+98E6PllTwslDkjlnTDpP/rCz3XFePim7y5au2U16Hjh7OOc/uwTHfktYbjohh2Rr9HbEEF2vqtmDRa+lX2IMOo2KO0/J5da31+D2t75rfPMJORTWOgkEw3y6ppRpg5IkeCHEQQTDEAYseg2T+sezdL9Acp94MxeMy8QqrVOFEFFEAhg9xNriBgxaNVnxESzgufEjsKVD4oBOOZxVr7RT3VnfA5ZlqFQwYDqsfROctWBJiPSIRBRo9vipc/rwBUKk2Y3cfepArpu9EoAkq4Fx2XFkx5s5bkAii/dboqFVq7juuH74AiH++MmGNoUJG91+Hvh8M38/dzj3fbKRH7cpS1E0ahVnjkzjPxeP5rfvr+XWEwdw9ugMPl9XitsX4rjcRLRqFXe/v67lWJvKmnD5Ath3Z2CYDVqmD03mu7umUlDrJDnGyFkj01m0vYY1xQ2txnH15OwuD5zmJsfw5e3H8f6KYhbuqCExRs8NU3MYnGaVonFHMV8giNsXZM66Uhy+IHaTjmkDk3j+ynF8t6mCdSWNJFkNnDc2gz5xZtYU1fP91iruOmUg1i5u/ytEb6BRgWF3cfiLxmcxY3gaX24oxxcIceLgZE4floLdpJE6MkKIqCIBjB5ibXEDfRMskSvgWbcTSlfDyEto0yrhCKlUKjKtarbVHXj9ZdQYcLJSB2PtW3Ds7ZEejYiw4joXD8zZxLytVbuLdxr432VjeeTc4YTDYNRpmLulkleW5HP1lGx+My2HO95ZQ63Tx8R+8fx6an/e+LmQC8dn0eDyt/sapw5L4aE5m1i+TxHNYCjMZ2vLUKHiwnFZ/Of7Hbx89Tgm9Utg/vZqnvphB2WNnlbHSbUb0e/zBTQcDlPa4OHpeTtYuL0ag07DHafk8sQlo8mvcfLZ2jIseg0Xjc8iM97U5R1A1GoV2QkW7pw+kF8f3x+dVo3FIKeno1kgGKKy0UNZowedVkNNrRuzXotJr8Gk0zA2O47RWbHYzTosei2FdU7qXX7OH5vJwJQIZioK0UPUOz3UOH1sLWtiS3kT54zJpKTexfljM7CbdAxKtWLQqLEYJBgohIgu8g2xh1hVWM/YPnGRG8CGD8EcD6kjOvWwGVY12+p6QAYGgNEOfY+FlS/D5Fshkt1gRERVNLq5/KVlFNW5WrZVNnm54Lmf+e6uqfzj663M27p3PfG3myoZnx3HW7+eSF6Vk01ljdz74Xrc/iBnjUpv9zVUKhiUauWxb7e1u3/O+jKeu2IsedUOGlx+EmIMfLWhnFA7NXFvOymXhJi9SzGK6lzM+t9imtx7l2z8/oP1ZCeYef+GSUy7ePRhfiKdQ6dREyvtUgVQ2eShtNHDdbNX4PHvPUe8tbSQf14wkganl1OHpeILhPAFQgTDYYamaxiXHUuMZF8IcVB1zgC3vb2G8t0B77eWFzM0zcYtJ+bQPymGkjo3feJNshRLCBF15AqsB6hs8lDe6CE3UneVGoshfzH0O6HTL9r7WJVWqlHfiWSPQTOhvgDyfoj0SEQEba1obhW82CMzzsSaovpWwYs9VhbWs7qwgVeX5PPM/DxqnT5cviDxFj3qdpKazDpNh5kZoGRi+AJh7po+kL99uYX3Vhbz93NGYNTtnaMqFVx3XD+m5Oxd8uQLhHhpcT5N7kCrrAyAwloXP+XVHspHIESXqnX6+P2H61oFLwACoTAPztlEss3E+pImvtpYwb0fb+D+TzaSmxxDQox0ShDiYKqaPPz3hx0twYs9Npc3ccvbayipd1PS4MZulmCgECL6SAZGD7CiQCmqNDDFGpkBrH8PjFZIH9vph+5rVxMMw7a6EKOSe0CUP2kwJOTC0mchd3qkRyMiZEV++x0zThqczOfryjp83tvLC/nHuSN5f1UxS3fVYjfp0Kjh6il9efWnglaPdfuDZB2gBaRKBQOSY/AFQzS4/HyzsQKHJ8CTl4yhwe3H4w+SFWcm0apvlX3R4PaRmxzDy1ePp9kTwGbSsamskefm5+H0Bfl0TSlnjEjFqJPTg4gMh8dPg8tPcZ273f1N7gBatQqdRsW0gUmMzoolK85M30i3GReih3B4A3y1obzD/Svy65g5Mo1YsxRRFkJEH/mG2gOsyK8jzW4kzhyB1OqmUti1AAbPBE3n/7r0salRq2BDTbBnBDBUKhhyFix+HCo3Q8rQSI9IREBHgQWdRo3X3/GSKK8/xI/bqihtcDNjeBouX5D7PtnIr47tx99mDeOFRbsoqXczMNnKXdMHYjNqGZxqZWtFc5tjTR+SQnqssdUdtMU7a1i8swa7SYdeo6bG6eWDGye3ep7bF+TDVSWsL9nbinJiv3ievHQMt72zhhijDnVX9UwV4iCqm73srGomFD5wVp5Wo2JgipVmj5/+iRbS7BEscC1EDxNGyWbqiC8YJNkmwQshRHSSAEYP8POuWgZFKvti3TtgiIHMCV1yeL1GRbZNxdrKIFf0lFhA3+Nh9euw5Ck499lIj0ZEwJScRPQaNb5g62DF8vw6zhmdzsrC+nafd+bINHZUNvPDlip+2LJ3mcnTP+7ky9uPY1x2HAW1LopqXfzj6y00ewK8cNU4/vTpRraU7w1iTO6fwK0nDkCvVRNn1pOTFENetaNlf6NbWXpiM2pJi917YVfr8HL7u2taBS8AluXXYdRpuHpy393tJyWAIbqfw+PnibnbmTEilaQYA7FmXbvLqPQaNf2TYtBq1OSm2OT3VYjDUO/0UtXkYWK/eJZ1kE04Y3gayVZZjiWEiE5y1o9ytQ4v2ysdDMuwd/+LNxRB3nzofyJoum4d5IA4Dasqe0gnElA+i6GzYMP7ymckjjqpdgOvXjsBk6511lCy1cD0YSlkJ7TN0EixGTh/XCb3zBjMtcf2xW7SYTVouXRCFp/ePIU0u4ncZCsjM+0MTbfx+9MG8eb1E1mys5YLx2Xx0tXj+fdFo3jlmglMzkng6leXU9XkJclq4MlLR2Pdr2uHTqPif5ePJcW69y5arcPHuuLG/YcGwILt1Zw4OClytXbEUa/W6WNDaQOrCuvZWeXgntMGtfu4u08dSJxJS3qsSYIXQhymWqePez9azx9mDMbQzvw5aXAyaXYJXgghopdkYES5PQX1hqbZuv/FV88GUxxkjO/SlxkUp2ZuQYBqV4gkcw/5MjpwBmz4ABb/B878T6RHI7qZXqvhmL7xzL1rKtsqm6l3+RiWbifFZiDeYuCdX0/ivRXFfLCymGA4zDmjM7hycjaZcUpg448zBnPj1P6EgTizHuPuQIhOqyYzztzyuMU7qvn33O0tr2vQqvEG9mZ9NLr9ZAFDUm18dcfx/LC1kmW76hiaZuPMUelkxBrR7lOos97tO8j7UhNvObK04aomD8FQGINO06rtaiAUilz7Z9FjVDV7CIXC3H7KQJbm1XLX+2t55vKxvHndMTw1byc7qhz0iTdz07QchqbZiJdinUIckWZPgGNzEgmGwnxz5/GsyK/jvz/swKjTcM2UvkzJSSAjruP6S0IIEWkSwIhyi7ZX0yfe3OqCoFtUbYaipTDioi6pfbGvIYnKxc3SsiBnDeghFzo6Iww/T1lKMuV2iO8X6RGJbqbTqsmMN5PZTj2M9FgTt500gMsm9gEg3qJDp9mbraHXakg9hDX7dlPrzKd9gxcAJr1yTLVaRVa8mWum9OOqSX1Rt9fWBEg4QHBCrYLYI6izU+Pw8sOWSp7+cSflDR6Gptu49/TBZMSaKK53EQiGSYzRkxRjIDVW6hSI1qqbPXy/pYpn5iu/P0PSlOyjfolmfvPmauV/T8ghzqwnr9rJ6z8X8N+Lx0R62EL0WHFmPXqdhmtfXYEvGOLUYam8cs0ESupd/O/HPEZkxkZ6iEIIcUA95Grx6BQKhflxWxUjunv5SDgEK14Eewakj+ryl4s3qsm0qlhQHOjy1+pUg88Eox3m/S3SIxFRSKtRk2IzkmIztgpeHI5kq5GMDi76J/SNI6GdwGZHwQuAhBg9xw1IaHffmSPTSTzM7Ismt1Kz4N6PNlBc5yYQCrO+pJHLX1rGTztrePy77Vz72goueWEpX22soKDGeVjHF71bo8vHf7/fwR8/3vv7s6G0kateWY7ZoOW2E3PIr3Fx70cbuOGNVfzzm61cPbkviVYpLijEkcivcXLlK8uYvaSAZm8AbyDEnHVlXPjczyTbTARDYZKtESgYL4QQh0ECGFFsQ2kjNQ4fY7PjuveFd82H6u0w6Azopm4EY1M0zCsKEDxAVeyoozXC6Ctg40dQtCzSoxG9UIrdyCvXTCAxpvUXyr4JZv590ejDzpiIM+v51wWjOHlwcss2tQrOHpXO/TOHEGM8vGyrGoeXN5e1XwfmiR92cMWkbACcviAPfbGZXdUOmt1tizKKo1NVs5e3lrf/+/PIl1uZNSaj5d8WvYaHzh7GMf3iu2t4QvQqtQ4v32+uaLc9cZMnwHvLi3juinGkx8ryESFEdJMlJFHs200VWA1aBnZnUT2fA1a+AqkjIL5/t73shFQNn+8M8HNZkOMye9Cv5YCTYfvX8MWdcOPCLi12Ko5Og1KtzLn1OPKqHRTWushNsZKdYCbFdmQ1ANJiTfzn4tHUOrw0ewPYjDoSYwyHHbwA2FHl6HBfdbO3ZYnLHq8tKWBgqhWrSeaJgJ3VDjrqllrt8FLj8DH3rqk4vQGSrAaSbYYjzmYS4mhX6/SycEdNh/t/2FrFLScN6MYRCSHEkelBV4pHl3A4zJcbyhmbHde9BfDWvAk+l5J90Y1yYtWkWVR8sM3XswIYKjVMugW+/C0sehym3RvpEYleKC3WRFqsieNyO+d4NpMOWycEESz6A89Vnab1cpZdNU58+9XxEEcv80F+f0KhMLmRaiEuRC9T7/RjMXQ85ywGLR0vQBRCiOghS0ii1IbSRgprXUzJaX+9epeo3gJbvlCyCkyx3fe6gEql4qRsLV/tClDl6mEXOAk5MOJCWPBPKF4e6dEI0W36Jpox69u/Iz46K5bN5c2ttuUkxRBzgC/Q4uiSFWfC0sHvz8hMO2F60JJCIaKcSa9hxvDUDvdfPTn7kIpLCyFEpEkAI0p9tKqEOLOOYendVMAz6FVagtozIfvY7nnN/ZzYR4tWDS+uO3Crx6g06hJIGgTvXwXNFZEejRDdIsVq5NnLx6Ldr3BovEXPnafk8ubPha2233LiAJKPcOmL6H1SrAaeuGR0m9+fOLOOu6cPJDveEqGRCdH7pNqMNLn9nD82o82+if3iOXFQcjvPEkKI6CO3wqKQxx/kkzWlnDAwCc0BOgp0qpWvgqMKJt8K3blkZR8WnYoZ/bXM3ujjquF6sqw9KL6m1sLUe+Cru+Hti+DqL8Boi/SoRIRVNXvIr3GyZGctyVYDx+UmkmIzYtT1jnX8Oq2aSf0TmPvbE/hmQzk7qhxMyUlgRKad+z7eQLXDC4DNqOXBs4eR2531fERUqnP6KGtwM39bFXqthjOGp/DRTVP4dlMFpQ1uhqTZGJRiJdFqINUuwS4hOks4HGZi/wTCwClDU1i4vRpfIMT0oSkMSbO12xJcCCGikSoc7qiElthXU1MTdrudxsZGbLauvTB9f0Ux93y0nicuHn3EhfoOS/Ey+OEhGHIWZE/p+tc7AE8gzO9+9DAqWc3Lp5tRqXrYisy6XfDtfZA8BC7/sNuX4vRW3Tn/Okt5o5tfz17JxrKmlm0atYpnLh/LCQOTek0Qoz2hUJjKJg9VzV5C4TCJMXrS7Ca0mh4UlBRA5869GoeXh+Zs4vN15a22P3/FWEZm2nH5QoTCYWxGHSkSvBCi0+Zffo2TS19Yii8Y4obj+zGmTyxWkw67SYdNr8V6mB2thBAikuTbZJQJhcK8uGgX4/rEdU/workcFv0bkodCn8ld/3oHYdSquHq4jnlFQT7d0QPbLcb3h+kPQfU2ePlUqM2L9IhEBPgCIZ6Zn9cqeAEQDIW5+a3VVDZ5IjSy7qFWq0iLNTEqK5YxfeLIirdI8EKweEdNm+AFwI1vrqaiyUtOcgy5KVYJXgjRieqdPu7+YC0VTR7qnD7+8c02Ln5hGWf8dzFnP/UTzb5gpIcohBCHRb5RRpnvNleyo8rBmaPSuv7F/C6Y93fQmmD4BRAl2Q4T0rQcm6HhLz95KG3uYQU9ARIHwozHlJa0z0+FtW/TYa9A0StVO7x8sLK43X3BUJifdnbcyk6I3qjO6eWFhbs63D97SYF0qBGiC9Q5fawubGh3X63TR0Vj7w6oCyF6HwlgRJFAMMS/v9vG8HQbg1O7OE0+FID5/1QKTo65AvTRVXn62hF6DBoVd85zEwz1wIt/eybM/A9kToBPb4LZZ0H5ukiPSnSTYCiMx9/xxVh1s7cbRyNE5PmDYepdHRdornZ4CYQkgCFEZ/MEDpxh0eTpgdmuQoijmgQwosg7K4rZUeXgkmP6dO0LhUOw5L9QvhpGXQbWlK59vSNg0am4ZYyeVZVBnlzdQy/29GY4/m445UGoz1eyMd67AkpXRXpkoouZ9RoGpVg73D+5O9sjCxEFbEYtxw5I7HD/9KGpmHpxXRghIiXWpMN6gPbVfaR4pxCih5EARpSoavLw2DdbmTYoiZykLqzUHw7Ckqcgbz6MuAiScrvutX6hwQkazh+o48lVPhaXBCI9nCOXMQ7Ofhqm3A4lq+DFk+ClU5SlJT5XpEcnukBijIG/nDW03X3D0230TZT2kOLoYtJruemEHAzatl87EmP0nDIkuecVbRaiB0i2GfntqQPb3Xf+2AwSYgzdPCIhhPhlJIARBUKhMPd8tB6NSsVlXZl9EfTBwv+Dnd8rNS/SRnXda3WSc3K1jEhSc+v3boqaenB6sVoLuafCOc/CifcrS3g+vQn+Lxc+vVn5bxKUNM7eZHRmLG9dP7ElE8OoU3P15Gxeuno8yVYpUiiOPtkJZj695Vgm9Y8HlK48M4an8uFvppAZJ3eBhegKOo2ac8Zk8J+LRpG+u0BurFnH708bxB9mDMZu0kV4hEIIcXikjeoh6so2jv/7cSf/+nYb95w2iDF94jr12C3cDTD/EajZrmRepA7vmtfpAg5fmD8v9mDUwoezLCSaekncrbkC8n6A/IXQVApGOww8HQaeBv1PBHN8pEcYNXpiG9U9ahxeXL4gGrWKpBgD+nbuQAsRrbpi7jW4fDR7AqhUSnp7jFEuoIRoT2fPv8omD95AEJ1aTbLVgEa6QwkheiAJYByirrqAmrOujNvfWcM5YzK4aHxWpx23lYp1sOD/IOSH0ZdDXHbXvE4XqnCGeOgnL3FGFa/OMJNt70Un3XAY6nZB0RIoXq7Uy0AFaSMh+1ilEGj6aIjtC+pe9L4PQ08OYAjRk8ncEyJyZP4JIURbEsA4RF1xEvl8XRl3vbeWyf0TuGlaDurOXv/rbYLVb8C2ryA+B0ZeBMaeewIsd4R4bLmXZl+Yu8YbuGyIHrOuF66ZdlZD2Rqo2ABVW8BRoWzXW5T/jvH9wJYJlkQwxYHBCjozaA2g0YPWCDqj8nhjrPLTwwMf8iVOiMiQuSdE5Mj8E0KItiSAcYg68yQSCIb47w87eGreTo7PTeTGqTlo1J14Ie5zwNYvYOPHEApC7nToMwlUPfsiFsDlD/POFj/zigKYtHByHy3T+mg5PlNLkrnnv792ueuhNg8aCpWlJo4qcNWCpwG8DuAgU1ilgZhkiO0DCQMgaRAkD1MyPGKSu+Md/GLyJU6IyJC5J0TkyPwTQoi2Ou6rJDpdOBxmSV4tf/9yM9sqmrlofBbnjE7vnMrrQa9yxz5/ERQsUlqlZoyDnJOUO/S9hFmn4rqRes4eoGVBcZDVlQE+z1M6lIxMUnN6Px0z+mvpZ+9F7fhMcZA5XvnZXzgEAa/yE/Qpy4SC/t3b3EqAw9ME7lpwVELJCtj0MfjdyvNjUiFjDKSPhbTRkDoCrKkg3QCEEEIIIYQQUUYCGIdoT6JKU1PTIT8nEApT4/BRUOtiTUkT322pIa/GRf8EE/edlkO/BDNu9yG20QyHIehD5XeCtxmVux61qwpVYynqhl1o6ndB0E/YnEgwawrBtHGE9Rbl5rzHcwTvOLpZ1XBmNpyZraLRC5tqYU11iP+u8vLYci/97XBcuorRSSpy7CrSLGDW0ovb9OlBrVf6CmmBA3VFC4dQOatRN+SjrstD07ALdf4iVD4HACGDnVBCLqG4HEL2LMK2DELmJMLmRMJGO2H97iUrml9eeM9qtR7Sf5MjmX9CiAM7lPknc0+IzifnPiEi51Dnn4hesoTkEJWUlJCVdfAim3EnXY9twjkHfEzAUXfA/WYdxBqObGIFj/L/mj50NKtiDvq4V/1/YBAFXT+gHkIFpFk7bwnO+BccrCo/eNvbQ02LPdT5J4Q4dIcy/2TuCdH55NwnROTIkqyeTwIYhygUClFWVtZjonZNTU1kZWVRXFwsk/QA5HM6NF31OR3qfIrU/Ottvx/yfqJbd7+fQ5lPkZh7ve2/6x7yvnqWrnxfXXHu663/HY6EfBYK+Rz22vezyMjI6BHXcqJjsoTkEKnVajIzMyM9jMNms9mO+j9ah0I+p0MTqc8p0vOvt/1+yPuJbtH0fiI596Lpc+hM8r56lki+ryOZf731v8ORkM9CIZ/DXjabTYIXvUAvbdsghBBCCCGEEEKI3kQCGEIIIYQQQgghhIh6EsDopQwGA3/9618xGA7UjkLI53RojtbPqbe9b3k/0a23vZ8j1Vs/B3lfPUtPe189bbxdST4LhXwOe8ln0btIEU8hhBBCCCGEEEJEPcnAEEIIIYQQQgghRNSTAIYQQgghhBBCCCGingQwhBBCCCGEEEIIEfUkgCGEEEIIIYQQQoioJwEMIYQQQgghhBBCRD0JYByicDhMU1MT0rRFiO4n80+IyJC5J0TkyPwTQoi2el0A49FHH0WlUnHnnXe2bAuHwzzwwAOkp6djMpmYNm0amzZtOqzjNjc3Y7fbaW5u7uQRCyEORuafEJEhc0+IyJH5J4QQbfWqAMaKFSt44YUXGDlyZKvtjz32GI8//jhPP/00K1asIDU1lenTp8sJQQghhBBCCCGE6CF6TQDD4XBw+eWX8+KLLxIXF9eyPRwO88QTT3D//fdz3nnnMXz4cGbPno3L5eLtt9+O4IiFEEIIIYQQQghxqHpNAOOWW25h5syZnHLKKa225+fnU1FRwamnntqyzWAwcMIJJ7BkyZLuHqYQQgghhBBCCCGOgDbSA+gM7777LqtWrWLlypVt9lVUVACQkpLSantKSgqFhYUdHtPr9eL1elv+3dTU1EmjFUIcjMw/ISJD5p4QkSPzTwghDq7HZ2AUFxdzxx138NZbb2E0Gjt8nEqlavXvcDjcZtu+Hn30Uex2e8tPVlZWp41Z/AKeRqjLh7pd4KyN9GhEF5H5J0RkyNyLMn4XNBRB7U5oroj0aEQXk/l3GPyefeZGeaRHI4ToRqpwD+/N9Omnn3Luueei0WhatgWDQVQqFWq1mm3btjFgwABWr17NmDFjWh4za9YsYmNjmT17drvHbS8KnpWVRWNjIzabrevekOhYzQ745g+Q9wOEw5A+Bmb+G1JGgFYf6dGJTiTzT4jIkLkXRRpL4MdHYcN7EPRDXD84/VHIPhaM8t+iN5L5d4iaymDBv2DdWxDwgj0LTv0b9J8GpriDPl0I0bP1+CUkJ598Mhs2bGi17dprr2Xw4MHce++99O/fn9TUVObOndsSwPD5fCxYsIB//vOfHR7XYDBgMBi6dOziMNQXwSungWufrIuyNfDK6XDjIkgeHLmxiU4n80+IyJC5FyWaK+Dti6Fy495t9fnwziVw2Qcw8NSOnyt6LJl/h8BRBe9fDSXL925rLIYProELXoVh58IBMqyFED1fjw9gWK1Whg8f3mqbxWIhISGhZfudd97JI488Qm5uLrm5uTzyyCOYzWYuu+yySAxZHK5wGLZ+0Tp4sUfQBwv/D87+L+gt3T82IYQQorPV5rUOXuzr2z9C2iiwprS/X4jerLG4dfBiX9/9CfpMAlt6945JCNGtenwA41Dcc889uN1ubr75Zurr65k4cSLfffcdVqs10kMTh8Lvhp1zO95fuBi8zRLAEEII0TsU/tTxvtqdSm0MIY5Gpas73tdUCj5n941FCBERvTKAMX/+/Fb/VqlUPPDAAzzwwAMRGY/4hTR6sKZ1vN+SBGpd941HiAj5YUsl//h6K8X1Lk4clMzfzhlOYoykGwvR69gyOt6nM4O6V359E+LgrKkd79PolO+MQohercd3IRFHAY0Wjrmh4/3H3QmWhG4bjhCR8NGqEq6bvRKLQcOs0RksyavlypeX4fYFIz00IURn63uscjHWnrFXQUxy945HiGiROlIJ4rVn+AXKTS0hRK8mAQzRM8T3g9MeaVuYacyV0Pf4yIxJiG6ytaKJP3y8nmmDkrjntMGcMzqDP84YzK5qJ0/8sD3SwxNCdDZrGlzybtu7yZkT4dg7QCuZV+IoZU2Hyz8Anan19tSRcNKfQN9BcEMI0WtIDqLoGYx25a7TwNOhYDEEPErgwpoK5vhIj06ILhMOh7n3o/Wk2oxcO6Ufqt1BvOwECzNHpPHq4gKundKPVLsxwiMVQnQarQH6HQ+3roCSFUrnhayJENtHsi/E0U2rUwJ5Ny+DstVKS9WMcUqbYSlsK8RRQQIYoucwWJWfhJxIj0SIbvPNxgrWFTfyp5lD0GtbJ83NHJnG1xsreGd5EXdNHxihEQohuoTWAHF9lR8hxF5aHcRlKz9CiKOOLCERQogoFQ6HeWreTkZm2BmWbm+z36zXMiUngXeWFxEMhSMwQiGEEEIIIbqPBDCEECJK/byrls3lTZw5quOe9tMGJVHV7GVlQV03jkwIIYQQQojuJwEMIYSIUm8vKyIzzsTwdFuHj+mfFEOCRc83myq6cWRCCCGEEEJ0PwlgCCFEFGpw+fh2UwUnDExqKdzZHrVKxbjsOL7dVEE4LMtIhBBCCCFE7yUBDCGEiEJfb6wgGApz3IDEgz52ZGYsZQ0eiupc3TAyIYQQQgghIkMCGEIIEYW+XF/O0DQbsWb9QR87JM2KWgWLd9Z0w8iEEEIIIYSIDAlgCCFElGlw+fg5r5Zj+iUc0uPNei0DkmNYsrO2i0cmhBBCCCFE5EgAQwghosz8bdUEw2HGZccd8nMGplhZVVjfhaMSQgghhBAisiSAIYQQUeaHLZX0T7IQbzn48pE9BiZbqWjyUN7o7sKRCSGEEEIIETkSwBBCiCgSDIVZsL2a0Zmxh/W83JQYAFYXNnT+oIQQQgghhIgCEsAQQogosqmskSZPgBGZ9sN6XqxZT7LVwJoiWUYihBBCCCF6JwlgCCFEFFm8swaTTsOA5JjDfm7fRAsby5q6YFRCCCGEEEJEngQwhBAiiizZWcugVCta9eH/ee6bYGFTaSPhcLgLRiaEEEIIIURkSQBDCCGiRCAYYlVhPUNSrUf0/H6JZpq9AYrrpJCnEEIIIYTofSSAIYQQUWJTWRNuf5DBabYjen7fBMvu4zR25rCEEEIIIYSIChLAEEKIKLGioA69Rk3/RMsRPT/WrMdu0rG1ormTRyaEEEIIIUTkSQBDCCGixKrCenKSLWg1R/6nOSvOxLZKCWAIIYQQQojeRwIYQggRJVYX1TMg6fC7j+wrM87M1nLpRCKEEEIIIXofCWAIIUQUKG90U9nkJTf5yAp47pEVb6aozoXHH+ykkQkhhBBCCBEdenwA49lnn2XkyJHYbDZsNhuTJ0/m66+/btl/zTXXoFKpWv1MmjQpgiMWQoi21hY1ADAg5ZdlYGTFmQiFYWeVoxNGJYQQQgghRPTQRnoAv1RmZib/+Mc/GDBgAACzZ89m1qxZrFmzhmHDhgFw+umn8+qrr7Y8R6/XR2SsQgjRkfWljSRY9MSZf9nfp/RYEwB51Q6GZ9g7Y2hCCCGEEEJEhR4fwDjrrLNa/fvhhx/m2WefZenSpS0BDIPBQGpqaiSGJ4QQh2R9SQP9jrD7yL4sBi1xZh15koEhhBBCCCF6mR6/hGRfwWCQd999F6fTyeTJk1u2z58/n+TkZAYOHMivf/1rqqqqIjhKIYRoLRwOs6GksVMCGKBkYeRVOzvlWEIIIYQQQkSLHp+BAbBhwwYmT56Mx+MhJiaGTz75hKFDhwIwY8YMLrzwQrKzs8nPz+fPf/4zJ510EqtWrcJgMHR4TK/Xi9frbfl3U5NU9Reiuxxt86+4zk2TJ9CpAYzt0kpVHIGjbe4JEU1k/gkhxMH1igyMQYMGsXbtWpYuXcpNN93E1VdfzebNmwG4+OKLmTlzJsOHD+ess87i66+/Zvv27Xz55ZcHPOajjz6K3W5v+cnKyuqOtyKE4Oibf5vLGwE6L4BhN1FQ6yQYCnfK8cTR42ibe0JEE5l/QghxcKpwONzrvuGecsop5OTk8Pzzz7e7Pzc3l+uvv5577723w2O0FwXPysqisbERm83W6WMWQux1tM2/x7/bxutLC3n28nGdcrz1JQ08+vVWFt1zIlnx5k45pjg6HG1zT4hoIvNPCCEOrlcsIdlfOBxudQLYV21tLcXFxaSlpR3wGAaD4YBLTIQQXedom38by5rI7sRAQ6rNCMCuGqcEMMRhOdrmnhDRROafEEIcXI9fQnLfffexaNEiCgoK2LBhA/fffz/z58/n8ssvx+Fw8Lvf/Y6ff/6ZgoIC5s+fz1lnnUViYiLnnntupIceUcFgiOpmDzUOL70wCUeIHmVzWRPZCZ2zfAQgMcaAVqMiv1o6kQixR53TS3WzB38wGOmhCNEj+QIhqpu91Dt9kR6KEOIo1uMzMCorK7nyyispLy/HbrczcuRIvvnmG6ZPn47b7WbDhg28/vrrNDQ0kJaWxoknnsh7772H1WqN9NAjprTexUerS/l0TSkatYrLJvZhxvA0Uu3GSA9NiKNOg8tHRZOHPp2YKaFWq0izGcmvkU4kQlQ1eZi/rZrXlhTg9AU4fVgql0/K7tQ5J0RvFgyFKa5z8fJP+SzYVo3dpOPXU/szuX88SVb57iiE6F49PoDx8ssvd7jPZDLx7bffduNool9pvYuLnl9KaYO7ZduDczbz/spiXr3mmO4JYoTD0FwB3kZQ68EcD6bYrn9dIaLQ1gqlW0hnX0yl2o3skgCGOMpVN3u46721/JRX27Lt+YW7eH9lMZ/ecmynZj4dsnAYmsvB2wQaPZgTwGjv/nEIcYjyaxzMevonnL692Uu3v7OGM0ak8rdZw0mI6YRlL8GAMi98DtCZwJIMegkyCiHa6vFLSMShCwZDfLS6tFXwYo8t5c0sy69t51mdzNMM276Cl06G/02Ep8bA+1dCbV7Xv7YQUWhbRTNatYq02M4NHqbYjBRIAEMc5bZXOloFL/aod/l5bn4eHn83LyfxNMLGj+HFE3efA8fCR9dBfUH3jkOIQ9Ts8fPo11tbBS/2+GpDBaX1bb9THjZnDSz9Hzx3LDwzCZ4aB1/eDU1lv/zYQoheRwIYR5F6l59P15R2uP/dFcU4vYGuHUT5Wnj3MmjaZxz5C+G1M6CxpGtfW4gotLWimYw4E1p15/45TrUZKW1w4wuEOvW4QvQU4XCYD1d1fF75Yn059a5uXstfuAQ++pWShQhKNsaOuTD7bLlYE1GpyRNg3taqDvd/u6nil71A0A+rX4e5f1ECfAChAKx7Gz6+QQluCCHEPiSAcTRRgUat6nC3Vq1Crep4/y/mrIXv/tT+vuYKKF7eda8tRJTaWtFEZlznp8mm2IyEwrSbcSXE0UClUqHTdHxO02hUqOjCc97+HJUdnwMbCqFyU/eNRYjDoDnAd0Ot5hdeSjRXwOLH299XsGhvsE8IIXaTAMZRJMGi5/KJfTrcf9Xkvpj0mq4bQMANFes63r9rQde9thBRKBwOs6PSQWacqdOPnbK7lWpBrSwjEUeviyd0fM67aFwmCTG67huM3wO1OzveX7ik+8YixCGKM+mYOTKtw/2nD0/9ZS/gbQJvc8f7ZYmxEGI/EsA4iqhUKk4fnsbQtLYdWI4fkMiorC4uIqbWQExKx/sT+nft6wsRZSqbvDi8gS4JYCRY9Gg1KopqXZ1+bCF6ir4JZs4dk9Fme1a8iauP7YdO04VB+/2ptWCM7Xh/fL9uG4oQh8ps0HL39IEkWdsW6rzuuH6k/dLi7zoTqA5wOWJN/mXHF0L0Oj2+C4k4PKl2I69cM4Fl+XW8t6IYrVrFVVP6MjLTTnJXt8KKSYXj7oKv7227T62FwWd27esLEWW2Vyp3nTJjO38JiVqtIsUqrVTF0S0hxsD9M4dw/thMXl2Sj8sb5OzR6ZwwMIn02M4PHB5QTApMuhnmP9J2n0YPfad273iEOER9Eix8evMUvt1cybcbK4gz67n2uL7kJluJNet/2cEtSTB4JmyZ03ZfTArYO86iEkIcnSSAcRRKtZuYNTqDU4akoFapunbZyL5UKhh2HpSsgg3v792uNcJFr4Ot7V2yThf0Q8CrRPzV3XjnTYh27KhyoNeoSW7nzlZnSLYZKKqTDAxxdEuMMXBcroHxfWMJhMLEGLpx2ci+NFoYdw2Ur4NtX+7drrfAJe+APb1rXtfvgXBIWlKKXyQjzsy1U/py4bhMdBo1Rl0nfYcyWOH0R6GhWCn0voclCa74GOzd8N1wjz3fEbUm6M7sLCHEYZEAxlHMYojAf/6YZJjxT5j6O+VLnMEGyUPBmgraXxjFPxCvQ2lTt/wFqNsF2VNg1CVKZF8j00BExs6qZjLijKgPUFz3l0i2GsmrcnTJsYXoaYy6KPhbb02BWU+D48/KOdCcAEmDICYNNJ0cWGmuVF5jxYtKV4fRV0D2ZLB1UaBE9HoqlQqrsQsCgPYsuPwDaCyFmq1gy1SWVHXHjS0AnxMaimD5S1CzDTLGwdgrIbaPkh0lhIgqUXA2F0cdc7zykzSoe17P71Hudn18w95tBYtgyVNw7VeQPqZ7xiHEfnZUOki3d10ae4rNwPxtVYRC4S4LkgghDtOec2DykK57jeZK+Pw22PHt3m158yB1JFz2ngQxRPSJSVZ+Mrr5O1nQB7vmw3tXKJlKoHxHXPYsXPU59JnUveMRQhyUFPEUvZ9j9xe5/fld8OlN4Kju/jEJAeyscnTpOvxkqxFvIES1w9tlryGEiELl61oHL/aoWA+bP4NwuPvHJEQ0aq6ET27cG7zYI+BVbnxJG1choo4EMETvV7NDORG1p2oLuOu6dzxCAHVOHw1uPxldGMBIsSm1NQqlE4kQRw+/G1a80PH+la+As6b7xiNENGsq7biNa0MhuGq7dzxCiIOSAIbo/UL+A+/fP+ouRDfYubs2RVdnYAAU1konEiGOGuEQBAMd7w8F5LwnxB6hA8wVkLkiRBSSAIbo/ZIGddxjPLYPmOK6dzxCAHnVDtQqpbVxV9Fr1cSb9RTXu7vsNYQQUUZvgTFXdLx/xIVK8VAhhFJAVNtBJzBLklKvRggRVSSAIXo/SzJMu6/tdpUaznpS6YAiRDfbVe0g2WpEp+naP8NJNgPF0kpViKNL9hRIGd52uy1dCW5I9y0hFDHJMP3vbberVHDmE0qHICFEVJEzmOj9DDEw4TrIGAsLH1PadKWPhhPuhYQBkR6dOErlVTu7NPtij+QYA0USwBDi6GJLh8veVwp2rnpFWVIy4sK9rSGFEAqdCUZepHQFWvBPqC+AlKFwwh8hMRfUcq9XiGgjAQxxdDDHw4CTld7eAQ8YrEqarRARklftYGiarctfJ8lmYNEOKdgnxFHHngGTboIRFwBhMCVI5oUQ7THFQr/jlTbDAbfy/dBgjfSohBAdkDOZOLqYYjve5/dAcxnkL4Lmcug3FeJzwJrSbcMTRwd/MERJnZuTB3f971ay1Uh1sxe3L4hJr+ny1xNCRBGVSkmRb08woHRgKFkOtXlKgD95GNjTu3eMQkQLkx2wH9pjw2FoLIHytVCxUQl+pI2C2MyuHKEQAglgCKHweyDvB3j/SggFlW3zH1VORpe+A7aMyI5P9CpFdS6C4TBp3bCEJMWqFCcrqXeRmyJ3lIQQKOe5sjXwxizw7dOlyJ4FV8+B+H6RG5sQPUHVZnhtJrjr924zJ8A1XyrLUYQQXUYWdokjEgqFqXN6aXD5Ij2UztFcDu9ftTd4sUf5Olj4uLLsRIhOkl+tXDB0RwAjaXcAQ+pgCPHLhMPKea/e2QvOe83l8PaFrYMXAI3F8NmtrS/KhDhCDS4ftQ4vwVA40kPpXM0V8O7lbeeJqxbeuwKaKyMzLiGOEpKBIQ5baYObL9aV8enaUnQaNVdN7svxuYmk2A5yMRbwgaMS/E7QmSEmFbT67hn0wRQs6rgX+No34bg7ITarW4ckeq+CWicGrZo4S9f//sdZ9Gg1KulEIsQvUN7g5tvNlXywshiVCi49pg8nD045skK8AY9ygRPwKOdCaypodJ0/6ANpKOo4SFG4WLkQkxbj4ghVNXn4Oa+WV5cU4PEHOWtkGueMySAjztz2weGwElDzNoNGD5bE6K8/4ayG+vz299XuBFeNLD8WogtFNICxfft25s+fT1VVFaFQqNW+v/zlLxEalTiQ0no3F7/wMyX17pZtv/tgHROy43j68rEdBzEcVbD8BVj6LPgcype2CdfD5Fuj4498c0XH+wKejoMbQhyB/BqlA4lapery11KrVCRbDRTvM2eFEIeuvMHNFS8vI696b7bC/Z9s5K20Ql655pjDC2I0V8Ci/8Dq13YXlLbBsXfA2KshJqnzB98R10EyLCTrUByh6mYPd7+/jkU79xaP3lrRzOtLC/nopilk7hvEcDfCrnnw7X3QVKa0tx84A05/FOKyIzD6Q+Q/yPw42H4hxC8SsQDGiy++yE033URiYiKpqamo9vkir1KpJIARhQLBEO+tKGoVvNhjRWE960samT60nS9yXics/D9Y/vzebX4XLHkSnDUw459g7PpuDAfU9/iO9yUNko4lolPl1zgPnrHUiZKklaoQRyQcDvPNpopWwYs9Npc389POGs4fd4hF+9z18PW9sPnTvdu8TTDvb0pg/4Q/gK6b/i4kHqCFuDEWDIdYyFCI/WytaG4VvNijssnLqz8VcO/pg9BrdxeULloCH1yz90HhEGz7Eqq3KLUkbFFaUNaSCGpt+ze3NHqwJHT/mIQ4ikSsBsbf//53Hn74YSoqKli7di1r1qxp+Vm9enWkhiUOoM7l4+M1pR3uf3tZER5/sO0OZxWsfLn9J61/R0nFi7T4/pA2uv19p/+z4yruQhyB/Bonqd0ZwLBKAEOII1Hv8vHBypIO97+zvIgmt//QDuasaR282NfSZ5Qllt0lJhmGn9/+vpP+DNa07huL6DVCoTDvLi/qcP+na0qpc+6eL81V8N397T+wbhdUbe2CEXYSSxJMvKn9fZNvA0sUZBYL0YtFLIBRX1/PhRde+IuP8+yzzzJy5EhsNhs2m43Jkyfz9ddft+wPh8M88MADpKenYzKZmDZtGps2bfrFr3s0cPsDBIL7LO0Jc8CUd7Va6djW9kD1HS/BCIeVtYKRZk2BS96GY24AnUnZljQYrvwUMidEdGiid/H4g1Q0eo5s7fwRSrIaKalzEQ73skJqQnSSQDCE2x9od44caKWXWq064P5Wmjq+AUDAC56GQzxQJzDFwWmPwrT7lIwLUDqQnPcSDD8PNFIiTRw6XyCEN6DcwDrg98R99wVcSvvejhQt6azhdT5DDBx3h3KDy7J76VdMMpzxfzD5ZtCbIjs+IXq5iJ2hLrzwQr777jt+85vf/KLjZGZm8o9//IMBA5R0yNmzZzNr1izWrFnDsGHDeOyxx3j88cd57bXXGDhwIH//+9+ZPn0627Ztw2qN8iJBEVJS72Lu5krmba0i1Wbkqsl9yU4wk2DRc8G4TB6fu73d510xMRvDnrTAfenbKdrUan9MJ4y6E9gz4NS/w5TblYCL3iKZF6LTFde5CEO3ZmCkWA04fUHqXX7iu6FwqBA9RZPHT3Gdizd+LqS0wc3UgUmcPiyVzDgTKpWKOLOeSyZk8efP2r/xcfnEPliNh1iAc0+goCO6g5wrO5s1BY6/G8ZcAUEfaI1gk8wLceiqmjxsLGvirWWFgFLc9taTBjB3SyUef6jN488fl0FCzO75otYpNWC8Te0fPK5vF426k1iSlJteQ86GoBe0BqU4vVoaPArR1SIWwBgwYAB//vOfWbp0KSNGjECna/0F4Pbbbz+k45x11lmt/v3www/z7LPPsnTpUoYOHcoTTzzB/fffz3nnnQcoAY6UlBTefvttbrzxxs55M73IrmoHFzz3M3X7tIn7YFUJ988cwqUTsrhgXCYfry6hoLZ1OvpxAxIZltFBHQtzIqSPUXrO7y9xIJi7sXDZwWgN0m1EdKk9c6dba2DsbqVaXOeSAIYQu7m8AT5fW8afPt3Ysm3RjhqenreTD38zmdwUKyqViulDU3h7eRFbyptbPX9Mn1gm9W9nrbunERpLYcP7yrKRIWdD6gglYBDXF+oL2j6nzxQwR2DdvEarBO+FOExVTR7uem8tP+XVtmz7YUsVx/SN59nLx3HtaytaPT4zzsSVk/ui0+y+0RWTrAQAFv1f24Nr9ND3uK4cfudQq8EepXU6hOjFIhbAeOGFF4iJiWHBggUsWLCg1T6VSnXIAYx9BYNBPvjgA5xOJ5MnTyY/P5+KigpOPfXUlscYDAZOOOEElixZIgGM/TS5/Tw0Z3Or4MUej3y1hVOGpNAv0cI7v57ED1ur+Hh1CTqNmqun9GV8dhzJ1g4uyEJBJbPhs1tbt52yZ8LFb4JVshzE0aNwTwtVc/e1TUzeHSwprncxKiu2215XiGhW7fDyl882ttne6Pbz58828twV44g160m1m3jlmgks3lHDuyuKUavg8onZTMpJaBuI9DTB6jdar+1f8wYkD4UrPoFL34M3ZrXufJWYC+c+B+b4LnqnQnS+5QV1rYIX+26/2JnF29dP5Kl5O/H4g8wak8GpQ1NIj91naYVGB+OuhrJVkPfj3u06M5z3IuikeLoQon0RC2Dk53fQP/kIbNiwgcmTJ+PxeIiJieGTTz5h6NChLFmirJ9LSWldTCclJYXCwsIDHtPr9eL1elv+3dTUQYpbL9Lg9rNgR9uCmlNyEjhvbAZNbj9VzR7SYk1cMSmbs0alo1Zx4PTZUFD58rbiJTjpT0qKakOhstY2HISwtCcVbfXm+VdY6yLFZmzVeamrxRi0WAwaKeQpDqo3z739rSlqINROWZhh6TZmjkin1uHD4w+RZDWQZjdx4fgsThuWCoDN1MF5r6ms/cKEVZvh56fg5L/C9fOUIoX1+ZA4SGkXaU3txHcmeqqeMv+c3gBvLm39PTrZauDSY/owOM2KQatmcJqVF68aTyAUwm7StX/O27UA+k6FCb+G6m1KbRZLIvz8tPL/u7O1sBCix+gVVZoGDRrE2rVraWho4KOPPuLqq69uldWx/x/NcDh80IuHRx99lAcffLBLxhtpFY0eNpc18vXGChJi9Jw9OoMYgxavP8i+9cs0ahX/OG8E+TVOHv5yC/UuP1nxJu49fTDHDUgk1nwIqeiOKljxonK36bNblPWOlkRw1SppthN+DTPbSR+MhKYyZbyeRrBlKOsbTdJKLhJ68/wrqHWSYjN0++smW40U17VtgSzEvnrj3Kt1eCmsc/Hx6hLCYTh3TAZ9Eyx42+madfvJA4gz63l+YR5//mwj8RY9vzkhh3PHZJBkNXQcuNhj0ycd71v1Gky+RVmyYc+Afgdo3x0poSA0l0NTOQQ8SqakJUkpWii6XDTPv/JGN2uLG/h+cyWpdiO3npRLqq2ET9eWcnxuIldOyua5BXn894cd6DVqzh2Tzm0n55IZ10FtF0c1LP0fVG1Rlu/aMpR2wo4qZf+y5yFzvLKvO4XDyhxorlDGY89UlkIbO1gmLYTodqpwBMvSl5SU8Pnnn1NUVITP13rZwuOPP37Exz3llFPIycnh3nvvJScnh9WrVzNmzJiW/bNmzSI2NpbZs2d3eIz2ouBZWVk0NjZis/XcP2JlDW6ueXU52ysdrbbfdtIAhqfb+d/8nawvaQTghqn9KW9wM2d9eZvjPHzOcC6ekIVWc5BiRU2l8PQxykmgPcPOhQtePXCZ964WDit3x96+GBqL924feQlMf0hZtyy6VW+dfwDH/3MeIzNjuWJSdre+7n++345eo+bN6yd26+uKnqW3zb0ah5e/zdnMZ+vKWm2fPjSZu6cP4vT/LmrZNm1QEmP7xLVbqPrSCVncN3PIwQt2fnUPLH++/X0qFdy5UbkgikZBHxQtg/evVLqHAai1cNxvYeKNys0H0aWidf6V1Lu45IWllNS3DoLfP3MI2yqamDE8jRvfWEVgv5Sm7AQz794wiTR7O105mivgpVNaf+/aV/8T4ZK3lILq3SUUhPL18M7Fe9saq9Qw/ldwwr1S2F2IKBGxUrk//PADgwYN4plnnuHf//43P/74I6+++iqvvPIKa9eu/UXHDofDeL1e+vXrR2pqKnPnzm3Z5/P5WLBgAVOmTDngMQwGQ0tr1j0/PZ0vEOTlxfltghcAT83biUGn5rYTB6DTKG3hJvdPaAleqFQwIsPOpP7xxJl1/PPbrVQ1e9scpw1jLAyY3vH+ERdGNngBSpBl9lltT6Lr34XlL0DQH5lxHcV64/wDpVVjWYOnWwt47pFsNcgSEnFQvW3urS9paBO8AJi7uYoNpY385oT+LdsuGJfJiwt3tfzbbtIx1SHV4wABAABJREFUsV88ozLtvL+qmBpH2/pQbQye2fG+vieAPoq7nzWWwJvn7Q1egNKRa+FjkL+g4+eJThON88/lDfCvb7e1CV4APPrVFi49pg+v/lTQErwYlm5jUv94Eix6CmtdrCtubP/ApjgYdHrHLzzsvO4NXoAyB2afuTd4ARAOKcugN3wAobadVYQQ3S9iS0j++Mc/cvfdd/PQQw9htVr56KOPSE5O5vLLL+f00w/wB20/9913HzNmzCArK4vm5mbeffdd5s+fzzfffINKpeLOO+/kkUceITc3l9zcXB555BHMZjOXXXZZF7676FTr8PHO8qIO9y/aUUMoHOalq8bzxfpyKps8AJw5Mo3zx2ayprieRneASyb0weUL0uT2ty7I1B69BU78I+z4Bvz7nfyShijdSSKtcrOypKU9y5+HcddIZxLRKcoaPATD4QgtITFQ1uAmGAqjUUc4aChEN3B4/by0qON6W+8sL+auU3JJjzXx3opitGo1zd4AJp2GP54xmFiTjtVFDVgMWu44ZSCNLh9wkAuqpEGQPhbKVrfertHBaX+L7mWJm+coWRjtmf8o9D1e7kAfheqcPr5sJxMXIBSGTaVNNLh8TB+awmXH9GFdSQN1Th8Xjs8iFAqzYHs1pw9vp8aL1gCTboZ177VtpRrbB3JO6oJ3cxDFyzrOGF78uJI1bJOuI0JEWsQCGFu2bOGdd95RBqHV4na7iYmJ4aGHHmLWrFncdNNNh3ScyspKrrzySsrLy7Hb7YwcOZJvvvmG6dOVu/733HMPbrebm2++mfr6eiZOnMh3332H1RrFd0G6SBhwt7Pmdw+nN0BZg5v3VhRz64k59E20cNbINEb3ieVXs1e01MeYDQzPsHHsgENs+RafA7+eD/Megh3fKZWlx12jtM/qzhNBYwlUbICydZA8GDLGKsVE6/I6fo63WenvLUQn2JMBEZkMDCOBUJjyRnfHa5KF6EUCwTBOb8eFop3eACsL65mzroxZo9NJshpQqeDxi0fx4sJdrC5qaPX4B88exoDkGGIOtIzEmqqkva98FVa+pHQl6T8NTnlQaRseDTzN4KiAnd+D1wEDToaEAVC5oePn1BdKNuJRKhgOt1kasq9Gj5+ThiSTYjVy3ewVewvj/lzIwJQY/nXBqI4PHtsXfv2jEiDbOgfUOhh9GUy5DWK7aalVMKBk4tbmKctHOuKs6TjAJ4ToVhELYFgslpZ1funp6eTl5TFs2DAAampqDvk4L7/88gH3q1QqHnjgAR544IEjHmtvYTFomZKTwE872882OKZfPA9/uQWXL8iqogbOHp3BheOzuPrV5exfKWVjaRNvLi3k96cNQq/VHPiFNVolYHDu88qXOZVKKQqm6b42klRv250WWLV3mzEWrv1aaW/XEXO80jlFiE5QWOdErYKEmEMogNvJkndnfRTVuSSAIY4KNqOOGcPTWFfSfgr7cbmJrC1uYFeNk/98vwONWs2Vk/qwqrC+TfAC4K+fb2JKTgK5B6uDYUtX1suPv1apsWSIAWOUZF64G2Htm/DtfXu3/fh3mHgTZB6jpMm3J3mInAuPUjEGLUPSrGwpb253//B0O/EWHec9+3Obrj7bKx28vbyIQalWjLp2viuq1ZA4AM56Uqk5plKBOaH7CncGA1C6Ct44R3nd4+7s+LH2LJkDQkSJiNXAmDRpEj/99BMAM2fO5O677+bhhx/mV7/6FZMmTYrUsHo1u0nHfWcMQadpmz4+MtOOxx+i1qlEl284vj9pdhObyhrbBC/2eHtZUcvjD4nBqlRet6V3b/DCUQ0fXts6eAHgaYC3L4TYbCVdsT1Tfw/WtC4fojg6FNW5SLIa0Kq7/09vUowBFVAsdTDEUUKtVnHmqDSSrW0vhhIseqbmJrJwn9bhX20o55op/fh4dWmHx5yzrv1U+jY0WuVcZ8+InuAFQENR6+DFHsuehaxjlE5h7Tn5AbAcYtal6FUSYgz8bdZw2lt5OCUngcomD+tLGgl2kKXx6ZpSah0HyWQ1WPZ+P+zOriOOCuV7oN+l1EGzJCk/7Tnpz9LuWIgoEbEAxuOPP87EiUo1/AceeIDp06fz3nvvkZ2dfdCsCtGxcDhM6ACpfrnJMXx+63GcOCgJnUZFvEXPdcf149YTB/Dwl5sBuGVaDn3izWjUKuoPEKBw+oL4gyECwSgvauSqgcpNbbdbEpUiouEQXPERZE7Yu09nghP+oOxXHyTDRIhDVLw7gBEJWo2ahBi9FPIUvVJH573MODMf3jSFy47pg1mvwaTTcOG4TJ66dAx//XxTS4DebtLxrwtGYtRpaHR3vFSistlDMNrPeR3Z0x7yotdh5r/b1qD68VG4ek7rpS7GWJj1P2XJpTiq7DunhmXY+fSWY5nUPx6tWkWS1cDN03K49Jg+zFlXRt0Bvit6AyH8wYg1PDywul3g2SdD6/sHlGzh1JF7t+lj4NSHIfeUbh+eEKJ9EVtC0r//3srfZrOZZ555JlJD6RXqnD4Ka528s7wIly/IeWMyGJZhb7PWXq/VMCTNxpOXjsHhDRAMKQGPeVureOTc4QxOs1Hr9LG5vIkGt5/jBybxQgdF0MZkxbJsVx2by5u4fGI2mXGm9lMEj4Tfo5xUtHqlUvUvOlbbytn0OwEm3wxLnoLF/1GKdJ7+T4jrp6xxNMUp7VMlXVB0osJaF6kRqH+xR7LVSGGtBDBE7+Dw+CltcPPeymLKGjycMiSFKTkJbYpL94k385ezhnL7yQMIA7EmHQ1uP3+bNRyHN0BmnBm3P0CTx49Rp2Ziv3iW5LW/1HJK/wSemZ/HGSPTyIozHXwJ5eEIeJQlHp1x3tufqw52/Qjz/q5ctNmzlNaoIy6Ab+9XHlO8VMk4vOYLcNZCyK8so4xJUzJKRK/n8Qcpa3DzyZpStlc6mJKTwEmDk8mMMzEyM5bnrxxHoyuAyxegrMFFfIyB3502CLev4/pqA1NiKKx1EgqHyYw3odf8gjnjrIVwUJkfnZHJ66pr/W+NXvk59g7QmZXvg+YE5buhWTKQhIgWET0jNTQ08OGHH5KXl8fvf/974uPjWb16NSkpKWRkZERyaD1KndPHm0sLeXNpYUtr0y/WlzMyw8YLV00g1d72gslq1LXqZz9tYBIbypq48uXlLcdIijHw6rUTGJJqZUtF67WPahXccUouapWKlYX1nP7EQl65ZgLHDkj8ZR0OggGoL4Cl/4Nd85UTxrF3Qp+Je9P6/B6lf3jxMiW7os8ksPeBmA7S/swJSiAioHRVwRQHk2+B9y7fW5SsoRjevUzpjHLlJ2CTZSOi8xXVuRiREbl08iRppSp6CZc3wIIdNTz4+aaWc9Y3GytItRn/n73zDo+q3Lr4b0pm0nuvkARC772DiKIiSBFFBRTFXq9+9mu59nrVa0VFAWkKKAoCAtKk9x4gCQnpvSfTvz92wmQyM6EIBnTW8+QBzjlz5kw4Z973XXvttVhwdx/igmzTQtzdVIT7WYkND42ailojG3ae4pEFe9EZRVUxIDGYx0ckMeHzLXaS+IQQL8L93fHzdOPxhXt5/Ko29I0PQvlnU31MRihNhy2fQOpaIQ36PQxxfe3l7GWZkH8ECo6Kf1NIEvidwezQoIM9c+C35xuc5xSsek5IjM43w7550GIAaDyl3dM77M99JhcuO+hNJv44Uciry46gUChIL6pi5aFc3v0tme/v7kdSuA9+Hho83FRsT6uirNbEk4t2UVCp4+XR7ekS48/eU6V2531qZBuyy2q5Z84uZk3rTc8Wged+cRW5kLIWtn0mKSFtRkGPOyAgTvabTWLEmbNPDGcju0JQ/JlbgEPaWP+uUMJVr8GCW6XFuCG8QuCutc7bjV1wwYW/FAqLxZnDwcXF/v37GT58OH5+fpw8eZLk5GTi4+N5/vnnSU9PZ9asWc1xWU5RXl6On58fZWVll0Qudz0KKmpJKahia2oRoT5aAr20fLLuBPvrTMueuroN0wfFNznBKqlTXEz+ervdhM3PQ82P9/fn280nWbAjkxqDiU7Rftw7JIEf92Sx8lAeT41sw75TpWxLK2bJff2o0hkxmi0EemkI9dGeW4Uq9wB8daW9aqLbFBj+orR2pKyF76fYOqK3GAhjZzgmHoy18MdHYlQG4m6de1CqUY5w83xodZWYS7lwSeBSff7OBWU1Bjq/tIqHhiXSNyG4Wa5hyZ4sVh3KZe8LI5rl/V24/HApPnsFFTpOFlbxR0ohId5agn20fPL7idNmnVe1D+e9GzvhpXVeoS2s1PHdtgze/+2Y3b4bukRyW98WvLL8MLvTS9GqlVzXKYJRnSN5tI7s+PDmrny4+jhfTO6Or4cbhRU6SqoNeLipCPTWEOx9Dq1ieYfgy+HSh98QXW6BEa8IoQGQf1TMqKusvh34RMCUpU0nnJSmw8e9HasRlWpJTVlwK0zfAGFNmFq78Jfjr3z+MkuqOZFfSXJuBXqTmfaRfmxPK+LzDam0i/Bl9rReBHppySqpJjmvkjsbJI54alR8cFMXtqYWM397BlV6E+0jfblncAKrj+RhNltoG+HLd9sy+Ob2nigVCoK8Nfh7noWhdWU+LJ5uP2fzDIQ760iF7D1ixKlrUGwLbgW3Lm6adKguhp8fhiNLIWkk+EbBji8dH3vFC9D1VmmrUv/1RtwuuOCCFc2mwHjssceYOnUqb731lk2k6ciRI5k0aVJzXdZlhezSGu6atZND2db8bG+tmndv7Mz/1p7gZGEVJ4uqqNAZ8PNw/mVbozfy/c5MhwZMZTVGPlh9nOeva8ugViHUGs2kFFTyn58Pk10mioa3VyYzY3IPfj2Yy/G8Cu6ctQsAL42KZ69tx3WdIvD1OAupX3UJLP8/x5Os3d9KpcjNAxbeJmx7Q5zcCDtmwJCn7WWFandxg/cOgXVvQEQX2Pqp8+s4/KOcP7qntJG44MIFQL15ZmgztpCE+WoprTFQXmvA90xJCi64cAkiu7SGu2fv5ECW7bj3zoTOp8n7zJJqagxmvJrgEEqrDXzzh+P2yCV7sxnXPZoPJnblUHYZRpOFVYfzmD5rF/o6/4u3VyQzvkc0+RU6vtqUxjebT57u828b4cPHk7oRH+J95g9UUwq/PmlPXgDs/Q763CsLtYo8WDDJlrwA8bRYOAUm/wTeoY7fo6rY8bgKYDaKAmTS96DxcnyMC397lNca+O1wHv/55bBNksi4blF8fmt3Plx7nOIqA4FeWqr1Jr7fecrmuGq9iXnbMriyfRivje2Im0pJRlE1b608yqliufeuah9Ohc5AamEVd8/eRd/4QN65sQtRjVq+7FBw1HHBqboYNr4PQ5+C78bbkhcAhcdh2b9g3Ffg7oT88QyEa96RlB03D1EiOUPyMtCVg74G+j94ZuWTCy64cNHQbATGjh07+Pzzz+22R0VFkZub2wxXdHmhWm/kjV+P2pAXAJU6I48v3Me3d/Qip6yWdcn5vPTzYcZ2i6Z1mDehPvaLJ6MZjuc7jscCOJJTQUm1kTu+3elwv8lsIb2oikg/d/QNjJqq9CaeWXKAWH8NA+L9we0MC7faUsjY7Hx/yu/iUN2YvKjH9hnQY5o4WTeGV7CoOFqNkImcu69972M9tL6w/Qs4tASuedta/XLBhT+BegKjuUw8gdPPf0ZRNR2asZXFBRfOB9U6I2+tPGpDXkDduPf9Pj68uSsms4VjeRW8uPQQrUK9GdU5kkh/e38mo9lMSbVzs87kvArMFrhnzm6n+2MDPamoNTKjkU/UkZwKbvlyG4vv6kqEOU/GFJ8Ix6q+2jIh4J3h+GoI7yjERVGK42PyD0s7pTMC40zVYndfqXCb9HDX71ZZvgv/GJwqrualnw/bbV+0O4seLQKZ2CMGsGCxWLBY4Hh+pd2xQ9uE8f5vx0+3dDXG6iP59E8Ixlwn/N6SWswDc3fz5aSOBPk3oS7Z2wSpcHgx9Lkbakoc7z/xmzwbzggMkELVoP8TMjB5ufPj3P2gthx2fiWEyuQfZU7qggsu/OVoNo28u7s75eXldtuTk5MJCXHiZeDCaRRW6ll2wHGcW4XOyKmSav7900G+35XJ4t1Z3PrlNh6et4e88lq743081MQFeTp9r/gQLyw03WmkN5rxdVejcNCp8s7qFEqOb5EexqagUODwBPVQuTV9Dl25mDs1dX7fSIlN7XmX8+MSr4CMLXDwB/voVRdcOE+cKqnGw02Fj7b5rIfCfIU8cflguHA5orBKzy9OYkwrdUYMRjOvLz/C2yuT+WV/Du+vPs6I9zewJaUIg9E2OeRMz2JiqDeGM6SNWCwWymsdkyA5ZbWkZGTCN9fCjCFwcJFt2sFpKKT33hnqDQ8dKTQawmA/tp+GZzAEJTje5xMhLSYVOVBdBPsXgKmJcdSFvx1MJjOzt6Q73T97SzrF1QbGfrKZo7kV+Hu6ERtoP2dUqxSnFUqOoDeZ8Pdwo9ZgPWZPRimFBXmQdxicdbQ3ZdapUIHReQIKFgsYzxDhCmJS6x8DfR90fkyHcaLCAChMhpz9Zz6vCy64cFHQbATG6NGjefnllzEYZPBXKBRkZGTw1FNPMW7cuOa6rMsGeqPJaeY2QFZJDT7utpOzLanFrDlivyAP8NQwfVC83fZ63D0oHn8PDQlNyGFbh/lwU69YNp8oolWotw0PkZJfSW1NFaz5j73EryE8AiHhCuf744dCWHvn+8M6iGv0maBSQ/epENXDft/gJ+HYSqlEAeQdPPP5XHDhLHCquIZQHy2Kpki6iwxvrRpPjcqVROLCZQm90YSxiXHvZFGV3Taj2cL9c3fbVYUj/T2Y2r+Fw/MEemlICPYmMdQbZ/ZRkX7uRPh5MHtLOhF+7nSM8iPIy1bpcKxIDz7hdT38d0LGVvsTeQaI55IzJNb51XgFOyc6VG4yfjqDTxhMmCW9+w2h8ZI41c0fWbcdXQY6R0SLC39XGMxmskudtBgBBZU6/DzcKK818vD8PSgUcM9g+znjttRihiY5VgGplQpGd47iyvZhzN2WYXv+8mqYMxZKMxy+lq63OL/4LpPAK0jmf0oHhKRHgJjSni1i+0B7B2uQjhNEtduwiHbox7M/rwsuuHBB0WwExjvvvENBQQGhoaHU1NQwePBgEhMT8fHx4dVXX22uy7ps4KVV202WGiI+xJtcB2qLbzanUVQpE7nCSh2niqvJLq0hPtiL/07sgpfGKrP11Kh478bOJIZ6E+Kj5bWxHRwmjNzSK4boAA9ahfng6+HG6C5RzJzak8l94tCqlbQI9kJbng775kJlgd3rT8PdF65+3XF83IDHoDhF4q1u+NzxgHT16zLJOxv4Ropx2W0/Qvc7YOATMG01eIdL3/Hpa/I/u/O54MIZkFlSTXAzto+AEMXhvu5kFDdY6B1bCV+PhK+vhsM/Nd/FueDCGeClVRPShDlmXJAX2WX2C7FqvYmTRVXUGkxkldZwqriaylojt/WJY3z3aBvCPTrAg+/u7E10oCdB3loeGtbK7nwKBbw0uj3R/lqm9mvB/UMTGZAYzLPXtuWDm7qcjkpODHSDyjzrC1c9Z6/q0/rYGnU2RN8HZMFUlCJtKN3vcPzBe98LPk7aR+oR1h7u2QhjPhUCf+RbMHW5jKsNr8ndT8ZZF/4x0KpVDHFCPAB0ifHneJ4Un47lVVJYqSfK34M3x3XCo0Fr1vpj+dw1MB6/Rp5n0wa05Jvbe5JZWs2RnAruHZLA/UMTTrdTBnupoDLXeftGYAJ0usl+u38s9JwGyb9C+zFw01zxjGmIoc9JDPDZwjsUrnlLEkf6Pgh97oOpy6DzJDi42PbYMz1zLrjgwkVDs2mZfX192bRpE2vXrmX37t2YzWa6devG8OHDm+uSLiuE+bjzxNVJPLXogN2+7rEBZJVW28j06lGtN6EzmFmfnM9/lh3hRH4l3lo1k/vGMbVfHCsfHURunTlnuJ+7TYpI52h/fnlwAB+sPs6ujBLCfLXcOziBztH+vLr8CL8etDLTCgU8f207Zk/rhbfKROCvz4LFDDXFgHO1B0GtYPp6kdseXyXRVe3HiEv7vLoBLLIb3PIDzBoDxhoISoSRb8r2c4FPuPhpxPWB47+JOWjLgZJC8tu/oTgVQppwdm8KtRVQlS8GbVpvkfB6uTLE/8nIKK6mVeg5VIIuEkJ9tZwsrFNg7F8ove9h7aV6tXCyGJr1aqLFygUXmgn1497//WAv3e4W609OWY3DcQ+gotbAe6uS+XZLOjqjmU7Rfrw4qj3PXNOG+4cmkltWi4+7mhAfLWF1BIS3Vs2Ufi3oFO3Hh2tPkFVaQ4dIXx4Z3ppWYV6kFVTzxA/7KauxtpFE+XswY0oPnl1ygFaaYqgqtF5E4TFrnHdDBCfCXevEd+nYChkv2o8Rmfrs0TKgjnwbBv1LkrY2fySeUR4BQu53vvnM6kOFQhZ8rUeCbzTs/BLWvwmR3WHMJ7BvvhCY/R6UMet8oKsUr47qYolj9Qo5+6KCC80GhULBle3C+HDtcUob+cKolQom9YrlgblWL5j0oirumbObm3pG89MD/SmtNqBSQrivOyE+GpY+0J+Zf6Sx4mAe9w5J4GRhFbd+td3mvHf0b8FHdZ41AYZkafVIXSc+Zo09W7yCheTrNBG2fSoxqu3HQUQn+OY6aX+qR49pMOw52PEVDHtekkVUtv43Z4RXMGj9wCtU/Dd+vEfM4DvfLGbySx8Ula4jUuV8UJErz41RL+/tHSqGoi644IJTNFuM6uWGSzFKrrRaz2+H83hrZTIFFTq0aiVju0ZxW78WjP90M9V6+z7WaQNacE3HSMZ9am+WOSAxmA9u6kKQxiRseOo6mXy1HASBLU/nwlfpjFTqjGhUSgK8NMzdls4zSxy3WsyY3IP/rk7m85F+RC+6Hu5YCaFtHB5rg/pM7/Vvw9Gf7Q2aekyDgf+SyaDW+/wy6yvzIW0jaDxAXyWVp7SNsGcOjP9Keitj+4H6HNMaKnJh1b/h4EJrT2d0Lxj3pcsc7TxxKT5/5wKLxULb51cwoUcM13Q8h2rQRcD8HRlsTytmyz0JEq0Y1x/6PwwoYPvnQhzetVaMA134x+NSe/ZKq/WsPpLPmyuOUlChQ6NSMrZbFPcPTeSWGdvIKLFvj1IoYM603tz61TabNnulApbc15/OMf7WjSajjD0ZW6EkDWJ6Q2g7SlUB6IxmvDRqvN3V5JTVMObjP8grt++v7xbrz/s3diJu4Qgx2KyHZxDcs8m58Z/ZDOmbxIfi6DL7ce+eTRDSVsZnY60sqrwjzn6BVlsupMXxVfLMe/iLd4bWRwiH1I1CXnqfhw9ZZR6sewt2z7QabYd3ggnfOPffcOGM+KueP4vFQkpBFS8uPcSmE0K6tY3w4aErWjFvWwYbjsu2AE83Xry+PQ/P33v6te9N6MiY6EqUR5cJqZYwFL1XBGUGJUdyKpj89XZHb8l7N3bmjV+PMqVbILdo1uNvLIARrzbthaavluScwmPwpZOW41sXCynvHdb0uRrDbBYypCpfPNUMtXBosZB79UgYJj8oodutMm88X5jNkHdACgclJ2Wb2l1ambtPdRnIu+BCE2g+Nzlg+/btrFu3jvz8fMxm26rJe++910xXdfnA31PD+O7RDGgVTLXehEalJMRHS3GVnmBvrZ1Rn5+HG7f0juP2b3Y4PN+mE4XklNYQVL4Bvp8iigmA31+FqJ4wcRb4RuKlVeNVZ35WUFHLFxtSnV7j70fzCfP14LE1lXw+9HUCzrYao1RB+mbYM8vx/r3fwYBHz25iZDIKY6/W2rLaFbmw7jUoOmHd1vZ6SR7ZN18q0edKXuirJar1wALb7ZnbYf7NcNuS8yNbXLisUVipp9ZobtYEknqE+bqTW1ZL7bKncXf3hd73WHvre0yDnH3w2wtw2+KmT+SCC80Af08N47pF0T8x6PS4F+ytQatW8dQ1bbjvO/vUkMl94lh5KNfOI9BsgVeXHeaLyT3w99TIWJG5HWbfYKuUCGiJ/+SfbAjo/HKdQ/ICYHdGKVmltQTHDsGrIYHR98Gmv/+rC+GXR23HpIbY9a2MT2cb36irFDLBo26RVZkviSdXvgzLHoPybNmuVElKV/9Hzo+8MOph2xei6miI3P3ibTDlFzAbhEDR+khl27351WguWKFQKEgM9ebjW7pRXKkjv0LH3lOlvLb8yOkYVICHrmhl52Hx6vJk+o6yEPH7K/UnQzP6EzxajWbGRufzwyV7sri6Qzhvr0+ny8Th9I/xODPhoPEUL7W1rzg/ZsvHcOOsps9lNgtJoXITLxiTEbJ2wYJbrFHFSjX0mg7DX4LVL8i2lLVCMIS2azrZ5GxQdkoUJLoGgQbGWljzkqilOo7/c+d3wYW/MZqNwHjttdd47rnnSEpKIiwszMbYrjlN7i43KBQKIvxspWaR/h7Mm96Hb/9IY+GuTIwmCyM7hHP/0ESUCpo08NuTUUSHva9byYt6ZO2ArZ+KJK+BvM9ktlBU6dwBuqhKj4+7mrVH8ykeM5IALwf+Fs5QP7lyBGOtTIiagsko7uq7vpWqlm809LsfgpPE0X3eTVJpa4gjS6VKhgIqsmHzh8KIt7lW3No9/Jt+z8p82DvH8b68Q1CW7SIw/oE4VVcVDr0ECIxwX3csQOaxvSQOus2W1FO5QZdbYP0bUoGO7dNs1+mCC87gaNwDGNgqmAXT+/DGiqMczi4nyt+DB4YlEuilYepMx8T99pMlVOtN+Hsi1de5N9q3eZSkwfLHYdxXpxctDdtGHKG02khR/A147fxENnQYD10nCVngDGajJIE4Q3mWEBKqM0zdKvIgayds+1zaLDuMF6PQomOy+Fp8l62httkEO7+WsbH33daFX3URlGXC0eVCcra5Bnyj7CvDlbki7XeEkpNCiv50v7S9KBTQdrR4VrkiKC85+Hm4yY+nhryKWjQqFVq1kjbhPtzevyU700vYlmYbQV9UpadcFcZpbaHFAj/dh/7+KyisdJ4AUlylp1O0PwD/21FJp1YJnBWtZdQL2ecMVQVg0gFOWqFKM6RN+egv4nPW517wbwGzrrd99s1G2PqJtCiHtZc5HMCxVRdmbDy50Za8aIi1r4j6yz/mz7+PCy78DdFsBMYHH3zA119/zdSpU5vrEv7WiPL34PGrkrhjQEssgL+nGx5uak4VV6NSKpwmmARpcZ4UsvNrqdb6RZ3e5KVV0ys+0GG6CYiUdskeIQmqjOdITMX2db4vKAHcvJp+ff4hMSasj5/L2gVHfoKr6wajxuRFPfbPh7Ez4NR22PC2bFv7Hxj4OPS9v2lZn74STE1MbEvSIKpr09ftwt8OmSVSwQpuwoDwr0J9f3+ae1sSWw6yPyCun1R4t3/hIjBcuKzg4+5G7/ggvp7Sk1qDCbVKQYiPO/9be9zpa3w91NakkcJjzse/E7/JoqmOwIgJcN6j7qlRoVBCjXcsjJ8p441XyJkl4VofaVusj2psjKSRZyYvKvPh54fh2K/Wbae2y0Lslh/g+Ernn3HTe9ButPhsVBbAb8/DvnnW/etek4r04CdtvS0M1dKG6QyFyfLZa0tlcXv4Rxknx3xy5qKAC82CQC8N13eOom98MEaTmeIqPXfN2kl2meO4Xk1jXs5iwSd7MwNbteFIjuP7rVtsAMm5soDPKaul1qI8OwLD3VdS6XLtPeAA2ad1oo4oToWvrrT1pqkuhrbXOfanARkLe0yDlc/UbTALSejzJ4tRWfZqsdMoSZPnBReB4YILjtBsKSRKpZL+/fs319v/I6BRqwj38yDCzwMPN5n0BHppGNkh3OHxWrWSjiFKkbU5gr4SLLa+Gj7ubvzryiTUDtJJwny1tAj24mhuBWqlAn+Pc2zHCIyHiM6O9131etODR1WhGC0ZHKhNdswQ53VnMNTI4NfYEXvjO86lvfXQeDuO8qqHm6e9C/2FRkUeZGyBje+JAVXxybPLQXfhoiGzpBovrep061VzIkBVgxY96UEDHVeDFUqp1h5e2nRqkAsuXKII8NIQ4e9BiI+QdSM7OPedmdq3hZVYrGqiqmuxSOW3DoHeWsZ0dawgmNqvBSsO5OLt4wsdxkJI0tn1s2t9YNizjscQ7zBZmJ0J+UdsyYt6lJyEk5ug1Mn4DuJjUR8hnrndlryox/YvrJXoerh5Nm0i6hdjryxJXtb07/tCoLJACheb/itKzOLUpokWF+wQ4qMlwt8Df0+JUXWEgQkBBGWtttvulrGJW3rH2qTb1cNbq+bKdmH8nixjTLfYALzdz3J8VLlBjztkvtUYGm/oMVWOaQxdFax91f6+842AgmTn71ecJgrcesT2EZ8z3Z+8lyK7ON8X0AJy9l/8+eLFRlmmJJ1tfE+UXE19/7jgwjmg2QiMRx99lI8//ri53v4fCy+tmqdHtiE+2Fa9oFYq+Py27oQpSp2/OKKzw0lKQogXC+/uS/tIYbyVCriibShvj+/Mf36R/t9JvWPPvfrsEwY3zYNuU8W/AoTUuHl+0+oMkMlSzj7H+yrzZELlDBpvmWweW2m/b9vnNpNYO3iHSF64I4S2FXLI1MTr/yzKs0QC/fXV0kf54z3wcQ9I2+AiMZoRWSU1TcY//pVQpG0gXFFMmpt9PORpJA4HLGJg5oILlznCfd15a3wnu5b4HnEB3NI7DrWqbirUlHGtd6hNfLefhxtPjGjD9IHx+NQRkyHeWp64KglfDzeSwn0IrVM7nRMCE+COFRDRRf6tUEoL4+0rziwnN5tg10zn+/fOgagezvf7xchYW1Mq7ZPOsOV/tkSAdxj0utvxsf6xIsWvLbPfV1tiv+1CoSIXFt8JM4aJf8HPD8FH3cUcVV958d73b4owX3e+mtIDrdp22RDl78ErQ3zw3eWghajVlUQHeLL4vv70ibcSeL1bBvLRzV15c8VRTGYLaqWCe4YknC60nRX8Y2Hab9BigHVbiwGyzd+JWXpNkah/GqM0Q0hGZwhJshb2+j4AJ1bDoR+abmM5G7Qc7JiEAWnl2vbpxZ0vXmwUJMOMoTInXfOS+MB9MdjW2NgFF84TzVYOfPzxx7n22mtJSEigXbt2uLnZsqWLF7smzhcLUQGezJ3eh+N5FWxLLSbS353+icFE+LmjqTGJOVHjLxiFAq5+w2EkmtZNRbe4AGZP60VxlZ6iSj0rDuZy33e7MZrN3D04njsHtMTzfKrPflEw8g2JjzMbpW3kbGR7TX3p6ypEYRGUAEUOlBi97paYusY+ICADltkAaOz3gZhB9b5HJkhHf7GmkER2Ff+QNf8Ro9CLAUMtbHgXcvbabjcZZOC4f4ekybjwlyOzpOaSaB8BIGUNYe4DSatq4nnU+kgs8YHvZSLlgguXMbzc1VzbMYKecQGsO1ZAcZWewa1DiA3yJNSnAcngEw6tr5Yo08YY/rJtFRaICvDgzoEtGdgqmEqdkQqdkZ/3ZdM3Pogbe8bgpjqPGpGbO0T3lCQFXZmkYXkG2pAnzmERc0JnKM0QIt0zyLHXxtBn5XdQVWCfgNIQNcW2rZJqLfS9V865d4517AxtJ/GXPz/k+DzOZP5/FiaTpImlrrPdbjHDkukyFgY3QeC6YAe1Skm32AB+e2ww21KLOFlYTY+WAbQJUBAxZ3Bdu0MDBCVARCdUSgVJ4T58dmt3ymoM1BpMbDhWyOPf76OoSk/LYC/eHNeRuMAzxAA3hlIFYe1g4hwh3EASUJpqSTIZHM/rcg/Iva/1dexJ0f8RUR1NnAOZO2DLDOv5/gz8omHSQrknyzJlm0ojY65RL5+rKUXvpYzKfElXaawgqS6C+bfA7b/Kd40LLpwnmu3JePDBB/n9998ZOnQoQUFBLuPOvxjhvu6E+7ozsFUjx3GfCLjle9j4riR9GHUQ1kFMjCI6NXnOQC8tgV5aogKMRPh7cFOvGLw0akJ93dGoldJnWB/9di7xUG4ewrafC6oKHRMxIGSMm6eoO366XwYkEMlhz7ugRX/4bpzj87YZJSRFU3D3g6BEuHmBtKOotcJEL74Trnzlz/dNOkNVgfyfOYLJIKaMLgKjWZBZUk2rsEvAdb8yDwqPEx40gh2lTSx0AFoOlO+B0oxzf/5ccOESg5dWTcsQb1qGOKl4goxLoz6A7TOkVUJXDgEtJYUgfjAo7QmJUF93vLRqCit11BpM9E8IItTX3Upe1JRKK6NK47AA4PyCg+TnXKBUQ/fJ4vXkCEnXwq5vYOwXsOo5aTcBGWMHPQmtR8i/3f0h8UrnsvrWI+0JFe8wuPo1GPCIjPUaL/Eq+PVp6+KsIWL6nNvv41xQlQdbnSh8LRY4/BMMevzivPffGG5qJbGBnsQ2JBsMNeLz8usTonpVaaDjjTDkKRuTVn9PjST9IF5QQ9uEYrFY8PN0ExJRVwnl5UJMnIvRuUeA/JwNdBXQaoRjgvL3VyUlbsl0a2FL4w0DHxMVVGm6+MDVq3cC48+SVGwCSpW0igx+CjwDxHherRGD0c0fwfX/u3wX+VWFUHDU8b7iVJmvXq6fzYVLAs1GYMyaNYtFixZx7bXXNtcluOAMftHiMTHgMVE9aL3FgOws4eGmJjawwa1VUwInd8sAUZQilY9hz0tLyvkYeBn18sXflJt75k4Y+gz8cIe9GqPPfWCoAq9YIRmqC0UO6xEgA2d5Fqg97P0zfMKh9VVnvj6/GJngLZhk7bVUqiRC72xef74wG5ybUIE4xbvwl8NisZBVUkO/hIs0WT8XpG8GlRvhwUHk5lqoNVpwVzshj6N7y4Io+VeXCsOFfw58wmXx1eN2IX7dPM440W4YLX4aukoh0Ne8DHkHZVwd/KSYdJ4rMQGy8Dbpre2UzhDWAVoMgpMbGn2uCDEqnHuj+Dv1vR9aDBRfK88g8AoDt7pzq9yg552we5Z9RdozUNokHY2/Wh/5aRhvfvVrUJljLRSAtLGM+7Iu8esiwGJuWkFS5sTA24Vzh5sHxPauUwxVyn3hGQwa5ya3Qd5aguoViUY95B0Wg9iTm+T+6veQGNaeC5FhNsmP2ok6FqStqNd08Qhr3NIU0AJU7kLkhbWTua+7H+yaBWvusj/X1W9cmGKUd5i0qMyf1CC+VQX9HpbfweUKY03T+w1n2O+CC2dAsxEYgYGBJCQknPnAfxiKKnWUVuuxoMDfQ02glxalA4PMiw439wsT32TQU5N5CI6uxKO6SGSGmTskrmrUBxLZ6MhsyRHqqsdk7hI2vOutUh3zdMC+t+gPv78mfhn750P2XpnAdZkk8Voab+uktPFkMqAl3LUGVj4HqWtFwtt+rEgMz+Z3olKLBHj6BiENDDUSPecVImTQxYLGy3lbDJzZN8SFi4KiKj21RvOl4YGRsQUCE4nw1WBBR0a5mdaBTohAjad4ArgIDBcuMqp0BsqqDVTpTWhUSsL8tLifSz/8hYbKTQiH80SN3gj5qXj8eI/1+7imBBbcKmlWAx49+7FAVykk+/FVcPw3GVs6ThCi3FEiiU84jJsBKWtg+5eykEi8UhRVPz8ii7zyLDi0BDrf7FwN6R8Hd66G316A4yvqvDhGwRX/hgAnHgMOzxMj43BVgfx4BYNniPhFXSy4eUJ0Lzi1zfH+eqXJPxQWi4Xs0lpqDEbUSiVeGhUh5+PX0hBeweesqDGazNQW56Bd/w5ux1YKQVdTIik6J1bDdf898zlrSqE8W8a2zB1SJIrp7TiiNzhRnsHxM4XEO7lRSIpOE0UZnHdQyIuGXjh97hbl1fYZQuaFtpMCX3T3c/qsTqFSC6E3fb3McQ3Vcu1eoRd3vnix4RkkahxH7dxK1TkVRV1wwREUFkt9k/5fi5kzZ7JixQpmzpyJp+c59r41A8rLy/Hz86OsrAxf3wvft2kymUkrqubLjalsPF6Ih0bFmC6RXNEmlOhAT3zczzHB4xJAblktO9MKmL8zG6UCbu3gThd1BqEr7pJFvcYb7tt6FsZkZpGc7ZktA5R3mDi7n9woPYt9H7BXclTmw/e3Q9YO8ZwIbi19u0d/gRvnyCClaoKpB6gpkx5kFDLJO1PryKWAY6tgrgMT0Ygu0mt5sdpXLjIu9vN3MbHvVCmjP/6D127oSMvgZryH9BUwbxK0vZ7SsF7cu6qGz0Z4cHXLJr5bjvwsstn/Sz0dH+nCPwsX+9krKK8ho6SWhTtPsalu7LuxRzTXdIwgOuDSnxs0RH55LXtPlTJnazpmC9zcTkt3zzzCl99hlZ4rlPDALvkuVns4bEsBRL2Xf0SM/GrLpYUltB0sf1wWeVN+FjKjKZSkQ9pGOPgDpK2zejIp1WJ2GNXtzB+qttxarfYIuHwWVZk7JC6z8RQ3MB6mLnO8wL0EcaGfv4KKWnaeLOGLDankltfSLtKXyX3iCPN1JzHU22poexGhN5rILKlh7rZ0DmSV0zpIzW0dPYnZ8y4eRxdZD7x7g/MkOpD7++gySd1x85AI4JoS2DMPblkoHmoNUVsO616H7Z9L0lZkF9BXS0vRsGchpq/cF42fSZNB5pRmoxD7rsX3maGvhg1vwab37ff1vkdU2JfLd4kLlySajcDo2rUrKSkpWCwWWrRoYWfiuXt3E/nIzYCLPYk7kV/JuE83U1ZjawrULTaA18d2ICn8/N+zrMZAUaWOjOJqfD3ciPAT/4vz8R3JLashr1wGQLVKyZCkEDH/VKsaHVfL3bN3si/TVqbXr6Uf/+1ZSujSW2TDnavPPAnLOwQzR9pL/oY8JfFW/R8RQqIxKnLFhHDbZ8LSJwyTtpLARBmgzMYzy3EvN9SWi9fFyqek8qd2F5XLwH/ZD+aXES5nAmP5gRzu+243X9zWvXmJyLQNsP5NGPwkFnc/7lxRw4PdtdzbpYlnoN7Jf+J3Ij934R+Hi/nslVbrOZ5XyZ2zdtqNfb1aBPDBTV2J8HcuRW8KRpOZvAodWSXV6AxmYoM8CfLW4n2OZtJZJTXklNWwNbWIUF93+sYHEenvgaqRMjKvvJaH5+9ha2qxzfYu0T58NthI+KIbrBvHzpCY4qhuQsb7xdoumqqLpfWkcaKIXzSM+hDmTRRV3x0rz9xHXpErC7Qt/xN1YeurRZruG/n3G/8aQl8lystfn5A5hFIN7cfBFc9dVp4+F/L5q6g18Om6FD5ZZ6vSVCrgvYld6BkXQFQj0tBgNJNfoSOr1PocBXtrm4wEL6qsJb9CR3JuJQUVtQxtE0qYrzs+7m5YLBa2pxVz61fbMJisyw+lAr4YG8eQ/f+H+tQfsvGKF8SDwhFKT8G3o6AkzXZ7u9Fimq6vlpatxiqlqkJI/R02vC3eLOGdYfiLEN5B7pG/8zPxV6OyQMjTje/I790jQFrTO98kqU4uuPAn0GwazTFjxjTXW19yqNEb+eT3E3YTOIDdGSUcza0g3NcdP88zKAYcoKBCx+vLj7B4j7XnM8Rby9dTe9A+0u+s21MKKnTsSi9mztYMag0mhiSF0irQkxs/38Jb4zrSt4U/Gq31i//35Hw78gJgc1oZOztFc019q0N1sfSjOltcV5fAsn85jmBb/xZMWiCTs3oCoywLsndL3rRflLSZtL8BUEoF2WyEkhQoPCEKjsAESLradkJTkSctKtl7wDcaIjqCT6Rjue6lBndfkcdGdBafD6WbVAvc/qQ81IXzRlZJDe5uynNeOF34C9klbVQe/iiACG8lqWcy8vQJl4VSyloXgeHCBUd5jZHZW9Mdjn3bT5ZwPL/yvAgMncHEtrRi7v9uNxU6IwAqpYJ7BicwbUALAr3OvEjJKathfXIBi/dkoVYquLqDEAXX/28TM2/vRacQNUqV+vR3686TxXbkBcDezArWFUVyU3gnyN0vGy1mWUQd/VkqlHesgLD21heVpDuOQy3LlAVB2+vF6K+qyJ7AKM0Q1UXaRlmUtb0e2lwnbSSntsGhRaJo7HG7tIk0VQU1GqAiW8wZK3IgqruMlZfD4kPjJa2kk38S80alus6b4fJS9VxIFFTo+HS9fYup2QLvrTrG62M7EO7rjqpOhVFrMLE1tYgH5u6hssFzdP+QBG7v34KARs+RyWzhZFEVc7ams+9UKSE+7lzfOZK52zKI8nfnxm6RVBnh4fl7bciL+mt4bFkWv457kqhTdUltSpUUZRqr/0wGaeloTF6AzAfbjRHPtR53gG+EmGOWnZK2kZwDMue7eYGocFUaaQ1J+V3ai908IbS9kIWNlRiV+fJ81Y+lEZ1lbqi+/BTSfwm8Q8RzpO318rtVaeX7qin/OhdcOEs024z6hRdeOKvj5s2bx/XXX4+Xl2Pp9euvv87ixYs5evQoHh4e9OvXjzfffJOkJGum89SpU/n2229tXte7d2+2bt16/h/gAqK02sBvh/Oc7l9zJJ+Brc7dANBoMjNve4YNeQFQUKlj0oxt/PrIQBuJrslsIa+8lmq9Ca1aSbCPBg83NQUVOp5evJ/VR6xxSDvTS4gL8uS1Gzpy95zd/HZHAjHutRAYT2a1ku+2pTu9rlkHahiUOApvw0Koype4s4GPg8rBl1ptifQ2OoLFLC7p9Yx5aUYdI3/SeszWT2DCtzKRKc8WZ+fjv8mkreON0hry9VUyyQluLRPEeTdbJ5ogrS63LpbJ219BYtSUSs9zbbn0Z3qFgvs5ul1fpq0if0dkldYQ4q1t5qQlixByoValUriX4swEBkj7Ucqai3dpLvxjUa03suaI87FvyZ4sBrU+d7l2dlktd3yzA6PZukgymS18/PsJ2kf4cE0n2/YBg8lEfrmOGoMZdzclSgVM+XoHx/MrTx+zOaWI3i0DeXJkG+76didLx/sQsee/0OdeKoI7M3ur8zFvzoFKrup+JwG5D8nCWuNlbSnRlcNPD8AtP1j9mA587/zDHfoRRv1XCAyL0XZf/lH4ZqQUBmL7QKcJsOZFMe/1DBIPqDbXwbLHYMcMGP2JEPyOFvVGA2Rug+8m2BpaR/WAibOE2LzYqMiVyq3ZIOSDT9iZWz8bwyvEJfmvw5GccruOmnpkFFdjMFmoMZrwriMwsktrmPbtTkyNnqMP156gXaQvQ5JCKajQoTOa8daqKKrUM+HzLVTrTaePX3kol4euSORAVgUDIrIxaX3JLXdsNl5ea6RAEUSUQinzu9C2Qjy4t7c9sKoA9jlJXAM4vlLma/Wxwpk7YPYYMTkPbiUpNbXlMOZTMOSL6fueOeJBEd0Tuk+VY0NaW89ZlgULbxPyoh5unpLaF937rycxLBYhFasK5XN6BgmpcqmRA0rVZa3+deHSxSVfUr777rvp3bs38fHxDvevX7+e+++/n549e2I0Gnn22WcZMWIEhw8ftiE9rr76ambOtFY0NJpzVzNcLCgUCtQq54sbjVqJ2lmfbBPIr9Dx5cZUh/sqdEb2nyo9TWAUV+lZtj+b91cfp7hKj5tKwQ1do/jXiNYcz6+yIS/qkV5UzR8nCunTMoijJRZiNk0lZ/xSVqUaMJqcjJKAwWTBrHKH6z+CHV9Dzl7oPsWxFLapTHsQJj7hCpELrnnFSl4olDDkaQhpI5UujwCYM9ZWybH2PxDXT9orlv8fjPsKVr9oS16ATDS/Gwf3brkwxqZNoSyrzsDqt7rPoRAD0RGvSiXBhcsOmSXVVsf15kJZpuSvByWe3hThrWRturGJF9UhsiskL5N2LVcMrwsXEGqVAje1EhoseBrC3e38+vF/2ptlQ140xH/XHKdXfBDBdc9kQUUtc7Zm8NWmNCp1RgYkBtGrZZANeVGPbWnFjO4SidZNSb4qnAg3T/huApbrvsRgcp6oYTRZKI0dQYC7P4z4D2z73PaA7N3Su19PYJh0zj+c2SjG0h4Btike1UXw4z1CXniHilHo/EnWZKqKHFj5DLQdJbGNv78KPz8EMT2FjGjs8VSRDd+Nt08LyNoJ696CkW+I78DFgMko4/APt1vHdK2PxJC3H3N+6WUuSJx9E9CqVWgbtAP/uCfLhrywHqfE3U3FK8sO8/3OTHRGM89c04al+7JtyIt6/G/tCb6a0pMVJ/IY1MavyWswWZB5z/CXxWjWL9ZWnXT6wCbGLpNB/Cw8AuS+X3ireJ8Me05UG4XH5d8KhbQY75tvfe2RpeKpcePsOsPZQNDXwLo3bMkLEGLvu/Fw33YI+Avbkgy1Qi4uni4kH9RFQH8I8UNd3hIu/CNw8d16/iTOZNGxYsUKpk6dSvv27encuTMzZ84kIyODXbtsv2i0Wi3h4eGnfwIDnThvNwOCvN2Y0F0Wxl4aFaO7RHJH/xYMbh2CUgFju0bh63Hu7K7BZKa81vmXfGphFSAGokv3ZfH8T4cortLXvdbCwp2ZzN9xinlNqCl+PZjL4KQQKnUmLOO+YuWxMlYeymVYG+cS0xs7BeLbZpikiWAWl2Jn/8/ufraO0I0R3VMW9tWFIo2tx9Wvy5d8bSm0HS1KDEdtKOmbRWGRd0AmgIcWO34fXYUYql1MVBfDkrut5AXI7+XgIlj1nFyDC5cdMktqCPZuZsI0e681c74OkV4KimstlNaewQYpvIMQgic3XtRLdOGfh0BPDaM6ReLhpuL6zjLuDU0Kpb6zcXz3cyeMzWYLR3Odf1dmltRgMAkxXq038sm6FD5Yc/y0RL5vQjA/7XUes7nyUB4DWwVTXVMjkY03zsI3fwcTujr3oriibRg/HCih6va1cGyl42fJ0mDh12G88w/Y+mp5/YhXpS1CPjRUFQtpMe5LuOJFaU1xFKt95GdpuXTzEDIkZS2cWCNpJw2Rvcd51OH+edbIx4uBskz49jpbNaWuAn55GLIuLX+0ywlJ4b5o6tQVUf4e3No7lin9WpAU5kP7SF/CfLW41e03mc0k5zl+ju4bksDXm9KYszUDnVGepdhALw5mlTs83myBk4VVtI8NpqTWhL+n4/msu5uSMB+NkAeR3WTu4+ge9AiQNhFnaDUCYnqJT0ZtuSTS3PC5qDp8ImXb1k9lTtiQvKiHySAEX30Ub3WBpNk5gqFGinB/JUozYPZYK3kBMn9ceBsUHf9rr8UFF5oJlzyBca4oK5NFamOCYt26dYSGhtK6dWvuuusu8vPtFQUNodPpKC8vt/m5WHBTqZjcL477hyTw/sQumM0WDmSVER/ixcK7+5IQcn49m1q1ijBf55XfjlF+lFbrySmrJdBTw8eTuvH62I50i/U/fczJwmqnlSyALpFejIozcV1QNiU6C9/vL2ZbWjHd4gKICbSvziSGejMorAZmXiXy14o8GYicRbl5h8C17zmOWu11t0hDC45I28XwF+U8/nEQ1kHiVX9/FUpPilO1M6SuEyLEpJOIOWeozHW+70KgqsD5IvHQ4os7YbzE8Fc+fxcbWaU1p6u9zYacfdK7rrYSKZHe8vWfUtrEPQ9C8AUligmoC397/JXPXqC3lrsGtuTjW7oCcCCrjJhAD2ZO7cnjV7amZfC5j31KpYI+LZ0XKNpE+KBSKjhZWEV6URU1ehMfT+rGx5O68dTINvh5qGliyMNktqBSKIjU6mDvXIkmbXc9gxP8SAixr3zGBHrQNdafTzekUVpZI0lYjRGUAO7+tv9OdBD16e4Pg56AXncK4fH11aKM2jVTWkcWToZfHhWiMqOJFtlT20WeD2DUwep/S7RqQ5RnO3+9Uec4HvFC4egvYsLpCGtflmLD3xQX8/kL9dHyxrgOvDqmA/cPTSSjuJpjuRWM7x7NBzd1IcLP6pWlUirp2cL+OfL3UHNV+3Bu6hXLJ7d04+ErWhHqo8WC44dGo1Ly4pURjIutpJWfhU9+T+H/rkpyeOyTVycRUrANfqhL7THqoN319ge6ecCARxzPG+P6C/lRnAIlqRIj3P12mHeTRKj+dJ8oFMZ9Ja0lzpB7wEoAmvRN3+8VOc73XWiYDLDjSyEfG8NigQ3vOH92XHDhb4RLvoXkXGCxWHjssccYMGAAHTp0OL195MiRTJgwgbi4ONLS0nj++ecZNmwYu3btQqt1vLB4/fXXeemll/6qSyfQS0OkvwfTZ1uVIztOlrBgxym+v7svYU2r7hwizFfLv0Yk8X8/SEuESqkgvi7GsVZvJCHEmwNZZew4WcI3f6RRXmskzFfLtAHxDGsTxjurktmWWsTz17Vj5SH7PuXhrf15u0c53rPGgb4SxcCXAYlle3rxAd4Y25HtacWsOpyHUgGjOkcyvrWaiPlXiJlPdE/Y8RVMmOnc+bmmVKow036DPz4UCZ93KPR7SJjvT3pbj43oDGO/FFY6c4e0g4B80as0jqtRIPt8o0Si6h0qRk2OEN6p6V+4Mxiq5XMoVeJn4cwLoarQ+TksZscKkr8p/urn72KhotZARa2xeQkMi1ny7Rul/YR7KVAAKaVmup8hyIDwjkJgWCzO718X/hb4K589ncHEjpMl/Ov7fae31Y9786f3OSuzTUe4om0Y7646RoXOiEIB8cFeqJVKUgsref2Gjny5MY0lezKZM603lTojjyzYg8FkoV2EL49e2Yrpg+J5evEBh+ce3i6Mqopygo7Nk0jvMR/DkulEBLXi3fGfsDq5kF8P5GC2wIh2YfSOD+LJRfvFA8fROKdUwXUf2PoWeYfC6P9BymqpFOsqIH6IJCwsmQ6Fx2RR1uce8XWqKbYS3LoKUSTW+wg4gkpjJetD20pF9+BiGPq09ZjoHs5/wX7R4HaGSOiqQln0uXmBxzlMYMxmyNzufH9BMhiaaLG5zHExnz93NxV9E4J5ZvEBfk+2FkS2pBaxYOcpZt/RCw+NdVlwVftw/rta1EkKBQxIDObf17Xj3VXHWHU4F7NFkvJeG9uRKp2RpDAfG9WGSqlg7s0t6LznRdw2rqBswkp2ppcQG+TJF7d1Z+72DE7kVxIb6MmkXrF4qwxoN30hPhXFKaI28o9z/GE03pKOdXCRKIg0ntDzTjFe/2KQVbkR1R2u/591UW+ogd2z5M+Wg5r+hdUXzty8ZI7YmOSrR+RZxBGfDyoLxP9F4201Mj2T4iP/sHzWxi1hLrjwN8PfSoHxwAMPsH//fubNm2ezfeLEiVx77bV06NCBUaNG8euvv3Ls2DGWLXNelX/66acpKys7/XPq1KmLeu2FlXpeWHrIbnu13sT/LdpPUeW5D9gKhYLhbcN47tq2TB/Yki8n92BU50hu6BbFl1N7UVCpY/72U3y45vjpVpO8ch2vLT+C3mTiirahZJfVEh/iRa9GTLxCAf8e5If3optPm5H5p/zITR3kS7OgQse0b3dyIKuMCd2jGdstmq4hEP3zzXKCsTOgKBXuWmsja7dDvev67lni9t7zTiEvjq+SiVxD5OyD1S9Iz/6m/1q3H1tZl0TiBInDodNN0mt5xYuOj4ntc+5GRCaj9Fr+/Ch8NgC+ukr6LSucKDmcqVBAfuHayys+9M/gr37+LhayS4U0a1YCozRDFjWN/Cu0agUhngpSzsbIM7yTGJwVnbhIF+nCpYK/8tnLr9DxzBJ7okBnNPPED/spqDi/hWqUvwcL7u7L3YPimTm1J+O6RXNNx3B+uKcfFbVGvtyYynPXtuPu2bv4ZX/O6USEwznl3D17F/HBXnSOtl90d4jypWuUFzf5H8F716cS8bjyGUnUSluPW1UO29OKGdstmgndozmQVcYd3+ygoELHVe3D8A8MhZvnSXyqb6T4UUzf4Jgs8AmThdGYT6DnXSJn/26CtDKaTVKFNdRCwVFZ6DXEyY0io3eGmF5CanaZBKnr5XxlmbbHBMSJga8jjHjFuSdTVZG0qcweA5/2E1VI5k77FhVnUCqlGOEMgfE2SrK/Gy7283cst8KGvKjHifxKlu7LxtxAfiTPUR/uGhjP11N6clX7cJYfyGFc92juH5qIUiFJefd/t5tgby2Pj0g63aICMKp9MO3SvsEtZQUAftnrGJgQwOLdWTzxw35iAz25rU8cbSN8efHnQ0S5Vchc56rXhRwc9aGocBvDYoHDP0qbUUUOjP8Khv0bcg/C3Am2bSdZu8TrZeC/bM9x4HsxpHVGyLcYKAUnkHv9yv84Pi6yqzwrFxKVBbB/IcwaBZ/1h8V3Qc5++Vxqdwhp6/y1gYkXz5vGBRcuIfxtFBgPPvggS5cuZcOGDURHRzd5bEREBHFxcRw/7rxXTKvVOlVnXAwcySl32qpxKLuc0mrDeRkBBnppGNM1ki82pHH7N1a53Fsrkrl3SAJJ4T4UV+lRKRXszyqlvEaIjK82pvHW+M7sSi/BU2nm3Qkd2JpWwrdb0qk1mJk+II6o7EU2MjZF9m6u7F/Fd2FeHM0TtntzShGbU4roHO3HuIltparkGSJqB6Va/jTq5DyOGON9cyUKVF8pX+gAN8+HvXMcf+DcA6J40DVQKxxdJnGraRvsY7e63CpGn+6+wnQnjYQxn8Gal2RgVGuh8yQY/H/n7mRenAIzhlqZ/+oiWPEUHPkFJnwtA3RDeAbLhDXbQY9vq6tk/z8Ef/Xzd7GQXSoTqWb1wMg9IFXehlHBdYj0OksCI7StGAem/yHVMRf+tvgrn73UwsrTPfSNcSK/kpJqPSE+534tSqWC6AAPwnzduf2bHactlt5ffZzrO0fw1vhOVOmMhPhoiQ305HBOOYWVIhE3W+Dtlcm8dkNH1h8r4Me9WbiplNzcM4bBsW5E/zYNxcn1ckL/WKs3kqGGyJzVJPj14e2VyTbX4+/pxhNXJeHl4w1J10BMH6sCws3D8YLDYpFISK0PrHrW8Qfd/oW0lDRusdw3H26cJWNJY0Vh/0cga49UpXXlMiYBtL7K9jjvMLhpLvz+GhxYINJ1v2hZyMUPdXw9tRWw5WPY9K51W9o6+Go93DRf3uNsFFztxsD6N2Vu0BhDnxFzxb8pLubzpzOamkzLmbs9g7Hdok8/c0qlgphAT6IDPLjjW+tz5Ofhxp0DWvL5bd15YO4edEYzc7dl0D7Sl9nTerF4dyY7TpZwf09vPL+3JgD67vmcf4+5nrGZFZTVGJi1xXot0wfEERocIqoKN09oOVAIOkdqgqoC2PapPENHl0kBSq2BnV85/mCZO2DQ/9lvLzou9/Oq52y3ewTAyLekCFWvOkwcBuO+ht+eFyWGSiNJdkOfubCxwtUlYjC/u0Fy4rEV4o025Rcxnu99N+yZ5VhhNfgJ+c5wwYW/OS55AiMuLg43N+cGlhaLhQcffJAlS5awbt06WrY8s0t+UVERp06dIiLi0kl1MDWR2gFgdtJfeDY4mlvJFxvs00hMZgv9EoIoqdajN5q5sUc0hZV63vj1KFV6E0oFzLi1G2+tTmFXeilju0by0U1d8FKZCTq2AFWBvall+M+3MvO6WWwoimLBoSoUCgUjO4QT5e9BckE1gZGRaKpyYd2rUJ4jE6G4vrB7DsT2EjWEX3T9L0VkqJk7YPgLVgKjKdNPEONON08rcWA2wo/3wjXvSjtK6u+iZuh5pySflKTJRKkyHxKGyqAUP1iIEJVGiItzZbR1FbDmZce9iOmbRJnRmMDwDoEbv4Xvp9q6XccPFR+Qc5HhunBJILO0BpVSQYBnMxIY+YdFVusgfjDCW8nhojN4YIA8T0EJcPIPiZhzwYULAEcJBw1xBg/vJpFRXM3Lvxy22750Xw5ju0XjrVXTJSaASp2B0V2j0BvNvLrsCJU6I7sySnBTK8kuqeaO/i3pGOlFrHsNPl/2k/EFRNHUaIEdsOlFHh/+X0a26saMPVWU1pgYlhTM+HZexOiOQ1W0jCe1pZDyuyQeuHlA9zskaaGhys9QJW0ghcecf8jyLAhoCcmNfDV0FfDLYxIPfnip+GF4BkKXW4TMVChg3wL5c8Is2Rba1r5FzC9Kkht6TJWxuLZc2iF15Y6TQKoK4I/37bdbLLDsUYhYI8qTM8E/Bm5dAt9PtrZWqjQw5BmI7Xvm17vgEBYLTSbEmcwWOy+LzOLq0+pgrVrJUyPbEOSlYWtqMVV6I5/f1p2Nxwv5ZX82g5NC0KiVBHhpeO7aNsT5lNiqIaqLSVg9nWW3fsqCIzo2pNcS6KVhQvdoeka64XN0nqhrfcKhxx3SLnT4R+g0EVoOlvvRbJb7sKGpecOYX2fQV9q3VdWWyXxzyi+wb574viQMg1ZXQmWhqBe13hDUShRRHcfJfNVQDUqNzNkutNqhMs+WvKiH2QS/PCLXGhAHE+fIvLa+tdjNE655WwpyLrjwD0CzEhilpaX88MMPpKSk8MQTTxAYGMju3bsJCwsjKkoG8oMHDzZ5jvvvv5+5c+fy008/4ePjQ26uyPP9/Pzw8PCgsrKSF198kXHjxhEREcHJkyd55plnCA4O5oYbmmgr+IvRLtIXhcLxhC0+2Av/80ghAaisNfLZOnvZ94PDEimpNjD+sy2nt323LYN+CUG8Ob4Tjy7YS2ygJ4//sI8jOTJQ/G9dKl9sPMkP9/QmtEU/MNfa59XXlhLxw/VM7DiBK254nuxqNc8sS+VgdjlTewTRv2grrHnBevzJjcJ2j/sSFt0pBkS3L5fKVulJaNEf9tdVf2J6ifmYyk0mXM4MN30iILafbZpHZb44NMf2k/YVlVpyv//4QCZjGm/oekudEsP056vMtWXCmjvDwcXQYoD9dv9YmLRQJoI1JRKT5xXSdHuJC5cssktrCPLSoFSeRdXxosAistrwDg73RvkoWXnSiM5kQdtElDMAoe3leXX5YLhwgZAQ4o1KqXBIZEQHeDhNKzgTjCYzs7eedLjv5l4x7M8s473frMTAvO2n6BDly/sTu3D37J34e2o4klPOnO2nYLtI+J+7qiWTblyAZs1z5PZ/hYNl7vTzUWPT2GexEPTbwwzyiaB72xvJ73QPr67JYlxcLcwbUlexfVqiF4tSrK9L/lXaHEe8Kos0iwVO7ZCFSlO97IHxsohylKRgrAW1JwQmyBhXkQtr/gOD/gUl6WKOuH8hLLpDxlfvMBj+krSjeAbIOcqzYc54yG/U3uobBXestI8VL0x27rtRni3kx9kQGCqNEBXTN0BVvhBFPhEyFmrOz9TcBfHAmNgzhnXHHBuCj+4SRWADst1ktjBna8bpf781vhPztmewNbX49LbP1qcytV8L7hoYT+doP/7vh/3syyzjs/Ww4OZYenuF2BiQK/MPEDt3EI8mXMmUG15n1iEDXb1LCJt5nSRp1OPA99L24R8rC/XAeJiyVO7VrR+Lf8WBH+TYHV+KYsLZJBrkOWp4b2p9ILSdPBcBLaVdpapAWqmWPmg1+IzoDEOfBUtn8A0/u/v3z+BM/i+1ZaL4aHUV3POHEB4Ws5A+3mHO/eRccOFvhmbzwNi/fz+tW7fmzTff5J133qG0tBSAJUuW8PTTTzf94gb49NNPKSsrY8iQIURERJz+WbBgAQAqlYoDBw4wevRoWrduzZQpU2jdujVbtmzBx+fSkVkFeWt4eJj9olmtVPDGuI6E+Lg7eNWZoTOaKKiwdU/2dVfTJtyXOQ6khJtTisgprWFC92hWH8k7TV7UQ28y89xPhyl2j0bfepRtDn0DWNpcR/CC62iz8QEe7C3kzNSOHqjXvmh/cE2JGHR2mwxlp2DTB7Ltt3+L2WdoW1jxNPS5D4Y8JTFqziK0YvvJl/i170rFuB4KpUzMrv9ICJM/PhCZnq7O4VtfCds+l4lk1l5RhxSnCgN/Xo7OCulVdIamJqVewfKZ4/pBSJKLvLiMkVVSQ1Bzto9U5onBnxOfmShvhUTclZ2ND0YHaasqdS5BdsGFc4H0zbe2265SKnhzXCfCfM9v3DOazeSU2ps2u6nEF6oheVGPg1nlbE4pZFDrEMZ3j2bhTlvvgTdXn6REG8X+K77jqvml3PNTFvOP6DAkjrS/gIocPPWFaMw1rD6Sz4qTJojpLcqLXd/Ykhf1OLRE2g7rXs+P90qbZXBrGbMcYcjT4BFkv98jAG5ZKARIh3HQ90G4+k24bYn4brQbDeveFANEk0FeU5kHP94jxHtZlpAcxScdP+/lWZLAYmpURDjT4kmpanq/zbFKIXMiu4oHVUCci7y4AOgWF+DQ3yXc152be8WgbuBhYTSZyS4TBUXXGH9OFlXbkBf1+GbzSdpG+FJcaWBfprV9d1mqBf2gZ+wvwmJGXZJCoDGP3qEWwjc9a0te1GPju3K/KpQyH0vfInO3vXNFTVQ/j8rcIV4wbRwkloAY4DZUtbp5SityQBwkXFFHGprlvp5zg206Sc4+KX5VNTCyryyQ9J+SDNBd4MQPtzPc4/XPkEotBGJ0Dynu+ce6yAsX/lFoNgLjscceY+rUqRw/fhx3d+skZeTIkWzYcPZxfRaLxeHP1KlTAfDw8GDlypXk5+ej1+tJT0/nm2++ISbm3PPlLyZ83N2Y0r8Fs+7oRe+WgcQGejK6SyTLHhpI52j/P3FeNf0TbUmGIUmhrDjoPPZp0e4spg+K59stjhcq+zPLqDbA65uryByzWAzJ6uEdSsk1n1Pu3RJKM9CcXEtndSa9WwbhnbfdOTuett6akrB/nlRqjq+S/tzhL0Hnm2HpQyK7DU6SyNRBj4O6gXwvYTiMmyEEQEAcTFkmcrvxM2H6OklSWP2CDHQ7Zji+jkOLIaQ1zBkLH3aVn58fESLjXOAVLP4aztDpxnM7nwuXJbJKawg6zySFC4K8ujYvJ07u9VGqJ0rOxgejnfyZvqXp41xw4SzhpVVzc69YvruzN33iZdy7rlMEvzw4gO5xThbtZwF3NzXD2tj3pfdoEcgfJ5ynPS3encWkXrF0jvZnc4ptVKfBZKECT6bO2kuVXhbu727M52DXf6PrcLOQDSCLiO63o2g5CM+U5XSL9Wd7rhl9QKJ4QDhSS9Rj9+w6iXypkBjLnxCJ+sTvhMioh8ZL1BqtRkhV+I5V0i4y4hW4aR7cvRHCOkpFWl+XSrLhLfj5QTiwSNQQjryWANa8CClr4aOusPV/4qXh68DA+sACqGkUZxrUhIFgeEenBQ8X/jqE+brz+W09+M/o9iSF+RAf7MUjw1ux6N6+RAfYLp61biquqHuOrukUwZLdmY5OCcCSPZksP2gbvTswKZQltd0oH/wyuFtJE1PLYeRfPxfD4WX0CgfVyXXOLzhnnxRyQFRFycvlzzUvy72ZNFKevZXPQL8HoNd0MZ9195P7P+kaUVckDJXnY8K3cN82UXRk74Gf7oUf7xN1w9FfbFtT6mHUwZZPxJ8ifYsY1H7YRZ6Rnx8Usu9CIaq7c6Kv5SDwcBW0XHABmrGFZMeOHXz++ed226Oiok63gfzTEOCpYVDrEDrH+KM3mvHSqvDU/Ln/Io1axeS+LZi/4xTVdZMudzcVeeVOIkWR6MfKWj3FVc5zr2tNCuZtP4XOGMWoQXOI9DRjqS4kq0rFe1vLeXaIO93GfQUqDWEaDz4cFYlnyt6mL9bNU7K5VW6ijBj5Fmz+EObfLOqJa96SXn61VoybPALhjl/ldQqVkAYN+3J96ySnaethxjCwmMRZ2mKCFoPEXKxxG4rFAsUnRAoL4p9xYKEw8rcvczyRcwS1VgbTE6ukctAQ/R+Wz+HC3x5ZpTX0admMk/b8w6JIclK59NUq8NPC8bMhMLQ+ouTI2Axdbr6w1+nCPxb+nhr6JwbTMcoPndGMl0aFp/bPT02Gtwvjw7UnbMYxDzfV6cQtR6ioNRDqo2XiF1vtuHZ/TzeyynR0jPajV8sgjCYzq4/kMXFuOrd0n8akifeT4GVAqVaDvhoq8wioPsnYpH6cqgS3mnKRn5sNzi/apBclhL4apvwMeYdg/i3SXjLmE7AgCyz/WBknU9ZK1TiqhyQTxA+xPZ+uQqrVm96TfRov6a931L54+peQa22lPLoMsvfCyDdhQSNCXukGNGol8w6HsV/Awin2cv0xn/6tzTcvJ4T7uXNb3xZc0zECs8VCoKcGlcpxPXNom1CCVh8/47NTUm3A0oC7ivRzJ7u0lm93lMKg0XS+eQLe5nKqa3VszLLgl1HL6E4TUGNs2uzGYoaQdtDvQfBvYW312PYZfH87dL5J2oK13nJPxvSWeVpUd1FWeAYJmREQZ/VPKc+pS8fZLn5oicOlTaqsicSXrB1QmQvfXGO9t81GUTFl7oTbfz33pDpH8A6Vz/jT/bbbPYNEWezIe8YFF/6BaDYCw93dnfLycrvtycnJhIScY9rD3wx+5+l34QzB3hoW3t2XF5ceYmd6CQezyhjbLYr1Tvogh7QOIcRT5bSdcGBCAErMfDG5B0v3ZfPcL8cJ9tYyrns0hRU6EgOqaGc6KuqJqgIUQGhgApZxXzq/yMhuUrlZNE3aR0BaQK56FTa8LRMp7wgIKIDV/7a9sPbjYOQbjr/YK3LEFDO6Bwx8XMiMDW9DcCL0uVcGwROrbV/j5mFPbJSkQfa+sycwQOR9U36BjC0SBesRKMZUgfHWHmMX/rYwmMzkl9cS7NPMBp4O0kcaItJbyfGSszDyBFFhpG++ABfmggu28L3A416oj5b50/vw6rIjbDheIAaGZjNXtQ/jh12OK8n9E4L5I6XQYTJKuwhfIvy9aBfhxy/7stG6KRndJYowX3c+XXeCOzq4ofzlYcjdLy/QeEO/B+kV6cW1XkoUpeNFcp50LeyZ7fii246CL4dDeabI5tuNhjvXwI6vZDsICT/4Sfu4yLAOkrbl14Acr8iR8wx/SdojLWboOEGM/ja979j8sLHZb3mWtJGEJEmVuh49ptkTEmqNKCHv2ypqkqJjEDdA/Db8mv4ecuGvx9kk20UHeLLg7j6sPZpP3/gglh1wrN7tGx9k03bl76khKdybyf1aMH9HFjN0RvolBHFV+yiuTiwi6rd7YM1u8ZeI6iatwY4QPwzCO8MvD1sj6P2i4cqXYe93omjS+ojqYubVos6oR0RnUSQ1UH9gscCRn4S8GPSEPDdHf5EWrlZXQptRsPxxG98OQAoBaRsde7yUpkuLyoUgMDRe8txHdoVd38q5E4eLeusMY7kLLvyT0GwExujRo3n55ZdZuFCSJRQKBRkZGTz11FOMGzeuuS7rbwW90cTJomo+/v0EJ/IqubFnDC+MaoeXVo2bSsnMP06SVVpj8xpPjYp7hiTgryjjmeFxvPqbrTTO39ONl68IptwAd83aeXqil1JQxba0Ym7pHctD/cNwnznSlmQoTkFxdJn4XOyeZXuhKo0QFYvutJIXIH3Ci+4Uyd/x36DTBOskriEOLZKIq64OWjbKMkWJ0fcBqSA1HNx2fCVVrZoSa39kUILIax3h2Epoc43jfc7gFwUdx8uApFCeWw+wC5c18sprMVsguLlaSPRV0voU1b3Jw6K8lRw7GwUGiJFn8nLpAfb+ZxPNLly6yCiuZtbmk2w6Ucj1nSN4dHhrvN1VBHppMBgttAn34WiurVTcTaXgqWvaYDJb+HDNCRsSQ61S8MK1SUz5Zie5DdSLB7PK6R4XwCc3tiNmbl/bRY++Eta9TqsbWkB+nhDvKo2QDMnLJVa7IaJ7CaFQXkeuWMyyqDLqJQkkpDUs/xdc/QZ8PcKWvADIOwirX4Lr/gvaOm+A6mI4vhJOrLEed/QXiOkrkeY/3GH/y2s32t6A+tR2WejVExgRnaHtdY7NfDWeQnaM+I/4a6ibkcB14U+hsFLH5pQivtuazoDEYO4fmsCao3nUGmzHi5hAD9qG+3Asr/L0tnHdovhqUxq/HbbG+J7Ir+Snvdn8dGsc5B+VjbtmirLg+6n2sbkdJ8icaf7NtsRBWSYsuRumLhfFkmcQzL7Bdn4H0n6y7nUY+TZo6uQhVQWwfQYMeFSewe+nWI8/tkIKTGM+hXk3icKiHv0ehl+fcP7LSl4uvmUXQmWk9ZFUopFvSpSr+sKSuy648HdAs3lgvPPOOxQUFBAaGkpNTQ2DBw8mMTERHx8fXn311ea6rL8VjuRUcO2HG/lpbzaHcsp5YekhRv3vD2ZsTMXXQ82Cu/swqVcsWrUSpQKGtw3lp/v7ExvoiXdwFDd2DWXplARu6BRC34Qgnh4azs83heCnged/OuSwSvXdtgxqjBZZrDfGpneh7Wi44XNRXPjFQPuxMHWZyPDKs+xfo6+C3APQ5jp74qMh/vivfd49yIDW534xAW08uJmN8OuTYg4K4uJ8zTtSmXIEDz8odd4D2iTqk1Nc+Mcgu85EMPgsqlwXBYXHZNJ3hqpNtI+CtDIzhjNEOQMQVueDcWrrBbhAF1y48MgormLMx3/w5aY0juZW8NbKY4z55A8e/34/RpOFMD93vp7ak2kDWuKpke/kvvGB/Hhff1qFetM23JeVD/Xn/gHR9I0P4rYeoay5pz2LdqbbkBf12JVeQnpxtVMDPcXvr6GoJxRMeqnujp0hCgb/OFFDjHxLFIG/Pml/guRlIm1XaeDBPVKRdWYsfWix+F3UoyzTlryox6kt4jMV3dt2e2Q3Mf08uMh2u0+EkPsJw2DCN3DzgjOnMSgULvLiMkZJlZ7Xlx/hoXl72JZWzLu/HePZJQf57NbuDE0KQaGQWNVbesUyb1ov2niW8e34GK5oE8xV7cNoE+5lQ17Uo6zGwPtbS6nucItsKM+GzR+JUqLDOJkXRnaTuVjH8WLa6Uj1YDLAnu/EFy33gP38rh77F9gSixazFNeie8DOr+2PL06FIz9Dm2ut23pMk/lhY4KlITwC4OeHrcTMhYBC4SIvXHDBCZpNgeHr68umTZtYu3Ytu3fvxmw2061bN4YPd1Bhd+GcUVyl45klBxwuSuZtP8Xt/VvSOsyHf49qx4PDErEAXhoVVXoTe0+VYjRbiPL3plWUijd9ajAWpOFuqUEZ0IM0Itifedzpe+/IKCexxSCKWo6iIqA9KoWZgPRf8d43UzLiWw6BxCtE1pd/BAqP28exNkTmDmGkG0v6GqKq0JYtr0dAC5nsOettrI8qre/Pzdkvk77GUCikb/j7yRJz6urldeEMyCoVeXazpZDkH5Vq6Bnu1WgfJUYzpJebSQw4A8nmFSJS2vQtInd3wYVLCDqjiRkbUh36N+09VcrBrDKG+boT6e/Bk1cnceeAljL2aVWoFAqyS2vJLq3BS6vm1n7x3G8uwy19PcU1Cn46WOr0fRfsKWBQ3GDc9n8nGwJaUNT9YSr826FSmAn09cZL4y2qjKIUaf9ofTX0ulsWUsZamOUkQQFk/88PwcP7HRP19TAbwVS3yNJVSlS4M+z+FsZ8Bqe2yTgY2U28nxbdab9Q6zZFKtMWsysJ5B+C3PJaFu22LSrtOVXKQ/P38NCwRF4a3QGlQqqgGcXVaNQBtIoL5H8BR1BadLx+KM/xiYFjBToKBz2EOWE8akwEpizCc9E0MeSc8I2ohrZ9Cp1ukjZIZ8jbD+3HNz03NOnB3OD7wCNAyMITa52/5uAiuHWxtKWEd5A241XPQq+7YO0rjl8TP0SUIoXJMGU5+NibCLvgggsXDs1CYBiNRtzd3dm7dy/Dhg1j2LBhzXEZf2uU1Rg5lG3vMVKPvRkltA7zwd1NRYS/BzUGE38cL+SRBXup1Bnx1KiI9PNgct84ru/SHv/ormA2U1htwNCEuSdAWEgou2I+4/lfjnM4p0jUHW1G8ezUB4mr3CdSu4bMd0ALqUTV9w43RnBrMTOL6S19vI4Q21dIjsbwChFzp6agq5DI1upCSSxpMRBObrTuVyjhqtek1zJrlxznIjBcOAOyS2vxdVfj7tZMypuCI1LNcqSGaoBoH9l/vOQsCAyQiN8Mlw+GC5ceSqr0LD/g3AR84a5MBiWFoFYq0ahl7AMoqNDxwZpkfjuch5tKSU5ZLYFeGr6a3IP2XSdBpQ6l4g+n51UpQeEdAte8Q21IZw6aYnh+2XGO1I1/I9q68cyNK4lddZekIcT0kRfm7BXyXXWG506tFXIia7csqpzBJ0K8N0DIBmdVaZB9Kb/Dlg+lmBDXT9QaemsbAAoFXPOufI+4nV+krQuXJ5yl9WhUSmZtyWBEu3Dm7cjks/UpmMwWwn3dCfTW8O/r2tExyhflEfuoYoCx3aIYmBjM1AUnSC2swk2lYFTHW/jXlP8jattrooBY/5YcXJkn5puFjs+FfwsoPCrKIGfwj7WNrVdrhXzP3uP8NcZaIUX2fifXU68A6X2P+FE09E1TKKVd6uAP4p1WeByqC1wEhgsuXGQ0C4GhVquJi4vD1DhD3IULBqWD1lSAztF+3DMkAYAfdp2ibYQv4b7ulFTpmT57J/6eGl67piO+Hmoyi2vw9XAjt6wGz7xd5LjFMm9fMd4e7vSIC2Bneond+QO83Aj2ceeGz7ZhMov6w2yBVUcK2JdVzuLxwUS1GiEqh+Or5EX75kH/R6TCZPdB1DLYfHUlTJwj1d/KPPtjhj7rmMCoLgLPEHD3l2i6xlBrJU+7nsFfcjcMe176IzO2iKFneCepArQdBe3HAAoZqFwtIS40gazSmrMySbs4sEhccL3rehPw1chPcrGZkfFncerQ9mJ+q6s8Mznoggt/IRQKBW5O0hTu6N+CqzuE88u+HLRqJe0jfQnx0aJVq9ieVsSQpFCSwnypMZhIDPVme1oRt3y5leVT44lwNzC+WxQf/Z7i8Ny39IxGregH697gxMABTJy9x2b8W3E4n31Z7iy6/Ucif7sHtn4iMvYWA2RBVHAMYvtAhoPWrNg+ogwE0JWBfx95rjMcxBlf+R8hMUBaTjpOcHwciAIkZbUYI1bkimFgxwnQ7TYhStz9ZGHo5inpC4YqkdG78I+ARm37HPVuGci0AS0prNRTrTdSWKVHo1ZydYdwxnaN4lRJDQaTmVqDiZzyGga2CuHrP07anCMm0IMhrUN4aP7e09sMJguL9+ayL6uCuWOnE2YulHvXpBclxKgPxAPNETpNEMVQeEdREDmKBr7yFeszcfrD+ci9vvc7x+dtNQJSf4eiE7bbF98lEawVueKXofWW9z7wg1yrQiHPlUIlRIabhyTzqJpN7O6CC39bNNtT9dxzz/H0008zZ84cAgNducYXGv6eGgYkBrOpAYveLdafaQPieeL7/VTqrO0WAxODeOTK1vh5uPH+jZ15+ZcjpBRYqzBhvlpmTe1G0vbneFxfS2HLO+gX35bJM3fanAfgndFJvL/6+OnJW0PklevYmgvjDr0iJEHWTjEZK06VCdKAxyQ2tb4VxN0Pxn8jFSWLWXwsxnxqTQ6xmMVMbOTbkj/fGMWpYvoZ1l4IDkcGTAMeFWVFPdTu0nM5/EVRhJRlQWAClJwUMyhDjbScDH5S0k+8XUoMFxwjq6SG4OZqHynLktaps3AtVygUxPicYxKJxSTPb+PYRhdcaEYEe2m4qWcM/11j2+L43LVtOZ5fyY2fWwkCtVLBG+M60S8+kJJqAy//vA+9ydprf33nSJ6+pi07Cs2MjjVxUydflu73JL3INrljcKtgWgeq4LNbKe/1KG/+UeJw/Mspq2VHSi6jy7OsBtcnN8F342HiXBj8FKx52XYRFtlNkhLqzTaje4mqcPzXsPE9STMx1opC4sqXRd2hUIDZDGkbJJIxMN4+ytsnXJSGmz+U6rTGS8bS9a+LJ0FMXxj4KKx/UxSTFjMEtIQRr4hi0sNfFoUuEv9vi/6J1rnNgMRgxnaL4qH5e2wMPK9oG8qDQxOZ8PkWm3blyX3juLtXEOO7RfLDbqsp+i294vh0vWMSMKWgimPFAYSlz4WB/5L5Vk2J3MdXvgy/v2ZVFLl5ivHn4aUyzq1+CcZ9BYd/FB8Yo05UvSNegZaDbd/IqJd7Wl8Jsf3s1YQaL+h5p625p1ewmGkGt5ZCmQU4+Qe0rfPJiB8sBS6/aDiwCL4aLspedz/o+yB0nyLPogsuuHDBoLBYmgpgvnjo2rUrJ06cwGAwEBcXh5eXl83+3budRCo1E8rLy/Hz86OsrAxfX9/mvpyzwon8SsZ/tpnSasmdnzG5Ow/N20uNwX6hcmufWHrEBTBv+ym2pRXb7Y8J9OCHYeWE/SJf6tUDniW1zZ0s2pPD3oxSwny03NnFnTBvFVd/k06V3vFiaGSHcD7WfoKypkhMklY8KeqILpMkXk5XIYoKjRf4RUp0am0pnNwMgbEycKi00udbmS8LtNA29m+krxZDpQOSckOPaVLt2jFDnNQDW0qs6qntsOk92df7HtCVywAX3UNMQz0DpRpVrxZpiCtehL73OTVvA4TwsFhcfcN/Epfj8zf83fUkhnozpV+Lv/7NT6wWM9or/i1VoDNg5gE9KaVm1kw8C0WFxSyJPn3ug6FPX4CLdeFSxuX27OWU1nDrV9tPk/DxwV5M7d+Cf/90yOHxPz/Qn/Gfb0HXKFkB4KmRbdCqFNye8x9I30T2Nd/ye54Hi4/WoFUrmdgjCm+tmiEn30e1/XNyRi9g6GKLXUpDPa7rGMZHbv9DcXiJ7Y5uk2WB1OZaSc0qOFpXudWIitDDH5QaIQ59ImRB5eYuY6DJIAs63wZV5rIs+GIQoIDRH0PqOjiyVJSDSddAz2mw8lkZdxVKqC0TAiNlLWx8R16z9lWJD2+McV+K6eLVb0JUD1uTQUOtXKPGy/51LpwXmuv5q6g1MGdrOm+uSGbm1J5Mn73ToafaPYPjOZhVblMsA/h8QiLdLYc56NGDmdtyqKg18Pw1Sdzw2Tan73lPnzCeKntJCly/PCIeaUEJMtfyCZdCl0eAEHYqDXx/OyQOleheFHVJb0qZQ7r72z4T9SjNgE/6yDg2+hNpT9m/QOae8UNkXrjyWVEndZsiaTulp8SQNqqHEHkWkyScbP1EDD9BSA99lSiKG6P3vXDF82d+Lox6UZ5ovBwn/Ljgggun0WwKjDFjxjTXW/+tUFFroKyOoPDzdMPH3TqZSAjx4ucHBrDiUC4qBVTqjA7JC4BFu7KY1CvWIXkBcKq4hnyPRMKUKjCb8Nz0KgER/cgtdefGHtGMjq7Cc8415A98lSDvSKqKHeTLA5FeoKwuE1nrkKfhhi9kcpa5E2aPgaHPQY/bbaXp+irJ7P71X/IF33oEdLkFPALts+Vry2VCpyuXdo+2o0TRsftbiY/rMgk6jBcVRWW+EBmdJ0GL/tI+Uu/urlAI6dHqKlj3huNf/qZ35fzBDtQfFXnS37zjS5k0dpssHh6OBlQX/nawWCxkl9XQO76Z1GUFydJudRbkBUCMj4I16WZ0Jgta1RkmTgql+GCku3wwXGgemExm8it0GMwW3NVKQn2t/gwR/h7MubMX21KLOZJdxuiuUTzxgxN/JWDu9gwGtwph1WF708H52zP48MYOsHMnVOYTuXAkt0R2Y1TCVahMNZT73MAvqSauyNwOgEpXSrB3KJklNXbnAojyAkWFA2+qjC3QbaosflpdJX4Ux1bCzi+lvTGqO/S+W0w5jy6T9K6rXxcC31Ati6/aMlmUVRVK5fr6j+DYKpg/SSrEfR8QxUTqOjmm992w9AH5ez3ih8KNc6CmyDF5AaJQ7DBOxut7t0BQvFxj/hHY9rlUtjtOkMWgX7TT37sLlybyy2upNZpxUyq4pU8sV7QJY92xAqcpVfN3nOK5a9vaERgfbyng23anGLLjHdqN+wH3I4uprFXjrVXbKXfrEeGtgLwyzAXJKHvdDZFdRIHxx/vgGyP3fP0cymSE696D9W/AHx/JnLHTRCEZStKhy822J9dXSUFJXyXmtUolVBUJgdHjDhkrs3bJHHPIk5KAkrMX5k60emCo3eGGz6Tt69gKK3kB0OpKmNfoPeuxY4Y8b4EtHe+vLoHiE7D1M6jKh9YjhTg5CwWlCy78U9FsBMYLL7zQXG/9t4DZbCG1sJJXlx1h3THxbxiaFMIz17QjIcQLhUIh0vBAT8Z1i2LtkXyO5VY6PV+NwYTRgey1IcpqTfIFrq8CzyDUKhWT+sRRWq1HjQlqSgg99CXTe77HcysdExg3ttXC9+vBK4QatS8ei6ZBdE/xwJi8VKpEvzwq5ENkV0AB342TfsJ67F8oPZHjZ0JlDlSYoCRDWGujASwGiaqrl826+4kMN7i1NSK1xzTZX1MC1/0XNrwtFSWVm/QhH1gocsQWA5z/QnQV4sdRWyoyXc+6xWpFHvx4j1Sz6pGyRj7PTXPPHD93vtBX1fVmrpTrShgGIUmuvuVmQHmNkWq9qfkiVOsNPM8SMb5KTBZILTXTNuhsjDzbwf75QhaqXDFvLvx1yK+oZcGOU3y5MY2yGgPRAR48eXUbBrYKxt9TWrYi/DwY3i4MpULSR/IcxJ/WI6e01oYAaYi8ch2+biap2gLVnW+noN0UMqtUaNUKwlRaIoJUmEriUGXvIeTAl9zV421e+M0xgTGujTt8v8F+h2eQjA+5B6R10S8KaoqtY1jqOlnIjftK1BmHFosKo8c0aW/c/rnI7je8LceCVKE7jpe2yx/vsY1THfocrHgKBv2fjFsFR4UcSf0dWl8DpU7IC5BrHPi4yPkPLRY/Dn2FECVmk/V6A1rC1J/P6XvoT6EsU7xCMrZKUaHlIPCJcsVQniVKq/VsPF7ImyuOkllSg5+HG3cObMmE7jHkljm+n+V1Bjzc7JcSeeW1lMdfS2b4MLx1JkJOrsQj6w8md3+MTzbbk4UqpYLBMWrYtA+9ZzjuG1+Xe9NshEFPwrFf4fdXhKQISYKaMpgxTAg8kKLVpvchqpuQgae2yv9/TRH4REJZBpRlw9qXpHUZ5N4c8Qps/wLS60x6u06GX/8P+j0oxEPSSPlRuglp/9P9cNc6KU7VQ6GoUx85Vl5hNspcEwcERm2ZvM/vr1q3pW2QAtkdKx23R/9VqMgTH5Djv8n/RdJIUYC5vK9cuATgcpa5TJFZUs3YTzZTXmtlstceLWDnyT/45aGBxAZaWxa2p5XwyvIjvDCqvdPzRfq546VRo1Ur0RkdfwlHeCvryItAcm5czltba1l3bA8l1QbeuDqSm6K6QdZuruqRxR9tA/n1iNXkU6GA166OJvLoN2DSU9p5OnvzlQwJaQNdboXiFFhwi/XNDiyE4FbigVFy0v5iakpk8hQ/TFzUs+pajm77ERbeZlVSgAwQq56DsTNkIAtrK74aJgNU5ABmYfV/e14mZYnD4cbZ0v/rEeD8P6H+g61+UVpO+j9SpybZYUte1CN7j5ALPW6332eoqYuoO0/prb4KklfA4mnW/uo//gthHST21S/q/M7rwnkhq1QmfM3igWGskQpUU2kFjRBTl0SSXHyWBEZYe7lnc/ZDdPfzvFAXXDg3lFbreXXZEX7aa+2rzyyp4cF5e3hlTHtu7hmLqs7EM62gkofm72Vy3zg6Rvnze7Lj+NGeLQNYe9RxDGOnaD8CUqXKWnzl+6yw9GXWrwUcza0AwNddzdvjO2Hpez8c+RFF1g5G9sxlc1IAK5Ot459SAa+ObkvkkY9k3GmMrrcJyVBHlLBjBnS/XYj3DW/LNotZxqSed4of1O5ZENdfFnXjZ8LSB22TFcxG8XdSqqHvQ6KU8Krrw1drJMp8y/+E9I7sCiPfkgLC4UXQdrTz/wSPAOuisThF1JEKFVzxgqR51aMkDbbNEOn8mUhOs0m+T1QaubZzRVEKfHud+HfUQ62FW5eI8tFlotgkTCYzyw/k8sySA6e3ldUYeHfVMY7nVXBzr1g7Q856tA7zPj3eNUSXaD9WZsDyA2XU6Iv4dtiDhP94I1Mm3MfuLF+2pluVSGqlgk9uiCN85+vg7kcaUYR0vJPg0PYyZ1r9ovXEe+aIr0X/R6z3YUNk7YZe02H7DDHA/f018AyGsZ/DLw/bHlt2CpZMhynLhOgw6kWJceXLsP97uGmevP+q+rnhlTI3rC6ynWNaLGe+b521Glfk2pIX9agqlOfphs/tDepNJhnn1dqLV0Aoz4YFkyFrh3Xbb8+LqWqH8S4Sw4VmR9P5ehfzjZVKVCqV0x8XnMNgMjN3e4YNeVGP8lojC3ZkYKwzIyus1PHuqmRKqw1o1UoSQhx/6Tx+VRIeGiWT+7ZwuP+qNoEEnVqFPnYQaZM2sTLLnRBfLf8e1Z63xnfisx2lpA75H4S2JeTnKbzaYj/LJsfy/PBI3hzTht/viGN0/uf47J2BvuUVHA0ZwbLkCiEporrZTnzqUXhcmPE21zn+RZxYLROTeofp6J7CojccWBpi26fgHSKSwG+uFQmsd5i0juz4UkgRQ43IAhdOhiFPCdHhFeL4fPFDZTJamiHMf2WeJDPsmOH4eJD3qSqy/rsyXz7HwilSwdo3H8qznL/eGSryYPGdVvKiHnkH5dqaitNz4YIju25C1ywpJIUnZLFzDpVPTzcFwR4KjhafpZFnYIJMnlxxqi78hSis1NuQFw3x9spjnKpr3ajWGflkXQq+Hmo8NSruH5rgMJnL10PN1e0jOFloP2YoFPDQsAQ8C/dTOPo7joZeR3o5jOocycypPRnRLozyWiP3z91DmTpYFj0qDaFLb+X1hIMsmxzHc1e15IXr2vLVlJ4EaS1YNA7G3663CsleT17UY9dMIaAbLl4KjoJvHRld/51enAblOc5jIfcvgI7jhPyYN1EI9rWvyJhbmiE996e2iWlh+xvEwDPxCucGnV1vldQFgJC2QpYmL5d2EXd/22P3zrZtUWkMsxmKT8LGd2HeTeJblbNPWkHPFtUlsPQhW/ICxMhx3k11RQoXmkJehY43VhxxuG/pvhy8tWpiAhy3I94zOIF5223vXZVSwb1DEvHUqOjVMpC7BsVT5pdExcB/E/bjTfyvSzo/3RrLs0PDeHdMK9ZOT2JQ8iu4n1xD/qjZPP1bAbrwnlCaLka1jZG2Xto7Ijo7/kCp64Voq58bdroRtnzs+FijDg4tkbnmwtvgi8Fy7KDHYOUzsPOrBnPDpfKcuPvZF7dKT8l81hHCOoDaSTtnQ2VUYyT/WqfcqIPJKGTd76/Is7z8Ccg7ZBt9fCFgMsKOr23Ji3r8/PD5zVFdcOECo9kIjCVLlrB48eLTPwsWLOCpp54iIiKCL774orku67JARa2BDcecTwrWJReQXyGTG4PRTGZJDW+O60R+eS0vj27P8LahpydzId5a3hrXCa1aycC31tEiyJPpg+Lx1krFQqtWcluPMP59ZTSFcddwdPg3rE/XM3NzGl9sSOXRBXv5YkMqL17fntsW5bG862cYpq4gMDiCNt7VDGvlz8AICz5ZG9D7xZE1YTlLW/6byQvSaR2ghH4Py+THGQ4sFGMzR3DzFIKhfuLnHyu9/85QkGxrjBQYL/K4hu0p9dBXwt650poycY79YBXcCgY8IseVpsu2etWFowpbPcwGq8ywMh+W/QvmjIPjK0V2u+RumD1WTNjOBSlrnMsX98yGSscVRhcuDrLLalArFfh5NIN8uSBZjG69w87pZTE+CpKLzpLAULlBcBuXD4YLfylSC5xP1MtqDJTW6AFpiQzy0vD+jV04klPBrC0n+d+kbrQMtircuscGMO+uPqw+kst7N3amV0urX01MoAczJvcgyNudE73+wyHPXhzMqWTZgRzeXpnMtG93MKBVMFd3CMdotjB7TwnUlMKN32IZ9yXqgBg0KgXlNQbmbDvF7d/sYPqCo3xpvp7cW9djvvIVITzu3iBk4KpnHX+oY7/aJv0o6owKwZrO5e4r5obOYDIIyVGWKWqMmJ6yYGsMi0XMC+P6ydg68TtRRDRE/BDxGEhdK2NicKKQKiBEfFy/Ru9tRJy3nSD/MHw+QCrQJzfCvrnw+SBRVzorRDRGdRGkb3K8T1dun8Digh3KawyU1zj2pQBIL6rmk1u6MahV8OkpVLivO2+N60jLYC/8G4xzCSFezLq9F7VGE15aNw5klvH49/u5c+EJsltNInX8CgL8A2nlls+t3YIZHlaFX/ICyuOv5cjYVdy3XklWuQGVl7+oKJzhwPfiQeYIGi8Z/+rnZkEN7lNHyD8kqSX1KE2HlHX2MaogrcMn1kgbVUP88QFc/YZ9ZKtftDzrzghGk975dVnMtvO6nD3waT8xnj+5SUjOz/pLi4dR5/w854qq/KYLcY6+P1xw4S9Gs+nqRo+2lyiOHz+e9u3bs2DBAqZNm9YMV3V5wE2lxN/T+cIo0FNDck4FC3ac4tqOETx9TRtWH8njt8N5eGpUjO8ezae3dsdsttAi2Iu0gkrumytfrs/+eJDhbUN5fWxH3FRKEkO9MBpN3LFwP8m5FUAqiaHePD2yLd9sTmNrajEn8iuZt/0UQ5JCuO+nDBbd04doagjb9jHbQx/jqRVZJIV1wN1NxfFNFVTpS9GolFzZIQp8kC9LZzDUSO+hI3ScIAu13DrZY1WB9OMeWer4+IAWIterR3RPYfJBBq9+D0h1y2yU6lPyCmk38Y6AWxbJZKs8E4JayURQoZAJXz0sZpHVdbnF2k9pd80TrV4Z+YcdX2vBUVFiDHjk7GPqqpogKIx1zvAu/GXIKqkhyFuLsjmcxAuTZdKkPDd+OsZXyfacc7hPwtpJhchsPuf3csGF84HvGQhBo8nCJ7+fYEyXSAYnhXDXrJ3UWzsdyi5nSr8WJIZ44ePuhsFkZu2RPN797TiBdfGr0wa0xGyxUFFrFDJ/1i5S69QZbcJ9eGFUOz5dl8LujFJeXHqIr6b0ZOWhXI6WQEm/UQQcnY+i9VXkWaIY8XWKnSDugz/y6ZrQlfD+DwrhkbZeokydhcHpKm2NeOOHiscDQPepcHARaHxlTHIGpco6jvjFQL6DhZxCIb3/SSMlMavoBIR1ggd2imKjIldaUAqOweK7RHlx5Usira+HxWyfnNButPM2zKoiaXvRVdjvW/YvaRNwZnrYEE0tAEHULS40CfUZjZvhzlk7ua5TJLf2icNotqAzmoj29+Du2buY1DuWe4YkgAXigjy5f+5uUgqqCPB04+5BCXSLC+Dj30/w0oo0Okb5MaZzXzyVBkZ8sAsfdzUxAYMprtaTXiTFqJdGxhNmygNDEySWvlI82RwhYZgs6Fc9K8dEdZP5X2OVTj0CWtgqdaJ7wIkGyXMJwySRRKGs87uokQhWXQVs/kD+XZ4lZvG3LpI5aUmanBeFqBYGP+n4vROHwWonnoBx/UXtAXUq2+n2alqLBX68D+7fduFMPy1m0DXx3FQ2MWd3wYW/CJdcY2Dv3r256667mvsyLmn4uLtxe/+WbE4pcrh/dNdInlx8gPwKHb8eyOXVsR1PR8hV603M2pLOrC3CTLeP9GVsN1t/hNVH8ll9RL6g3p/Ymf+tTTkdSQcSz/rw/D3MmNyDXek7MJgsrD6Sx/8mdWXe9gxKaow8sNTAVzc8zRW1J5nSPYRvdxVgsch3/6RuoTwzwA8v3XFQB4uj+Z7vHLc5tBwk/bGtr5ZqUNZOGYSiuovc9cAPMOAxqbIo3WSg2fS+40lNzzul57ceRp0w9SFthCFf+bTI80Dk8b3vFdmfpz9oO0krSdkpGVTzDkkEbENCJGFY3Z9D5ZyNGX+/aJEyKlXSa7nza4f/f4AMhF1vBZ+zrKLHDxWJsCOEd5JqnQt/GbJKa5rH/wJkgRLe8ZxfFuOjZOkJI2U6C37asyBewjpIakJhsqSSuODCRUaUvwd+Hm6U1dir3Hq2CGDdsQL+t/YEXlo1s7em09CXOqWgiheXyji49IH+5JXX8tl6qc4XV+n5ZF2KzfnemdCJkmrrOHI0t4IH5+3hi9t6MHXmdswW2JleQqcoP1qHefN/G8t5bOADtFl5C1FB7fhkzIM8+sup05GqKqWCR4bE0S3ELAq7qgJZ3F/3X/FoKjtl/4E7TpA2rZjesiDqe7+o9HrcIUaGWz+GEa+KQWFwK8dqwrbXW9WBxlp7nyWFAkZ9JG0kC24VAh9k3JjwjRiBmoyywFO5y7biVDHbLsu0nifhChkT6+ERAAMfc56EVFsC2bsd7zMbxV/nbAgMdz8xQa12PB8iJOnM5/iHw1OjpmeLAHacLLHb5+fhhsUihrZfbUrjq01Wg9e7BsbTOsyH/6623ndPj2xzmrgvqTbwxoqjvDCqHZ2i/dicUsTt/VuQVlxLYXEp397WienzD7LnVCkgt+JNXUO5NkaHYucs6HmXzNssZiEPkn8V82izSZI6ynOh1Qi5x7L3inJi0P9JIao4RYi9+GjYPVsIP0eKQaVKVL7zJ1m3GXXWOVPPO4WIWPqAlWzziRBviv4PSbJdbZnMT9M3iRcLCvAOlbbiesPQ2D6Of/m+0dDpJvlcDaF2h5ENfNgamvo2hqFaWrkuFIGh8YLY/s6VTUkjL8z7uODCn8AlRWDU1NTw0UcfER3tit5qjNyyGk7kV3I4p5yWwV4khvowrlsUi3bbthqM7x5NYYWe/AqRk7mplWxLdTKwI1Wp+4c6dzk+lldJoJcbKY0K/DqjmZ/3Z3NluzCWH8jFZLZgNsM1HSPYdLyQnLJabl5wiuXjffmX5y9MvX08qeVKukb74Lf/a5QzPxfWWqGUCdakBTKANJSNqtwkGaS6QAYMXQUMfxlC24DWTyZtBUek9zCsPfS6Cw4vFdf1X5+wDhwqNxjwuPTiFjWYpKaslai5dqNlUqj1hc43yeCYuk5MMIMSIbCFnMPNXapTcyfYy1t73gXedWkfvpFw62Kpju3+VgbfjjcKIeFf70tgabpyZDYATlpCHCEwXqS9WTtttysUMgh6BZ/9uVz408gqrSHIqxkIjKoCmeicvs/OHrG+9UaeJnpFnMXQEJIkk7+Tm1wEhgsXDfkVtWQUVbM7o4SBicF8eHMX7pm92yYSPNLPnQeHteLh+aIkDPXVciLfebvJ1tQiksJ9qNI7VxwJCamlpNpKltQazKw+kseQpFDWHs2ntFpPiI+WrjEBfLjmBDvTS/hl7GtE/XAdV9QUsvrmJ0iv9cSgDSDeS0eotxr3rD9gzYvWanBYe7j2Hfj9denrB4jsBsNfkEpuZb6QA+3HgL4GRn0okeA/PyTV14A4+OUxGfdWPStxpvVIuAKGPQdzb5J/V+TId4NKYx1/Wo+UcXTPbKk8BydJstaJ1TD7BrhjhYxp/jFCLHw13N7XotVVomL0DgONj/hW9Z5uK8tvDPMZ1F7mJloxG8InXJIkfrzXfl+HCbKQdMEpCit1WCxmnr2mLfd9t5vsMmshycNNxbsTOvP+6mMOX7v+WD7XdoywiVDNKq0h3M+d4w2evy82pPLgsFbszzyAh5uaJXvSWX4gl8/GJ7LipiAya7VU6MzEx0QRlP07vm4txEw9eblt2lXHCXDDF/Drk9BjqhAHB34Qn4ghz0BMDyHxVr8gPiotB0pqyQ+3y6J86DPit1LfbuHuB1e9Cru+sW39PbEGrntflLRx/cRrovVVUiQ7tU2IhLkT4J4/bH0vjLWgr5Y/GxJq/R+xGug2hmeg3L+tr5I2lOoiUR8NeESSfOpxJhXt2T4vZwOPALjqFfjyCvvnNKStFC9ccKGZ0WwERkBAAIoGckOLxUJFRQWenp7MmTOnuS7rkkReWS0v/3yYlYfzMNWVlGZO7cHAVsGM7BjBjrRi3FRKBrQKZn1yAW+utFb+9UYz4LyaqlRIS4ozJIX5sLWB0qNrjD9XtgtDo1aSV15LhJ9I+PrGBxEd4MGNPaKZ9q0sostqDByq8GLE0R/w2fEhLQb8C4pqbM2ULGaJK60qkMrOTw/I5KnFIBj2rAws2z+3Hn/wB+hzv5AYSx+UbQqlRM8dWAhjv5T+vJFvi4rCqJO2Dl0l7PrW9sPpyqEiWyS4V70mE7pjK2WgHPGKDCQb35GBFAvMv1X+nDgHDv0oA5lnEPR/WBQhng2ksn5R0PcBIUQsFnHBbmhOq9ZK+kryr45/8e3HgkeQ0/8XO/iEwcTZsOUT2PW1ECyRXeGq16WS5sJfiqySGgYkNgNpVO8B43fulZhIbwVqBRwtMtMr4szHo3aHoNZS1erlUs25cOGRXVrDB2uOk1dWy6Gcct5ckcyqRwfx8aSupBRWUVSpIyHEG61ayZOL9p8mG87UuqVSKtAbzfi6qx2aYQMkhfnydcXJ0//283Djhq5RdI7xp29CEEdzyhmQGExMoCff/JGGQiEV56PVYUT5RKBJW0102mqiNd6SgFCQD/oo+PFu25aRvEOw6E6Y9D3MuUEiiq/4dyNCf4nEKt66WNo4DnwPKKR1S+kmld6iFBjytJATunJZhGTuEI+la98X0z+TXnwFRr4Fyx6T8bfTRFEDTlooioisXULG3zhLDK2L06zR31pf8cY4slQKABpvUWiEtBWyf/LPstDyCDxzKoO7v3PViEJx9ilKShUkXSMR5b89L78Hz0Dx1+oy6cxJYv9g5JXX8s7KZIwmCw8MS+DZa9uiUirYnlZMhL8HXWP8+WlvFoeyHZuqurup0Jts25/aRfhysqCKsd2i6BDpR5XeyPrkfBJDvbi6Qxh+Hmp+PSjK1f+szmLJ0CJ6rX5IvFxu+wlaD5aJ6eYPbVtsTQbxJTPqYdoqUVX88b51f0gbafs4uMja6pG9G/Z+Jwl08yfJXG7CN3WtyWoh3A4tgaPLbD9YbakUzEa8Ju939RtyjL5KVFBaHyE19i8UUqT++yaoFUz7DbZ9VvcchULnm2X+qSsHDz/H/xHeIdBhLMQPls+p9QNNI+WSR6CQdQ1Vv/VQuUkR60IipK18ll+fkqQhNw+Zsw54RFL7XHChmdFsBMb7779vQ2AolUpCQkLo3bs3AQGuAQcgt6yWQ9llrDqUS1SAJzMm9+Dnfdks2ZPF5+tTeH1sJ7754yRHcivo2SKA+dsz+LGRQ/uJgkraR/qiUDhusx3SOhRn7Y+BXhpCfLTEh3hxNLeCt8d3IqWwii2pRbgpFbQK8+aaDuF0jwvkVHE187ZnEOnvwZdTejB7Szqrj+STUmKUQaI8C1pdCbOcxLOl/yFS2NGfyL/r+wwbkhf1aDkAvp8qhmI9p4NXkHyBK5SQf0wmLQtuEeZYqZZJm8Yb7lwtvbUN/SnKMqH9OFj+uK2c9fBPMinqfY+8ftc3kL1L9n03QfZ1GCssf1CCY4WDUtl09Se6u1TaGstovUMlBuxc4+R8I2Xi2+demUS6ecnvxoW/FHqjmYIKHcHNkUBScFQm7O4+Zz62EdRKBdE+Co6cbRIJSPU4bQOn+8NccOECoahSR0ZRNd5aNRZfd67rHIHJDDml1Xi7q/njRCETukfz+fpU9mfZ9mvvzSilb0IQWxy0WaqUCloGezN7Szq39I7l0/X2suzoAA+iA9xPt6rc0iuG67tEMW9bBm/8eoQOkX58MbkH6UVVfLv5JCE+7syc2pNVh3I5VWGS7/DTPfUWUKghoiOsfdXxQKyrEBPLyT9LpXj+zfYqP6NOxr1pa6Raa6iRRYWHP1z3oZD6G9+pS+dyszX1O/yjKAB3fi37tX4wfb1VEj/8BSE6GiYe7JkNV/7HNuEgbT0sukPaJduNkffY8aWQEFOXQYsBDv8vHcInTNQk346ytq3Uo/8j56ac8PCXNoCoHlL9VrnJvONsPaT+gTCZzGSX1tAmwofk3AoKKnSE+LhTozeyP7OMdckFfLv5JPcOTnB6jlGdI/l+p7X1yddDTZtwH1qFeTN3WwabjhcyoUc0XWL8WX4glwhfD4qr9DxzTVveWnGUrNIajN7h0gKRdK0QT96h4sFy9GfHb3posbQmNSQv6luBU38XgkKlleKSQikkSFmWxH9u+wzm3Sz3h8UsJPy01eJHlrbBer64fjKf8o0Sw8wD31v3Jf8qCoQxn8DOmfIMuNV5cVTlw9dXSctzh7Hic7PmZfkuyNolqg6Np/P/FM8m5ms+EfK8zJto/x0y7AXnaXnnCzd3KcxNWiDfAQqlvIezOFgXXPiL0WwExrBhw4iJibEhMeqRkZFBbOwF6uW6TJFdWsNtX2238Z6YsTGVp0e24frOkcQGefL0kv1M6duSG3vFYDZbSCmosiMwLBb4aW82T16VxBsrbBM6Qny0TO3fgpSCSu4dnMDXf6ShM0rbQmKoN89d25YVB2US9vx17diaVszQpBDaBGvpHFCLv7GYVEMwD87bY+Ng7eGm4sspPbhrYDxaUwUcyhR2WKluOs4zZw+s/Y+0frQdZd+rC8J815SIQqHzTcJsF6fJwLfrWzHZjO4FNy+QyVx9z2NQAmTvg2vfE2VFZZ6w4UFJMsA56sVNXi7tJYYa6V9MGllnWmiU19RXB9z9YPD/Of9czuATATd9J8z+ji9lIGx/g0gjm5LeNgW1RtQfLjQb8sprsQBBzeGBUZB8TvGpjRHjq+TI2SaRgEzkDv4gVc9g561oLrhwLiivMbB4dxavLre2QyzceYr2kb68d2MXXl12mIeHt8LXw41WYd52BMa8HRl8MLELybkVFFfZtuo9eXUbFu48xe/J+dw3JJ4KnYkFOzIw1FWS20f68uTVbcgtryU20JMXr29HrcHM78n59E4IYlTXSKJ9NUybvYvMuthWgM83pPDejV2IC9CSG/oS4WsekoSsEa+IOq/wBOQdcP6hM7dLD3/SSCg56fiYloOg4BCgENLAN0IWYUeXwq6vxCvjlh8kIjXvoPV1BxfB7cvFg6mqUJQUNSUSvd11svhsNCQv6rHmRbh7o/y9ugg2fySTihNr7OMft3wiCx5nnheOENlNzr/xHVGL+IRLukN0D6nInyvO1jPKBVIKq7hr1k4KK+X5WLgzk4k9orlrUDx7T5VibGAgM6R1COuO2fYR924ZSLC3hmN5MkeND/bipdHt0Zss7DhZzM3dIwjzUfOfX1NYdcT62pmbTzK+ezRL7uvHttRiNOWbZf425EkraVVd7NzY1mK2VyFE9xQVb6eboTRT5kB7v5O2q5A2sGeWKBtajxTPtJ8flvs5rANkbBGzzKHPyhxMpZH3WPWcFIQakhf1yDsIWbuFdMk/LASaZ4g8R4ZqIVkONXrNoUWiKtac59pGoRCCcPp6WP+WxA37x8HgJyRO1tF8+ULAM9BqPO+CC5cQmo3AaNmyJTk5OYSG2rLsRUVFtGzZEpPpn5uaUGsw8b+1J2zIi3q8seIoX0/pyf7MUkqqjNz7nSy8FQr46KauxAR6cKq4xuY1v+zP5v6hA+nZIoAle7PJK9fRLdafhBBvXvr5EAMSg7mqfThdY/0xmCxo1ApOFdfw9OIDPH9dO6p1Rvy93PDQBPD7gTQebZFO0OxHKLjiPR78o9YufqvGYOKR+Xt5+po2FFUYaDn6W/yCwq1VWmcDk2eQEBIgLK+zGDWFWoyV9s2TSVdwa/jxHuv+nH0yYI37Shjw2D5SsVr7ivQDH/pRenRV7mCskSgqZzj0o0wqN74rA5xPhL355p9xZPaNlM/SbowMmp6BUh1w4bJF/aLmL1dgmI1QdBwSR5z3KWJ9lSw+ZsBssZxdgkpoO6nMpG9yERguXDDkltXakBf1OJRdzuI9mahVSsZ9ugWtWsmMyT1YdiDntFkmQGm1gQ/XnmDRvf3YdLyADccLCfPVMiQplBUHc9maWsS/r2vH5pQidAYTn9zSHb3RjEatJCW/kl8P5jAkKZT/jG7P49/vp6BS1AxBXhp+mtaO//yWZkNeAJgt8MQP+/js1u7c/4uZWTctJVFbBm7eoCupq+pG2/tH1MM3WloanXlDuHlKwhXIeNdxghh7NhyPcvZJgtX4r2HJdKsPFBaRwht10lJYUwKzx8ifkV2EQHAEs0laXMLay99rSx0fB+K9YzKcG4Hh5i5pRtd/JGO/WuNq+fgLUFyl5/9+2H+avKjHgp3ybE3t34IvN4pZ54s/H+KZa9pyfZdI1h7Jx2SxMKxNKEHeGgK8NMyZ1otqvYnsslr2nSqldZg3nuhIqEllY16YDXlRjx92ZdI3PogT+RVYevWBu36vS+yow5nuocYqAJVWiIrs3aKU/e05GP0xrHtDWn3rkbVLWp3GfCpKpPjBsOgumZdGdYNtX0CP26UFc+Js25S5xjjwA0ycBV8MlX/3fUDmmc5gMtgrjc4VGi8hK2743JrC4uH/587pgguXKZqNwLA4WcRWVlbi7u4kGukfgqIqPYt2ZzrcZ7HAnlMlFFbqGdomhOS8itPbX/rlMO+M78Si3VmsOJiL3mSme2wAz1zblsIKPcXVOsZ3i6a4Wl+X263g+evaEe3vwR3f7iCjEfHRNz6Ikio9g1oHk1NWy2ML9rH8piCCFkgPb7FvO1IKHF9nQaUOL62ahTsKGZzUgVPVZpQKCLzpN8LWPIIi/6DtC/zjxJDJpJeJWlArSLxSJmkopE/x8BKRvAa3konZji+lb3f+zfYXYNQJYTHmM9g/DwqOw41z5DUBcYBF1BTtxzSdn22sFbbfqJOq1sQ5Us1qGM12Po7MNSUykTXqRMHhE+4iLv4myCptJgKjJE0mSedh4FmPWF8lNUbIKLfQwu8sCAyNp0wIT/4hLu8uuHABsHRfltN987Zn8J/RHVh7NB+d0cx/Vx/jk1u6M2NDKltSi1ApFYzsEM4TVyXhqVGTWljFpF4xxAV6Uq03cWvvWO4a2JLc0lp+2pfN4j1ZfL/LOo4Femn478QuGExmXv7lyGnyAuC5oSGYKwv57ahjY2yDyUJ6UTUTe8aQbfCmQuWHn5uGoMBY/IzF0j+/uJFfjFoLXW+TmMbiVFnIdZsiLRyWBkbOba6Fylzpu68uFjXG3In2F6Erl7StLreKjwBAl9vE5K80Q+LBo3taFRcN38Phh6qbF7j7yZjsqK0TRDWpPffWtdPXYKiSKnptubR/uP2z54EXEyXVevbWJX80xnfbMvjp/v74e7jx7ZZ0Cip0fLY+hceubM0z17Sh1mhCbzRzsqia91cdY8NxKyH3wz192Z1RwshIHYrMw3x5xHm7xC/7c5jUK4ZTZg05lQr8zZUEe7vjWZUJCpV4oNSb2oIoC3vfLUSF2l1IiB1fCinhGSjGthGdZK4Y0FLmbg3Ji3oUnRBSLqg1rH5JWqt6TBMlb8dxorzVeEsbb1OKYWOtvKb++dn8oRhbh7WX8zdGcOtzT4OrLhaliLFWPGN8IkClFl83rStZzoV/Nv5yAuOxxx4DQKFQ8O9//xtPT+sXnMlkYtu2bXTp0uWvvqxLCmaz5XQrhyNU1Bo5nlfBkyPb8PO+nNMLpoIKHf9auI/bB7Tg0SsHAgpq9EYemb+XY3WO0G4qBdMGtMRDoybSz53eLcW/4pNbuqMzmjiUVYbeZKZHXCBmC5wsqkKhkDSSwa0CCT787WkFRRMG7oBYh17XOZIJn2893Usc5qvlg+u/odvup9Gk/iYH+sfCde/Bz4/IBGjcV6KKWP+GvJfaHbpPges+gF8elkrNkaUyySnNcF6xKjgKmCUhJKClfPH3fQDWvSbMfFCCsO6trpSB0BE6jLONXt03T9pKds+Sf4e2k59zQclJMSs9WSfN1fqI+Vqnm1yeFX8DZJfW4Ofhhkbt3Bz3oqAgWXq+6w33zgP1SSRHiky08DvL6w/rIPeyywfDhQuE4irnjvqVtUYSQrxOi/l2Z5Ty1KL9TO4bx/9dnUSwt5Ygbw0mk4XPN6QyNCmUt1cmc6BBm0nf+CDeHNeRf41oze39W5BfoWPHyWJaBHnROdqPzNIaIv09SAz1Jq2w8nQca49gIwa9ySaetTEsWCivNZyOWgUYmBjEm8N8iAxtJ75K27+QhY+bB4yfCfu/hxlDZCxTaaDbbbJA+/Fe6wLJN1LGvNR1UoXN3OH8IlLXyaIMwCdSFn7zbrJGHjc0EyzPksVVoeOkCYISRBbv5gl97oF9c63eGfXwDhUC43ye/7IsiTA/8rPVl6DXdOj3oCtB5CLB0MT8EuBAVhll1XoW3NWHUyXVZJXWsmBHJk8uOkCHKF8+urkrcYGePDK8NQ8MS0SrUmIwWwjy0qA3GAlOnkulX2sqnRjkAlTUGjhZVMVds8VbTK1UcHPPGB5qX0NI4TbxrFgyXca18E6inl3zkpUc8A4TVWxwK1HteASKdxlIlH1jY86G2DdX5pPXvieR44ZqUSE1THFLvFJMP4+tcHyONqMk9a4hNr0Hg5+yJylBjHPP5X4uToUf75e2FBACcdhz0GG8q6XDBRdoBgJjzx6JObNYLBw4cACNxtonrtFo6Ny5M48//vhZn+/1119n8eLFHD16FA8PD/r168ebb75JUpI1+9tisfDSSy/xxRdfUFJSQu/evfn4449p3779hftgFxDeWjWdov3Yn1nmcH/3uABCvLW0CPJk4d19WLDjFLvSS7itbxxqpZIKnQGz2YLeZGbMx5vRm6yDlcFk4bP1qXx2SzcSQ70xWSzsPVXGzM1pFFfp6dkigPuHtuKLDaksP5hLiI+Wx0e0JibAgyxvBe4lVsOzQGUlnhoV1Q6YDLVSQXSAJ9PrBqd65JXruG3ecVY+8BnxOSukh9cvRrwvyk5Jv/D6N4VVr4exFrZ9LhO/4S9JhdlZe0lj1JSK94XSTeJQi45JtCmIskKhFEPOI0vtW0FCkoTRL7CmulCaIe7Mbp7QbTL0e8i5I7NRL74fygYLwfIcmDVGquX10FXAymdEHthtimsReJkjq6SG4Obwv8g/KouVP6Hk8dcq8NcqOFJkYmT8WZ4nvOP/s3eW4VFdaxu+xzPJxN0dTYDgroUipRQthdICdS/tqfupfLVTd0OKFihSCpTi7ho0hLh7MpNk/PuxYkNmKLRY27mvK9c5jOy9M52dtdaz3vd5RM9v6Tmx2HHi5C9yY0Ig8/dm2n2uZ6wvPm5KVjzUi083pNA5yoc2wR4UVNZSWWMkwF2FUiYlvVyHr5uSd387RXKOSFFoG+JByyB3NEoZBVV6Zu9MZ93xAuQyCaOTQmkT4sEjCw9xtlCHq1LGhM7h/G9CB/6z+AhSCcgNlahqiojyDSC9pNru9bUIdOfdtadtRI5tZ0t4xGDim0FSfBPHC2G85KzYTd70pihnr8dsgH3fg8UCfZ8S0Yo+MaI83XwJJehyF7GY6ngHbPtAiBcg4lt9m0Q/7vsOBr4ES+9qvhnQfiLkHhKih8IVvKLg7o0ipvLMWjF+th0jkhi8IsT7rVaxWXAx6IpFAkv9Ig3EeF9fOTLgBWclxhXAU63Ax03ZzB+mnnZhnvSJ9+O1lSfYeNp2XpQY6klueS2fbkxhb1op3q5KxncOIzHUi+d/PsZ7t7RAvSMVua6AQbFJnCu2P1frHe/H2uMFDf82Waz8uCcTd2UEj3vLUaZtFZtZVXngFgizR9gKZ9oCESV86zxI+R2CEho3hf4Iq7XRmLK2UkS1nh9BbzUJH5bABFs/GRACQpe74Ju+to+XZ4nqpj5Pwb5vRKVucHuRBhfc/o+vq/7+0xUKc9uKJhXOtRUi+cTFS3jZOHHyL+eqCxibNm0CYNq0aXz88cd4ePwJo6YmbNmyhYceeoguXbpgMpl44YUXGDJkCCdOnMDNTZjavPvuu3zwwQfMmjWLFi1a8MYbbzB48GBOnz6Nu/ufLHm8gni7KXl1ZFvGf72rITa1ns6R3rQL8+TGtkEN8aePDIzjVEEVU3/YR0ndgPT9nZ05VldNcT7Te0WhVEg5V6xj1s50djZxat+TVsa+9L18clsSx3IryCqt4Zmlx3jzlgSscjXagI5o0rcD4H/4C57q9xSv/d683Hdaryi2nrHvDWE0W1mwO51nLduQnVwuFuzjZ4vKBJ8YW/GiKQdnC4OyhVNgwDPCPNArQuw626vC8G8pJm1rnxORorcthN1fNj5v0Im+3cPzRE/hiZVwZo0QO9qOFu0l2/5ne8yQTsKzovN0kTxiz5G5PEtEzJ1eLfqa6005XTzELldT8aIpm96C+CF/aQfdybUnu7wa32uRQFJ4QrRz/EUiPCScKPmDsvKm1PtgpG9zChhOLgutgjxoE+zOiTzbnX6FTMJzw1sT4uVKiJcr/x2VwCsrj/N/axpF5j7xfjw/vDWlOgMRvq4k51QS6evKiyPacKagiiPZ5dzePZKpP+xtiFA1mEXp/JYzRbx0Uxvu+/EA1QYzs3amM7JdMFN7RvH99jQMKl8itz3Ha4N+4M6f0ptd9w2t/DmWXWG3gvJAZgUl6o74ft9WpES5+opxp6l40ZRDP8L038AnWojrFrMwqfSNFff6gOcdf4DR/cQ9Gd0PsMLhJtH0tRWiLaS+6qIkVfhmTFwgxIzcg2J3u+Od4vWFpxpL36VS8G8BY74RmwMSidj9NtVC1l7Y9wPoK0Q0a3jXPx7LtAW24kVT9n4jxlrvP2lo7cQhAR4uvHRTa2YsOtLsudu6hHM4s5wu0T5sajKH81QreH98O1wUMqZ8v6dBoCvRGfhqyzm6x/hwa9dw3t2QzqzYrii2v8eUSc+w6Ki8mU9agLuKxFBPPlrfPEJ35u4cJt2aQNiSm2CDXLQJn1nbvOqnnj1fCaFL6QqxhSIp59xmkcaWutH+e1qPFIa0uYdEJOu+b5u/5txmqKmAAc9B9gHROmyqFXO0pCnimsznVYoFthUGuf2fEV4a9VVW9lLqmqItEJUlB2aJf7e/DXrPEBtb57c4b/gvRPcR7SROnPyLuco1zo28/fbbDsWLo0ePXvRx1q5dy9SpU2nbti3t27dn5syZZGZmcuCAWARbrVY++ugjXnjhBcaMGUNCQgKzZ8+murqa+fPnX5bf5UrQJsSDZQ/0pFu0NxKJGDweHRTPZ5M6EuHj1iBeABRpDdzZRLxQK2TE+rvRJdKHLyZ35NFBcfi7iwXVpK4RuChkPDz/ECaL1Ua8qMdihc83nWVyt8aJw4frz9AxypfiuAliZwdQpqxiNJv4anQEsf5CLArzVvPCiNYMah3Ij7vt76ABJBeZqHHxEwOCsUYo6Td96NjgDMTrqkug8JiYGAW1FyJG7yeav1amhAEvisx7EANVwXFb7woQg0HXe2H3V0LM6P2EqKrwjRXu1PUliSCqKXo8WFc1Eiqu9eQvQhXf/aUQJkrOwncDxe9zZi3s/w6+6g3HfhKtL3nNJwwNaAsa+42d/G3JLqu5+v4XNeXi++P119ObIj2knLiUJBKlmxBO0i5y98uJkz8g0MOF76d24f5+Mbir5EgkQphY8VAv4gPEYtpktrBwXxbrTjTu4vaJ8+PZoa3IKNGhVkhxUcjwVMt5fVQCz/18lPd+O41CKmXB3swG8aIp2WU1pBZqSQhtnJusOpZH7zixAFmXacboEUHnc1+weHI07cNEK4avm5Jnb4jgxRGt+HC9g1YMoLC4qFH0NtYIzwdHWExi93nZ/cJ/yWyEU6th6NviufQdorrifFTuImay5KwQ8C2W5r38618Rx4kdKESIM2th1QzhBzB+thDw938vFlDd728u1KvcRSWkZxgYa0VL5veDhd/U6dWw+E74cbSoWLwQF3reVOt40erkLyGTShjUKpDZ07rQKkhs4gV5uPD6qLYMaRvEzwezMZgsPHNjK76Y3JHPbkti1rQuFGv1vL3mlN0Wqt3nSgn2VHM0p5KiqFEgUxH+292smBTOyAQ/5FIJKrmUCZ1C+GFqF15ZaccnAmECX22tq7qxmMQcLO+Q418m/5j4nm94TbR8eEeLakCVu0jFOR+fGGHsnr5NVGGUnrP/Pdv3HbQYIjxjcg9Ct3tFRVRIkhAUN7/V/D2DXhVtwBKpuPZzm2HzO3B4gfiu2/P+q8qHZQ+I++XECvGzYKKYWw7/X/PXV2SJe86Jk38518zEMzExke+++46bb77Z5vH333+fl156iZqaP7eQq6gQC1QfH9EjlpaWRn5+PkOGNDrzq1Qq+vXrx86dO7nvvvvsHkev16PXNyqflZWVf+p6/iwuChntwr34ZkpndAYzUokEP40Suay55pRerGsoBewT78cTg1vw/rozrE3Ox2Sx0inSm/8bk8j3285xQ5tAps/aR2KoJ8cctKgAnMyr4pGBjf4kxVoDAR4urE5RMnbMUgI3PAolqXhte5WhkevpcOun6BR+HM6u5IcdaeRX1BLh69rgz3E+LXxluFQ2mbxE9BTCyIUWYBJpY667tghu/kT0OUrloo/48HzRzxvSQfQJ7vhIDE71HJorynAzdjQ+VlMGS6aJiWCrm8REzcVbDGyLJje+zitC5H7XO2WXnoNZN4nz1VOeCaWp9lNJVv8HYgaIwdMRSo1wYXdyze+/P4vVaiWvvJb+LS5zJvsfUd/mdDkEDE8pv6SaqNBb8VRdZDtTUCKkbXX6YPwDuF7uvWBPNU8OacHUnlFYrKK10kPd2NZUWKVn5g5RzaaSS7m/XywhXi7c++MBcup8aO7qHc03UzrzxeazDYkLHSK8mL0z3eF5t58tpkOYV0PbidUq+vUVMgnf7Stl5B3v4L/7Tbqsn8DMpAeoHdAOicKNMqmG1OIam/jJ8/FzlYrkKxD/6+Lp8LWAqOAb9ZnwyKguEYu0Ho/A1NWiYq/FjaKK4/B8qC6G8O7Q+iYhePR9Svw9UGlEtHj23sbjVpfA4qnCeHfQK2KXV6WB3V+IcRLEe+9YbpsOYY+ydFEtcT5Fp0SqQ58nRYysPTQXiD2VSEXbyr+Mq3X/eagV9GsZQNtQTwwmCzKpBIvFQu93NzOpSzg6vYmVR3I5kVeJSi5lVIcQ7uodw9trTjs85uGscmL9NTy6toS5t/+Cyy/3E734Bt5JvJ3nJo/C4hXJruwaMkp0zVJ86lHJpaglda0tYZ2FqNZ0I+l8vMKFEHh2A3jHwuTFwkNt45sw+L9io+noQiEotBgqWjlWPNz4/rStYm52erXtcc1G0d505y+iqqIsHTxChUBSlSsqmOr9OFx9hCAYkiT+YOQfFfNDQ12q3j7EvT71VzFWNiVjJ6SeF0kMQvxoNUJsppWkNj7u4iU26Jw4+ZdzzQSMZ555hltvvZU777yTDz/8kNLSUqZMmcLx48dZtGjRnzqm1WrliSeeoHfv3iQkJACQny/yogMDbQfKwMBAMjIyHB7r//7v/3jttdf+1HVcTjxdlXj+wRheVKXnqRtb0DveH5VcytQf9pFf2ajQHsgo48G5B5k1rQt700SsWq3RjJvK8X9+udR2ESKTStAbzZwqqOZESDyW0T/jZq6kqkbPWa0SWY2GfSfzaBPsyYwb4gn1VlNeHcAuOxUeMqmE2xNckf+0RjzQYZLwlfi6j4hT8wwXKvP5tLoJUjcJ9dw9UIgHnuHCLdRqhl6PQ3m6KBtcMFH0Ejcl9xD0f1aUHFbmNj6ur4JD84R6v/xBmDhfeF9MXyeqMpCICVh9yV5NOax60la8ABGTt+dL7GK1Qvp2YRjq4tm8EgSg6z2gCbL//n8Z18v9d6kUaw0YzJar30JSdFJ8r/5oQXQRRNYZeZ4oMdMj5CKHiKB2osS2OEWUmDv523I93XsKmYwgT/uRimaLlam9okgK90Ypk3C6oIpnlh5reL6ixsgHv59hdFIILYM82HJGVPfVGMy4KR1/r91d5NSe1wIS4evKZ5M6otWbeO73XFp6P8CkkTNQW2sxS9VY3QLR6qxE+ygY2jaINcn5zY7bNsQDv9KDjbuwVqsYQ/xbCqPC84kZACdXiHSFCT+K19w6V5SlV5cJf4uKTDDrRSWFQSsWVPPGiXYTN3+x0CnPFN5Ss4bZtlrqK4WY7x0Fvz4B4d1E9GT3B2k25l2IQz86fu7oAkia7FjA8AgWC0J7bZUtbwLNVRaCrwOu9v3XtFrwdH4V4zuFMqJdCLd9t7vhq6o3WfhpfzZHssp56abW/Gex/SppjUpOrdFMUZWe05IE/G9Zioe1Er3BSF61EplZTftID6yIal17IsZtSf74n/peGKz3fBTmjhWxwLu/sJ+Y02maeE4qg4TRUJYBbgFCwDPqxPd86LuiPfjcJuGx1pQjC4VIkbqhebuGb5yYi/7+irg3Zg0Xka+BbWDKCqgpEUKH2kckyUllwuds4eRG8aKe2gr46Q6YtlbMX0HMJfd85fg/TvLP0GKYrZF8j4cuLPw5cfIv4Zq1kDz55JPs3r2bHTt20K5dO9q1a4darebo0aPNqjIulocffpijR4+yYMGCZs9JztsVtFqtzR5rynPPPUdFRUXDT1aWnQX1dUJimCd7zpXy7NKjbD5VZCNe1GMwW5i9K51oP9HqkVKopW2IB1IHH8GQtoFsOdNY3jqkTSCuKjnbzxYzbdZ+enx2nHZfZjF6aQVW92Byyms5XaBl4+lCfNxUrD9ZyNrjBTw7rBVqhaiaiPR1pVu0DzPHRxN+8F3xh1+mFKkev78kBqct78DIj5rvJEf0gG73Y9UECXfymcNh4SRIXizaSdY+C2v+I3Lqk5c2Fy9AiAc7PoIJc0QPo9xFGB62HgnjZ4py2bI02PW5iK/yCBY9jYFtbCdy1aVwzk5vpdVqv0Sw4T+CTggUd6xo3hPZepQwKXVGqQJ/r/uvKdllwtivvmXrqlF4UuxEXYbqh2A3CUopnCi+hDaSgLZi8pa25S+f38m15e907x3JqmDarH2UVRv58Pfm/fQAyw7l0iPGt+HWWJucz+ikUIfHHJYQzIaTjW0pET6uZJfVUKIVKV/FWgPdWkXw0zkFL+6WMD9FRn6NFKlMxsu/nGZMxzD6xou/765KGW1DPBiaEMhntybgt/0V25NtfV8Y/J3vHROSJNoV930nRMENr4mkhF+fFIugX2eIEvkVD8LKR0VLyNb3xC6yxSzGT20hfNFdtHaY9EL8iOzV6FvR/UHRavL7S+KcWXtgxUNirDt/zHNEvRmiI4y1YrPA4sB81D1Y7JifX+UR3gOGvf3nY1n/xlzL+0+jknFrlwjeXH3S7lTmdIEWtUKGvx2BXiIRBp+nC6qY3D2Ct9eepudnySR8nsn3Ka4US/xYsDebD9encK5Ix1e3dyKurh3MTSkjIdSDu3uG8WCLClxOLIJeM8SGkr5SeEOM/ES0KzacUArdHwKpDKt7kPh+b/9AVM5W5oj55IqHhcG0XCGey9rb7Lpx8RSvv3WuSB6RSMX3rvN0UcGx5hnRynVwNiSOFzHGIMQ1/1aiosIztLE6WFfYfHOrntJztm1jVvOFo1qNNbbVFgnjRSLfxZrkOnHyD+aa3gUxMTG0bduWpUuXAjBhwoRmlRIXyyOPPMLKlSvZunUrYWFhDY8HBYkd7fz8fIKDGwfkwsLCC55LpVKhUl0DI75LRKs38kFdFve4TmHsyyh1+Np96WXMuKFxd3TxgSxeGNGaN361HawifFyZ2CWCe38UrsxtQzyY0Dmc//x0mI9u7cC64/lsPlOEh1rB22MSeXDeQRslfdG+LB4eGIfBZGbPuVLmTutAC7UWZf5+5LoCpOo4JLG9IO13IUyk/N548vJM0Yvb92lhellThjW4A1ZdCZJzm5GEdRYGZvUCRdpW0UM46BVY+YjYRfJvZZscAkKxbnEjzJsgJkcRPSCmzugsbRssur0x2eT4Uuj3lOOoKot9525KU0V5oiOfi+i+wgQtqD3cu1U4TNeUirYStwDHu1T/Qv4u99/51LdM2ZvgXTEsJmHGFzf4shxOJpUQ4SHl+KUYeSpcxH2XtlVUEjn52/J3uPd0ehMfrj/TILJLJBKq9I4TOoq1etxdhJngibxK7u4TTY9Y32YVgmM7hZJbXkNZtTDn89eoeH1UW15YnkzXaB+WP9iTyloTD8w9gK5J+ta3W8/x8cQOVBtMPLLgIPf3i+WdYSF4GvJRZO0GNx+QeGLp9QTS319sPKG2QIgGE+eLxUrRKbGTW5Ymytfre/PPrBWtIze8AkiE2H5gpnisPrGjHolU9OLX7zQr1OJ4G1+Hbg/AkNeF4Hl8magYbDr4Z+0RY9LFxjRKJGJRd2yx/efjB4vxOrKXaPW0h188TF8LFbni8/COFOP1Hxkf/kO5lvdfZa2JvIpam8jh8zmYWU7veD+WHbJdpL84vDVLD2bTL96foW2DcZHLKNHpGdU+hCKtgfvmNpqzr0nOp1uMDx9PbI8vlXjo85Bn70Wq8UOu8oVWN4v23npx7NQqUcEw+msxTzPVYg3vhjXvCJLaSiQ3vCrEwPq55N5vRKVC4gRIGAPHlooo4aYm7iC+vwOeFx4urj4ierjDJFHVdHIVLLytsWrp1K8w9js4vebCH+L5VRznY27yvIu3aHd2NGdMHAfR/YUhrk+siGFVe134+E6c/Eu4ZgLGjh07uP322/H19eXo0aPs2LGDRx55hF9//ZWvv/4ab++LW8xZrVYeeeQRli1bxubNm4mOjrZ5Pjo6mqCgIH7//XeSkpIAMBgMbNmyhXfeecfeIa97qvUmirV6cstr8XJVsDo5DwCt3oS3q+PeOC+1AqVcSv+W/mw+XcTqY/koZFJ+uLMLO1KLqag20j3Wl44R3qQVa5kxuAVx/hryK2p5bOEhKmtNTJu1j0GtApjeK5recb58sfms3TLAzzaeZebULszdmUJkxQHc5021rYoI7SgisjJ2it7CppRnwsqHhR+FJhBJv2eRrHiw8fmWw2DE/+CXx8S/3fwhuIOId7OaRbnt6TVw4AdxzpbDoc1o8f/vWifU9SMLhSJvD7MBJDLH/wFUHqLqo2kbCsD+H+DGt0Rv8fk7TgnjGh3ZpVKh2Hs63gV08vcku6wGV6Xsgu1Zl52SVFHNdBnd+iM9pCQXXUIFBog2ktNrxIRPeoH7x4mTv0ixVs+Kw41/f5XyC1cehXqpMZsbF+rP/XyM54a3ZlrPKDaeKkQqkTC2Uyjerkqyy2p4ckgLgjxccFHIeGXlcbLLasguy+Gu3tG8uvI4OoMZmVTSkBJmslh5btkx3rolkUcWHqJXoAnf3x5CmdGkIkkqwzz6W6zjZyNZ/4oYP4I7iIrCYz+Jqomt74uF2vnjh9UqPC6WPyiEwgk/ij77sK6igrHolDDddPUT4v+uzxqjH90CRbRjp6lC6JQpGqsu7GG5BOESRMxkSEdhdNgUlbvwltIW/XEUqnuwM1XhGlNcVcusnWl0j/HDTSmzEeia4qqU0a9FCJ0jvTmQWYafm4pbkkI4V6xjlG8IZwq0jPp8Oy0C3fnf+Pbo9GYmfru72XH2p5fhaSzBb/1DyLN2NT4hU8DIT5tXo6ZvEz9KDcgUSEZ+jGRZnYedXCXEDV0h5BwUVQuGauj7JFTkQFgn0eYR2Vsky1VmQ2CiENuLTkPLoeDXUlRIrD+vSqoei0mIgy2HX/iD1ASIaz8/oQTqEkmatEVJpcIwd+/XtpGpINqj244WRrnB5/lmOHHi5NoJGAMHDmTGjBm8/vrrKBQKWrduzYABA5gyZQqJiYlkZ2f/8UGAhx56iPnz57NixQrc3d0bPC88PT1Rq9VIJBIef/xx3nrrLeLj44mPj+ett97C1dWVSZMmXclf8YpQqtMza0c6X2xOxWSx8u0dnRscobecLuKjiR1YcsD+ZzehSzjKmkLeGeDG7/GefL87jy1nijCYzNzXN5Z1Jwr4aP0ZAtxdeGpISzafKiTWT8MLyxszsM11ySWJYZ6YLFYGtwlicrcoDCYLv53IZ8mBbKrrBr596aW82s8bv/mjmv8xzzko4uNa3iT690+ubH7BJr3oQSw8Yfv46TUQ01+YKLW+WZQAzh0tzJokUuGVMfg1MZD4tRCqvKs37PsesnaL+LpuD8ANr8L6V5uft8WwC6vc7sEw9B34aYrt4+WZ4lrv3Qyb/0+IM27+wpsjfvDF72o5+duSU1Zz9dtHik6KCZP75YvfjfSUsCXLQq3JissfLA4bCGoPRxaIhVVI0mW7FidOzqeq1mQTMX4it5KOEd4czCxr9lofNyUGs4V593Tjs41n2Z9Rhq+bCqPJQlWtiaIqPSaLlXvnHOD98e0J8lAR5KHi/9acajDHrsditfLwwDg0KjlyqQRfjYozBVW8u/Y0RVo9SGBQS19a5f5sK14AWMzIfr4b033bkXd/QCyo/FvB/AlCnJgwR5hr2sPVp3FnV+0NFqMw7vytLko1MEGI+nnHhA/UieWi4mH4e2LB9+sMkYIV0094PR2YaWtwXY9fi0vf4fUMFR4Fh34UlRgGnfDk6DAJdn4ON398acdzctU5nV/J2uR8Ugt1lOqMjOkYxo+7m3vEiTQgfx6Ye4AYfzcmdokg3MeVn/ZlEuih5qMNKehNFqQS6BjhjVQqodZkZuG93ZEAC/dlsfxwDlYrDGvti/ex72zFCxBzxZUPw31b7V+sQSsqdJq2Lpn0YkNr5Mew/AFRKXFihUiAMxvFHLF3XcrOrT+KNuC0rXXVSenC4NZ1j2jjHfSySKc7n6g+YrOg3a0X/jDd/EX7y9Z3mz/X71lRbdsUr3Dhi7HvOzF+gohR7XK3EC+cOHFil2smYKxbt45+/frZPBYbG8v27dt58803L/o4X34pSsL69+9v8/jMmTOZOnUqAE8//TQ1NTU8+OCDlJWV0a1bN9atW4e7+9+nv7K82kBVrYkDGWV8svFsw+PergoUMglGs5Uao5nd50p4sH8sX2xOtXn/oNYBjErww5p/jGKrhgGtI+kQFYTBYsFstpBXWcuu1BKySmvIKq3BYDbTMdIHiQQ6RnhxMLMcEL2Kn96WxJdbUvnfusa4uE6R3jw3rBWD2wTy/bY0Np8pwk0lw6Ngt30lGuDwPGF86RUuRIGqPNvnpTJhxLTQjtB0ZKEYbEy1jZM4EH2PJ1dCSYoQKQqPC/Hg+yG2A17aVug0Xex+7fy08XGlmxjALtR7K5EIAWXKclj3otjpcvODno9D+wlicB39tSj/lcqFkOLkX0F2WfXVj1AtPCEmOpexLzbKU4rJCillFhL9L7Kawr+l8JU5t8UpYDi5LJgtVgoqaynR6jFbwU+jxE0po7zagEouRV9ntjl7VwYf3dqBp5cctfGAclXK+GJyR3zdFNQarbxyU2vKakxYLFbyK2tRyWXEBWj4fnsaJouVYzkV+LsHEOihxk0lo1TXeC1dorypqjXxf6tPCbECUMgkIunkjk78eiwPvcnCtHauuP/+nf1fyGoRgvqZ1ULoGzercdwrPAXR/ez7yPR4RAgEMoUYExfcZts7X5AMc0aJVpT68faGV+HMOmFe2PR1R3+CiQtg9gjbcnepDG766M+NV57hkHSH2NWuKRXVGCdXw8gPnYuw65zs0momfbuH4YlBtAn2YN7eTL66vSNHs8s50iSpTiqB/01oj0Yl4/s7O2OxWrFYYc6uDFYdzWX2tK54uCgo1ul5e2w79pwrYeSn2xs22MJ91HwwoQMTOofx2MLD3NFOjduvs+1flMUk7oP2E8Vc73x6PwEHzntvbYWonu3/POz5Wszxmj63/lUwm4RIV5UHAW3E3NLQ5CZP2yKEgx4PCS+0euQuorLJJ/qPK2eVbmJu6hMjolbLM4VR7cAXhbBnrxrJK1w83+1+YUrv6uf0Q3Pi5A+4ZgJGvXhx9uxZUlNT6du3b0PFxEsvXaC88TysFzJNrEMikfDqq6/y6quv/tnLvabkV9SIHtwoH37ab1tdkVlazeik0IbHZ+5I57au4cyc2oXD2eVYLFa6x/iilMGh9BJe+LWaRwaGkpOeycwdaQ2Di4eLnHfGtmPR/kw2ny6mosZEpwgvHpp/iPfGtaNfCy0rDucyoUs4324715BmUs+BjDLe/e00feP9GN85nMzSajqEeyNJPa/NoinGGrHA/+154fC892sxubNaxI5S36egtlK0bNSct7NWUw4BrWHJdPvHLjwpWjbKs0VJoD2jsQM/wF2/C/fp6jKIHwK9HhWDzR/h4gGxA0TMnLG2TqgIFCWBIASQ68mArKZclFcWHAelu0iKcA9yxnFdZrLLaojx11zFM1qh4IRo37iMRLhLkQLJxeaLFzBkCmF6e24z9H78sl6Pk38ftUYze9NKeXzR4YZKCFeljAX3dGfJgRwmdgln9i6xS1yqM/Ds0qO8MKI1eqOZ1GId0X5u+GtUFFXVsulUIbvPFfPiTW15cN5BiqoaF+4jEoN4f3x7Zvx0mLOFWrpGe/PkT0d4e2wiO1NL+O24qOp8fnhrJn6zu0E0ATCarXy15RzBnmqifN2I8nVDWlnWfLxqgqQyR+wIB7UTwr1EIlpEtrwjdo59ouHoIjE+ugeLGFKVu1iQtblFeFfYM/4z1Ypd5/jBolTeI8RWvKhHVyQqMCYvFQJ8VZ7ose/3rKh4/DPI5OATJaob9RUirtLV949bR64W2gLRSlCaBl5hol3H2bJCqU7P4exySnQGdp0r5f1x7VmwL5PHFh7m+eGtubtPDIezyvFQKxjSJpBynZGxX+6ixiiqbOVSCQ8NjOP+frE8v/wYP97VlT1pJaQVaVl60NYjI6u0hvt+PMA7YxP5vzGJqM0FtuLB+ZRlQsc7QaoQlT2mWhFj2usxce+sfab5e2qrRFWToxapHR8JE/XyTGF6a+/8+74T88K0reJeie4nqmg9w8HlIud0br7Q4TYhWJgNYp5VnzziCJlCGMf/06jMFVUulXngFycqRf+F6UJOLj/XTMAoKSlhwoQJbNq0CYlEQkpKCjExMdx99914e3vz/vvvX6tLu66oqjXy319OsOFkISPbhTSkHIAw2zOZLNzbNxaTxcqKw7mYLVYW7M0it7yG10clUFBRi9FioarWQplRxjdTOnOqoJLvt9vGllXWmnh04SGWP9SLaN9sAtxVHMwso8Zo5rFFh7m/bzRfTemIxQpvrzl1/mUCsDetlPv6xvDW6pPMGBxPWrGW6KCueDj65XzjxB+38kzhG9HhNrjrd4xSJdUWFSU6Ixp9PgHd7rOtsgCI6i12j86v2mhK3hHxul+3OX5N6kaYuBDkSpGvrbAf2ecQt7/BH2JtkTBwO9hkx0LhCuNnC2PR62WS+TfHarWSXVZDt2jfq3dSbYFYLF1G/wsAlVxCqLuE45eSRALCxPbwPCHqOb9XTv4C2WU1TJ+1D1OTVpFqg5nsshpSCiv5fFInDGYLi/dnY7JYya2oZcHeTJ6+sSVtgj1QyKQcyirDy1VJUoQ3feL9uGvWPiprbf0lfj2WT7SfhqeGtEQhl7D1dDFFWj13z9lPnzg/XrqpNYmhnqw6mmcjXjRlzq4MbusajlIm4UiRkSR7nhB1WKP7Ya6IRtZyKMhdsfZ/gQJNG8pVQcisEgLjbsYjfrAw+NNXws7PoMtd4s1+8cLQ0xG5h8RC68Y3hSeGI47/LEyth7wOvvF1gvtlEF5d3C9+kXe1KMuEBRPEpkY93lFw+9I/L9j8A7BYrGw/W8zZQrG5k1qkRSGDb+/ozPM/H+PF5cl4qOV0ifTmtq4RyKUSJn2/28bz1WSx8vH6FH6Y2pn8yhryK8T4N+GbXXbPWaozUFRloExnQOWvtm+4Xk9Ie7FBFdkT652/YJK5UmuVU6EHV4kVH59YYZzeFL84kdrjCINWpPkEtoGmZrrnc24TdL1XvLYiVwgSf+Z7/UeixT+dghOivbuqSax0WBcYP8tZmeXkL3PNBIwZM2agUCjIzMykdevWDY/feuutzJgxwylg1FGsNbCmbgcoq6yauAANx3MrkUjgvXHt8FQruPP7vfRr6c9Xt3fCYLKgUkg5kF7Gw/MP8cboBO74el+DYv7STa35cVfz3kYQu0mbThXSt6U/AR4qgj3VvHxTG7rF+FCmM/LJhrPccoH4OYBao4XUIh2x/u5IJeAqbYk1MAFJvaFYE6wDX0RSX6andEUf2pNDugCeWnGWrFJhDBrp68r/brmZdlHrUabXRZeq3OtK7WSitM9RDJXaC5SuF/6ArZY6/4B/oPINYmfv1C+24gWIgXnhbfDQ3uYRfk7+FKU6AzVGMwFX0wOjoM4fxuvyChggjDyPXaqRZ3CSMLPN2i3arJw4+ROYzRbm78mwES/q8XVT8MTglqQUVmGxwpe3d8RgsqKUSzmcVc6U7/fy1NCWzN+Tyal8keIR6+/Go4Pim4kX9czemc6Pd3dDJZOQX1mLyw4pPeP8eGpICyQSCRkl1RzPqXR4vRklOgLcVVTUGOnbviWGqDdQ/jiieay2Tww1Pm0o8e9LlI8H1XoTuwNu57llxymoFON8i0ANH96SRKuyLchWPCDe1+1e8b81ZaLSj2P2L8Q9WFQD7vgY1J6OP2AkYtyUSP6Zu771VJfCsvtsxQsQO8ILboOpq+o+z38fhVV6Pll/lgcHiPFfrZChkMt4d+1pHr0hHi+1EitWao0WDmSUsf5kocOU+AV7Mnl+RGt2nytFIpFQWeM4ESirtJr0Eh3DEltiHPwmivljm7/Iv5UwgzbrqWw9kU0Ffry2JrWhEisx1JMPhi0gfu0kKKlrqW43UVTGBrRufrx6JBIx9/kjvyirRbShFCQLnzXl1ayq/IdQmQtzx9iKFwDZ++C3F2DUZ9dXlbKTvx3Sa3XidevW8c4779hEngLEx8eTkWF/gf1vRKs3NQwai/ZlMb23aG/oHefHmYIqzBYrORU1zN+byT1z9vPQ/IPcPXs/X25J5WhOBYWV+gbxAkQsnL3UkHpSCrVE+7pxMq+S1sHumC0WFuzN4vbv97DqaB5/ZOenVopy88zSaoZ+vI1HV+Win7AAQ7vJje0KPjHoxs6jKqSP6AGevhYGvkymJpHbZyc3iBcAGSXVTJqVTFavt0Cmgvgb4a71YpBSewmjMHsoNaJFwmIWMVSOiBkgdrr+qWgLYPuH9p+zmOCEHfNUJ3+KrLr7yu+qChjJoAn6Y6HuTxDtKeVUqcXuItIh3lHCZDB102W/Hif/HmpNFk7WiQ/nI5NJ+S05n1+O5LJoXxb3zDnAQ/MPcs+c/Xy+6SxVehPz92Qyol3jwtxNJedknmMBokpvQiKBE3lVZJfX8MsjvbmxbSCZZTU88dMR3lx9ktgAx4uYuAANOeU1VNaa+HTjWaq8W1N728+i3x5AKsecMI7iMYsZOisNmUwOxmpS8su5a85BCiobW1rOFGiZMPMYOW4J4gGvCKgtF/+/5Kzoz3dExzugKkekcbUe5fh1rUdC7mFQ+4pqqX8q1cWQudP+c8VnRHXivxSD2cLZIlF9Eeat5tFB8WxPKeZEXiXPLj3G/XMP8MDcg8xYdJgqvZmM0mq7x5FJJdzRM4ppM/fx3M/HKNLq8XFz3Joa7e9GebWBX4/l8dZRd7TjFjZuosgUWNpPwjJxgfhu3vQxR8zRPLbkpI2h7rGcCm5dmEn2oM+F/1jfp6DzdAhsL3b2HW1IxQ0WbURWi4j2dURIR2GOLZFA3/8IXwsnl0Z5puMK6ZMrRXuOEyd/gWsmYOh0Olxdm0+6i4uLr/sM+quJu0qOtE41yC6r4XhOBc8Pb83YjqEsPs8Pwx6S8/4LZ5RW0zLIserZLsyTB+cdIKVAy6srjxPtr2FuEzfqfemlDGxl3+Srb7wfBzPLSAj14FzdwLg1pZhHVxdyMukliqbupHDqLjb3nMMXuXFIpHJhdClTUZt5kG/3lthdLBnMFmYlGzDcuUY4rQe0EoZjKnfock/zgUjlAaO/gm0fiuqKPjPEY+fT9T5xDF2h7eMX4avyt8Fihsocx88Xn3H8nJNLIqtugnfVKzC8I67IoaM8pejNcLbsEmIVJRLRRpK68Ypck5N/By5yKQkhzf9mh3mrOZFbSZiPK2XVDsyhgfJqI27KxgLT3PIa4i4gQPi7qzhbUMWTi4/w9upTpJfoWLw/m+ScCk7kVZKcU0lCqCcaB/HI03pFs/JwLhIJLD6QzfxDJSwriyV5yHxKp+8m746dfKx+mD5fn2Vcp3ACFLVU5aXywfoUu8ONzmBmVaoRa0Qv6PcMxN4Ajx+DUV9AWYbwxWg6uEuk4jGTHsqzRNpC/lFoNaL5wTWBwlsgfgjMGw/l/+ANowt5LECjMPQvRCmTEuih4p21p3hrdCLdon3Q6u1XTmSW6GjlYN44sFUA608WkF4ixr+lB3OY2jPK7muDPFxQK2T0jPNj/YkCZu4vZvQ6VzJuXkLZXXs4M2Erb0nupljqDyUplBbn8/bmfLvHKtUZ2KP1hxEf1nmeBYNMJqorbp3b3Iw2KFG0hfjGC/PO3o/brwDocrfwRVP7wM2fCUG+KZcaM/xvparA8XNWi/D4ceLkL3DNBIy+ffsyZ86chn9LJBIsFgvvvfceAwYMuFaXdd3hp1FxU7vGcrcfdqSz5UwhcQEaSnQGwrzVyKT26yJcFFKCPGz70FcfzePFEa0Z3CYQb1dbl2NPtYJIXzdO5FXRNlTEpO5KtY11qzcJHdwmAEndaSUSGNAygCk9oliwJ4MZN7RoiOCK9HWlbYgncqUr3x0zMWZhPruL5EztGoz7sslQkQkrH6G68wMcznP8B+1QdiXVmgjh1lyPSiNaSNrcAhPnweD/CjPQUZ+JrG/vaNDrRLnahDnQ42EI7iBi5CYvFgkoFZlisVVTBll7YPmDsPQuEfF6funb3xGFi4i3dERMP8fPObkkssqqcVPKcHOwyLns1FZARRZ4RV2Rw0d5iuEh+VJ9MEKSxOJJV3wFrsrJvwGZTMrELhEoZLZjm59GRW55Da2C3ekW7TiWulecL8dzGxMUirUGVDIZ4zqFcWPbwGbj4t29o5m/NwuAoQlBLDuUw8BWAaw+1riD+L91p/lsUhIRPo0bL25KGf8Z0pK0Yi23d49saM/ceqaIHrF+lOLF50cs3DgrnVn7C3nshnju6OyPqugo1flnOJ5nx1y6jr15ZvT9XhQmgp6hohLDM1QsqKryYNJPMPT/xM+kRaJk2ytMJJbkH4cNr4k2rpEfiwjIkCQY8IIwnla4wNLpUJktUrgqL2C2/XfGxUu01DjiX9o+AhDooeLxQS0oqNTz+KLDSIGkCC+7r91+tpjBbQLpE+/HsIQgWgQ2ioEDWwXwy5HG+2RXagnuLnLu7xeLSt64xGgT7MG749rx88FsYv1FK/SwhCDu6BHFniI5eyo8eWFTOeO7xeJ/bgXED0EfNZATF6ic2pNeLlJvbnxL3B8g/MzcAkTU/eiv4YbXxPyv450i3r7krNjU2fC68AHrek/dvHAQ3LYIOt8lTHCHvC58ZM78BoZqIZL89gIsvlNEGJdn/YVP/1+Ab4zj55QaZ/uIk7/MNfPAeO+99+jfvz/79+/HYDDw9NNPc/z4cUpLS9mxY8e1uqzrDo2LnBdGtMZksbAmOR+rFXacLSG9pJpIXzU6vZkJncNYsLf5H9NpPaPR1SnqMqmEp25sSZiXmmWHcvFSK/jvqASKtXrWnyjgzp5R+GqUVNaYeGVkG2QSCTKpBKPZVm3Wmyw8PP8QU3pEsujeHkglwsjpVH4VRzLLmH9Pdz7dmEJeRS1PDmmBr5uSeXtE4knrIHc+mNCeln4KPDe9IKKiTiyHgmRUx38i3PsGzhTYn9BF+biicrfT6uEbA4buQlHX+IsWE58YIVZ4RtQlbySLXry4G4QrtL4SVjwE2kIxgGXWRb2uearxuMlLIaK7aHH5O/cIu/rCkP/CrJuaP+fmf+EySieXRHZZDQHnLYyuKIV1/hc+F5Ga8ydwVUgI0Ug4VmRmXMtLeGNwXYRq6iZoN/6KXJuTfz7hPmpmT+/KYwsPN6SGlOkMdI7yxmi20jLIgwB3FYVNEkVACPd39oziwbmNJpr394tBrZShUckxmi3MGNwCqQQOZ5UxrlM4NQYzMf4ajmaXIwU2nymiXZgXhibj3/HcSl5ZeZxnhrYkxEtNVa0JK3C2oIqOkf4s2JPJ7nMlvDU6Aa3ezN1z9lOs1dM50pt5d3fDz02Ov6sU+eY3QROAUi8hxCuQYq0Be8T4qVFEtADFeRVdUb0hZz/MHy9SGVTuEDNQ7BxXlwghvrpMVN+tfkos7FoOFwbVaVth05tiQVddlySWfwwOzoG2o0UU8j8JTYCIS9/3TfPnWo38e5hwXyEkEglD2gaSV1HLV1tSsQDaWhNJ4V4cyiq3ee3AVgF4qZUkRXiRXlzNuE5hdIv2RWcw4SKX8cYtCczfk8n2s0K0fu2XE4ztGMqS+3ug1ZsxWSwUV+mpqDHw7LBWvLj8GD9M7cLqY3l8siEFmVTC2E6hfDChPeE1KVB2DgqOIgsfSqiX2mHbc3yQJ7SfJESLpniFi/ahJdPFDltggqg4uuFVcY8oNUJknzdOpPbUzwtXPgzD3xciRT3eMeK+mD2y8bGTK0WL8rQ1Yr7ppDnuwRDR034LV6/HROurEyd/AYn1YnJIrwCZmZnI5XK+/vprDhw4gMVioWPHjjz00EMYjUYiIq5MWfSfpbKyEk9PTyoqKvDwcJirceXOX2OkRGugstaIRiUnwF3FlpQiFDIpBZW1lFUbmbsrgyKtnhBPF6b1jsZoshAfqOGeOQd49ea27Eot5rfjtmVdA1r6M+OGFtw5c29DSW6sv4Z3xyXyzppT3N03hnvnHLB7Tf1a+tM6yJ3c8lq83ZScK9JyNLucj25NYtPpQhQyabO0E4CvxsUxxL8MaepGyDsEKevA1YcDw35h7Dz75awrHupF+3Avxx9QWRZUZsHGNyF7r5i4dLtfxLl90V34PZyP3EXE1pWchVOrxESu1U1iQNIVwfHlMPAl4QAvsV/lcsUxVIvdttRN4ppi+oFP7KW5W9dWCVftNU839iSGd4dRnzb2aF/nXOv772KY8v0eao1mnhh8lRYBe78VufX9nr5ip/jsoJ5qo5Vloy/RxGzloyKacczXV+bCnFw1ruW9Z7FYKaiqpVRnwGyx4qtRIQVO5Akx4c1bEli4L4vfTxRgsljpGevL3X1iMJktPLXkKBU1Ru7vF0O1wcyc88yrE0M9+O+oBG77dje1RiFUdIv24akbW7LlTBE6vQmLFWbtTG92XTKphC8md+RUXiVnCqro3zKAn/Zn0SPWl5QCLWuSbav35FIJi+5sQ6cguUjciuoDx5exoccc7vq5+eaDVAJrp0bRIkBjP2GotlKMB+VZIh1h63tijFC5Q6dp0PYW+H6I/fjwoHbi+Q3/FXGuA18SflKFp6HHg+DquLLlmlFTLioiU34DkwFaDAaPcJEO8UdoC2HXZ7D3G1G2LlNCh8miNedvsDlxpe+/WqOZoio9Eqy899sZRrQLZuuZIpYdykFnMHNrlzD6xvvz6MLDmJu0+Pq6KflgQnue+OkIRouFh/rHUaTV89022znfj3d1ZWtKETUGC7tSS5BK4PNJHZn83R6KtLbiY5SvK/MnxxOiPwf7Z0JZOgtbfMCza5tXCClkEn6f0Y8oPwf+FFarmO/oq4RAd3ieMK6NGwKd7hTf/7zDtu/xiRHzxjVNxtRBL0PK75C5CyJ6iMpds1GkAfnEwthvr99qAm2hMKxN3Sju9bgbhLBwORKHLobKXPj9ZZF6ZDGLz6nX46Iaxhml6uQvcs0EDJlMRl5eHgEBtn1qJSUlBAQEYDZfYtnyFeZ6WkDlltewN60Ug9lCfICG6bP2ERegYWynMDxcFJTpDPy0P4uiKj3f3tmZ99aeZmhiEM8ute9c/srINszdnUFqUWO/qEYl5+cHe1JYWcvMHelsOGXrE+GqlPHl5I48uvAwFTW2vcg9Y315blgrbvlip82AV4+/RsUvd7UmSFIK5dmwcCIAFd2eZLnqZt7YkIvRLN6nlEl5bVRbbmoXjLuLotmxGkjfDrNvau5f0XI4tLkZlt3f/D3d7hMTo05TYev7YvJ2bDHkJwsjqA6ToOAkdJkuBBGzUUyijNUihtQ9SHhsXCkMOji9Fn6+W/QM1hPSCSbOBY8/cNJuSv1gXlsOUqWYpF6PE1UHXE/3nyP6vruJhFBPpnS//IkgdvnlUeHt0m7CFTvFr6lGFp82cny6O3IHrWp2OTBT7PY+eQak16xT0cll4Hq798qrDZRXG3lo/kHOFekY1SGEPvH+SCRwNLuc5Ydy+faOTkyfvR9trYkPb+3A/XPti/D39InhZF5lw84xiMSST25LYuXhXG5uH8L02ftsTDYBWgW582D/WB5deBgAD7Wc/xudiFIu4545++2eq3WwO3OHKvBNWwmJ46EqjzJNHLOPm/h0S0bDWOmikPLh6Jb0O/s2rgOevHBVRMFx+HaA8L5oSkhH6H4//Hxv8/eM+RY2viFK5mMHwpGFYpET2AZ6PiaiRRUuokKjpgywCqPrixELrgTVpbD7CyHSNCVhnGifOd/rwB4mvejJN2iF4bEm8NIj068RV+v+y6uo4Wyhlqkz9zGoVQDDE4NRyqWEeKm59etddiOEO0V60yvOl082iCSQd8e144tNZxv8MLpEeXNv3xjuOW8T7KkbW7LxVCEHMsqaHfPd0W2YEGeBtM2w6gmKh3/Lp5lRzDlQ1DC906jkfH17El2ifVHKZY5/qfJMUWVRdNr2caWb8MlYOMnWi2HkJ7Dnq8bqRpkS7vpdJLaN+EBUPqWsFxUfbccIUSCy1x/HmGuLRMunRCJawK7G3KsqH5beA+lbbR+/6SNx71ytuGODTggpxhohnLgHX9l5s5N/DdeshcSRbqLVanFxuYpl2H8zskqrmfjNbnLKxR/dyd3C+WBCB+79cT/70hsHA5Vcyoe3duCNVSe5u08UP+xId3jMlYdzGdImiC+3NGZqa/UmVh3NZVdqCeM7h9Mtxpdlh7KpqDbSJ96fSd0ieGlFcjPxAmBnaglSqcSueAFQpNVTVlJI0PKhwkhpxAfw6xN47vkfE1pnMWDK/aRpFeDqQ4y/B35ebqgVMuFnoS8HJKL9pL5sUFsIvz5h33zz9Gro/QR0uRcOzRYTGZWHcKz2jRPl91n7oOMUWDBRiBQg2k7OrBUlh1azOMe+72H350LRV2qg+4Oif/JiJlB/hqr85uIFQO4B2PU5DHqleemkIyQSIXhciujh5KIxW6zkltcwyIHB7WXHoBNu6m0ukDRwGYj1EkaeZ8ostPG9wETxfEI6iTasgmQIbnflLtDJv4pynYEvt6SyNaWIt8e04/bv9rBwXxYL94kqBokEXh+VwNID2Tw7tBVRfq78fNCxifHywzk8NijeRsBILdJxrkjHvD2Z/Hosj/fGtWdHajG/Hs1DKZNyc4cQWgd78NSSIw3vqawxEeDhwr70UofnOplXRSVh+CaOhxUPQuFJvIG7Oz7A6AceJLXUiNKsIyrIl4C976BMWwdDXhHjTW2l+OXcAkBWN22rrRS7m+eLFwC5B4X/Q5tb4OQKMTZ6hom0hvRtQqzwjoZFtze+pyAZkn+GKcvEImP5AyLyEIRHwMiPICAB5Fd58VGc0ly8AEheIkxKE8b88THkqitmdvxPIL1Yx4Svd3FfvxhGtAtm5eFc1p0owMdNydNDW9oVLwAOZJRxX9/GForvt6UxvVc0c3ZnMKFzGANaBXDzp81bwlcczuGmdiF2BYylh/MZLklFE9UTAtrgt+ZenuzyGFOnjiW13IxGJSc8OIhAP1/kMmmT+0MqWoJkTZY1OQeaixcgxs9DcyFhPByaIzajBrwAhacaxQtXH5jwI5SmCx+ZX58Ugkg9WXtFO1d4d8cfrNkAeUdh1eOiwhfE60d+CH6trpy4bzHD4QXNxQsQ1xLRA1xaXZlzn4/S7Yq1uTr5d3PVBYwnnngCEP13L7/8sk0SidlsZs+ePXTo0OFqX9bfgmq9iffXnSa/sjH2bN6eLPLKa/nl4d78fDCHlEItcQEaesf58tmms+xLLyMh1JNqveOKFq3ehIui+R/S0/lagj3VPL3kKK2C3BmeGEyHcC/i/N1YnZzH0ewKO0cT1IsXrkoZLgoZZdUGG31BLq3Lod/8tug57Ps07PgQ9cmfiKjNJ6L3DJCUgX8/4fpcnCIMmE6vFnGqSbdD9wfEpExfZX+Qqidrt4jP6vGg2IGRSEFSl2LiHiRaSZbe1SheNGXTW2KRuOsL2Pdt4+MGLWx9V/RZDn79ypTkpaxrLl7Uc2CmEFA8Qy//eZ1cMnkVNZgs1qvngVF4Qnw3rnD/bZSnFClwpNB8aQJGQGuxw3n2d6eA4eSykV1ew9dbzwHw3M/HmHNXV3akFnMgvZwQLxduaB3I0oPZrDqaB2QwPDEI6QXa/3QOxr6Mkmr83VWkFeuYOnMvIxKDmTOtK3vSS/j5YA4frU9p9p7yagOeLnIUMgkeLgoqa40NlYQg9AeZewDM7dnoPwFoDn6J5uCXRN78KXiGw+7P4OgiUSlhqBTeTKnrhWje+S7oPE0I0fqqC6f9nFwlqizajRfHdfVrLOP2bQHfD2r+HotJGFn3f7ZRvABRav/DULh/B/jFOT7n5cakFzvijtjxsTA5vVbVIf8AqmqNvPHrCQqr9GxPKeLFEW0Y1CqAdccLcFPJkP1B+2zT5LgzhVW0C/dktD6UVUfz8NOo0Kjk1Bht558Wq7gfVHIpGpWc8hpjkwokCbKCo3BmhUiT2/U5Hge/xGPfx0THDRHpcS6+YmOp8BSs/y+c2yjujy53i4pajxDxXU9e6vjCUzfCtN+g58PinnDxEhtVrYaLOaF7kBDyytJgz9e24kU96dtFC7Ijw8rSNJg5TAgZ9WTthu9vhPu3idjxK4G2EPZ86fj5oz/BDS9fmXM7cXKVuOoCxqFDhwBRgXHs2DGUysYdZKVSSfv27fnPf/5ztS/ruqS82kCJzkCpTkyMXJQyRnUI5YbWgaiVMs4V6fhy81n6t/JHqzdxc4dgDCYrRrOZzzamNlRkpBdrubFtYDNjpnr6tvDnUGbz58J91BzPFQ7Q54p0fLv1HHKZhE8mJtElyvGEoUuUNwqZhM8nJWGyWNHWmgjzVlNQqWdLShEV1Ua8dU0mgNveh7E/iEWPRCoGpaoCaDlUPF+WJspk9VXi38Ya0dNaeApGvCcmORKp48W+1Src2R2pwDKlKKG1h9kgxJPjDgbCA7Og5yNXRsC4UAqKQWff18PJNSGzLkI18GpFqBYcAxcPYdJ6BXGRSwj3kHCk0MxtrS/hjTKFSL85s07EOzpxcgmU6gyU6vSU6gz4u6tQymRU1hopqKxl5tQu7EwtYeaONIxmK50ivLmhdSDl1Qaq9WKHViIRf/aPZlfwxOAWdYJGc/rE2x/7gr1cKNWJRYebUs66EwXc1jWCj9eftdlAqMddJUeGhO4xvnx6W0eKqvQEeKjIr6jl040pxAe40zvOF19TkY14YcPW96H/M0Kkv/FtCGgD3/QXQj+IcW7HR2KXOaqXWKAp3RrHxfNx9YZjS8Qu9IO7hNhdUw45B8Fssl+5ASLZyF7suKlWtHIMfUss8K4GZqPYJHBETSlYHMfpOrkwpTo9JVoDcf4aJneLRC6TUG200DLInQgfV6QSCUq54yqBYE8Xqmob5yFh3mqOZVfw6cYUao0Wlh/K4caEIObutvWfub17BCGeav43oT16o4W4QA05ZTW8vCKZae01qLesEkkh/Z8R7bq3fCk2narLwDcWPEOat0+Z9GIeV5wCeUfAI0y0eDhC6SYqIPziGx/ziRI/TZEp4NSvjo9zcLZI+zm/GtZQDds/tBUv6tFXwtHF0OcJkF7CxsDFYrWIe8MRVfb/Hjpx8nfiqgsYmzZtAmDatGl8/PHH10VP7fVIfkUtLy1P5veTBajkUj6blMTc3ZlsOVPU8JqEUA++u7MLhZW1TJ25ryHD200p46m68tlT+VW0DvGgf6sAZu3MaDb58nVT0jfejx922BovyaUSesf5sT2liA9v7YBSJqVKbyTQ3QVXlQy1QsodPSKbGaOpFTKeGdaSvIpanl8mWkzu6h1NgIeKI9nlSCVwa5dwqgOiRIledalYqLv51flMGCCsM2jqMr2NNbD94+aTtMAE6Hq3MCpLGCOcpM/81vyDlMpED/HBOSIWy17v3YVi1kAMBo6yv60W4Wp9JXbCYweKCas9gjuIAdjJdUFWaTUSwO9qCRh5x0QJ+FUwl43xknKw4E94EoV1FguemjLR9+vEyUWQW17D4wsPsTe9jFAvNf83JpHXfjlBapEwpJRIYGjbIL6e0gmlTMqDCw+RWyHGNZlUwoTOYbw9ph1LDmRRYzTTLsyLloHunC6wHUPUChmTu0U088fw16iQSyWMSAxmcJtAirR61AoZHmoF74xNZOqsfc26FV8e2YYQbzUPzDtok6R1R/dI5kzvyvLDuZzMq2Kl0pU+E9cTuv4hJMXnVQ2WZ0BoZ3hgl9gRXnZ/o3gBYiwb842IcFzzlDCcTpwgoh7tET9ERD/2e0bsJIMw6+z1uBA1/gwZ28VYfLUEDKWbMOJOs1MKDyJ9xcXr6lzLP4ycsmoeW3SYN0YlcK5Yx1d1lU0ALQI1vDiiDc8sOcqCe7vzxOB45u/JajZ/fOyGeH7cnd7w7wf6xRHgruSdse1QyqVsPl2I+3mx4j1jfeka5cuD8w5wb98YVHIZ329LQymX8vmkjgRrJI0LbLNRJMoZq4V3iauvGEtqK2H9K7YiXN+nxKbO3NGNlUajPhetIvZInFDn8fIHyP5oTHcwBuurhPGnI85tEj41V8IAVOkGEb2Ej4g9Wg2//Od04uQqc808MGbOnHmtTn3do9ObeHvNSX4/KRJDJnWLYMmBbBvxAiA5p5KXliczrlNYg3gBoqTParUyLDEYuUyKXCrFYrHy9ZSOzN2Tydpj+VisVoa0DWJ6ryi2nClCJpFgqpuVebjIefXmtmw4WcCTQ1rx3M9HbaLebukQwoP947ihdSA9Y32ZtTOdEq2BTpHejE4KxVWh4Pbv9lJrtDC1ZxQyqcTGxOmXI3nEB2iYPXYlIfP6CZVcqbHfDlFTDilrmz/e7xkxwastFxO68bOE+WZlk35niQSGvAmHfqwzEaoGmR1F3tVHLAbLmiemIFMKcaK2vPlz9SiukJDg31IINQXJto9LJMK8zM3vypzXySWTWVqNr0aJQnYVDCuN1aJs9Qr7X9QT5yVjS5YBrcGKRnkJgkloZyHwnd0AieOu3AU6+cdQVm3giZ8Os7euevCJwS147udjDZ5PICor1iTnE+jhQo3B1CBegChJbxviib+7inZhnni4KDBbLLwxOoHVx/JYcTiXaoOJvvH+PDIwnuWHs6k2NIpzYd5q3rglgeIqPRIJ3DV7H/UV8h5qOR9M6MAvD/Xmiy1nOVOgJcrXlcndIvFzV/L00qM24kWPGF8SwzwZ+dmOhvL4VcfAy1XB4omziF95C2ibpIK5B4nKB49gqMgRbSNNaXUTpG0TrYUAZ9bAxPmQsQOKTtm+ttdjove++wOiEqqpcK/xF9WOchdbgaQerwjHCztN0EUs6C4jEgm0Hil2snW28x8UalH9qHB6pl0qpTo9jyw8RLSvG7N2prPuhG063ZkCLQv3ZvLdnZ3ZkVqMVm/m+RGtcZFLeXP1SXzdlNzdJ4aNpwpJzqlEKoE7ekRhMJm5u26u56aU8daYRII8VGw7W4TZYuXGtkEMbRvEHT/s5cURrZmzK4P9TXwwlhzIZnynUJ4d/i2+v94lqojstSyd3z7lESLmacsfsH1N/jGRynPgvPVGSEcI7ShaQMK7XvjDcvWFdhNh+//sP995qn0vMrlSbMo5qu71CBXzyyuB2guG/FdUqFjO23zwiRG/vxMnf3OumYDhxDHFWj2/NCl57Rnrx30/2nc2P5FXSYSvK1IJDROt/01oz9zdGbz2y4mG133w+xn+M6QF7UI96RbtgwQJ21KKGffVLka2D2H5Q73IKq3GbLES7e/G5xtTGN0xjBmLDtuIIwDLD+cS46/hTH4lDw+M554+MchlUpJzKnjtl+Pc3CGUWqMFpUxKrzg/u67sKYVafjjmwdMtRqIM6ygmb/aQSptXGrgHi6qHelFBXwW/PCYW9ZU5kL1f9PxG9hSpIid/gaQpIHfgOu4eBLd8AXNubu6DMewdscMT2FaULJ6Pf6srJyS4B8Gkn2DbB3B4rphsBiXC0HcguP2VOaeTP0VGSTWBV8v/ouD4VfG/qCfeR4rFCkeLzPQMvYQhw81PXOOZ35wChpOLokRrYPc5UfrsrpIjl0lsxIumLNibyQcTOrBofzYgokc/urUDX25OtWmX/GhDCs8Pa42fRhgSKmVSDmaUccf3e5jUPZJVj/QmvUSHv0aFBPh66zl6xPkyb49tz3tljYkH5x5kzWO9Gdo2iIldlJRoDbyyIpmXb27bzBNqaq8oHj8vehKgvNrIk+tKmdV5Bj6bn218ou/TjeOgRCJE/aZCQptRsOLhxn9bzELEH/q22IlO3y52c+MGCaPOsnRhMm2v6lATCCP+Bysesn1cKhcpBetetPuZ03uGaF27mnhFwPTfYP1rcHqV+L2j+4nx/kp5CPzDKdYaOJhRzr19Ynl0waFmz7cL8+Sm9iGM/WpnQ8QwQIinC9/e2Zlj2RXIpTCgZQA3tQvGT6Ni/p5MXm0y59QZzMxYdJh1M/ry1I0tkSDhZF4FZ4u0BHm6kFFabSNe1LP4QA5j23TAN36IaB+xR/39UVt3zyVOEFW257P1PdHCOGUZnFgJRp347lit4t4ZfQF/lXpkCuE7k7y4uQ9GzACxyWQPtTf0fhIW3Gr/+e73C3PZK4VfS3HfrHlGVFzJlOJz6v+s0zvNyT8Cp4BxHaLTm20mPUazBQeBHgCU6QyoFTJ0BjPdon04lV/VMAlsyvvrzjD/7m5MnbkPg7lxUFpzLI/J3SJwVUqZvzeLCB9Xnh7aikNZ5c3Ei3rm7c5g7t3d2Hy6iKUHs6kxmukT788rI9uy+1wJAJ2ivNmZ6rh/deGhQu6+40mCAoMc9wFKFEJ82PBa42NuflCZbfu6imz46Q7Rz+jfWrSUzBklSgolEpHtfaHEjtBOcP9OUfKesx+8oqH3Y+DXQkzYxs+BH0eJ89TjESKiuK5UCgmIgWbom9BnhvhdlBpn5cV1SHqxjgD3qyRg5B0ROyxX2P+inlCNBFc5HCq4RAEDILQLpPwmeu5lzuHGyYXR1jYKyN5uSvLK7VQI1HF+MsKNbQI5lFnWzOvJaoU3V59k5tQuNhUVAEsPZDOuUyhn8qvYWlHIpG6RPH5DPA/bWdQBjEoKIa+ilqUHc0gt0hLt58Yzw1rjcV7Et4daTlWtsZl5YT1HsysoH9gVHxBjX9f7Rdx3fUuYm78w7Nz2fuObJDJRfdWUmjJYdp8Q7G94BTJ2wZLpohXzgZ2O4woVLtD6ZuGzseNjKE0Vu7I9HhJmn4njYeN/bZO9ej9x7Qx5fWPFJkPNm4BVVKqova7NtfwDqE+Ps1itNnPBeu7tG8OzS4/aiBcAuRW1vL7qBJ0jvXn251SGJQTx4vBWPLTgMIfteKw9OaQlJ3IrmbUzg8KqWtqHedIlypepPaP4YnNqs9fXM/tQOR0HvoKyJFUIWOcjU0KHyWK+BqKqqCK7+esAtv1PjJkth0HqJhEhXJUnNqaCOzi8Bhu8wmHaGiGCHPtJCA/d7hdpHo423wDCugiz9frrBOHXNuQNkYJ3JVG4iPNPXgz6OvN6Vz9Q/j3ig504+SOcM8rrEI1KOJnXO5grZFJkF4gl9XFTUl03URrRLpgvNjkeGNafLGBMx9CG2Dl/jYrPJiWx+lge+9PL6BTlza1dIqisNXE8p9LhcR67IZ4XlyezJ61RKMkoyWD1sTzmTO/K55tSUcml6C6QflJtMGFR+4AmALPFSmFVLbVGCyq5lAB3FXIscOAHMXkJ7ypiq0AMVH4t7B+0OEW0nbS4sW7B7yb6IP8oxkmuAv8WouLCoBXVGsom6r9fnMgDL0kV5/CLEwPQ1YgllbuItBUn1yVWq5WMkmoSQy9gGHY5yTt61fwvAKQSCXFeUg4UmIBL3DEK7wrHFkH2XlER5cTJBfBQNy64S7R6wrwdT7ZdlTKsNI6J9/ePY8r3exy+/mBmGR0jvBt2fSN8XPlicke+2nyOlMIqBrYKQKOSU2uykF3WvOqjR4wvCSGe3P793obHsstq2JZSzNtjEukb78fWFCHYq2Qym9YUexjdw7FOXY3VO4oCiye1NRJUxhr83ZUoZArocpeoXiqoi180aIWwcX4rBQjjTasFjv8sRItxP4BX5AXPj4uHKKO/5Usw1Yixst7bous9ouIja69IewjvJqo2rnb1RVNUmitjlv0vxNtVbObUJ4E0FQPdVXKsVqistb95tftcKf8Z0pL9GWVM6xVFpd5Edll1s9dN6R5JXnkN7/3W6PWSXVbDuhMF/DC1C96ujuN4tXozxsx9lAT1pLZY1zgnlEmFqHZqNcT0g3ObRSJXaZqokq3Isn/AgDbiPakb6n7JYFHdeinzKs8w0ZLVfqIQE9UXMd67+Yp2507TIGuPEPHDuolNr6v1XXb1vWqbHU6cXE2cAsZ1iJ+7kvGdwpi/V/wx3ny6kBGJwaw8ktvstR0jvDhbqG3YKPFwUVBeY8f1uI7CKj3PD29N/5b+aFRylHIpLy5PbujdPZRVjptSzqn8Cga0CrR7jAB3FSqFzEa8qKdUZ2Du7gxu7RLGmuR8nhsewk/77Q8q/eK8ca3Np0Trz8ojuXy68SylOgMeLnKm945mcqdA/Hd9LlonbnxL7Eid2yQmWQFtRHl66Tk7B35WtFpMWyNKTK0W4W8hVQi/Czd/h58PcpXjsj6PEPET3cfx+5386yirNlKlNxHoeRUqMPSV4jufMObKn6sJLXxlrEszYrFaLxhL2Qy/eFFKe+pXp4Dh5A/xcVMyoKU/m04XoTOY0RnMRPu5kVasa/baab2i2HyqsOF9MqnE4aILhL/GKyPbkF1Wg5+7Cp3exH0/HmhoUTmYWU58oDvpxTpaBbk3JHDVM7l7BM//fMzusV9fdYJv7ujcIGAU6/SEe7s2pKGcT4C7CqVcQo5bEptPFvHR+l0Uaw1oVHKm9ozkjp5RBHiEwO2LhbfTsSVCmO/zH1j7jJ0PLkaI+iM+EP/rEyPGzcoc0V6i9mo0xj4fpautWA+iFUXlLjYPnPzj8NUo6RXny5pj+YzvFMbcJu1SLkoZJjtVGU1RyKT0ifdj8+kiAj1caBHoTrG2pOF5qQQGtgpg2qx9zd5rNFv57y8nePrGluxLt28me3OCL2vN3Xl9Tgbl1WfxUMu5t08ME7uE40c5bHlbJLENe1u0/ebsF9VD9qLnFWpIGAtJt4vKC5VHY0SqrlAYyVstoPYR/jMXQiIRc8hLQe0lfvwdbLo5ceLkT3EVHOecXCquSjmP39CCcZ3CkErgp/1Z3NQumJvbByNtsnboHefLRxM70DLQHT+NUNTzK2voFu34D2yXKB/OFFQxY9ERTGYrE7/ZbWM8BtA62IPfjhfippQTbGdR1iXKh011E0d7rEnO57auEUT6uKE3WugQ7tXsNSq5lGf7+CLxCGPOLuHXUaozEOnrSttQT5YfyuG99WlUtbtTlM2uehx+f0n4XVTmil7EER9AdN8mB/WAfk8DVjE4BbUTvX/fDoQve8HnXUVbSX6y41QRJ04ukfQSsbgKuhoeGPnHAOuVLz89j5Y+UioNkFJ2ifeNRAphXeHUKvsrOSdOmuDlquStMYkMaROIRALv/3aa125uazOGyKUS7uwRyZiOoYzpGEZ8gIZWQe5klujoFOk47aZPvD93z9nP88uOUV5tZOrMfTb+GhIJmC1W5u7JYHrv5hV7FxJIdAYzUolIQJFLJVitsC2liNu62Cl/B/47NIKM0hrWHs9j1dFcwr1dkUklaPUmPtuUyhurTlJRbRDjWGQv8I6EcxvBrBdjXNPkgui+MPx9+GmKaCdZMl2Mj/Nvhc86w1e94Kvewkep+iJSF5z84/F2VfL+uPbo9EZ6xfkxsUs4srrJZanOQFyA42QMb1cFJouFRfuySQzz5JONKdzRI8rmNaHealIKtfYPgPBAC/ZS46luXoUR6etKdIAXT648R3m1aHVxVynYkVrCgr2ZaM1yIczVlgsfiy3vgK4E8o/DhB9tqyr8WsCYb2H1f4TxdUx/UXXkFiDmhjOHwxfd4cue8P0NosXEaN9zx4kTJ9cXzgqM65QADxdevbkNDw+Mo1pvQiGT0jLQnfseiaVEa8BksZBaqOVMfhWfbDzLe2PbEeKtRi6V0CXKh52pJQ0tKPVE+Ljiq1Hi767itVFtySyrvqC3xttrTvHO2HZ8+PuZhr5ijUrOTe2DWX+ea3VTFDIJpToDjwyKJcDdhU6RXqxNzmfenkyqak30jfPiyZ4+eElrKDKH8NWWQ7QI1PDkkJbklteQWqRjcOtAwrzVVLhNxn3Ph+LA2kKxkyuVCTV98VRhrtT9AaHCW8xwZIFQ4aP7irLCRbfbXlzBcZg5DO7fLiaFTpz8RdLrdoevioln7mHhgXKV+7/jvKTIJLA3z0xLn0vMrY/oLnwwik6J9AMnTi5AsKea98e3p0Srp7LWhI+bgscHxWOyWjGZrUT5uqLVm7jhg60MaxvEB+Pb4+WmYN3xAu7rG8P9cw80G9fiAjTE+Lnx8k1t0bjI2WXHm0mC0NiySmtIzqngpZta8+nGsw2LKOUfJAwZzWaGtA3izp5R5FfUopJLsVittAp2Z9aOdHLKa0gIceeZ/kH4urtQI3VHa9bRMsgDN6WMRwbFszY5n5/2Z7HySC6PDYrH01UpKgJNepHmc3aDaI+culpUFcoUos1jybRGQ8OBLwi/pqr8xourKYNfHhW7x61H/pX/PE7+IQR7qfloYhIZJdWMTgphUrcIdHozKrkUjYuMG9sG8dvx/Gbvu7+fmIPW+7uUaA2sO5HPW6MT+eD30xRrDVgsYpPqQpgtFhbf14NvtqayJjkfpVzKhPY+TOoew63fHwQg1EvNc8NbUVFt5FR+FXKZlAKDCpfWo5GfXCYOVJEtfryjoDBZmOGqvYUiWZEF614S98quzyGqj2iDKs+AWSNsU3gqsmHuGLhvGwQ5MOZ04sTJdYNTwLiO0agUaFQKSrR67vhhL9N7R/Pjzgy6xfqikkvpHOXD+pMFtAn2wFuj5MP1KaxNzmfxfT34cnInvtySyoGMMpQyKcMSgxiTFMqqo3nsSi3hTEEV4zvZ7/87nltBp0hvDmSUMWPRYe7oGcWDA2IxmMSsMMRTzY1tg1h6MMfu+29JCiXUS01WXX/w6fwq7ugRSZdoH4LcVSgxUlJawlvbanh8sIkADxXPDmvNjEWHG8ylQMS5zpnehTD/VrYxcVK5ECxqy0W8miM2/Nf+4/pKIYT0ePCCn78TJxdDerEOHzclLopLXNj/GfIOg8/VL+t2kUuI9ZKyJ9fElLaXGP0W3F6U8Z78xSlgOLkoPNSKBj+M7WeLmTprH5G+rnwyMYkao5nKWiMfjG+PXCYht6KW99adZlqvaObtyeCLyZ34cvNZjmRXoJJLGdk+hNu7RbDySA6fbkylb7wfbUKaezlYrCL0yk0pY+aOdLrH+PDfm9vWRZFL8HZV4q9RUaTVN3uvt6uCYE81hVW1HMkq57ONZ8mtqGVIm0Beuqk1PaK9kUutKMx69p4rosTsxqxdJ9hjY7adymOD4pncLYJ5ezLJKqsmNkBTJ9hPEUaAZoPwxegwWZhWn49XpPDIqGq+8ARg/SuiIsrdfnuok38XWr2JzWcKyS6tZmzHcKxWK55qBb+fyGdil3Ci/VxZuC+L8mojkb6u3NsnhpzyGiQSKKrScziznJ6xvvx8MIe0Ih3PDW+Nq1KGVCIh2MPFJh2vKUnhXni4KDhbWMWopBDurjtum0BXCitryK/U4+Om5P/GJPLUkiMUVDbecx+tT2Hu1LfoWJ6OLK+J2a7cRfhDHZpr/5c1aIUvmtkkEkvsRQhbLcL0c9RnzdPvnDhxcl3hFDD+BpToDJTpDET6uJJdWs1rvxynvNqIQiZheGIwTwxuwdID2axNFpOWr7emMrRtML3j/JjeKxqr1crG04W8vuokL49sw/1zD1BjNPNg/zi7PboL92bxvwntuX/uAUp0Bj78/UzDc3f2iORAhoQADxdGtgu2iXsFUeXRN154WpzIrWRKj0jCvdVMn72fUp2B/41vz6ydaTw8IJ43bgmh1mDk3j6xvPbLcRvxAoSJ1CMLD7Nk7LcELrhB7EKBKAsMShRChsVOSa+Lp/C7KLDfrwxAxnboeq8zGcHJXya1WGe31eqyoysS7VMxA678uezQ2lfK9hwzVqsVyaX4YMiUwg39xPK6Fi8nTi6Oqlojn286S594P6Z0j+Q/i480lKYnhXvx8k1tWHowh60pxQR4uJAU4c1/fznOxK4R3Ns3FovVyrHscspqjHy5Wfgl7U0vZXJ3+9V383Zn8vzw1rywPJnd50ob0rykEvh6SifeHpvIfT8ewNRkVSaTSnjppjZ8tSWVHjG+hHmreXtsO4xmC4EeKm78aBvVBjM+bkqeHdaKbJ0CSXXVeeKF4OMNKXx7R2cW78+2La/3joA7VsDSu0X5vL5K9PGfL1R4R0HBCRxSkiraUJw4AfLKa+kU4U3bYE/eWn2Svi382XWuhFP5lXx2W0dyy2t4aUQbXBQyirR65u3N5KH+cczamQ6I9uYPb+3A0ewKDmWV2yQAvXFLAs8Nb82bv560OadGJWfG4Hi+255Gq2B3/DUqZm4/zcbThYztGMpdvUU8+JTukXy8IcVGvACRPnTXvGOsnf4DIXN6NSbzVOVBqxGQf9T+L9vmFjE3NOgga7fjDyX3kEjtcAoYTpxc1zhXb38Dqg0mbu0Szq5zJXy4PqXhcaPZyorDuQxtG8T8vY0mTOtPFqKQSZnQOZy9aaWU1xjpHu1L/xb+PPnTkQZ39N+O5zO9VzTfb0+zOV9FjRFPtYKVD/dm7u4Mdp8rwU+jZFyncLLLanh/3WlkUglfTu7IkLZBLDuUQ43BTN8WfkT5ufHkT0dIivDCVSnHbIUPN6RQqhPGoksPZtM5yodHFx5izxOdcS08QLhPRzJKmrtYgyjnLVFHEvjQXlEGK3cRUVAKNfSaAdvea/6mwa8Lh2fPsMay2vPxa+kUL5xcFs4VaQnxvArRZLmHAMk1qcAAaOMnY8VZE2fLLcR7X2K1SWQv2Px/YgHlNAZ0cpHoTRYqqg08PbQVd8/ebyMcHMoqJ6eihqUHRXzikgPZjO8UxhujE9mZWsyWM0UMah1A12gfHlt4qOG9tUYLp/KrGJ4YxOpjtgLA4axyXhjRioX3dmfmjjTSi6tpGaRhWq9odHoTW84U8d2dndl4qpDT+VVE+roxLEGMvxtOFtC/ZQBerkomf7uHKr2J6b2iaB/uxa7UEkp1Bp5depTfHu/L7RdIS9lypoihCUEENRVFZUphgnv3BqguBqkShr4Di++0fbOuCFoMdfyBuvkJ4d+JE0BnMOGlVnDvHPF9fXBAHB9vEHPMZ5ce5YURbSjR6dmdVkKAuwvvj2tHWbWB4ioxnyurNvLeb6f5YnJH1p8sYG9aKT5uSm7vHklBZS2ZJdV8PaUTq4/lkV9RS2KYJ33i/Hhn7WlqDGZCvFxICvdmf6YQ81YdzeOevjG0DHQnIdSj4VrOp7LGRKbBg5CH9orvvNxFJH6Y9LD/e9Fu3BRNICSOE9VMchfwjoFMByKGV4SYXzpx4uS6xjmS/Q3wdlXSIdyLRxxk01uBYq1t8sia5Hx+O55Ph3BvbkkKYU9aSbOWj4X7snh0UBw/3NmZ77anUVCpJzHUk4ldwymoqCXcV02ZTs+QtoFU1ph4a/VJCquEGm62WFl9TPQtBrirUMikrDqa1+DcHuTpQnqxjuyyamrreiVlUgklWgMeLgr0JgtWXRE+vz2M+9hdF/z99SaL2FnyjhIPVBWIneikycLZecs7UJYuytMHvSJ2e9VeIr7KXpmtVAbtb7vgORuorRCDYeZu0VN5PcTJOblusFqtpBXr6Bjh2DzwspF7SIhy1yjHvaW3FIUUtmebLl3ACO0kJo4nlkOfJ6/I9Tn556FRyZnSI5Kf9mfZiBf1SJA09OIDLD6QzbJDOXSM9MZVISOvvIYlB7OprLGt1Pt4/RleHtmWQa0Dmb8nk/JqI91jfBiaEIRGJWdtcj5erkpuTHAnp6yGSd/uaTjP7F3pzL2rGxKJhPyKWu79cT9Gs5UwbzUlOgM+bkqq9OJ8JToDni6NlRQWK+RX1jarNmxKRbWBpweEEaQ+zzBXV1QX8e0ievw9BsHUX4W5dd5R8beh2/0Q1Rs2/te+GWGvJ0AT9Iefu7iQbCg+I0RH/1ZCeLwaseFOrhpRvm4sPZjd8H01NIlTza2o5aH5B4nwcSXG342zBVriAjS8+esJXr8lgZQCLWuT8zFbrJzKq+Tm9iEEerhQotXz319OkF8pWjR+PpjNaze3pazGyObThXy/PQ2rFXrF+VKsNaAzmNDWmePqTRY8LFV8cXMQZ//AS7Oy1gRe4eLHbBIVGCaj8IfZ+SkkLxEvTBgPvR8XwgSAXAndH4Qj8+0fuO9Tfzy/MxmhKleYamvzISQJPMNFPKoTJ06uCv8IAWPr1q289957HDhwgLy8PJYtW8Ytt9zS8PzUqVOZPXu2zXu6devG7t0XKCO7jvDTqMgqrXbogJ5ZWk3LQHdOF1TZPG6xwsHMMqb2jGRvevNyVYBPNpxl6QM96B7ji4+bkkhfV9QKKe7eaqpqTagUMj7ZcNbue29uH8x/lhxtqK6oRyqB/i0DuHfPfu7sGcWD/eLwc1ehN5oJ8nThVH6V6I2srgBdEQGmHJQyKQY70V0KmQRfTV2sqbEGsveJRJKSVPFYu1vhtkVCMZerxA5TPZG9oPcTsOOjxmgtpRuM/V4Men9EdanoO956XpVHv2eh232XHqfl5B9HfmUttUYLwVe6AsNqEQaeoZ2u7HkugEouoZWPlC1ZJqYlOogadoTcRfTeJy91ChhOLhoXhYyu0b58vinV7vMVNUaCPFwaFksAJouVvXUR39N7R1NU2bxlwmKFV1ce5/3x7ZjYJRyt3oRSLsXPTcWRrHL6twxg9Bc77Z6ze7Qvvx0vYHZdGX09k7tF8PPBbGbc0IIbWgcwoXM4aqUMvdHM8MQgZu5I51BWOck5FfSI8WXT6SK7xx/axo+wvW8gGfSiGK9MRtEOufIRKEgWLwpKhJs/hfDuMHmpGBulcuFtYTbBlOUihaS2vPHAHW6HduOF0ccfUXgK5oy03cn2ioQ7louIVif/CNQKacO9AqCUS1DIJDYG8Jml1WSWigrZR9UKirUGHph7kPZhntzTJ5oQLzVh3mpeXnGcDXbS6XQGM+5qBS+tOG4jNk7oHE5yTgUeLgo+mZiESiEVJqJSCyG/3ops7Gq8XBUNJrrnExugqTtBMRxeIKpxaytAqRFVuL1niDmh2gcU57V4+kTD6G/gl0caW5OlcrEBFvgHBp4mI2TvhXnjGttXAMK6wYRZTpHPiZOrxD8iRlWn09G+fXs+++wzh68ZOnQoeXl5DT+rV6++ilf413BTyQn2VNtEqDZl4d5MnhxiP2M60ENFjL+Gar3Z7vNtQzwwma0Eeqjw0ygJ9nAho6SaMV/u5Pbv9nJTu5CGiNam9In3Q+MiZ0RiME3b4V0UUt64JZHF+7PoGu1DkIcLpwsq2ZNWwurkPG7/fg/708t4d1w7pGqhcrsay7i3b5Td67u3bwz+9ecvPiNiUEuaTGaPLhLxVxaTrXgB4t99noBHDsCkn+DOX+DB3RA36OJKBAuSm4sXIDLIC082f9zJv45zRSKBJORKe2CUnBXms37xV/Y8f0Civ4zduWZqTX8iEjWqt0gBKjp9+S/MyT8Wb7WCAHf799dP+7N4aID9lqQYPzfASs84P7vPy6QSITxKoG+8PxazlYfnH+ThBYfZfLqIUR2aL0Q0KjlP3diS1cdsvZ9GJ4XiqVbgpVbg66ZkSo9I9qSV8MqK49w95wAvrzzO7T0iGdQ6gHNFOv5zY0sUsuYDeqSvKx1lqUh0BaBwFQ+Wp4vkrHrxAsTO7w9DxXOuPuAZ2mjMKZOLKsQHdsC0NXDbQnh4P9z45sXtEFflw4KJzcvwyzNg6V0istLJPwJPVyWhXo1zoXXHCxjb0b65+6DWASnlbA8AAQAASURBVOxrshF2Iq+SVsHueLsqeH3VCe7oEYm7qvme6Mj2IaQUVDWIFzKphAf7x+JftzH1w/Y0DmeXM29PJv9bd5qMWles/m3wKE3mP4Ptj3djkkLx06iEmfvB2fD7i43twgYt/DoDVs0Amaq5eAGixbjNKHhonxD7Ji+Bhw9Al7vA9Q+qKatyYd5YW/ECIHsPbHkPjHbMQZ04cXLZ+UdUYAwbNoxhw4Zd8DUqlYqgoIssnbwOCfRUcWPbINYkN3cXr6o1Ee3nxhu3JPDJhpSGNo/uMT480C+Wd9ee4q0xiTy+8LCNAh7l68r749qhkMtIK9Hx0/5svF0VDGodyPRe0Xy5JZUXlyfz/vj2bEspZltKEa5KUdLrqpBx+3d7mdglnJUP9+ZkbiVIwEutYM6uDEp0er6c3ImMEh2VtSbSi3XE+Gv4cnIn5u/N5GReFYPjQqi88VO+Ou2Gv5+K54a1YtbOdPIqagnycOGhAbEMTwxGrZQL07JNbzVWUjSlpgxO/yrKAs9H5S5+LnXXSK+F7R85fn7HxxDSwWn09C8npaAKuUyY2l5Rcg+JKob6MthrRIcAGfNPGtmda6Z/xCUOH2Gdxf1ybImIenTi5CLw0ah4eGAs02ftb/bc4axyXr25Dc8ObcXXW1MpqzYikUC/eH+m9Yri6SXH+L8xiSTnVDSYfwLEB2h4d1w7XJUyJMCH689QazRzR88oPNUKXl2ZzGM3tKB/S3/m78mkrNpI3xZ+DGsbzII9GfwwtQspBVWUVRuJ8HFl+9liNp8q4vVbEth9rpRlh7KRIGFKj0g81ApeWp7M00uO8v2dnQnzUnMyv5IvJnfim62p7EsvQyWXMjwxmAf6RhL02x1wwytikWXSw56v7ScmmGph73cw+L+iLL4pUploKfG0vxi9INpCETtpj5yDwoPDzffSj+vkukMhkzK1VxSLD9T5yBzM5p2x7XBRyFi0L4saoxmlTMotHULo1zKAGYsOo1HJeXZYKzqEe7F4fzZpxdW0DfFALpMyc1oXlh/KYXdaKZ5qBbd2CcfXTUmot5pADxf0JgshXmqSs8upNppIivBm5ZFcUot0JIZ5Mr1XNO+tO8Pboz7lm81n0LjX8tboBL7Zeo70kmp83JTc3Sea8Z3ChMlteSZs+8D+L3duE2gLHH9XFS7gHSl+LoXcQ/bbswCOzBObZhdT4evEiZO/xD9CwLgYNm/eTEBAAF5eXvTr148333yTgADHuxF6vR69vrH0tLKy8mpcpkM0KgXPDmtFVmk1ybmN1+LtquCbKZ14d+0pnhnaiqSpXbBiBSSsPpbHY4sOU15tpLLWxKeTkjhbqCW7tJoBLQMI8nTBiohNdVcpaB/uxaK9mSw9mMOdPaO4q7cw+Jw2ax994vy4JSmUoW2CqDaaeH5ZMgazhTm7M5i/L5N7+8TQLdoHncHMff1iiPR15XhOJQ/NP9gQo3Uws5xlh3J4d2w7Fu/PosoShT76Zr5dsQMoon2YJw8PiMPbTUl5tYF9aaUMTwwWb9ZrIaf5BLaB1I3Q+S5RMng5MOlFb6MjtPniNU4B44pwvd1/jjhbpCXY0wWZo/Koy0XOQSHCSa9CVOsFCHOXEOgqYV268dIFDJlStHUdXQgDnodLSTJxctW43u49s9lCy0B37u0TzTfbGhfWMqmEp29sibtKQVKEFz/e1Q2L1YpcKmHJgWwemn8Ird7E44sO8/JNbQBh/DmwpT96k4XCyloUchk1BjMtAt1ZuDeT9ScLaRGo4b3xHbj3x/3E+2v45o7OFFTV4qVW8vaak2w6XcTyI3k8NCCWdmFeVNWa6Bnri2/7EB6cd7DBBwpg17kSksK9eOOWBJ746QhbThdxb78YZiw6grerklu7hjOtVzRmi5X1Jwu4+8dD/DTpE4L86qpG9FrIvIBHVMYOMFSB/DIKCvqqCz9//s6zk8vK1b7/wr1deX1UW1795QRmi5Vnlh7l/r4xzL2rKwVVemQSCRKJ8D17ZFAcg9sEUq4zkF6iIzHMi9yKWr7aksrsnel8NLEDJouVke1DMJoteLsquGv2frxcFTwyMI74AHe0ehPDEoNZfSzPxpT+YGYZi/dn8cltSZws0rMto4bM0hJaBGq4s2cUgR4u6PQmjmVXoJDVFY/rq0TFhSNKzkJgm8v7gVXkOH7OpHem/DhxcpX4VwgYw4YNY/z48URGRpKWlsZLL73EwIEDOXDgACqV/QXv//3f//Haa69d5St1THqxjo/Xp/BA/1j8NCpO5FXi66YkwMMFV6WMvi38SSvR8VtyPlZgQKsAvtjc2GpxOKucu2fvJy5AQ5CnCyHeasqrDew+V8rc3RmU6Ay0D/Pk+RGtWX+ikNk70/n2js78uCsDg9nC1pRitqYU0yPGl93nShjaNoij2aJkz2S28sXm1IbzvTKyDX4aJc8tO9YsA9xssfLW6pO8MKI1BpOZA9mNk6Uj2RUcybZNDXlkULzwwJAphPmYrtj+B+QVLaJTLxWzCbR5oK3rR3bzF/F0KneI6iNK3u0R1Ue8xskV4Xq7/xyRUnAVEkgMWig8Aa1vvrLnuQgkEgmdgmT8nm7ijT5WpJcqQsT0h5R1kLUHIrpfkWt08te4nu69oqpaftqfzeHMMh4ZGMeQtkEk51SgUsjoEO7FxlMFpBXreHjBQZRyKW/dkohUKuGHHekNx6ioMfLk4iP4a1SMaBdEsVaPq1LOudJqZu5Io1hrIDHUk+eHt2bj6UJ+PpjD3rRSesb6suNsCTq9iXXJ+RRq9YxoF8Km00VUG8y891tjvHhCqAdjksJsxIt6DmWVc3OHEGL9NaQUainRGjBZrBRp9Xy2sbm/VLnMhyCXurFFrgL3YNv2kaZ4hIjKrD+LQSfGPl2RaKt08xPjn718dRAipPoqGBb/i7na91+JzoCvm5JVj/TmSFY51UYzA1v6s2BvFl9vPdfwOg8XOfPu7obeaOHzzansOFuMi0LGqA4hfHtHZ2b8dJj/rTvDze1DeHvtKQBmTesCQHm1kddXNbbd/vpIb7sJI9UGMx+vT+HxG+IJ9FCRWVrNmQItr/1iGw18V59ovFyV4jvr6LsKl8dUU1sE1UWg14n7I7Sj49d6hoHCuanlxMnV4B/hgfFH3HrrrYwYMYKEhARGjhzJmjVrOHPmDL/++qvD9zz33HNUVFQ0/GRlZV3FK7Ylp6yGCV/v4kReJSDh3jkHmL0znVdWHmfiN7u56bMdBHuqaRPszrhO4aw7XoBKLkUlb/6f92yhlgCNGBi+3XaOjzekUFJnwnkku4KH5x+iTws/4gM07D5XQlKEV8N74wM06PQmdHozg9sE0j7ME3+NyuY87cI8aR3kQVGl3qH5UonOgEYlx0WXhwI7LSFNaFgguflB3/84fmHnqRdnTtYUgw7OrIEve8G3A8TPV73g1K9gNkDXexv7kJuidBO9krI/IZg4uSiup/vvQpwt0hLqfYUFjLwjonXK377PzdWmW7CMohore/Ps++pckMAEkeJzeN7lvzAnl4Xr5d6rrDHy7trT/HIkl1FJoYz7ajcTvt7F9zvS+GzjWW76dDtBnmoOZJQyrWcUnSJ82Ha2GL1J7PyeT5FWT4dwb8prjCw7lMN7v51uSO86llPBwwsO0TPWl5aB7qw6msvgNkFE+LjiopTROsSDEE81cQEaesT44KlW2Jzjlg6h/Hwo2+HvsvpYHv1b+tMuzEP4NV0AiaTJOKbSCDNCR/R6/M9XAeqKYPPb8Fkn4SP1VS/hq2G1QuJE++/p8ZC4f51cMa7m/ZdbXsMHv5+mvMbEiE+28cmGFObtziA5p5J2YV42r+0TLyqXJny9i20pxVisQnBYsDeLN349yasj23Iir5Jof/F9jPR1JdRLTaSPGnmTCsVQLzWn8quabW7VcyynAj+NirwK+14SEokQ0gFw9YMWDtrHNYEiGeSvUHoOfrwFvugh7pFPk4QXVVA7+68f8gZ4BP+1czpx4uSi+FdUYJxPcHAwkZGRpKTYz5gG4ZnhqDrjarPlTBGFVXqeHNKS11edoKLWSEVtozhgsVp5cvER1jzWh0APFRIp/Hwwh3v7xvCpnR2esZ3C0JvMbDxl3wX90w0pTOsVTUpBVWOpHnB/v1heXnGcoio9fhoVr97cloySatxUMswWqDWaiA90x1+j5HTBBcr6ADeVjMBtz5PU8w2HAnqnSG+8mk5Eo3oLUWHvN42PSeXCjd3rEvsYQQxOP02xPXltBSyZCvdugYC2MP03kXqSc0A8H9YFbvoQPK+tF8E/nevp/nNEebWBEq3BxgTtipC9X+wkXSc7n3HeUvzVElaeNdI95BKHEIkUYgdC8s8w9B1Q2hEInVxTrpd7r0Srb+jJf2PVyYaUqqzSxv7z11ed4L83tyW3vJbxncPYnlLEvN0ZPH5DC15Z2bx6LsBdhZtKzlurT9k95ycbznJv3xg++P0MSpmEZ4e15Pllx9hzrrTu3DpeHNGGrLJqdHqRqlWtNxEfqGHZIcel5WYLKKQSxrf3R15+DpVcKuLBzyPK1xVvt/PEl8A2MOhl2Ph641glkcLAlyGg1QU/Q4dYLOIe3PmJ7eNlafDDjXDPRrEQ2/uNqABz8RJiSdLkizPAdvKnuZr336HMMkYkhvDET4exWEV0qlImxWK1UlRVS49YX3alCtPWm9sH8+XmVLvf29QiLTq9iXAfNWaLiBT+6NYOZJVW858bW+GnUZJTVsOWM0VM6xXN2aILzw9VcgnZZfZ9JvrG++OlrrtHXDxg2Lsi8jf/aOOL3Pzg9p+Fue2fpSoP5o4V88R6rFb4+R5x7H3filQts1FUQg1+Q1QYOnHi5KrwrxQwSkpKyMrKIjj4+ldK9UYz604ILwYvV0VDXJxEApO6RjCodSA1BjNKuRSd3kSgh4pR7UP5cXcGDw+M452x7ZizK52Mkmpi/d2Y2jMKK3Ayz3Gfa3pJNf7uKnzdlKw8mkuIpwvPDm/F/vQy8itr+WxSRz7ZkMKrvzROEMO81Xx1eye+357G0ze2xE+jQqOSo9U3323yUMsJ00jJ6voS6TolTw1pwbtNynEB3FVy3hydIMoE63HzhwEvCBEj56CYSAW3E0r7pU6qjLWw8zP7yonVKgw8b/lcHH/yEmEUigTUXs74VCcAnM4X91C495VchFuFgBHY+gqe49KQSiT0DJXxS6qRl3u64CK/xDaS2EFwZAGcWAEdbrsyF+nkb09WWQ1WK3iqFTYxqSDGwvv7xhIfqEGtkOHuoqCq1sjojmGM/2oXcQEaPrstiZk70zmdX0WYt5rbuwtDzYOZ5Q7PmVkqjAIHtPQnyNMFi8VKpI8be86VMrFLODH+GkZ/sbNBTJFLJfznxpb4ahTckhRqt4UE4Ma2gbQN8SC1uJq4gDjeGBXAU0tt20JUcikfTOjQPHFF7S3GvDajIfegGPxDksAtQFRo/Bm0+fYTtkCYdOYdhv7PQefpYKoRlYiaYJBdWw8eJ5eXjacK6NsigGqDmVh/Dff1i8HbVYGbSo67i4JHB3rQLdqHJQey8XRVsjPVcQLN7nMl9I3zQwJ8PqkjD847SE55owjROdKbd8a2QyqBOH+Nw42rloHuuEitPDwgls/Oi0/2VCt46aY2eKibiHxe4XD7UqjIEvG/nmHgGwsef0G8ACjPthUv6qmtgLlj4IGd0P95Ua2r1DS2Xjlx4uSq8I8QMLRaLWfPNlYapKWlcfjwYXx8fPDx8eHVV19l7NixBAcHk56ezvPPP4+fnx+jR4++hld9ccilEgLchRpvblJz939jEjmQUcY9c/Y3PB7l68o3d3TmgX6xbDhZwGcbzxLh48q4TmEEebrQIcyTaqOZ9ScKiPBxXHYqlQgBwctNwdtj2lFZa+RUbiU1BjN39ohk7u4MDmeV27wnu6yGB+cd5KvbO/LLkTw2nS7k9VsS2HpG9AtvSxH/C/DGqARO55Vy30/ZWK0wrVcUX97ekV+P5lFYpadXrC+jO4YS5mVnYaj2Ej9/NU7SqBO+Ao4oPg2GajFxc/VxihZOmnGmoAq5VELwlYxQLT0HNaXg/yd3Wq8QAyLkrDhrYvU5I2NaNI9ZviDuQWIBdmCmU8Bw4hB3FzE9MZ9Xa+7tquCjWzvwwe9neHtto2fSDa0DeHlkG8Z2DGXhviw2nS5kfOdwXhrRGplUwjdbz2EwmZtXODRBIgGFTML03tG8uuI4+zLK+GFqF9afyGd4YjB3/LDX5vUmi5W315xi9vQuJIR4EO3nhq+bkkhfV4qq9OxILSHO341ecX78Z/ERTuVX0SPWl7t6RfPdnZ1ZdSSPnPJqOoZqmNgljDA/T/sXVp+m5XuJaVqOMOlFC4kjCo6LmElnmsI/mhBPV0xmK+3CPHlkYBwvrzje0LqhlEm5s2cULQI1vHFLAoEeKjQucpsku6ZoXOSM6RiOxkXO9Fn7bMQLgP0ZZbz322li/d0oqzby+A3xpBVVYzRb2Ha2iMoaE0qZlOeGt+KO2YcYnhjEZ5OSWHU0j1KdgX4t/Lm5fQhh9lo2NQHiJ7TT5ftwyjMcP1dbAbWVl98g1IkTJxfNP8IDY//+/SQlJZGUlATAE088QVJSEi+//DIymYxjx44xatQoWrRowZ133kmLFi3YtWsX7u7XvwmjTCZlSvcoQEzkPNRy+rXwJ7OkmsX7s20md+kl1dz2zW6QwOL7e/DqyDb4aVTsTSsl2NOF/Eo9d/ywlxqjhQ4RXnZz6AEGtgpEpZAy7stdPDjvIM8uPca329MY3CaQm9qHsOl0od33ZZZWU20w8+PudCZ3i0SnN6HVm3B3kfHJxCTeGp3Aonu7kxjizr2LzjSo7zN3pPPU4qMoZFIeGRjHwwPiiPBxQ3olkx0UbqIf3xEBbZwJI04uyKn8KkK81MhlV/DPaPY+YeTnFXXlzvEnCHSTkugnZVayAasjA7ULET9EGHkWnvzj1zr5VxLk4YK/RoWlbtyr55GB8by99lQzw+f1Jwv5329neGZoK+ZM70qrIHd2nhWmz/f+uJ8oPzcCPFzoEuWD0sE926+FP8GeLjy+8DD7MsoAsbM89+5u/LTfsRfBt1vPcaagii8md6RvC38qaozE+mtYfH8P/jehA7N3pnOqrmJrV2oJWr2Jl5YnY7ZYSAj1ZHyCB9HkoLDjW3VFkKsu7GURlHh1rsPJNWVk+xC8XBU8fkM8jy08bOM7YTBb+HbbOQwmC+4ucl5anszkbo5bZ8d3DmfR/gzOFmqbiRf1rDuRT6dIbzpHeRPu7UqN0YRcKuH/Rrfj80kdWf5QT77bdo7M0mq+2nKO55cdw00pIzHUg7EdQwn3cW30v7jSeEc5fk7u4pwfOnFyjflHVGD079//gpPo33777SpezcVhtlgpqKylxmhGJZPi76FCJbdfnhnhq+a5Ya2YtyeD/wxpibuLglft9PeCMMg8lV/JwFaB3NkzijEdw5BLJbiq5Px8MJvKGhPfb08jrUjLu+Pa82Rd72M9Yd5qnrqxJenFOt4e245F+zLZfa4Uo9lKkKcL2XVlvY4o1up5c3Qizy87ZtOrvORADvf3i6V1sAdHcyrxclXYmHxq9SaWHcphX3opPz/QkwCPK7irDSIDvMdDItLRel5Pp0QCvR5z9vo6uSD1pelXlKy94BsHsuvvT/WwGAXv7tWzN89Mt0v1wgjvLkrj9/8Awx2Usjv5x1Ki1VNZY0QqleCpVti2CtYR5OnCD1M788HvZ3hycEteWXkcmVRCuI/aYQvkL0dzmTG4BX1b+NM5yhuT2UpeRS15FfoGP6jRSSF8MKE9jy48ZDP2hXi68Nyw1uSWV3NjQhBFuzMorzZSYzCTVVpNroNFGYDZCq2CPBj35U50hsYd6jm7M3hnbDsGtApg8YFGk89tKUW0DfHgl6N5AJRrA3j3phiumi20Jgj6PQO/PtH8OVdfCO5wta7EyVXEbLZQUKUX8065lAAPFRU1Bo5kVzRUyJ7P11vP8cPUzmw/W8Lt3aPoEO7J4Sxb8fCxQfFIJRDo7kJFjcHh+S1WCPFW89660zb38IojuYztGModPSIbjHUBKmtMLD0ovGVaBXkwvvNVrAjyDBOVvsV2vPI6Twd3p5mtEyfXkutvVvwvoFSn55cjeXy8IYVSnQGVXMrEruE82D+OQDsLd0+1kkndIrihTSBpRVqCPF2oqLGf8AEi2nFgq0AkEolNr2DLoMaKk42ni5DLpPwwtQsHMsooqtLTJ94fN5WMO37YQ0GlHh83JQ/0jyUx1IsdZ4uprSsddGRAJpdKiPPX8OWWVBvxop6vtqQyNCEIF6WMEE+13ZSSUp0B8yXs6Gr1RiRIcFP9ia+yTwxMXAArHoBqYdKG2htu/kw858SJAywWK6fyqxjR7gr66NSUQ9EZSBhz5c7xF2gfICXCQ8LHB/TMv1QBQ6aAuCFweL4wKHRGEv8rMJjMHM+t5PllxxoWMN2ifXjjlgTiAjQ2u6sSiYS2IZ68fksCOeU1/Di9K3N3pztMtwKxQNIZhO+Sq1J8J7V6Ex5qOZU14vFlh3KpqjUxe3pX9qWXUqw10CXSG7VSxp0/7CW/spZu0T58MjGJZ5ceZUCrAH45kkPrYA+7/hkSCUzrGckLy5NtxAsQGxWvrjzOvLu72Twul0kxNxlCC3VmTEqPCwoYRrOFWqMZlVyG8q9WakilokWkKg92fCz6+EGIpbfOdbaO/AMp0epZfjiXTzemUF5tRK2QMalbBA/1j+Xng44NaDNLq5FKJHio5Tzx02FeHNGaO3tGcSCjDFelnG7RPmxNKWb0Fzvp3yKAm9qH4KlW2J2j3tDan9+S8+0KkEsP5jCmYxgtAjUN1UpNKai0n0pij2q9CbPVirvLX5AE3YNg0mJYMl14z4Awz+1wuzC0/SvxxU6cOPnLOAWMq4zRbGbJ/mzeWtPogq43WZi9M4PM0ho+GN8eb7fmu1HuLgrMFitKmQdl1QbCvFzILrf/Bz0uQIPBZGk2yQnycKFrlA9708Vifd2JAn4/WUBSuDfvjkvk6SVHbSZopToDb/56krdGJzIiMYhfj+VRVGVgfOdw5u5u7A/sFu3DHT2iUMmlFGkNDEsIprLWxO8nCppd2+8n8rmpXQgTu4bj46bk9VUnKKjUNzzfJcoHN+Uffy3zK2rZfa6ERfuykEhgSvdIOkZ62xWAHKJ0hfjBcN/2xn5gNz+xO3Ud7ng7uX7ILqtBqzcR5XsFy0hz9on/vc78L+qRSiSMa6Hgg/0Gtmeb6B12ifdMy6GQvASOLISu91yZi3RyXZFeXM2Er3dhNDeK1HvSShn71U5+faQP4T62vkdSqYQwb1e81Ep0BhMvjWxLsVZ//mEbkEklKGVS0oq1eLkq8XZVEuiuYsYNLXjtl0bPo/UnC9lwqpAnbmjBze2DeWrJURvRfU9aKZmlR3njlgRhZn0kj5lTu7DkQHaDeB/l68oD/ePwdlWgVsp4YXhrNp8p4sdd6TaVHVq9ibyKGlwUUmqN4r39Wvjz9JLG1IRBrQJwcTDuGUxmsstqmLs7gyPZFcT6uzG9VzQRPq64/hnhvh43P+j9JCRNAV2xqEp08xdeAk7+URhMZhbszeT9dY1m6TVGM99vT0MigaEJQcQGaNDpTaw6mkdKYWNKSLSfG3KphEcHxvPGryd5flkywxOCuDEhkIV7s5m1I73B1HbT6ULyKmp445YEHllwCAAXhZT7+sbSIdxLGHcCr4xsw+ebztpUWwAsOZDNTe1CGNk+hLfXnCa1SVpJ1+g/9iErrKrlSFYFs3emYzRbGN8pjN7xfgR5/slKSZ9oYeJeXQQGndjg+ivmuU6cOLlsOFdpV5mCSj2f2Ik2Bdh0qpAirb6ZgFGq03M4s5zPNp0lv6KWdmFefDgxiS83p7LxlK0fRYC7ihqjmXfXnuLevjE2rRi+GhXvj2/Hp5vOcjqviuGJwfi5Kwn1VHMit9KhO/u3287x+qi2yKVSVhzJ4e0x7bijRySL9mUxsFUAfVv488zSow2JIyq5lEcHxRPmrWbmjnSbY+n0ZlYdyePzzWcJ81bz3rj2PDD3ADqDGZlUwtM3trR1mLZDfkUtd8/eR3ITx/edqSVi1+y2pEsTMaQyEbX1V+K2nPzrOJ4rSmijfK9gAknmHvCKuK4nS52DZLTykfLqjlrWjHNz6KtjFzd/iOgOe76CzneJXWEn/1iq9SY+3ZhiI17UU1ljYvWxPO7pE2PjfaTTm0gp1PLJ+jOcyq8iwteV+/rF8tywVvxfk02Aem5KDGbWznTm7ckkKcKLt8e0I8JHzaDWAUglEj7ekILJbGFc3cIm3MeVe2bvt1sxmFdRi95koaxaj9li5bNNZ/nktiTeXXsKmVTCM0Nb8dLyZHIrGpPBRrUP5e2x7WzECYDKWhNyqRQQ5z5XpG0YL33clAxpG+Swt/9IVgWTv9vTsEg8kFHG4gPZfHZbEoPbBKJ00Hp6USjVoIwE7z8RQ+7kb0NhpZ7Pz0v0AGgf5knfeH9+PZrL9rMleLkqmNg1HFel8LwwWaw8MjAOlUJKfICGt0a3Ja24mhGJwUydtc9uNdSp/CoCPVTc3D6YdScK+PS2JGbvzODjDY2tGC0D3fnf+Pb8Z/FRipoIkjq9iTXJ+Ww+XciHt3bgmaVHKajU0zbEgyi/C28WFFbV8tRPR9mS0mhOuyetlPgADXPu6krwnxUx3HzFjxMnTq4rnDPGq4y21mQ3WrSe9GKdzb+rao18vy2d6bP3czCznNyKWtYez2fiN7uZ1DWCVkGNi5sWgRreG9eOd9ae4rvtaby1+iSVdWV82loj+9NL+eD30zzQL5ZJ3SJYcjCb11edZEtKEcdybHsam5JWrEMll9ErTvwRf/bno5TpDHxyWwfu6xfLC8uO2fxOepOF9347TccIb/w0tmJM7zg/5u4R1RvZZTX8uDud0R3DaBviwaJ7uxMb8MeLtfUnC/6fvfsOj6LcHjj+3Z7eOyQBQu8dBKSIgIioiGJBwYZdr/2n167XrlyvvYsFBRuKCCgiTZHeewuEkt53k2z//fESkpBdCJBN43yeZ59rZmZn383NMDNnzntOleBFuZWpeaw9WnhNCF/aeqSI8ADPc/drhaMMDq+FmIbTPtUTjUbD5M5G9hW6eH+j97nPXnUYC7l7YO/C2h+caFCKrQ7WnODf56W7sylzVEzBcLrcLNudzaXv/M2fO7M5UljGin153PDZagw6LbcPTTm2rUYDozvHMbJT3LFim+vTCrj8veVsTy/m8vf+oUtCCO9N7MkXN/blYF4p983cSFpuCftzS7yOacW+XEw6HWEBBlal5vHi3O1c2z+ZN67swf3fbjwWvADVEvKnDYdJzbYwuE3UseU6rYak8AD6t4pg6oRujOoUy/aMIjQaOK99NN/fdg7NvbRiziwq496ZG44FLyp/1kPfbyK7+DSOOXHWKSyzV+seEh5g4F/nt+XWL9cyc80hDheUsvVIEc/N2c7C7Zk8OKotd53XmoN5JaTmlJAYHkC7uBAO5pWQUVR2wqlcGw8V0DYmmBm39Oen9Uf462gx3XI7M4t5ds527h7eusrywW2jWXsgn/wSO6/+pq5Vr+6TyEeTeldvL3ycLYeLqgQvyu3OMjN7wxFcrtMoNi2EaLAkgFHHTAbdCVtFRxyXfZFjtvHukuoZG06Xm+fnbueda3rx3sSefDSpNxN6J/LwDxWpsD9vPEKuxYrL5WbZ7hwuf/8fJvROYuqCXTzy42b2ZJkpLLXz546sap9bWXiAgYJSG1qthjev7oFWo+GXTen8tP4I01ccwNt54ZtVaVzSvSKzoV/LCA4VlFaZG7lwexY3DGjBlzf1pXeLCPwMJ36alGex8vXKNK/rv/znwAkDRELUhs2HC0n2ZfbFkQ1qXnpMJ999Ri1pEarl4hQ9/1trZXO250JwXsV0gsg28M/bvhmcaDCMOi1RQSav6+ND/TFU6g6SWVTGoz9u9rjty/N3cHnP5vxy10C+uLEv30zpr7qHzFxfJcOj2Org920ZXNsvid+2ZZJXYuPy9/9hwfZMCkvt5JfYCAvwnvHXNjaYHzcc4tXLuxJs0rM/t4SPlu5jXVq+1zpUX69K45IeFee9mwa25ECuhfBAIy/M3c4932zgoZHtWPrQMP53VQ9aRXsP2udZbF47OpTYnBwp9F5YVIhy/h6uqyb0TuTjZfs8tkX9Y3sWPZMiSMst4b9/7OaV+TuwOl1c/eFK5m/NxOXGaycfUMdy96Qw8sw25m1J97jN3mwzsSF+6I9mXLWPCybAqCMtTwUUtx4pol+rSJ66uBMJYSfOniizO/nyH+9tT2esPkiuRYJ9QjQlEsCoY5GBRga3ifa4LirISLPj/qHeeqTQa9eP1BwLRWV2bp++jilfrOE/v26vUk/C7VYBkMyiMh7/aQsGnepGMmdT1RPKrkwz7eJCMHkpDHZ13ySmLd/PDZ+tJjbYxGeT+/DI6PaM69Hs2MnGk7S8EpqH+5MUEcB957fh2v7JvDi3attElxtsTicRgd4vbCtzu6nSOvZ4Dpfr9No6ClFDbrebTYcKaBXlw6kdaSuO9raPOvm2DcD4dgaSgjXc9UcJxbZTOP40GlVMcN9iyNjis/GJ+hceaOTOYSle108e0KJKACPPYiPfy1Neq8NFZnEZEz74h91Zxdw3cwOf/r3f4/SUjYcKGdA6iohAI2//uQdHpfPHT+uPcHVfz60hTXotiREBDG4Tw/8W7ua1Cd147pLO3H1ea/Is3utwFJbaCTLp6ZQQwgvjOhPib+D/ftzMd2sOkWO2UWp34nJDYkTASYsMnuxUdqJzoRDlIgKNDEipOg2iW2IYy/fmen3Pb1szjnXe2XSokPTCsmOZQH9sz2RsN88FrMMDDOCGZ37ZRnig0esDLoB8i42U6EBuHdyKB0a2rdZdL7OoDIeresH447lx4zrBwaL2IceKEE2JBDDqWIi/gefHdSbluKcuYQEGPr+hL3GhVdPkDCeIcoNKTz2RIJOe/BI7uRYbrWMC2XiwwON27y3ew9QJ3Qnxq1oW5YLOcbSOCeLvPblYHS4++Ws/87dm8N2agySG+9M21vtNXLvYYNrHBfPxpN4s2ZXN3d+sr9a9JCU6iEP5pTW+EAsPMHJZT+/1Kq7sk3RmlaeFOIlD+aXkl9hP+OT0jLgckPZPo8i+KKfXari7l4nsEjcPLSo9tSBii0GqMNryN303QNEg9GkRwaRzqtZb0GpUUb8WxxXwPNm5zeZwYXO6yS+xn7DuUWywHyF+eronhrH1uKmHf+/NYUjbKC7sHFdleYifnqkTuvP2n7vJL7FRXObg1i/X8u7iPfRMDifpBMV7o4NMtIoKZFSnOD5cuo/Xft9ZZX3flhEczvce+K8sItBAtJesFZNeW+2BhxCehAUYeXl8V1pVqiPhdnMs+8ETg05zLCgQE2ziUKW/2V82HmFUpzgGHhcUiQ4y8doV3fjfwt3szjKj12lPWBepY0IIV/dNYvPhQqZ8sZaisors2fAA1ckkz3zyzAl/g54r+3jvnDOuezMifDXdUwhRL6SIZz1oHh7AN1P6cSCvhB3pRSRGBNAmJoiEMP9qhbw6xIeg12qqPDUq16VZKIUldronhrHBQ2AiJTqQIJMem8PF5T2bMaFPIrszzdW2A1i9Px+bw8XPdw1kR3oxFpuDdnEh2BwuMgpLGdI2miW7slmZmstjF3agZ3I4HyzdxxW9E5m5+lC1OboaDVzVN5Fbv1rLz3cMJMhDtXSNBu4Z3ppFO7IZ0jbmpBesoKrSj+2WwPSVadWyP9rHBR+r0yGEr2w6pOrFpET7qANJxmawmSG28QQwAOICtdzew8jrq228u8HGnT1qllWFVq+yMNZ+Buc9IS0cm7DIIBMPjGzHpHNasHp/Hia9lp5J4UQHm6q1wo4IVBmJnqZQBJv0aDUanC43szcc4bYhKR7PgQDXnZPMe0v2Ma5HAloNVZ4Iu92QXlBG69ggvurXl6xiK+EBBmJD/EnNMZNfYmd1ah4d41X3r9uHprA/t4RAo47YEFOVjMdyNw5qQaBJx8LtmdXqa+i1Gqac24p1afmc2/bk3T5igv14eXwXbvpiTbVsjMfHdCA6uIbHmDjrJUYE8M0t/UnLLWFHRhFJkf5c0DmuWkZuuT4tIvjkr1QAbhncCrvDSViAgYISO3anm3tmrGfGLf252WIn12IlNsSP8AAj2UVlxIX6sTvLzNbDhUzonch0D9N+uzUPJbvYyo6MYo+ZIHed15pvVqXRKSG0Rt+vZ1I43ZqHsvFQ1XpuCaF+XNknEd1JHgYKIRoXCWDUk5gQP2JC/OjT4sStoaKDjLxwWZdqVc2DTHruPb8N//l1G4+N6ciTP2+pcrGUEOrHK5d3466v12G2OpnYP4nsYivNw/2rXcRV3qefQV2YvbEwjb++34TLrZ5G3Tokhc7NQvl10xE6JYTw71lb2HCwAIvNwUeTe/HoD5uPFTSLCDTy4Mh2/LopA61Gg0Gn5bYhKXRpHsa3qw+Sa7HSPTGcKYNbMmdjOue1jzmlvvYJYf7MuKU/szcc4ft1h9BpNFzdL4lRnWJPv9K0EDW04WA+UUFG3xXwPLAc/CMgJME3+/eh3nF6xrVx8doqK50idQxNquEpps1I2DQDVrwLF7zo20GKehXqbyDU30DrkxRsjg3x442runPtxyurZO5pNfDK5V3Zka6yKdLySigqszOxX1KVGyWdVsP/jWpHcamdrs1DWbQzm8Fto1m8s2qhP7PVSXpBGdlmG5/8lcqB3BLMVgeJEf48ckEHss2lDGsXy46MYqYt30/zcH9MOi2vXt6Nl+fvOJbV4WfQMumcFmouv0HPQ6PasWhnNj+sO0RRqZ3+rSK5aVBLpi3fzx1DvU+lqUyr1dA/JZI5dw/inUV72HqkiOTIQO4+rzXtYoNPWjNKiMpiQ/yIDfGjz9GWpA+NasfKfXlVOoGAms71954c7E43l3RLICLIyPdrDvHy+K78tjWDH9cdpszuIqOwjECjntkbjrDmQD4lNichfnpuG5JC54RQMorKGNejGVa7k1kbjhzLtB3YOpKbB7XiXzPX88r4rrSLC+aTv1I5XFBK+7hgbh7Uii1HCjmUX0qwX83OIXGhfnxwXS8Wbs/iq5UHsDncjOuRwLgezWkWLteFQjQ1GrcUDKiRoqIiQkNDKSwsJCQkpE4/u7jMTlpeCV8sP0Bafgn9W0ZwTkoUz87ZypbDRUQHm3hoVDv8DToyCsvomBBCjtnKq7/t5FB+xdOrXsnh3D40hb1Z5mot6CIDjXx+Y1+cLhc3f7GW7OLqT5aeu6Qzeh24XbAry8y05fsB+OC6XpTanPgbdbjcbsrsLr785wDr0vJ5fEwHbhjYktQcC0/P3sKFXRII8dOzK6uYmasPotdq+e62c05apMkTl8tNXokNDSpo4q0NnWj86vP4O964d//Gz6DjnvPa1P7OXU749lqI7w7tRtf+/uuAy+3mtVVW9ha4+OWyIJJDaxicXP8VbP8Z7t0qbesakPo89mxOJ4fzS/l29SE2HCqgTUwQ1/RL4puVaQxrH8OUL9Ycq3sxeUALhraNZneWmchAI9HBJmauPsivm9MZ16MZieH+9G4RwQPfbaxyfhvSNoq7hrXhqo9WVJvKaNRpmXXHAD5cupc+LSN5/KctBBh1vHNNTx75cRPXD2hB65hg7E4XOq2GORuPcO+ItqREB7E+LZ83/tjNmK7x+Bt0bDlcyHdrDxEf6sdn1/ep0uK8JkqsDiw2B34GnUyTPIv4+vg7mFfCLxtVp5DwAAPX9EtGq1HtezslhKDVwKTPVh87Nl4Y14Xv1x5iXVo+02/ux79mrCfHwzSP5y/tTNfmofy1J4dBraPILLZic7gw6rWsO5DPF/8cwGJz8NMdA5m/NYPYED+iAo2k5ZUwc81BDuSW8NGk3ozoGHvK3ynPYsXlUnV3apLZK4RofCSAUUMN4QaqqNROidWBUa/F6nDx6KzNVZ4mDW8fw33nt2HG6oN85aVTx+tXdGPrEVXUbOH2TLKLrQxIiWJw22iW783BpNfyfz94rvyeFBHAm1d159J3l/Phdb24Z8Z6yuwuooNMvD6hG28v2sOq1DxAVb2+bWgK1/ZLIjLIhN3hYm+2mefnbmPZ7lyMOi2XdI3mniFJJAY4GuXTZlF3GsLxB6raeZenf+OavslccNy8+VpxZD38/jiccxeEeq/10tBZ7G4eX1ZGqFHDrHGBBBhqcBFZVgg/3AQD7obzHvf9IEWNNIRjL89ixWZ34W/SUWZzMuiVRTwyuj0tIgN55IfNx54gh/jp+feFHTiYV8I7i/dW2ccnk3vz3K/beOzCDuzONLMuLZ/YED8mnZPM23/u4RcvqfTX9U8mq7iM/q0i+WrFAfZmWxjZMZYLOsfxyvydZBSpzMPm4f5MndCN7olhGPU6Su1Oth8p4rlft7E+rYAAo46r+yZx8znNiN/7LRxaDc37QpsREJoIWklxF9XVxfGXXVzGb1szWHuggIU7MvHT6+iVHM7VfRL518wNVYrpRgYaeX1CN1bszaVdXDD3fbvR4z5bRgXy6IXtMZc5mLs5nct7JfLivO0cOJopHB1s4sVxXRiQEonZ6uDrlQf4dPl+ikodtIsN5vHRKXSPDyA4NNwn31kI0bjJFJJGoNTuZE9mMS/P38nq/XlEBZm4fWgrnhrbkUnnqPm4FpuD9WkF7M42M2v9Ya/7WrIrG6vDxZ3T1zGoTRSh/gaSIwPYk1XMiI6xfLBkn9f3puWVHJsm8sf2LIa0jea3rZlkm638e9ZmPprUG6NOS5nDSaifgehgE6ajKa4GvZb2kXreOT+A4v4ONC4H4bu/wP/jGRAYDdf/CuEtavX3JkRt23K4ELvTfcLitWckdSkERDb6gF6gQcP9fUw8uayMBxeX8s751ev7VOMXCm1Hw8oPVBDDr2Zzn0XTlWO2smBbJu8t3ktmURndE0N5aFR77j+/LRGBJtUSfHR7gv30hPobyLXY+GZVGst251Tb19YjRei1WqZ8sZZOCSG8N7EnpTYnTpe7WnHPyrYcLqR3iwh+WHeIi7om8L+Fu/l9WyatYwL59rb+WKxONBpVYLpyMVF/g46eyeF8OrkPFpsDnUZDpPUgxg86qho3AJtmgilYnf/iu9X670+Ik0nLtfDR0lSC/HTcNKglozvHERPix7Ld2dw9Y0O1dsG5FhsajQaTQcfq/fle95uaY8HhVDVqmof788r8HdwxNOVYXbfwQCNxIX5oNBoCHIXcFbSEKy9OwmkIxa9gN1G//wtCmsH4jyHYBw8LhBCNmgQwGoHNhwq46sMVx+pWHC4o5fGftjKyYywTeicyc81BflynghYvje+CQa8FW/Xe3qAql5fYHFgdLhZuz0KjgbvPa0PLo9WpT3RjFhVkpPholehci5XnLunM1X2TCDTpaRbmT0ywCf2JCiWZMwn5fCghruPGVngIfn8CLn0PTD5sTSnEGVqZmoe/QUfyCboQnDanDQ78DYl9VYXbRi4xWBX1/O8aG2+ts3FPrxoUHOw0Dnb+qoIYQx72/SBFg1VQYuOluTv4ft2hY8tWpuZzxQf/8POdA3nkh81sSy/ige/UE+APruvFHdPXed2fUac9lgZfZnfhb9STFBlIUYmN5hH+7MuxeHxf83B/soutFJTYGd05ju5JYSSFBxAVbCLU/+RTOcIDjYQHGqHwMHxxYUXwopy1GL67Hm6YD8Gnni4vxOk6mFfCZe8tJ8dsIy7Ej8SIQJ6evZWpE7rx+u+7vL6vzO7kt60ZJ+wIFx1soqjMTl6JjftHtuWyns2JD/M7FrSoImcn+t8eolpj1rx9sONX6HPT6X9JIUSTJDmLDVyO2coTP231WHTz922ZJEX6s/VwxdOjP7dncVEXz/25AYa2i2HlvrxjP989rDVRQRXFCAe0jsLfS2Gwif2S+fHoxeSIjrEkhPkztF0MfVpEkBDmf+LgBUDaCjXHv7LgeIhuB3v/hBLvPcmFaAj+2ZtL+7hg38yrPbwGbBZV/6KJ6Buv54p2BqausfLjrpO3wyMgAtqOguVvqykl4qyVXWytErwo53ZDVpGVbelVsyY2pBVwTivPtVM0GmgXF8z+XAsGnYaXx3c51sEjJMDInUNbex3Hxd0T+H1bBgNSImkRFciwdjGkxATVKHhRhSULLEenfOr9IKqtmjoC6katpHrWiBC+4nC6+H7toWP1K5IjA9iRUYTN6UKr1XjsHAdqKnF2sZWDeSWc1z4GP4Pn675r+yXx/ZpDDGsXQ6f4EHomhxMf6iETz2GDlR9W/Kz3U9eEoc3VzyvfB3PWGX9fIUTTIgGMBq64zMHOzGKv648UlFXpBb9wRxbnd4wlOTKg2rYTejdHo3ETHWyif6sIvrypLzcMalmlIFjzMH++urkvEYEVQQ2NBsb1aEZ8mB8rU/OIDTFxbuvoU/8ylW5IHM3P4dCE31gwaAZftX+XTRfPJ8cl2Rei4bI5XKw5kEeHeB/VAdjzp6p7EXTy9oqNybg2eoYl6XhocRk/77Gf/A2dLwdHKfzzru8HJxqsTYe8B7Ayi8qIO64I5ozVadw6pBVhAdUDCw+MaMvyPTmM79mcufecS9fmVacntY8P5pmLO2GsFIT3M2h5amxHft+aicvt5tbBKWfW9cNhBZ2RvPNeY9v4hUzv+B5z+33JwasWYms1QmVgCVFHCkvtzNtSUfclz2IjPlQdU58v38/jF3Xg+Di9Sa/l8TEdKCi18es955IYEcCXN/YjvNIxp9HA+J7NiA72Y1dWMeN7NT9xC1O3E2xFoDeRd/5/2XrZQqZ3eJd5/aerYyO2m6ocL4QQlcgUkgZOr9V4bXsKUFBq5/ZhKfy5U0WonS43D363kWcv6cyh/FKW7c4myE/P5HNa0CYmiECTnj4tIvEzaD1WMtfrtPRIDGfO3YM4UlBKfomdIJOOBdsyeeKnLYzpEs/DF7Q7vbZUyQMAcDQfwNq+r3P9N2mU2isyMnonF/P2NT2JCz216uxC1IX1afmU2V10SvBBAKOsUBX1a6SdR05Eo9FwUxcjTpeNfy0sZVeek3t6mTDpql4d7y90seyQgy05ARTo/0P0oj0MDtvD8G4pUkn+LBR0gvaJP6w7zG1DWvH0L9uOLcsvsfPcnO28cWV3dmYUs2x3DvFhfkw6pwVxISZAQ5BJh7+x+n5D/Y1M6JPIee1j2JdtxmJzoNdq+XpVGmV2Jz/ePtDjQ4FTEhxH1qUzeXSViYVzDxxbbNRpefeyZxkUEIWc+URd0Wk1BFQ6FnZnmWkbG4xJr2Vlah7hgUY+mdyH37ZmcDC/hC7NwriiV3NC/Q0MbReNUa+CeT2Tw/n17nNJyy/hSEEpEYFGluzKZuG2DH68fSCJJ7tWNPhD5yvI6n4PD/2jZ8neimPDpNfywYR/c44hjBpMQBRCnEWkC0kN1VcldrPVzoPfbmL+1oxq67QaWPTgUMICjHy35iAvzttxbI6vXqvh9QndGNwmikCTAaP+5Mk2TqeLbLMNt9tNkJ/+WICjoMRGUZkD7dFCZYFHUwtzzVbyS+y4cRPmbzyWkluusMSGw+UmxN+AQacFSw78fDcHe9zHiK9zKbNXj6pf1y+Jxy7qKP3tRRUNoRPCK/N3MH1lGu9O7Im2tmtUbP8FVn8IQ/8NRh/U12gA3G43P+9x8P1OO1H+Gka20BMdoCXd7GJFupPUQhd6DSSFaAjWu8jJy+WwO4o2MUFMndCdLs2lqGd9qK9j72BeCcNfX4LNWf08cU6rCKZO6M5/F+zi27UV00wCjDo+uK4X/VqG43RpMOg0J53aWGJzUFhqR4OGiEADRr0Os9VOQYkdt1t1NgkNqMhIdDpdZBZbKS5z4GfQEhlkJMhU8TCg1O7AYnXib9AdO1cCOK0lvLdkH6/9eYDj6bQaFt4/mBZRkoUoqvLl8Td74xHu+Wb9sZ/7tAhn8oAWPPrDZoqtDgw6DUPbxTC0bTQXdokjPLB6GCHHbMV+tD2qQac9eixBaIABt1tldlgdLkL89MSG+KHVarA5XBSV2THp1YM0R3E2/1tykLf+qt4JSK/VsPCBIb6pOyWEaLQkA6OBCzIZ+PeF7dl4qID0ox1Ayr08vitRQSYCTXqu6ZvEyI6x7MgoVvN9Y0OICjZWibAfL6uojByzFZ0WAowGflh3iK9WHKC4zMGgNlE8PKodLaMDCQswElbpAs7hdLEtvYiHv9/Ejgw1vSUlOoiXx3eha/NQCksdrNmfx0fLUikqszOyYyxX9U0iMTwSzcVvsmlnEWX2bI9j+nbtIW4dmkLz8DN82iVELVuyK5vOzUJrP3iBG3bNh5iOTTZ4ASoT49I2BvrE6Zif6uDPNAcWO4SaICVMy7g2RrpE6/DTH/397vmHPXt/5TPHFC5/fzlvXt2DUZ2kGv3ZIjrYxBtXdeeur9dVyUCMCjLy/LguxIf589hFHbl1SAo7M4sJ9tPTMiqQ2GA/Vcjai1K7k5xiK3anE6cL3l28h/lbMjHoNFzWszlTzm1Js/CAKkGJcnkWG7M3Hua/C3ZTWGpHq4FRneJ4/KKORAQaOZBr4b1Fe9lypIjkyADuHNaaNjFBhPgbyC7T8vGKIx7H5HS5+XNHNjcOkgCGqDv9W0UwtF00i3eq67HV+/OxO928f10vnC43xWV22sUFExVkOnYNWGJzkGO24XC62JlRzH//2EVqjoWWUYE8OLIdfVpEEB5oJC2vhCd/2sKS3dm43ar96suXd6VFZCDT/k7ln315xISYuGNoCi0iA/l8jedrQofLzbLdORLAEEJUIQGMRiApMpAfbh/A6v15/LEtk+bh/ozr2ZxmYf7HnvAEmPQkmVRV9ZrYk2Vm5uo0zkmJQq/VMPX3zWyoNOd44fYslu3K4ee7Blab838wv5QJH/xTJYNib7aZqz9awe/3Deb133cxZ1N6lc+avjKNn+4cQMuoaNJLvNf0sDpc2J2SFCQalozCMrYeKeLOYd6L/Z227F2Qvx963VD7+26AmgVruamr8eQbtjiX1gdX8XTkIt4NG8sd09fx8aTeDGvftGqECM/8DDqGtYtmwX1D+GnDYVJzLAxpG82AlEiaHQ1wh/obCPU3kBJTsxv/ghIbq1LzMOq0hAYYuP6z1cfaRJbaYdry/fyxPZNvbz2HhLCqqe9Ol5u5m9N5enbFtBWXG+ZtyUCngct7J3LjtNXHgi17s838uSOL58d1ZnzP5jhdbgpKvNeAOZhfciq/HiHOWEywH69e3o192Wa+W3sQnVbLFb2a0yIqkKig6tkW+RYbq/fnERlo5O+9uUxdUNGpZFemmVu+XMvjYzowtms81368krS8ir9pk16L2w1j3lyG1aGuHfdmm/lnby7f3XoORUc73HlySI4NIcRxJIDRSCSE+XNJ92Zc0t1726qaSi8s5eNl+2gdE8TD32/k3xd2qBK8KGdzunhx3g7evroHIUcrrtudLr5ZecDj9A+TXsf+nJIqwYtyhaV2pv6+i5fHd6V7YpjXsSWE+hEg00dEA7NgeyZaDSf82z1tO+eCfzhE+iA40pjpTdBmJIYtP3DX6NG84QzjjunrmHXnANrH1c80IlG3/I16UmKCeGBku1rZX2qOhUP5pazan0d4gOFY8KKyQ/mlLNmVzdV9k6oszyoqq3LDVtngdjH83w+bPNaqevaXbQxuE02gSUenhBC2HimqvhEwMCXq1L+QEGcoOthEdLCJfl46+FS2L8fMjoxi2scF886iPR63ee33nQxqE1UleAEwsX8y/1u461jworL1BwtoGxvErkxztXUA/WswNiHE2UW6kJyFDuaVMLJTHC/O20GnhFBWpuZ53XbZ7mzM1orIuMXqYNX+fI/bdk8M488dmV73NW9LBgWldpIiA+gYH+xxm39f2IHYmhbxdFihIA0O/KNeBWlqmRC17PetGXSMD/HaWu60lRVC6hJI7Ada+ee4moSeENoM3cr3uHNIS2JDTNz65VqKymrQzUSISgpKbJTYnLwwdzs9EsP4a4/3tqWzNx7BYq36RNhic5Jn8dwpJNhPT2aR53OP1eHiUH4pEYEmHh/TweM2zcP96dTsDINy5izI3AqpSyF7J5R4P68LcaryLDbK7C6mLtiF0+32GIgAKLO7yC6ufiy0ig5ky2HPwbtvVqXxoJcgZXJkAO3jPF8velRaADm71XGQvhGKq9ePE0I0fnLFfBbKt9jYm23G6XJjdTgJNHrPeAgw6Kg85d9k0NIszHOAwY0b3QluwrQaDRpU2uLHk/twaY8E9Ee7C8SF+PG/q7pzbtsatme1FsO2n+CdfvDZBer1Tj/YOkutE6KW5FlsLN+TS9+WEbW/892/qf9t3rv2990UaLXQ4RLIS8Vv71zuPb8t2cVWHvtxM1J/WpwKu8PN7qxiHC518xV4gvpQwSb9sXNTOZNeW6XNamXqzOZd+a66NAvl0+v7kBjhf2z5qE5xfD2lP/Ghp9HZq1xeKnw5Dt4bAJ+PhXf6wvc3QOHh09+nEJW4XC7W7FdBMd1J6kB5KsJ+omMkNcdCgEnHR5N60/xo1xKdVsPoznF8dVM/4mp6bBRnwJz74O3e6jj4YDB8eoEK6AkhmhSZQnIWSowIYOfRVL21B/KZcm4rPv17v8dtr+qbRGRgxXx1f4OeKYNT+HVz9aj2+rQC7ju/LdOWe97X2G7xhAWqqSgJYf68cGkXHhjRDpvTRaBRR2yIH5qaFkjM3Qs/3lJ1mb0EZt0KUxZDsx41248QJzFvSzpu3PRtWctprE4bbJsN8d2bdPHOMxaWCEn9YN0XxCb25aZBLXnrzz2c1yGGcT2a1/foRCPhb9Rid6ig129bM7i0ezNemr/D47Y3DGyB6bibsKggI+N7NuOb1QerbV9cZqdZmD+HC0qrf65Bd6zteJCfgfPax9ApYQBmqwODTktEoMFjwdAaM2fBjGsga1vV5fsWw7yH4dL3wE+mXIkzYzLojmVd5JfYiQ/1q1ZYHiA+1I/oYBN+Bm2VqcY7M4romRTGurSCau/RaKBZWAAtowLp2jy04tgIMBDkV8Njw2GFv/8HW3+sujw/Fb64GG7+E0LPfAq2EKJhaBIZGEuXLmXs2LEkJCSg0Wj46aefqqx3u908/fTTJCQk4O/vz9ChQ9m6dWv9DLYBiAoy0fVoS0K7083indncMTSl2nZtY4O4eVDLY/2+y7WKDuSZiztVeUKl1cCdw1rTPNyfK/skVttXdJCJe4a3wd9QETMLMOlJjAggJTqIuFD/mgcv7CXw9xve1//9htpGiFrw47rDdGkWSqj/GdxkeLJvEZTmQ4tBtbvfpqjtBSrIs/R1BrQMZ1DrKJ78aSvphdVvGIXwJMjPQP8UFYTceqSI2FA/+reqnlU1oXdz2sZWT1n3N+r51/ltOOe494QHGOjWPJSpE7ph0FU/h71wWRdijmsxHhviR0p0EEkRnrudnBJzZvXgRbmdv4LFc3cHIU5F8NHgG8BHy/bx9MWd8D8uyOdv0PHexJ40D/Pnixv7EVxpyuX0lWqaiKeM34dGtiMqSD0oq3Js1DR4AVCcCWs/87IuA/L21nxfQogGr0lkYFgsFrp168YNN9zA+PHjq61/5ZVXmDp1KtOmTaNt27b85z//YcSIEezcuZPg4FOYW9fIuVxuikrt+Bt1tI4J4sLOcczdksGXKw4weUALPprUmyW7srFYHYzpGk/nhFDiPNSjCPEzcEXv5gxrF832jGJcLjcdE0KIDDIRZNLz8Kh2XNQlno//2kdRqYMLOscxpmt87bVGtZdCrucCUoBaZysFg7RiFWdmb7aZtQfyuee8Wi6w6XLCxpkQ1xmCpKvGSelN0GUCrPoQ1n/J5AHX8sgPm3j4+018cWPfmgc/xVmpoMSGRqMhLsTEuB4JzFp/hEd+2MRjYzpwZZ8klu3Oxt+g44pezUmKDCAisHoHBoC4UH/entiTzCIrezKLiQ42kRwZSFyIHw6Xi3n/GswX/+xn48ECWkYFMmVwK5IjA6s9BKhVJwpQuN1g81wYUYhT4XS5iQv147z20fy5I5v3F+/l3Yk92XCwgNQcC12ahzKqUywJof7odVp6JoUx/95z2ZdjId9io11cCDHBJub+61y+XX2Qv/fmEhdi4uZzW9E6JojgUwlWeOIoVdeG3uTth5aDz+wzhBANhsbdxCYSazQaZs2axaWXXgqo7IuEhATuvfde/u///g8Aq9VKbGwsL7/8MrfeemuN9ltUVERoaCiFhYWEhDS+dMxD+SXM2ZjOr5vTCTTpuGlgSzrEh7B0dzYfLUslp9hK/1YRPDamI/Fhfphq4YKrxOrA7nITbNKj1dbiDYajDOY8ABu+8ry++7Uw5nUw1LAYqGjw6uv4+8+cbcxcfZC3r+mJUV+LCWu7f1fprgPugZD42ttvU5e6FHbOg6GPsEHXhZfn7+A/l3bm2v7J9T2yJqsxn/vSC0v5c0cW3685hEaj4dr+SfRtGcHfe3L4YMk+soutDG4TxUMXtCc+1K/atJHTYXM4KbE58TfoamV/J5W1Hd7t73mdVg93rYGIlr4fh/CJhnD8Hc4vYfbGdH7fmsFd57XmQK6FacsPkG+xcWWfRK4f2ILYYBOGGl43OpwuLDYnRr2mSlbuGSk4qGrAWD0XCuXG3yDJy3EihGh0mkQGxomkpqaSkZHByJEjjy0zmUwMGTKE5cuXew1gWK1WrNaKSspFRV7+UWwEDuaVMP695WRVqgy9Yl8eozvH8cJlXRjRMQ6Hy0WQSX/mUfBKAmq7Y0M5vR8MuAs2faOeZFem1cGAOyV40cg1hOOvxOZg5uqDDG0XXbvBC6cV1k+HuK4SvDhVLc6F4nRY9jrdRzzH8PYxPP/rds5tE0VypNQRqQ0N4dirDemFpVz78Sr2ZldkIKxLy6dHUhgfT+rN8Pax2F2qmGdILU4PM+p1vs24OF5gDCQNgLTl1dd1u0atF41GQzv+0o5eP5Z3Frnp8zV0Twzj0dHt6JQQSkSgiSC/U7vW0+u0hPrX8gz24DgY+C/487nq6yJTILxF7X6eEKJeNYkaGCeSkaGKTcbGxlZZHhsbe2ydJy+++CKhoaHHXomJ1es6NAZWh5MPluytErwoN29LBnuzzEQHm4gP9a/V4IXPhbeEiT9AcKUbwOA4uOZ7tU40ag3h+Ju5+iAWm4MRHeNqd8dbfoSyfGgzonb3ezbQaKDTeAhLgoVPM7FVCSH+eu6duQGH03NbP3FqGsKxd6bcbjfzNmdUCV6UW59WwD/7cok6et6rzeBFvQiMhPEfQ9tRFcu0OuhxHZz3GJgksNeYNKTjr8zu5P3Fe6u1Rd1wsIDbp68n22w75eCFz+gM0HMyDLxPTTksl9gfrv1RXR8KIZqMJj+FZPny5QwcOJAjR44QH19xsztlyhQOHjzI/PnzPe7HUxQ8MTGx0aXRZhSWcv7UpZiP62lf7qo+ibw0vmsdj6qWuN3qaWxJrvo5IFIFNGQ+fKNX38ef1eFkyCuLaRMbxB1Da7H+RXE6/HS7emLa7oLa2+/ZxmGDdV9AYRo7uzzIs2v03DO8Dfee37a+R9bo1fexVxtyzVau+WglOzM9t9Q+JyWSjyb1OvMCmg1JaaGqh2Ezg1+oqq0j3Y0anYZ0/GUUljL89SVYbE6P66/pl8QL47rU6ZhOyl6qCtuWFqg6aIFREOCDFuhCiHrVQEKnvhMXp6KuGRkZVQIYWVlZ1bIyKjOZTJhMngt5NSYni0416uiVRgMhCeolmpT6Pv6+XplGVnEZD45sV3s7dbvgrzfAGAwpw2pvv2cjvRF6TYYtP9Buw4uMi7mFNxdC35YRDEiJqu/RNWr1fezVCTfgbmKBbv9Q9RKNWkM6/k56/dgQn38a/NV0kfD6HogQwpea/BSSli1bEhcXx4IFC44ts9lsLFmyhAEDBtTjyOpGeICRi7t5v8G/vGfzOhyNEA1fYYmdNxfuZnCbaJqF+9fejjfOhMyt0GV81RRXcXp0Buh6JbS/iMvyP6Oj/gh3f7lSWqsKwgOMXN7b+7nt6n5JDSf1XYgGKjzAyNgTXD9eJtePQoh60iQCGGazmQ0bNrBhwwZAFe7csGEDaWlpaDQa7r33Xl544QVmzZrFli1buP766wkICOCaa66p34HXAT+DjtuGphAdVP2GaWTHWFpGS4qpEJW98tsOyuwuJvSpxbnH+/+CDdOh9XCIaFV7+z3baTTQYiDagXdxV9jfaMoKuGnqt1h2LlJTzMRZSavVcFGXeFpFVT+/dWseSt+WklIuxMn4GXTcMaw1UUHGausu6BRHSw/HlxBC1IUmUQNj8eLFDBtWPSV78uTJTJs2DbfbzTPPPMMHH3xAfn4+/fr145133qFz5841/oyG0MrqTBzKL+Gn9YeZuzmDQJOOGwe1pHdyONHB0q1DNHx1dfz9tTuHaz9ZyfUDWjCqUy0V/UpbAUtegpiO0HUCaJpE3Ljhcbs5sH8Pz2yNpjc7+DhhNqZeE6HzZTLN7Aw05nNfekEpC7Zn8t2aQ+i0Gib2S+LcNtHEhcp5TzQODeH4O5Rfwqx1h5m3RV0/3jSoFb2Sw4kOlkxCIUT9aBIBjLrQEE4iZ8rpclNYakOv1Tb+yuvirFIXx196YSkXvfkXCWH+PDK6PdozLQbrcsKW71TL1NiO0OVK0Enauq9tzXbw8kor5/in8Z77eQLdZmjWG9peoGqPxHeX/x9OQWM/97ndbgpK7Gg0EBZQ/UmyEA1ZQzn+nE4XhWV2uX4UQjQIchV3FtFpNUQESsRciOMVlNi44bPVaDRw17DWZxa8cNog7R/Y9C3kH4BWQ6H1+aCVzIu60Claz8P9NExdk8zlIR/yfvtNJOcuhb+mwqL/gClYtdZrMRCSB0FCd1VPQzRJGo2G8EAJXAhxJnQ6rVw/CiEaDAlgCCHOahmFZVz/2SoOF5TyxJiONXu65CiDsgLVutBaCCX5UJwBeXshayvYyyCyNZxzB4RKobO61jlax1MD/HhjrZULVnXl3l59mDRAi3/BHsjYpIqpLn4ZHE+rVpNJA1R9kpThENVGWjELIYQQQjRQMoWkhhpKGp8QZyNfHH9ut5vftmby2KzNaDTw8Kj2JEYEVN2oNA9ydkPePig4AIWHwJwFNstxe9OAfxgExagWbjEd1X+LelXqcDNzh50F+x2EGDVclKJnUDM97SK1xPi5CCjciyZzE6QfDWq47BCWrKabtB2pMjQMZ3e9BDn3CVF/5PgTQojqJIBRQ3ISEaL+1ObxV2Z38ueOLD77O5XV+/PpmRTGLYNTCNWVqUBF9m7I2QXZO6AkV73JGAhBsRAYBf7hYAoFUxAYg9Q6YyBodbXwTYUvZFpc/HHAwap0J1klVU95Og2U51voNS78NHZC3UXEuHNI1OXTMsJESvME2rTtQHK77hj9T7HyvssFxUcgdy/kp0JBGhSlq78tmxlcDtAZwS9U/X2FNIfwZNWtJjJF/b3VIzn3CVF/5PgTQojqJIBRQ4WFhYSFhXHw4EE5iQhRS4KDg9HUIF2/psdfrsXG9gwzDqcLe04qpWUlFJW5yC5xcbDYzY5CHYdK1My5CL2Vi4N30t25FW1JdpX9uE0huANjcYXE4w6IxW0KouI2VzRmBTYN6SVaCu1arE5wVjoDOt0arE4wOzQUlDrILdOQ76yagWHETgt9Hs1MZcT5O4kwuQk1OAnSOQigDJPTgtFehK40hx7W1YQ686qNweUfgdsYDAZ/QAMuBxpHKZqyQjS24urbB0TjCk3EHZyAKyAat38EmEJwGwNxG/xBZwKtAbdWhzukGa6I1jX6XdTk+JNznxC1r7bPfUKImqvp8ScaLglg1NChQ4dITEys72EI0aTU9KlSTY+/hJvfxxApNSdEw9Bbs5PvTc/U+ec2m1rMkeKTn9prcvzJuU+I2lfb5z4hRM01loymoUOH0r17d9544w1atGjBvffey7333lvfw6qx/fv307JlS9avX0/37t1rdd8SwKghl8vFkSNHGk3UrqioiMTERInan4T8nmrGV7+nmh5P9XX8NbW/D/k+DVtdf5+aHE/1cew1tf9fy8n3alx8+b18ce5rqv8/nA75XSjye6hQ+XfRrFmzRnEvVzmAkZ2dTWBgIAEBASd/YwPhdDrJzs4mKioKvb52+4ZIF5Ia0mq1NG/e+J7shoSEnPX/aNWE/J5qpr5+T/V9/DW1vw/5Pg1bQ/o+9XnsNaTfQ22S79W41Of3Op3jr6n+/3A65HehyO+hQkhISKMIXhwvOjq6vodwynQ6HXFxcT7Zt9YnexVCCCGEEEIIIcQJWSwWJk2aRFBQEPHx8bz++utV1rdo0YI33njj2M9Tp06lS5cuBAYGkpiYyB133IHZbK7yno8++ojExEQCAgIYN24cU6dOJSws7Nj6p59+mu7du/Pll1/SokULQkNDueqqqygurqjFZbVaueeee4iJicHPz49BgwaxevXqY+vz8/OZOHEi0dHR+Pv706ZNGz777DNATSHRaDRs2LDhpNueKglgCCGEEEIIIYQQ9eChhx5i0aJFzJo1i99//53Fixezdu1ar9trtVrefPNNtmzZwueff86ff/7Jww8/fGz933//zW233ca//vUvNmzYwIgRI3j++eer7Wfv3r389NNPzJkzhzlz5rBkyRJeeumlY+sffvhhfvjhBz7//HPWrVtH69atGTVqFHl5qkD5E088wbZt25g3bx7bt2/nvffeIyoqyuOYT2Xbk5EpJE2UyWTiqaeewmQy1fdQGjT5PdXM2fp7amrfW75Pw9bUvs/paqq/B/lejUtj+16Nbby+JL8LRX4PFRry78JsNvPJJ5/wxRdfMGLECAA+//zzE04fq1zMs2XLljz33HPcfvvtvPvuuwC89dZbjB49mgcffBCAtm3bsnz5cubMmVNlPy6Xi2nTphEcHAzAddddx8KFC3n++eexWCy89957TJs2jdGjRwMqq2PBggV88sknPPTQQ6SlpdGjRw969+4NqEwRb05l25ORIp5CCCGEEEIIIUQd27hxI927d+fAgQMkJSUdW96jRw+GDBnisQvJokWLeOGFF9i2bRtFRUU4HA7Kysowm80EBgbSo0cPxo0bx5NPPnlsf2+++SZPPvkkBQUFgJpC8t1337F169Zj2/z3v//lrbfeYt++fWzatIlu3bqxf/9+kpOTj20zbtw4wsPD+fTTT5k3bx7jx4+nbdu2jBw5kksvvZQBAwYA1buQnGjbUyVTSIQQQgghhBBCiDp2qrkEBw4c4MILL6Rz58788MMPrF27lnfeeQcAu91+bJ/HFyv19DkGg6HKzxqNBpfLVWV7T/spXzZ69GgOHDjAvffey5EjRxg+fPixrI/jncq2JyMBDCGEEEIIIYQQoo61bt0ag8HAihUrji3Lz89n165dHrdfs2YNDoeD119/nf79+9O2bVuOHDlSZZv27duzatWqau871XEZjUb++uuvY8vsdjtr1qyhQ4cOx5ZFR0dz/fXX89VXX/HGG2/w4Ycfet3nqWx7IlIDQwghhBBCCCGEqGNBQUHcdNNNPPTQQ0RGRhIbG8tjjz2GVus5zyAlJQWHw8Fbb73F2LFj+fvvv3n//ferbHP33XczePBgpk6dytixY/nzzz+ZN2/eKbWQDQwM5Pbbb+ehhx4iIiKCpKQkXnnlFUpKSrjpppsAePLJJ+nVqxedOnXCarUyZ86cKsGNyk5l25ORDAwhhBBCCCGEEKIevPrqqwwePJiLL76Y888/n0GDBtGrVy+P23bv3p2pU6fy8ssv07lzZ6ZPn86LL75YZZuBAwfy/vvvM3XqVLp168b8+fO577778PPzO6VxvfTSS4wfP57rrruOnj17smfPHn777TfCw8MBMBqNPProo3Tt2pXBgwej0+mYMWOGx32dyrYnI0U8a8jtdlNcXExwcPApRa+EEGdOjj8h6occe0LUHzn+hBC1ZcqUKezYsYNly5bV91DOmGRg1FBxcTGhoaEUFxfX91CEOOvI8SdE/ZBjT4j6I8efEOJ0vfbaa2zcuJE9e/bw1ltv8fnnnzN58uT6HlatkBoYQgghhBBCCCFEE7Fq1SpeeeUViouLadWqFW+++SY333xzfQ+rVkgAQwghhBBCCCGEaCK+/fbb+h6Cz8gUEiGEEEIIIYQQQjR4EsAQQgghhBBCCCFEgycBDCGEEEIIIYQQQjR4UgNDiLOBzQKWbCg6Ano/CIqF4HjQSgyzSbCXgjkLitNBa4DgWAiKA538Ey+EEEKIemDOUi9rEQRGQ2AU+IfX96hEEyBXt0I0dZZcWPUhLHsNXA61LDAarvwKmvWWm9zGriQfNn4NC58Bh1Ut8w+Hyz+DpHPA4Fe/4xNCCCHE2SVvH8y4BrK2VyxrPxbGvKoeoAlxBuTxqxBNUVE65OyG/AOQvRP+fqMieAEqG+OLS6DwYL0NUdSSI+vgt39XBC8ASvNh+uUN6/9fexkUpKm/y6Ij4HLV94iEEEIIUduK0+Gr8RDaHMZ/DBO+gPGfgNsJf74ItpL6HqFo5OTRqxBNSWkh7FsEvz8GhYdAq4cOY9XJ48dboKygYltHGeyaD/1vr7fhijNUkgeLX/C8zuWADV/D8CdBo6nbcR2v6AgsfR02fKkCLUExMOxx9bcZEFG/YxNCCCFE7Sk8DAP/BXmp8OsDUFYIpmDoOQliO6tpJREt6nuUohGTDAwhmpL9y+C7ySp4Aeomduss+ONpGPlc9e3TN9Xp8EQtc5SpCwRvMreA01Z34/HEkgOzboM1H1dkiZiz4Jd7YMuP4HTW7/iEOCo1x0KO2XryDYUQQnjndMCRDSr7t6xQLbMWwz/vQOqSqhnBosl49913admyJX5+fvTq1Ytly5b57LMkgCFEU1GcAb8/7nld1jZVvPP44kmJfX0/LuE7hgCIbu99ffM+oDPW3Xg8KU5XFyyeLPoPmNPrdjxCePD1yjSGvbaYQS//yZr9efU9HCGEaLz8Q2H9l57XbfpWTSURPuN0uflnby4/bzjMP3tzcbrcPv/MmTNncu+99/LYY4+xfv16zj33XEaPHk1aWppPPk8CGEI0FfYSyD/R0/itENGy4mdTCKSc5/txCd/xD4PzvASt9H7Q5fL6nz5SuYDX8UrzwWquu7EI4UFxmZ0X527nnFaRJEUEcP+3G7E5pEaLEEKcFmux9ywLtwtKC+p0OGeT+VvSGfTyn1z90Qr+NWMDV3+0gkEv/8n8Lb59WDR16lRuuukmbr75Zjp06MAbb7xBYmIi7733nk8+TwIYQjQVWgMY/L2vD4qpOGlEpsD1v0JoYp0MTfhQbGcY9yH4hVUsC0uCyb9AaFK9DeuYoBjv6zRa0JvqbixCeDBvSwZmq4Nr+ydz06BWpOWV8MvGI/U9LCGEaJxMwSdebwysm3GcZeZvSef2r9aRXlhWZXlGYRm3f7XOZ0EMm83G2rVrGTlyZJXlI0eOZPny5T75TCniKURTERQDPSbBqg+qr9OboM1ISB6gphQEREFwbN2PUdQ+vxDoPB5aDFT1JrR6CIiEkAbSpiwiRU1dKs2vvq79GNUXXoh69PvWDNrGBRMRaCQi0Ej3xFA+X76f8b2a1/fQhBCi8QmMgrgukLG5+rqoNhAYXfdjauKcLjfP/LINT5NF3IAGeOaXbYzoGIdOW7uZuTk5OTidTmJjq95XxMbGkpGRUaufVU4yMIRoKjQ6OOdOSDyn6nK9H1zzHYQnQ0IPiO0kwYumRqdX7coSukNc59MPXhRnwqE1sOk7SFuh2vGeqZBmcO2PaspSZTGdYNSLJ39SI4QPuVxuVqbm0aVZ6LFlQ9vFsOlwIXuyiutxZEIIUY9K8yF7J2z+AXYvUG3QHTUsCh4YDVdMU9cllQXHwZVfyzWoD6xKzauWeVGZG0gvLGNVqu9qPGmOm7LsdrurLastkoEhRFPgsMOhVfD99TDoPjjnDlW4MyQBkgeqqSL1XcxRNGz5B+DrK9QFS7mwZLjuR4hsffr71Wohvhvc/jdkboPCgxDXVQXUguPOfNxCnIHdWWaKyxy0i60IpPVMCifAqOOXjencN0ICbEKIs4w5C35/AjbNqFhmCIArv4TkQWDwO/k+IlvDjb9D7h7I2aV+jmoLoc18N+6zWFax9+DF6Wx3KqKiotDpdNWyLbKysqplZdQWycAQoikoPgJfXaZOOvMfhZ9ug20/weKXVMVnjRzq4gRK8uDHKVWDFwAFB2DGNVCcdWb71+pUXY52F0DfKZDUT4IXokHYfFi1+EuJDjq2zKDT0jMpnPlbfJP6KoQQDZbbDVt+qBq8AFUo/usroegU6gOFNoNWQ9R5P2WYBC98KCa4BkGlU9juVBiNRnr16sWCBQuqLF+wYAEDBgyo9c8DCWAI0TQc+AsclaKqNovq/lB0GFa+B+bM+hubaPgs2XBwped12TuhJLtuxyNEHdmeXkRciB/+Rl2V5b2Tw9mZWczBvJJ6GpkQQtQDcwb8/YbndS4H7Jxbp8MRNdO3ZQTxoX54m7ChAeJD/ejbMsInn3///ffz8ccf8+mnn7J9+3buu+8+0tLSuO2223zyeRLAEKIpyNvvfV1ZIbjsdTYU0QjZT3KTVlZYN+MQoo5tO1JEUkRAteVdmoei02pYvPMMs4+EEKIxcTmh+ATZZ7l76m4sosZ0Wg1Pje0IUC2IUf7zU2M71noBz3JXXnklb7zxBs8++yzdu3dn6dKlzJ07l+TkZJ98ngQwhGgKEvt5XxfRCvQnaK8qhF+Y6l7iTeAJWqEK0YjtzTbTLLz6v48BRj1tY4NYvEuyj4QQZxG9n6pT5U3LwXU3FnFKLugcz3vX9iQutOo0kbhQP967ticXdPZtd7o77riD/fv3Y7VaWbt2LYMH++5vRYp4CtEUxHaE8BaQv7/6uhHPSMVncWJBMdDrBlj9UfV1nS6TVqeiSTJbHWQVW4kP9TwnuHNCKPO2ZOBwutDr5HmPEOIsEBgFI5+DLy6pvi44DhL71v2YRI1d0DmeER3jWJWaR1ZxGTHBatqIrzIv6ouckYVoCkISYNLPkHI+lLcsCoyGcR9AC4mWi5MwBsKQh2HgvWA4+jRab4LeN8MFL4J/WH2OTgifSM22AJAQ5jlDrXOzUMxWB1uOFNXlsIQQon4l9IQJX0BwpSf2LQbB9XOrt0YVDY5Oq+GclEgu6d6Mc1Iim1zwAiQDQ4imI7wFXP4plOSC0wqmEHXy0UqcUtRAUAwM+zf0uQlsZjAEqmUGmX4kmqYDeSqAERviOQOjVXQgJr2WVam5dE8Mq8ORCSFEPfILgQ4XQ/M+qgaWzggBEeAfXt8jEwKQAIYQTYt/qHoJcTr0JtXuVIizQFpeCYEmHUEmz5dCeq2WtrHBrEzN45bBKXU8OiGEqEcajcruDUmo75EIUU2DfzS7dOlSxo4dS0JCAhqNhp9++qnKeo1G4/H16quvHttm6NCh1dZfddVVdfxNhBBCCNFQHMwrITbYc/ZFuTaxQaw9kI/b7a6jUQkhhBDiRBp8BobFYqFbt27ccMMNjB8/vtr69PT0Kj/PmzePm266qdq2U6ZM4dlnnz32s7+/pEWLRsBhB3M6ZO2A0nyI66KKKAX4po+zaATMWVB0BLJ3qL+FyNYQnCBThYQ4RWl5JUQFm064TZuYYH5cd5jUHAutooPqaGRCCHGGSvLBkgXpG8EUDDEd1TWD/sT/5gnRGDT4AMbo0aMZPXq01/VxcXFVfv75558ZNmwYrVq1qrI8ICCg2rZCNGgOG6T9AzOuBpulYnn7sTDmdekscjYqOgzf3gCHVlYsC4iAa2eptmcSxBCixg7nl9Ix4cRT7lrHqKDFxkMFEsAQQjQO5ixY8BRs/Lpimd4El38GKedJbSvR6DWpq93MzEx+/fVXbrrppmrrpk+fTlRUFJ06deLBBx+kuLj4hPuyWq0UFRVVeQlRp4oOw/TLqwYvAHb8Aus+B6ezfsZVB+T488BmgT+erRq8ACjJgy8vheIj9TIs0bScLcee2+0mvbCMyEDjCbcLMumJD/Vj48HCOhqZOJudLcef8CG3G7b/UjV4AeCwwrfXQeGh+hmXELWoSQUwPv/8c4KDg7nsssuqLJ84cSLffPMNixcv5oknnuCHH36ots3xXnzxRUJDQ4+9EhMTfTl0Iapyu2HfYnDaPK9f8S6YM+t0SHVJjj8PLNmw5XvP60rzIWd33Y7HG5dLZQ+JRulsOfbyS+xYHS6igk6eTt0yKpBNhwp8Pyhx1jtbjj9RS1wOcDqqLjNnwt9veNneCVt/8vWohPC5JhXA+PTTT5k4cSJ+flWLck2ZMoXzzz+fzp07c9VVV/H999/zxx9/sG7dOq/7evTRRyksLDz2OnjwoK+HLwTYy9SN6PqvIHu79+1K88Flr7tx1TE5/jywl6mLFW+K072vqwtlxZCxBeY9BN9eC6s/gYK0+h2TOGVny7F3pKAUgMigE2dgALSIDGR7ejEulxTyFL51thx/4gyZs2DfEvjhZvhuMuz6DYoz1DqXU9XJ8iZ3T92MUQgfavA1MGpq2bJl7Ny5k5kzZ5502549e2IwGNi9ezc9e/b0uI3JZMJkkkI3og45HarmxfTLISgGhjzifduoNmA4cfX8xkyOPw+MQaoHe2m+5/XRHep2PJXZzCo7ZM69Fct2/QaBUXDDbxDVut6GJk7N2XLsZRSWARBxkikkAMmRAZTanezPlUKewrfOluNPnAFzFsy5X00nLrdjDiSdA1d8pupbJPSAQ6s9vz9lWN2MU5w1li5dyquvvsratWtJT09n1qxZXHrppT79zCaTgfHJJ5/Qq1cvunXrdtJtt27dit1uJz4+vg5GJkQNmTPg+xvUU/aiI2AMhLAkz9uOfB6CpIjnWSU4HoY+6nlds94Q2qxux1OZOQt+vb/6cksOzP8/KJP6AaJhySgqQ6uBUD/DSbdNjgwEYEfGiWtnCSGEzx1ZXzV4US7tH9i9QBX2HvFs9fWgHo4lD/Tt+ET9czkhdRls/l79r8u3NfPKO4a+/fbbPv2cyhp8BobZbGbPnop0p9TUVDZs2EBERARJSermrqioiO+++47XX3+92vv37t3L9OnTufDCC4mKimLbtm088MAD9OjRg4ED5SAWDUhxRtWn678/Bpe8A/+8A/sWqboYwXEw8gVI7F9/4xT1Q6eDzperv4MlL6m/Fa0OOo5TFytBMfU3trQV4HZ5Xrd3oSo06nfibg9C1KWsojIiAo1otZqTbhvqbyDM38DOjGIu7CIPPoQQ9cRmgZUfeF+/6kNoPwbiusDVM2DuQ1B4dBpSi0Fw0RsQJnVVmrRts9WDo8rTiEIS4IKXoePFPvnIk3UM9YUGH8BYs2YNw4ZVpDvdf796yjd58mSmTZsGwIwZM3C73Vx99dXV3m80Glm4cCH/+9//MJvNJCYmMmbMGJ566il0Ol2dfAchasR5XE2L4gz4/kbocR30uQlCmqub1OB40Jz8ols0QYGR0GcKdLgIrGbQ+0FQtMrWqU/2Eu/r3G5wN92OOaJxyigqIzzg5NNHyjUP92dnhnSEEELUI5cTHGXe19tLVSHtgGBoNxriu4O1CLR6lZnhH15nQxX1YNts+HYScFy9pqJ0tXzCFz4LYtS1Bh/AGDp0KG73iQtn3XLLLdxyyy0e1yUmJrJkyRJfDE2I2hWSADpj1c4jZYXwz9uqqOftf6ttxNlNp4PQ5vU9iqqSBnhfF9tZsi9Eg5NZZCUs4OTTR8o1Cw9gd5ZMIRFC1CO/EOh6JRz42/P6zuPBP6Li55B4QLLGzgoup8q8OD54AUeXaWD+IypDR9v4H+A3mRoYQjR6QTEw/GnP60a/DEFxdTocIWosOA66XVN9uVYPY6ZCYHTdj0mIE8goPLUMjIQwPw7klmB3epkqJYQQdaH1cIhoVX15UCz0uFY95BBnnwPLT9x9BjcUHVbbNQENPgNDiCapOEMVOLSXqE4NgTFgCoLuV0N0W1j8AuTvh6j2MPwJ9RRbJ4erOAP2UlVs05wFOoMKKgTHg7YW4tgBETDiGWg1BP76L1iyVJ2WYY9BpHQgEQ1PttlK1+Y1zwxqFuaPw+XmQG4JrWOkE4kQwseK08GcA45Sdb4OjAFToMrAnPwLrPsC1n+pnrx3vhz63eq98Lto+syZtbtdAyd3RELUtawdMONqyNsHzftA/9tVir3eX52YWgyCiT+oeY6GAPAPq+8Ri8auNB82fgN/PFMxfzYwWs2HbN4bNDp1sVScCU6rmqoUGAPGgJp/RlAMdLsKUoaDyw6mYPUSooFxOF3kW2yEnUIGRnyoPwCpORYJYAghfMfthqxtMOMa9SALVMp//7uh3y2qkKclCzpcDD0mgs5P1bbQ1/zfM9EE1bQzYRPpYCgBDCHqUuEh+PwisGRD21HQ8VLVz7usQK3Xm2D4UyodX+pdiNpycDXMP64FqyUbvrwU7lwNBQdUgafyLjg6Awz9N/S6XmVXnIogmS4iGrZciw03nFINjPAAA34GLftzLL4bmBBCFB6CaWOqdqXT6iGpD8y+B/b+UbE8thNcOR2Cm8ZNqTgDyQPUfUNROp7rYGjU+uQT1Cw7TTXpGFrbpAaGEHUpc6u6cdTqVDeJ2XdVBC8AHFb47d+QvqG+RiiaGksuLHre8zqnTU1l+uqyqhdLTjssfEa1RxWiickqsgIQ5l/zAIZGoyEuxI/UXAlgCCF86Mj6qudjgJ6TYOPMqsELUNeU31ylsifF2U2rU61SATi+U+HRny94yScFPNesWUOPHj3o0aMHoDqG9ujRgyeffLLWP6ucBDCEqEvZO9T/thoGu+aruYueLH4BSvLqblyi6XJYIW+v53XJA2HHL9Vb+JZb/IIKcAjRhGSb1TSqU5lCAhAb4kdqtgQwhBA+lLm1+rKU82DHHM/bZ+8Ac4ZvxyQah44Xq6nBIcd1nglJ8GkL1fKOoce/pk2b5pPPA5lCIkTdiumk/jckoWJuoyd5qSfu9S1ETRn8ILINHFlXfV1wPOTuqb68XP5+cNi8rxeiEcopVn/TIf6ndgkUG+LH2gP5J99QCCFOV1zX6sucdnCfoANSEynMKGpBx4tVq9QDy9XfRVCsmjbSBFqnViYZGELUpZj2quVk/gGIbn+C7TqoAp5CnKmACNXJxpPiDFVI1puotioAIkQTkm22EuynR3+KHXhigk2kF5ZKK1UhhO/Ed1Pd6SrT6lRtKm+CpWaaqESrg5bnQpfL1f82seAFSABDiLoV2hwmz1F1MFKGgd7LzeGwx6T7iKg9CT3hojfAWKl7QkgzGP6kqmRuDPT8vuFPnXoRTyEauFyzjdBTqH9RLibED5cbjhSU+mBUQggBhDWHyb+qBwjldi2Arld53r5ZbyniKc46MoVEiLoW1QYmzYayIrj2R/jpNihIU+v8w+HC1yqmmghRG/zDoPtEaH2+Cp7pDBAQpeZJOh0qqPb9jZCfqrb3C4VRL0J89/octRA+kWO2nl4AI9gEQFpeCcmRXoJ+QghxpmLaw/VzVBFuRykERILuaM2ejV9X1E9rdR5c8qZqiy7EWUQCGELUh6Bo9YpKgZt+Vycpt1OdpILiQCeHpqhleiOEJapXZTo9NOsJN86HklxwOeTvUDRp2cVqCsmpigw0ogEO50sGhhDCx4Ji1auy0S/DufdDWaHKqAyMlmxdcVaSq1MhfKU0X3UScdrBL0QVTNQc39oItTw4vvpyIepScJx6+Zq9BMzZ6n+NgSpQoj+1bhBCnIkcs5VW0UEn3/A4ep2WiEAjh2UKiRCiNpUWqAcIJ7teNAZCRKs6H54QDY0EMITwhdy98Ms9sP8v9XNwPIx+BVoNVScnIc5Gxemw6CXYOF1dqBkDof+d0HcKBMXU9+jEWSLXYqN74uld/kQFmSQDQwhRe3L3wi//gv3L1M/B8XDBS6p1qlwvCuGRFPEUorYVHoJpF1YEL0DduH17HaSvr79xCVGfSvJhzv2wbpoKXgDYLLD0FVj+JtjlplD4nsvlpqDERshp1MAAiAwyckgCGEKI2lB4CKaNqQhegLpe/G4yHF5bf+MSooGTAIYQte3gStWe0pPfnwBLTt2OR4iGwJINO+d6XrfqQ+ljL+pEQakdlxtC/U4zgBFo5EihBDCEELXg0BoVsPBkgVwvCuGNBDCEqG2py7yvS98IjrK6G4sQDUXRYe/rHFZVlEwIH8s1WwHOIAPDRGZRGS6XuzaHJYQ4G+0/wfVixma5XhTCC6mBIURti0ip+G+dETqMVV0e7GVwYDlodfU3NiFqm9MJJTmgQbVm9fb3HRBx4v0YpC2l8L0csw2AkNPoQgIqA8PudJNrsRF9tK2qEEKcFm8FOSNaQc9Jarql1QImOT8KUZlkYAhR29pfCFo9xHaGa2aC3gQr3oMt30PbC1B3ekI0AYWHYNmr8OlI+PQC+Ou/apknQbHeL9ZaDoHASN+NU4ijci1nnoEBkC7TSIQQZ6rtaHW9WE6jgVHPwzl3wbafVT212XdB5jb1EEwIAUgGhhC1L6QZXPM96PXwzTVgLapYN+8h2DUPxn0gXRdE41ZefCx/f8WyP5+DjV/DpF8gtFnV7YPj4OqZ8NU49d6ACEgaAKGJMOAu8A+v0+GLs1OexYZeqyHAeHqZcBGBquVvemEZXZvX5siEEGedkASY+D2s/vjog69OkLUd1n9Vsc3WH2H7bLhhLiT2q7+xCtGASAaGEGfK6aj6s94EUa1h5YdVgxfl9v6p2mYJUVdcLnA5a3d/W2dVDV6Uy90Lu+Z7fl90W7hpAdz+D4z7EEwhYC2EgjQwZ9Xe+ITwItdsI8TPgEZzeplwwX569FoNWUXyNFQIcRLlHbe8cZSpYH5IAugM0Pr8qsGLci4H/HIvmLN9MkwhGhvJwBDidLjdUHgQdv2mAhIRLaHHJAhLhPwDYMlST5Q7XgK7F4C9pOr7N38PyefUz9jF2cOSC3l7YOtsCGsOzfuojIfg2BO/z+VUF156k0ppPV5pPmya6f39G6ZD58s8Z1VodCpTo3JHkg1fQ/uxcNFUyUwSPpVnsRHif/qXPlqNhvBAIxkSwBBCeOK0QcFB2PydKtzerLc6H4Ymgq7Svz2lhSrz4s/nILQ5dLoMitJVFq+notdZ26CsAIKi6+yrCNFQSQBDiNORsws+HaVu5MqteBduXabaXmVtVSegwCgY/xHsWwyrPqrY1uBf50MWZxlLLix9FeK7QFQK7P4d9v+lgmqJfSG8RfX32EpUYG7tNMjZCYnnQJfLq194abXqaZE3epMKVHhycIXndqo7foHuV0P7MafyLYU4JXkWG8Gn2UK1XHiAgYxCay2NSAjRZLhccHAVfDlOBTJAne+WvgKTZkNSpSkgRYfVOXrs/0CjhZ3zVAbj0EfB7YR5/1e9C4kUgRcC8GEAIzMzkwcffJCFCxeSlZWF21215ZjTWYvpzELUpZI8mH131eAFgClUZWb8eHPV3t0bZ8DQR6Db1bDxG7Ws6+V1N15xdsrbowIV/7wNh9dWLN8xB9qOgrFvqroU5Zw2lU307XXgdqllexbC3/+F6+dCQveKbf3Doc8tcPg2z5/d9xbwC6m+vLRQBfq8+ecdaHGu5/cKUQtyzFaCT7MDSbnwACMZRVLEUwhxnOJ0+O76iuBFOUcZ/HAj3PQHhMSrZVtnwUX/VVNGDvxdse3OX6HFIBjzOvx8Z8Xy5IHgJ7WihAAfBjCuv/560tLSeOKJJ4iPjz/t+aZCNDil+XBwZfXl3a+Bhc9VDV6UW/IyXPMtbJoBfaZAaJLvxynOXi4X7PlTZUlUDl6U2/UbHFkP7UZXLCvOgFm3VAQvytks8OMUuH6O6iRSrtVQlaFx8J+q27ccAklepke5HWp/3thL1FxfIXwk12yjdUzQGe0jPMDI3mxzLY1ICNFkWLLVy5PCQ6rleHkAQ2eCssKqwYty+/+CDmMhqg3k7Aa/MBgzFQIkgCEE+DCA8ddff7Fs2TK6d+9+RvtZunQpr776KmvXriU9PZ1Zs2Zx6aWXHlt//fXX8/nnn1d5T79+/VixYsWxn61WKw8++CDffPMNpaWlDB8+nHfffZfmzaWEuDgN3m6wkgfAyvc8r3O7IWsH3Pi7mt8YEOG78QmBS00R+ect75us/ghaDgbj0f7yBWnegws5u1TmUeUARkg8TPgMDq+DtZ8BGuhzM8R3q5rZUZlfGHS8FDI2e17fcZzaRggfySuxnXEGRliAgUypgSGEON7JinZWXt9uFPx6v/dtt86Cvreq83KncRAmD76EKOezLiSJiYnVpo2cDovFQrdu3Xj77be9bnPBBReQnp5+7DV3btX51ffeey+zZs1ixowZ/PXXX5jNZi666CKZxiJOj18ohLesvtztVi9v3C7I3gU6o+/GJgSodmxRbcFxgnn6DmvVbIsTbQueu5gEx6uaFRO+gglfqqkp3oIXoObvdp3geZvgeOg8TtXXEMIHXC43hSV2QvzPrAZGWICRojIHZXa5hhBCVBIUA3o/z+tMwRBYqQCnXzg4bJ63BXVObjMSBv4LwpM9F9QW4izlsyvFN954g0ceeYT9+/ef0X5Gjx7Nf/7zHy677DKv25hMJuLi4o69IiIqnm4XFhbyySef8Prrr3P++efTo0cPvvrqKzZv3swff/xxRmMTZ6ngODVv8fiTSe5uSOjh/X1J/cCcAf6SfSHqQGiiCih40+0adUFVLqKV9wJhQbEnzhoy+KlXTYQlwY2/Qe+bVTDQL0zVzLjxN3nCJHyqsNSO0+0mpBaKeAJkF0shTyFEJUGxcP7TnteNfL5q8D4kQXUn8abdaHV+lMCFENX4bArJlVdeSUlJCSkpKQQEBGAwVL1gyMvLq7XPWrx4MTExMYSFhTFkyBCef/55YmJUK761a9dit9sZOXLkse0TEhLo3Lkzy5cvZ9Qozxf4VqsVq7Xi4qSoqKjWxisasZI8lc4X1QbuWKXqC6z5BKzFENUORp8L0y6snkbY8VJIW6mePuukivTJyPFXC4JjVJBgyw+qvkVlUW1UDQtrMZQWqAskUyiMeE7Nt41pr+bmbv5O/XzRf1WGRG0JbwEXPA+DH1A/B0SqziWi3jXlYy/Xop52hpzxFBKVRZdVXEZiRMAZj0uIck35+DsrGPyg8+WQMgzsZZC5BXbNV7XP4rtV7d6l1aquYKs/VlM4KwtLVm1V/UPrdvxCNBI+C2C88cYbvtp1FaNHj+aKK64gOTmZ1NRUnnjiCc477zzWrl2LyWQiIyMDo9FIeHjVwjexsbFkZGR42Su8+OKLPPPMM74evmgsyk9EG76G9hfCui9UIc+ASBhwj6oOHZao0gFvXQqLX4a05SpdsMckiOmgbtrkCXONyPFXSyJbqborqz9SgQytXv09dr9a/U3/+gDs/k0FMAb/n3rik7YS/vqv+tvtf6eq7RLSrPafAun91BMo0aA05WMv72gAI/iMp5BIBobwjaZ8/DV5DquqF7X4ZTi8GgJjoNf1qi1qWDKYPBQPDm+h2quunQZbvlfLOo5T75PrRSG80rhro1BFHdFoNNWKeB4vPT2d5ORkZsyYwWWXXcbXX3/NDTfcUCWiDTBixAhSUlJ4//33Pe7HUxQ8MTGRwsJCQkKkxd9Z5/A61V7ywlfh28nVW2R1uRJGv1SRZm+zqJaRbicY/FWqvO7MLprPJnL81TKnHUpyAQ0ERqmnPR8MBuvRp3thyTDqedX+7fgitb2uh+FPS/Xzs0RTPvbmb0nntq/W8eF1vQg+g2kkLrebSZ+u4umxHbnunBa1N0Bx1mvKx1+Tl7YCpo2pfg7tdhX0u71qK/LjOR1QdFjVpQqM9hzsEEIc47MMjMpKS0ux26um1PvqH+L4+HiSk5PZvXs3AHFxcdhsNvLz86tkYWRlZTFgwACv+zGZTJhMktIsUG1Tf38cek6CZa9XD14AbJ4JA++pCGAYAyu6O4hTJsdfLdMZKubeOmyw6qOK4AVAn5tg8UueO+ysnaYuviSAcVZoysdersWGVgOBpjO79NFqNIT5GyQDQ9S6pnz8NWmWbNVRxNM5dOMM9ZDLnFm1k1dlOr0q1CmEqBGfFfG0WCzcddddxMTEEBQURHh4eJWXr+Tm5nLw4EHi49V87V69emEwGFiwYMGxbdLT09myZcsJAxhCHGOzqLTAlOFwzt1w6XuqMrTmuMNn35/1Mz4hTkVZIexZUHVZeEs1RapcWBKc9wRc8TmMfRPy9tbtGIXwgTyzjWA/A9pamA4VFmAg2ywBDCHOaiW5UHgIyoogIMr7dkfWnbjjiBDilPgsA+Phhx9m0aJFvPvuu0yaNIl33nmHw4cP88EHH/DSSy/VeD9ms5k9e/Yc+zk1NZUNGzYQERFBREQETz/9NOPHjyc+Pp79+/fz73//m6ioKMaNGwdAaGgoN910Ew888ACRkZFERETw4IMP0qVLF84///xa/96ikXFYwZKj0vaMQZ6fMmu0cPFbsOAJSPtHFTvsfjX0mgw/3qICHAB6/7oduxCnQ2cA/7Cqyyrf0HWfCK2Hw99vQvoG1Rau3+3QvHfVp0dutyoO6nKo1sDBXp4sCdFA5FpsZ1zAs1yov4EsycAQoukpK1IvDarOmcHDtZ3VDBmb4fd/qynGgVGqvlSvyTDrtuqZujqj9y5fQohT5rMAxi+//MIXX3zB0KFDufHGGzn33HNp3bo1ycnJTJ8+nYkTJ9ZoP2vWrGHYsGHHfr7//vsBmDx5Mu+99x6bN2/miy++oKCggPj4eIYNG8bMmTMJDq5oD/jf//4XvV7PhAkTKC0tZfjw4UybNg2ddIM4uxUehuVvqoKc9hJI7A8XvAgxnaCsAByloDWoTg3fXlfRWaSsAFa8BwdXqa4Nv6q/SVoNracvIsQp8A9ThWdnXlux7PBaaHGuys5IPge+v7FinTkLFj4DGZtgzFQ1TcqcDVt/VFOqzJmqBevwp6DlYDV1ypKtAhvGIHVhJ0QDkGexnVHti8pC/Q1kFUkAQ4gmw+lQ2bYLnoC9C9X1X+crYOj/VUzvMGep60WrGf55G9I3quWWHPhrqsrUHfqoOmeW02iheZ/qDw6EEKfNZwGMvLw8WrZsCah6F+VtUwcNGsTtt99e4/0MHTqUE9UZ/e233066Dz8/P9566y3eeuutGn+uaOKK0mH65ZC1rWLZwRWw8RtoOQT+eApy94ApBHpcC5d9DOs+Vz258/apJ9OH10L/O8A/HAbeB0Fx3j5NiIYlsZ+ak7t5pvp53edw2Ucqo2Lx0Qw5veloQCJIXaRtnQWDH1adTJa8CKs/qdhf3j6YfTdc/yus/1K97KUQ1wUueBkSuqn9FGdC7m7Y9J1qN9f1KnVhWF47RggfyrVYCa7FDIwdGcW1si8hRAOQnwofD1cBClBZFI5SdS14eJ3KyFj8ImTvVOezblepaZY/TlHnO1CBj8EPQJcJan+HVsN5j0NoczBIy2UhaovPAhitWrVi//79JCcn07FjR7799lv69u3LL7/8QlhYmK8+VoiaydpaNXgBkNATotvDzErZQdYiNf+/3RiI76H+u8NFMOxR+ONpdVK78XeVZu8XjBCnzWmvu041QTEq2+icO2D7HFVALDRRTREpPAh9blbTSHYvUEVs+92mKqNnbVcZFms+rb7PUc/Dz3eqTI1yGZvh8zEw+VeIaqMu9FKXVKxf+T70maKeWAVG+v57i7NartlG8/DauYkI9TeQY7bidrvR1HaLYSFE3bKXwLKpFcELgHYXQlJ/WPAk9L8Nfr6rYp3NDKs/VrWjznsCfvs3JJ0D5z4A+/8Cp1XVSrv4LfXgKyS+zr+SEE2ZzwIYN9xwAxs3bmTIkCE8+uijjBkzhrfeeguHw8HUqVN99bFC1MzOedWX9b5BRdcrSx4AHS+BLy8Gl1Mt2/aTOiGN/0gVb4pu6+vRiqbKXqoCBuu/hpwdkDwQOoyF0CTQeqix7HSAOUNdZOn9VNaP3nh6nx0YqV6VW7vl7YOek9W832+urli+dZaaJnLldCg6pOpfVBYQoTI2KgcvyrndMP8RGP1y1eBFudUfQefLIFCKKgvfyrPY6JRQOx3QQv2N2J1uisochPpLi2whGrXSQpU9UVmv62HG1TD6FVj6muf3pa2A/neqB2D9b1dTMx1lat22n+Gv/8Kk2Sqbw+VQGbuScSjEGfNZAOO+++479t/Dhg1jx44drFmzhpSUFLp16+arjxWiZgKjq/6s0UBEioqkGwMhZ7dKq+9/B8y6tSJ4Ua6sAP78D1zu4Um0EDXhtMG+JTDzmoq/r53zYMnLcMM8Nf2iMku2CnT8NVX9/Rn8odeNqn1vcC1NXwqIhC5XwOcXVV+Xtw9WvKsu1o4X3V5NqfImY5MqiubNqg+hWe8TB2Oc9qO1NZzqGJWLQHEK3G43eRYbIbVVAyNA7SfHbJUAhhCNnVanalSYM1XNih6TVLDh8s8gpLkq+O5N5mYYdC/MfagieFHOXgLf3wCDH4Jf7lHTNy96Q50zPT2kEELUSJ0cPWVlZSQlJXHZZZdJ8EI0DJ3GVfy33qROUvsWqTTAbyfB9tlw/jNgDK7oMnK89I1Qkq+KOQlxqooz4YcbqwfHrMVqqoU5u2KZowxWfgh/PKmCF6CyN1a8A/MegdKC2hmTX6ias+vN5m9VkCEgsup0F6tZXex5YwioXpW9srIicDu8ry86ogKG7/SFNzrD1xPg4OqKecdCnESx1YHD5a7VIp4A2dKJRIjGLyhGBeeNgXDll+q68KvL1PXg/P+DC1+F9mM8v9c/AnQmFfzwpPBgxRTJgyvh01FQmOab7yHEWcJnAQyn08lzzz1Hs2bNCAoKYt++fQA88cQTfPLJJyd5txA+FtIMxvxX/fewx9Wc/qWvqvn+oIIT39+g5jlGt/O+n+IjYMny/XhF05O/33twLGu76i9frjhTdczxZNsslZlQW04UkHNYATdcMxMueQ8mfqfSZrO2qSdLGi+nlJ6TVZV2bzqP917grDgTZl4Hf7+hgjuggiyfjoR0D1NWhPAg16wCaCH+tVfEs/J+hRCNXNsLYNyHsPR1WPVB1fPNt5Og65WqGGdlOiPEdzt5/arKDyqsRbDp2+oPL4QQNeazAMbzzz/PtGnTeOWVVzAaK9KCu3Tpwscff+yrjxWiZkxB0HUC3LUGEnpA6lLP2/3xFPS+yfO6oBiVHlj5RlOImjo+1fR4rkoZCWUFJ96+8HDNP9dmgbxUyNwKBWmqI09poQowOO3QbpT39yYPhB2/wsfnw483q0yIkny4ZTFEtoXxn1YPYsR3V9NcUoaqrj7HC28BrYZ4/8y8vXB4TfXlbpeqrWGR40+cXJ5FZUrU1hSSQKMOvVZDjlkyMIRoEoJj1TSSI+uqr3O7VD2LXtdXLNMZVPYuWjAGqKwNT4yB1c+L+xZXLRgqhDglPquB8cUXX/Dhhx8yfPhwbrvttmPLu3btyo4dO3z1sULUnCkITG1gz0Lv2+TugZiOnted94RqJTnWy5NxIU4kMkVd1Lhd1dcFxVSt8WDwP/G+atpfvjgDFj4Hka0gOB42zlDZG0n91bSqzK3QdhS0HAqpi6u+V2eAgf+C2ZUqsbvdsGkGhCXBkIfVe+9eC3v+VOm0KcNU8c/gOHC5YMoiWPwC7Jijnlx1mwgD7qr+VKuyEx2fR9apLCnpYCJOoiIDo3YCGBqN5lgnEiFEE7F3kfd1R9bD2P+pqYvB8Sr4vuI9dR66+C049yFY9J/q7xt0n2otXllIM3UOFEKcFp8FMA4fPkzr1q2rLXe5XNjtdl99rBCnzi/M+zqtTqW2X/ASrPlEdR2J7QzDHoMtP6gUw8CoOhuqaEICY2DQ/bDMQ3XzMa+rDiPlAqIgaQCkLa++bXn705OxFsOCpyAgXGVsLHy2Yl3WNtg0Uz1N+mYiXD1dZVqseE9Nq2o5GAY/qIIfZg9Tpla+Bz0nQViiClj0bVV9G60WolqrC70Rz6nCuQGR3p9alTvR8WXwV8eoECeRa7GhAYJNtXfZowIYMoVEiCbjZOeb/AOQuxvaX6TahJd3Lpl5LUxZDLGdYNHzKnMwqi30vUUVhd/1W9V99b/t5Oc+IYRXPptC0qlTJ5YtW1Zt+XfffUePHj189bFCnBqnE6LagNbLRW37sVB0GNZ9oapSX/k1XPI2LHwG9v4JV36lnpYLcapMQXDOHepvKK6LCqS1GAQ3/g6tzqtaoTwgAsa9p7I2KguMhonf1qzHvDlLBd1SzlPBuOPZLKrDSceLYM79qm7FzQvh+rnQvK9KefXUBhVUcORkU2LKGQMhtBmEJNTsAq71CBXs8KT7tdU7CpUWHJ0WU1Cz8YizQq7ZSoi/Aa3Wy9/SaQj210sGhhBNyYnON53Hw7afYNts2PiNOoeFNKtYP+dedT147Y9w11q46huV9fj3GxXbaLQw6gWIrP6AVwhRcz7LwHjqqae47rrrOHz4MC6Xix9//JGdO3fyxRdfMGfOHF99rBCnpvgwrP1UPfGec1/VdP6IVtDvVpU6n7UNFjyhbjRHPg8jnlVtV0Obed+3EJ64nGDOAIdN3cC3vwiSzlFdOgwB3qeDhLeA639VT4CsxSpDIzBSXUTVRFmRyoA4st77NuU97Ze8oqaAmELh6yvA7VQXXZXpTeoYcFqhJO/k01xOV0gcXPIu/HyHmrJSLqajSs0tD4KUFakpMItfgOydamzDHoW4rjWfYiOarByzrdYKeJYL9TNIFxIhmpKQOLj4bTVVssr5pgN0vARmXKN+3jEHkgdBy3PVVExQ14k6gzonhiWpZX1uho4Xw8FV6kFZ874qyGEKqtvvJUQT47MAxtixY5k5cyYvvPACGo2GJ598kp49e/LLL78wYsQIX32sEDWXn6b6dx9Yrm7ArpmpWlxZciChp7ohW/0x9Kuo4UJYsnpFtKi3YYtGzJytqo//9boq/hocB0MfVUGMmgQidEb12vWbKgDW9UrQ6FTxsZMpv2DSnqQGgEajXvmpKivk0ndh60/qyVFoIhSnq3oXsZ0hY5MKurQ4F0xhJx/DiTisKkukPJBTnlViDFIXgM37qGkt5kz1lCymQ8U2Tgfsmgc/3lKxP3MmfD5WBSe7XwcGSdc9m+VabLVWwLNcqL+B1BwvnYSEEI2PJUd1Hbl+rqqHYcmG5r3VOfGHKarQNQAesjTCkmD/MjAGQ/drVDDDP0y9otrW4ZcQounzWQADYNSoUYwadYKK9kLUNUu2utmxmlUL1OAE6Ha1mrO4a57qSOIXBrsXqKkjl76n/rtct6tUdF2IU2U1w9LXYNX7FcuKM+CXf6n/HXgvGPy8v9+So/5O13xasWzDdBU8GP+xCoYcr7QQSrLVZ/uHQYvBqrDmwmc8f0byADiyQU1hMQaDrQS+u0HN181LhYvfVPva+A0sqpSRodGqqVUdLqnZkyWbpaLriSlQPZlaNhXWTlOBmdDmcP4z0HokOEpU1kpAJAy61/P+itNh7kOe1/3+OLQZWfFETJyVcoqttR7ACPE3kGuRGhhCNAnFmVB0RHUa0RkhZTgseQl2zlUB8co6XqymQ+6rNK2yz81qunHhQTVVMyyxTocvxNnEZzUwKjObzRQVFVV5CVGnSvJh53z4/GLY/J3q8e0XqgIa8d1VbQG3Gw6vU7Utig6rtP5mvVWBQr0fjPwPpG8E//D6/jaiMbJkweoPPa/767/VL5COl7OravCi3P5lsP2X6ssLD8OsW+Dt3vDhEPhgCPS+QWWA9Lu1+vamYFWcduss6H+7SqG1ZKlaGEtfU1M2Vn2iLs52zq36XrcLfrpDrTuZwkPwy33wVk94uxd8MlJdBJpCKtrKFaerQOH6z+Gj8+B/XeHrKyFtpQqgHK8kB8oKPX+evVRdmIqzWs7RGhi1KdTfQInNSanNWav7FULUIUu2yjK0FavrwNl3Q+pSKDygpk8ef24OS4Ye16nzXXG6KiTdd4pqfZ61TU3xtOTUy1cR4mzhswBGamoqY8aMITAwkNDQUMLDwwkPDycsLIzwcLkBFHXEZoGCQ7D5W/jmSnVyiWoN3SfCDzepWgQ/366e9p73ODTrpQIXo19WN25OK4z/VBUzPLwOOl4qRTvF6SnO9NwyFVQBzNI87+912GDlB97Xr/oQMrepjAkAS66aTrFrfsU8XmMgHPgbVryrgnCXfQStz1cBvL5T4Iov1NSNC1+FP55SLYRn3QItB6ntt82G8x6DVR95H8f66ZC9S9Wi8BQ0KM6A6VfA5pnqYg+gIE0di9HtYPQratm5D8COuSp7ouiw2vbQKvhsFBxcUX2/J+tEIp1Kzno5ZiuhPghglO9bCNEI2EpUHalDa1UXkcLD8OfzqtNX9i74brJaHp6sAhldJsCFr6nsxGY9YegjcMGL6lzuHw6XfwqTf1Xn6N8fr/gcbZ08HxbirOWzKSQTJ04E4NNPPyU2NhaNt6q+QviKORv+/h8k9qnaMlLvr+buu11gL1NFldZ8CnaL6gLhcqraFzm7YcKXahtjIJz/tKShi9NnDDzxev0Jpo+4neqpjjc2s+oQUlagLrQs2XDgr6rb+IVWtEBd/JJqF9fhElXkMmsrTB8PE7+H6ZdXBFrcblj9CXS5ArK2q/dbPLRRLVd4UKXcbvlBZTVdOV3VqiiXu1cFET358zm46A1oP0ZNdcncpoKJB1dUBGHcbvj1QbhxftUpMwFRqoZI0ZHq+w2IkKDjWc7hdFFQYq/1AEZ5RkeuxUZiRECt7lsIUcssOep8tuw1VWtJo4Vrf1DnzlZDVF0qS3bF9q2GwvbZKvDeYpCaVrJnoTp/TvgCfpwC7UarOk0bple8Lyi2encsIUSt8lkAY9OmTaxdu5Z27dr56iOE8M7lVKny/7wFiV+oG7xyAZEqZf3CV1VwwhSsbn5aD1fLVx6tURAUo1IKE3pBTPv6+R6i6QiMVkUwPU2ziOmobsK9MfirIEJ5z/njtRkF0e1VQdqodp6DDAVpENOp4mdLTtV2qiHN1PSO47NEsneqCzljEGTvUMU09y32PI7mvdWFXGiimhLy7SS4dhaENVfr0/7x/h3z9qn6NMMeU8V0Df6Q2FdlY6z+WGWTgCouai2qGsAIjofxn8AXl6gL03JaPVz2iVovzlp5Fhtu8F0GhnQiEaLh271AdakqFxSjHlRFt1fBdacNOl8OHS5SD7oColSQo/s1kL9fBdldTpXRpzep7ZPOqTq1U2eEy+WcI4Sv+SyA0adPHw4ePCgBDFE/ijNUpweomj7uF65u0LpfBd/fBJlbKtat/hgG/kt1HVn5Pgy4RxVB9Aur06GLJiokHq7+BqZdpDIlygVGwxXTIOgkT2xaDlatffP2VV3uFwqdL4NvJ6tsozYjwT+i+vt736DSYhN6wpF11dcPulcV0TxeeLKqL5E8QE0pueQdNT/4+EBHcBxEd1BTsYrS1dSP6HZQlg8cDWCcqO1waCIERakgROWnYP+8DWPfVPUxUpeqavDa405dGo0KntyxAjZ8rVrFxnaGntep/coUkrNajlkFtWo7gBHsp/4Ocy0SwBCiQSvOUEWwK3NY1TQQnVGdXwvS1DTiVR/Dnt8rtlv/pWqhOvJ5mP8IdLsGds5TWYatR6h9hyaq6Zg9roHQJHVOEkL4jM8CGB9//DG33XYbhw8fpnPnzhgMVS8cunbt6quPFkKdmEpy1c2dVg/x3VRwIqaTasVoyawavCj39//gmm9VRD6yNQTGyM2PqD2xneG2ZeoGO3M7xHdVr9DmJ39vaDOYNFvd0G+coeqztB2tbtLn/Z+qoZG3TwUnkgaozyr/Gz/nTvXkaNoY1bFk6yz1ctrUZw9/EtI3ew5s9L1FBfHmPawylg78A1fPUHUysrarC7XW56uAn8sB39+uMiTKhbeEST9BeAv1tEpnrJolUW7kc+p7VA5egBr33AfVuFOXqsrwAZHV368zqgvKYY+Bswx0Jjl2BVBRoyLUv3YvefRaLSF++mMBEiFEA+W0VWQ/6k3qnNVysCrUHt9Nddty2VQnkcrBi3LbflYPB857UmXspm9UdaP0Jhj+1NFzjp/UvhCijvgsgJGdnc3evXu54YYbji3TaDS43W40Gg1Op1TtFj6kN8F5T0BUGzCGwISvjt7g7YXgGDW1xJvUZaqAZ+4ulTYfJFlEopZoNKqOSliSeqJzqsIS4Zy7Vbvf6A6w5mOYMVFlJzTvo4J0vz0GKRtgzFT49X5VjLPFIPjmarWPbydBp3GqiKdGo/7GQxJU0M8UXFFrQ29SF2t+4TD/YRhwtwp25B9QabWXvqeCgzqT6uxTkqc+r3LwAtSUj9n3wNg31PzhK79SY3CUVWyT2FcFOrxNMbGXqv3HdFCFPv1Cvf+OtFrQSj0CUSG7uDyAYaz1fYf4G6SIpxANnc6osiQ6XqLqVricapqI262y9rK2wqD71bnMmy0/wOjXAJc6X+5eAP1ukXOOEPXAZwGMG2+8kR49evDNN99IEU9R9wwBUFakujOMfAGcdnXTtfZz6DrhxAURy/LBYFJPmgfeU3djFqImAsJVZtDGr1XP+XJD/k9dUF34KqBRQY0LX1PHwuZvK7Zz2mDTTPUCVaviov+qrI6L3wbcKpPCGAibvofkgaorzy/3Vp2+EtUGLngZ1kxT00/K8lXWU/JASOiuOgDt+FVlVKQugawdKpOi2zVw8x8qWFGSq+p/FB1WrxPR6FQ9jZDTnFtsL1Pt8GwWMAao+c8Gueg8G2SbrQSadBj1tf90NMTPIBkYQjR0QbEw8Qc4sgZK81W9s65XqvPkhq/UNgY/z226y1mLVS2MvL1qemT4sJMX5xZC+ITPAhgHDhxg9uzZtG7d2lcfIYR3hQdh5btww3x1s/LPW6A3qk4jh9eoooR7/vD83pTzVGp8v1ule4FoeIyBkNwf0jeooFybEdD3VnUzbrfAN1dV1KeIaKXaAJcWeN+f3aIyMQ78rV5avdpv+TSPc++H+f+uXnsjZzcs+g+0v0hd1BmDYOJ3KvB34G/wD4OR/1GBiYXPVuxv49cqu+m8J9T7DixXKbzRHbx3EgFV3+N0gxfFmfD3G6rYmqMMdAbofq1qiVe5GKhokrKKrIT5IPsCIMRffyzDQwjRQGVuUeeWjTNVkL3vFFj+lspOLG8/fmiN6kaSvcPzPloNVVNFmh89F8m5Q4h647PJWueddx4bN2701e6FOLGts2DcByo9cPsvsPYzOLgKWg2DDd9A/9tVivzx4rqqm6mU81S6vhD1wWlXXULKCj2vNwSodqOXfaSCFNm7YO8fsP6rqsU18/bBz7erquretD5fHRvlXI6qNSqcVs/1YgAOr1MZFOu/VMU+f7od/pqquojs+g1m3Qp5qTDkEdUKFlTRtNBElT2ybbaartXlSohoqTJGPOkx6fTb0tkssOgFWPFuxbQVp139mzDvkRMHd0STkG22EhZQuwU8y4X6G8mVKSRCNFzFmfDzXaoNeOfLoeOlsOVHdd46uApShqnt9vyh6lx4qrEUHK9qOMV0hGY9JHghRD3zWQbG2LFjue+++9i8eTNdunSpVsTz4osv9tVHi7Od1axS7C05KiCx/E21/Mh61ZLRLxSWvgZXTodVH6iWkKZg6Hk99JgIocnqCa0Qdc3thoIDsOYz2P27utkfcA8071X9Bt4vDLb+BDt+gWtmwo8ved5n1nb13mY9VcChMr0fDH0UfrzF83uNQSoAcCIOq3qitfgFdcwdb/2XcP1cVXx0xLOqXeuueSqI0OlSFTAxZ6gipS0Hq20XPKGKpIUkqHnJ7S9Sv4vTYc6EDV96Xrdtluqa4h92evsWjUJWUVmtdyApFyo1MIRo2CzZKhPQaYUW56pzwqoP1LpNM2HC57B3kZpOMu9hVTB6w3Q1BVKjVXUzekyCwCgVaBdC1DufBTBuu+02AJ599tlq606liOfSpUt59dVXWbt2Lenp6cyaNYtLL70UALvdzuOPP87cuXPZt28foaGhnH/++bz00kskJCQc28fQoUNZsmRJlf1eeeWVzJgx4zS/nWjQHFZ1I2Q5Ot+9NL9i3a8PwCVvw875aj5+x0tVUcTQZuAfqeoLCFFfcvfAx8OrZl4c+FtNdxjxLARWejJUVqCCF6D+5iu3Zj3ewRVw6Qfqhn3NZ2oub+vzYeC9qrbEkP9T2RIuR8V7NBoY83rFf7vd1fer1al5w62GwJIXvX/+noXQebyq5L79yYrl235W6bjj3lc/m4KhxUCY+L0q3KnVQ3Cs9/3WRGmBKtjmTUk2IFMdm7LMojI6xof4ZN+h/gYKSuw4nC70OulAIESD47SpIEZkayhOV+eW8utCmxn+fF4Vl147Dfb+CXPuhWGPw5BHVeag1qAegEVJQXchGgqfnW1dLpfX16l0ILFYLHTr1o2333672rqSkhLWrVvHE088wbp16/jxxx/ZtWuXx+yOKVOmkJ6efuz1wQcfnNH3Ew2AzQJ5+yFrm+rf7bCp/z3wNxj81fxGt7NqOqA5U9UIMGeoJ7sdxqp5kYGxErwQ9ctaDL8/4XnayIavqhe5zN5Z8d/20hNnKIQ0g2kXwpGNcMM8uGs1XPKOWq7Vqwu7W5fCkIchoacKNty0ANI3wa750MFLx5TOl6t5w8bAqlNXqnGqjJHts6uvOrQadv9RNUASEKGCimcavICTF1kz+ebGVjQcWcVWwgN9UwMj1N+AG8izSCFPIepdaT7k7FGZh0VH1HnFP0JdE9pKVDC9NF+dY8odWQffXqeWXfgKXPaJyr4oyYWVH6jMjJRhEBjh/XOFEHXKZxkYNdWlSxfmzp1LYqLnegOjR49m9OjRHteFhoayYMGCKsveeust+vbtS1paGklJSceWBwQEEBcnc9aajKIjqjDg5u8qOiaccyfEdlE/u12qn7fOpAIVvz9W8V6XU52cDq2BC15SLS39guvvuwgBKlNg92/e1++cC/Fd1X9bi8Gv0o33xhnq733pq9XfFxyv/uYt2bDzVxj+JIS3UIXKfrpDXbyBqktxybuqS4glR80Xjm4Lqz9RXUb8QlS6rcOqpp70mKhqV4QmqA4fKcO9F8ZtPxaWv+P9u639VAVNgk6zzsWJBEZDYn+VhXK8mI6nX1tDNApmq4MSm5PwAN8FMEDV2YgJ8fPJZwghaiB3D8z+Fxz4S/0cFKuu8WK7wHU/qXOhX6gKagy4B/54uuK9NovKwNg1H0Y+r6Zy5u9T+wxtdvpTGIUQPlHv+Y779+/HbrfX2v4KCwvRaDSEhYVVWT59+nSioqLo1KkTDz74IMXFJ2ijKRo2Sy78dCds/KYi5d1mgSWvqAyM0Obww40w4xp4f6A6YQ38l+oDXi6mA1z6nkoXjGpTP99DNA62Uig8ooJmztr7t+rUHW1FXXgIZt2ung6VX1TtW6SKivW5uWr9lpiOasrUwqNT+TRaVby24CB8ekFF8AJUvQlbEXw9AT45Xx0/y16HAXfDlh9U4GLCl3DbMrj9b1WYs1lvFfgITYTzn1ZTQI7XYazKjrIWeP9q9tKKIp+1LSACLvtQHfOVRbRSacPSaahJyyxShVt9mYEBSCtVIepT4SGYNqYieAEq4/b7GyB7m+qOlbUdfpwCn49R9Z3OudPD+fJdWPKymkKy8TuVqSjBCyEanHrPwKhNZWVlPPLII1xzzTWEhFQ8nZw4cSItW7YkLi6OLVu28Oijj7Jx48Zq2RuVWa1WrNaKwlxFRUU+Hbs4BZYs2Pen53VRbWH6FVXrAcy+S9W5uO0v1V7V7VJBkLJCVdRTbmAanAZx/LndkJ8KS19XUx/KW2/2u0UFyWqbfzi0uxB2zPG8vv2FKoviu+vVtIuCA+ri6scpKoD36wPQ7Wq46hvVpcRWrJ4e/XyXmvcLav/GQBWQqHyMaLSqDsbMiSqYUK4gDX66Te1z60/qAs9Tdx7D0SfPN8xXRTv3/KEKY3a9StXPmPcQ9L9DBQw96XCxSvP1lfBkmPQzFB5Wv7fQxKNTVE6zLWsT1iCOvVp0LIDhsy4kRwMY0kpV1IKmdvzVmUOroTjD87p/3oVR/4FPRlRMVZz7oDpf3vAbOEpVnYyCg7B7AVzxGaCDy96X60MhGqgmE8Cw2+1cddVVuFwu3n333SrrpkyZcuy/O3fuTJs2bejduzfr1q2jZ8+eHvf34osv8swzz/h0zOI05R/wvDyxn5qreO4DKjix5Qd1Awrwz1tweK1Kn9dqIThB3cAF1cIce1HrGsTxl78fPjqvahHY5f9ThTMn/1L7QQxTEIx4RtVwqfyZAL1vVPUqSnJVIMA/XG1jyYVblsLehWpdePLRFqhu+P4mVaCsXHQ7dWwsfQ2KDlXdf+vhqjNI5eBFOZcTNnwNF73huU6Mw6aOs3/egfT10G6syvoozYffHlOtXAGS+qtaG7l7qr4/IAL6TgG9b56QHxMUq17NPP+bL5QGcezVoozC8gCGb/6+jHotgSYd2dKJRNSCpnb81Zn9f3lf1+4CVRdj+NNqKuGu39SDrI3fqNeI5yDlPDXlOCwRwlqo87EQosFqEgEMu93OhAkTSE1N5c8//6ySfeFJz549MRgM7N6922sA49FHH+X+++8/9nNRUZHXOh2ijgVGVf25vBVkmxGq33dES3UTOPAeFdD4/XEVdc/YqNIG3S6VRt+slyrsJBqcej/+HFZY8X71QAKoG/LUZdD96tr/3IgUuGWJqmmxa97RNqp3qzm85ixYNhW6XKYyGXbOVZkT5gzVjnTvn7DgKZWl0ayn6uxRnKFeKcMgIApydkHPSWqbrlepYF76RhWkOLDc+7jSNxwNjHhZN+3Ciuk1WTtg2atq3C0Gqd9XVFtVLHPSz7D2c1j/hdpfx3FqLnJ4i9r9PYrTVu/HXi1LLywjyKTHz6Dz2WeE+RvJlgwMUQua2vFXZyJaeVjW+miHKzeU5gEuiO8BfaaoDIzy4PrehdB2tMoCDIqR4IUQjUCjD2CUBy92797NokWLiIyMPOl7tm7dit1uJz7ee/qwyWTCZDLV5lBFbQmMUYU3C9JUQGLC5+oJ8Z/PqhsxUwj0vUUFLzK3qukjy99UT8zLClRqu9S9aNDq/fgrzVcFL73Z/K3qDW8MqN3P1WhUFsWAu6DrlSq11e2EkhyVDXL5pzD3YTUNotyi52HLjzDmNRWYADi8DmZeq/7mhz+t1q/7HLpcDsmDYPGLFV1NkvrD8KfAUQZp/3geV2hixTSRysxZaoqWp9og/7wN13wHG76BsW9WFOgc8n8qowS3yr7QS+HDhqTej71allFYRmSQb7N7Qv0N5EgGhqgFTe34qzOtz4c/nqo4FyX0hAtegF/vh4xNallkiqptsWE6XPgafHOl2j6iFeycowppj5DsFyEagwYfwDCbzezZU5FynJqayoYNG4iIiCAhIYHLL7+cdevWMWfOHJxOJxkZag5cREQERqORvXv3Mn36dC688EKioqLYtm0bDzzwAD169GDgwIH19bXEmQgIh2tmwsqPIL6LKrh0cFXFemsRLHsNBj+o0uo7Xgor3oVz7lL1BbpPrLehi0ZCoztxcMIYCFofPdEtyYN1X6jAhNMGPa5VNS6a9YKDK6sGL8plb4ec3RDbGTK3VCyPSIHc3bDmE1Wks+1o+G5y1femrVAt5CbNVtNAPBn8kCqGW87lUtkbpQVV27lW5narmjO3L1cBx3I6PYRI7QlRN44UlhLho+kj5UL9DWQWSQBDiHqj94Pxn8KmGaD3hz43wlfj1bmzXO5eVTPq6hmqE12Hi2Hrj6od+FfjVD0MIUSj4JMAht1uZ+TIkXzwwQe0bdv2hNt+8MEHxMZ6r0OwZs0ahg0bduzn8tS6yZMn8/TTTzN79mwAunfvXuV9ixYtYujQoRiNRhYuXMj//vc/zGYziYmJjBkzhqeeegqdzncppcJHLLlqvv3az8FZpm7YKgcvKlv5IYx9A46shyEPq44J4S3Bava8vRDlAqOgzy0w9wHP6/veqqYh+ULaP+pJUrmEniqY0fcW2PaT9/dtmgnjPgSXXdWysFvUFJTfH1fre1yrsiI8seTAobVwxTSYdauaQgMqSDPwXjXFoyQX8o4ee3aLmoISmaKyoGxejin/CNWKVYh6cqSglIRQ304VDA0wsDtTOpsJUW8MASpQHpaspizuXVQ1eFHO5VAPCEISoOUQaD1CTcXscHHVQLsQokHzSQDDYDCwZcsWNBrNSbe95pprTrh+6NChuMurBntwonUAiYmJLFmy5KTjEI1ASS4seQlWfahaoo57X82398ZapJ6kB0RCXFd189ZmFCR0q7sxi8ZJo4H2Y2DL99WnVfS4rnpLztpiyYFFL1RdZi9R2Q+mYNCe4J9snQHK8uH7G1X7OFBTSEY8q55IRbaBv97w/v7UxRDbSQUxyorVlBG9P2z5To3r7zdgzacV22/5ARJ6wRWfw/Tx1fen1UG8HGuifh3OL6VrszCffkaYv0FqYAhRX2wW2D0f5j0CF7+pMiQ3f+d9+/SN0OJcVfh949dqCsmoFyHw5FPQhRANg9ZXO540aRKffPKJr3Yvzka5e1XwAmDkc7D5e8/z8stpdeqV2E9NKSk6oupfBEpbLFEDIfHqZv66n6DLFdBjEtz0B5z/dPVCsrXFYasoLFYufSNc9hEERkOXCd7f23MyzL6nIngBUHhIZVScc4e6yAtJ8P7+yNYQ0hwMQSrjQh8AeXvgwD+qAFrl4EW5I2shczO0GlZ93agXK+pe1FRpvio0emiNmhLjqYiqEDVktjooKnMQFezbmgJhAUaKyhyU2Z0+/RwhhAfFGercN+Y1WP42bPr2xNMUQ+LVuXDTDFjxHgTHnvq5SghRr3xWA8Nms/Hxxx+zYMECevfuTWBgYJX1U6dO9dVHi6bI5YLVR2+gAqNUavzOudD5MlU12pxV/T3txqiOI6s+gN2/w/VzVSZGbRdeFE1XcJx6tRqqsjJ8zWBS6a/pG9TPEa1U4c2vLlOtga+YBvHdK9aXSx6kitfm7a2+T6cdtv4E7Uar6uu/P1Z9G61OpdD+8y7smA3Wo+nwzXrChC9hhZfaGABrp8G1P8KGGWA3q1alrYZBRAs1vaSmCg/D7LtVRfhybUbARf+D0GY1348QRx3OV22Bo4N8G8AIDzAAkF1sJTFCzi9C1Bm7FfYvU93nrMVwZB3k7FRB/83fe35Pr+tVRuPf/4NeN6pzlhCiUfFZBsaWLVvo2bMnISEh7Nq1i/Xr1x97bdiwwVcfK5oic5aqe2E7elOV2B/2HL3JWfIyXPy2ejpdWbPecN7jqojgttlquklcF/ALrtuxi6ahLoIXoKY7Da9U/2Lgv1TXkbJC9fPsu1U2xehXVJCg9XA1heO8x2DhCaqnZ29XbVSNgSqbpDK9H1z0hqrU3mJgRfACVDeTtOWe5xKXs1nU1JYOF6mpXXn7VLcfe1nNv3dJPvx8V9XgBcDuBTDnX5KJIU7L4YISAKJ83IUk7GiR0CyZRiJE3bDkQPomyN+nzkEtBsPOeWqdzaIeWo14tuq0S40GBt0HkW1VMc8uE2DIQ2DwbY0cIUTt81kGxqJFi3y1a3E2KToC39+gnsR2GKu6iOCuuKHM2a2KFI46WjegNB+i26tCTjm7IHGA6oIQHKdqBAjR0FiLVX2X8hbAzXrARf+FBU+qwFzlriPWYvjxFjXdo9VQ6H+HKtq56iP1N165A0llEa1V1tLcB6D/nTDxO3XsGINURtOqD1XQr+Xg6u9d8ykMfVRlPHnS7kJVxDN3F0S3U61R132ujt0rPoPgGnQcsWTDvj89r9u9QF2s+oeffD9CVHIwrxS9TkN4oK8DGOrcklV0CkE7IcTpKc6An+8GawG0uRBanauu9yo/aFg7TWUVXvW1Ohdp9ZDQXZ3zig7D5NkQ3EweagnRSPm8jeqePXvYu3cvgwcPxt/fH7fbXaPinkLgKINl/4WMLSpA4ReuiiceWI5z3EfoNs5Q2+XsUtF0U4gqdthmhEoLNAZCVBs5QYl6kVVUxr4cC6tS84gL9aN/ywjiQv0w6it1P8pLVVM6ds5T051iOsKY11VPe/8IlebqSe4e9ep2jZpecWgNnHs/7Pmj+rYaDXS6FIqPqKyN5W+qKSHB8eoYs+So7frfqQKALYeoFFutXrVKNWerTijR7SH7uKK5phDoOwWmjanIktAZVOZI1wlQcFBlcQREQVhzCE7wnM1SnmHizcnWC+HBgdwSYoP90Pr4miPYpEev00gGhhC+5nSqLiJ7fofu10Gni9U5zA2uLlei3VMpi2/7bPUKioVzH4Dtc1Rx7uj/Z+88w6Mo2zZ8bi9JdtN7DwkQQu8dBFFQERFEAcXeu76Wz9fee+8FC6IoKoqFKkV67y2k955sttfvx5CEmAR9lUCA5zyOHJqZZ2aeXTK7M9fc93V1aT8fK4FAcEJoNwGjqqqKSy65hBUrViCTycjMzCQ5OZlrr72WwMBAXn755fY6tOB0wVwB+3+E61dJpeX7foSL3qeq3k6uy0C3tAvRHvqxabzDJN3wpU+SIi71yUK8EJwUimttXP3pZg6UNrVjqBQyPryiH0NSQiQRo64QPp0gPR1qoHyfJAZc8SP8cjdc+LYkCHhcLQ+i1EgXYQGRUovUjq9g7OOw8llJmABJxBv3NOz9QSqpnbVQEjvstdLxG+h3NZhLARmknQM/39kkGgQmSN4xM7+TIlS3fSq1h3S5AIbeBt9d27zFw+OC1S/BlE/h51lNr88/AmbOh4juLUUMrfHYb+hfrT8VcTslc1SZQhjItRN51RbC29nAE0AmkxGsV1MmKjAEgvbFUgbbvpBahHtcJgnzTgu13a+kxhdAbPwwVPlrmm+jNULsACmlS2sU4oVAcBrQbh4Yd911FyqVivz8fPT6JlOradOmsWjRovY6rOB0wuuGK3+RUhh+u08yLnTUs80cyLQvc1iedA9l538uldLH9qNmxBNYpv8kGRJqjWD8G6XrAsFxxuZy8+rSQ83ECwCXx8f1n2+l1HTkKW3e2ubiRQM+ryQA9J4piXb9rmn9QMPukgxsQapMGni9VGFxw2qYPk8y37z4E/A4Jd8LtZ9k5jlrIQy+FWL6Quo4mPwBhHaWYlbVfrD4/5pXPNTmwWfnScLEyPvh+tVwy0aY8IJUpttW28rmD6UWl+BkSbAwl8HnF4KpsOVYv1BIGtX6flLGtvS4OZXx+aTKm2WPwsfj4LPzJYNiU8nJntlpR16llbATIGAABOnVlJlEBYZA0K54vXD+K9L3lb0O5kwBh4kcq5bxszNZ2/M5ysd/AInDIG4gVWe9RPXF846Yt8sgKOFkvwKBQHAcaLcKjCVLlrB48WJiY2ObLU9NTSUvL6+NrQSCo5DJIXeN5CR9yeeg1FLn1fHexircXh+3/FhItNGfiekP46eElQcdBBfU8Mb4GHQBwlVacHKoMjtZsKOo1XVOj5cd+TXEB+vh4DGE3MJN0Gu65JJ+zjMw4UVY86okeBhjYeCNoA6QTGpD06RtjLHSOTNnihR/6vNJ4gWAIQYueB3mToX0C6HXDIgbALY6yXgzti/4R0k31SAJDio/cFklQcVlg73fS2W4hijJs6JoG5Tvb33+A2+UxJGqLOh7FYR3gT3fw86voOIQGOOaj9cHw6S3JSPP7KP8k1LGwMQ3pPjj04WaXPhwdPOqlV/ugj3fwpTZUkWN4F/j8frIq7YwtNOJedoaqFeJCgyBoL2pPAg5qyD1HKn6YtoXOD0+Pt1iw+7ycuW3+SSGhHNBlydQyn0s2WGDHUV8MSWG4Ji+J3v2AoHgONFuAobFYmlWedFAZWUlGs2JeSIiOMXJWyuVricOh4O/gNOMK7gPtdYmx+jiOjvvrW+6aOwTH4jTK0d4SgtOFi6PD5fH1+b6xj75wGM8CfILA/eRcblrpKdJI+6TbvStVVIJbfE2ycfi2uVNMaO5a6B8b8v9mYokYSBtAlRlws55kkO7xykJhIeXQY9p0PMyyZQzvEuTcaapCFa/CIWbpbYHrxvWvQUOM0T1lC4mj2bsY1CbL0W/NiCTwfB7pYqMmqMEbJ9PaqNALgkwUz6RjuuoA22g5J2hP43MO102ydentVSVvHVSC5EQMI4LRTU2XB4f0YHaE3K8ID81mWX1fz1QIBD8M0wl8Ms9UmulfzisfB6qD+Maej8V5qbzPLfKyptrrY2/Rxu1uNUBoDWcjFkLBIJ2oN0EjBEjRvD555/z5JNPAlKPqNfr5cUXX2T06NHtdVjB6YK5UrqB83qgdKd0g2WtwtAvluEpvcmqaD3WcXSyH/4cI/JRIGhn/NQKEkL05FVZW13fN+HIDXnPS2Htq63vZPBtUkRq6jjoPgUW3tE83rSB+hLJzNMYI0XH7fiy7Ykd/A3GPQU75kLqWCl29ehkke1zpKdafS6HudOalod1hknvQfEOqaXF44CEobBvAfSeISWYNHhuBMZLosOyx5of2+eTRJBLPpeMPEHy4Nj3I+yaJxmGDrheMhANS2v7NZzq2GokX5+22P6l1AYkjK7/NVmVZgAiDSdGwAjxU/NHnajAEAjaDVuV5AnlFwY5ayD9AqjMRJ/5M2OTr2ddVuubDU02EqATD04FgtOJdhMwXnzxRUaNGsWWLVtwOp3cd9997N27l+rqatauXdtehxWcKthqwFwupRpojRCcIj1NtteCzwNeOUT1gJ1fSzdIR1AvuocrL/uDb7YpsDo9zXZp1KmY1Csahbr1G0eB4EQQbtDyyPnpXPPZlhbr+iYEERd0pDLNGAuT3oUfb5HaNBroOlFq8wiIgIs/ltpEWhMvGqjKhOSRUvuI/E8f6cHJkDFZqmawVEpGmkGJ0u+txaJmLoZOZ0npPZWZ0rKKg5IvxsUfwfsjpLkq1FK7g0IlLV/6CFRnQ7fJsGNO23Pd8z1MeOmIgen5UJPTtO6HGyB+8N+PXj0lkYHiGF+7Kq0QL44Th8vMaJRyQk+QB0awnxqL00O93UWAVkR2CwT/GHMZ1BVJ/kvBKVLloVwJSr3k0+TzSh5nyx6H8n3IgHGXXsU7/moqzc5mu9Io5dw4qhM6P1F9IRCcTrSbgJGens6uXbt49913USgUWCwWJk+ezC233EJU1Ol6cSr4W5jLYfFDsPsb6XeVDi58RyqN3/KJVGbd5XzJxDDr9+bbelzELb+JH2Z9zJO/l7MmqxqZDM7qHMb/jY4k1rQbkoac+NckEBzFgKRgPr2qP08s3Ed2pQWdSsGlA+K4YURy0w2Vxl8SKuIHQd56KUUncZhUoeAXIo3RGsBhkOJKHabWD9bggaHSSZGmRVulJ1QDbgAZUlWGpVISB5Qa6XibPmx78rvnQ+fzoPK1pmUVB6TzNjID4gZJbSRL/guXfSVVXwy6WWp9CIiSYuvawlwmzWHr7ObiRQP56yVvjS7ntb2PUxm/UOg1E9a+1vr6Plec0Omczhwqqyc2SNfuEaoNhPhJ53VpnV0IGALBP6UmD+ZeIn3njH1M+t7b9oX03RE7QBLAkUHZXqnl7gixS67j22lf8Nw6M0sPVOH1wcCkYB49rzMJoUK8EAhON9pNwMjPzycuLo7HH3+81XXx8fHtdWhBR8brkUrYG8QLgHOelaos8tdLv8tk0hfTnu+lFIWvLpXMmo6gKNlO5+/O5u3LfsakTEGmUGKs3kWAvwuiBkk3cgLBSSRAq2JU53C6RRuxOt0oFXLC/NVSfOrRqP2kKong5LZ35h8JQ26FFc+0XGeMhZBO0v9bqsAYD+e9Iu13/8+w/fOmsbX5UtvHjPnSk/62cFparteHSD8ZU6U4VqVaSkGx14FCIzm756yGwCSIGyhVY7RG8mjJGHTnV62vl8mkmNe4AaA68rTtdEKhkkSm/T+1fI96XiY9bRQcFw6W1RMdeOK+C4L91IDky5QaIeK7BYL/GWu1FMtdcQCG3iGJ5ke3I/p8kgjc+3Kw/6kqsTqbpPnjebnHLGqvmoI3MBGjyoMxKPiEvgSBQHBiaLcY1aSkJCoqKlosr6qqIikpqb0OK+jomMtg3RtNvwdESkaBDeJFeDrM+E7qu89aCiueluIaRz3QfD/WKoz2IuIsu4lV1hLQZRSEpJx+NzyCU5qwAA0JIX7EBOpaihd/F4VKSvIYcEPzFpGIDLj8RzBES34x1Vkw5yL44XrA11y8aMDtkC4I+13b9vE6jQW5CpJGSG0pMplkmvbdNbD0Ycj9Aw4vh4W3w5pXpPPuq0uldJHUcTDsbqnF5M9oDNDjkrZbJELTJHEFn+TB8e2Vkihiqfr779WpgDFWirKd9K4UAd3lPOn3cU9KF+eCf43H6+NQWb2U9nOCCPJTIZdBSa3thB1TIDitsFRICVyaAMiYAhvekZbLlVIS18j7JHHj5zukZKrp86TP0wYcJvw3v0ns6nuI11gwBoWclJchEAjan3arwPD5fMhauVA1m81otSfGVEvQAfG6pVYRmVxKOxhye5PHhS5Iuoiff5X0ZLeBzMVSLOPAG2Dj+9KypJHSU+uFd0o9+ALB6Yx/OIx5FAbdJPnHqPRSm4lSJ/UKu+3w2/2SQBGaBiU7W+4jOBn6XyNFmAbGwcgHYON7ku9MA35hko/Fmlchsrt0fuavh/wNklnonzm0GPpfC9PmQER36WLS64KrF0nnZukuaVzcIDj/lSPJKz4pxvX3J5v2ozXCuc9JIsnRCR2ZS6T2lJH3SZ8PpwvGWCkmN/3CI73dwmDueJJbZcHu8pIYcuIEbaVcTrCfmiIhYAgE/wynWTKvHvmgZBrdwJhHIWtFc9+mwi1SPPjEN6WWE6+7aV2vmdJ3ikAgOG057gLG3XffDUipIw8//HCzKFWPx8PGjRvp1avX8T6s4FRBqYGwLjDiXijYJIkXiiP9wn2ugHVvNhcvGtj4HlyzFDZ/LN28jXsSNr0vlRkGRJzY1yAQnADKTXbcXh9qxREjQo0faJKAJHC7oPowLH8CqzaCisEPk9nrVRQyGV2ig4gsXEQz+bjzeCkmddXzUL5fqoJIHiM9wfrlXqjNlYSLbpPhu6ub2hs2vg9XL5aqIdpi2xdS/GnDeaxQQ0xfuPwHsNVKx9IFSUZsDfS8VPLmaDhOz8ukc7y1eNEN70glw6eTgNGAqBhrF/YWS34x8SEnrgIDJB8MIWAIBP8QfQhE9ZJSt/peKS3TBUnC99KHW443FUnteF0vgL0/SMsie0jVgxr/EzVrgUBwEjjuAsb27dsBqQJj9+7dqNVNpcRqtZqePXty7733Hu/DCk4V/CMkw851r0sRirogPFM/R7HzK4jpB2tfb3vb3DUw5TMIToCd86DTOKnfXiA4HbDVgrWSKo8fy3MdvP57NkW1NlLC/Ln/3M4MSAomUH/k87T6MHwwitqB9zLPO4YX3tiIx+sDQKssZsuNQ2m8fNMFQZ9ZMG+G5EEDUi9x1jIo2yW1bbjscOBXmDsVPEe5uHvdULJDSgZqC69L2t+f8QttuyWioY3i4CLYORdSz4Yvp7Z9jMzFEJHe9nqB4Ch2FdQSHqDBcILNNIP91RTVCAFDIPifcVqlB1Tr3qBm5FOoYkfgL5NDwhCpEq8t9i6ASe9IyVa9pkPCMKkyQyAQnNYcdwFjxYoVAFx11VW8/vrrGAzC/VfwJzT+kngBuGIGkeONIq7rFHR/5RbvskJEV3y1BcgGXg+BwghWcJpgKoZf7sESkMzvoVeSWeWmb0IQlWYHWRVmrv9iK09NymBa/zhUbgssfwK0RvZHX8yzX+xvtiu728trG808MPoRlCuekC7qNn3QJF4cjblcKs2N6Q3rXmt9blkrpFaHDe+2vr7PLMnU83/FGAsDroWMi4+0sbQigjTg9ba9TiD4E7sK60gOO/HVLWH+GrbmtVJFJBAIjo2lHDa+i6PLRXzrGkbW6hoeHPU0gc4SfOZK2rw69HkhJBXOfRb8wiVDaYFAcNrTbiaes2fPxmAwcPjwYRYvXozNJj2V8LX2pE5wZmEqgaAkiOpFRd87uOrbfIqGPEFVSF+8CcPa3i6mL15zBY7gzkK8EJwWVJudHC6rY3+pmZL+91HQ+x42FljZkluNXCbj3Zl9Oa+7FDv9/G8HKK93gN0Eh5dRf/Fc3l5X1up+P9pcye9+4/HNmC/5xRRuaXsSRVtAeYxS+0O/SZ4VAZEt13WZCLH9/peX3BL9kfaSlDFtj0kb9++OIThjcHu87CqqJSXsxJeQhwVoKK2z4/YIwU0g+J+wVoNKT+2Ae5i/18SiQ/XkRE8kp+c91Hc5RnVelwn4HPV41QZReSEQnEG0m4BRXV3NmDFjSEtLY8KECZSUlABw7bXXcs8997TXYQUdHXMZGI8YL3W/hDC1m5+vTuNgjYzxH+6jdMgTrfeF95oO+etxakLQBLZyIyUQnEL4fFJKwuWfbGTsq2u4b3E5G+vDOe/tDczfWsj2gloW7Cji2s82MzwtlP6JQdQ73NRYnJLHxNlPYJfpKapztHmM9zbVUp+3QzL2PFa6hV+4VN3U1hifT2pvmfiWZCIakgI9LoXrVkD6BbD1cyktpLbgn78hWiOMe1pyn/8zva/46wtTl1UyMzUVg9t57LFH43FLpcf5G6RklerslvF8glOKA6X12F1eUsNPfJRpeIAGj89HSZ39hB9bIDil0QXDFQsJk9Xx7TgH629MAaWKc99Yz6qaYJxJY1tu4xcGvWZi1YTiCuoEinbLJRAIBB2Mdjvb77zzTlQqFfn5+XTt2rVx+bRp07jrrrt4+eWX2+vQgo6ItQYKNsDvT0HlISkRYeANqArXEXjgIVJHf0CdzcXNSy28cckSQvd9ir5gNehD8Qy8CUVtLr6sVSiHhraabiMQnCg8Hi9l9Q6sTg9alZywAA0an0u6eJL/vY/UohorU99bT53NBcCVQxN5+pf9jT4WDXh98Myv+3nmou5szq1BLfPA/h8hZxX+qmB6xqSSU2lp9Rj9otXoyrZB1s+SQe6yx1qfTO8ZYKmE6d/Czq9g62zwuJrWD7gedn8D27+QqiSG3SNdOH46AVxH9fuHp8OlX0Fw4t96D1oQmgY3/AGbP4LDS6UL2qF3Qmzf5gagR+PzSaLD6hclMze5ShI7B90sJa0cC49TMhKeN7PJPFQmh4E3wfC7RaTpKcrWvBqUchlJoSehhSRASpMpqLYSdwIjXAWCUxaHRbomXP445K9DrgvC2GsGYCHB68/AeH/u+aUEv0mP0T3tYsL2fAROC94uE5EnDMRjrUYeOxiN6h/GlAsEglOSdhMwlixZwuLFi4mNjW22PDU1lby8vPY6rKAjYq2GXd/AovubllUcgJ/vgmF3IQtOIX7XG1zc40rmbqvgrE/MTEifyoAul1Fl93GOMoAu2x5HNvM7lPrTMIlAcMpQZXbww/Yi3lpxmFqrC41SzqX9orm5u4+IPR9Bv6skca6VxAyP10dFbT0yr4s/MmsaxQsAf42SCnPr1RQmmxulXE5ahD/BBUvhN6mCTZe9ipum/M7C3bIWwodGKeeybjpUXy2WhICU0VCyC/Z+3zRIJpeqHjZ/BDvmSr93nyKJEN9dK7WGjHpQMvK0VEhtX5s/gn5GmH9lc/ECoHyfJJJMeAnsNXDwN0kYSDtHek/8w4/95srlEJwkReYNuxPkatD9RRReTS58NKZ5esmGd6S4vSt/kXw22qKuCOZMlipUGvB5YcPbkmFo75nHPragQ7Ipp5qUMH/UynYrMG2TMH8NMiC/2sqQE350geAUw+OC8r0we3xTDGp9KfzxMiQMJTh9Iv83fCjnZpu4+rt8UsJimNrtRfQq6BVrIGP/OyhGP4hOJSovBIIzjXY76y0WS7MI1QYqKyvRaETm/RlDZaZUWv77E62vX/82XPIZ2m9mMe2im5i7DdxeHz/tqeSnPdKQUd3i8F6xELkh6sTNWyD4E063h6825fPSkkONyxxuL59tKKSoOoiXkjoT+OFZMPohGHBDs5vv8no78zfn8+GaXAYkhaD5083VX1kDyYA3J8YS+tPNTQtdVhI2P8mcaf/lvsWlFFRLgkJKmD8vX5xOnKoYxj0LCYNh/tWQMRku+xpKdoJ/mGR8tvlj2LfgyCS8ktCIHC7/HpwW+PEWSWwEKd5u4ltSdJ2z9aoPDiyEIbdKokIDa16B+MEwZTb8nXNYqQZl2F+PcztgQxvRqzW5kvlon8vb3v7QoubixdGsegE6nS0imk8xfD4fm3OrGZjURsVOO6NUyAn115BXbT0pxxcIThkslVC2B5Y/2SReHE3eWhhwHaH1+4kPDiO/2kpWhZnnVpoB+OTySORjHpE8lAQCwRlHuz2iGDFiBJ9//nnj7zKZDK/Xy4svvsjo0aPb67CCjkRtgaSsO+vbvuHxOKWbCK8LNS2/xAI0SkIDDUK8EJx0yusdvLMyq9V1yw7VUBE9WqpiWPE0mEsb19VYnDy8YA8vLMmkxuqi0uwgNkjXbHun20OgvvXIRz+1grQIP9J+my75NRyF9vAvDF5zFd9Ni2LJlXEsvSKKr0dU0ivQjvLgz+Cog5XPQlUmrHoevrlCSgAKSYXPLmgSL47mwM+g0EjVCQ3iBUhxqssfA/cx+vu97hZzBCB/PWyfA55jxLH+r9hq4NCvba/fM7/tzx2QKkbaoi5fiocVnFLkV1spr3fQJerkpZ+FGzTkVwkBQyBoE49LqvqzmyQT6bYo2IRa5iVA2/xZq1Iuo1OYnxAvBIIzmHYTMF588UXef/99xo8fj9Pp5L777iMjI4PVq1fz/PPP/+39rF69mgsuuIDo6GhkMhkLFixott7n8/HYY48RHR2NTqdj1KhR7N27t9kYh8PBbbfdRmhoKH5+fkycOJHCwlYusgXHl9w/pNJz+V/0JipUYIyn0NLS2+LpizIIDxAVO4KTj8nmxups+wY8v84tmVGC9HT/CGUmO4v3NqWFbMuvYUBSMCpF09/75+vzuO+cLrRm7/LURd2JUdQgqzzQciVAxQHCCxaRtmQWqatuJSwyHpxmqM2T2jeOmgseJ9TmSz9t0fUCWP9Wcx+MBioPQUintrcNiAJHGyaYm96TovKOFzJF64a/Daj9j+1JEj+47XVhXSURR3BKsTGnGhnQOeLEG3g2EB6gJbfqGMKZQHCmU18q+Rb5PJIpdVto/HEEprYQBB84pxOh2uMohgsEglOOdhMw0tPT2bVrFwMGDODss8/GYrEwefJktm/fTkpKyt/ej8VioWfPnrz11lutrn/hhRd45ZVXeOutt9i8eTORkZGcffbZ1Nc3XUTfeeed/PDDD3z99desWbMGs9nM+eefj+d4Pg0UtOTwcum/5goIbCOb2z8C7CbqRz5GQFgsY7uGkxzqx9iu4Sy4eTBndY1ApTjxvcwCwZ/RqY79dxikU0ppGNDMH2J3cV2zcT4ffLwmhxen9CRAI91gb8mrYWN2FV9eO5BzMyIaz4FvbxyM2+PhYLkDkkaBsQ1jyqSRcM4z0PMyybyyvlS6ua/OlVpDjsZlbdsUEyQzzYKNra9z2cBc3vbN/8j7Ydunra+z1bScy7/BP0wy3GyLgTeC8hgiROKwVr1KABj7uLR/wSnF5pxqEkL0+GlOXk98pFFLbqVFRMYLBG1hrQKHCTKXQPqkNof5EoaBfxhndQkjOdSPEZ2CmXdZAlPS/dAbQk7cfAUCQYejXb/lIyMjefzxx//VPsaPH8/48eNbXefz+Xjttdd46KGHmDx5MgCfffYZERERzJ07lxtuuIG6ujo+/vhjvvjiC8aOlWKY5syZQ1xcHMuWLeOcc875V/MTtIHH2Wig5yzYhvyiD1F+eVHzkm6VDs57hRqPho+yjHyxfSsPn9+V/olB+DsqCDV64SReiAoERxPsr2F4aih/ZFa2WBdh0BDlLmzyVOh8Hh6vFx8QcaSCSCGXMTItjKRQPyrqHczbXMCzF3cnWCvDYbOSFBNBiL+GV6b2otrqZHNONQ98t4s3JqeiUgfyXddXULtM9AyVEbrzHfT75knH6j5VagvZOhsu/kSqPDi0GLZ8ApE9JNGj7qiIU58XavIgIkPqQf4zfqEQEC2le7TG4WUw5hGpBHjPfEnUCIyHUf8nRawW/qkkWKWTolojuh+7YuKfkDZOEm9yVjVf3mcWhHdtfZsGjHFw1W+SYWnD+6ALgnFPQdyA4ztPwQlhU041nSNPXvUFQJRBi8XpodLsbEwlEQgER7DV4bPVIpPJMeli0fa+BHXhZqjJaTbMd/aTlCiimTz7EN9d3glN9ma0liL8D+RAp9dOztwFAkGHoV3vDu12O7t27aK8vByvt/mTt4kTJ/7r/efk5FBaWsq4ceMal2k0GkaOHMm6deu44YYb2Lp1Ky6Xq9mY6OhoMjIyWLdunRAwjjNmu5sqi4MgXz26jEvwVGSzJvYGPvi1lmenLCW0eAUBldvxRfaAtHPZUubjsd/L2V9SQf8EI8MTA4io3oDMGAP+ySf75QgEjRh1Kp6d3J1Zn2wmq8LcuDzYT82nF8cStWQGyJVUXjyfw5YIfvlpL73jg+gSFcDPtw/FbPfwy64SdhbUEh2o4+phSeRUmBjpW0RA74vA6A+Ay+PF6vTwxM/7WHBdLz5bn88nm5paUBRyGU+dcyvnh3QmICQaontKvcT9r8OsCUNlKkaz7VNJiNjzPYz4Dyy8vfmLWf0iTJsDix6QTD0b6DQWOp2Nzy8MWd6a1t+I9Inw9XRIHg0XviNVbKj9ICAGbJUQmiqZ92oD4ayHwD9SujiNyJAETF3g8fkHAall5eIPoeKQFAGr1ECvmRCU8NcxqDKZJHJc8SNYK8HtlCpT/KNAISL5TjUq6h3kVVu5sFf0SZ1HpFELQG6VRQgYAsGfcNlMmLUxeC+ezzuHDPz0QR7vTpxDJ9cBDLmLICASb7dL+K1AzoOfZPP2hXGErfgP6uwlUuXfpPfAT1RfCARnOu0mYCxatIgrrriCysqWTytlMtlxad8oLZWM8iIimjvFR0RENEa1lpaWolarCQoKajGmYfvWcDgcOBxNDvUmk+lfz/d0p6TOxpML97G/1MTzF2Xw7UYTN454iTcXHOSREUHobcW4Q9KoSp3AhiInZQcU9Izx54r+SrpF6oguW0GIVY0sMgMCIk/2yxGcRDrq+RcbpGfudQMprLFxoMREXKCaTuoqolbeBQoVFVet55FV9QTqSxmcHMLHa3KwOj3cf24Xbpm7DYf7iJCbV8NPO4t5cUp3VKmX4PYPo6jKws+7StieX0NymD9fXtufAyVVzcQLkOJYH/ytgJ63Xkl6MFLFhVJDSZ2Np77fy6NDNYRcsRCfqQTwIQtJRXHFT/DbfZIpp9YIvWZIosMFr4OtVvKp0Rjw2eoosuuo8CSSNvhe/Da83BSRIlfAyAcgZ7XUDrL3e+ln5g+SsadCA8Zo6ff1b0PqWFj+RHOBxC9MEgwiurV8c70eQCbFqf4dfD5JhPCPkH6Shv+P/5oNcwr9a7HjDKKjnnt/xda8agDSTqL/BUCEQYsMyKmw0D/x5KShCE5dTtXz76+wuzzsyK8lSOfH//2UzzVDOvPZll3cPyqCcI0Lt0dPXZ9bqcKI0xuAVlHKbzf1JoJq1KpL8I19CJlfGBhjTvZLEQgEHYB2EzBuvfVWpk6dyiOPPNJCYDjeyP7kfOfz+Vos+zN/NebZZ5/91+0vZxLVFgd3zdvBhuxqHr0gnc835HNRn2SqXUqev7ALYUXLCFn/dGNCwbjU89jT6xEiDBr6H3oNVnwm3QTdvPHvRS0KTms68vkXYdASYdDSN+GIKOo0wpRPQKlmb4GHMlMFQ1JCuf3rHQA8ekE6z/y6v0m8OIJGKSe30kp+bBC11bWYHS7sLg/rs6pYtr8cvVrO8v0Vbc7j8w0FPBm5BpXTRE2v67n/hyyGx6sJKV2DYsn/NUXTyZW4xzwOF3+CzGWnVhOFzFJO8Pp3YP+PcPmP8MdLYKsl97yvuOi9TdRaXVw3YByzrpqJGwVmjwKdVkNI+UYCN97aNAldENiq4btrIDhZEicC4yWh45e7mosXIJn6zpkM1/0OhiMXovWlULobtn8BchX0vRLCOoN/eOsvvK5QSjU58Iu0j14zJN8Pzcm9cT1d6Mjn3rHYnl9LiL+aEP+TW/WgVsoJC9CQXSmMPAX/O6fq+fdX5FZaWJ1ZwY6CWqb1i0OjVvHt9QMI8NQSULCYoM2vgKWSIK0R0+QvSU7rjMpShuKDYSBXIrt+lRAvBAJBI+0mYJSXl3P33Xe3q3gRGSk9pS8tLSUqqummt7y8vPG4kZGROJ1OampqmlVhlJeXM2TIkDb3/eCDD3L33Xc3/m4ymYiLa8NAT0BFvZMN2dUMSg5mZFoowX5q7v9uF5VmJwBdImN5dcJ8Oi+/Dnn5bjSZv9A5OI2q0NupNHYj1GWFbheB4eSW/wo6BqfU+afWg1qPzelh9rqtzBiUwHO/NiWGRBl1LW5mNEo5b03vzdyNBby9cnXj8iEpIbw1vQ+3fbUdo05NeX3bkaUFtXbWdp2IzVRNmkOqWpiZ4kDx+X3NB3rdKJc+hCt6ER/mhvLDjkxUCjmX972L0SOfI+LQl5C3Fss1a3hxaS61Vil9xN8QxHeZbj5afYh6hySGDEgM5IWLFpK4cCrUl0hml5s/lI5TV0Bt3m4qHYFkl5sJSrubmM4zifzjYeQVRyVD1ZdKEcuGGGkf86+GvHVN6/fMl4zdJrzYUsSoyYVPz2/u6bH+LamSJGMKaPzbfL8Ef49T6tw7iu35tXQK6xj//pEGLdlHtZkJBH+XU/X8OxZWp5t3VmYxoXsUMsDh9nLXNzsw2aTvld5xvXh58m8kL5wCtXkYvp2K56rF2BUB+AUng8YAAe37IFQgEJxatFu8w5QpU1i5cmV77R6ApKQkIiMjWbp0aeMyp9PJqlWrGsWJvn37olKpmo0pKSlhz549xxQwNBoNBoOh2Y+gbUpqLaRF+PN/47tQUG3jjq93NIoXAAdK65n2VT5FY95oXOa/42MiZTWYA7vga0hREDcgAk7N88/t9WJ3etCrFVSYm0qAfbRMI5g1JJFfd5cQE6TjtrM6cW5GJEq5jHVZVby3KovrRyRzuNxMz9jANo/XMzaQd9YUcdOPRZz/ziYeGBuPZlPraU0A8nWvUV1bx6EyM3uLTTywMIsbv95LWUAGXDqXWrONxfvKj+zbiL9WyatLm8QLgE25tcz4rpySiV/BpV9BVRZuYyJ0PpfySfN4cEcwY1/9gxvm7uSNLVZ+rUvi8MQfcPec2Xwy5iNxqoeWNhcvGti3AEp3NV/mtMCyx5uLFw38fCeYy1ouF/zPnIrnnsfrY1dRLSkdRcAwapv55AgEf5dT8fz7K6wOD7uL6ggPUJMa4c/DP+5tFC8AthfUcunX+RSNny0tcNmQ561DbauAlLPgks+l9kOBQCA4QrtVYLz11ltMnTqVP/74g+7du6NSqZqtv/3229vYsjlms5nDhw83/p6Tk8OOHTsIDg4mPj6eO++8k2eeeYbU1FRSU1N55pln0Ov1TJ8+HQCj0cg111zDPffcQ0hICMHBwdx777107969MZVE8O8J0cl54NwueHzwxu+HWx1jsrtZVm7gquRRkL0SHCbU1jL0URnIpn567GhHgeAkY7a7qbQ4MNlc+GmUhPqpMeqbMuwDtCou6h2D4k+taUqZnA8u74vH50OjlKNWyIkwatlXbOL7bUVsy3PQPdbIJ1f25/XlmWzMqeaGkSl8sDqbd2b04fcD5bi9zUUQg07JgKRg3lmZBYDN5WHjoWLS6/LbnL/CVEDMnwoathfUscOTwTnlv0FiV3y+XACm9Y/jzTbO46JaG4dc4fgFB/FLSSQrLB5GpQRSUOjkt/05RBg0PDe5B+uyqvhyYz5fb5Zxad87Of+S6UT+NB3stVJaiaUKNr3f9hu+4T2IHyJVuIA0fv+PrY/1+SB7lbRfwRnH4XIzdpeXlLDjnHLzD4kO1EnnrceLUsSAC85wNCo5j5wVQYi/mru+2dnqmPJ6B7scEcQExkNtPrK6fJTWClzDH0RlEB5FAoGgOe0mYMydO5fFixej0+lYuXJlM78JmUz2twWMLVu2MHr06MbfG0rrZs2axaeffsp9992HzWbj5ptvpqamhoEDB7JkyRICApr6oV999VWUSiWXXHIJNpuNMWPG8Omnn6IQTvP/HmsV2OqIV4NBF0xmlYMDJW2bTm3Mq2PiqGcJyR4sxRg66lCpNKA/9Z8yCE5fykx2nvl1Pwt3FtOgJQxJCeHFKT2JCdI1jhuZFsaSfWV0jzGyu6iOS/rFUVZv54VFBzDZpSdOYf4anpmcwQ/bilh1SPK42FdiYsH2It6a3ptHf9yLxeFmQGIQWoWML64ZyMM/7uFwufREt098EPeP74zZ5kIhl+E5MqEd5W7c0f1R/tl34gi2iL7srmhpnvzV1jJGdpFj3Pom47qcz6L9VQTq1ZTUtd2+siunlOGeXIYnZvDk79mc1yOKL5ZkIZPBs5N78N8FeyiqtTWOf+q3Q8yP8GP2hNlEbX9VMt30ecBta/MYuKzSmAZ87iNGn23gOD3M7gT/O7sKawFIDO0YAkaUUYvb66OwxtZh5iQQnBSs1QTY6xiZ+Tw5sW+SV2Vtc+jmvDrG9LsB9bKHILIHssylqLS6NscLBIIzl3Z7NPDf//6XJ554grq6OnJzc8nJyWn8yc7O/tv7GTVqFD6fr8XPp59+CkhiyGOPPUZJSQl2u51Vq1aRkZHRbB9arZY333yTqqoqrFYrCxcuPOV7CjsEdYUw7wr4aCxGjQw9Nkrr7EQHtv2FExOoY3eNCiJ74Bn9XzxqA0En2XRNIDgWFoebFxcf5McdTeIFwLqsKm77ahtVlqZ2kahAHed0i+Cxiekkhug5q0s4/12wp1G8AKgwO7hpzjauGpqIUt4k7DrcXl5blsnMQQkkhOi55axO5NXYWLqvlOkD4nlnRh/ev7wvw1NDufXL7fy0q4QZA+Mbt/91XxW23teAoqkqpBGFiqqMa1i4t7rFKrlchsxUgP+uT7lvSABGnYpIfwUGbdv6dqJRhnz548Qsu4WtNyWREKjB7HAzJCWEDdlVzcSLBg6UWdhgjYaLP5ZSP3TB0PsKyfRTJgdtIOb+t1E+7m1MQx6Avlc1N+bUGCCqV5tzInlU2+sEpzX7SkxEGbXo1e2aDP+3afgOFG0kgjOauiLYPgd+fwr5yHuQexyE+LXy/XSE8AAt1fFnSw+31P74Oo2R0rIEAoHgT7SbgOF0Opk2bRryvxuJJzi1sFbDglsgMBamfQ6mYgK2vU9xVR3XDU9udROFXMawTqG8s76C2rNfhuAUlCGtjxUIOgqVZgc/bC9qdd22/Foq6x3NlkUadfSIMfLFNQP5alNeq9u5vT4W7y1jdJfmPR17i010izZQbrLz5u+HSQ33Z/a6XJ74eR83f7mNG77YyuvLM6kwO1i4s5iRaU19wS6PjxJZBM7LF0JoatNOQzpRP20BD60y4/Q0T0IBuKx/DL7wdHDUk7T4Kn6ZGUMnRRnX9G+9bNdPraB3mAxqcpEVbkJnKSJS6yLCoGFwcijL97ftRfHNrlrMqiBsLg/5tQ4WGabwY/8vOHzFdjKnr+PO8vO4aHU01+eOZL1uJHU211EHDoUJL0lxrn8m7VwwxrZ5XMHpzb5iE/HB+pM9jUaC/dRolHKyK0QSieAMxVYLP98hJUoNvwdf+X4C6g5y7fCkVodrVXI6RfhTZFHgnPEjbHgLWfLIEztngUBwytBu6sKsWbOYN29ee+1ecLKxVkrRheHd4NPzcCOnOmYU47pFkxYZwKdX9ScxpOmC0k+t4PmLuzNnYx5yuYxaY1e8QYkiMlXQ4am3uxvbNFqjzORosUylVOD1+Thc3vYNTFaFmSijtsXyCIOWGquL7fm11Npc+No4tNcHdleTINErLpAAPx2b3Sn81PsjDl/yO4enLufnvh+zS96Fgjp3i30MTg6hwuxivXIgrrihyCoPErvrLQLWv8T02AouzGjuSxPsp+bL6Z2IqtsmLRhwPRRuImLh5dwzLAyPz4dCLmtxnAYUchluj49fd5Vw17wdWN2gNkaQZdVSZFNxbvdYimptbMiu4bKPN/PD9iJsrqPaRiK7w3UroNNYUOmlJ3Xjn5dSSPxEn/SZiM/nY1+JicSQjvOkVi6TER2oI7tSVGAIzlAslZC7BoKS8JXspEwRRYUshKEpocy+qj/pUU1tw0adilcu6cU7K7JwqYwUufxh0ntClBYIBG3SbvWWHo+HF154gcWLF9OjR48WJp6vvPJKex1acCKw10PPy+DTCZj63sKKykge/TWTWutGAJJC/Xjpkp5U1Duwu7xoVXJmr81lU041z1yUgUwmw6PQofqLwwgEJxt/jRK5DNrSMMICWrZAeb0+8qssXNo/jhqrk5xKK6szK5oJIYmhfpSZmvtMZMQYMDvcVFuchPqr2xQvGtCoJFPQ83pEcX6PKG6bu4P7J3Th9oXNK0aC9OV8etUANmZXsWRfGWqlnAndo1AqZDz6415UCjmLpz5ITMH5oPFDVldA2I8zeGLw/dzefzy5dR6MWgXRvjIiNz+APHkEqHRS28bX05EBY1PXsDZgLOf3iOKVpZmtznfW4ASqLA7+yKxkSr84nv5lP1UWKa0oLljHsxd158Ke0fy4sxiAZ3/dz5gu4cQ1PF1XaSGqJ0yZDQ6zVI3hHw6ytkUTwelNSZ2deru76W+kgxBp0JJ1DAFTIDitcZhg6J04Dixlc8j53LvgMKWmLCCLSIOWZyZ3x+v1YnVKAvXbKw5TUG0FuRydVg1B4cfev0AgOKNpNwFj9+7d9O7dG4A9e/Y0WycTF5unPgFRUoJAUCJ7O9/KHZ9sb7Y6p9LCrI838c6MPtz7zU4sR76kBiYH0yM2EKNGjlbfsS44BYLWCPXXMKF7FD/vKmmxLj3KQNifPFysTjeV9Q50aiU5lRbyq610jTIw+8r+vLE8ky15NSjkMsZnRHLd51sat9Oq5Dx2QTc251aTGu7POzP6YHd56BZtYG9xS4PKnrFGEoJ1vDqtF8sPlHHTnG04PV4yy8wkhujJPcosrcbqosxk58edxQxKDiEsQINWKUevUXL/uV34enM+eepOaMa9SajRKJ3fuX9gXPs0xnXPkKINBLcdXDZJuCzdKYkXB39rPEbwyv/j3JSVlIx9m0V7DOz7k5nv8E6h9IgN5OM12UzoHskNc7Y2E2gKqm1c89kWvrlhMAt3SX4jDreXolpby5tTrUH6EZzxHCytByA+uGOZ/UUFahtNegWCMw59CHSdSK5Fx6yP9jYT70tNdq77fAuzr+zPPd/upM7mRi6Dt6b3IVCrJNKgEaK0QCA4Ju0mYKxYsaK9di3oCGgD8TltFE1bwkvfZ7U6xOL0sLe4lqn9YsmqsDCtfxzdog0EaJQE+rcsnRcIOiL+WiX/Pa8rVqeb3w803ZB0jzHyzow+hB5VgVFjcfJHZgUVZgdP/ry/cfmWvBq+2VLAG5f1xvl7JjeN6oTyiCdMmclBv8Qgpg+Ip87uZF+xid8PlNMzLpDRncN4dnJ37vh6BzmVTU9zU8L8eWpSBmUmB3M25rE+qwoAjVJOaZ2Vz68ewG1fbUchl+P2etlbbEKlkLO32MRFvWPw+eC15ZkU1thICvXj6qFJKFRqrtuewt2jYxmSEIXCPxzM5VJEqa1GOrBKDz0ugbnTIP3CpuVHUGUtIb6oH59M+IRN5li+3mtDKZdx+eBEesYaMehUxATq+XJjfqvVJQ63l192lzA8Nazx5k95jJYUgeBQWT06lYLQDmYGHW3UUWV2YrK7MGhFraHgDEOuxKYK5MOt5a22YHq8Pn7cUcSVQ5OoNNmZNiCeQJ0KtQKp0k4gEAiOQcew7BacWrhsuOtLcfa+mlK7ikNl9W0O3Vlo4rmJnal3y9Gp5BwsrWdYmigNFJxaRBp1vHpJLyrNTmqsTgK0KkL91YT86aZpR0EtOrWSFxbtarEPh9vLC4sO8solPfl0XQ7n94jmhSk9sB2pTvp1dwnvrspmar9YxneXvGF8PiissXLP2WkoFXKqzA46hftTbXFy9adbqLU5eW9mXw6V1nPZwHgGJAazNa+Gn3YW8+SF3SgzOcgsN/Pc5O7oVHJuGplMRb2d91fnNM4rp9LCwz/u4YHxXQjxV3P553v4cnoqQy/+GDZ9AAd/BZ8Xks+CUQ9IrvKJw3D3nIncXIz8wM/NX6i9jsjvL2bigBsZO+NRZEoNOrXiyOvxkRYZwHurWxc9AXYX1ZFyJHrSX6Ns1SdEIGggs9xMTJCuw1V2Rh75u82psNAzLvDkTkYgOMG43B5KfcHsLT7c5pj9JfXce1YCKDVUW5zsLqzlrPSIEzhLgUBwqnJcTTwnT56MyWRq/P9j/QhOUepL8e3+Dn6+i1JlDFvzaog9RuluSpg/BSYPH67OYvmBCrpGG0/gZAWC44dMJkMmg2qLkwqzA5vLg8vdZKJZY3HywR9Z1FidONwt0z5AMu6UyeCGkSkU1lipt7s5XGGhpE5q73jj0l4cLK3nlrnbqLO6kJ5bydCo5GRV1PPlxnyu+2IzYQEanru4O69f2huNUs7sq/pTWG3jli+3UVhjpcbq4pWlmSzbXw7AhDfW8MvuUqb1jeLjNbmtzu2N5Zlc3DcWhVzGY8tLKK+qBn0oXPwJTP0MYvqAQkPd0If4IuFpRn3nZaeyhxSD+mcUaugxFb29FJ3M2ew9jAvSHdOvIC5IT4XZgVwGL1/SkzBDx3qyLuhYHCqtJ+YY0d0niwbh7ejKKYHgjMBWQ73Lx46CWuKC2v6sTwzVU+eSc9E7a6m1uemdEIxOJZ6rCgSCv+a4flIYjcbGpyBGo7hRPa2oL4G6YjwyBa4Diyk5dzYur4/usUYiDFrunLejxSZKuYwLe0Wz8kA5Vw1LJthPTaC+7QxwgaCjUml28NrSQ8zZmN+4zE+t4J0ZfRmUHIxGpcDh9lBSaz9mYgmAxeFh/tZCxqVHUG938+yv+5nSN5YHx3flli+3Ue9wc8OIJHz4uO2r7dRapSjRXnGB3H9uZ8xONz/tLGbe5gIcbi+xQTruGdcZo17Fi1N78tPOInILaukeY+SsLuE43V7C/DUYqaeiwou7jflZnR4CdWremdGHOpuLqkg9nqAUrA4XIEOb3IVqbzi7Mk0EBwZxx5gAHl+Vx8sTviZ25+toDnwPHhfED4Zhd0FdAeyYC6ljpeqNI2XBMUE6bh3diStyNrWYg1wGF/aKZum+MhbdMYLYYB1qRSuxqQIBUkXP4QozF8bEnOyptECvVhKoVwkBQ3Dm4LJDfQlur5caeTjrD2dzzfAkluxrPVr76qFJ7Cuu5fXL+hAXqCO6AwqRAoGgY3JcBYzZs2cD0kXFY489RlhYGHph1HjqU1+KreQgZX7pxGbOZnP6/xEhU/Hcr/tZcbCCu89O47rhycxem9N4c2TQKnl1Wi+MOiUX943F6vQK8UJwyrJsf1kz8QIkj5drPtvMsrtHkhjqh06tJNKoJcKgRSGXtSpkxAbpyKm08Pn6PD5fn8f4jEhuHJmMWqlgyb4y6h1uUsL86RQewH/mN29D2VFQy73f7uLtGb35fH1e4/JzMyLJqzIT7KfmxjlbG5dvPeK78f7lfbmkfxzDoq2YPS2jVI/G7vJwwxdN+xieGsqsIYkoZDJe+/kQOwubyoFjg3Q8PSmD6xfuY0j8dVw86Xa6hsgkIeOnWyX/jMkfwuKH4PIFEJQASFUYPWKNPHx+Os//dgCnR6pW8dcoefmSnqRHBTAgKRiV4u8XCNbbXVSZnVicbgI0SkL9Neg14kne6U55vQOr09MhKzBASiIRAobgjKHqMDX6BCpNVuy4GdE5jF92FvPf87ry0pKDjbHfWpWcB8d3xahX0cc/BJVcRnAH87ARCAQdm3a5wvP5fKSmprJ3715SU1Pb4xCCE0lVFsX+3TBqZFREjmZHkZLy3DxWHJRM9l5ZeoiLesfw/uV9qbe7CQ/QYLK7SA71A2TszK9lQErIyX0NAsE/pNxk563fW+/jdXt9LN5byg0jUzDqVNw7rjNfbMjjhhHJvLOyuc+DQi7jnnGdeX9V0/Lf9pQyPDWU9Cgjb6+QjnHZgDjeW5Xd6vEqzA72l9STEKIn70jKiL9GSf/EYC7/eGOL8VanhxcWHeSusako3ZWEusoIC9BQUe9oMTY51A+318ukXjGsy6qkvF6KO53YM5rFe0vZWVjXbHxhjY2HFuzh1rM68cB3u/liK/w2I5Kuq19qGrThHeh5KZTuahQwAAL1aqYPjGdcegRFtZLRZ5RRS4ifhvJ6Owt3lXCotJ5+iUH0Swwm9hhlyCV1Np5YuI9Fe0vx+aTKr6l9Y7nr7DTCDcI/43Qmq9wMQHRgx/x3jjRoyRYChuBMoL6MEkUUMg88vyyXe87pyl3zduDy+BjVOYw3Lu2N3eXBB8QH69Eo5Hy2NpdrhyfjA7QqUWknEAj+PsfVA6Nxp3I5qampVFVVtcfuBScSjwuPfyQatYrVuVYshmTOTo/g260FzYb9sL2Iaz7bwgPf76KgxkqkUUud3YnL46V3YjABwoVdcIri8fooqbO3ub7BxNbqcOPz+eifGIxGKefVab0YnBxCfLCe8RmRfHhFP37ZVcyB0uamtwt2FGN1uQk6UqEUHagjq8Lc5vH2l5hIOMpDoqTOTkG1lbY6V3YX1aFSyrEpDUSuf5IPJ8Wg+9PFokGn5M1Lu1NusmNzebjv3M48eWEGaoWcIL2a5QfKW913YY0No06FWiFHpZDhp/hThUfZHghObpFWAqBTKYgL1jMoOYR+icFEGnXkVFnYW2wixE/DyM5h7C4yMe399WS2YRRcY3Xyn2938due0sZUE7fXx1ebC3h5yUEsjmNXnAhObbIqLSjlMsIDOqiAYdSSV2nB11rkjkBwGmH3yPBTejG7oFOEgdWHKnB5pL/7lQcruP6Lrfxn/i7um7+LW77chlatILfKgk4tI+YYArVAIBC0RrvV2L7wwgv85z//4d133yUjI6O9DiNoTzweqC+l2B2AySMjJEDLr/urSYsIaCwF/DN2l5d6u5sQvQYvPuKC/U7wpAWC44tGJSc9ysDuorpW1w9JCQUgt8rCJR9soF9CEDMHJeCvUfL0RRnkVVnZVVTLbXO3YTmSOHI0dVYXW3JrmDkonvXZVdTZXG1WSYDkIdEwl4QQPRMyoqg0tz62AYvDw2/5HjrFDSBj3e0snvEca0vk7Kvy0DNcwcBYHWtySokOC2Px3r0s3lvKsE6hPH5hN5web6uRpw3UWJzoNQrGdwkkLPMr0IdQ1+dmaqOG41WoMWjkhPj/9QVqca2NH3cU8fn6PKxODzIZjEwL4+mLuvPQD3t4d2afFqkvVWYHaw5Xtrq/+duKuHl0J/xEK8lpS3aFubFlqyMSadBS73BTa3UR5CdaKAWnKT4fVS4V2bVugvQehqSE8NPOkhbDGsytS0ySV9R953YhwiDEC4FA8L/TLhUYADNnzmTTpk307NkTnU5HcHBwsx9BB6euCPZ+R7FVzh95Nl5YfJAtuTW8sjQTs8NNqH/bF2Op4f5oVfJjln0LBKcKwX4aHhzfpY11agYlB2N3efhgdTY+H2zOreGOr3fw7G8HWLK3jI/WZGNxeFoVLwCGpISwIbuaolo7F/eJYcH2Qi4flNDqWI1SzoDEYPYWmwjz1/DExG7c++0OIo1a2kqRTIvwx+vz0btTDJbB9+KLG0D8/AlcduBWnnS+xIXuRej1Op5cmk92pZm4I6lCaw5X4vH60KkUaJRtf1WEG7SMSDZyV7oVbdFGMif9zPVZgxn5RSWjPy3m8p9M7LCF4HS3/voBXB4vP+4o4r1V2ViPvE8+n/Tk7oVFBzm/ZxTVVmeL7doSeUCqnDHZRQXG6Ux2haUxrrQjEnFkbnnV1pM8E4GgnXDZKauu5Y75+7l73k6qLC4eX7iPrlEBbW7SNdKAQi4jKVQ84BIIBP+Mdns09dprr7XXrgXtjakY56pXKO93D/Uyf+Zs2MmLU3uw9nAlj16QTnGtnWuHJ/PcbwdabJoS5kdiqB9BfuoO+1RMIPhfyYg18tb03jz+0z4qjlQ79I4P5MUpPYkJ0lNjcZJZ3rzto0eMEZPdxbqsKq4bnsx3WwupsjS/CTfqVFw6IJ4NWZVszKnm+hHJR5KcfBTVWJm3pbBxrEGr5J0ZfYgO1NInPpBRncN5dVkmFWYnv+wq4cohicxem9ts/yqFjCcvzGB7fjVrDldxfo9oNtdMZNakaeixY5dp+WqfndJF5dwwIgWNUsG0fnF8sDobk93NL7tKuHtsMlcOjOL9tUUt3pdBScGkhmp5aqQ/hrmXUjDpe55ZZ+bivvHMGpJMjcXJ15sLmPr+Bn69fTipEa1f1JbX23m/Dd8PvVpBj5hA8IHT7UGtbGp/+StjYH+16Ks+ncmptNA9puMmnkUcaW3JrbTQKy7w5E5GIGgHPFXZfL9fxc7CWp69qDsLdxQxqXcM/RODuWpoIl9vKsDmai5e33duZ0L9VKK1WCAQ/GPaTcCYNWtWe+1a0M5YqktZHnYlBpMSP42bJyd1Y0d+LfO3FlJnczEwKYRrhiXx9KQMnvvtAPUONzKZlFjw+MRuBOpUKP+HBAGBoKNj0KqYkBFF34Qg6mwuVEe8IYKPlIXrNQq6RhnYW2wCoE98EJN6xVBhduDzweML9/HqtF58tSmfpfvK8AFju4Zzy+hO3PzlNu4Zl8o953TmoR92syG7mv6JQTw4vguT+8RSaXagkMsBH19vzmdYpzAeHN8VP42CV5YeAmDupnzuOjuNl6b2YP7WQspMDnrHBzJjYDzfbinkrC7hRBr1PPnzPqosTr7b2fI1Th8Yj1wm4/f9Zbw1vQ+P/bQXh9tDLOVcG5WNYkgCn2wux+7yopDLOC89lAf7eYn6sCv0mYX32mWUmYz0jK3mhUUHqDQ7iQnUcfWwRKzOCN5eeZhnLuqOXt3ya8fq8FD/J78Kf42SF6f2YF+xibu+2YHd5WFC90hmDUki/ogHSJi/hi6RAS18RQBGdw5r0XIiOH1webwU1dgYlx5xsqfSJjq1AqNORb6owBCcjlgqKfYY+P1gPh/P6k94gIY6u4tvtxTyxfo8BieH8MmV/Xh1WSabcqoJ9Vfz3/O6khSix6AXn80CgeCf067NwVlZWcyePZusrCxef/11wsPDWbRoEXFxcXTr1q09Dy34p3jc5HmC2FBiZkq0kvJ6B19vLmDlkcQRgJ92FrN0XxmfXNmPF6f2wOuTevHx+dAo5BhFXKrgNEQulxFl1BFlbBnZqFEquH1MJ+rtLvYUmbhnXBrXfLaZpy/qTmKInpxKCzd8sZULe0Xz2rReIIMgvYqHF+whq8JMfrWN1Ycq2ZBdDcCNI1P4eE02Mwcl8fjCvZgdnsbWip93lTKxZzS3ndWp2RxeXXqICIOGiT1jGJGqon9SMA/9sIcDpfUcKK3nkQvSW1SAHE1JnZ3Keju/H6xge0Etr1zSi4KyCiKX346seCt3dp3CZTc9jsWtQGctRu+txyQLZscFizCqvPhZ3Hy7rZh5m5sMfotqbTz5835uPasTWoUcs90tCRg+H9SXgtcNSjVaVQAqhazR9A3g8YndeHvFYfYUmRqXfbwmlx+2F/PNDYMx6JSEB2j54PK+XPv5Fg6VNVXA9EsI4umLumPQiSd8pysF1VY8Pl+HbiEBCA/QCAFDcFridTuwyg3cMSaVvcUm5m2u45fdTd4XP+4sZtHeUr68biB1Vhd6tYL0qAAs9rbbCQUCgeDv0G6PyVetWkX37t3ZuHEj33//PWazdHG5a9cuHn300fY6rOBf4vTAx1vruGxAHDJkBOrVzcSLBmwuD++uzGJLXg0PL9iDTqXAoFMRFdjy5k4gOJ2pt7k4WGriyw35+GmU3HV2KjqVAq1KwTO/7OeJCzM4u2sEDreHrzcX8NQv+6m2OFmyr7wxmrRXXCA/bJdaNNKjDPh8MHNQIk//uo/yemejeNHATzuLsbu8RAQ0f4pVZnLw4R/ZvLjkIAatsjHNZEdBLZX1jjZ9MgBC/TXMXpcHQI3Vxbb8Gs5N8CIr2gI+H6qqA8TIquiS+REKuYxb/1AyZnY+k74s4KzPiiiRhfPtloJW9/3JmhzO7R6FSiEHSwVs/hg+HAWvZcDsCYRaMrmoV0zj+NggHQ63p5l40UC1xckHq7N5d0UWB0vriQvW8+W1g/j19mF8dvUAFt85nPcv70u0+Cw6rcmtkuJJIzt4VG54gIa8KhGlKjj9KHFJfmdL9pbSI9bYTLxowOH28uyvB9hdVIdCLscHRAcLfzSBQPDvaLcKjAceeICnnnqKu+++m4CApr7n0aNH8/rrr7fXYQX/ErPVglGrwuP1oVTI+HFnaZtj/zhcycxBCYztEoG/RkG4QdwwCM4sTHYX32yRRIkGvt9WRKdwf169pBfXfb6Fm+Zs5aZRKdw8OoXiWjtmh5uvNuWzo6C2cZsAjbLRob1PQiC1Nicur7LVG/gGfj9YxkPnpXP719tbrJvUKwavj2YVDXuLTdw9NpVDZWY25lRTfpQBZoBGidfno87maly2ObeaG3XbIaQTtemXkx91DqFVVai7zuSW7/PZWdjUtqFWyMmpbDvK1er0oFcrCFI6YPnzsOnDppVVh9F9Opa7r91GicnOH5mV9E8MblU4bXztB8q4Y0wal36wnp9vG0ZMkJ6wAFGSfCaRU2mVYn47eLpHuEHLuqzWk3IEglMahYpasxOHx8fm3Oo2h23Nq+GR89PRKOVolcKXSCAQ/HvaTcDYvXs3c+fObbE8LCyMqqqq9jqs4J/icYG1CrvPj4v7xXKoxER6jBGlou1Htkq5jJggHUadimDRzyg4Aymrs/PUL/sx6JRM6RNLlygDFoebklobJruLh8/vystLD/HSkkOE+GvYnFuNx+ujc2QANqeHQ+X1PHBuF5QKGSF+aqosTnrHBfH68kz+b0JXZDLajDBVyOQU1Vh5aWpP3l+VRWa5mQiDhhkDEwgP0FBwpGxdKZfxwPguhAVoWHGgHB/wn3M643R7eeLnfchk8NzFPXh/VVaz/Qf7qTGlXczvimEcMqs5vM3CvX31mFyqZuIFSH4EWtWxL0wNWhWYy2HzRy1XepxEfjmW169ZT4UjHZvTzcdrctrcl1ohx+31UmN1sauojhiReHTGkVclJZDIj1VW1AEID9BQbnJgd3n+8hwRCE4l7G4vMhlMyIhsJsj/GbkM1EoZAVol2lY8kAQCgeB/pd0+SQIDAykpKSEpKanZ8u3btxMTE9PGVoKTgqkYNn1ERcJ4NpujUCkU1Nid7MivZVByCB/90fqNxMSe0ejVCrRKGcpjxCwKBKcrv+0pZWRaGLOGJPLZuly+2VJIkJ+KywcloFcpWJJTw3OTe7C7qI5aq5Pze0Tz/bZCSuvsXD44gZFpoY2VErePSeXRn/aiVSnIr7ayObeaEalhrDrUshJBJoOMGANXfbqZpBA/nr4oA5vLQ2mdnflbi0gM1RNy5Mn0w+enszqzguX7yxu3/3lXCQOTgvn2xsGU1zt4d2VWYztLA1P6xlLv0xEVHYu13EyV2UW5MhyDQolCLsNzVLmF1wcWh1u6WWsl2rRrVIBUIVGa07YiYy4l2F5IcFQPAGYO8rJwV8uSZIDze0azbH8ZAHuLTIzPiDrGv5LgdCS30kKEoeML5+EBGnxIfjApYf4nezoCwb/HZafC7OSnHSX0SQjCoFPRIzawzeFndQknSKdGJa4TBQLBcaLdPk2mT5/O/fffT2lpKTKZDK/Xy9q1a7n33nu54oor2uuwgv8Frwdq8mDeFVQE98Yc2JWEED8UctCrVKSE+7Mhu4orBie02DTKqOXGkSkokBEaIFpHBGcu0wfGc/3nW1h1qAKzw01BtY1nfj3A3E35TO4Tg06lID3KQNcoA1aHm/xqK6sOVZBdYWZDdjVXzd7M2FdW4fR4eWB8F3z48FMr+HZLAVcPTSTUv2WJ/N1j0/hpZzE+H2RXWpi9NpcfdxTzfz/sQSbzcVGvGIanhpIRbUCjkjcTLxrYmFPNgRITW3Or2ZpX02zdG5f2QqdS8OhP+7hl7jYW7CxmaKdQFu4u593VeTw0oWuL/X28JptXLumJv6a5Lh7qr+bNy/pIiSDq1mNUG1E23ZB2CvdnUq/oFkNSw/0ZkBTMuiypkq9L5F/sU3BakltlJTygY/tfgNRCAjRWRAkEpzSWKijbQ4XVx8DkEJRyOW6Pj+35Ndw0MqXF8FB/NbePSUUhl4lUKIFAcNxotwqMp59+miuvvJKYmBh8Ph/p6em43W5mzJjBf//73/Y6rODvYi6HvQvAPxy3MQ5H0lmUVdu48ctt1FqlPvgnLuzGH4cqObtbBG9N783iPaVSjGpyCP0TgzBolaLyQnBGMy49gv/M34W7FfOHsV0jWLa/jK83FzQWHRh0Sp65qDsbsquIC9bzn/m7Gsc//ct+RqSGcs+4NGYMSuCD1dk88tNenr+4B3uLTWzLryHUX8NlA+JZsL2I77cVNW4b4q9mRGoY4zOikMl82N0env5lPy9O6cGbvx9uc/6fb8jj7rFpDEsNxe3xEaBVEahXsSG7mtu/3tg4rszkYH1WFQ+f35XfD5QT5KdqVm0R6q/mwfFdWHe4klen9SS/2kphtY0+CYH0jgsitsG0zRgDuiCw1bScTFRP0IdgdbiptDjxen3855zOTOsfx6frcnG4vIzsHEaIn5p7v92Jzye9n8F+arbn19Ap3J8ArUgdORNoiFA9uwNHqDYQrFejkMsoqLE1LXQ74fAyyFoOpXvAXCYl8mgCwBgLoWkQ2R2i+0BIJ5CL71nBScZhhuKtUH4AZ1gPXCovn67NYcm+clLC/Lh6aBI5VRbendmH33aXUmt10jcxmO7RBgJ1KtTiWlEgEBxHZD5fW/W8x4fs7Gy2bNmCTCajd+/edOrU6a836oCYTCaMRiN1dXUYDIaTPZ1/h70OlvwXqg5j7XcLFdGjMdlcFNTYCPZTs6OghteXHUavVvDqtF68uPggeVUWRnUOR38k137moHiCdGr8RUyh4ATQUc6/ynoHNpcHpVxG6JF4xDEvr2oxrk98EKO7hPHykkMt1mmUcr6/eQhb82qIMmpxun2olXJ+3V3CD9uLkMtgyV0jeGLhPlZnSuZ/PWKN9IgxMrFXNG/+fpgd+bWMSAtDq5Kzo6CWB8Z34flFByiotuFwe1l0x3AW7SllfPco/rtgN5tzWxEMgJQwf966rBcWp4dXlx5iXXYV78/sy53zdrRIPgHJ7PO5i3vw3dZC+iQE8tKSQ0zqFcN1w5PIqjSjkMnx+nz8truEKouTolobr03rRb/EYGkHXg8UboYvJoHrqBs6v1C4eik5vnBeWZLJb3tK8Ph8DO8UyoPjuxAaoGFDdhVv/X6Yg0fiUuOCdTw+MYPnftvPoTIzz1/cnUm9YtAIn4HjSkc5944mt9LCqJdW8tCErmTEGE/2dP6SO+ftYFKvaB48p5OUwPPHy2Apl8SK4BTQh4BMLp0TlgqoK4D6I+1TGoMkZMT0hvBuEJIibacLBsWRZ1BeDzgt4KgHl/VIPLEWAiJBJSokT2U6zPmXtQK+mITt5m2UKSLJrjDjdHsJ9tPw664SAv1UuDw+vtqYx9BOofhplJSZ7Nw8uhNdI/3x13Zss12BQHBq0a5uOh9//DGvvvoqmZmZAKSmpnLnnXdy7bXXtudhBX+FpQK2f0HtBZ9QFjqCWz/bQma5uXH1kJQQ5t0wiGkfrOeOr7dz25hUesUFUlpnJyXMD51KQWyQHlkHN08TCI4XJpuLrXk1PPXLfrIqzARolMwaksjFfWNa+EEATOkbw+vLM1vdl8PtZVNONVtza/j5SOycWiFn+sB4HpvYjRcWHcBsc/HoxG6Y7W4OlJow6lR0Cvfns3W59I4P5NL+8SzZJ1VEXTc8GaNORY3F1ZhkklVhRqmA91YeZnTncDbn1pAa7s+g5BC8Ph+rDlVQWGNjbHo4NreHyz7c0JhY4vH5WhUvAOodbuRyKUZ5Wv84zusRxYLtxVz49trGKhSDTsnjEzP4YVshhTU2nvplH59cOYBgPzXIFRDTD27eIF0Ql++H+IEQO4BCXwiXvLOOiqM8NFZnVrIlbz1fXz+IEWnhdIs2crC0HqVCRkW9g8cX7iWvSirNf/SnvQxJCSVORPSd9jREqEZ08AjVBsIC1BSUlsOH10HZXkgZA+kXQlBi2xs5zVCZCZWHoPIgbJ8jfXcfjbxBwHC3sRMZhHeFrhOh/zXgH348Xo7gTMNcDovuxzLobv4o13Pvt2swO6S/ObVCzp1npzIwKZhvNhfw/JQe6NVKbC4PSaF++KvlQrwQCATHnXYTMB5++GFeffVVbrvtNgYPHgzA+vXrueuuu8jNzeWpp546LsdJTEwkLy+vxfKbb76Zt99+myuvvJLPPvus2bqBAweyYcOG43L8U5KaPDDGUR45mm+2FvLoBeloVAoOlpp4fflh1mVV8faKw7w+rTfXf7GVJxbu4+3pfVh5sBynO4ShKaFCvBCcUazLquTGOdsaf693uHlrxWGC/dSckx7Br3uaxw0bdWrKTC3NLEGqwNAo5UzuE8PoLuGszqzgt92lfLoul7vGpvL9jYMprXfw4II9ZJVbiDBqSArx444xqVw7PJnP1uVyy9ymuSzbX05SqB8vTe3JdZ9vwe31IZfLqLW6WLCzmI+v6Mf7l/eloNrK7wfKUSnk3DyqE2qljNTwAF5afLBZ3OpfpTrIZTIm9Y4mLEBLYU0NTreXQckhrM2qxOcDk83NffN38sHl/VhzuJIdBXXYXUcJIgqldOPW76rGRT6fjyVrc5uJFw1YnR6+WJ/HnWNTqbe7uenLbS3GANhdXkrqbELAOAPIr7ailMsajWo7OmEKC/mHsyGsBia8DKGpf72R2h+ie0s/DTjNYCoBa5VUbeFxSssVKqnSQqkDlRZkCnA7pCqPsj2w7nVY9waMfRwGXCe5AAsEfxenGaqzKZh0K/d/uIXbx3SiV1wgHi/8tLOIlxYf5L2ZfbmwVwxXfLKJO8emYXO6iQ3SIZeL1BGBQHD8abdPlnfffZcPP/yQyy67rHHZxIkT6dGjB7fddttxEzA2b96Mx9N0cbxnzx7OPvtspk6d2rjs3HPPZfbs2Y2/q9WnxkVPu6ExUDvicdRqNV2jAnjj98M43V7O7hrOF9cM4LO1uczbUsBtZ6USoFES5KfG4nRzYa8Y4oJ0hJ0iT70EguNBmcnOEwv3tbru5SUH+fGWoWwvqKWkzt64vLjORqdwfw4fVdkEkBCi58kLM/hxRzG/7ZGqL87NiOSjWf34vx9289n6PM7pFsn1n2/F6ZGqKQqqbRRU29hXbOL9K/ryydrcFvPIqbSwdF8ZY7pGsD6rEq/Xx6TesfRLDCE6SMedX+3gQFlT9OmqQxWMSA3l/vFdWJfdPNba6vQQ7Kem2uImt3RCAAEAAElEQVRscZwwfw1uj5ehKaGsPFjOR3/kYLK7GJAUzLXDk3hi4T6yKy24PD7WZlUyMCmEfSWmvxRFrE4PS/eVtbl+fXYVGfuNf/nEXYa4MTsTyK20EmHQIpefAv/exdsIK/6d7QyQxAu13z/fl9r/iPjxNwSQBlLHSf4F27+A3/4j+RhMfLup/UQg+CvkKjx9rmJTnolvbxzC4n2lPPPrATRKOVP6xnLF4AReWnyQ60ekcHZ6BClhfoQbNPhrlISdAka7AoHg1KPdvsE8Hg/9+vVrsbxv37643W2VO/7vhIWFNfv9ueeeIyUlhZEjRzYu02g0REZGHrdjnupY/eOo06fz4Pe7WZ/VdPOyo6CWb7YW8t7MvmzOrcbicDOkUyjndIugS2QAARoVscGin1ZwZlFvd1N8lDhxNBanh70lJr65YTDrsipZcbCCiAAt/RKCiDRoue2r7Y1jZTJ4YmI37v5mB5XmJnHg+21FrMms5LmLe3D1p5upNDsaxYuj6RZj5McdxW3Oc+HOYh6f2I0Le0bz/uos7jo7jY/+yGZIp5Bm4kUDqzMrmdbfQmq4PwdKm9bPXpvDw+en859vdzYzJ1UpZDxzUQbp0QbeWnGYrzYVNK7bVVjHd1sLef3S3tw0ZysWp4eCahthARquTk4krJUklaNRKmQE+rXtp2PUqaixOtGqFEQatJSaWv576FQKogLFxfKZQG6VhfBTIEKVqkz4/SnC/EdQW6vDjJ6TEqSq8YdBN0F4Oqx9RVo26T1RiSH4e/iF4hxwC4N9IVw1ezOFRxnSbsypZlinEO47twtyGVzYK5pO4f6o5HJig0Q1nEAgaB/azRZ45syZvPvuuy2Wf/DBB8yYMaNdjul0OpkzZw5XX311sxaHlStXEh4eTlpaGtdddx3l5S0jBf+Mw+HAZDI1+znlcTvxFu+i2qniUFl9M/GigbwqK99vK+I/53TGoFMxfUAcfeIDKa+3Y9ApReuI4ITQsc4/H8d60KtVKYgL1jMwKYRRqWFcOiAWk92JUafi8Qu7YTxidDu8UyhrD1c1Ey8aKK93sCW3mtGdwzDZWxd4lQoZFmfb4q/D7aVHXCAyGdw2JpXYIB1T+sbyy66SNrf5dkshN45MbrZsV2EdP+4o4uNZ/bhmWBJDUkK4bngyv9w+nKGpodTaXM3EiwZqrC6+3JjHpN4xAKRF+BPsp+ayAfEoFMf+qtEoFVw5OLHN9Rf3kV7Hp+ty+L8JXVC28g/y3OTuhAecAje1HZyOde61Tm6lpeP7X9hqYPmT4BdOWJehABSZWwqTJ5TkkTD0btj5Nax59eTORdAqHfL8MxXjlGv5elNBM/GigTWHqygz2THZ3HSPCaTG4kKpENeKAoGg/Wh3E88lS5YwaNAgADZs2EBBQQFXXHEFd999d+O4V1555bgcb8GCBdTW1nLllVc2Lhs/fjxTp04lISGBnJwcHn74Yc466yy2bt2KRtP2xe6zzz7L448/flzm1WGozqLCZ0Cu1vHtlpw2h/22p4RJvaNRK+XYHB6Ka+10jzZi1J/hrTeCE0ZHOf9MNherD1Yyuks4y/e3FD41Sjnp0ZIzvEIOoQEa3luZzY87pUqJwckhPHFhN1RyOakR/s0qMv7MmsOV3DkmlfXZLYVFgJ0FtTwxMYPvtha1un50lzA+XZfLnA2SJ1BquD9vT+/TasRrA26vj8RQPzJiDOwparpQXnmwgr7xgUzrF0uovwajTtUoQiz+k9/H0SzbX84bl/ZmwfYiJnSPwqhTEX6MG80aixO724NKLictMoBrhyfx0R/NP5vGdg1Hr1E0Gg1/v62Ij2b14+ddJRwqqyc51I9rhyeTFOqHWikSSP4tHeXcawuP10dBjZURaWF/Pfhk4fPAqhclj4oBNxCGCvBQYPLSOfgk/40mj4TaPPj9KUgaAbEtK2UFJ48Od/7V5sO8GVRfsoxfdu1tc9h324q4YXgScpmPcIOGGFF9IRAI2pF2EzD27NlDnz59AMjKygKkdo+wsDD27NnTOO54PtH/+OOPGT9+PNHR0Y3Lpk2b1vj/GRkZ9OvXj4SEBH755RcmT57c5r4efPDBZiKLyWQiLi7uuM31hGM3UWJTUOwLIMwLPnxEGrTY3R5qra5mQ30+yVlarZDRI96IXqUk8BQxSxOcHnSU86/G6uTlpQd5e0YfDpebGxMvQGqpeOOy3vgdie10enwEaJWN4gVI3g0NgsRDE7qiV7f9keunURITpCMjuvVYyMQQP7pEBdA/IYjNeTV0jgggyqilsNZGSa2NGQMTuGnO1sbxmeVmPvgji/N7RPH2iqxW93lR7xheWXKI64cno1YqWHO4giC9mnO7RaBWKVibWUlRrZ3uMQb6JAQRE6jjGHoIPp8PrVLO2zP68Nyv+3luSo9Wx5lsLnYX1fHCogMcLKsnLkjPnWNTuWZYEhf1iuHXPSXYXV7GpUdQbXVy21xJ+NGrFRwqq+e2udsZkRbG9AHxTOgeiUEnPp+OFx3l3GuL4lobLo/0/dVh2bsASndJyR/aAAJ9PpRyKDS3a2r936fXDCjZCT/cADetA6WoXOoodLjzL3MpptHPgg+8Ph9KuYywAA0WpxuTraki0OeDyEAdcnyE+Yu/J4FA0L60m4CxYsWK9tp1q+Tl5bFs2TK+//77Y46LiooiISGhMdq1LTQazTErNE41Sswe6tQRlFZY2JRbwy2jO7EtrxZ/rRKDVsXHa7LZnFsDwPiMSLQqOTqlHC8I8UJwwuko55/H68Pi9HDvtzv5vwldcXt97Cs2ERagoWuUgWqzA9eRO3qjTsXy/W0bUc7dlM/dZ6exLb+m1fXT+sWxNa+GQckh3DgymfdWZTdb1y8xiBkfbeS5yd0x6lRszKkmu8LC6C7hDEoO5s3fM7H8Kf5UKZdzXvcofthW1MLHo1u0gW7RBtIi/DlUZmbB9nyijDq6RAbg9sJl76xr1s5i1KmYd8MgzukWwVsrDrf6Gs7uGoFSKefhBXuINGrQqVo+bfZ4vCzbX8bd3+xsXJZZbuaWudu5fUwqN45I5j/ndMHl9qJSyjlQYiLSqOWOMaloVQrKTHZignRU1jvpFmP81+KFx+ujuNbGuqxK9hWb6B4byMDkYGIDdWdky1xHOffaoiFCNdLYQQWMugLJMDNxGISkAFJyT7hORmH9SW4haUCugCG3w8+3w9o3YOR/TvaMBEfoUOefyw7F2zCPuIyCSjNPXJiBQi4jv9pCoE6NVqXg3VWH2VNkYkqfGHxeH1586DXCIFYgELQvp82nzOzZswkPD+e888475riqqioKCgqIioo6QTM7uVRbHBRUWTHqVdQ7nNhdHnYX1fH8ooONY/RqBU9f1B2tSkF2hYUZg+Lxer34kBFuEGWAgjMXg07VeIN/9zc7CQvQkBzqx/osFy8uPsinV/bHd+Shaqi/BoO2bSPKnEoLXSIDGNO1ZTvKuPQI6u0u0iICOPvVVVw2IIG51w2koNqKSiEj2qjn0g83kBLmh9PjZcZHG5uJFQatklen9WJXoYn8aqlKJFCvYlTncK75bAvPXNSdtVmVLN9fjlIu4/weUVzQMxqFHJ76YT9rDlc27qtbjIFnf9vWwoujzubixi+28uV1A5nSJ4b525q3shh0SqYPjOeWL7dhdrh5eWpPAltpOyurd/B4G6kub684zJQ+McRrlKiUUstKQoie92b25cY5W5v1X3eJCGBk59A23++/g8/nY29xHZd9sOGo9zMPg1bJvBsG0zXK8K/2Lzj+5FZaUMhlhHbIp7w+WPcmaI2QenazNaEdScAACEqALhNhzcvQ53IIEEbnguZ4ZAoqBz1CjdWF2e7h2y0FrDhY0bjeoFXy/JQerM2sJC0yAKfHR8hfGDYLBALB8aDdTDxPJF6vl9mzZzNr1iyUyiZNxmw2c++997J+/Xpyc3NZuXIlF1xwAaGhoVx00UUnccYnhmqLgxcWHaTEZKOkzk55vYP8ahu/7m7ew251erhv/k7uGZfGnGsGYHO6cXkgTIgXgjMUu8tDrcWJQatqfOoEUFHvYGNONQfL6jm/RxQyOYQHaPD5fJTW2ekdH9Sm4eeQlBAWbC/krrFpvDezD1P7xjK1XyxvTe9N34Qg5DIZn6zNxeOFORvymPHRRj5YnU16lJHXlh0C4PoRKTzy494WlRYmu5vHF+7juuFNhpwX9orhq035lNTZufqzzRwqrWdq31gm9opm5cEK3luVRZnJ0SheaFVyooxaYgJ1rRq1AeRWWam3uXlwQlc+mtWPAUnBdI4I4IYRycy9dhDfbi1Eo5Tz9vQ+dIkKaHUfNVYndTZXq+s8Xl+LY9fb3dz21fYWyw+U1XP//F3UWVuaov5dykwOrv98a6vv541ztlJe33r6jODkkVNpJcKgaTwnOxSHf4eyvZB+ISiai5lhejn5pg4kYAD0mAZyFax87mTPRNAB2V1ixqkK4GBZPRuyq5qJFyB9Tt7zzU6uGpaESiFDrZARcAwRXyAQCI4Xp0UFxrJly8jPz+fqq69utlyhULB7924+//xzamtriYqKYvTo0cybN4+AgNYvrk8nciutfL25gJtHpuDweFHIZDy2Mb/VsS6Pj825NZyTHoFepSQ6SMSlCs48zA43uZUW3l+dTU6lmYxoI9ePSOb7m4bw6rJD7CyoJcRfw6X940gM0ZMeZcDr87GroI6bvtzKoOQQ7jo7jZeXHGq23yC9iutHJHPnvB3sLjJxx9hUpvSNJbvCTEmdnUHJIbyz8jCL9za1oPh8kFVhIb/aysEjMajBfipK2oh0za+WbuwaiDJo+f1AWeO+VmdWsjqzqdJCIZeRW2kl1F/N3WenEaRXU+9wo22l7eNoHG4vIf4ahqaEEB+kY0teDSsPVnDzl1u5dlgyD5zbhehAHQ63F7vL02J/SvlfJJKomq+vMDvIqbS0OnZ9djVVFuc/NhiusjhajWQFKZGpyuwkPKCDtiqcoeRWmjtmAonLCltnQ2RPCOnUYnWoXsbm0g4mYGj8IeNiqeVl2F1SVYZAAJSZ7KzJrGBopzBiAnU8vGBPq+OsTg87C2oZmRZGsGg3FggEJ4jTQsAYN24cPl9LcyydTsfixYtPwow6BvM25zM0JQQf0s1NlFFLhdnR5vjcSgsalaJjXhwKBO2M0+1h+f4y7vh6R+OyPUUm5m8tZM41A3n2ogyqLC7sLo+UzKFXEaRXk1dl4bIPN+Bwe/lxRzEzB8bz4RV9WbSnlEqzkwFJwQxMCua++buotbpIjzbw+MJ95Fdb6ZsQxBWDE3h9eSa/H2g93jmrwkJskJ5aWx1O97FNAN2epvVyOaSGBVBQ3Xo1RWq4Pw63h1cu6cXjC/eSVSGJBB/N6odKIcPlaXksjVLeeJG6Na+Wyz/ZyNEfvY/8tJcteTXMGpzAa8szUSvlXDE4gfQoI2FHIk6D/dSkhPmTVWFusX+DTkmUsbl4WmdtvVqjAeufqif+FxzuY99QOv9iveDEk1VpIb0jtvbs+Q6cZuh8bqurw/QyTE4wOXwYNB2oeqTzebBvAax5BS54/WTPRtBBqLI4CPfXYtSpsDjcLarUjqawxopaITsjPYMEAsHJ4bRoIRG0xOZ0M7pLOHefnUaV1cntX23HZHfROaLtypN+CUHo1eILSHBmUl7v4IHvdrdY7vb6uHPeDmQyGRkxRvolBpMY6kfQkaf+i/aUNrsRnrMxn9u+2o7F6aF3XCCxgTp8QM4R80GXx4dOpaBXXCCX9o9jY3bVMZ9crT1cyU2jUvD5pOoElaL1c1SjlJMa6c+cawbw6VX98Xh9XDqwdfd6hVzG+O5RdI8x8tKSg43iBcCvu0uYMbD1J7HXj0hGLpOSIP67YDet6Mb8tLOYWpuLDdlVLN9fzqxPNvPQD7upqJfE07AADW9c1gv/Pxm9qRQy3pnel/CA5t4GxxJUVQrZMX1H/opQf02b76dWJRf93B0Ml8dLUY2NqI5m4Gmtgj3fQ/wQ0AW2OiRcL/2dFXQkHwwAlRa6ToQdc8FUcrJnI+ggeDw++icFU17vwO31HfOc6xUXRIBIghIIBCcQIWCcptRZXdRZnUQFaimstmJ3e3nkx73ce05aq+PDAzT0jg8iQNsRjdEEgvanpM6OzdX6U6ZSk52aVioBvF4fOwpqAamiYXhqKMmhfthdXhbtKeX91dkkhvqxIauSpydloFMpWLa/jJmD4pkxMJ4b52xj9to8xqVHtDmvcekR+KkVvDuzN1tzq7licGKr464ZlsQrSw7xwuKDON1e1h6uYnNONa9c0hODtkksCPFT8+KUHny2PhePz8euwrpm+/l+WxFxwTruP7dzY1RllFHLkxd2w1+jZNgLK8gsN5N7VKTsn9lfUk98cJOHzpJ9ZRwoNTX+3jXSwG93DOfxid2Y0D2Se8elsfzuUQxICkKpaP61FOqv5uw23p/LByUQZvjnF85h/mpuHJnS6ro7x6SKOMAORkG19cjNVAdrcdz5teR5kTyyzSFheunvusMJGACdJ0jz3/jeyZ6JoIMQoFUhl8P8rQXM2ZDH3We3fu2YGKInKdTvBM9OIBCc6ZwWLSSC5pTUWHF4vKRHB/JHZiU2p4ePrujHmsOVrDpYwbOTu/PK0kONT0QHJQfz1KQMEsWXkEDQJq21qcnlMsZ0DefivrEcLjeTX2VlVOcw4oL0vLj4IGqlnNWZFby8NJOhnUL4+bZhlNfbiTBo+c/8XXi8PmxeD2uzqrh9TCfeWN4UTxqoU/HRrH6YbC7mbMjD4fYysWc0veMD6RYdwCtLMymssREfrOeqoYlYHB5+2yMZ9N4ydxsfXtEPjVJBvc3F/JuGkFtpwesDm8vD7LU57CqsY1q/1is0nvx5P73jAvngir4U1tiwOj1olDIe/nEvIJmcymS0WoEB4KdRYHc1v1H7YkMeA5NCUCvlyOUy4oL1zBqSyIwBcZTWOzhYWs+awxV0izYSE6RrTJkw6tU8dWEGIX5qvttW2FjBctXQRK4emoRO9c+/xnRqJVcNTSIxxI9Xlx1qfD//c05nhnUKRfMXfiCCE0uDF0p0YAcSMMylkLlYSh1RtT0voxo0CjpWEkkDaj9IPQe2zIYR/5G8MQRnNF6vD5kMhqeGkVdlJSnUjycu7MarSw9RY3Uhk8GITqE8OrEbccHC8F0gEJxYhIBxmmF1uPH4fBTU2LA5PRh0KjxeH88vOkDPuEA6hfvzzeYC7j+3M3q1Uio7j/AnPliIF4IzmyijFq1K3uLGG6QKpdbaPHw+Hylh/sz8U6ypUafitWm9sDjdvHgksriy3olRr8KoV7Gv2MTWvJrG8Z+ty2Vqv1hmX9mfnYW1BPupGJoSyrO/HWTZ/iZjz9WZlXSJCOCdmX14a3pvZMjYXlDLvM357C+pbxzn8viYuzGfc7pF0CXKQK3VSVKoH/tLTLz9eyZ2t5drhycRG6RHLgNvK0LEjsJaKs1Obv5yG1cNTWxmpLk1r4ahKaHN4lcbUB4RJ4pqm3tvON1evH9SPNweLzsL65g1ezNmR1Nsa5/4QN6Z0YfII0/aI4xaHp2Yzs2jO2FzuvHTKAkP0KBW/nuBIdhPzcV9YxmeForb40OpkAnjzg5KVoUZrUpOkL4DJR3s/BpUeogffMxhMpmMcL2Mgo6WRNJA1wtg34+w8ysYcN3Jno3gJFJjceD0ejlUWo9KIadLZADL95dTZ3My97pB5FVZkMtkmOwugjvSuSgQCM4YhIBxmlBrdVJucqCUg9np4cXFBxtLw2ODdNx1dhrL95ehVymosji599tdALw4pQdhfqJMWiAI89fw1KTu3PvtzmbLFXIZL07p0aoXQ5nJzo1zWsZwBulV1NtdxAbp+c+5ndGpFUQbtIT6a9hbXEe1xYlerWhmQPntlkK+21pI9xgjz03uzs7CumbiRQMHyur5eVcJiSF6ftpZzLL9rZt/9owLxGR3M+OjjdQeeWI2pks478zoy4FSE7sK6zA7XEzuE8v8rYUtth+fEcnaw5XEBukYkRrGZ+tyG9d9vTmfty7rw8Gy+sZKLgCZDB4+P52vNrVMO5rWL65FIkmpyc4Vn2xq8f5ty6/l1aWHeGxiN3Rq6WtKp1ISH9x+X1lCtOj4ZJVbiAnUdRyzQHMpHF4OaeeC4q9bmcI7YpRqA35hkDAYNrwL/a6RXIAFZxQ+n48ykx27y8umnGreXH640fh9cEoIN45I5q3fM0kM9eeD1VksvHWYiE0VCAQnBSFgnAaU1Nm4b/4u/sisZOldI5j50UZM9qanmYU1Nu79dicfXN6Xz9blcmGvaL7YkMc9Z6cxPDUUnUb8GQgEGpWCc7pFkBo+lHdWHian0kK3aAM3jkwhPsSv1ZumSrOTMlPzZJ8ukQHcd24XHvlxD4U1UhWCUi7j6mFJhBu05FdZ+W1PKZN6xTD3Tzf6GqWCyX1i2F5Qy8qDFW3O9btthdw7rjNBbZh/9okPQquS8/jCfY3LfD5Ytr+cnEorT0/KwKCzEBuo475zOxOgVTJ3Yz4OtxeNUs5FvWMY1y2S/GoLT0/K4N75u5pVaZhsbv7vh928N7MPeVVWVh4sJyHEj/N7RDF7XS7L/ySqZEQb6B0f1GKe+0tMbbrb/7C9mFvPSiWuHUULwanF4QpzY1VOh2D3t1L7RfzAvzU8TC/jUHUHFTBAMvP87T7I/h06jT3ZsxGcQNweL7uL6nhn5WGm9InjkSPtgg2sz6oit9LCQxO6EqBVMrTTAML91SgUQugSCAQnHnFleIpjsrn47w97yK2y8O2Ng1l5sKKZeNGAzwefr8+jb0Iw5/eIYmzXcFJC/fAXztECQSMBWhU94wJ59ZJe2Fwe/DTKFlUDR2NvxfTz7rPTuHPedky2pvPQ7fXxweps4oJ09E8MZtn+Mj64vC/bC2oaWz8u7hPDuRlRyPCx9nBlqzGmDTjdXqrMDsalR/DtlpbVE9P6x/HykoOtbptVYaas3o5Bp0KtVLB0Xyluj5fXLu2FQi4jJlBHuL8GlVLO6M5hzNtc0KzKooHCGhsBWhWT+8QyuU9s4/JbR3ciRK/mp13FqBVyZg5KYHxGJJGtuNiX1Nnbfo0eL05PB77ZE5xQfD4fh8vNxzS8PaFYKyFzmXSj/zeqLwAi/GQsz/Pi8fpQyDtIFcnRhHWF4GTY9KEQMM4wimttXPbhBl6/tBcvLGr9u6Okzk6dzUVSmB9BOhXBompNIBCcJISAcYpTaXawNquSDy7vx6+7S8g7RjLAnqI6rhicgNvrI9ygFeKFQNAGeo0S/d+oTAoL0KCUy3AfKU9ICJG8H44WL47mjd8PM//GwUQatNw1bwf/PT8dhUxGjdWBn0bFdZ9v4f8mdOVgmZlzMyJZcbD19pBx3SJZl1VFuEHLXWNTeW15JkF6NQOTggGIDdRR3oro0EBOpYUZA+P5aE02763KBuCLDU3VIPed05lrhiUhk8kY2zWci3pF88OO4sb1DW01Ma2YKcYG6bnz7DRmDUlELpMR4q9us+S/e4yxzTmGB2jQKMXTPYFEhdlBnc1FXFAHMQzc84OU3PE3qy8AIvRyXF4otfiICeiAAoZMJiWSrH8bavIgqPU4ZcHpx/ID5SSF+hETqCerwtzmuP0lJkZ2DiNEJDQJBIKTiLg6PEVxe7zkVVkoqbNzQc9o1mdVMrxT6DEv7iKNWhJD/AjRqzpeDJ1AcAoS6q/mmmFJjb8nh/lReoyqgop6B3KZjHdm9MGgU3Hf/F0899sBukYZeXyhVLK7aE8pA5KCCdCq6BZtaLGPMH8N0wfE46dR8OvuEhJC9Cy7aySvTeuFVqVAq1IQ5KdCq2r74z051A+zw82Hf+S0uv6N3zMbe59DA7Q8ckE3Ft85gqcnZfD6pb34/Z6RjM+IxK8NkUelkBNu0BIaoDmmX0FskI4eMS1fI8BNo1L4YFUW2/NrsDpaF4QEZw6Hy6SbqpigDvDd5TDBod8gfhAo//5T6Eg/6VzI66g+GABJo6S2mK2zT/ZMBCcIr1eK075ySBK5lZZjmuQmhPqhVcpFQpNAIDipCAHjFGV3UR3nvLYat8fLFYMSCDdoeeLnfYzsHEZb9ws3jEjBoFEQLsQLgeBf4/Z4ySwzEx+s54FzuxATqOXaYcnEHyNSbmhKCHq1gmC9indn9OXdmX2495w0XB5vY/rJtvwaOoX788O2Qm49qxO3j+lESpgfsUE6rhqayMdX9uO6zzczrlskb17aG61KweML93LFJ5v4YXsRP+0spsbqYmrf1iNS/TVKArQqDpTU42ktfgSwu7xUW5yNvwf5qekcGcCMQQlc2CuGhBC/RnPNf0NYgJb3Lu/H5D4xqBSyI8s0/Pe8rlTUO/h8Qz6T313Hxpzqf30swanNobJ6lApZq2a6J5z9P4PPCwlD/6fNwvQy5EBuXQcWMFRaSDkLtn4G7raruASnD3lVFpLD/IgyaokN0nH54NYrb9QKOaPSwlpNrRIIBIITiRAwTkHyqizcP38Xj5zfDT+1kt1FdSzaU4paKWfB9iIeu6Ab6qOMlWQyuGpoIn0TAokI7CDltwLBKU5xrZ3LPtzIQwv2sGhvKU9c2I0/MisI8de0eII1oXsks6/sz5j0CL7eXECFxSmZbP60l9eXZ7YQEu79difndIvE7vKikst5YHwX3p7eh/QoA5PeXktxrR2DVsVTv+yjvN7B6symONNrhyXx9aZ8hnYKZUhKSLP9GnUqZl/Zj1eWHkKpOHYJu+oEmbNFB+p46sIMfrtjBB9e3o8XLu7BvhIT76zMAiT/nod+2E2Zqe3KFsHpz8GyemIDdSffO8Jtg/0/QUw/qVLhf0AplxHuJyOnIwsYAJ3Hg61ailUVnNZUmh3cOGcbg5ODiQrUcv0XW+kTH8TNo1LQq5uqLPzUCj6+sh8KmQyjiE4VCAQnGeGBcYpRXGsju8LMgxO68svuYgYmBRHqr6F3fCBRRi3JYf6syazk7Rl9qKi3o1MrSI8yUGl2ENkRnlwJBKcJKw6WYzti4rmjoJbyeifzNhewdF85r07rxZM/7yOrwsLEntH0igvkms82N3tyNbRTCJ9eNYDLP95IhEGLWiFvNK20u7w8tGAPof5qRncOp0dcIJd+sKHxeOO6RfDzrmKGpoaycGeTN4VMBoOSQ7jq080s2VfG7WNSuWpoEnlVFoL81OjVCnw+qYKrxuoiyqhtZqTZM9bI5YMTCNSpcbq95FdZiA/5327S/gl6jRKHy4PJ4WJ3YR1JoX7MvrI/n63PZeXBCorr7NRZXR3j6bvgpHCgtJ7YjuB/kbkMnBZIGv6PNo/0k5Fd23ryTofBGAdRPWHzR9DjkpM9G0E7UmV2khbhT0W9E59Pxkez+rH6UAUKuYzPrx6Ay+OlsNZGfJCeuCAdLq8PjVK0jwgEgpOLEDBOIawON5+ty2VsegTb82u4ZlgyV3+2pZlxp1oh59VpvfhgdRbZFRaevigDh8tLcpg/KvGlIxAcN3YW1Db7Xa2UY3N5yKow89APe7h2eBJxQToiDDomvr0G35/KbtceruLn3SV8dvUASuvs3HJWJ15deqjZmGqLk8EpIbyw6ECjeAHQNcrAwp3FjEuPwHpUDKlRp6KkTopudbi9vLj4ICqFjDB/DWanG5PNzdvT+wDw4R/ZvHlZb66avZl6h5tJvWIYlBLM84sONqaOpIb789LUnmTEGNv1yXdxrY275u3gUHmTeZxCLuOZi7rj88GqQxV/WTEiOH3xen0cKq1nYs/okzwRD+z9HiK7g65lLPDfIdJPzoHqDi5ggGTmufJZKN0tvV7BaYnD7WFyn1jCAjT8uruksfIN4M3fDzMuPYLze0Rx33e7mH1lf5LD/E/ibAUCgUBCtJCcQpTU2flmSwF+agWDk0N4YdHBFqkjTo+Xe7/dyXXDk6myOAn2UxMdqBWmnQLBcaZ3fGCz37fn1TAiNQyAolobjy/cxwd/5PDTzuIW4kUDczfms6/ERIBOhcnm4s3LejOsUyhJoX6c0y2S724awooD5ewtNjXbzmx3E6RXsT2/tvGYIMW6Bmibl/e6PD6K6+yNyShqpSQE9I4LYn1WJT/cMoSnJ3Vjcu9oHvhud7PI1MxyM5d9uIGiGts/eo/+DjaXm1eWHmomXgB4vD7+u2A3VwxOoEeskUC9SE06UymosWJxekg4AdVAxyRvDZjLIWnkP95FtL+MApMP5zFikjsEcQNBHyJVYQhOW/QqBfV2J9UWZzPxooEl+8qos7noHReI8mS3bwkEAsERhIBxilBtdmBzSRdwGqUci9PDqkOtRyzaXB7q7W7Swv0JD9ASKrK6BYLjzsjO4c16hH/YXsTMQQnojnJn99coqba0bYRXY3WiVSrIrbQQG6QDfNw1No1nJ2eQHh3A68syOTs9gj9fNy7bX8q1w5NZn11F/6RgIgxSpJ3d5cXn87XpIt83IYhDZWZuH9OJ3vGBvLIsk3q7m1qbi/dWZ7e6jdXp4Zddxa2uOx5UmZ38uKOo1XUuj4/sCguvTetFsJ8QMM5U9pdIAl5CyMlsIfHB7vkQmgqGqH+8lxh/OR5fB08iAZArIe1c2DUPbLUnezaCdqLa4iAt0sD8rYVtjvliQx6zBicQHiA+gwUCQcdACBinCC6vj3q7i+kD4qiyOLE43Md0gjY73Lx8SU8CtOKfWCBoD2ICdXx9/aAjwgNYnB7eWH6IudcNZEL3qEbxYlin0Db30S8+iPgQPT1ijVicbh7+cS8Xv7eOu+btxKhVc/fZaZSZ7Hw8qz8zBsYzODmEq4Ym8sSFGQTqVVzSL5aHF+zhxSk9mdY/jkC9ijkb8nj90t7NxBWASIOW5yZ3Z0qfGAYlh/Dg97vx+aTWF6NOzYHS+jbnuTG3Goe7fcre3R4frmM8jfb6fCSFnuQn74KTyt5iE4F61cmtwineDtXZkDTiX+0mJkD6Ts6s6eACBkgChscFO7482TMRtBNGvRqFTEadzdXmmFqriyA/NVq1MO8UCAQdA+GBcYqgksuoNDuod7jRq5WYbG4iDBrKTK0/3e0TH0i4QUuIv6i+EAjaA4VcRo/YQL67aQhlJnujGebstTkYdUoev7AbvWIDqbe7SAjRt2j3ksvg2hHJLN9fRnGdnW+3ND0BK6mz89jCvdwxphN7i00khOiZPiAei9NNucnB07/s41C5md9uH8453SLZlFPFwKRgrhiUQI3NxR+ZFXx7w2A25lRTUGNlSEoIGTHGxlYyHzIyog3sKTaRX2VFrZQTE6hrFp16NJ3C/VHJ20cM1WsUJIX6kVNpaXX9gKRgZG1lQwvOCHYV1pF0sttHds0HYywEp/yr3RjUYNTAwWoPE5I7+A2hLggSh8HG92DgjSAXPlqnGwq5DLlMRv/EYFYdqmh1zJCUEPzU4t9eIBB0HMTj+VMAt8eL1ekmOlBPfLCetYcrCfVXc8voTq2OH5UWRliARjj2CwQngBA/NWkR/vSND0SrkpMS5s/QlBCGJIegUysw6tW8dVlvJveORnXEiDI9ysAbl/Xm+22F9IoLarN89+M1OfzfhK6U1jm45rMtXPL+Bl5eeojLByVy44gU/u+HPYCU0DB7bS6T3lnLzXO2EhGg5ccdxdRYHFw/PJkxXSKa+eBEGrV8NKsfj16QzqfrcuiXEMjlgxNanYNcBtP6xyFvp/7n8AAtj12Q3uq6/glBxHWE5AnBScPn87G7qO7kVuFUHoLSnVL1xb8U02QyGXEBcg5WnQIVGABdLoDafDj428meieA4Y3e6Kamz4fb46J8YRHiApsUYjVLOTaNSCDMIHzWBQNBxEBUYpwClJhuL9pbx8Zocykx2ukUb6R0fRHywnucv7sH7q7LIrrRg0CqZPjCBWYMTiBSmnQJBu1JrdZJTaeHz9XlUmR2c0y2SUZ3DGZkWTkG1lTeWZ7JgRzFen4/xGZHcNCqFi3rHUO/wkF9l5flFB6g2Ozk7PaJNk88Le8Xw2fpcPluX17gsp9LCQwv2cM+4NAI0SpbtL+PRC9Ix2dw43F4CtEo0ChnIZIQbtGhVLZ+c2V0eciotbM6pYnhqOBuyqxiUHMqtozvx7qosPEf60/RqBa9O69Xu8ZV9E4OZc80Anvh5H4fKzPipFcwYGM81w5MJbeWiWnDmUFRro9riPLnpB7u/Bb9QCO92XHYXFyBnX9UpkEQCENYZwtNh/VvQ9fyTPRvBcaTW5kKjVPLkL/u4cWQyb17Wm0/X5bJ03/+zd9/hUZXZA8e/M5nMpE96gxA60osgRRRsIIIIKqgoq6uia10sq6uuK6urrrqr/uyKXbH3ihQFRDpIR2qAQHqb9MwkM78/DkkImYQQJpmU83mePJp779x5J+SdzD33vOekU+50MaJrOA9c0Jtu2nlEKdXCaACjBXNUOEmzlfDMot18saG6yN2Wwzamv7qSN68eSvfoQJ67YjAGA/iZfIgL9SPArP+sSjWl/BIHby5P4rmf91RtW7Y7i+hgCx/fOJLLX1tZY3nXVxtTWLIrk+cuH8ytH2yoql/j62Mg0FL3fD2ndwzXv7PW7b7Xlu7j07+MJCLITHmFi0e+386qfTlV+3tEB/H61UPddm5IySuhqKyCSQM74Otj4Oc/Mvjn19uZdUYXFt5xJgdzZFlJp/AAokMsmH2aNn04yGJidI8oPpg1ghJ7BT5GA5FBZsza+rnd23ikXXG3KC9lYNiS4cBK6DsFPLSMqrPVyI9J5RTYXQSbW8HyqD5TYMljcGgddBzq7dEoDzmUW8IVc1dR4XSx/kAud5zbgxvGdOXmsd3wNRkx+xgxGQ2YfDRZWynVsuiVbguVWySV+Qd0DK0RvDjaA19t5a/n9sDf5EOwn4mu0UEavFCqGaTll9YIXlTqFB7At5tS3NamySt28PMfGZx1SjSLd0gHIUeFi2J7BVFBFjILaz7G39eHglJHncV6C8rKKXe68PP14e6vNtUIXoC0QL3+nXV8MGs4UUd1IjqcW8JTP+3kp21pOF1gMhqYNCCeZy4bxB0fbyTEz5e/jO3mlboTkUGabaFq2nAgj6hgi/cKeG75BPxCIH6Ix07ZxSoXhNuyKhgR3wr+ZicMl/ofvz4NV3zg7dEoD0jNK+bR73dUZdsV2yt49Ic/8DEaCPYz8eiUftgrnJzeLcLLI1VKqdo0rNpCLd2VyWvL9rGvjsJ2IIX+gi2+RIdY2JWRT2SQtrhSqjks2p7udvvAhFCW7HRfCA3g191ZDEoIrbHtlSV7eeLS/gQdk4kRGuBL7HHq2JhNRrIK7SyoYzy7MwrJLKgOjOQV2/nHV1v4cWtaVWCk3Oniq42HWbg9nStO68SKfdmUOlrJ+nzV5q07kEPPaC+lsBekwt4l0PkM8PFcoCE+yIDFBzZntpJlJEYf6Hsx7PweMnZ4ezTqJJU6Kigoq+D3I9lNR6twusgrdrB2fy6dwgK82/lHKaXq0ApC/+1Pen4p/12wk9JyJ0GW+lOoLb5GgiwmLh2SQJClhVc0V6qNKCt3f4Ff5qiod84G+5kY2TWCHtFB7M4oxOxjpHdcCEEWE69cNYQ0WynbU/PpHh1MiL+J7CI74YFmt91BTokNJiLQTKqttM4aGgBZhfYa//9LHQGW7zan8NqfhlKxw1VVbFQpbyq2l7M9JZ8/1VFgtslt+RTMgZAwzKOn9TEa6BZqZENaBQz06KmbTtezYPNHsPRJmPaWt0ejTkJmQRkulwuLyVjn37JgPxNxof66jE8p1SJpBkYLVFZewaFcKVyWGBGIn6/7f6bhXcLpEOpHz+ggIoO144hSzeWc3tFuty/ckc4lQzrW+birhnfiucW7uWxYAi9dOYRnLhuE2WRk5htr2JtZxHl9ormgfxy/7cni5SV7yS4s46Urh9R6DwgL8OWxqf0J9jMR4mfCVE+HkKOzOLKL3LddBnC6wF7u5KqRibrmWbUI6w/kUu500TsupPmfvDAN9iw6kn3h+bvQPcKMrEuvwFVf9LEl8fGFftNg25eQvs3bo1EnoaDUQXp+KZMGxNV5zPl9Ywn115tiSqmWqdV/Sp0zZw4Gg6HGV2xsbNV+l8vFnDlziI+Px9/fn7Fjx7JtW8v+4+t0QnigfGBavjuTJy8dWOsCJSrYwpzJfQnz98WidS+UalYdQv05v29sre22Egf9O1q51E0Q47w+0YzoGkGJvYJ/f7+Dm+dt4JYPNvDZ+kN0iQxkfN9YrAEWhnYO5z+X9Of964Zz9inRPPXTTl6cMYS/je/F5cMS+OekPvznkgE8+PVWMgrKiAyycNmwBLfjPK1LOJHB1Rdfx/tA2jHUn07h2rZUtQwr9mZj9felQ6gXumpt/Ah8A6DT8CY5fe8IH7JKXOzNa0XLtbqfC8GxsPgRb49EnQSzychzi/dw/eiudHXTnvhfk/tg9TcRUE+BaaWU8qY28e7Ut29fFi1aVPW9z1EV85988kmefvpp3n77bXr27Mm///1vzjvvPHbu3ElwcLA3hntcLpeLq4Yn8tzPu3li/k7euXYYH90wgp//yCA9v5RBCaH0jgshxM9EbKhebCjV3CKCLDwypR/n9o5m7q9J5JXYGd09kpvHdqdTeAD3TzyFmSMT+er3wzicTqYO7kBiRCCRQRZeuHIIa5NyeG/VASqcLi4blsDoHpHEWqszJYL9JNCwPTWf9Qdyue6ddZwSG0x0sIXVSTkkHamNk1fsoGNYAH89twe44ON1yZQ7XRgMcF7vGOZM7kt4oKXGuPvGh7AtJb/WaxrdPYL4MP9atTiU8pblu7PoFx/S/AVlbYdg72LodUGTZF8A9Ao34mOAFYcr6B7WStL0fXxh0FXw61OQ9Ct0OcPbI1KNUO50ERNiYXVSNv+dNoCd6YWs259DeKCZc3rHEB1soWO4l7r+KKVUAxhcrSZ/0b05c+bw1VdfsXHjxlr7XC4X8fHxzJ49m3vvvReAsrIyYmJieOKJJ7jxxhsb/Dz5+flYrVZsNhshIU2TzlpcVk52URl5xQ6MRgNmHyMPfLWFDQfymHZqRy4flkCQvy9Gg7QYrLzIUaqta47511jZhWWUO12E+Jvw9234xX9BqQOXC0LqyYrYlJzHRS/+Vuf+RXeeSfdoCcQWl5WTWVhGYWk5ARZTne8RB3OKmfXOOnamF1RtG9wplBdmDDmpO90ljnLKHE4CzHIxllFQRnJOCRVOFwnh/kSH+OHv20ou1FQVb829rMIyhv17ETeO6caYnlHN9ryAtAxN3w6j75CL9iby75WlRAcYeGtCK7pYdLngx7+B0QQ3LPVocVNVW1PMv70ZBZQ4KiivcBFoMWExGSkoLcfkY8DHaMBkNNLZTWaGUkq1FG3iL8/u3buJj4/HYrEwfPhwHnvsMbp27UpSUhJpaWmMGzeu6liLxcKYMWNYsWJFvQGMsrIyysqq14vn59e+Y+lJOUVlrNmXgwv44vfDpNlK6dchhDkX9sVeUcHh3DL2ZRfz4eoDPHv5YA1eqDatueffyYhoZOvPhszh6BALUcGWGp1EKvXvYK1aagYQYDGR2IDsiU7hAbx//XAyC0rJLCgjxupHVJCl0a+joMTBvqwiXl22l+ScEk5NDOXSUxN4cv4fLNudBYDZx8jfJ5zC1MHxhAVqq9SWrKXMvV/+kFbDx3btaXKZO2H/b9B/WpMGLwAGR/vwyR8OCu0ugsytpHCuwQCn3QDf3wVr58KIm7w9ojalqeffvsxCdqQWkFVk54ctqTjKnYzrG8OEfnFsOZTLx2sP8+wVgzz6nEop5WmtvgbG8OHDeffdd/npp5+YO3cuaWlpjBo1iuzsbNLS0gCIiYmp8ZiYmJiqfXV5/PHHsVqtVV8JCe7XmHvKzrQCdqYXcNO8DSzcns6WwzY+XJPM1JdWUOGE53/ezT++3ML9F/Q+bmtFpVq75p5/LVVsiB9vXj2s1rKO6GAL/3f5oBrLQ05EVLCFPvFWxvSK5pTYkEYHL0rs5XyzKYWLXvyNH7akseWwjbdXHOCSl1cwY3ginSNkiZu9wsnD3213u3RFtSwtZe79tC2NnjHBWJu1kKAL1syF4HiIG9Tkz3ZanA92Jyw+WN7kz+VRkT2h1wRY/DDkHvD2aNqUppx/abZSNh3K4/3VB5jzzTbWJOXwe3IeT8zfyZ/fXkufeCtzLupDZCP/HiilVHNp9UtIjlVUVES3bt245557GDFiBKeffjopKSnExVVXW541axbJycnMnz+/zvO4i4InJCQ0SRptVmEZf6QWcPVba6hw1v7n6BUTzEtXDsZs8iE+1B+fejoOKNUWNOf8a+mcThcpthI2JuexJ72Q/h2t9I4LId4bhQ2PcTCnmHP+twRHRe33rW5RgVw1IpF/fbu9atvIbhE8e9kgYjQI22K1hLmXX+pg6COLmD40gYn1dErwuKSl0iZ02PUQ0a1ZnnLO8lJiAg28O7GVpezbi+GbWyGyB1z9LRh1eZgnNOX825ycx7bUfO77Yovb/Xee14NbzuqhnzGVUi1em1hCcrTAwED69+/P7t27mTJlCgBpaWk1AhgZGRm1sjKOZbFYsFiaJwpdUeEkKavQbfACYGd6AeVO6KbdAVQ70Zzzr6UzGg10DAugY1jLm/97MgrcBi8A9mYW1QqyJOcUU1TWyu42tzMtYe79uCUVR4WTkd0imu9JHcWw5nWI6dtswQuAMZ1MzN1kJznfSUJIK0qKNQfA6bNhwQPw69Mw5m/eHlGb0JTzr8xRwcLt6XXu/2z9YaadmkBcCwiOK6VUfVrRX8uGKSsrY8eOHcTFxdGlSxdiY2NZuHBh1X673c7SpUsZNWqUF0dZk9nXiPE4VdZdtKlEGaVUG1BHzLXKsfl9vWKDMfvo3T1Vv4/XJteq8dLkfp8H9gI4ZVLzPScwKt6HQF94a6u9WZ/XI+IGwMDL4ZdHYfei4x+vvCo8yIyznqRrF9LBSimlWrpWH8C4++67Wbp0KUlJSaxevZpLL72U/Px8rr76agwGA7Nnz+axxx7jyy+/ZOvWrVxzzTUEBAQwY8YMbw+djPxSknOKcVS4GJIYRl1Ze92jgwgPaMYPckopj8kuLCM5p5jUvBLs5RXeHo5H9YwOwlTHG1fniAAyCkqrvjcY4OqRnQnSAsSqHttSbGw4mMfZvaOb70kzd8KOb6D7ueAf2nzPC1hMBsZ1NvHBDjtZJc5mfW6PGHA5dBwKn10DaVu9PRpVD6u/mfP7xta5f8qgDkRp/QulVCvQ6gMYhw4d4oorrqBXr15cfPHFmM1mVq1aRWJiIgD33HMPs2fP5uabb2bo0KEcPnyYBQsWEBwc7LUx5xXb+WFzKpe+spIznvyFcc8sw8cAs8/tWetYs4+Rxy/uT7SuGVeqVSkuK2fVvmxmvrGGM578hXOeXsoT8/8g1Vbi7aF5TGSwhfsuOKXWdl8fA/eefwrvrNgPSNHQJy8ZQMcwf0I1GKvq8dqyfUQFmRmaGN48T1hhh+XPQEg8JI5unuc8xoSuvhiAl39vhVkYRh84828QFAPvTYGs3d4ekXIjr9jO2v05DO8SzpBOYbX2dwzzZ9qpHfHxafWXBUqpdqDNFfFsKp7qxV1R4eST9YdqFVHyMRr49tbTyS128NqyvaTaShnSKYxrR3ehc0QAZpMWyFLtl6fmX3NauTeLK+aurrV9YEcrr189lKjgthGUtJU42JVewMtL9pKcU8yQTqFcd0ZXzD4GDuWVUl7hJMhiomOoPzFWPwyao9yqNOfc25tZyHlPL+XqkZ0ZV8+dYo9a8xrs/AFG3AzBzfScbnyxy8FXux38fFlQ66qFUakkT+phOEpg5pcQ28/bI2oTPDH/HBVOPlx9kH9+s42ukQG8+qehbDiQywerD2KvcDJ5YDwT+8fRKaKVFZJVSrVbGsBoIE99iEvJK+GC534lr9jhdv+yv43F6u9LicNJWKAvFg1cKNXqAhjZhWVc+fpq/kgrcLv/kxtHclqXZrrD3EwKyxyUOZwEWkz4+cr7lr3ciaPCib+vD0atbN8qNefcm/XOOjYm5/K/6YPwbY47wcmrpRXoKZOg8+lN/3z1KC13cdcvpQyP8+HlcS2vYG+DlOTB4jlQmA6XvgU9zvP2iFo9T8y/w3klnP/MMgqOKqB8Xu9oJg/qALgYmhhGXGgr/Z1TSrVLrTDM37rllzjqDF4A/JFWgDXATKzVT4MXSrVSRfaKOoMXINkZbU2QxZeIIEtV8ALAbDISaDFp8EId1y87M1i4I53LT+vUPMGL/MPw6/8gug8ker+ot5/JwBW9ffkxqZzlh1pppx7/UBj/GET1hnnT4Od/Q0Xdn3dU87AVO2oELwAW7sjgtg9/57YPN7IzvdBLI1NKqcbRAEYzM5vq/5GH+GuBO6VaOx+jAUs9cz1SC6UpVaWg1MEDX2yhfwcrI7s2Q+tUeyEsfgR8/aH/pbSU1gund/Chd4SRfywvobS8lSbH+gbA2f+AwVdJe9XXz4HUTd4eVbt2vM+dwX6mZhqJUkp5hgYwmll4oJlhnWsXUAII8TeREK5pfEq1dpFBZqad2tHtPqMBRveIbOYRKdVyzflmG7nFDq4f3aXpa6RU2OHnR6AkGwb/SYIYLYTBYOC6/mYO5bt4bn2Zt4fTeAYjDLgMLngKSm3w2lj45jawHfb2yNql8EAzgxJC69wXZ205c0AppRpCAxjNLDTAzFOXDiTOWrOAn5+vkTevHkasdhtRqtWzmHy45azu9I6r2e3IaIDnrxiiXYWUOuLz9Yf4fMNhrh7VuennRYUdfn5U2qYOmglBUU37fI3QIdjI1J6+vLLJzrq0VrqUpFJkT5j0LAy9DrZ9Bc8Ngq9vhdTNXh5Y+xIeaObp6QOJDq6Z+Rdg9uGNq4fq506lVKujRTwbyNOFzFJtJWxLyef3A7l0jgxkRNcI4qx+mLSFlVK1tLYinpUy8kvZm1nI8j3ZRIdYGNMjihirH/6+Wt9GtQ5NOfe2HrZx6csrGN41gr+M6ebRc9diL4JfHoWM7TB4JkT2aNrnOwkVThePrCjDZnfx7cWBRAW0gc8FjmLp9rLjOyjOgpj+0G8q9Dxf6pC0kGU8LY0n519KXgnbUmxsPJhHt+gghnUO18+dSqlWSQMYDdRaL6CUagt0/inlHU0191JtJUx58TeCLCb+Oanvcdfpn5SCFMm8KEiDITMhvGvTPZeHZJc4efDXMjoEG5g3KRCrpY1c4Dsr4NA6SPpF/lteCgERkDAc4odATF/J3AhLBB+tCaZ/+5RSqjat3KOUUkqpZpNTZGfmG2twOl3cNa5XEwYvXLBvKax6CUz+MPwvEBzTRM/lWRH+Ru4ZbuHRlaVc+nURr47zp2toG8jcMvpAp+HyVWGH9O2QtgWydkLSMimwCmDwgZA4CE0Ea0cIiYegWAiKhsAoCIwEv1DpfGLy0wwOpZRqRzSAoZRSSqlmkWYr5U9vriazoIx/TupDWIC5aZ7IdhDWvA6H10PcQOhzUYsq2NkQna1G5pzux9Nry5jwWRHX9Tdz/QAz4f5tJOXfxwzxg+QLwOWC4mzIPyTZMgVpUJgB6VslEFWSI0GPYxlNYA4EcxBYgsAcDH5W8A+TYEdwrARBwrtARHfZp5RSqtXSAIZSSimlmtxve7L460cbMeDiwUl9iA/1dEDBBenb4I/vYP9vcod+8EyI6ePh52k+HYKNPHqmH1/vdvDGFjtvbLFzYTdfrujty5AYn6bv2tKcDAbJrAiMhDg3+10ucBRBiQ3K8qGsQGqbOIrAUQKOUigvBnuJbCvKgENrJChiL6o+T3AcxA6AuAEQP1i+QuKb7WUqpZQ6ORrAUEoppVSTcLlcbDpkY+6yfXy/JZV+8SHcclZ3Qj2SeeGCoizI3i2dLZJXyx37wEjoPRk6nAo+rf9jjp/JwGW9zVzQzZfFB8r55WA5n+1y0MVq5OKevozvbKJHmLFtBTPcMRgky8IcBHQ4scfaCyWjw5YMuQcgNwnWvg4lubI/MFoCGrH9IbovRPWUWimW4PrPq5RSqtlpEc8GstlshIaGkpycrIWUlPKQ4ODgBn3o1vmnlOc1ZP6dyNz77PdUvtyUTrG9gtxiBznFjhr7e8UEMqpLGMb6ntLlwpi+BWPObgwuJ1R+Ocuhwo6hokzuxLtj9MEZ3AFXQGS942ztXMD2wiB+ywurtS/Ip5xIs4NAnwoS/Uq4t+t+Yi1ull0owIWhJAdj7j75Ks46/iN8A3GZA8Hkj8vkJ8tgjD64jCYwGLAPvJryUy467nn0b59S3tPQ+adaLg1gNNChQ4dISEjw9jCUalMaWlld559SnteQ+dfguefjS+LdX3poZMpT/mF6n+tNP3h7GO1God1FyOMFHO+Dtf7tU8p7tKtP66cBjAZyOp2kpKS0mqhdfn4+CQkJGrU/Dv05NUxT/ZwaOp+8Nf/a2u+Hvp6WrblfT0PmkzfmXlv7d62kr6t1acrX1RR/+9rqv0Nj6M9C6M+h2tE/iw4dOrSKazlVt9a/OLSZGI1GOnbs6O1hnLCQkJB2/6bVEPpzahhv/Zy8Pf/a2u+Hvp6WrSW9Hm/OvZb0c/AkfV2tizdfV2PmX1v9d2gM/VkI/TlUCwkJ0eBFG9BGenEppZRSSimllFKqLdMAhlJKKaWUUkoppVo8DWC0URaLhYceegiLxeLtobRo+nNqmPb6c2prr1tfT8vW1l5PY7XVn4O+rtaltb2u1jbepqQ/C6E/h2r6s2hbtIinUkoppZRSSimlWjzNwFBKKaWUUkoppVSLpwEMpZRSSimllFJKtXgawFBKKaWUUkoppVSLpwEMpZRSSimllFJKtXgawGggl8tFfn4+WvNUqean808p79C5p5T36PxTSqnaNIDRQAUFBVitVgoKCrw9FKXaHZ1/SnmHzj2lvEfnn1JK1aYBDKWUUkoppZRSSrV4GsBQSimllFJKKaVUi6cBDKWUUkoppZRSSrV4GsBQSimllFJKKaVUi6cBDKWUUkoppZRSSrV4Xg1gPP744wwbNozg4GCio6OZMmUKO3furHHMNddcg8FgqPE1YsSIGseUlZVx2223ERkZSWBgIJMnT+bQoUM1jsnNzWXmzJlYrVasViszZ84kLy+vqV+iUs0vPxX2LIL598GKFyB7LxRlQdZu2PEd7F0CeQeh3OHtkSpPKS2Qf+c/voc9iyH3AJSXeXtU1crtkJMEa16X38s/vgfbYW+PSinVlhWkwf7l8NMDsOwpSPkd0rfJdqWUUq2WweXF5tLnn38+l19+OcOGDaO8vJwHHniALVu2sH37dgIDAwEJYKSnp/PWW29VPc5sNhMeHl71/U033cS3337L22+/TUREBHfddRc5OTmsX78eHx8fACZMmMChQ4d47bXXALjhhhvo3Lkz3377bYPGmp+fj9VqxWazERIS4qkfgVKelZcM70+VYEUlgxEmvwB/fAs7f5Rt5kCY/i4kjgZfP++M9QTo/KtHUTasfAF+ewYq385NfjD1VegxDswB3h1fuQMO/AYfTIMKe/X2kA5wzXcQ3tV7Y1PHpXNPtUr5KfDxTDi8rub2sx+E0nw49WqI6OadsZ0AnX9KKVWbVwMYx8rMzCQ6OpqlS5dy5plnAhLAyMvL46uvvnL7GJvNRlRUFO+99x6XXXYZACkpKSQkJPDDDz8wfvx4duzYQZ8+fVi1ahXDhw8HYNWqVYwcOZI//viDXr16HXds+kdEtXiOYvjubtg0r/Y+ow9c/iF8MP2obSa4ZY1+iGvtdnwHH19Ze7vBADetguhTmn9MR8s7CC+NAHtR7X1dz4Jpb4N/aHOPSjWQzj3V6lQ4YMkT8OtT7vfP+AQW/wuu+gqCo5t1aCdK559SStXWompg2Gw2gBrZFQBLliwhOjqanj17MmvWLDIyMqr2rV+/HofDwbhx46q2xcfH069fP1asWAHAypUrsVqtVcELgBEjRmC1WquOOVZZWRn5+fk1vpRq0YqyYOsn7vc5KyBjO0QdFaxzlsOOhmUgNTedfw1UlA3LnnS/z+WCDe+C09m8YzpW5k73wQuAfb9AcU7zjkfVS+eeavWKMmHt3Lr3Jy0Fv1Aoyqj7GC/R+aeUUsfXYgIYLpeLO++8k9GjR9OvX7+q7RMmTGDevHn8/PPP/O9//2Pt2rWcffbZlJXJ+u60tDTMZjNhYWE1zhcTE0NaWlrVMdHRtaPs0dHRVccc6/HHH6+ql2G1WklISPDUS1WqaTjL5c5TXUrywDew5rbMnW4P9Tadfw1UUQa2Q3Xvz94NTi/XOim11b//6GUlyut07qlWz+WEsnred0ryZGldaV5zjajBWtv8c1Q4+XDNQQ5mF3t7KEqpdqTFBDBuvfVWNm/ezIcfflhj+2WXXcbEiRPp168fF154IT/++CO7du3i+++/r/d8LpcLg8FQ9f3R/1/XMUe77777sNlsVV/JycmNeFVKNSNzMETVs1wgfrBc0B6ty5lNO6ZG0vnXQOZAiBtU9/7OZ4DJ0mzDcSumX937gmPBT9OiWxKde6rVMwdJfae6JI6EtK0QFNN8Y2qg1jb/3liexH1fbGHmm6spr/Bytp9Sqt1oEQGM2267jW+++YZffvmFjh071ntsXFwciYmJ7N4tF2KxsbHY7XZyc3NrHJeRkUFMTEzVMenp6bXOlZmZWXXMsSwWCyEhITW+lGrRgqLggqek9sGxEoZDYRqUFVRvC4iAzqc33/hOgM6/BvKzwtkPuP83t4RAn8nNP6ZjBUVD34vd7xv3GATHNe94VL107qlWzz8Uxv1b6jwdK7q3bI8fAoGRzT6042lt8+/z9YeID/XjQHYxy/dkeXs4Sql2wqsBDJfLxa233soXX3zBzz//TJcuXY77mOzsbJKTk4mLkw+9p556Kr6+vixcuLDqmNTUVLZu3cqoUaMAGDlyJDabjTVr1lQds3r1amw2W9UxSrUJHYbANT9ItgXIBe4Zd8OkZ2Dli0cdNxT+PB9CO3lnnMpzonrBFR9LV49Ksf3hzz+AtQX8+waEw4T/wLn/kqAZSKbQlZ9B93PdB1+UUupkRJ0C1y+CxCNBet8AGHI1nPcIHNoAE/8H/mH1n0PVK7uwjN0ZhUwd3JGYEAuLdtS+UaiUUk3Bq11Ibr75Zj744AO+/vrrGp1ArFYr/v7+FBYWMmfOHC655BLi4uLYv38/999/PwcPHmTHjh0EBwcD0kb1u+++4+233yY8PJy7776b7OzsWm1UU1JSePXVVwFpo5qYmKhtVFXbVJQtXUmMRgiMBoMPFKTJml8fX7morLyYbAV0/jVAfiqU5ErHmYCIlnd30VkBhelSq8XkJ5kZqsXTuadateJcKMuX9x0M0lY8KEqW37UCLXn+Ld+dxVVvrObpaQP5fksq+7KK+OXusd4ellKqHXCTX9d8Xn75ZQDGjh1bY/tbb73FNddcg4+PD1u2bOHdd98lLy+PuLg4zjrrLD7++OOq4AXAM888g8lkYvr06ZSUlHDOOefw9ttvVwUvAObNm8ftt99e1a1k8uTJvPDCC03/IpXyhsAI4JgAhTVevlTbFBInXy2V0QdC9PdPKdWMAsLkS3nczvQCzD5GYkL8OCUuhMV/ZJBbZCcs0OztoSml2jivBjCOl/zh7+/PTz/9dNzz+Pn58fzzz/P888/XeUx4eDjvv//+CY9RKaWUUkopVW1/VhGxVj+MRgPdo4IA2HzYxpieUV4emVKqrWsRRTyVUkoppZRSrcOB7CKig6XLVXSIhQCzD9tSjtM2WymlPEADGEoppZRSSqkGS84tIepIAMNoMJAYHsD2lHwvj0op1R5oAEMppZRSSinVIC6XizRbKRGBlqptHcMD+CO1oJ5HKaWUZ2gAQymllFJKKdUg+aXllDgqCD+qYGdCmD9JWUXYy51eHJlSqj3QAIZSSimllFKqQdJspQA1AhgdwgKocLk4kF3krWEppdoJDWAopZRSSimlGiSzoAyA0ADfqm0dQv0B2JNR6JUxKaXaDw1gKKWUUkoppRokq1ACGFb/6gBGiJ+JQIsP+7I0A0Mp1bQ0gKGUUkoppZRqkKzCMvx9ffDz9anaZjAYiLf6sy9TAxhKqaalAQyllFJKKaVUg2QWlNXIvqgUG+JHUpYuIVFKNS0NYCillFJKKaUaJLvIToi/qdb26BA/9mcXe2FESqn2pPa7j1Kq9SrNh+JsqLCDJRiC48Bg8PaoVGtRbofCNHAUg8kfgmPA5OftUSmlVP0qyqEwFexF8p4VGA3mAG+Pqs3KKbITbHGTgWH1I6fITkGpg2C/2vuVUsoTNIChVFuRux9++BvsWQguFwTFwLhHocd54B/q7dGplq4wA1a/Cqtfrr4IGHINnHEHBMd6e3RKKeVeURZs/AB+/S+U2sDHF/pPh7P/ASHx3h5dm5RTZCfUzRKSmGALAMk5JfSJ1wCGUqpp6BISpdqC/BR4dwrsXiDBC4DCdPjiejjwm1eHploBexEs+69cANiPFGArL4U1r8D8+6HE5t3xKaWUOxUO2PAuLHxQgheV2zbOgy9ukOCG8ricIjvBfu6XkAAczNFlJEqppqMBDKXagowdkJvkft+Cf0BBevOOR7UuhRmw7g33+7Z/AcV6EaCUaoEKUuHX/7nft/9XCeQrj8stsrtdIhLiZ8LP10iyBjCUUk1IAxhKtQUHV9W9L2cflJc031hU61OaB85y9/tcLglwKKVUS1NWAPZ6ul5k72m+sbQT5RVOCsrKCXKTgWEwGIgKtnA4Tz9zKKWajgYwlGoLwjrXvc/PCkZdi6rq4XucYneW4OYZh1JKnQhffzDU81E2MLr5xtJO5JdKsDvI4r6MXmSQheRczcBQSjUdDWAo1RZ0Ph1MFvf7TrsRgvRDnKpHYBR0HOZ+X2QPCIpq3vEopVRDBERCrwvc7wuKgdBOzTuediC32A4cJ4ChS0iUUk1IAxhKtQXB8XDl52AOrLm95/kw7Dqpyq5UXQLC4ZLXIaJ7ze3WBLj8Q7kQUEqplsYvBCY8AXGDam4PjIKrvgRrB68Mqy3LK3YA9QcwUvNKm3NISql2RtuoKtUWmMzQaSTcvAoyd0JxNsT2h6BYCIzw9uhUaxDWGa75HvIOQvZeCEuUbdqGUCnVklk7wpWfgu2Q/P2zdoDwrhCiwYumYCuRDIzAOgMYZgrKyskvdRDiptCnUkqdLA1gKNVW+JgkXVZTZlVjBcfKV8Jp3h6JUko1XFC0fHUY4u2RtHm2kuNnYACk5pUSEqsBDKWU5+kSEqWUUkoppdRx2YodmH2MmE3uLyHCA80ApNq0E4lSqmloAEMppZRSSil1XLaScgItPnXuDw3wxWiAVJvWwVBKNQ0NYCillFJKKaWOy1biqLP+BYDJaCQ0wExqnmZgKKWahgYwlFJKKaWUUsdlK3EQaK6/hF5EoJn0/LJmGpFSqr3RAIZSSimllFLquPJLHQSY615CAmD19yUtX5eQKKWahgYwlFJKKaWUUsdlK3EQUM8SEpBCnlrEUynVVDSAoZRSSimllDouW7GDwONkYIQF6BISpVTT0QCGUkoppZRS6rhkCUn9GRhhgb7YShyUlVc006iUUu2JBjCUUkoppZRSx1VQWn8bVYBQfzMAmQWahaGU8jwNYCillFJKKaXqVeF0UVhW3oAMDAlg6DISpVRT0ACGUq2F0+ntEaiWRH8flFLtjcvl7RG0a4Wl5QDH7UISGuALaAaGUqpp1B9CVUp5V4kNbMnw+3tQkAZ9LoKE4WDt4O2RKW/JOwh7l8DeRRDeDQZeDtYEMAd4e2RKKeV5RVmQvRd+fxfKy2DQDIjuC8Ex3h5Zu5Nf6gAg8DhdSIIsJnyMBjILNYChlPI8r2ZgPP744wwbNozg4GCio6OZMmUKO3furHGMy+Vizpw5xMfH4+/vz9ixY9m2bVuNY8rKyrjtttuIjIwkMDCQyZMnc+jQoRrH5ObmMnPmTKxWK1arlZkzZ5KXl9fUL1GpxivNl8DFK6fD6ldg+1fw2Z/h7YlyEavan6zdMPcs+PY22P41LH8aXhoOu38CR6m3R6eUUp5VlAkL/gFvjoPf34ctn8J7U+GzayWor5pVZQDjeBkYRoOBUH9fMvP175JSyvO8GsBYunQpt9xyC6tWrWLhwoWUl5czbtw4ioqKqo558sknefrpp3nhhRdYu3YtsbGxnHfeeRQUFFQdM3v2bL788ks++ugjli9fTmFhIZMmTaKiorr68YwZM9i4cSPz589n/vz5bNy4kZkzZzbr61XqhBSkwoIHam/PTYKl/wWH9lhvV0py4dvZcjfyaC4XfHEDFKZ7ZVhKKdVk0rfDpg9rbz+wHHbNb/7xtHP5JQ1bQgKyjEQzMJRSTcGrS0jmz6/5x+ett94iOjqa9evXc+aZZ+JyuXj22Wd54IEHuPjiiwF45513iImJ4YMPPuDGG2/EZrPxxhtv8N5773HuuecC8P7775OQkMCiRYsYP348O3bsYP78+axatYrhw4cDMHfuXEaOHMnOnTvp1atX875wpRpi549179v8IYy9B6wdm288yruKc+RDuzsVdkjbAmGJzTsmpZRqKo5SWP1q3ftXvwqnTILAyOYbUztXUJWBcfzLhxB/X62BoZRqEi2qiKfNZgMgPDwcgKSkJNLS0hg3blzVMRaLhTFjxrBixQoA1q9fj8PhqHFMfHw8/fr1qzpm5cqVWK3WquAFwIgRI7BarVXHHKusrIz8/PwaX0o1q7J6fucq7OBqu0Ucdf654Syvf7+9sHnGodo0nXuqxXBV1P++5ig+/vtiK9PS519+A4t4Alj9NANDKdU0WkwAw+VyceeddzJ69Gj69esHQFqarG+MialZqCkmJqZqX1paGmazmbCwsHqPiY6OrvWc0dHRVccc6/HHH6+ql2G1WklISDi5F6jUieo5vu59iaPBEtJ8Y2lmOv/c8LNCWJe698cPbr6xqDZL555qMcyB0H9a3ftPmQQBEc03nmbQ0udfQakDs48RX5/jXz5YA3zJKrA3w6iUUu1Niwlg3HrrrWzevJkPP6y91tFgMNT43uVy1dp2rGOPcXd8fee57777sNlsVV/JyckNeRlKeU5YF+gytvZ2HzOc/xj4hzbzgJqPzj83gmNh4v/A3XvWkKshqHaQVqkTpXNPtSjdzoLwrrW3B4TDabPAx7f5x9SEWvr8yy8pJ9By/OwLAKu/L9mFZbi09a1SysNaRBvV2267jW+++YZly5bRsWP1mv7Y2FhAMiji4uKqtmdkZFRlZcTGxmK328nNza2RhZGRkcGoUaOqjklPr13gLjMzs1Z2RyWLxYLFYjn5F6dUYwVFw8WvwpbPYPXLUJIHXcbA2f+AiO7eHl2T0vlXh07D4bpFsGgOpGyAoBg44y7oMR78w477cKWOR+eealGsHeHqb2DN67DxfahwQJ+pMHo2hLa9mj8tff4VlDoaVP8CJIBRWu6k2F5x3LarSil1Irz6juJyubjtttv48ssvWbJkCV261EyP7tKlC7GxsSxcuJDBgyU92m63s3TpUp544gkATj31VHx9fVm4cCHTp08HIDU1la1bt/Lkk08CMHLkSGw2G2vWrOG0004DYPXq1dhstqogh1ItUnAsjLgZ+l8q64EtIWAJ9vaolLeYg6DjULjsfbAXgY9JghhKKdVWWRMkcD/8RvnePwx8/b07pnYqv9TRoPoXACF+kh2TXWjXAIZSyqO8+o5yyy238MEHH/D1118THBxcVY/CarXi7++PwWBg9uzZPPbYY/To0YMePXrw2GOPERAQwIwZM6qOve6667jrrruIiIggPDycu+++m/79+1d1Jenduzfnn38+s2bN4tVXpaL1DTfcwKRJk7QDiWr5jEYJZChVyT+0TS8hUkqpGnx8ISTe26No9wpKyxscwLD6SwAjq6iMThEBTTkspVQ749UAxssvvwzA2LFja2x/6623uOaaawC45557KCkp4eabbyY3N5fhw4ezYMECgoOr70I/88wzmEwmpk+fTklJCeeccw5vv/02Pj7Vb7Lz5s3j9ttvr+pWMnnyZF544YWmfYFKKaWUUkq1AbYSB/4NzcDwr87AUEopTzK4tLpOg+Tn52O1WrHZbISEtN3uD6oFKEiHglQoSANrBwiKhaAob4/Kq3T+tQIuFxSkgO0wlORCWGcIjIYArc3RmuncU15R7oDCNMg7AI4SiOgGgVHtbgllS5t/k55fTnSwhVlnuCmsegyn08VVb6zmsYv7c8VpnZphdEqp9kIXpSnVkuQkwYeXQebO6m3xQ2D6uxDastqpKVXF5YL0rTDvUgm8Veo9GS54SpdAKaUazlEKB5bDp9dAWYFsMxjh9L/CyFshMNKrw2vP8kscdG7gchCj0UCwn4mcIs3AUEp5Votpo6pUu1eYAR9fWTN4AdJt4utb5K62Ui2R7TC8c2HN4AXAjm9g5QtQXuadcSmlWh/bIfjgsurgBYDLCcufgaSl3huXoqDUQWADu5CALCPRJSRKKU/TAIZS3laQDunbIS8ZRt0OHYfVPiZpKRRlN//YVPtRmAEZOyBti1xAOCsa/tiMbXUH2Na+IedWSqljOUoh9wCkboKsPfI+8se34Cx3f/zSJ6Aws3nHqADpHFhQWk6ApWE1MIAjGRgawFZKeZYuIVHKWyrKIW0TfDELsvfKtsAoOOsBWe+76aOax9sLap9DqZPldMryj8+vg6xdsi0gHCb8F3qcB34NWHedu7/ufY5iKC/1yFCVUm1IYSasfhlWvlj9HtFlDJx1v7wHFefUfkxeMlQ4mnecCoBSh5Nyp4uAE8jACPbzJVuXkCilPEwzMJTyFlsyvD2pOngBUJQJ382GUyZBQET1dqMP+FmbfYiqHbAdhLcvqA5egFw4fH6tZGM0REy/uvcFRoKvttBTSh2lwgHr34Jf/1czwJm0VP4Gnv1P94+L6Qe+fs0yRFVTfqkEjhraRhUgRGtgKKWagAYwlPIGlwu2fCp3p91Z+zoMvKL6+4EzICimecam2pc/fqi51vxoi/8FxQ2ovRLeVb7cGXOvFvFUStVUkAYrnnO/L2OHZGC4C3ye+5DsU80uv+TEAxiagaGUagoawFDKG8rLIHl13fvTt0kbSh9fGHodnP0PMAc22/BUO+F0wsEVde/P2C4tDI8nJA5mfgmdz6jeZg6Ccx6CvhdLBpFSSlWyF9UdOAUotUHi6dXfB0bCpW9B7ICmH5tyqzID44SKePqZyNMAhlLKw7QGhlLe4OMLUafAnkXu94d2gq5j4dZ1EBStKfiqaRiNEN0Xdnzrfn9oJzCZG3ausM5w2XtQnC2F+fxCICi24Y9XSrUfvv7gY4aKOi5uw7vC1Ffk/cTpAL8wCI6T9yzlFfklUlg10HJiNTBKy50U28tPqHaGUkrVR/8SKOUNRh8Y8ifpbe/O2PsgsodcFGrwQjWl/tPAWMcHyzF/lzufDeUfBhHdIbbfiQU/lFLtS1A0DJ7pfl9wHIR3kfeeqF5S98LaQYMXXlaVgXGCXUgAbaWqlPIo/WugVHNzOsF2GCrKJCXWEly9z2iStPsOp3pvfKptKi2A7H2w6ydIWgZ5B+Xup7UjzPikZpFYo4/Uruh8et3nU0qpxvL1hzF/g14X1NwemghXfQEhHbwzLlWn/BIHJqMBs0/DLx2C/XwByCvWzjFKKc/RfC6lmpKzQoqVleaCj0XuUBekwntToChL1vhe9CIYfCTTIqKrtFLVehfKk4qyYOUL8Nv/gcsp28yBcMmb0HWMtC78y2+Qf0iWf4QduftpCTr+uQvSoORIoU//cAjWYrNKtWtlBdJRy14sAfrgGDC56RwSHAfjH4Nh10NBCviFSgekJU/A+Y9J1oVqMWwlDgLMPhgMhgY/pjIDI6dYMzCUUp6jAQylmkqJDXbPh/n3yTpegPghUpDTzyoXlQd+ky+TBU6fDV3OkPoYSnnS/l9h+TM1t9mL4OMZcPMqiOwJoQny1VCOUji8Dr6+BXL3y7bwrjDlZfk91+UjSrU/tsMw/17443sJlpr8YMRNMOJmWTZytMpgft4BKfrrKAGn1FnA5YSpL9XMUFReZStxEHQC9S+gOoCRpwEMpZQH6RISpZrK4fXwxQ3VwQuAlA3wxSw47+Gax5aXwcoXoTCteceo2r6iTFj6hPt9zgrY9HHjzpu7H969qDp4AZCzD965UC5IlFLtS1EmfHatFAWuzPQqL5Xg6epX5O/c0fJT5f3D5ZKsjcrgBcDO76Aws9mGro7PVuIg4AQDGBaTDxaTUWtgKKU8SgMYSjWFoixY9E/3+4qz5UNbVK+a2+2FUK5/5JWHVTjAdqju/Zl/SCDjRDhKYcXzNS84qp7PDqtf1d9lpdqbgnRIXuV+36qXZLnZ0QrT6z6XywmOYs+NTZ20/JJyAs0n3hI72M+kGRhKKY/SAIZSTaG8DNK31r0/bavUGThaUIwUNlPKk3z9IaZ/3fu7nCFFO0+EvRBS1te9/9BaOUYp1X4cnY11LEcJ2AtqbgvtVPfxJj9dPtLC5DUiAwOkkKfWwFBKeVKja2Ds2rWLJUuWkJGRgdPprLHvn/+s486zUu2FyQynXisf6PYvk7vgRwtNgKxdNbed9YAUNVPKk/zDYNy/4bdn5a7m/uVQmif7/KzQc0LN410uuTPqLJfaLIFRtc9p8pNuARk73D9neJf6g3HFOZJa7hsA/qGNeFFKqRalvAwiu0Ofi2T55LFZXwYjGM1QnAsBYbItKAY6jYKDK2qf77QbZL9qMWwldjqEnnhb90CLD7nahUQp5UGNCmDMnTuXm266icjISGJjY2tUJDYYDBrAUO2b7ZBcJJbkSFeR4TfAtq9g04ey38cMXc6EpU/K95YQGPt3OGUSnEB1b6UapDBd1pf7+stFxKSnpYXq1i9hyktgPapwZ2Em/PEdLHsK8g9D1ClSryXhNAmEVLIEweg7Ydd898856jb3AYziHMnOWPIfmR99p8KAKyAkHvz0bqtSrVLuAal/s/0baQV+5j1SjPrHe6EsX445ZRL8/i4cXCWFrOMGSaejS16Hn+6rrpth8oPhN8LIW8HXTecS5TW2Ege9YhqxhMTiS26RZmAopTzH4HK5XCf6oMTERG6++WbuvffephhTi5Sfn4/VasVmsxESEuLt4aiWKicJ3r4A8lNqbj/vESnguWcxXPY+xPaTO1HlpXIXPDhWu4/UQ+dfIxWkwZc3wr4lNbf3mwbnPlSz60hpPvz8CKx5rfZ5LnoJBlwOPkd9eC3Jg82fwIL7qzOMfMxwwVPQ92LwO+bfyV4Eq1+DX/4N5zwE1o6w92fZ138aRPeBIDfZHsqrdO6peuUlS3bX2tdrbo/pB2fdDx9fCQnDpcvWZ3+WpSQAE5+GwVdJlldD2662Qy1p/vX953ymDO7ApAHxJ/S4N39LIjmnmPmzz2yikSml2ptGZWDk5uYybdo0T49FqdatrAAW/KN28AJg0UNw469w2o0Q3VvS5gMimn2Iqp3Z+3Pt4AXA1k9h8IyaAYyiTFg71/15FjwAXcdI0KGSf6hcgPQcB1l7JHsooru0SnSXfVGUCUsehQlPwp6FsPPH6n2/vyfZGBOerN1qUSnVctmSawcvQGpAHVoPN66A9C3w+XXVwQuQv5U9zpM6GJZgrXfRwjkqnBTZK064jSpAsMVEni4hUUp5UKOKeE6bNo0FCxZ4eixKtW7F2bDzB/f7XE7Ys0juQpfkNeuwVDtVlA2rXq57/6qXa1b5z9kn9S/cKcmVr2OZAyCsM/Q4F7qfA2GJdde+yDsIIUcCIEcHLypt+xIOb6h7vEqplsXlgk0f1b1/43tweK1kY9mLau5zFEtQU7UKthIJQDQmgBGkXUiUUh7WqAyM7t278+CDD7Jq1Sr69++Pr2/N1Pfbb7/dI4NTqlVxVkigoi72Atlv0OY/qhm4KurvBGIvqtk+1RxU//l8zCc3Hh8znDIRtnxa9zErn4fE07UehlKtRb3vMcXgY5K6UMFxUJBac7+x0XXkVTOrzKBoVAaGny+l5U5K7BX4N6INq1JKHatRfz1ee+01goKCWLp0KUuXLq2xz2AwaABDtU9+IRDTF9K3ud8fP1jqDARrZXXVDPzDoPdkWZ/uTv9La6ZthyaAX2h1h5KjxQ2CgMiTG09IBylYW98FT1khODXVWKlWwWCQpV9bP3e/v9vZkLxGsrSOzcwKinbf4Ui1SJUZFIGNycA48pjcYjv+Zm0Vr5Q6eY26FZyUlFTn1759+zw9RqVah8AomPCU+wyLHudB5k4p3mmyNP/YVPvj4wtDr3VfayU0EXqMq7ktKBYu/6D272dABFz8GgSeZM2W4DjoejZ0GVP3MX0ukqK2SqnWIW4QxA6ovd03AE69RjKuovtIrYxKPma45E15z1GtQmUb1GC/xmRgVAcwlFLKEzR/TylPih8M1/wASx6HQ2skqDH4KrlgPLxB2kUq1VzCEuH6xbD8Wdj2BRh9YOAMGHFTzYKcIKneCafBzaulyGb6DkgcCZ1GSKG9k+Vjgrj+EBAGmz+uvf49KFqyQoyaYqxUqxGaIIHP9W/BhneltkW3s+HUP8PP/4aeEyCyJ4y+SzpxxQ2CgZdL+2ajLqdsLSqDD0GNCGBUZmBoIU+llKc0OoBx6NAhvvnmGw4ePIjdXjOq+vTTT5/0wJRqlcwBsoxk3CNStDA/BZJ+heB4GPO32q0llWpq4V1gwn9g7JG21wGRYKqjnoWPrxx/2g1NMxZfP4jsDtcthF//W5163v8yOOMOzwRKlFLNKzQBRt8J/S6FnL3S/ejHe+V9pO8UCU6O/TtU2CX7wmDw9ojVCcotshNg9sHUiKCTZmAopTytUQGMxYsXM3nyZLp06cLOnTvp168f+/fvx+VyMWTIEE+PUanWxS8E4gZKx4XyUugzReteKO/y9a+7O4g3hHeBCf+Fs+4HDFKvoyWNTyl1YixBENMHgmMhfgiMuReCYqqDFQaDLp9sxXKLHQT7+R7/QDf8fX3wMRqqlqEopdTJalT+3n333cddd93F1q1b8fPz4/PPPyc5OZkxY8Ywbdo0T49RqdYpMAKsHTR4oZQ7Zn8p7BkSr8ELpdqKgPAjf/diNdOiDcktshPs17jlfQaDgWCLibwizcBQSnlGowIYO3bs4OqrrwbAZDJRUlJCUFAQDz/8ME888YRHB6hUi+FyyZKQ3P3yX5fL2yNS7VFBGuQekN9BZz1te5VSqrHKCiAvWZZCluZ7ezTKy7KL7ARbGpeBAVI7QzMwlFKe0qglJIGBgZSVlQEQHx/P3r176du3LwBZWVmeG51SLUVRFvzxHSz5j/SyD46FM++FPpMh8CTbSyrVEMU5sGcR/HykvkpgpKw77z9N1pgrpdTJcrkgey8segh2/gC4oPt5MO7fENFDC2+2U9lFZY3qQFIp2M9U1YpVKaVOVqPejUaMGMFvv/1Gnz59mDhxInfddRdbtmzhiy++YMSIEZ4eo1LeZS+G1a/CsiertxWkwfd3SGu4M+8Gc6D3xqfavgoHbPoIfrqveltRFvx0P2TtgfP+pQVilVInL+8gvHmeBEwr7V4AB1fBjcukfo1qd7IL7XQIbfxSv0CziRxdQqKU8pBGhdKffvpphg8fDsCcOXM477zz+Pjjj0lMTOSNN97w6ACV8rqiDPjtWff7Vj4vGRlHf9hTytMKUuGXR93v2/BW7ZakR3O5oDBDgm7l+gFSKVUHZ4W0OHb396wsH9a+LsHUulQ45H2mMEOXWLYxUgOj8UtIgv1M5GgGhlLKQxoVwOjatSsDBgwAICAggJdeeonNmzfzxRdfkJiY2ODzLFu2jAsvvJD4+HgMBgNfffVVjf3XXHMNBoOhxtexGR5lZWXcdtttREZGEhgYyOTJkzl06FCNY3Jzc5k5cyZWqxWr1crMmTPJy8trzEtX7VFxtrR/c6fCARl/wPuXwB/fQ1F2845NtQ8leWAvdL/P5ZK16u7kp8KaV+GtCfD6uZIWnpOkFxdKqdrKCmDX/Lr371kIpXnu9+UegMUPy/vMW+fDqpekTo9q9UodFRSUlWP1b/wSkiCLiTytgaGU8pBGL2bMy8vj9ddf57777iMnR6L1GzZs4PDhww0+R1FREQMHDuSFF16o85jzzz+f1NTUqq8ffvihxv7Zs2fz5Zdf8tFHH7F8+XIKCwuZNGkSFRUVVcfMmDGDjRs3Mn/+fObPn8/GjRuZOXPmCb5i1W75HNX6rbKqelAMdDkT4gfLmuCUDfDRDPjtGS14pjzPZK5/vyWo9raCVPh4Jvx4L2TvkeVOq16C18+WQrTlZZIufnA1JK+RIEhdgTqlVNvn4wsBEbW3V/7d8w8HjPJekb5dvvKSIe8QvH4OrHhO3mey98rytg+vkCCqatWyjyz9sPqfTAaGL7magaGU8pBGhVM3b97Mueeei9VqZf/+/cyaNYvw8HC+/PJLDhw4wLvvvtug80yYMIEJEybUe4zFYiE2NtbtPpvNxhtvvMF7773HueeeC8D7779PQkICixYtYvz48ezYsYP58+ezatWqqmUvc+fOZeTIkezcuZNevXqdwCtX7VJQNEx6Vgp3VpRBaKLUxdjxtXygC+kAp0yUDIyVL8Cp12g9AuVZAZEQNxBSN9XeFxgFwXG1t6dsgsNra28vzoEDKwAX/HA3OEpke1hnmP6epIBnbIfEkWD0lSyjoBgIitJaL0q1ZeZAGHmr1LyI6A6n/1XaolY4pNWxfzjkHZAA6MEVYA6CxNMlwNp5NGz7sub5UjfC4fUQMskbr0Z5SFaBFO23+h8nkF6PID8TBaXllFc4MfloIVil1MlpVADjzjvv5JprruHJJ58kODi4avuECROYMWOGxwYHsGTJEqKjowkNDWXMmDE8+uijREdLxf3169fjcDgYN25c1fHx8fH069ePFStWMH78eFauXInVaq0KXoAUIbVaraxYsUIDGOr47EWw/q2aF4+nTIQBl8Pn18LSJ2Di/2T98K75kPK7fPhTylMCI+GS1+HtibK+vJI5CGZ8XDuA4SyHjfPcn8s/DPys8PGVR50nUH6HP70afAPgnAfh8+slQwPAaJILm1G3SsBEKdU2xfSFc/8FUb0kwGk7siTXxxdG3ibbv7yx+vjlz8CYe+X9YeePUF5a83y/vws9zgOTBdU6ZRVWBjBOIgPDIpcbeSUOIoP0d0EpdXIaFcBYu3Ytr776aq3tHTp0IC0t7aQHVWnChAlMmzaNxMREkpKSePDBBzn77LNZv349FouFtLQ0zGYzYWFhNR4XExNTNY60tLSqgMfRoqOj6x1rWVlZVatYgPx8XRbQLhWkw4eXQebOmtv/+F4u+gZeARvelQ96l38oAQyTn3fG2obo/HMjsifM+gVSNspdzejekDAcrB3dtDY01v172O8S2PB2zW0DLod1b0HOPrj8A/jiBii1Ve93lksh27BEOPXP1Snlqs3RudfOBUZKe/BXx0jhzkoVDlj+NJz3CHQYAoc3VO9b+oRkYPS+ELZ8WvN8Jj8w6B33hmqJ868ygBFyEjUwKguA5hbZNYChlDppjfqr4ufn5/ZNdefOnURFee7u3GWXXcbEiRPp168fF154IT/++CO7du3i+++/r/dxLpcLw1EfsA1uPmwfe8yxHn/88aqin1arlYSEhMa/ENV6FaTUDl5U2voF9Bwv/++skLT76D4Q07/5xtdG6fyrg7Uj9J4E5z4EA6ZLQMHoU/s4oxGG/tn9OYLjJAX8aF3Hwq4fIaKb7Ds6eHG0pU/KEhPVZuncUxxcVTN4cbQ1r8Kgq2pv3/6NLDs71rDrJXtDNUhLnH8Z+WVY/X0x1QqUN1yQnwQ/crWQp1LKAxr1bnTRRRfx8MMP43DIG5HBYODgwYP8/e9/55JLLvHoAI8WFxdHYmIiu3fvBiA2Nha73U5ubm6N4zIyMoiJiak6Jj09vda5MjMzq45x57777sNms1V9JSfXUeVftW22eorSOsslcFGpJA/OflBqZqiTovPPAyJ6SGbFsRzFENPvmI0u+V0OjpcsjLoUpGqhzzZO554idXPd+2yH3Bf6LMmtXcC671SIOsWzY2vjWuL8yygoIzTg5IJQwUcCGDlF+vdDKXXyGpUP9t///pcLLriA6OhoSkpKGDNmDGlpaYwcOZJHH33U02Oskp2dTXJyMnFxst771FNPxdfXl4ULFzJ9+nQAUlNT2bp1K08++SQAI0eOxGazsWbNGk477TQAVq9ejc1mY9SoUXU+l8ViwWLRNLd2pyRXWqFWlEqdAGvHuo/18a2ZGttzPMT2B3NA04+zjdP55wFBUTDu3zD4SljzmhSeHXi5pHoXZcH2r6rbqRZlShFP2yGp71KXkA7H74jiTfYSKEqHskKpD6KFR0+Yzr12pqxA5r+jGMzBkqHVYUjdx4d2kuOP1XsS+AZC93Nk2chpN0hGogb0T0hLnH8ZBaWEnkT9C4AgswkDaCcSpZRHNCqAERISwvLly/n555/ZsGEDTqeTIUOGVHUCaajCwkL27NlT9X1SUhIbN24kPDyc8PBw5syZwyWXXEJcXBz79+/n/vvvJzIykqlTpwJgtVq57rrruOuuu4iIiCA8PJy7776b/v37V42ld+/enH/++cyaNauqbscNN9zApEmTtICnqiknCb65FfYvl+/9QqVAYkxfSN9W+/j+02Hnkba+nUZI4U5LcO3jlPKWoCj5ShgBrnIp0Anyu335h/L7XpQF696EM++Br2+WoJ1/mATzjjX272Dyb9aX0GAFabDsv7DhHckSMZqkRs1ZD0CImy4tSrV3tsPS7nTHN+BySqeR4TfB4JnyHlGaV/sxZ94jLZgDIqA4W7aFd4WOw+S9o8sZEtjXop1tRlp+KaEBJxe4NhoNBPuZNANDKeURja/IA5x99tmcffbZjX78unXrOOuss6q+v/POOwG4+uqrefnll9myZQvvvvsueXl5xMXFcdZZZ/Hxxx/X6HzyzDPPYDKZmD59OiUlJZxzzjm8/fbb+PhUrwufN28et99+e1W3ksmTJ/PCCy80etyqDcpPgXcnV3ddAPnw9tEVcM0P8O1sSF4l2w1GKYQ46nb49Bo4/Q4YfqPeaVItl8kMHPUB1BwAPcbDDcugOEt+p/3DYOZXEri44iP4+hbIPhJgNlnk97zCDu9Mkq4DnUZBoJtUcm8oK4TFj8DG96u3Ocvh9/ckrX3yc+Af6rXhKdXiFGXBZ9dB8srqbY4SKdTpFwpXfytdiSqXlJn8YMRNkn2xZyFcPBfm3weJo+CMu6qzFX1baIBTNVq6rYyukUEnfZ5gP19yNYChlPIAg8tVmUN8YtasWcOSJUvIyMjA6XTW2Pf00097ZHAtSX5+PlarFZvNRkhIiLeHozxtzyJ4/6j6LVGnSFAivDtYAuWDXXmZpNv6+sGexbB7Icz8Uj64aZGyJtWm519BmnwVZcrvUlC0+zXmnuIollasZYWyvCIounqZRUUFrH0NVr0kbRGtHaX7gI8vHFwNYZ3g+7vk2NF3whl3toyso5x98PypchfZnVvXQ6S2Nm6MNj332rO0rfDK6dXfV/7NC4yS7KXIXoALSnIkU8PHBJs/laVnAEExcO18qZvjq523moq351+F00XPB37k6lGdOa9P3XXjGmLOt9voGx/C09MHeWZwSql2q1EZGI899hj/+Mc/6NWrFzExMcft+KFUi3d0S7hu58Dgq2Dxv6q7NYR1hnMekju6e3+uPjZzJ4R3ac6RqrYkew98MB2y91Zv63ImTHkFrB08/3wFabDkCdj4ngQmjD7Qb5p0NQmJh8JUaYlYkgs/3lP78dPflWUoARES9Bvyp5YRwCjJqzt4AZJlggYwlKpydCei7udIZ5FFcyDvgGwL6wwXPCXLJNe9Vfvxhelw+Hfo37UZBqu8JbuwjAqXi/DAk699FGwxkVOoGRhKqZPXqADG//3f//Hmm29yzTXXeHg4SnlJ+JEPYSYLjLwZPrhMUtAr5e6HL2+Q1Pr9y6s7MRxcCb3Ob/bhqjagIA3mTavd9SNpmaxLv+gFzwYH3C6zqIDNH0lm0ZSXwF7kvvZFpdwDcPkHkL1bsjhsydVZHN50vEKdFs0cUKqGoCN3000WqXvx4eW1/+Z9NEP+5v0+z333oaRl0L/pOs8p70u1lQIQEeSBAIafL1mFZSd9HqWUalQAw2g0cvrppx//QKVai47D5CKo5/mQ9Kt0bwiJh/JS2PYl7PpJ7lhv+Qx6XwhbP5fHRXTz7rhV61WQWnfL0h3fSFaEJwMYRRmw6QP3+3Z+L0tYTBZZLlLhcH9cRHepjZF/pL3wsqcgfjBcNq86Y6S8TM7lLJdOIIGRnnsNdQmMgk4jJaB4rNj+sl8pVc3aEawJ0Gk4bPmkZvCikssJmbulmHVZgQQs171VXRsnQrOa2rpUWwmARzIwQvxN7EovOOnzKKWU8fiH1HbHHXfw4osvenosSnlPSAe4dgGM+itE9YK1c+GTP8l6/9BOcOlbcnGXvhXCjiwZMVmg85neHbdqvQrS697ncko2hDuOYml3mpcsBSobqsR2/GUWQdEw4HL3+wPC5S5sZfCiUsrvsuzEXnKkq8ED8MJQ+L+B8O5FsP83sBc2fJyNERAOF78qHYOOFtkDpr8nnViUUtVC4uCa72DYLPddtnwDYNo7kLMHPr5K/h5ueBfOvFuWjhlNcMoFzT9u1axS8krx9TEQbDmpmv8AhPj5ahcSpZRHNOod6e6772bixIl069aNPn364Otbs4DhF1984ZHBKdVs7AWSOl+QAl/dVL29rABWvwoZf8DY+yB5jdxdtgRLKn1IvPfGrFq30IS695ks7pc95O6HXx6HbZ/LHdNuZ0ttloBI+fKtp3VhXcss/EKh1wQIjAYfPzjrfshNqm4nDJJFMf19+P4O9+fY9CGMvkMuctI2V29P3wrvTISrv4fODczaczrB2IjYemiidFHJT5EAT0gHuUgLjj3xcynVlhXnQKlN6lsUpEomRsZ2CchH9ZK/hR1Pg5UvwMFV1Y/L3Alf/gUuehEGzZA5ptq0VFsJUUEWj9S3C/YzUeKooMRegb/Z5/gPUEqpOjQqgHHbbbfxyy+/cNZZZxEREaGFO1XrVl4qd6D8rFLnwp2kpTD8BuhwqhQvG3WbZGL4nPxdCdVOBcVAwnBIXl1739DrateVyEuGtybIBXqlPYvhwEoJpqV8AkNm1r1kIzASOo+uDkyYA2His5JhtOsn+OY2WULVd4pkLeQfhsxdMg5rB9j3K2TscH9uS7DUxzg6eFHJ5YL5f5eOPYGRR+ps5IHBIEEXk1m22Q5LPY7svVJIt9tZ9Qd53AmKlq/4QSf2OKXai9wDMt/Tt8KGd6R98qVvwmmzIHufZHhF9JBsph//5v4cv/4Prvleu4+0Ayl5pR5ZPgJg9ZebndlFZXQ0B3jknEqp9qlRV1/vvvsun3/+ORMnTvT0eJRqfvmpYPSVQMbRF4fHyjskd8ajTpE7Vhq8UI1VXgoGH7jkDen2setHudD3MUvwYvRs8PWv+Zg9i9z/fjqKYeM86Sjyx3cw5GoJDhwrIFy6m3x8FfSdCp1GyAVMfioknAan/1WKh/72DFzzo9SOiO1f/fii7LpfT+fRsH9Z3fvTNssykpI8+OVRqbnhY4aBM+D02+HQOvjsGvkZgLRqDIyEP/8IkT3rPq9SquEK0mHXfEg8HebfAx2GwOA/gbUTlNmkTs6hdRKoLy+t+zw5RwIdqs07nFfisQBGSGUAo9BOxzANYCilGq9RV2Dh4eF066bFC1UbkJ8CuOQi8sy7wWCsu05ASDzEDYKwTs05QtWW2AshJwlWvABZu6DDUBj3KJz3iFwQ+IVAYAyYjwleOIqlsGdd9i+XQMCSx6HHuLqXNoUmwGXvw9bP4M3x1dv3/SKtUS+eC59fBwv/Cef/R/b5BUsRzLBEiB8CKRtqn/fUayBrT93j8w2QJS9zz4KyI3U7YvodSVfPk44m0X3lrnCloiz4djZcPk/uEiulTk6pTVqGB0TC5OcloPH7u/K+8Nl1UJonx+UmwWl1ZCOCFPo1+ta9X7UZKXkldO3hmULMIX7VGRhKKXUyGlXEc86cOTz00EMUF2sEXrViBWlyF3zrF5C6UVrC9Rjn/lhff7ljnFTPXWal6lPhkCUfr54hSyVSNsDa1+DFoZB3ULIdwjrXDl6AXCz4R9R9bv9QsBfL77S7O6cluZJBUZQtnQQW/6v2McXZsuZ98FWwZyGkb5GOA9u/hpSN4B8uwY8hV8tcAOlkMO1tCWx0P1cCgO4MuRr2LasOXpz/OPSeLKnor5wOq1+GU6+GsX+v+bgDv8m4lFInL3WzBCaiesHO+fDzI7Jca9lT1cELkFo7Ed2q5/mxek+RIIhq0+zlTjILyogMrKe20gkI8Zd7plkFWshTKXVyGpWB8dxzz7F3715iYmLo3LlzrSKeGza4uUOnVEtjL5ILLnsR9J8GjlI4+0G52MrdV90uzscMFz4Pvz0LJj/odzHo+k11ogrSpAVp5TKJSs4K+OpGuGFp3ZkTPr5Sg2Xrp+73D5whrRADwsHnqA+b+amSXbF2LrgMMPFpOLCi9hgq7fsFTv0zuJ4HDLDyOZj8AnwxCy7/UDIpznpAspUq7OAbKIUyQebJpW/CZ9fWzGKKGwQjboJ3LpTvB18ldS7Wvl59TM4++OFvMOZe6HWBBFwie0jwwnnkXOVlkuLurGi+9qxKtRX5qRAYIX/zKpdMGn0gbqAEMCqZ/GSJmdEE1y2A3Qth/VvVy9eiesHQa8BZR6tl1Wak55fiAiKCPLOExGQ0EuxnIkszMJRSJ6lRAYwpU6Z4eBhKNZOKculQYC+QgEXmH5C1E0bcDH/8IGn19kL5kHb2g1LzIqyLFDM7uBJ6XyQf7JQ6UYVp0tXG7b4MaWNaX1ebiO4w+i5Y/r+a27ufIxcmaVvg3Ieru24UpMLnN0BItKx5d1ZAynoJPNTF5QJckDgK0jbJtt/fhVMmyUVM5k7I2y8debqMleetZA6AHuPh1vUSCClIh25jIbybZDpVFvzrfSF8NMP98+9ZDBf+H2z7AlI3QXC8XCjlJcOK/4Pf3wdHiWSrnP+EFOusq7uKUkoU58KhtWAJkqVoaZsgvCsM/4sELCoFRsGUlyVD7MMr5L2i4zCY8qr8rfQLlveR1a/BlJe893pUszicVwJAZJBnMjBACnlmFmgAQyl1chp1JfbQQw816LgPP/yQyZMnExioHzBVC+B0wuH1MP9eWf/75Q1y53f8Y5JKe2y7uE+vlm4MJbnVS0dG/EW6Jih1oupIeqjef5wDAsLh9Nug/6WyrKM0FzqNkiUh394hxT8HXSF3VQFy9sOom6XexcFVUmjT5Afxg+t+jvghsv799NmSLQJy5zYgXIr/RZ0iwYmcfdJ2NXWTBBA6jZRjgqIhoqt8HWv4XyTLoqxQLoJ8A2RpVkmuZGwEx8HYe+HtC2StfqWEYbBmbs0OJ2lbTrw9q1LtUVmhZH+5nPDh5ZLJBMBiyTKc/i70mQrbv4QJT0g9qJx91Y8/tBbenwpXfirzN3sPzPhUgiGqTUs5EsDwVAYGSAAjq1CXkCilTk6T3kq+8cYbGT58OF27uvkwq1RzK0iFr2+FSc/A+nfkQ5o5UNbxHx28ONrCf1bfaRp6nXZEUI0XHCO/b/ai2vsCIhq2ptw/TL5i+kiRy/wUWUpx8yoIipJ2piCZHtm74Nu/VgdGDq2FKz+Ttq39LoGtn9c8t48Zxj0iHUwWzYGiTNkeN1AuWkI6yJKOyc9LAOXnf1c/1mCUYqR9LpKWq+70mgBbv5LXesnr8piSPCkgeHCV/Gx+eaxm8CIgQsZVV3vWn+6Dq77Q5SRK1aUgVZaL/HT/UcGLI5zl8M2tMPNrqXlTnFMzeHH0cb89J22Wbcngb4USm/xXtVkpeSWE+JmwmHw8ds4Qf18y8uvpcKOUUg3QqCKeDeU63h1FpZqLyyVFFC+ZK2v2N38k28O61Ox8cKzcJLnQmrVE1v7rhZJqrKBYmPhM7e0Gg9SZCI47sfMFRkLcAMmsCEusrn1RUQ6FmTD/vtpZHZs/kUBEp5Ew4UmIHSDP2+ciuH6xZCi9NxWS18jxRh8J3G35DPpOkWUh+YclG+NoLqcEE3L21r1MJjgOLn1Dsi5+vFdqZXx/J8ybJhlPXcdCyu81HxN1ivuuJ5VSN7kPCLlTkCqBkg3vw/7f6m+ZrFRbYC+SoIXTIfPWneIcydC49E0Jbtbl4AoYMF0Cmm9NgMwdTTNm1WKk2EqJ8ODyEYBQf18ydAmJUuok6WJ+1fa5XFI0cN8SKWZ42bzqO1H2wvpbNBpNcuEVltgsQ1VtmMkMp1wAs36BX5+WDImYfjD6DqkTYWxEPLkkVzoGrHtTLlZG3wnbv5KLjGMv7M+8G2L6y4V8TF8JFoy6TepMmAMl82Hr59VzI6Kb1JnY9jmcdR/s+A76TIbVr9Q9nu1fS/HNykyQY5WXwPuXyLw72h/fwfAbax9/vPnpG1C9ZKY+OUnw/sU17y5bO8LMr2S8SrU1pTYJPO77BUb9tf5jXU7IO1RdP8cd/3DpRrT4Yfl+yX9k+YlfiMeGrFqW1LwSwgM9u2Q2LMCsNTCUUidNAxiq7bMdljaNa1+Hy+fJB7oe4+SiKXe/ZGH4mN0XN+x7iWZdKM+xBEOHIXDxq9L21BIoF+GNUWqDtW9I/RaAi1+DL66XYN2Ul2seO/oOudP66dXyvdEEnc+QJVGDLofXz4WE4XDeI7K2veJI4cyQDtKVZ/nTsPNHWU5VubTEnaIscCLP5UIKe/oeVSTw0LrawYtKufuljWzu/uptaZvh7H9IFtTRnU0qnXqNFB6sT1EWfH5t7dR42yEpJnr1d7K8R6m2JCcJVr0EF/xPggx+1prLsyr5+ksAc/7fZa6teN79+QbNgM0fH3X+fVJQVwMYbdbhvBI6R3i2hl1ogC+FZeWU2CvwN3tuaYpSqn1p0iUkSrUIZfkSrLhxmaTXL5oDw66rvku8+hW48Nna3UUie8I5D2qXA+V55kCpWdHY4AVIcc3K4EVYFynWl7HjSHtT/+ruAr7+0HGoZGlUcpZLIG/Nq7DxI5j6Ggy4TAr4vX4OfPkXyeAoSJV5sf83eVzGDuh4mvvxhHaSQMmOr+CzP8P3syFpiQRUKrM63K2vr7TqZWnzajjqz5LLBRvehQufq7kdpD3rqNukU1B9irPgcB3LULJ21R+QUao1KrfD1i/gkjegzCaZUWP/7v7Ysx+E1a/KUsrDGyTr6liJp0vnnwO/VW+L6at/G9u4NFtpk2RggLRoVUqpxtIMDNX2Ze2Gae/CgRWwZ5HcAV74kKS/bvpIlpbs/w2uXSBp9fmHpa5AdB+pl6FUS7Trx+r/73iq/B6DLEvJ3itBiS9nSb2Lvb/UfZ6N86SzyRvnVW/LTYLv/gojboHek2TZS/5h8PGFXhdIN579v8Ga16RAoG+AFPf88DJZT19p+9cw7HoYcg3E9a+/A0qpDaJ6ww1L4JdHZS4Gx0PXsyQrZMbHsq0kTwqCRvZqWOaEvfg4++uo2aFUa1Vhlzky71KY+D9Y9iQMngmXvgXr3pCaM+FdYei1EuAsTJMsxPjBEN0bup0tfytLcqVgcEGaBDUrGQww5h7tRNKGFdvLyS8t93gNjLAjAZG0/FI6R2oATCnVOE0awEhMTMTX17cpn0Kp4wvvCo4i+W/5kah/2mZpKdfnIqkN4CiF356VFNqcfdBlDPhofE95SYUDSvPA6Av+oe6PKTuqxkW5Xbp5XP6BBOwOrpQU8qu/lyyKXT/V/VzlpXUX+FvzKpw2Sy5uVr1YfR6DAXqcL4X/Pr9e5s3v79UMXlRa+7p0LyiIknoToZ0g72Dt485+UAKG1ngYcStk7ZSuJytfqM7ciO0vd32HXtfwZR/+4ZJF4iyvvc9gkHawSrUljhJY+bws/wrrIu8n696UTMSBV0CfKfK+sPhf0PsiWVI59u+y7MvkD+FdIKqnvK8cXn+kg8mRv50B4TDp/yBCa8e0ZWk2+fcOD/DsZ/hwzcBQSnlAk16hbd1aT3cHpZpD7iFJMf9gmtSy6Hcp7F8u+8rLpCvD5k/k+5G3Qupm6DZWgxfKO5xOyDsgFxu7F0gBy1G3ybKNoGNqPfQ6H359So4J7yodAt6/uGYQYf2bsiyj38Ww8X33z9lzQs3U8BrjKZeMpUVz5I5sJZdLMkAMBvjLb4BLWg7XJWmZXEj98ihMehZ+/a9kRIGszT/rAeg5Xs4H4CiGH+6ufZ60LVK080TmZ1CUZIG4Kz7af/rxa2go1Zo4SiRAGNFDMii2fSH1bvb/CoUZ8Nv/1Ty+5zjYtQBy9kugMq5/9T6TGTqNkA5FxVky7wMipLB1Q4rnqlarMoAR5uElJP5mHwLMPlXnV0qpxmjUVVpFRQXPPPMMn3zyCQcPHsRur1n8MCcnxyODU+qk5CQBBqmaXpAqX2f+TborZO+teWxQDJz6Z7k7bPLsH2ylGix7j9SgKMuv3nZwJQycAeP/LRcPlcIS4YKn5He3MBMW/ct9BsQPd8Eta+VC5OCqmvvMgTDmbnh7Ut1jclbUDF4cbecPMPJmKfbpqqj7HBVlcjHlY5Ygzfn/kaKcjhLJjjh2PX1MHzAHuS/42WfKiQUdzIFwxl0SKFn5opzT11+yOEbdpkUIVdtRmCFLrEqype7Nx1fJe8aUl+HQmupaNJW6nyftnTsOlVoz/S6V95OjGQwQEi9fqt1IO5Ih4ekaGAARgWZSNYChlDoJjSri+a9//Yunn36a6dOnY7PZuPPOO7n44osxGo3MmTPHw0NUqhEK0uVCpTQXdn5fvf37O2H8YzDiyEVXUAwM/wtc/a1kaGjwQnlLaQEsfLBm8KLSpg+ka8bRfAMl5fuTP8lyij0L3Z/X5YJd8+H0O2DMvZIJERAhQZE/fQsGH7mj6k5gpCxlqU9RtnQd6XZO3cd0GQP+Vhh0BSx8AF49E14bK8tPcvZJp5CjBcfDlZ/VLnIa3RfOe/jEiwcGRcMZd8PNK+GW1XDLGjjnn/W3jVSqtXBWSH2Yj66UZVdRvavr3hRnSxehyz+A3pNl7le2SD7vYSnc+/l1Mtd7ne/d16FajLT8UgItPlhMns+0CQ80k5JX4vHzKqXaj0ZlYMybN4+5c+cyceJE/vWvf3HFFVfQrVs3BgwYwKpVq7j99ts9PU6lGi4/9UgabbLcpT66/WJRltS+6HY2nH47RJ4i3UbsBXXXGlCqOZTmwe56alX88QPEDaz+vigDfrpP/t/lct9mtOrcNvjl35J5MONj+W9gpAT6vrkVxv0bvrhBxhDTT9bE+/hC4mhwuakdcTRfP1kScu4cWRbiOKZoZo9xktlUkAYfXlFzf/5h+OomuG6RzNVKPiboOAxuXiUXZrbD0n42vGvjW56azDIOpdqavAPw9kQpeBsUIzUvjm4LfnCVBDr7XSrLtRzFED9E5niPcTD+UbAmSH0LpYCM/LImyb4AiAiyaABDKXVSGhXASEtLo39/WScZFBSEzSa9xSdNmsSDDz7oudEp1RiOYkjZIB0SBl4hldVTfq/e73LBnsXydd0CuXsV0d1741WqksFY91KMY9uIZu6sLkyZsw9iB0hxWncShldnXhh95L8V5XL3df9yWd5x8WtyAXN4A2z+SOaF0QTdz5E6GUd3PanU9Sw4tFYCIXmH4PpF0g513y/gFyrLsrqdBVs+lcySY4MbIIGXX/8LF8+t2dXAxyRBjaMDG0qpmuzFsoTsqi/k/eCn+6GsQDoF/f7eUccVwYZ35P97XSBZUS4nbP4Y9iyAi1/3zvhVi5SeX0qofxMFMALN/H4wt0nOrZRqHxoVwOjYsSOpqal06tSJ7t27s2DBAoYMGcLatWuxWDzbckmpE5KXDPP/LgUQAfJTYMIT8MnVtbsQnHIBBERBWELzj1OpY/mHQa+JsOMb9/tPmVj3Y9e9AeMehc/+XPv3vPdkMPlJBkZ+igQwTrkQznkQDq+TpVSDr5L/fvtX2VYpdZMEMy7/ULIzDq6s3tf5DBhxkzzn6Dslm+KLWVIwdMIT0s3AmiAp7EWZ0h2lLqmbZMmXtmVUquHyU2DpU5JBGDcIFjxQvW/ANKltcWhdzceYA6UW1N6fpV14+pFi65k7dUmVqpKeX0qohzuQVIoKtpBb7KDYXk6AWQumK6VOXKPeOaZOncrixYsZPnw4f/3rX7niiit44403OHjwIHfccYenx6hUwxSkSxHEyuAFSN2AtW/AFR/C2jflAiwwAobfJJkZvv7eG69SR7MEHVmGsVxqShxt2CwpoldWIMtBMEjWUGV70LyDcnf18g9g7VxIXitLRIbdAJ1Ok8KgziOZHc4K2P6VXLBMekaKZa5+VWphHD7mYgek4O2mj2Dy85KqXpovF0GpG+Gza8ESAj3Og00fwriHZeyL/gVZuyQoc9n7UlzQ2rHu1x6aIN2ClFINU5QNX90sHYSu/xleP7vm/p/uhymvQPoW2PihBAi7nwunz4a0rRDZXYKLlbZ+Bl3HNOtLUC1Xen4ZpyYGHP/ARogKlvf6w7kl9IgJbpLnUEq1bY0KYPznP/+p+v9LL72Ujh07smLFCrp3787kyZM9NjilGiw/RVLsjSaY9o6sd0/ZKMtI9v4svexPvQbOvEvWA2/6SC4AQ+ooXqiUN0R0g1lLZMnFzh/APxxG3SrFKwszpJ1pQYoUng1NlOKzmTth9cvSKeTQOhg0Q9a5p22VmhGfXlMdvDha5g4I6wrvT5XOHjt/qHtcf3wnd2c7j4Y/5sPWT6U7waAZMPxGqVGRuUtaEgfHwmmzqtPZff1h3xK4ZK4UI3W5ap//zHsk2KGUapiCVFmqNfFpwClLsHx8JeC4+mX5m/jJTEgcBdPfleVlGTugvFTqyOz6qWYHHoteSCrhcrnIKixrugyMIAlgHMwp1gCGUqpRPJK7NWLECEaMGOGJUyl14krzZf19aQ5k7YWsP2Dr51IT4JI34OubpYDg7+9JLYDMP2DycxDezdsjV6q2sEQYfQcMu07ajpoDZfnF3LOk+OyIm2Hxv+QCBSCss7Ql/eMHCSr0OE8CHfuWSDAvd3/N8xt9pKZF1zGyfr6qA4mh7jEZDNJyMSQOzn8UzrxTtgdEwv7fYN7F1UVEi7Phh7/BkD9JoOXwBhg9G7Z8BhOehAUPykVU5VjG3ifZUEqphsvYDiNvkSDErp8kgyl9qwQwLnxOgodZu6SwblEm5B6AYddD0q+w5HG47D0p7FlpwOXeey2qRckvLaes3ElYQNPUwAgLNGMyGkjOcVMTSSmlGqDRAYz33nuPV155haSkJFauXEliYiLPPvssXbp04aKLLvLkGJWqX0kuFKbCqpekA0ncAJj2NqyZC9/fBec8JJ0O+l4sXRyiTpELL18/b49cKfeMPtUZCfZiWPZfCSIM+ZN00Tm640jufrkQuXY+FOdK1sbY+6SAbVQvaUVaWTwzsqcEO3Z8CytfkuBI/2kQ3gWi+8gdXXcGXimBEuORQqIh8fLfgjT44U73HVA2vCutUDN3gtFXnmfPYpj+jiyFMflDdG/pmqC1L5RquIIMmTd9p0qm4a4fZUlJp+GSfbXqRVmO9tEMmbfh3WTOvTkeOo2EqS9Ll5LCdDnfqL9KvRqlgMyCMgBC/ZsmA8NoMBAdYuGABjCUUo3UqADGyy+/zD//+U9mz57No48+SkWFpCeHhoby7LPPagBDNZ+yAvj9fVj2ZPW2vAOw80dJqV3yuCwtie4jS0i+vg1O/ZN88FOqNSjNg72L5Hf29/fdBwsq7LDxAynWmbRMloQkng7pO2DI1ZJS7usvxTU/u1aCfpXSt0pBznPnQMJpkLym5rkje0CXM6uDFzXGZpMOKHXJ2g0xfeC9qfDXLdIatbxUxqJLRpQ6cS4XlOWBtQMs+Y8sN6uUd0CCk9PelmVdMX2luG9JjhTZPesBme+7FkhgY/BMGPrnIx2KdD4qURnAsDbREhKQOhgHNYChlGqkRgUwnn/+eebOncuUKVNq1MMYOnQod999t8cGp9Rx5adIC8ZjOcvh50ck3T7/sKwTNpph388w8qbmH6dSjWXwkUKZYV2kUGZdUjdJECK8iwTwkldJFsbwGyFrpywV+f39msGLSvt/lUDEiJslULLtK5lDA6aDtZO0Su3gZpmH0af+sQfHwG//B4mjwS9YgxZKnazc/WAvlXbLRwcvKjlKYPmzUvh36lxZMmkvhIX/lCyuftOl2G5A5JG6UW4Ck6pdyyw8EsBoogwMgJhgP/ZlFjXZ+ZVSbVujAhhJSUkMHlz7w6zFYqGoSN+QVDMpSJNChe7uSINckAXFSHEykx/8eLf8N7JX845TqcawF0v2hdEsQYjsvVK4M3uP++PDu0jdi2VPVW/bvQC6niXLqHz9pBtJXfYskgudnCSpwREUI8tAwrtB1zPdP8Y/XLIqDq2V7w2G6iKdPr4SsEjbIstbNHih1MnJ3S8ZFIfWgV9o3ccdXAnn/kuWj61+BS56Aa5bBAHhEBhVs3inUsfIKijDYjLi73ucAPVJiAnxY+muTJxOF0ZjPfWXlFLKjUaF3rt06cLGjRtrbf/xxx/p06dPg8+zbNkyLrzwQuLj4zEYDHz11Vc19rtcLubMmUN8fDz+/v6MHTuWbdu21TimrKyM2267jcjISAIDA5k8eTKHDh2qcUxubi4zZ87EarVitVqZOXMmeXl5DR6naoHsxeAowVXhqP84o0mKeaZvlrvMU1+VCzOlGqIkVyr3r5krF/PZe6CssMEPdzpdFJQ6sJfXEWRz+6AKyNoD390BL42E186ADqfK9qHX1v24IdfAyhdrb9/3i9yFzd4jtSjqYvKHkbdLFsf+5fDeRdJacd2bEqhwJyAcpr4ixUIve7/6vz3Hw/lPQHkZ3LBEam8opRrH5aI8P4NCu5PykI5SgNflprNQJYMB/EOls9CEJyTwmTBMuhxp8EIdR1ZhGVZ/XwyGpgssxIT4UVbuJOPIchWllDoRjQpg/O1vf+OWW27h448/xuVysWbNGh599FHuv/9+/va3vzX4PEVFRQwcOJAXXnjB7f4nn3ySp59+mhdeeIG1a9cSGxvLeeedR0FBQdUxs2fP5ssvv+Sjjz5i+fLlFBYWMmnSpKq6HAAzZsxg48aNzJ8/n/nz57Nx40ZmzpzZmJeuvK2sAPIOYS/IgnmXYAgIlTu97sQOkA9s2XshYxfctEo6NGjxTtUQhZmw8CF4aQT8cDd8cxu8MBQ2vCO1H+rhcrlIzinmlaV7uf6dddz1yUY2HMwlr9h+/OfNSYLXxsDmjyQDwy9UxtJhCFQ4YPzj0p2kkq+/dB3Y90t1sc5jbfpAzjNgWt3PO2AaOMsk1XzDO9WZFLvmS2ZGJXuRzEMAR6ncFf5uNnx8lRQT/eIG6DEeel8IvSZAaKfjv+ajlRVCQfoJBYqUaqvsjnL2pefy5M/JPPxrAaXZh2DepVKsui49xkl3oIztsvysrr+RSrlRGcBoSjEh0kr1QLZmbSulTlyjlpD8+c9/pry8nHvuuYfi4mJmzJhBhw4d+L//+z8uv7zhrbgmTJjAhAkT3O5zuVw8++yzPPDAA1x88cUAvPPOO8TExPDBBx9w4403YrPZeOONN3jvvfc499xzAXj//fdJSEhg0aJFjB8/nh07djB//nxWrVrF8OHDAZg7dy4jR45k586d9OqlywlajZwkSN9KZuRpmA4sx5y9V9b0n/1PWPhgzWPNgTDpaQiOl2JlvSfJXSmlGurAb3IhfzSXS9oTJo6qt/Xn3swiLnl5BbaS6gyhbzencs/4XswcmUiwXx0fDu1FsPSJ6oBBeFfJiPjiBglmgAQGLntf6k/4WKQjSMoG+OO7ul9LhV2WT/W+SFou5h2sub/fJRLg+OxamPAf6XRSfuTOmMspgYrCDOl4sOYV+X7g5VIo9Kuba9bVcBTD93dK8NAS0vCAYWmBtEBe9hRk7pIOKmPukSVf2qVEtVObk3OZ8cY67BVOXp/akaCf75dsrF0/wchbYeUxN4ACwmHkbRJQLM2D7V8dyYLq4YXRq9Yoq6CMkLr+RnlIdLD8XTiQXczwrhFN+lxKqbbnhAMY5eXlzJs3jwsvvJBZs2aRlZWF0+kkOjraowNLSkoiLS2NcePGVW2zWCyMGTOGFStWcOONN7J+/XocDkeNY+Lj4+nXrx8rVqxg/PjxrFy5EqvVWhW8ABgxYgRWq5UVK1bUGcAoKyujrKw6tS0/P9+jr0+dINshucOck8SO8j6MTvpetu/4VtLbL/8Atn1xpI3qQGk3iUEKB6pWx+vzrzgHlj9T9/7Vr8Hk59ze2cwvcfCvb7fVCF5UevKnnZzfL7buAEaJTVoiVhp1O/x4T3XwAuR3fse3ENsPrvwCAiOlfWrP82W5izs9J0BprmSRXPBfyNoFe3+RQF/fKVCUBVs/h0FXwqaPoM9FsPkTeayfFcwB8N2d8Me31ec88JsEWCY/d6S1q6vmcy57CiY927ALpwq7vO4vZlVvy02S7I9L3pTx+DS667c6AV6fe6pKem4+sz/dgr1ClqAlBJZXBx/Xvg6j75SOI9u+hOJs6DJG2qR+f0f1e4a9EH55TOpgmAO98jpUw7WE+ZdZaCcyyHz8A0+C2WQkItCsnUiUUo1ywktITCYTN910U9UbbGRkpMeDFwBpaWkAxMTUrFcQExNTtS8tLQ2z2UxYWFi9x7gbX3R0dNUx7jz++ONVNTOsVisJCdoj3atSN0NQLDmmKBbtK6HML7J634Z34PPr5QIqpq/cKcYAgZ7/vVTNw+vzr8IORRl17y9IkWPcyCtx8OvurDofumpfdvU3pfmQ8Qcs+y/89A8JMvj6V+8PipYlGu6kbYXiLMnEiO4Fg64Cq5ufU2QPWTplsUpg5uOrJAASfYoU9Fv4T1jwD7m4iesPexZC/8ukXszkF6STQe6BmsGLSjn7YN9S6Hq2+33FOXLBVZAKznrqgBSkS9aGO9/fIY9XzcLrc09VyS0q41BuSdX3FQaTdA6ptPxp+Ha2vGdE95a/f6m/S/vio+38AUrymmXM6uS0hPmXXdT0S0gAooMtHNAAhlKqERpVA2P48OH8/vvvnh6LW8cWEXK5XMctLHTsMe6OP9557rvvPmw2W9VXcnLyCY5ceUy5Qz6cbf0Ml8HE+gM5ZHW/tOYxjmK5g7zmNZwR3cFkgcA6Cg+qFs/r888SIq0/69L9XKnw74br2EyEY1TeTaXEBuvfgZeGS8vflc/LUqj+06sPPl6RWkfpkfEGS6G+q7+FM/8my6bCu0o3kfMehvemSmCv/5F5k/K7FCb9/T3ZbjDKmvqyQllqUl4sdS0WPghlNlj/Vt1j2P419BxXe3tkL+lO8txgeO0s6YZQmO7+HGUFsnzGnVKbZIioZuH1uaeE04mzomahzu/3OnB0O2auleZJ1tSGd2WZZFiX2ucy+ekSylbC2/PP5XKRU2hvlgBGVLCFgzlaA0MpdeIalZN78803c9ddd3Ho0CFOPfVUAgNrpiUOGFBPcakGio2NBSSDIi4urmp7RkZGVVZGbGwsdrud3NzcGlkYGRkZjBo1quqY9PTaH5ozMzNrZXcczWKxYLFYTvp1qJNUXiZ3cPPToMJB2P4fuLDncD7aVcENZ/wT668P1zjc2WkUxsRRdV5cqtbB6/PPHABn3CXrx4/NtAgIh96T67wgCPHzZXCnUH4/mOd2/6huR7KHbMmw8B81d+79GYZdL8s7MrZJIM7H130gw2SR5SNV3/tKK9VhsyA4Vjr17F5QvRTmm9vgup+kBWPWrurHGQzSqWD/b/JcA66AwBiY8orUryi31x9IcZaD4Zh2ez3GwTn/lCyMS94AXLDmNUheBZOegYAIyc4oSJPWr0YfmPGxZIZseLf2c+jFV7Px+txr71wu+ZtXlEUYIUQGmckqlPegd9Znc8mV/6Rr1g7IO1D9GKMJJj4Nq1+V949jDb4KAiJrb1ctjrfnX7G9gtJyJyHNEsDwY2uKLlFTSp24RgUwLrvsMgBuv/32WvsMBkONDiCN1aVLF2JjY1m4cCGDB0uxPLvdztKlS3niiScAOPXUU/H19WXhwoVMny53LVNTU9m6dStPPvkkACNHjsRms7FmzRpOO+00AFavXo3NZqsKcqgWqrwMkpbCR1fKhdrY+zF+cyuTRzq57JtCynucwZWX/4L14E+Y7PkUdR5HcFQC/ra9EKytUtVJCu8K1/4kSxtSfpeL6C5nwQVPQFhinQ8LCzTzyEX9uOTlFZQd0z71yuGdiA4+8uF047zaD3a54Mub5CLfx1eWjwy7AVa5aY962o3uB5CxA76/q/b20lxZ7jH+McmEOLxegjEJw+UObv9psOIFOOt+eOt8Kd4JcMokGHBZ3UVC+06F1E3V34+8DcI6wRvngeNI+rslBMb9WwI0BWlShHDxw5IBcrQz7qpdmDAwUpa6tCUFqZC+DbZ8Lm0tB10B1kQICDv+Y1XblrsfFs2B7V8REz+U/4z/P2Z9cQCXCwrLyrn801RemDSPfsYD+B9cgiEwQtosr3lNgoLZe2ueL6IbjLgJTE1b00C1DdlHgmVNXcQTZAlJTpGdYns5AWatcaSUarhGvWMkJSV55MkLCwvZs2dPjfNu3LiR8PBwOnXqxOzZs3nsscfo0aMHPXr04LHHHiMgIIAZM2YAYLVaue6667jrrruIiIggPDycu+++m/79+1d1Jenduzfnn38+s2bN4tVXXwXghhtuYNKkSdqBpKVyueQDflmhBC8q7JCfArggYTjx313JR5Pn8dU+A9f9UECf+PMZ3zuSITH++Bdsh/hTvf0KVFtgMkvr0qs+l+UeRiP4hYG/9bgP7RUTzA+3n8Gry/aycl82kYEW/jK2G0MTwwgNMMvveGEdNTZK8+Drm+GWtZL9EDsQrB1gxXNy8R8SD8P/Iss+3r4Arlso2yplHinkGdJBMhtsyfJ81gTAKUtNSmwSREjZBNn74bTrZDxn3Q+H1lQHL0ACF/2nQcIIyaA4WlAMDLxCAhU9x4PRVzqGvD2x5nFl+bIk5YqPIGuPZIAcG7wA+PV/0mFlwzuyrMToA1Nfk4yStiI/BT6aIUGxSqtfkYKMo26ToJJqn0ryJci3/SsAjCnrGBX2At/+6XaeX5PPtrRiEsP9cfoGUp6xD0P2HlmmteQ/0lr5mu/AYJJlaGX5Mm87jZT3D6UaIKtI6ts1TwaGBPNT8kroHq0F15VSDdeoAEZiotx93L59OwcPHsRur06xNhgMVfuPZ926dZx11llV3995pxRxu/rqq3n77be55557KCkp4eabbyY3N5fhw4ezYMECgoOr3+ieeeYZTCYT06dPp6SkhHPOOYe3334bH5/qlOZ58+Zx++23V3UrmTx5Mi+8cEzrMdUyVNjh8Ab4+TEYOL1m+v6P90rHA9thOiy5g79E92f6hKswhMcQ4QcGVyl0GCz1AJTylIAI+ToBviYj3aKDePiifhSUluPrY5DARSWDQbp/bP3M/Qm6niVdQH5+WJZg7F4IY++XjiAlubDxfVkKApC9p2YAo+MwmPGJ3Ml1OiCyJxz+HeIHSU2LJf+Rc4Z2grhB4KqATR/D/l9lycfUVyUwcXS9iq9uglm/wJ5FsOlDKC+VwqADr4CFD8lF98AjnUh+fdr9a3I5pVvCyFvh61vq/uFt+xpG3Cx3k0+bJQEXo0/dx7cmFRXw+7yawYtKy5+GPpM1gNGeFaXDqpdqbArY9iH99v7A0/2upGjYBfhHdSI4dzuERcO+kiOBiulwxh0Q0V0CGfGvSIBSsy7UCcqpysBo+oyIyCAJYBzK1QCGUurENOodat++fUydOpUtW7ZgMBiqitZVFsVs6BKSsWPH1lvwzmAwMGfOHObMmVPnMX5+fjz//PM8//zzdR4THh7O+++/36AxKS/LS4b3L4Fr5+Pa/g01Vr47iqXbSOwAOGUiPr0mEuV0gLEQyn0kVVapFsTP1wc/3zouvjsMkd/ZY1O+fcxw5t1SeBNkKcm+X+TLnaxd0OVMuWDJOyRLQ366T74HCZaMuBUyd0HmThhyNaydCzt/dH++TR/KspDVr1RvcxRD9m6pzdF7kozxwArYsxiKMmVsWz+Xdfg5++r+geQmSceEosy6jynKkJocfiFu29S2akUZsO71uvevfxfiBzffeFSL4co7iKG8VNqhHqvURuC6lwgs2C/B1EFXQGGaZCcdXgcdh0Nox+rjjT5tJ+inmlVOkQQwgpohgBEeaMZogMN5Jcc/WCmljtKoLiR//etf6dKlC+np6QQEBLB161aWLVvG0KFDWbJkiYeHqNoNl0vW4p/3MC6nE0P8QPfHpW2GLZ/CwZXSGi5jh/a3V61PSAeY+TUMvV66BIAEIq5fDLsXS/cNkCKZ9WUVRfSQ/2bsgIyt8OM91cELkHm18nnwD5VlJP6h0ra0LgVp4O+mFoN/OOz7WTI4Fj8s2RidR9csCJq+DaJ61n3umP5STLDLmXUf03O8ZCG0teAFAK66u62A1Cmpr92sapOKSh24UrdI8KJTPbW5Ek6TJWbp26HjUKgoh/zUNjpXlDdkFZURZDFhMjbq8uCE+BgNhAeaSc0rbfLnUkq1LY16h1q5ciUPP/wwUVFRGI1GfHx8GD16NI8//rjbwp5KNciRjiPO2IEYfP3APwKuWwQ3LoXTZ9e8ozT6TumwYO0IqZvdX3Ap1dKFJsD5j8JtG2D2Vpj+nrQzPfou7JbPYPBM948PiZe08cJM2PyxZEHUJW0LXDJXgg7n/kuyJdxlLXUYUjMoARA3EFI31qyN0XeqfB9c3SWKrZ9Jhoe7riE+vrIkxN8q7V1NbirtD71OOpgcXg9pW+sPtLRGflbofl7d+/tPl1orql2pKM7BENZZsitG3QZXfwcT/yfLvCoFxUBkD/kd6XY2mALg7QlSS0Z/Z5SHNFcL1UoRgRZSbJqBoZQ6MY3KEauoqCAoKAiAyMhIUlJS6NWrF4mJiezcudOjA1TtiI8Zzrgb4/o3paK6s1y2R3SX2hcJp8HCf8Lo2XLXafxj8McPMORK9xdDSrUGJr/aRfYGXwFrjizh2PUjXPSS1JjY/El1ECGyJ1w+Tx6btVuyK5zlskTDccwHwtNukBarH1xWndkR1hnGPyo1Kw6vrx7L4D/Bu5OrH9vxNJjyEix/VoILXc6E6D5Si+OzP8PkF+DX/8qSklKbLE2Z+hrM/3t1ICYkXmprhHU+8txd4NoF8MPdUoTQYIBL34KUjfDyyOq2reFdpahndJ+20UrVHAhj74Nd82VZztGi+0idEtWulOcmE5y6HsOB5bDureq/e+FdYeIzsOAB6Xo0/C9S1ybxdLAdklbhheny+9TWuvQor8kpshPcDMtHKoUF+moGhlLqhDXqXapfv35s3ryZrl27Mnz4cJ588knMZjOvvfYaXbt29fQYVXtRlIFr5w8YjiliRvYe+ORPMP1duPxDKTqY4CvBiz4XQmhnrwxXqSYTmghn/g2WPSVLQL6+BYZeC1d9Ab5+0pY0IAqCo8kuLCO50MqP6cMwGkcwceoMOqQuJmz5nCPdRzpKYc8vZtV8jtz98PksmVfzLpXaMmP/LhdH1/0kXYBcLgmUhMTBmHulI8nWT+GP7yUDY+z98NXNMOQqKc7pcsqFuLWjXGgVZ0ngISBSMjUqgxAms1ysz/hEUuJNFpnPvz1bc4w5+6SjyY2/SrZKWxDeFW5YAr88JoEMcwCc+mfJPjm6GKtq+4qz8VnxHIagSFgzt+a+nH3w5Sz4808yR1xA5zOli83mj6VWSuczodcEb4xctVHZRXaCLM0XwAgPtLA9xdZsz6eUahsa9S71j3/8g6IiWcf773//m0mTJnHGGWcQERHBxx9/7NEBqnYiZz+unL0YVjzrfn9Rltxl7hgK2fsg+hQ47Xr58K9UG5KeX4q93IJ58F+J7n8ZhvVvSbZDz/Mh6hQJJhyRWVDGQ99s5YctaVXbXl4OVw4ZyV1n/5fwZf+Asx6ANa+6fzJHsSwtueZ7mV8mf/nvngVg7QSJoyToYEuGdy+UoEelgyuh8xkw5h74/k5Z4nXFx5JdYTRKZsjx2jcGhMtXfooEa9wpyYWUDW0ngOFjgqhecNGLkrFiMMgddK1j0O7kFtvxG/xn/OdNdn9AcY7UfIoZCEUpslzk9/dg/OMQ2V261gTFNO+gVZuWXVhGdIhfsz1feICZjIKyZns+pVTb0KgAxvjx46v+v2vXrmzfvp2cnBzCwsKqOpEo1SBOJxSkklPqxGCJJ6w4p+5jc/ZBZA+cgZEYQzvpshHVpuQUlbF4RwbPLNxFiq2UmBALt5/dg/NHP0REkPvf9dX7MmsELyrN25DFrL+cTfi0d8Boku4jdTm8XrIp/MMk26Ekt3rfCl+4diHs/L5m8KLS/l9hyEzJvhh8ZXXw4kSV22u2bT1W2lboc9GJn7clswTJl2p37IU57Mxx8vD3SfxzdAD96+vKk/mHLA9750iwYvxjUujWP7TZxqvaj5xiO92jm+99KSzQl2J7BQWlDoL9NIirlGoYj+WJhYdr73rVQHnJcvf24CqI7E5Jr6m8s6mQ02Lg9IBwuevkTnhXnEFxGCN0mZJq/ZxOF+n5pWQUlOHrY2DRjnSeXri7an96fhkPfLWVgznF/PWcHgQcndZbUU6eLZfXlx9we+4Zg8KJPLQAFt0LZ/9Dak+kbXE/kKhesOM7yQy46EVYNKe6iGeFA1LWS2vVumz/Fi5+7eSyoUxmuTirK4gR26/x51aqJbElszffwsWvrsNR4SJnWKBk4NQVxAiOk0DXzaultfDRS7GU8jCpgdF8gYSwADMgmYcawFBKNZSWrlbNK3MXzB0r6/HXvQG/PE5WCby8/DAvry/CNrSOLjaBUbjCu2HUdFnVBjjKnaw/mMuk55dz0Yu/cSi3hBd/2ev22DeWJ5FecEyRM1syjtRt5Jc4ah1vMMCsIUEELf67bNj4AQybVes4QJYtdBoJix6Uoptf3yJ3eEOOWvpR4ZBaGHVy1exO0hhBsbIUxR3/MIgfcnLnV6olyEumYMfPPLlgD44KmVMvrS8kb9hs98cHREhw45vbIChKaqRo8EI1kRJ7BaUOJyHN2IUkNECeS5eRKKVOhAYwVPMpyoYvb5B6FpW6nElOQQn2CifL9+bwW8A5FA29WdLeK0V0x3Xp23Kn2BLY7MNWytNSbCVc9fpqsovsAJQ7XZSVuw8ClDtd7M4oJDXvSGeRsgLITcK6fR5nd609H7pFBRGctqo66JCzDwpSpPWwj7n6QP8wmPIyrHyx+tiSXFj0EIy4qfq4fb9Av0vqfjGnXACLH4GMP6QVcmMYjdBnCoy+q2YtiPCuUp/D2rFx51WqpaiogB3fUegXx8r91UULVyflscx8JkXDbqv5ux/RTTr3/PywLPOqb3mlUh6QUyx/j4KbsYhnZQZGpgYwlFInoPnepZQqzoKU32tu8/HF7FN9d/fmr5KZeepUZk6fQWCFjQqjH9aIGIxmP4KDtFWcar3s5RVkFpZhNBhYsC29RsDC16f+u6oGDDz49Vaenj6IEHs+lBVi3vE5M6+4nU82m8gvLa9xLlP5MW1Ul/xHghDT3wV7kQQEbMmw8iUpkHm09G3ScrXSnkUw7lHY9qU85miJoyVDY80rsP4NuOZHSBh2Qj+XKoGRcObdcOqfJNjp63eke4lmXak2IP8QrJuLcfgDWP2tlDqqL9hu/yaZq4ZcyMxLLyPWtwirxShLvr6/E/IOykHOCi8NXLUXOYUSwGjODAw/Xx/8fX3IyNcAhlKq4TSAoZpPxTHp7taO5EcPJTgomMSIAA5kFwPw3vpM3lsvhySE2/nw2l50DNFuI6rlKHGUU1RWgZ/JhyC/47+NpueX8vqv+5i3+iBn9IjCYqqZ/HYot4RuUYHszSyq9dgOof5kF5Wx+I8MsovshPgCZfkQFEvCghv5csbr/Hd1EQt2ZGI0QP8Yf4J6jYVlx5xo6+fy1eFUGP8f+Pz6ugdcUR0Q4dRr4dA6mPhfSF4LuxdIAd2+UyFuEKw90v6xwgHfzYY/fSVp741hDgBzZ6nZoVRb4HJBzj5cufsxlBUQteNd/jzsEf6zuGYw8P0NWby/AeZf3Qnrh2dDhb16Z2iiFq1WTa4yAyOkAX/TPCkswJeMY5dJKqVUPTSAoZqPf6ikrZfkkjvhZXYFnsrzq/Ng9z6evKQ/N7y3AdtRa/pD/Ey8MmMgHcP8pEWjUl5W6qjgQHYRLy/dy5ZDNjqE+XPr2G70Cjdg9XFAYHStLhw5hXbu+mQTy/fI0qlDucWM7xtb45jXf03ikSn9uPOTjeQVV8+BYIuJf13Ul0e/34HLBYVl5eDnK0s9Tr8d44/30u3zcTx11Y88OCQEXC7CwgIw7V8MvSfDjm9qvgCjSYp6+lvBYHRfu8LPCriko8joO6DDEHhltOxLPB16jpMAx4Z3wPEqTHoGdv0kLVnTt0KJrfEBjOZWkidZJZs+huJs6DsFYgfUaFWr1EnJ3g2vn4vhlIm4BlxBcpdpDDPFMSKpiPT8MhwVTg7lSsbUg+M7E79nXs3ghcEA4x6RVsNHZ0Yp5WE5RZIF0dzFNEP8fckqtB//QKWUOkIDGKr5+PjhmvwiFYFR+OSm0S3rF54YOYB1uYE8+sMOnpo2gKISOzsPZ9E7JoBBXWIIMJtqrgtWyovWH8jlT2+uocIpy572ZhaxbFcWD53XgcuKPyAgvCMMmE6pXxS5xXZwQbGjgvUHqluTbkvJ565xvQiymCQgARzOK+HR73fwn4sHUFhWzpZDeXSKCKBTeABPL9hFUlYRPkaD3BlzFkPUKdJecfyjsPxZgpY9TFCXMyEnCbamwa75MPEZSDgNfn9POhx0PA2GXQ8rXoCwRCnsuebV2i9yzN+leOD0d2D3IkjdVL3vwG/yFT8Yzn5QLvqzdsPUV6SDyOKHJdiYtRt2/iiBlp7jpZZFUHST/tucsBIbrH0dfn6ketumDyC6L1z5KVg71P1YpRqitBDXyhcxOEqgrICkEY9y8WtruW2kg7kTgvFN3YnD6I89ZhCllghsxXYMOUPgUD+pWxM3GM78G2ycB77+0Pl0b78i1YZlF9rx8zViNjVvebwQf1+tgaGUOiEawFDNwmlLwVBRhiGsE6acJEL8fKH0AHzxEDGxg+l6zjNc/P4Gzusdw11nd2JvVgk7M0sZ1jnC20NXCpBlIPd8trkqeHG0x35O4ZyZl9Hph5kkd5jAyxsy+H5LGuecEs0ZPSL55MYRPPTNNjYczAPgfwt28uzlg/j3d9vZf2TpVHp+KVl5+QT4+7ErvZBlu7NIyqpeUnLpkHgijUWAAUx+kDAcyu0SPDCYICRW0tVfOV3Wy397O5z3CJxxl9S9SN8Gn10ry08ALvivZE/8+rRkIUT1kuBFeFdp12gOgYgetQvnxg+Wc351c/W5QDqF/Olb2PsLfH+H3Dnud6kET0ry5O5xcOyRDI+TUJQF+YchZZN0ZogbJK+3JEeCJwER8jzHk3+4ZvCiUsY2WPOaZKpo8FQ1RnkZzvxUDKkbccUOxHntnynxj+PJ73bz3wkdGGPawv+3d9/hUVXpA8e/0zMlmfTeGy303qQXFSyIDUUQrGsv665txZ+7tl17x4aKCipgF0EFlF5DbyEhpPc2mT5zf3+MDAxJICCkcT7Pkwdy6zk39869895z3qMyB4IhCD+FCra/gyO6P5WBw5myKoy/D32HEeH1aLT+8PPDkL0Sxj7Z2rUSOrgqs93zbNbCArUqbxdiQRCE5hABDOHcq8pFVl+ObP2bsHuxp9m6TAbpF8LUD1Aumk3qvne4vPs0vsgs5m+jUjlSXcvFPcMI0qtPvX1BaAFVZjsF1ZZG5zlcEjkmJcpJn3DV50dICzfw6jW9WLKtkLdXZRMV6MeD4zvx674S3l99mN2Ftfzfd3u4aVgSfRKCkCQ3wWo34fs/pdx4AT+p4XCFJ3ihkMuY2iOUB3qDvmQzbHjbMyqBfwT0nQkh6bBlLuT8Dld/6hlppNskSB3jaU2w7jXY803DEUJ+fBCmfuD5YhTdEzQBnnVzfofiHZ6WE9m/eK5T/yioK/Ks11jwAjzJQDe+4wkihHf1JP48sBQWzfbsWyaDtPFw8YtnPqpIbREsuQ1yVnp+73EV1Jd6Wn4cHd0oMB6mvOvp+qI4yefHzi+bnrf5Axh4q2fYSkE4HQ4rZK9A/t3dkDEVWXRvKN6OLUJPldnNyFgJ5W+LPMlxJclzvWRcgUqtJpJyEoM0ZBitaD6/Ai572xO8kMmg86TWrpnQwVXW2/Fv4fwXAEatijKTaIEhCELziQCGcG5Z65CcNlj7GuxZcmy6JMH+Hz1fbAbfgXbt60y7dBZfZIJGKePqAfEt3g9TEE5GxslHClEo1awslNCplVzVP46bPt6Mw+VprbG/pI6V+8t4aEInLuoeyY87izlSaWbdwRKu7KREYQhDrdFA4Gyi7PW8OFVPucWNqbqcAGclIfYC6tVdKS2pJEQChd0EFSZY9jh0m+LJTZE8CiJ6IE3/BtmWD+CHBz0F63wRXPO5Z0SDqsO+ha7M9uTtMMaB3QzL/4U9KI3StOlUVlXjl3oTYe5Kgq7+BD69GhQKT7eRE4MXR+36Cm761dOiI2uZbxcVSfLkyqi/Aa5d6Gk9cTqOfo4cDV5og6DrpbDw+mPDwIJn1IaPL4Hb13mGomyKparpeY56320KQnPVHIH1b8JlbyOtfxPZpvfAz0hgv5uYP/UalN/dDrlrjy3vdsGOLwAISR3HKz1At+heT0sla5UnwHH5uyIvi3DOVZjsrfLcFaBVUW2243ZLyOUnv88KgiCACGAI51JtIXYXqExFyPZ+3fgyh371vOl0WtHIXAxODiY8wE8EL4Q2J0in8hkt53gapZy4ID9e3VDNjUMTeX7pfm/w4ngv/XKAt67vy2/7Snn84q4MSApie7UNa3kNJTVWesQFcqTChcHPQnKgkqQND5A36EleOpDA9z8cRqWIZlqv/+PyQVaiVj8GATGeL+KpY6n2T0NVl4/+i+mefBRH7fjC063jivcpLS+nRpeAQi4jsGIrwXFdPS0WlBqozKYyoDNfOsfwyrt7uXtIKBcnypAXbcdZrUZxwxJkThvkbWz6ILkcUJPv+VK2ZV7jyxRs8bTmON0AhqkUtnx47PfuV3paSjQWaHDaYOsnnjwdiiYSAHe91Hd7x0sZDRr/0yufcN5zmauoMjsxjn0K1QfjkB1NxllfhuL3Z5HHD/QNXhxv1yLkvaej2/oxOK1w0bvgluDOLZ4uUSpty1VEOC9V1tvx17ROCwy35GnlGGIQo+0IgnBqIoAhnBsVhyhRRCFZKghBjepkbzMdZjDGUWpV8OQl3TBqRbcRoe0JD/DjhSt7Mu3dDdhdvqN3/GdiDEGFKwjQdCPUoOFIZeP9eR0uCafTyU93DuGFXw/xr29343JLBOpUzB6WxG/7SkgN8ye73MQve01cP+4Drn53k0+G9udXFPBthD//nfoF7/yeTVwgTLEHYy6ro1P2Yt/gxVH1ZTgPr+O50vEsyvR0BekW3Zn/JnWhc0AQcoDyg/yuvoBnvs3ixUkxTCj9EP2Ceb7bGfkIJI9s+iAZwj0BFUM4FRf8m9rgHshkEFi8jsCtr3uCEABVORDV46THuwG3w/NZcVRQgqcVV1MKt4DTAgpD4/PDu3jyeRRu852u1Hi61fgFnF75hPOa1WLmQAVY7UGESZUw5QeMFZkEb3nFE9RT6ZDVFTa9AbfL829IGty2xjMKkMqvZQovCEBFvZ0uUS3/uWfUqrz7FwEMQRCao2VTDQvnB3M1ZapoamwudteqsWsCT768SotlxON0SksjNVy89RTarh5xRpbeO5xZQxPpHRfIZT3C+f6GBCZWfEzAmme4sUfDt6SDk0N4/drevDejHwtvHUSnSCOv/HaI73cUeROCVpsdvLDsAJIk46uteUT4+xERoOWzTYWNDi+3r6SO3UUm9habeGttCePf3IrCUYffwe+bLLvywPd0CzkWeNldWMuVczeSX1kHQGlIP/73RylxwVqG+R1Gv2MeUkw/iiZ/xsGpy8m9chkms8nzJji6T6P7kCY+R5mhM1tVfblhWydGfVLGyI/LmL2vL/smf4M74s+ghf9xuSVcTqjO8wQSirZDTQG4GxneVaWDwIRjv9eV+P5+otBOnmSnTfGPhGs+gxH/8CT+VKg9+T5uXunJKyIIzZRfZabQ5MbscPPMz9nc+n05q2sj2BZ2KfuuXkP1ZZ94zkVtUNMbkck8ww8Pu8cTXBPBC6GFtVYOjKOJQ8vFSCSCIDSTaIEhnFUOi5nDdQryq+qY891ucivMPDYmkllJI5DnrGq4Qkw/JL8gNBE9iTSKJrJC26ZARniAhr9P7ITdKeHnqEFTsA4cVdD9KjrHRbK9XCIxRMfhCjNX9oslI9rII0t2Umv1DJkaZtDw2KQuVFmcrDpQ5rP9D9bk8NjFXZAApVzG0l3FTZblp13FXNM/jv/8uA9JguX7yslQ65tcHrWBE2Mh9XYX32QWcUe/WuxuJflVFh4aEUH49meoGfQgKwMu4z9LSyitK0MugwldLuZRu57Yi/4H69+Avd96uo0YwimZ9DE7XQn4ydTMenejTyuVLUdqmPpZPT9e9wbxP14PgfGUm2xUmay4bPUEVu0hYv3TyIozPV/iprwH8YN8v8T5R8L4p+CLGzy/7/zCM8pK7pqGdZXJof9sUJziFhcQDRc85EmGKkmebiOi5YVwGvIqzdjtNpwomTVvE6M7hzOmSwQvLT/gbYk1JCWcp65eSUrFSojo5hkR6ETpF4Ih4uRBN0E4R5wuNzUWR6uMQhKg9XxOV9Q3DNYLgiA0RrTAEM6eumIKTBJFNVZmfbTJmyvg5dXlHBz0HK64QT6LS1G9cE+ZiywgBvmJQzUKQhvicLnJKTfxv2UHuOmjzfz7u70U11hw+QVCl8kw9X2Y8B9CwsLpkxDEs1N6EOGvYUznCJ74drc3eAFQZrLx4JfbmTU0EeUJCcsq6+34qRQ4XG6UChlqZdMf0RqlnL4Jwd7fF+2uxdL3tiaXL824ia921zWYvv5wFdatn6PKX09EgIYQPxlog1kXdBn3fHuE0j/firkl+GlPBTd8mUeJQ+NpiXHFB0g3/cbOyT+wxhzHj7tL+WJTXoMuNgAmm5MlWU4cN/7M7lo/pr27nnEvr2biW9u49EcFK/q9gbnbdZ5hVz+9wpOM80RJIzzBDf8oqCuG4p0wZo6n24f3wPjD1fNP3jrjeAqlJ5BhjBHBC+G01FsdlJts+KnVLNx0BL1ayeSe0dz/RaZPN7K1hyq45pMDFBl745jygSeIcbzEYTDhadAFIwitocrsAI4FE1qSVqVAKZdRKQIYgiA0k2iBIZwdplKq3Dp2F1Uzf32eT149k83J1M+O8OioZ7lonAJ3XSn+BgN2bRiSyohOLokvDkKbtiO/hmnvrsfm9HwxX59dyWebjvDmtD6M6RqO+rhEkYE6NX0SAll462Ce+GZXo9tzuCR+3l3CqM7hLN9zLGeFSiFDLpOhUcrpHmPk6v5xPPvTvka3MSEjkkrzsQe+/CoLBfpuJHW5DMUJSXPtaReTKaVzpDKvwXbig/xQle0m/NDP3D3kf2wssnFB3wd5+pvyRvebXV7PobooIvb/BNvmQ+fJlPb4L6/8uo9r+sexYFPDfRy1+oiVKYOMXPXO79TbXd7pJbU2Zi/KZdEtT6LKuAutzEFIeRFBwUmgOO6NoDYQuk+FxKFgq/MELjRGyJjiyTMg/zMYYYgEpUgELJw7xTUWrA43T3yzm1eu7cWW3Cqu7BfLB6tzGs0rW2ay8Xu5AUeBhdgB7zI8tA5FdQ5og8FpF0P2Cq3qaPCgNVpgyGQyAnUqKsRQqoIgNJMIYAhnRY2kxVlbiIQ/O/KrG8yvszn559JCVmZEMjAxiUlhBmxKf2wWBykRxpYvsCA0U2mtlXsXbvMGL46SJHjgy+0sv28EMUHHuj+V1FrZVVCD1eEiq6y+ye0eKjPRKdI358uFGVEo5BAXpMPucjOuSwTfbS9kd6HvsKXju0ZQY3ZgOCFjfIHDgGzgk2i7ziI0axEymURtpyup1cXzt3f2NFqOq/vHYym/hIDMuUw0ZJOvS8AWmMSRynVNln1LXi1DgpM8Q6oiEWbQkFthpsbi8P6/MVFGLXsKa3yCF0dJErz0WzbpEf68vzqPfgmBvBxhIzb4hAdqmazhlz1dkCeppyC0gLI6K06XC5vTTfdYI0EKK5EBalLCDXywJqfJ9X7PqkSjVNCnpxrF4pvAXA7I4LbVvq2IBKGFVdR7ggetEcAA8PdTiS4kgiA0mwhgCH9Zea0ZnbOOareaEL2GV6/tTWW9nff+yGF/iW+T9XB/DYNTwrCrFGw4WMbYDDG2vdC2VZrt5FVaGp1ntrsoqDZ7AxjFNVZu+XgTOwpque2CZK4bGE+V2cHhinpW7CvF6T72ajYxVE9JrdX7e5/4IO4clcqW3EqeX7qfXvGB3DwsidtGpFBjcfDbvlLUSjnju0ZQZbbz7h/ZPDD+WLLJcV0j2J5fjSMqgIMVMQzu+ySHK+opL7czKDmImUMSeX/NsbfDaoWcf1zYiU835NEpoifB3V4jXG5hVi81dmc9erWi0UADQGyQFrKrAJB1mkiwrBaNUs5324u4a0wqm3OrGl3vxqGJzF2VDcCw1FCmDYxHJgO5TEa9zcmiLXkkhOgA2JxbzR2fZ/L+jP6Eisz0QhtisbvIKTeTX2Vm9rAkykwmZg9NQq1WcueoVF79NavRblTxwTpm9vYn7OvroCYPEobAhf9tfncnQThHvC0wWqELCUCAn5KKRhJWC4IgNEYEMIS/xFZZgN2h4scsK88sPYDF4fnCExGg4YnJ3Zi39jAbcyoBz4vTS3tFY9QqKa82MaJLJEadGDJVaNvc7pMMAQzekUTcbomvtxWwo6CWa/rH0S8xmG+3F5BXaaFLVAAfzOzPGyuy2JBTiUIu47qB8WSXmxjdOYLUcD0ahZx/Lt5Ov8QQ7h+fjlohxyVJKOUyPlyTQ+/4IJwuiad/3Eutxclr1/bmjZUHiQ3Scm3/eCKNfjy0aAdf3DKIHfk1PLd0v7eMMhm8e0M/LuoexY6CGsIMauKDdVSZHdgcbhZuzucfF3bm+o8O8NDoOG5Sfcf1fUbxzvqGQ7JqlHL6xQfAskO4U8cjxQ8lpGg3V/QM57MtpVTXO5g2IJ7PNh7x2f/DF3YhKVRPZKAf1w2MJzlMz0Nf7cBk8+QHCTWoefKSbliOC5psz6uhwmQTAQyhzThUauKGDzZyy/AkhqaF8tBXO7wBO5nM0zrq1Wt7c/fn23yCGDIZjO0awZfbcrjpsnfQOOuRBcRAQGRrVUUQvCpMdpQKGVqV4tQLnwOeFhiiC4kgCM0jAhjCmXHZsddXU4E/eyst/Ou7vT6zS2pt3Lcwk3em92XT4UqUchn/ndqTyAA/1AoZGQlhyGSyJjYuCG1HkF5NmEFDWSP9c9UKObFBnhYD5SYb8zfkMq5rBMlhBm76eLN3uW151Szams/L1/TC4nAxY3Air/2Wxb6iWubPHkCd1ck/Fu/koQmdmPtHNnN/z+b9Gf04VFqPwU/JK9f05kilmR92FHFJz2gu6x2D0+nmsYu7IkmQW1nPA19uZ1L3KEw2JzFBWjpF+HtbQEkS3PTRZt69oR8yJCrq7by4/AC5FWZSww3cNDwZf40Sg0ZJRb0ddf0GZvUeyN4yI78fqvHWQ6dW8N71vfBT2Ki6/DMITSfgi5loy/dy11U/sLPIn2eX7uPGoYl8OLM/e4tqCdKrGZQcTJi/HwaNkusHJrCvuI47PtvqcyzLTXbuWZDJvFkDUMpl3tYq5SY7nc76X1UQTl9xtZmsUhOfzB6ADLh7QSY7C45dH5IEP+8uQaNQcHX/OD5Znwt4cts8f0UP5q05zKDEICwqPX5hKb75XQShFVXU2zH6qVrtuSzAT8ne4sZbOgqCIJxIBDCEM1Ja7yS3QsmB0ioWNpG0z+Z0s+1INZ/O6k90oBaFXE6IRsJPp2vh0grCmYvw9+PZK7pz08ebGyTne/iizoQaPK2I3BJYHS6u6hfHHZ9ubbAdm9PNf5fu58Wre/Lkt3vYW1zLR7MG8NbKQySE6vnHxM787dOtmGxObh6eRJXZznM/7fcGTgYmBfP3CZ3YlFNBjcXB9zuK2FVQQ0yglpsvSGbhLYPYV1zHK78eRCaTcUXfWCIDNDyyZJe3lUNxjZXiGhtvrTrkLde+4jr+sWgH/5rclal9o0kJD8Cim07Ekit5acTTlAwbyM5KBQH+Aej8VLzwSxalJis3DunKhCCJoNIdIElELZ7CB2NfIVeTzpZCCzVVFVzWOYDQ6p2o/YfCn/k6gnQqPtuY2+ixdrolft5dzHsz+mG2uyirsxETKIaVFFqX2+2mvM5GjdXFkm0FrNxfypvX9fEJXhzvh11F/Hj3MNLD9Rh1KjpHGTlYUseUPrH8fqAMR0a0CF4IbUqFyUaAtvXOyQCtSoxCIghCs4kAhnDaTNUV7Ct1MePDTTx3RQ+yT5KocF9xLbd1tWHRJBHop0CuFl9GhPZFLpcxOCWEr/82lNd+O8i+4jrignTcNiKZThH+aNWej1GtSs7F3aOorLc32v8dPCN4uCW4d2waCSF6Pl53mA2HqxieHsayPSWYbE6SQvV0jTZy38JMn3U35FRyx2db+XBmfy59Yw0Olyeasruwlst6x/DGiiySQvXMGpqETCajxuJg5YEy/nN5Bvcs8GyrS5Q///f97kbL9uKyA3x522AWbjrC9oRU+kX1JuTX+wlMGkl+xvM88u0eyo/ro/x/3+8hb2AU9/e7E/9Nr4GtjrAfZhHmZ6RfcIpnocRX4eub4JbfPcObAg63xKHSpj8zskpNaFVy5v6eQ3ywjiC9mkCd56cxTpebwmorqw6Usq+4jt7xQQxKDiYmUCtaeQl/mdstkVthxumWmPLmGurtLgwaJWUn6a/vcks4KvO4vvpjnF3uwlS5nyc3ONmUW8n82QMJDxD3QaFtqay34+/Xel8JAvxU1FgcOF1ulIqmhw8XBEEAEJ8SQrNJkoSttoJKh5I53+5BkqCo2kJSqL7JdTKi/HEGJBAcYBDBC6HdKjfZuW9hJpFGLTcMTiQjxsiDX+3g2aX7vEO/5VWamdAtEjh5zox6m5MvNueRXW4iOcxAYY2FuGAdm/7MFXNN/zjeXJHV6LoltTa2Hakm0njsWuoRa+RIhZm7Rqdh0Ch58Kvt3PHZVl777SDdY4wE6lSkRxiIC9Lidjm8gY8TmWxOSmqtVJkdlBFEybg3KZ/wJiUDH+UfP+T6BC+OmrexiIrUK30nWmugcCvUFWGRlJgnvAgFx1qk6NQKUsKa/sxIjzAwtksEz13Rg+hAP+7+fBvfZhbiaCQo5HZLZOZVM/7lVTz+zW4+3XCEB7/czkWv/sGBExIIC8KZqDLb0KoUvPN7tjeprdnuJFjfdP4muQwMBn/oPxvVl9dT7tKRHG7gx7svoFdcYAuVXBCar9xka7URSAD8/0weevzQ4IIgCE0RLTCEZiuosnC4zIHd7SS73PMG9cst+dw7No0Hv9zRYHmNUs5FPWLwpx4IaOHSCsLZYXW4eGtFFtnl9d7z/qivMwuZMSQRnUbB26uyOVBax6vX9PbJ4XC8uGAtRyrM/LCzmB92FjM4JYR/X5rBoVKT9wtRXLCOg6WmJsuzs6CGpBC9d2SU4WlhBOlVzFubw/rsSu9yRTVWnvxuD09M7sq0gfFEKUz4OapPWle70803mYV8k1nI6M7hXNZrFBEqFVXmjY0uL0mQUyuRqA0Ci+/II/Xdp/PwChNKRQp3XxBLgiQhk8nw91Nx77h01hxqOEyrUi5jQtdIpr27AaNWxTUD4rmqXxxPfbeHMV3CiQny7X5WXGvl1k+2YHX4BjdqLU7u+GwbC24eRKi/SAAqnD6bw0VpnZWKejtmm4uV+0u989wSHKmsJyMmgF0FtQ3WvaRHFGFFK5GFJyONmUNkZDKPJ6tQK1snQaIgnEpZnY1u0a03pL3xz+BJZb2dcH/xsksQhJMTLTCEU3K7JcrqrFSa7ZTUOwnSqTH+GS3Pr7JwsMTE/ePS8VMdO53C/TV8dOMA4nUO8I9oraILwl9WZbbzzfbCJucv3lqA1eEmp6KeAyUm3vn9EPeMTWuwnEIu4+/jO/HRusPeaesOVWCyOVm4OY/rBsUDUGd1EnKSt7tRRj+ft1RKhYxwfz+f4MXx3liRRc/YQEbEQpg115uz40QJITrig3Vc1D0SpVzGb/tKMdmcmB0nb1Gi1fmD0zfBqRTeDXO3axnfPYZ+SWHM/HQPeZVm7/zOkf78d2oP9OpjX+hC9Gr+e2VP5v6RjdPtSTT61sos8irNvHl9HywOF2a702c/ZXU2KproN51VahJv84QzUlJjobjGTFW9gxqLE4VCxvC0UJ9lXv01i7+P70Sf+CCf6RO6RfDPPk70kengdiCz1+Ov9xPBC6FNq6i3t3oODIBKMZSqIAjNIFpgCKeUX23m++1FfLI+lxqLgyEpIbwzvR+v/HKQddkVvPN7NmO7hPPKNb1xSxLh/hoMGiWpQSoUGm1rF18Q/hoJ3Cdm7zyOW5LQq5X0jA1kd2EtS7YVcusFybx5XR8+33iEgioL3aIDuKJvLB+tzeVAiW/riu+2FzIwKYTCKgvPX9Gd5DA9s4cn8fxxw6AepVLI6B0fxEu/HPRO219UR8hJhiMuN9lxuNy4XFYi1j3FW5e+w/ULc7E5j7VaMGiUvH5VN2osDoxaFe/P6Mffv9rB9zsKuXFoEt2iA9hd2PBNs79Gic5gpPbKL/Df9Qkyu4nylCkcVHbi1vcOUmtxkhJm4P8uzeDzTXncNzYNtVKBv5+KS3tHMyQlxNs1Jb/KzNursr2JEQN1Kl64sid/HCznrs+3YXW4GdclnJsvSMHhdhFm8KNBVtUT2J2N5yIRhKZUm204XW5Mdjdvrszij4Pl6DVKrhkQxzvT+3L/wkzq7S5qLA7uWrCNm4cn88TkrhTVWIgJ1BIllRGqccFvT8GRdXDLytaukiCclN3pps7q9L6Yag0Bck+LwvIVb8CaraBUQ2A8xA6A1LGgD2m1sgmC0Pa06RYYc+bMQSaT+fxERh4bM12SJObMmUN0dDRarZaRI0eye7dvgjqbzcZdd91FaGgoer2eSy65hPz8/JauSrvkdkvklJt44IvtPP/zfopqrJjtLn7ZW8oN72/kthHJ3jfFv+wt5bb5WzD9+fY4OcAtghdChxCoVzGpR3ST86/pH0eV2c41A+J467o+vHtDXyxOF92iA7iqXxyPXNSZlDADt8/fyorjmqEfZXG4iDT6EWLQsOlwFVe9s44Ifz8uzIj0WU6nVvDejH5EGf0I1h17U6ZUyIgObPpak8ugyuzA6ReMvOIAvTc+yLLpUTw2JpLLekby1PgofpoWRpyfmf0ldaw7VMGjX+/iqcsysNhdlNZa+d/lnQnU+b6dUylkvD6tN1qNigpDJypGPsuzhoe5YmUI1y48Qq3F01riUJmJ1347SJBORbXF4V1frVAQE6SjZ1wgOrWCOz7b5jOqw/9d0o1nftrHvLWHKTfZMdmcLMks5Op31lFjdnLZG2uwudz0TQhstN4GjZIgnRjpQWg+SZKoszk5XGlhyptrWbq7hHq7i9I6G6/+msWbK7J4bFJX7/K1FieltTbKTTYSQnTE6ZyEyk3wzR1QVwg3/uT5EiYIbVj5n3mcjK3RAsNlh8z5+C2ZjRoHlRVl4HZ6cikdWAZLboH/pcH8qbD3O3A5T71NQRA6vDbfAqNbt2788ssv3t8VimPNMJ9//nlefPFF5s2bR3p6Ov/+978ZN24c+/fvx9/fk/H+3nvv5bvvvmPBggWEhITwwAMPMGnSJLZs2eKzLcFXrcVBnc3OnsJaNh2uajDf7nLz9qpDvHptL77aUkBcsJaLMqII0CoJ1ipRaQytUGpBOPu0KiV3jU7lt32lDYZ5mzUkAYCpb6/15qTQqxU8fXkGRdVWAvyUvL86h17xgVgcrka3P6pTOCPTQ1m4OZ8vt3iCqw8t2sGtFyTz9R1DOFBsQi6XYdAoee3XLPxUcr68bQhVZhuSBJtzq5DJPF/Yjw6XerzxXSNYfbCc6F5hJAy8j4A1z5Dw+QhuiukLAdFw8Aj19UM40OVO5DInTrdEfpWFrFITV/aLZViki7jlN/D9NU+zuiqQDTk1dIo0kBFj5O1V2azOKkcmg89uGsjbq480WsdNh6u4c3QaiuNHBXGYwWEBtQHVCVnnk0L1VJodZDWSC6TO5mTx1gKGpoYy44NNfHrTAKa81TCfxkMTOxEeIPJfCM1TYbJhtjtZub+MX/eV+rRQOmp7fg13jdFw49BE7E43U/vGolLIKKwyE2vLwl8XA2odXP4W6EI8P4LQxh0LYDTdku+cMJfDr/8HVYeRJQzDeERJRfKl0P+4HBiWKshdB9m/wcLrwT8a+t0IvadDQFTLllcQhDajzQcwlEqlT6uLoyRJ4uWXX+bRRx9lypQpAHz00UdERETw2Wefceutt1JTU8P777/PJ598wtixYwGYP38+cXFx/PLLL0yYMKFF69JeSNZaLHYVJquryX71AOuyK5k9zI3N4WJM5whckkSAnwo/jXjrKXQsCSF6vrljKF9uzmPp7mIMGiWzhyXTLTqAya+tJlCv4p8TO9Mlyp/wAD82ZlfwwZrDRAT4ce2AeKIC/Vi0pYCCaovPdiMCNFzcIwqzw81Haw97p0cZ/bisVzTrsyt5c+UhLA5Pk/WjZn20iScv6cbm3Cpe/y2LHrFGnp/agwe/3I7ZfixQkhpu4LYRqXy4Nocf9lYyIOJSeo2LJHjjf6FgC9TkU93/Xtb5DQergphANflVnjJuz6vmiUmdUWb/hilqILFfT2HimP/Re8Q4XvntIM8e18VFo5RTUuubB+NEGoWcEIMGrLVQkQVrXoHKbIjuQ/DQhxmeFsofB8sB6BUXyJqs8ia39cfBMu4dm86SbQXklJuZO70v//f9HvKrLKSEGfjHxE4MSApGJYLUQjPUWezUWR1YHW4CdWpWH2z63Pt5VzGxwVpqzA42ZFewKaecpydEY9BHgzESaPi8IghtWau0wDAVw9KHweWAgbeDMYaAUivllhO6BWqDoPNFnp/KbNj3PfzxAqx81tO1pPuVkDYOtIEtV3ZBEFpdmw9gHDx4kOjoaDQaDQMHDuTpp58mOTmZnJwciouLGT9+vHdZjUbDiBEjWLt2LbfeeitbtmzB4XD4LBMdHU1GRgZr1649aQDDZrNhsx17IK+tbdj/uyOqrDNTZ1ewYONhescHoVM3/QVAo5RjcTi5tFcMBo0SlVKGoRWH4RI6jrZ4/cUF67h7TBozhyaikMkw6tR8tSWf0V3CGdM5nLdWHeLZpXXo1Qou7xPLHaNSuXdhJsv2lPDg+HTm3tCXxVsL+DazEAmJS3pGM7VvLI8s3sUtI5K9QzTq1Qpen9ab3UW1vLYii7K6hoGB3AozkgSLt3pabOzIr+Hd37N55ZpeFFRbKa21MiQllMJqCzd/vIk5l2SwM7+GyMgovskZQdrIfgSo3FRYJN7NNHPtgBDMFgc/ZRUDcP3AeEZ2Duefi3eRXW4gJXQC9150JWnVa9DK7fy4s9inPFaH+6QPv2qF3NMawmH1NAP+5m/HZhbvIGDfd/z7hk1c86GJohordqcbrarpzx6tWoHd5Tlee4tquX5QPF/dNhi35NmXGHnkzLXFa+9cqjTZMNmdlNTaqLe7sDvd6NQKaq2NN1XXqhUcKDZx8wVJqGUSl2cEo1QqkcktjS4vCKejNa6/8jpPy8KAlsqBYauFZY+D2wUDbvEGH/zVUHFiAON4wckw5G7oNxuyV3laZSy+CWQKiO4NcQMhoisEp3haZ+hCQG2A41v+CYLQIbTpAMbAgQP5+OOPSU9Pp6SkhH//+98MGTKE3bt3U1zseYCOiPAd4SIiIoLc3FwAiouLUavVBAUFNVjm6PpNeeaZZ3jyySfPYm3avhqzlXoHHCw10T0mkCCdmoHJIbzze3ajy0/pE0PP2EA0Shn/+XEfT0zu1sIlFjqqtnr9Od0SbjeoVJ4HosJqM6M6hXP3gkzvMvV2F/PX57K7oIb/u7QbxTU2ksP0aJRyIgI03Ds2jUCdGhkSl7y+Bqdbwuly469RUmdzcmW/WN5emc0lvaIbDV4ctaeoliCdmsJqKwDb8qq5+eMtxAZpMWpV9Ig18uzSfdTbnNRY7HSN9ueF5QdwuSWCe8eg0Go4XFPLfePicLncfL+jgm+3F3JBWiiJoXpu+mizd18F1RZ+z6rkxakT6C9v/Lax6XAlY7uE88vehnk+bhiSQJTRD0wF8MP9DVc2V5DwwzV8ectidhTUsfVIFcPTw/i2idFfLu0Vw8+7SwBIDjNw7bsbePiiLkzsFiFGe/iL2uq1dy5UmmyU1FpxSZ4g4JCUEL7clMclPaOZv6Hx7lCX9IxGQmL5nhKmD4zHYrORYMuBmJ4tXHqhI2qN66/MZCPAT4lS3gJp8SQXrHjWk+Ni4O0+LScC1DLKzM1IvKzWH2uVUV8G+ZuheCfsXgzr3zhhYZmnW5dK51nPzwiGCAhMgMgMiB8CoWkiyCEI7UybDmBceOGF3v93796dwYMHk5KSwkcffcSgQYMAkJ3woSNJUoNpJ2rOMg8//DD333/sQbu2tpa4uLjTrUL74HZRXGfH7nQz9/dsvtqaj9Xh5tkp3amst3PHqFTeWJHls0piiI6bhiXjdEss3ljAwxd18TQPF4SzoK1df3ani7xKC+/9kc3Gw5WEB/jx4Lh0hqaG8o9FOxtdJ8xfQ7RRy0drc9lZUINGKWdSjygm9YjGbHfx6Ne7UCvlBKoVfL+jkGsGxPPuH9mM6hTOrI82c1H3SPRqhbdlxonigrRUNTJMaH6VhfwqC0atmnqbkycmd+OHnYWsyarwLrNyfxm94oy8em1vjlSYsdhdXNY7hvHdIgnUqrj23fWN7vOJ7/bx5W2Dfbp7HKVWynhwfCfCDBoWbyvA5nSjVyu4aXgy1w9KQKtWQkEuOK2NbrsuvC+/Hyzn3T8OEx+iJzHUwNS+sXy1xTfpco9YIxkxAbyxIovIAD/8/ZQU1Vj556Id9Im/gNggXaPbF5qnrV1754rV4aLa4kCnVnKw1MTXmQXsK64lxKBmVOdw1udUNsjB8reRKZisDl5bcYiEYB06rBgdRchCRKJO4exojeuvtNZK4ElGsjqrti+Akp3Qf3aDkUWMGhk5Nac5cpQ+DDpd6PkBz/3FVArmCk9LD4fF8+O0en5sJrBWwcH9sPkDT0AlJM2TV6PPDBD52wShXWjTAYwT6fV6unfvzsGDB7nssssATyuLqKhjiXxKS0u9rTIiIyOx2+1UVVX5tMIoLS1lyJAhJ92XRqNBozk/vpCX1ztwuSXKTTbGdonAqFPz+cYj/N/3e3j12t4UVVt494Z+rNhXSo3FwYhOYfSMNbKvuJZ+iYHcfEEyek27OpWENq6tXX97i+q46p113sR+h8rqueLQOn66Z3ijiSbD/TVM7RvL9e9vwP1ni1ib082irQVsz6/h9Wt7M+eSbsiAaouD2CAdBo2CepsTmUyGyy3xw85ipvSJ5ZP1uT7bNmpVzBicQFqEP09f3p3CagufrM9lb1Gdz/5DDWruGp0KSKzJqkCnVpARY8TlltiZX0NmXg0r95dRYbLRNyGYeWsPsyarnOeu6NFk0KTO5uRwhZk7R6Ww7lAFzj8rd+eoFKrqHUx6bTUX94jipat7AaCQy+gZYyTsVF061HpyO83mkQ/2AJBTYeb3g2XcPTqNN6/rw+8Hyqi3ObkgPQy3BA9+sZ1+CUHcPSaNfy7aAYDZ7qK4xioCGH9RW7v2zgWTxYrVCSo5uAG9RsHdY9JYtb+U3vFBrD9UwV2jUjHZnKzLriDAT8WUPjGs2F+KhIytR6r418WdCJDZILozyEWrH+HsaI3rr8xka5n8F2X7PQGMlNGe7iAnMGpkDXNgnC6ln2fkn+aM/uOweoIp2Sth+eOw+mWY+AxkXCFaZAhCG9euvnXabDb27t3L8OHDSUpKIjIykuXLl9O7d28A7HY7q1at4rnnngOgb9++qFQqli9fzlVXXQVAUVERu3bt4vnnn2+1erQlBVVmrA4XJbU2yuqsBOnV9IwzMiS5F499s5s7P9vKXaNTyYg1MqVPDOH+GtYcqqCk1kb/xGDCA/xOvRNBaMcqTDYeXryz0VEJCqstqBVy7C7fedcMiOPtVdne4MXxskpN5FdZWLApj6xSk7ebyOjO4dxyQTJGPxV944NYvqeYV6/pTX6VxTv8amyQlmendPeMAPRblnfaPWPSWHuogiXbCgjRq3n7+j5YHU4mdIvkqe/38NCETiSF6dmUU4lSIef2kSmsz65gwcY8np/anaveWe9N/nmqx0eZDH7eXcI/J6TxycY8bhqWTL+EYOZvyOXyPjGs3FfGN5nHun5MGxDPvyZ3xU+l8DTbVWrA6ds1xp42iXmZvoEgSYJXfj2IQaPkuoHx/H18OtUWJ/tL6nj5ml7sLKjhngXbqDIfS27qkv7iw6/Q4RVVmXG6JSSg0uxgf0ktepWSuGA9I9LDUCkV1FgdaFQKEkP19E8Mosxk4+7PtvLgxM58tO4wT07uQrK/G4xiFASh/SupbYEAhssBa172jHyVPLLRRYwaGRYnmB0SOlULBBBUfhDb3/NjmgFbPoBFs+HgzzDpFU/XE0EQ2qQ2HcB48MEHmTx5MvHx8ZSWlvLvf/+b2tpaZsyYgUwm49577+Xpp58mLS2NtLQ0nn76aXQ6HdOmTQPAaDQye/ZsHnjgAUJCQggODubBBx+ke/fu3lFJzldut0RZnQWz3cXm3CosDhf9EoJwSxIahwuVUs5jF3dh9keb+e/PB3gjxMCmw5VMGxhP/8RggvVqgvUtPOSWILSCarODPUWNJ1L7cWcRl/aK9g5/elSniABe/TWr0XWm9IkhUKfi0p7R2F1uYoN0fL2tgG+3FxIXrGP20ETuGJ3K7fO3cN8Xmdw+MoXrB8VTWG2lX2IQMz7YSOlxuTHyqyz8/asdfHRjfyZ0jSAqUItaAbsK69hfXMe1A+NZtCWf538+NmrI3N+zuX5QAlf0jWV/scln5BKrw0WQTuUTGDgqzKDxDtU6tnMI4UYdlWYHtVYHfROCWLa7mH9e1JmqejvP/LQPl1ti0dZ87hqdSlSgFgzhcOH/4Lu7QKXD0vUqzIGdkAfHk7+h8a4lJpuTH3YWEWLQEKJX8+zSfY3mBtEo5UQbtY1uQxAAqurtONwSCrmMOpuTrNJ6TFYXaeEBON1uimqt9I0Pol9iMLfN38KMIYlc2jMKGfDW9H5UmGw8dmEnoq2H0BkTW7s6gnBWlNZa6RUXeG53snsx1OTD4DubbLFk1HiCFuUWifiWCGAczxAOI/4JcSth3WtQmQPTvgBdcMuWQxCEZmnTAYz8/HyuvfZaysvLCQsLY9CgQaxfv56EhAQAHnroISwWC3/729+oqqpi4MCBLFu2DH9/f+82XnrpJZRKJVdddRUWi4UxY8Ywb948FOfx8Ho1Jismh4tyk4OsUhO/7C1hxb5S3BJc0SeGWUOTKDfZUCtkdIsOIKe8HrVSxswhiWhVCiKMotWFcP6wOhvvTgHw/Y4ivr5jKJl51Rw8riuJ1ekiwE/ZYCSD20Yko5DLueqddd7WGQq5jLtHpzJraCILN+VxYUYk76w6xLs39OOzjUf4bMMRft5VzN9GprKvqNYneHG8l385yLNXdGfdoQpSww2khhuwOV3UWRyNJtacvz6XD2f254tNvl1UPlxzmMcmdeWhr3bgckveFiZKuYxHLu7CtiOV9E8MYfyrG3xangxJCWHawHju+nwbE7tF8vfxnXh26T4cLvexVh0qLXS7DEvMYI6YVby9voxdOWYmdotgQJK8yWGbM2KM2BwuFHIZH87sz7pDFSzYdIRDZfXeZeZc0o3wMxx9xO2WKKnzjH6iUcoJ9/dDLhdNiDuS8loLdXYXMqC42spNH232uT5Hdw7joQmdufWTLcy9oS8BfkrC/TXkVVnoGuWPxe6mU7CcKFcO8sg0aImEh4JwjkmSRGmdjaBz+ULKVOrpOpIw1DM6SBMC/TyfuWVmN/EBrXR9JY/0tBL5ZQ58chnM+M6T+FMQhDalTQcwFixYcNL5MpmMOXPmMGfOnCaX8fPz47XXXuO11147y6Vrn6pMVvKqrTz30z7WZlfgr1FyeZ9Y3pnej/sWZrJoawH9E4OprLcxqlM4KWEGBiQGkx7uj7+fkmCRqFM4j5TWWdmYU0mvuEAy86obzLe7PEMufjizP/uK61hzqJy4IB2944xMGxjP26uOjeATolfTNSrAZ8QSAJdb4qVfDvLGtD58tTUfk9XJhpxKdhZs4ZKe0dw1Oo16m5Md+TVU1jdM2nnUjoIaDpSYmPOdJ49EmEHDglsHcvfnmU2u8+WWfIL0vtd0Zl41sUFavr1jKCabk3KTjVCDBoOfktd/zeKq/nHc/PFmb/6Lo9YeqqBLVAAXpIXx065iLuoehVGrYkBSEAHHDa8safzZXGdj5oebcP25jawyEz/cNYwPVud4W3gcpfwzwLMmq4L/LdtPfpWFlDADfxuVSnmdjQ05ldwxKpX0cAOakwy92pRyk41vMgt4c8UhKurthPlruHt0Khd1jxKJiTuIQ2Um3liRxQ87ipAkGNs1nNen9eHJ73Z7g2C/7SujZ1wgV/SN4cM1h7myXyyDk0PYnl+NVqUgUivhr1KCtlfrVkYQzqJaixOb003QuUziuWWeJzdFyuiTLhb4ZwuMUnMrdwUMTYfx/4afH4EF18P1i0ApWhwLQlvSpgMYwtlVVW8lt9LK1LfXer981FqdfLT2MJsPV/L4pK78Y9EOPl6Xy38uz8DukgjUKZkxJJEQgxqDXwskeRKENsRkdfLWykM8M6U7d32+zaerBcD9Y9PxU8qJMGpRKT0tlt5cmcW/f9jD29f3pXdcINv+DHxc3COqwYgax/s6s4Cr+sVh+7PFh9nuYsGmPO/8O0alkKDVoVHKuX5QAoNTQrA53GhUclYfLOe3fSVUH9ftw2RzYrG7qbE07ApyVFW9nXFdw/kms5CLekQRE+gZ2WRs5wge/2YXW49Ue5ftmxDEIxd1ZtuR6gbBi6O+3JLHE5O7sepAGb/uLWVkpzDuHJWKwe/Yraak1saDX273Bi/Ak+9i7u/ZfDxrAHO+282O/BoAUsL0PH9FDxZuzuOjtcdaihwqM/HAF9v516Su/Hdqd0IMZ9YqrN7m5K2VWby/+rB3Wlmdjce/2U1pnY07RqV6cncI7ZLZ7qSszsY176ynzHSs5dKPO4tZd6iCV67pzcwPN3pbQ81ff4QPZvTjynfW8eVtQ3C53FzSSU9IsL6VaiAI51ZJnafr3jkLYJTth5xVnsSYqpN/ThtUoJRBWWsHMMCTZHTUY57knkv/AZNeau0SCYJwHBHAOE8cqajH4XLz7NK9jX752F1Yi1IhI8ygocxkQy6TIQNuHp5CdKAWhWhOLZwHXG6JomoLm3KrOFhSx0Xdoygz2XjplwO8fX1ffttXyo78asL8NVzSMwaDnwK5TM6Rinqe/3k/k3tG88n6IwDcuzCThy/swqxhSWw7UsXwtDCeyd7b5L6La6zMHJxArcXZYN6tFySjUcjpHR/I69N68+XmfD5Yk4MkgVwGE7pF8tq1fXj6xz3edSb1jGJ9djkDkoLJrypodJ9ju4TTKcKfN67rw4JNefy4s4i/jUzh1d8O+gQvALbkVrF0V/FJk3zWWpykhhmQycDhcvPYpC6E+/s+tFaa7ZTUNuwG83VmIWqlnBev6kVZnRWz3YVeo0CpkDP/z2N6opeWH2B8t4iTlOjkyk025q3NbXTeO6uyuapfHHHBIpFbe1RttlFjcbJ4a4FP8OKoKrODlftLuSA9jJX7ywDP+aCQe0YB8tcoSNj5JrJ+N7Z00QWhxRTVeAIYwfpz8YJKgs3vg38URPc55dIymYxAPxkl5tMcSvVcicyAgbfCutchdgD0ura1SyQIwp9EJ84OzmJ3caSins82HqHe7mqyjznAppxKukT50ysuEJvTRaBOhV6jFMEL4bwgSRK7C2qY8PLv3LcwkzdXHmLJtgJGpIWxq6CWmR9u5HB5PX0TggnQqnj8650oZDIsDidXvbOegyUm9h6X7NNsd/H4N7t47Otd7MivYUNOBX3ig5rcf6+4QEL9NdjdbgYlH0scFhOoJT3Cnxd/OUhxrY3PNhxh2Z4Sjg644Zbgp13FvLXyEN1jA73rpYQa+HxjHpf1ikGnbtiKIMygYVTncHYW1HDjvE0s3VXMgRITAVo1mw5XNVrG77YXMTCx6aRmnSP9Kai2cOsFyUzpE8On6w6TmVdNZf2xL5An+zT5YnM+VWbPsK5944PoHRdEndXh01rjeHU2p0+rk9NVYbI3uW27y33SLjtC22WxO8mtsLBwUx4r9zfM/3LUmqwKeh53zfSMDcRsdzGuawQBsnpkGVPAP7IFSiwIraOk5hy2wMjfBCW7IX1Cs3PGBPvJKKlvAy0wjkqfCClj4If7obzxxNyCILQ8EcDowMw2B/VWB7VWJ+uzK7A4XOgb+SJzlMFPid3l5rYRychlMqIDtWKkEeG8UVxrZfbHm6k/rpvIF5vymDUsicgAP9wSrDxQxrt/ZPPVlnzuGZtOiF7D5twqimutqJQyEoJ1BOp832TVWBxszq3io3W5TB+cgFrR8GNXo5RzeZ8YNudW8dBXO5jUI5oXruzJnaNSePnqnpisDnrFGQkxaFjx59viE/28p5jBySHe3yvNdkINGv63bD9vXteH4WmhyGSenBIXZkTy1vQ+mGxOnv5xH8ePPmp1NJ20tLjWSnyIjvgmWiXcOiKF55buY3haGFa7i9dXZnPFW2t59qd9VPz5FjxYpya6kUTAYf4aukYFEG3UolbKCdSr0agUGDQnbyioVp75bczvJJ+HAH4qcYtsb+osdkrqrLy96hBuSfLpvnQifz8lluPO9/vGpvHZ+lzuHZ1C8OeTwCUCWELHVlxrJVCrQtnIfekvkdyw9WMITvLklGimQI2M4vo20gLjqIG3gTYIFt8MroYtJAVBaHni6awDsjtdFFSZqTI7OFDqeSt8/7hO6NUKLu8d0+R6F6SFccfIVIJ1arpGB5z9G5ogtGGltbYGw3PW2Zw8vHgncy7pxv+u7MklPaOZPSyJj24cQLfoABJCdOzIq+a1a3szY3Ai5fV2/jWpKy9e1ZOoE76kD08NZW1WOe/P7EdquME7PT3CwPsz+mGzu/jPD3uxOd288stBAnUq0iP8sbskDFoVNwxOJCZQy/RB8Y2WX5LA6jj24PdtZiHXD4qn3ubiu+1FXJgRxZvT+vDKNb0xalWYrA7MNleDHBnaU+R8KK21MXd6X8Z1jfC2zooL1vLcFT1Ym1VOboWZ7DITr6885F3ni835ZP05SkuE0Y8XruqF8s91e8Yaefv6vtw3Np0r+8VSZrJRflyT//AAvyYDqWnhhr8UZA3Rq4kLbnzo1dRwAyF6kcSzvXC4XBRV11NtceBwSozpEk63aCMzBic2uc6lvWJYuquYpFA9b1/fB61awZ0j4kn9aRo4baAPa7kKCEIrKKqxEGI4By+qDq/2DEWaNgFkzW/FG6SVUdyWWmCAZ/SsYfdDUSasebm1SyMIAiIHRodTabJhsjnJq7LwTWYhVoeL4WmhFNZY+ONgGdMGxrM5t4p9xXU+6z12cRcSQ3UEa+QY9I0/0AtCR2a2N/5mpaDawm3zt/DzvcO5ID0Uh1NCqZAREeAJUEzqGc3t87f69LOPCfR8ob//i0zKTXbig3XcNDyJmR9uIjZIy7vT+1Lz5xCOKoWMDdkV/PuHvbj/zGnx3NQerD5YTlywlge/3OEdrlQmg5uHJ/PQhE48//P+BmU92lVEIZcxtksY3aKN3DQ8iTVZ5RwoqeOC9DB+3FFIarg/y3aXNhrQ3JxbxYj0MFYdaNjSY0yXcFZnldM/KZiIAD/emNYHtyRRWW/nwzU53s8Vu8tNndU3MPLRulx6xwehVsrpEx/I0nuHs2x3MWkRAdy3MNNn9JE+8YG8eV0fIo1aIgP8mDu9L9e9twGb81iAxqhV8fq03oT+hZFCIgL8mDu9H9e+u96nK0qIXs1b1/Uh9AyHZRVaVqXJhtnhxOaQWLanmN2FtcQEahmcEoLF7uLy3jEs2eabB2Zitwj6xAfyzvS+aFVyApRODNk/o/7hDs+ICTN/EN1HhA6voMpy9lvaSi7I/BTC0iEo4bRWDfaTsaattcAACOsE3abAqueg8yQI79zaJRKE85oIYHQQpbVWdCoZFoeLd//I4ZP1xxLTfbu9kF5xgdxyQTJHKsw8NLETlfV2NuRUEuCn4sKMSCICNERrrCj0ISfZiyB0XFFGLXIZNJYSQadWoNcoGySkLK218sCX2xskCSyotvDc0n08M6U7TpdEQogOt1vi9Wm9+XT9EaotDmZ8sJFaq5PEEB03Dk1CAkamh3HT8GQ25FQwNDWEmz7e7NO94+hoHc9e0Z24YC15lRbvvMHJIUQYNcyfPQCXWyJAq+K69zZ4k7QBfLTuMM9c3p1Ks52vMwu4YXACQToVVcd9eX9/dTavXdsHlULGr/tKkSRP4GRC1wgu7xPL3Z9vQyGXcbCkjvnrGybAVMhlJIUayK+y+EyvtzlxS25AjkalIDXcH41SwcSXf/fptgOw9Ug1Ly4/wKMXdcGoU9MrLpDl913AygNl7C2qo29CEIOSg4kJ/OvB1s6R/vxw1zB2FtSyv7iWrtEBdIs2En0Wti2ce7VmO06XmxqLk2vfXe+TBPeDNTk8P7Unw1NDuG5gPEu2FSBJMDQ1lIp6GzUWB6lhevx/ewRtz8uhbAdMehkSh4MxrvUqJQgtpLDa6tMi8KzIXgU1+TD4jtNeNVQrw+SAOruEv7qN5V/rNQ3y1sN3d8ONS5ud10MQhLNPBDA6gKo6G2a7k/xqBzaHyyd4cVRmXjV7imopr7NyUfdowv01XN0vjsg/3yLHaqwgghfCeSzEoOb6QQl8vK7h9XPf2HTCG3kbX1pnI7fC3Oj2dhfWEmnU8vCiHYzsFM7MIYlkxAYSE6il2uzJTQNwuMJMoFbFW9f1YUtuNTnlJkprrfy8u8QneHG8zzcc4fLeMbz6qyepWN+EIOZc0pVXfj2I1eHmbyNTeGvlIZ/gBXgCII8s2cn7M/pzywXJfLohl4cv6sI/F+3wBm6sDjd3fb6VD2b0Z+bQRExWJ/HBOhZvLeDuz7dhc7r5fOMRXr66FwdK6nyCHwAPTejEl5vzONHlvWPwU/necvYV1zYIXhz19bZCLu0VQ5BOTXKYnvgQPTcMPvvDWcpkMmKCdMQE6ZiYId64txf1NiflJhsVJk+eike/3tlgBB+HS+JfX+/i2St6UGNxcEnPaPQaBW63RKBORWKIjrBFU5CFdYKIbpB8QWtURRBahSRJFFRbGJjcdGLm0+b+s/VFeFcwxp726iFaT9CiyOTGP7iNDWGtUMOgO+Dnh2HrPOg3q7VLJAjnLRHAaMfcbomqehs1VicF1RZUchn5VRb0akWjXwq+ySzg9gtSKK21crDUxFX94lDLHIRrnKATwQvh/Obvp+LuMWkkhep5Y0UW5SY7MYFaHhyfzohO4aiVvg9T1WY7pXUNh2cET06IWy9Iwe12M+eSboT5a9BrPOtnl9VzqKyejJgAdhV4Ri3JKjORV2nm68xCnpjclQCtqkE3r+MV1liZ3COa7jFGQg0aDpWamPrWOupsTuKCtejUCn7ZW9Loum4J9pfUMSg5hGvmrmdihp33ZvTn620FZJeb6BYdwLQBCWzNraTO5mRQcig3f7yFgupjLSqqzA7+7/s9fHbzIDbmVLLqQBlxQVqu7BfHws15/LSr2GefyaF6BiY1fEg+PsAyIj2MqX1jUchlqBQyth2pxmRzMv39DcyfPZAhqaFNHg/h/FJhslFrcZBfbcHpkgjSq3xaIx2vzubE6XZTbXahUyvQqZS4kQjxg6i1TyAb+wSEpIkAvnDeqTI7sDhcDVoW/iWHfoW6Yuh+1RmtHvpnACO/zk16WwtgAER2h9RxsPwJ6HQx+J/5MN6CIJw5EcBop6wOF2V1VpZsK+SdVYeot7uQyWBEWhhvXteHuxdkNkjOZ7a5CAvQ0C06gBHpYQRo5Gg0YpQRQTgq1KBhxuBELsyIxOGSUCvl3lwXJyqotiDD073i+JYSaeEGHrmoC09+t5vDf7bO0KsVPH15d7rHGkkJN1BYY+HesWnc9NEWZDLoEx/Ea795WlOsPVTBwKRgFHIZfxwsb3TfGdEB1NkcvPTLQab2ieX/vt/jnXfX6DTyqyyNdoU5qt7mxPbn6AtLdxWzcn8pF3WP4qHxnUAm44cdReg1CsZ3i8RPKaO0ztpgG3aXm0CtihlDEpk2IB6FXIZMBrOHJmFzuFi6qxi1Us7V/eK4blACUY10yegeYwTg/nHpSJLEI4t3UvdnLozBKSFM6hFFiF7DPxfv5KvbBhPexN9COH8U1VhYtCWft1Yeu++NTA/jjWm9uWdhZqPD6prtLnrGGlEr5eRVm1m8JZ8HxiYju/BZkLfBL0mC0ALyqzz3p9CzlcTT5YDtn0NkBgREndEmgvxkKOWQV9fGEnker++NkLcBlj0KV7zX2qURhPOSCGC0QzVmO1a7kyXbCnlx+QHvdOnPYR6La638fUInHvt6l896w9JCSQnTI7khLFB8ERCExsjlMiKNp85/sGRrAU63xOQe0Xy7vdA7fc4l3bjjs63eL1LBejUvXtWTbzILeWjRDmxONz1ijdw/Lp2PZ/Xnf8sOUFx7LEDw275Srh8YT6dIf+avP+KT3BI8ST5vuSCZN1ccYlhqKN/vKPLOUyvkGDRKcivNpEcYOFBiarTsA5OCCdQeG+7V6nAzLDWUuX/ksDrrWNDkpV8OcvfoVH66eziPfr2LDTmVqBVyLusdzd1j0rxBCdVxQ5kmhup58pJu3DcuHRkQYtCgamJEo9ggLVf2iUGjlPPMT/t85q07VMHtn27lnxd15oEvtlNtcYgAxnnM7ZaoMtv4NrOQ/y3zve+t2F9GQbWFhyZ04pElvvc9uQySQvSolXIKqi3sKqjh/vGdPDlORB924Tx2tPvjWftczVoOpjLoee0Zb0IukxGulXGktg0m8jzKL8DTfWTNy9DrOkgZ1dolEoTzjrh7tyMOp4ucchMVJhtl9Q7eW53d6HL7iusI0qm9IxIAGDRKbh+ZQqhBTUywrqWKLAgdVp3NySfrcxnRKYzZw5IwaJQ8NLEThdUWn7fA/5rUlae+38OSbQXeUTR25Ncw+6PNuCS4dkAciSHHrkmXW+LhxTvRKOW8P6Mf3aIDvPNig7S8fX1fTDYnhyvMKOUy7K5j3cV0GgVV9XY+XZ/L3WPSkDeSA2181wjC/TUU1ljpEx8IQI9YI0U1Vp/gxVGv/paF2e7inel9Wf2PUaz8+0ievKQbsUFNf45o1UqijFoijdomgxcAYf5+3DkmjfdX5zQ6/+gDdrBejfw0huITOpbKehsHS+uotjh587jheY93oMREgFaFXu3bouKGwYnEBPkRZlAzIDGYO0alkRCiF8OEC+e9I5VmDBolBs1ZeJfpssP2BRDd8y+P3hOul3G4pvHcSG1GyhiIyIAf7gdHwxaKgiCcW+IO3k5UmKzsyK9hR34NElBmsjVIWHa80joraeEGtCoFl/aMZvHfhpAUoiNAK4YFFISzYVKPKFxuiQe/3M6RSjOvXN2TvvFB7CqsRSGXMa5rBP+b2oP4YB2dIwNQKXy/gLvcEu+sOkT36ECCdGqfZryFNVauemc9n6zP5YnJXfnh7mF8OLM/fxuZwqcbcpEho19CEBtyKhndOdy7Xp3VSYTRj8MVZr7NLOSd6f0YnBKCRiknJlDL/ePS+eeFnbno1dXM/f0Q/3dpBn3iA7moexSLtuQ3WdeP1+fir1ESG6QjOlCLVn32Gu+5JZrMJQJwqNTEsNRQgnSqJpcROq6iaguZR6rZW1RLvdXZoGvk8SpNdkakh6FRykkO1fPCVT25un8swXoNRp3mrJ63gtDeHakwExFwlp4J9/8IlipIHvOXNxWpl5Nd04a7kICn7+igO6D6CPzxQmuXRhDOO+Ju3g4UVJn542A5763OoaTGysMXdSbKqEWtkGN3Nd7MLjZIx91jUokL0hOoUxIeIIYEFISzKS5IR89YI9vza1i+p4RecYFsya1iQrdI3p/Rj1/2lvLs0n24JRjbJYL3Z/Tn0a93+iQb3JBTCTJ4ZMkOnpnSg/sXZnpzQABsza3ixqFJTH9/I5X1du/0dYcq+eLWQVw9dz23jUjxDqnqckvsL65jUHIwy/aUsCW3iiv7xXJl31hqrU7kMnhzRRaxQVruG9uJp3/Yw/+m9sTscPHeH4236AKoMNlxSXAusgWolfImEw8DRAdquax3NCEGEXw93xypqGdPUR1zfz9EhcnOq9f2RqOUe1synSg6SMuYLuHMHpaETAZfbMlnX1Et/5zYuYVLLghtX3a5qckcT6fFYYbtCyGmLxj+erLlKIOMXw67sbsk1Io23PIuMA4ypsLqlyBjCoR3ae0SCcJ5Q7TAaMNKa63kVtTz1spD/HPxTrJKTdTZnCzfU0q5ycakno0nSQrRqwnRq0kI0WPUiuCFIJxtRdUWZs3bxO0jU7ltRDKRAX7EB+tYfbCcnrFGHvt6F/PX51JuslNZb+eLzXk88MV2nro0g+N7QgRqVUgSbD1Sw8u/HOB/V/VkziXduHl4Ms9P7cH7M/tz1+dbfYIX4Emg+cKy/Sy4ZRAfr8vhyUsyuGl4ErFBWhZvzeefF3bmsl7R1FgcvL0qm8e+3kWlyUaf+EBmDk3i/Zn9qbbYGdk5ArckkZlXxYBGRgk56qLukaiV5+Z2Ee6v5obBiY3O89coGZoaQkqY/znZt9A21VocFFTWsy67gtvmb2HrkWryqsxIwOSe0Y2uE6xXExekpUtUALVWBy8uP8hXm/O5ZkA8CtFdRBAayCmvJ9J4FgIYuxeD0wIpo//6toA4fzlOCXJq2nAejKN6XOXpMvPNnZ4hZAVBaBGiBUYbVVxj4d8/7OH2kanM33DEZ96qA6XMGuoZKaG4xsraQxXeeWH+Gj6Y2Z/cMhORxmAimpGMUBCE07O7qJbs8npum7+Fwckh3D4yhSijH+O6hvPL3hLyqxoO6VhmsvHHwXIuSAtj1YEyAKb2jfUGJ3YX1nLrJ1uIDdISZtDw8+5i7hmTRmF14/1r/8iq4MZhduZMzqDO5mRyj2jGd43A5ZaQI2Nit0huGJyIyebE6nDROz6QMH8/DpWZmPHBRm8ZP9+YlFD7TwAALhtJREFUy7vT+5Ea7s+ve0sbvN2ONvox9BwOYapSKLhxaCLZ5SZ+3n1s6NdgvZoPZ/YnIViPvLFkHkKHVFxjYeX+UrrHBPKfH/d6p7sl+HlXEVP7xlJUY2FNlu99763r+lBhsnG4wswjS3YRalAz78b+xDYy+o0gnO9qrQ7KTXai/+ozoqUSdi2B+MGgDTwrZYvz9wQc91a46dQWh1I9nkINQ+6Cn/4B69/0/F8QhHNOBDDaEKfLTX6VhQMldeRXWbh2QAJymQyjVuXT79ctwf99v4cnJnflqn6xzBqWRGG1hSijH0mhenQqOXHpYQTqxBCpgnAubMut8v5/XXYF67IrSA03MGdyV1765WCT6606UMYlPaNZdaCMPvFB9E0Ixi1JyGV4hz3Nr7KQX2VBKZehP0VyNZdb4kBJHa+tOMhTl2Twy95SNh+uZOuRap/l7hubxpjO4ZTVWbnl4y0+AZaccjMPfLmdF67swZe3Deb5pftYnVWBSiHj0l4x3DMmzTNiQxPcbomiGiv7S2rJr7LQJSqAhGAdCrnMM1yr041GKSfEoGmyPuEBfjx3RQ8eHG8jp7yeQJ2K2CAdkQF+InjRwUmSRF6VmQPFJvKqzHSK8GdQcihFNeYGeZ7m/pFDWoQ/Nw1LZvawZAqqLIQY1EQb/cjMq6Z/UjDhDjeLbh9MtFFLhDh/BKFRWaWeEapO9tneLNvme4YiThr5l8t0lEEtI0IvY2eZi8vS2kHuo/Cu0PVS+PX/IHWs6EoiCC1ABDDaCIfDxY7CWm78cCO11mMPbZ0j/Pl41gCufXc95uP6iB8sNXHb/K0s+dsQqsx2wmMDUSll6NVK79CGgiCcG0lhhgbTskpNWBwutKqm3xhpVQo6Rxp4/dreVNTbuXfhNq7oE8v0QQl8tC7XZ1mnWyLUoCbMoKHM1DDJZbfoAEpqbfSINbKnsI512ZWU1FobBC86RRi4qn8cCoWccpOdQ2UNh1bdnl/D2Jf+4KvbBnP7yFSendIDmVxGsF6FVtX0bUKSJPYU1XLdext8gqyp4QbevK4PS7YVYLa7GJQUjEIho3dcEGH+jeeyCNSpCdSpSYsQ3UXOF5IksaOghhve3+hz/qSEGXhvRl9C9Goqjus+5XJL3P/FdgYnhzDnkm5EBGgor7NRUG0h1F/D3Z9vY+aQRPonBmPUtoMvPoLQSrJKTMiA6MC/0IWkMhsOLIMuk0B9dp87k41yNhc3nai+zek9HQq3waKb4KZfQSWG/BaEc0l0DG0j8msszP5ok0/wAmBfSR1vrshi9rCkBuukRxhQyGXo1Ar8tUoiAvxE8EIQWsDApGD8VA0/Pud8u4dpA+OaXG/G4AQMGhUqhYz8Kgt3jkpjbJcIBqeE8PTlGcQGea7ftHADL1/dC71awUvX9GowNGSYQcNzV/RgaGoIUUY/kkP1vLh8P+kR/rx2bW8m94hibJdwnrq0G3Nv6EfUn82E66xNj+AAntFAVAo5scE6YgK1Jw1eABTVWJnxwcYGI0NklZr4zw97cbjcfLT2MLd/upWFm/LILjPhaCLxsHD+yasyM3vepgbnz6EyE098u5v3Z/RrdL29xbXIZKBTKQjWqwnz1xDmr+HDmQO4ql+cCF4IwinsK64j0uiHRnmmXTQk2PA2GMIgdsBZLRtAlxA5u8rd1Nnb+GgkRyk1MPwBKD8APz/S2qURhA5PtMBoJSabp/9hjdlBlFHDwRIT1ebGv1ws31vCrSNTeO23LO+0QJ2K/1zWnQh/FXq/hm+DBUE4d6KMfnw6eyCzPtrs8+VrQFIQPWMDubBbJD/tLvZZZ0hKCINSQqiqt/PC8v243WC2u1i8NZ9nr+jOmM7hDE8Lo87qoLjWyqacKnYV1HBhRiRvXd+X/SV15FWaSQv3J8Sg5o7PtvLRjQMI8/fjlWt6c/Xcdfz35/0YtSouSAvFqFWRHuFPzHFBzbCTjOShlMsI89eQEqZv9nHIrzL7vCE/3u8Hy7h+UALv/ZEDwK97SxmWGkpiiJ6Is5E4TmiXHC43pbVWqsx2TDYX5abGz58/DpbzyIVdCNSpfO6NKoWMV6/pTYhBhb9GBchQKWTIZKKriCA0196iWuKCdGe+gazfoGQ39JsFirP/VaJnuAKX5OD3PCcXp7STgGRwMvS/Gda/4RmRpfd1rV0iQeiwRACjFZTWWnlu6T6WbCvALcEns/qTV2Vucnm3BBqlnFlDEymotjAgMZhRncOJ8Fej9xN5LgShpSkVcnrFB/HjPcPJr/L01U8O0xNq0GDUqnjq8gymD0lgwaY8XC6JUZ3DsDnc3PzxFt6Y1pt3pvej2uxAkiQCdSrC/D1f6OOCPQ+UUUYt3WMCkcvgxnmb2JFfQ3KonjB/Db/tKyW/ysJFGZGEGDzXf9foAJbeewE/7Sxi0+FKEkJ0TOkTS3SgFuVxIzCEGDRM6hHF9zuKGtTp2gFxJIfqCdY3f7jSiia+fAJIEg1aWyzams+oTmHN3r7QsdRZHfyyt5R/fb0Lg0bJo5Oa7isuSVBusvHtncNYvDWfPYW1pEf4c0mvaKKNGgzi3icIZ0SSJHYV1nBhRuMj2Z2SrRY2vQdRPSE07ewW7k/hOjnJRhlfH3S0nwAGQPpEqDgI398LwUmQMKS1SyQIHZIIYLQwi8PJa79lsWhrgXea1ekmIbjpt56BOs9Qi6nhBu4YmUKIv3h7KQitTSGXEROo9WnhcFSIXk1hlQWXy5Og8/ml+ymt8+SxuPLtdXx31zBSw5tuORWkP/bl7I1pfbj90y3sKvCMfAIwqlMY/5rcDX8/lbcs8cE6bh2RwqxhSaiaGDYyQKviX5O6EqxXs3BTHjanG63KMwrIjUOTCDlJC43GJDeSC8S7Lz8lbrdv898aiwPEm/Lz1oGSOu5bmAmA2eEiKaTp+55BowRkvPbrQc8IP10iSI80EGX0w+DXjr7QCEIbk1thps7qJCn0DFtgbHgHJCd0vvjsFuwEo+KVfLjLQVaVi9SgNj4ayVEyGQy8HepK4PNrYOYPENm9tUslCB2OCGC0sLI6Ows35flMW5NVQZ/4QAYlB7M+u7LBOneNTiVEr2J053ARvBCEdqCk1sZzP++nrK5h8s2Kejs7C2qanf09LljHRzcOoNxkp9bqIFinJsSgbnKUoaaCF0eFB/jxyEVduHl4MhaHC51aQbi/BvUZ9IUO89cwMj2MlX8OC3u8G4cm8dXWfJ9pw1PDCG8iiafQsdVZHby0/ID3d5dbwi1JjEgPZdWB8gbL3zg0EaUcbh+ZjN0pEahTExGgEV1FBOEvysyrBjzJck/b4T8geyV0vwo05zbh8gVxSr475OTRP6x8NskzslW7oFDBqEdg2aPw0WSY/jVE92rtUglChyKSeLawepsT+wnNqhdvzSfcX8PsYUlc2TcWjdLzZwk1qHn4ws6M7xJJVKCOyL86XrcgCC3C7nI1Grw4ak9h7WltL8SgoVOkP/0Tg0kJN/zlIZL9VArignWkR/gTG6Q7o+AFQLBezXNTezBjSIL3cytEr+ahCZ3wU8lZuf9YYMOgUTJ7eBI6tYibn4/MdhdZpfU+0+7+fBtPTO7GNf3jvElxg/VqHhzfiYgAPxJC9SSH+dM5KoBIo58IXgjCWbA5t5LoQD9vC75mM5XA2tcgMqNFvpCrFTJu6almU7GLJ9dakaR2ktATQK2HcU+BPhzmXQT7l7Z2iQShQxFPki1Mr1GilMtwHte0utbq5JVfs7h9ZDJxwVpevKoXMpmnCXZauIEIEbgQhHZFpZATalA3maCwc2THGSo04rgWHTanG51KATJ47qd9KOUy3JLEqE7h/OPCziSepMuA0LFpVQqSw/QU11q903IqzDz9w17un5DOxIxI6m0ubE4XFSYbozqFeUfPEQTh7FmfXUmniIDTW8llh5XPgEINXS9vsa6A3UIVzOqu5r0ddvQqGf8Y2I5aIWv8Yfy/YfWL8PnVMPhOGPUoqP9C8lRBEAARwGhxoQY1V/SNbdCNZF12BXanm9en9cYtSchkMoL1avxU7aTfnyAIXhH+ftwxKpUnv9vTYJ5Rq6JHbGDLF+oc0igVxJ6Q0f7py7vz0MTOSHiCsaf9tk/oUAK0Ku4dm8baQxU+03/ZV8qOghq+vG0wSrkMuUxGsEH9F4Z3FAShKSW1VrJKTVyYEXkaa0mw9lWoOgwDbmnxL+BjEpTYnBJvZdoJ9pNxc8921A1RpYWRD8Oeb2DjXNjzNYx+HDKmnpPRWwThfCG6kLQwnVrJ/ePSubi7b/bnbtEBvHR1T6ICtcQE6YgO1IrghSC0U3K5jMk9o7l5eBLK4/rtxgVrWXjLIKID29FbpDOk0yiJ/jPJqQheCACdIwN49oru6NTH7m1BOhX/vbInEQF+xATpiArUiuCFIJwjK/aVIpdBRoyxmWtIsGUeHFoBGVeAMfZcFq9JF6WouCRVyX/W2/g5x3HqFdoSmRy6XQ6TX4OAWFhyK7ycAb/+HxRmgtt9yk0IguBLJrWrTmWtp7a2FqPRSE1NDQEBp9n0rrHtWRyUm2xUmx3oNUpCDGpCT3MEAEE4X5zt66+lmG1Oyk02yk12/NQKQvRqIgI6fvBC6DjO9rVnd7oorbNRVmdDKZcRYtAQEeDXfhL0CUILOtvX34wPNlJaZ+Vfk7o1Y2kJtn4MO76AzpMgcehf3v9f4ZYkXt1iZ0eZiyWX6ekc0k4DnZXZsP9HOLwa7CbwC4S4gZ5hacO7QFhnCEkBpfhOIAhNEQGMZmqvX6AEoSMQ158gtA5x7QlC6zmb119pnZXBT//GDUMSGN/1FF1IXA5Y/xYc/Bk6XQRJw//Svs8Wq1PiyTVWHG74doqeEG07bkjudkLpHijeCWUHoCobLFWeeTI5BCV6ghnhXT2JUyN7QHCyGIpcEBA5MARBEARBEAShQ/t8Qx5KhYwhKaEnX7CuEH7/L1RkQ/crIaZPyxSwGfyUMh7or+Gx1VZmLTXz2SQ9elU7/UIvV3qCEpE9jk2z1kBNHtTke/6tPgJ5G8D8Z+4gPyNE94W4/hA7AGL7gjaodcovCK1IBDAEQRAEQRAEoYOqMTv4YE0OI9LDMGiaePR3WmD3N7BjoWcEjQG3QGBcyxa0GUJ1cv4+QMN/1tmY8YOZdydqCfJrxy0xjudn9PxEZPhOt1RD5SEoP+D52fA2rHrOMy8kDeIGQExfz/C24d1AJbqqCh2bCGAIgiAIgiAIQgckSRL/+mYXDpeby3vHNFygrhCyfoV9P4KjHuKHQOqYNp2DISVQwcODNPx3o43xX9RzUw81yYFySs0Sh2vc1DskYv3ljI5Xtt9cGcfTBnoCFDF9Pb9LkufvVrYPSvd5WmnsWABuF8gUEJrqCWSEdYKQVE93FGMc6MNA3kGCPcJ5TQQwBEEQBEEQBKGDqaq38/SPe/lmeyF3jU4lUOWEynxP14TyA55RMKpzQekH0b09uS7aSZeEtCAFz1zgx4K9Dv63yYbDDXIZROhk+CmhuF7i+Y02eoXLmd5NzfhEFf7qdtrd5EQyGQTEeH5SxnimOW2eoW4rD3n+LT8A2SuO5dUAT7cVfRjoQ0Eb7GntoTZ4hntVajzz5QpPDg5JAiSQ3J7AiNsFLvuxH6cVHBawm8Fh9gS/7GbPNKcNXDbPOkie7SlUnvNMrffsVxv8Z1nCwBAO/pGgDwfDn9N0IZ5yCUIjRBLPZqqpqSEwMJC8vDyRyEwQzhJ/f39kzUhIJa4/QTj7mnP9iWtPEM6+s37vs1aj+2YWyoJNzHVezNPO63xmy3FzgWx74+vKFUiaAM+XzHbKKcmpd6swyB0oZJ5hSV2SnG3WcOrd6gbLq3DxecJ39NSWtXRRW5zMYUZWX4rcXI7MXtfaxTmnrCOfxN5n1imXa+71J7RdogVGM9XVeS76uLi21x9QENqr5mZWF9efIJx9zbn+xLUnCGff2b73RRlkbL5FT7S/nCIp2GdePCUEy2qpxuCdZnGCy33c+0ur/TRK33aZTvg9isMAVMhDqVIcOy4OFGzasQenI7PFyiacnFohI0wnI8IgQ604s+DC28/+k/t+vu+Uy4lRtdo/0QKjmdxuN4WFhe0maldbW0tcXJx4a3YK4jg1z7k6Ts29nlrr+uto54eoT9vW0vVpzvXUGtdeR/u7HiXq1b6cy3qdi3tfR/07nAlxLDzEcTjm+GMRExPTLr7LCU0TLTCaSS6XExsb29rFOG0BAQHn/YdWc4jj1DytdZxa+/rraOeHqE/b1pbq05rXXls6DmeTqFf70pr1OpPrr6P+Hc6EOBYe4jgcExAQIIIXHUD77fAmCIIgCIIgCIIgCMJ5QwQwBEEQBEEQBEEQBEFo80QAo4PSaDQ88cQTaDRtdxzvtkAcp+Y5X49TR6u3qE/b1tHqc6Y66nEQ9Wpf2lu92lt5zyVxLDzEcThGHIuORSTxFARBEARBEARBEAShzRMtMARBEARBEARBEARBaPNEAEMQBEEQBEEQBEEQhDZPBDAEQRAEQRAEQRAEQWjzRACjnfv999+ZPHky0dHRyGQyvv76a5/5kiQxZ84coqOj0Wq1jBw5kt27d7dOYVvJM888Q//+/fH39yc8PJzLLruM/fv3+ywjjhO89dZb9OjRwzte+ODBg/npp5+88zvyMepI11FHO9878nn5zDPPIJPJuPfee73T2nN9TsecOXOQyWQ+P5GRkd757eU4nI3PDpvNxl133UVoaCh6vZ5LLrmE/Pz8FqxFQ6eq18yZMxv8/QYNGuSzTFus19n6fGxrdXvzzTdJSkrCz8+Pvn378scff7RaWc6GlrquqqqqmD59OkajEaPRyPTp06murj7HtWu+ljxf2/qxOBvPAh3hOAgeIoDRztXX19OzZ09ef/31Ruc///zzvPjii7z++uts2rSJyMhIxo0bR11dXQuXtPWsWrWKO+64g/Xr17N8+XKcTifjx4+nvr7eu4w4ThAbG8uzzz7L5s2b2bx5M6NHj+bSSy/13gA68jHqSNdRRzvfO+p5uWnTJubOnUuPHj18prfX+pyJbt26UVRU5P3ZuXOnd157OQ5n47Pj3nvvZcmSJSxYsIDVq1djMpmYNGkSLperparRwKnqBTBx4kSfv9+PP/7oM78t1utsfT62pbotXLiQe++9l0cffZRt27YxfPhwLrzwQo4cOdLiZTlbWuq6mjZtGpmZmSxdupSlS5eSmZnJ9OnTz3n9mqslz9e2fizOxrNARzgOwp8kocMApCVLlnh/d7vdUmRkpPTss896p1mtVsloNEpvv/12K5SwbSgtLZUAadWqVZIkieN0MkFBQdJ77713Xh2jjnYddcTzvb2fl3V1dVJaWpq0fPlyacSIEdI999wjSVLH+Ns01xNPPCH17Nmz0Xnt9TicyWdHdXW1pFKppAULFniXKSgokORyubR06dIWK/vJnFgvSZKkGTNmSJdeemmT67SHeknSmX0+trW6DRgwQLrtttt8pnXu3Fn65z//2eJlORfO1XW1Z88eCZDWr1/vXWbdunUSIO3bt+8c1+rMnKvztT0eC0k6vWeBjnwczkeiBUYHlpOTQ3FxMePHj/dO02g0jBgxgrVr17ZiyVpXTU0NAMHBwYA4To1xuVwsWLCA+vp6Bg8efF4fo/Ze9450vneU8/KOO+7g4osvZuzYsT7T22t9ztTBgweJjo4mKSmJa665huzsbKDjHIfm1GPLli04HA6fZaKjo8nIyGjzdV25ciXh4eGkp6dz8803U1pa6p3XXup1Jp+PbaludrudLVu2+JQFYPz48W3qOJ9NZ+tvtG7dOoxGIwMHDvQuM2jQIIxGY5s9dufqfG1vx+JMngU64nE4nylbuwDCuVNcXAxARESEz/SIiAhyc3Nbo0itTpIk7r//foYNG0ZGRgYgjtPxdu7cyeDBg7FarRgMBpYsWULXrl29H9zn4zFqz+dHRznfO9J5uWDBArZs2cLmzZsbzGuPf5szNXDgQD7++GPS09MpKSnh3//+N0OGDGH37t0d5jg0px7FxcWo1WqCgoIaLHN0/bbowgsv5MorryQhIYGcnBwef/xxRo8ezZYtW9BoNO2iXmf6+diW6lZeXo7L5Wq0vG3lOJ9tZ+tvVFxcTHh4eIPth4eHt8ljdy7P1/ZyLP7Ks0BHOg6CCGCcF2Qymc/vkiQ1mHa+uPPOO9mxYwerV69uME8cJ+jUqROZmZlUV1ezaNEiZsyYwapVq7zzz+dj1B7r3lHO945yXubl5XHPPfewbNky/Pz8mlyuvdTnr7jwwgu9/+/evTuDBw8mJSWFjz76yJsMsqMchzOpR1uv69VXX+39f0ZGBv369SMhIYEffviBKVOmNLleW6rX2f58bM26dZRr5XScjb9RY8u31WN3rs/X9nAszsWzQHs8DoJI4tmhHc3ofmLUsLS0tEGU8nxw11138e2337JixQpiY2O908VxOkatVpOamkq/fv145pln6NmzJ6+88sp5fYzaa9070vneUc7LLVu2UFpaSt++fVEqlSiVSlatWsWrr76KUqn0lrm91Ods0uv1dO/enYMHD7a7v2tTmlOPyMhI7HY7VVVVTS7THkRFRZGQkMDBgweBtl+vv/L52JbqFhoaikKhaPfXyuk4W3+jyMhISkpKGmy/rKyszR27c32+tpdj8VeeBTrScRBEAKNDS0pKIjIykuXLl3un2e12Vq1axZAhQ1qxZC1LkiTuvPNOFi9ezG+//UZSUpLPfHGcmiZJEjab7bw+Ru2t7ufD+d5ez8sxY8awc+dOMjMzvT/9+vXjuuuuIzMzk+Tk5HZVn7PJZrOxd+9eoqKi2t3ftSnNqUffvn1RqVQ+yxQVFbFr1652VdeKigry8vKIiooC2m69zsbnY1uqm1qtpm/fvj5lAVi+fHm7On9Ox9n6Gw0ePJiamho2btzoXWbDhg3U1NS0mWPXUudrezgWjTmdZ4GOfBzOS+c6S6hwbtXV1Unbtm2Ttm3bJgHSiy++KG3btk3Kzc2VJEmSnn32WcloNEqLFy+Wdu7cKV177bVSVFSUVFtb28olbzm33367ZDQapZUrV0pFRUXeH7PZ7F1GHCdJevjhh6Xff/9dysnJkXbs2CE98sgjklwul5YtWyZJUsc+Rh3pOupo53tHPy+PH4VEktp/fZrrgQcekFauXCllZ2dL69evlyZNmiT5+/tLhw8fliSp/RyHs/HZcdttt0mxsbHSL7/8Im3dulUaPXq01LNnT8npdLZWtU5ar7q6OumBBx6Q1q5dK+Xk5EgrVqyQBg8eLMXExLT5ep2tz8e2VLcFCxZIKpVKev/996U9e/ZI9957r6TX673XUnvUUtfVxIkTpR49ekjr1q2T1q1bJ3Xv3l2aNGlSi9e3KS15vrb1Y3E2ngU6wnEQPEQAo51bsWKFBDT4mTFjhiRJniGWnnjiCSkyMlLSaDTSBRdcIO3cubN1C93CGjs+gPThhx96lxHHSZJmzZolJSQkSGq1WgoLC5PGjBnjvTFIUsc+Rh3pOupo53tHPy9PDGC09/o019VXXy1FRUVJKpVKio6OlqZMmSLt3r3bO7+9HIez8dlhsVikO++8UwoODpa0Wq00adIk6ciRI61Qm2NOVi+z2SyNHz9eCgsLk1QqlRQfHy/NmDGjQZnbYr3O1udjW6vbG2+84f2c7NOnj3eYzfaqpa6riooK6brrrpP8/f0lf39/6brrrpOqqqpaqJan1pLna1s/FmfjWaAjHAfBQyZJknQ2W3QIgiAIgiAIgiAIgiCcbSIHhiAIgiAIgiAIgiAIbZ4IYAiCIAiCIAiCIAiC0OaJAIYgCIIgCIIgCIIgCG2eCGAIgiAIgiAIgiAIgtDmiQCGIAiCIAiCIAiCIAhtnghgCIIgCIIgCIIgCILQ5okAhiAIgiAIgiAIgiAIbZ4IYAiCIAiCIAiCIAiC0OaJAIbQYubNm0dgYKD39zlz5tCrV69WK48gCIIg/FUzZ87ksssua+1iCIIgCMJ5QQQwhFbz4IMP8uuvv7Z2MQShzRk5ciT33ntvm9+mIAjwyiuvMG/evHO+H3ENC4IgCAIoW7sAQvtjt9tRq9V/eTsGgwGDwXAWSiQIQktxOByoVKrWLoYgtDqXy4VMJsNoNLZ2UU7L2bqHC0J7Ie5bgtCxiBYYwimNHDmSO++8k/vvv5/Q0FDGjRvHiy++SPfu3dHr9cTFxfG3v/0Nk8nks968efOIj49Hp9Nx+eWXU1FR4TP/xC4kjb1duuyyy5g5c6b39zfffJO0tDT8/PyIiIhg6tSpza7DXXfdxb333ktQUBARERHMnTuX+vp6brzxRvz9/UlJSeGnn37yWW/Pnj1cdNFFGAwGIiIimD59OuXl5d75S5cuZdiwYQQGBhISEsKkSZM4dOiQd/7hw4eRyWQsXryYUaNGodPp6NmzJ+vWrWtWuYXzz8yZM1m1ahWvvPIKMpkMmUzG4cOHT3ourly5ErVazR9//OHdzgsvvEBoaChFRUVNbvPEbl0AX3/9NTKZzPv70ev0gw8+IDk5GY1GgyRJ1NTUcMsttxAeHk5AQACjR49m+/btzarj8duMj4/HYDBw++2343K5eP7554mMjCQ8PJz//Oc/Puudap+HDh3i0ksvJSIiAoPBQP/+/fnll198tpGYmMjTTz/NrFmz8Pf3Jz4+nrlz5zar3EL7dvReduedd3o/sx977DEkSQI8X+wfeughYmJi0Ov1DBw4kJUrV3rXP3q9fP/993Tt2hWNRkNubm6DLiTn4n7T1DV8qvWOr/fx9/BTkclkvPPOO0yaNAmdTkeXLl1Yt24dWVlZjBw5Er1ez+DBg33udwDfffcdffv2xc/Pj+TkZJ588kmcTqd3/qmeHY4e459//pkuXbpgMBiYOHEiRUVFpyyzcP442bPX0eeuL774gpEjR+Ln58f8+fMB+PDDD+nSpQt+fn507tyZN99802e7//jHP0hPT0en05GcnMzjjz+Ow+FoVpnEfU0QWpAkCKcwYsQIyWAwSH//+9+lffv2SXv37pVeeukl6bfffpOys7OlX3/9VerUqZN0++23e9dZv369JJPJpGeeeUbav3+/9Morr0iBgYGS0Wj0LvPEE09IPXv29NnPPffc47PvSy+9VJoxY4YkSZK0adMmSaFQSJ999pl0+PBhaevWrdIrr7zS7Dr4+/tLTz31lHTgwAHpqaeekuRyuXThhRdKc+fOlQ4cOCDdfvvtUkhIiFRfXy9JkiQVFhZKoaGh0sMPPyzt3btX2rp1qzRu3Dhp1KhR3u1+9dVX0qJFi6QDBw5I27ZtkyZPnix1795dcrlckiRJUk5OjgRInTt3lr7//ntp//790tSpU6WEhATJ4XCcxl9BOF9UV1dLgwcPlm6++WapqKhIKioqkvLz8095Lv7973+XEhISpOrqaikzM1PSaDTS4sWLm9ym0+mUPvzwQ59rUpIkacmSJdLxt4YnnnhC0uv10oQJE6StW7dK27dvl9xutzR06FBp8uTJ0qZNm6QDBw5IDzzwgBQSEiJVVFScso5PPPGEZDAYpKlTp0q7d++Wvv32W0mtVksTJkyQ7rrrLmnfvn3SBx98IAHSunXrJEmSmrXPzMxM6e2335Z27NghHThwQHr00UclPz8/KTc317vvhIQEKTg4WHrjjTekgwcPSs8884wkl8ulvXv3nvHfTGgfjt7L7rnnHmnfvn3S/PnzJZ1OJ82dO1eSJEmaNm2aNGTIEOn333+XsrKypP/+97+SRqORDhw4IEmSJH344YeSSqWShgwZIq1Zs0bat2+fZDKZpBkzZkiXXnqpz37O9v2mqWu4Ofepxu7hpwJIMTEx0sKFC6X9+/dLl112mZSYmCiNHj1aWrp0qbRnzx5p0KBB0sSJE73rLF26VAoICJDmzZsnHTp0SFq2bJmUmJgozZkzx7vMqZ4djh7jsWPHSps2bZK2bNkidenSRZo2bdoZ/MWFjupkz15Hn7sSExOlRYsWSdnZ2VJBQYE0d+5cKSoqyjtt0aJFUnBwsDRv3jzvdp966ilpzZo1Uk5OjvTtt99KERER0nPPPdesMon7miC0HBHAEE5pxIgRUq9evU66zBdffCGFhIR4f7/22mt9HmwkSZKuvvrqvxTAWLRokRQQECDV1taeUR2GDRvm/d3pdEp6vV6aPn26d1pRUZHPjeXxxx+Xxo8f77OdvLw8CZD279/f6H5KS0slQNq5c6ckSccCGO+99553md27d0uAuLEITTrxWmjOuWiz2aTevXtLV111ldStWzfppptuOuk2JUlqdgBDpVJJpaWl3mm//vqrFBAQIFmtVp91U1JSpHfeeeeU9XviiScknU7ncy1PmDBBSkxM9Ab/JEmSOnXqJD3zzDN/aZ9du3aVXnvtNe/vCQkJ0vXXX+/93e12S+Hh4dJbb711ynIL7duIESOkLl26SG632zvtH//4h9SlSxcpKytLkslkUkFBgc86Y8aMkR5++GFJkjzXCyBlZmb6LNNYAONc3G8au4abu96p7uEnAqTHHnvM+/u6deskQHr//fe90z7//HPJz8/P+/vw4cOlp59+2mc7n3zyiRQVFdXkfk58djh6jLOysrzT3njjDSkiIuK0yi+cX45/9jr63PXyyy/7LBMXFyd99tlnPtOeeuopafDgwU1u9/nnn5f69u3brDKI+5ogtByRA0Noln79+vn8vmLFCp5++mn27NlDbW0tTqcTq9VKfX09er2evXv3cvnll/usM3jwYJYuXXrGZRg3bhwJCQkkJyczceJEJk6cyOWXX45Op2vW+j169PD+X6FQEBISQvfu3b3TIiIiACgtLQVgy5YtrFixotE8HYcOHSI9PZ1Dhw7x+OOPs379esrLy3G73QAcOXKEjIyMRvcdFRXl3U/nzp2bW33hPNacc1GtVjN//nx69OhBQkICL7/88lnbf0JCAmFhYT7lMZlMhISE+CxnsVgaNClvSmJiIv7+/t7fIyIiUCgUyOVyn2nHX4+n2md9fT1PPvkk33//PYWFhTidTiwWC0eOHPFZ5/jrUSaTERkZ6d2P0LENGjTIp4vU4MGDeeGFF9i8eTOSJJGenu6zvM1m8znn1Gq1z/nTlHNxv2lMc9c78R7eHMfX4Wh5T6yD1WqltraWgIAAtmzZwqZNm3yayLtcLqxWK2azGZ1Od8pnBwCdTkdKSop3G1FRUeL6FHyc7Nmra9eugO85X1ZWRl5eHrNnz+bmm2/2Tnc6nT45bL766itefvllsrKyMJlMOJ1OAgICml0ucV8ThJYhAhhCsxx9sADIzc3loosu4rbbbuOpp54iODiY1atXM3v2bG9fQenPPsWnQy6XN1jv+L6H/v7+bN26lZUrV7Js2TL+9a9/MWfOHDZt2tSgH39jTkzgJJPJfKYdfag9eiN0u91MnjyZ5557rsG2jgYhJk+eTFxcHO+++y7R0dG43W4yMjKw2+1N7vvE/QjCqTTnXARYu3YtAJWVlVRWVvpct4051TV31InbcbvdREVF+eQHOKo51yKc+no8Ou346/FU+/z73//Ozz//zP/+9z9SU1PRarVMnTr1pNfjifsRzl8KhYItW7agUCh8ph8fHNBqtT4BkKaci/tNY5q73qk+CxrTWHlPVYcnn3ySKVOmNNiWn59fs54dTtzH0f2cyTOF0HE159nr+HP+6Dn67rvvMnDgQJ9tHb3e169fzzXXXMOTTz7JhAkTMBqNLFiwgBdeeKHZ5RL3NUFoGSKAIZy2zZs343Q6eeGFF7xR5S+++MJnma5du7J+/XqfaSf+fqKwsDCfRF0ul4tdu3YxatQo7zSlUsnYsWMZO3YsTzzxBIGBgfz222+NPjD9VX369GHRokUkJiaiVDa8VCoqKti7dy/vvPMOw4cPB2D16tVnvRzC+UetVuNyuby/n+pcBM8bqfvuu493332XL774ghtuuIFff/3Ve42euE3wXHN1dXU+bz8zMzNPWb4+ffpQXFyMUqkkMTHxzCp5mpqzzz/++IOZM2d6W3+ZTCZvokNBgIb3ofXr15OWlkbv3r1xuVyUlpZ6P89bUnOu8cau4eas11L69OnD/v37SU1NbXR+c54dBOFUzuTZKyIigpiYGLKzs7nuuusaXWbNmjUkJCTw6KOPeqfl5uaevYI3QtzXBOHMiFFIhNOWkpKC0+nktddeIzs7m08++YS3337bZ5m7776bpUuX8vzzz3PgwAFef/31U3YfGT16ND/88AM//PAD+/bt429/+xvV1dXe+d9//z2vvvoqmZmZ5Obm8vHHH+N2u+nUqdO5qCZ33HEHlZWVXHvttWzcuJHs7GyWLVvGrFmzcLlcBAUFERISwty5c8nKyuK3337j/vvvPydlEc4viYmJbNiwgcOHD1NeXn7Kc9HlcjF9+nTGjx/PjTfeyIcffsiuXbt83hyduE23283AgQPR6XQ88sgjZGVl8dlnnzFv3rxTlm/s2LEMHjyYyy67jJ9//pnDhw+zdu1aHnvsMTZv3nxOjklz9pmamsrixYvJzMxk+/btTJs2TbyBEnzk5eVx//33s3//fj7//HNee+017rnnHtLT07nuuuu44YYbWLx4MTk5OWzatInnnnuOH3/88ZyX61TXODR+DTdnvZbyr3/9i48//pg5c+awe/du9u7dy8KFC3nssceA5j07CMKpnOmz15w5c3jmmWd45ZVXOHDgADt37uTDDz/kxRdfBDz3jyNHjrBgwQIOHTrEq6++ypIlS85pXcR9TRDOjAhgCKetV69evPjiizz33HNkZGTw6aef8swzz/gsM2jQIN577z1ee+01evXqxbJly7wPMU2ZNWsWM2bM4IYbbmDEiBEkJSX5tL4IDAxk8eLFjB49mi5duvD222/z+eef061bt3NSz+joaNasWYPL5WLChAlkZGRwzz33YDQakcvlyOVyFixYwJYtW8jIyOC+++7jv//97zkpi3B+efDBB1EoFHTt2pWwsDDsdvtJz8X//Oc/HD582DtsWmRkJO+99x6PPfaYt0XFids8cuQIwcHBzJ8/nx9//JHu3bvz+eefM2fOnFOWTyaT8eOPP3LBBRcwa9Ys0tPTueaaazh8+LC3r/zZ1px9vvTSSwQFBTFkyBAmT57MhAkT6NOnzzkpj9A+3XDDDVgsFgYMGMAdd9zBXXfdxS233AJ4hli84YYbeOCBB+jUqROXXHIJGzZsIC4u7pyX61T3G2j8Gm7Oei1lwoQJfP/99yxfvpz+/fszaNAgXnzxRRISEoDmPTsIwqmc6bPXTTfdxHvvvce8efPo3r07I0aMYN68eSQlJQFw6aWXct9993HnnXfSq1cv1q5dy+OPP35O6yLua4JwZmSS6FgoCIIgCEIHN3LkSHr16nVWE9wKgiAIgtCyRAsMQRAEQRAEQRAEQRDaPBHAENq9I0eOYDAYmvw5cagpQRDOrW7dujV5PX766aetXTxBOK99+umnTV6f56pLpiC0d+K+Jghth+hCIrR7TqfzpBmZ20J2dkE4n+Tm5jY6HCt4ssH7+/u3cIkEQTiqrq6OkpKSRuepVCpvzgpBEI4R9zVBaDtEAEMQBEEQBEEQBEEQhDZPdCERBEEQBEEQBEEQBKHNEwEMQRAEQRAEQRAEQRDaPBHAEARBEARBEARBEAShzRMBDEEQBEEQBEEQBEEQ2jwRwBAEQRAEQRAEQRAEoc0TAQxBEARBEARBEARBENo8EcAQBEEQBEEQBEEQBKHNEwEMQRAEQRAEQRAEQRDavP8HHLE12vXsizcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.pairplot(df, vars=['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean'], hue='diagnosis')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "888c06bf", "metadata": {}, "source": [ "\n", "### Define X and y \n", "\n" ] }, { "cell_type": "code", "execution_count": 220, "id": "15292286", "metadata": {}, "outputs": [], "source": [ "X = df.drop('diagnosis', axis=1)\n", "y= df['diagnosis']" ] }, { "cell_type": "markdown", "id": "200b1ef9", "metadata": {}, "source": [ "\n", "### Train_Test_Split \n", "\n" ] }, { "cell_type": "code", "execution_count": 221, "id": "22c6f858", "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)\n", "from sklearn.model_selection import train_test_split" ] }, { "cell_type": "code", "execution_count": 222, "id": "519003d5", "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)" ] }, { "cell_type": "markdown", "id": "a9ae1394", "metadata": {}, "source": [ "#### Data Scaling \n", "\n", "- Scaling the data because the values in the data are widely apart" ] }, { "cell_type": "code", "execution_count": 223, "id": "abc2c938", "metadata": {}, "outputs": [], "source": [ "from sklearn.preprocessing import StandardScaler" ] }, { "cell_type": "code", "execution_count": 224, "id": "c7b48f0e", "metadata": {}, "outputs": [], "source": [ "scaler = StandardScaler()" ] }, { "cell_type": "code", "execution_count": 225, "id": "04c77894", "metadata": {}, "outputs": [], "source": [ "scaled_X_train = scaler.fit_transform(X_train)" ] }, { "cell_type": "code", "execution_count": 226, "id": "ed834bd8", "metadata": {}, "outputs": [], "source": [ "scaled_X_test = scaler.transform(X_test)" ] }, { "cell_type": "markdown", "id": "261e1ca5", "metadata": {}, "source": [ "- model selction\n", "\n", "- will be using KNNClassification to identify the ditance/relationship of the variables in forcasting new data enties\n", "\n", "- also, will use GridsearchCV" ] }, { "cell_type": "markdown", "id": "564e4dd0", "metadata": {}, "source": [ "### Data Modelling \n" ] }, { "cell_type": "code", "execution_count": 227, "id": "84693df5", "metadata": {}, "outputs": [], "source": [ "from sklearn.neighbors import KNeighborsClassifier" ] }, { "cell_type": "code", "execution_count": 228, "id": "6aaa3f0e", "metadata": {}, "outputs": [], "source": [ "knn = KNeighborsClassifier(n_neighbors=2)" ] }, { "cell_type": "code", "execution_count": 229, "id": "2db019ea", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "KNeighborsClassifier(n_neighbors=2)" ] }, "execution_count": 229, "metadata": {}, "output_type": "execute_result" } ], "source": [ "knn.fit(scaled_X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 230, "id": "d476e8de", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] } ], "source": [ "y_pred = knn.predict(scaled_X_test)" ] }, { "cell_type": "markdown", "id": "deaec10f", "metadata": {}, "source": [ "### Data Metrics \n" ] }, { "cell_type": "code", "execution_count": 231, "id": "61d08332", "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, plot_confusion_matrix" ] }, { "cell_type": "code", "execution_count": 232, "id": "bde99a88", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.9532163742690059" ] }, "execution_count": 232, "metadata": {}, "output_type": "execute_result" } ], "source": [ "accuracy_score(y_test, y_pred)" ] }, { "cell_type": "code", "execution_count": 233, "id": "1d271bd3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.953" ] }, "execution_count": 233, "metadata": {}, "output_type": "execute_result" } ], "source": [ "round(accuracy_score(y_test, y_pred), 3)" ] }, { "cell_type": "code", "execution_count": 234, "id": "ab9226e2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[107, 1],\n", " [ 7, 56]], dtype=int64)" ] }, "execution_count": 234, "metadata": {}, "output_type": "execute_result" } ], "source": [ "confusion_matrix(y_test, y_pred)" ] }, { "cell_type": "code", "execution_count": 235, "id": "b524444a", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\utils\\deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator.\n", " warnings.warn(msg, category=FutureWarning)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 235, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAGwCAYAAACuFMx9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvDElEQVR4nO3de3RU9bn/8c8EkkkCSSBAMkQCBI2AgICACF7AIlBUCuW0SrEWFaw0KOag4mGlarSHRDinMQoF0fZAjpWqPy1oWy+kXvCCtBDBKnCwaIQgpMESCeSemf37IzJ2TNBM9p4Ms/f7tdZeq/Pdl3lCs3zyPN/v3ttlGIYhAABgW1HhDgAAAIQWyR4AAJsj2QMAYHMkewAAbI5kDwCAzZHsAQCwOZI9AAA21zncAZjh8/l0+PBhJSQkyOVyhTscAECQDMPQiRMnlJaWpqio0NWfdXV1amhoMH2dmJgYxcbGWhBRx4roZH/48GGlp6eHOwwAgEllZWXq06dPSK5dV1enjH5dVV7hNX0tj8ej0tLSiEv4EZ3sExISJEkH3uuvxK7MSMCevn/usHCHAIRMkxr1tl70//c8FBoaGlRe4dWBkv5KTGh/rqg64VO/UZ+qoaGBZN+RTrXuE7tGmfo/EDiTdXZFhzsEIHS+fGB7R0zFdk1wqWtC+7/Hp8idLo7oZA8AQFt5DZ+8Jt4G4zV81gXTwUj2AABH8MmQT+3P9mbODTd63wAA2ByVPQDAEXzyyUwj3tzZ4UWyBwA4gtcw5DXa34o3c2640cYHAMDmqOwBAI7g5AV6JHsAgCP4ZMjr0GRPGx8AAJujsgcAOAJtfAAAbI7V+AAAwLao7AEAjuD7cjNzfqQi2QMAHMFrcjW+mXPDjWQPAHAEryGTb72zLpaOxpw9AAA2R2UPAHAE5uwBALA5n1zyymXq/EhFGx8AgBB48803NX36dKWlpcnlcmnTpk0B+w3DUG5urtLS0hQXF6eJEydq9+7dAcfU19frtttuU8+ePdWlSxd973vf06FDh4KOhWQPAHAEn2F+C0Z1dbWGDx+uVatWtbp/xYoVKigo0KpVq7R9+3Z5PB5NnjxZJ06c8B+TnZ2tjRs36qmnntLbb7+tkydP6uqrr5bX6w0qFtr4AABH8Jps4wd77rRp0zRt2rRW9xmGocLCQuXk5GjWrFmSpKKiIqWmpmrDhg265ZZbdPz4cf3mN7/RE088oSuuuEKS9Nvf/lbp6en685//rKlTp7Y5Fip7AACCUFVVFbDV19cHfY3S0lKVl5drypQp/jG3260JEyZo69atkqSSkhI1NjYGHJOWlqahQ4f6j2krkj0AwBFOVfZmNklKT09XUlKSf8vPzw86lvLycklSampqwHhqaqp/X3l5uWJiYtS9e/fTHtNWtPEBAI7gM1zyGSZW4395bllZmRITE/3jbre73dd0uQLjMQyjxdjXteWYr6OyBwAgCImJiQFbe5K9x+ORpBYVekVFhb/a93g8amhoUGVl5WmPaSuSPQDAEaxq41shIyNDHo9HxcXF/rGGhgZt2bJF48ePlySNGjVK0dHRAcccOXJEH374of+YtqKNDwBwBK+i5DVR4wZ3s5t08uRJ7d+/3/+5tLRUu3btUnJysvr27avs7Gzl5eUpMzNTmZmZysvLU3x8vObMmSNJSkpK0rx583THHXeoR48eSk5O1p133qlhw4b5V+e3FckeAOAIhsk5eyPIc3fs2KHLL7/c/3nx4sWSpLlz52r9+vVasmSJamtrlZWVpcrKSo0dO1abN29WQkKC/5yHHnpInTt31jXXXKPa2lpNmjRJ69evV6dOnYKKxWUYRsS+x6eqqkpJSUmq/GiAEhOYkYA9TU0bEe4QgJBpMhr1hp7X8ePHAxa9WelUrnj1g77qYiJXVJ/wadKwgyGNNVSo7AEAjtDRD9U5k5DsAQCO4DWi5DVMzNlHbB+c1fgAANgelT0AwBF8cslnosb1KXJLe5I9AMARnDxnTxsfAACbo7IHADiC+QV6tPEBADijNc/Zm3gRDm18AABwpqKyBwA4gs/ks/FZjQ8AwBmOOXsAAGzOpyjH3mfPnD0AADZHZQ8AcASv4ZLXxCtuzZwbbiR7AIAjeE0u0PPSxgcAAGcqKnsAgCP4jCj5TKzG97EaHwCAMxttfAAAYFtU9gAAR/DJ3Ip6n3WhdDiSPQDAEcw/VCdym+GRGzkAAGgTKnsAgCOYfzZ+5NbHJHsAgCM4+X32JHsAgCM4ubKP3MgBAECbUNkDABzB/EN1Irc+JtkDABzBZ7jkM3OffQS/9S5y/0wBAABtQmUPAHAEn8k2fiQ/VIdkDwBwBPNvvYvcZB+5kQMAgDahsgcAOIJXLnlNPBjHzLnhRrIHADgCbXwAAGBbVPYAAEfwylwr3mtdKB2OZA8AcAQnt/FJ9gAAR+BFOAAAwLao7AEAjmCYfJ+9wa13AACc2WjjAwAA26KyBwA4gpNfcUuyBwA4gtfkW+/MnBtukRs5AABoEyp7AIAj0MYHAMDmfIqSz0RD28y54Ra5kQMAgDahsgcAOILXcMlrohVv5txwI9kDAByBOXsAAGzOMPnWO4Mn6AEAgDMVlT0AwBG8cslr4mU2Zs4NN5I9AMARfIa5eXefYWEwHYw2PgAANkdlD32wrYv+3+oU/f2DeB37R7Tu+02pxk877t9vGNJvf+nRi0/20MnjnTRoZI0W5h1S/4F1kqTyshjNHXteq9fOWVuqy6Yfb3UfcKYYOvakfph1VJnDatTD06Tcm/rr3ZeTwh0WLOYzuUDPzLnhFrmRwzJ1NVEaMKRWC5cdanX/M79K0e8f66WFyw5p5YsfqXuvRi2dfbZqTjb/+vRKa9Dvdn0YsF1/5xHFxns15jsnOvJHAdolNt6nT3bH6lc5Z4U7FISQTy7TW6QKe7JfvXq1MjIyFBsbq1GjRumtt94Kd0iOM+Y7J3TD3eW65MqWFbhhSJt+3UuzF/1Dl1x5XP0H1enOhw+qvjZKr2/sLknq1ElKTmkK2La+lKQJ3/tCcV18Hf3jAEHb8Xqiilb01jsvdQt3KEBIhDXZP/3008rOzlZOTo527typSy+9VNOmTdPBgwfDGRb+RfnBGB2riNaoCV9V6DFuQ8MuOqk9O7q0es7f/xanj3fHa+qP/tlRYQLAtzr1BD0zW6QKa7IvKCjQvHnzNH/+fA0ePFiFhYVKT0/XmjVrwhkW/sWxiuZlHd17NQaMd+/VqMqK1pd8vPy7HuqbWachY2pCHh8AtNWpOXszWzCampr085//XBkZGYqLi9OAAQP0wAMPyOf7quNpGIZyc3OVlpamuLg4TZw4Ubt377b6Rw9fsm9oaFBJSYmmTJkSMD5lyhRt3bq11XPq6+tVVVUVsKGDfO0PWsNwtRiTpPpal17f2J2qHoDjLV++XI8++qhWrVqlvXv3asWKFfqv//ovrVy50n/MihUrVFBQoFWrVmn79u3yeDyaPHmyTpywdr1T2JL9559/Lq/Xq9TU1IDx1NRUlZeXt3pOfn6+kpKS/Ft6enpHhOpoySlNkqTKiuiA8S8+76zuvZpaHP/Wn7qpvtalK354rEPiA4C28snlfz5+u7YvK5yvF5319fWtft+7776rGTNm6KqrrlL//v31gx/8QFOmTNGOHTskNVf1hYWFysnJ0axZszR06FAVFRWppqZGGzZssPRnD/sCPZcrsDw0DKPF2ClLly7V8ePH/VtZWVlHhOhonr4NSk5p1HtvJvjHGhtc+mBbV503urrF8a/8rocumlKlbj28HRkmAHwrw+RKfOPLZJ+enh5QeObn57f6fZdccoleffVVffTRR5Kk999/X2+//bauvPJKSVJpaanKy8sDOtxut1sTJkw4bYe7vcJ2n33Pnj3VqVOnFlV8RUVFi2r/FLfbLbfb3RHhOUptdZQOl37171peFqOPP4xTQrcmpfRp1Mz5R/XUylSdNaBeZ2XU63ePpMod59Pl368MuM5npTH6YFsX/eK3n3T0jwCYEhvvVVpGg/+zJ71BA4bU6sQXnXT0s5gwRgYrWfXWu7KyMiUmJvrHT5eX7r77bh0/flyDBg1Sp06d5PV6tWzZMv3oRz+SJH/+a63DfeDAgXbH2ZqwJfuYmBiNGjVKxcXF+v73v+8fLy4u1owZM8IVliN99H68lvzgHP/ntbnN9xpPvuaY7iw8qGsWVqihLkqrlvbRiS8fqpP/u48V3zXwtrpXnuqhHp7GgJX7QCQ4d3it/uu5j/2fF9x/WJK0+enu+uW/9w1XWDhDJSYmBiT703n66af129/+Vhs2bNCQIUO0a9cuZWdnKy0tTXPnzvUfF0yHu73C+gS9xYsX6/rrr9fo0aM1btw4PfbYYzp48KAWLFgQzrAcZ/j4k3rl8K7T7ne5pOvvLNf1d7a+luKUm5Ye0U1Lj1gcHRB6f3u3q6amDQ93GAixjn6C3l133aX/+I//0OzZsyVJw4YN04EDB5Sfn6+5c+fK4/FIaq7we/fu7T/vmzrc7RXWZH/ttdfqn//8px544AEdOXJEQ4cO1Ysvvqh+/fqFMywAgA1Z1cZvq5qaGkVFBf6B0KlTJ/+tdxkZGfJ4PCouLtbIkSMlNd+ptmXLFi1fvrzdcbYm7M/Gz8rKUlZWVrjDAADAUtOnT9eyZcvUt29fDRkyRDt37lRBQYFuuukmSc3t++zsbOXl5SkzM1OZmZnKy8tTfHy85syZY2ksYU/2AAB0BLPPtw/23JUrV+qee+5RVlaWKioqlJaWpltuuUX33nuv/5glS5aotrZWWVlZqqys1NixY7V582YlJCR8w5WD5zIMI2Lf0FtVVaWkpCRVfjRAiQlhv4sQCImpaSPCHQIQMk1Go97Q8zp+/HibFr21x6lccdUr8xXdpf13VzRWN+hPU38d0lhDhQwJAIDN0cYHADhCRy/QO5OQ7AEAjuDkZE8bHwAAm6OyBwA4gpMre5I9AMARDAV/+9zXz49UJHsAgCM4ubJnzh4AAJujsgcAOIKTK3uSPQDAEZyc7GnjAwBgc1T2AABHcHJlT7IHADiCYbhkmEjYZs4NN9r4AADYHJU9AMAROvp99mcSkj0AwBGcPGdPGx8AAJujsgcAOIKTF+iR7AEAjuDkNj7JHgDgCE6u7JmzBwDA5qjsAQCOYJhs40dyZU+yBwA4giHJMMydH6lo4wMAYHNU9gAAR/DJJRdP0AMAwL5YjQ8AAGyLyh4A4Ag+wyUXD9UBAMC+DMPkavwIXo5PGx8AAJujsgcAOIKTF+iR7AEAjkCyBwDA5py8QI85ewAAbI7KHgDgCE5ejU+yBwA4QnOyNzNnb2EwHYw2PgAANkdlDwBwBFbjAwBgc4bMvZM+grv4tPEBALA7KnsAgCPQxgcAwO4c3Mcn2QMAnMFkZa8IruyZswcAwOao7AEAjsAT9AAAsDknL9CjjQ8AgM1R2QMAnMFwmVtkF8GVPckeAOAITp6zp40PAIDNUdkDAJyBh+oAAGBvTl6N36Zk/8gjj7T5gosWLWp3MAAAwHptSvYPPfRQmy7mcrlI9gCAM1cEt+LNaFOyLy0tDXUcAACElJPb+O1ejd/Q0KB9+/apqanJyngAAAgNw4ItQgWd7GtqajRv3jzFx8dryJAhOnjwoKTmufoHH3zQ8gABAIA5QSf7pUuX6v3339cbb7yh2NhY//gVV1yhp59+2tLgAACwjsuCLTIFnew3bdqkVatW6ZJLLpHL9dUPft555+njjz+2NDgAACwThjb+Z599ph//+Mfq0aOH4uPjNWLECJWUlHwVkmEoNzdXaWlpiouL08SJE7V7924TP2Trgk72R48eVUpKSovx6urqgOQPAICTVVZW6uKLL1Z0dLReeukl7dmzR7/85S/VrVs3/zErVqxQQUGBVq1ape3bt8vj8Wjy5Mk6ceKEpbEEnezHjBmjP/3pT/7PpxL8448/rnHjxlkXGQAAVurgyn758uVKT0/XunXrdOGFF6p///6aNGmSzj777OZwDEOFhYXKycnRrFmzNHToUBUVFammpkYbNmyw4Af+StBP0MvPz9d3v/td7dmzR01NTXr44Ye1e/duvfvuu9qyZYulwQEAYBmL3npXVVUVMOx2u+V2u1sc/sILL2jq1Kn64Q9/qC1btuiss85SVlaWbr75ZknNt7WXl5drypQpAdeaMGGCtm7dqltuuaX9sX5N0JX9+PHj9c4776impkZnn322Nm/erNTUVL377rsaNWqUZYEBAHAmSk9PV1JSkn/Lz89v9bhPPvlEa9asUWZmpl555RUtWLBAixYt0v/+7/9KksrLyyVJqampAeelpqb691mlXc/GHzZsmIqKiiwNBACAULLqFbdlZWVKTEz0j7dW1UuSz+fT6NGjlZeXJ0kaOXKkdu/erTVr1ugnP/mJ/7ivr3czDMPyNXDtSvZer1cbN27U3r175XK5NHjwYM2YMUOdO/NeHQDAGcqit94lJiYGJPvT6d27t84777yAscGDB+u5556TJHk8HknNFX7v3r39x1RUVLSo9s0KOjt/+OGHmjFjhsrLyzVw4EBJ0kcffaRevXrphRde0LBhwywNEACASHTxxRdr3759AWMfffSR+vXrJ0nKyMiQx+NRcXGxRo4cKan56bRbtmzR8uXLLY0l6Dn7+fPna8iQITp06JDee+89vffeeyorK9P555+vn/70p5YGBwCAZU4t0DOzBeHf//3ftW3bNuXl5Wn//v3asGGDHnvsMS1cuFBSc/s+OztbeXl52rhxoz788EPdcMMNio+P15w5cyz90YOu7N9//33t2LFD3bt39491795dy5Yt05gxYywNDgAAq7iM5s3M+cEYM2aMNm7cqKVLl+qBBx5QRkaGCgsLdd111/mPWbJkiWpra5WVlaXKykqNHTtWmzdvVkJCQvsDbUXQyX7gwIH6xz/+oSFDhgSMV1RU6JxzzrEsMAAALGXRnH0wrr76al199dWn3e9yuZSbm6vc3Nz2x9UGbWrjV1VV+be8vDwtWrRIzz77rA4dOqRDhw7p2WefVXZ2tuVzDAAAwLw2VfbdunULuA3AMAxdc801/jHjy/sRpk+fLq/XG4IwAQAwyaKH6kSiNiX7119/PdRxAAAQWmFo458p2pTsJ0yYEOo4AABAiLT7KTg1NTU6ePCgGhoaAsbPP/9800EBAGA5Kvu2O3r0qG688Ua99NJLre5nzh4AcEZycLIP+qE62dnZqqys1LZt2xQXF6eXX35ZRUVFyszM1AsvvBCKGAEAgAlBV/avvfaann/+eY0ZM0ZRUVHq16+fJk+erMTEROXn5+uqq64KRZwAAJjj4NX4QVf21dXVSklJkSQlJyfr6NGjkprfhPfee+9ZGx0AABY59QQ9M1ukCjrZDxw40P9g/xEjRmjt2rX67LPP9Oijjwa8tQcAAJwZgm7jZ2dn68iRI5Kk++67T1OnTtWTTz6pmJgYrV+/3ur4AACwhoMX6AWd7P/1Af4jR47Up59+qv/7v/9T37591bNnT0uDAwAA5rX7PvtT4uPjdcEFF1gRCwAAIeOSybfeWRZJx2tTsl+8eHGbL1hQUNDuYAAAgPXalOx37tzZpov968tyOtIPxk1Q56iYsHw3EGp/X8mro2Ffvto66a7nO+bLHHzrHS/CAQA4g4MX6AV96x0AAIgsphfoAQAQERxc2ZPsAQCOYPYpeI56gh4AAIgsVPYAAGdwcBu/XZX9E088oYsvvlhpaWk6cOCAJKmwsFDPP99Bt08AABAsw4ItQgWd7NesWaPFixfryiuv1BdffCGv1ytJ6tatmwoLC62ODwAAmBR0sl+5cqUef/xx5eTkqFOnTv7x0aNH64MPPrA0OAAArOLkV9wGPWdfWlqqkSNHthh3u92qrq62JCgAACzn4CfoBV3ZZ2RkaNeuXS3GX3rpJZ133nlWxAQAgPUcPGcfdGV/1113aeHChaqrq5NhGPrrX/+q3/3ud8rPz9evf/3rUMQIAABMCDrZ33jjjWpqatKSJUtUU1OjOXPm6KyzztLDDz+s2bNnhyJGAABMc/JDddp1n/3NN9+sm2++WZ9//rl8Pp9SUlKsjgsAAGs5+D57Uw/V6dmzp1VxAACAEAk62WdkZHzje+s/+eQTUwEBABASZm+fc1Jln52dHfC5sbFRO3fu1Msvv6y77rrLqrgAALAWbfy2u/3221sd/9WvfqUdO3aYDggAAFjLsrfeTZs2Tc8995xVlwMAwFrcZ2/es88+q+TkZKsuBwCApbj1LggjR44MWKBnGIbKy8t19OhRrV692tLgAACAeUEn+5kzZwZ8joqKUq9evTRx4kQNGjTIqrgAAIBFgkr2TU1N6t+/v6ZOnSqPxxOqmAAAsJ6DV+MHtUCvc+fO+tnPfqb6+vpQxQMAQEg4+RW3Qa/GHzt2rHbu3BmKWAAAQAgEPWeflZWlO+64Q4cOHdKoUaPUpUuXgP3nn3++ZcEBAGCpCK7OzWhzsr/ppptUWFioa6+9VpK0aNEi/z6XyyXDMORyueT1eq2PEgAAsxw8Z9/mZF9UVKQHH3xQpaWloYwHAABYrM3J3jCa/6Tp169fyIIBACBUeKhOG33T2+4AADij0cZvm3PPPfdbE/6xY8dMBQQAAKwVVLK///77lZSUFKpYAAAIGdr4bTR79mylpKSEKhYAAELHwW38Nj9Uh/l6AAAiU9Cr8QEAiEgOruzbnOx9Pl8o4wAAIKSYswcAwO4cXNkH/SIcAAAQWajsAQDO4ODKnmQPAHAEJ8/Z08YHAMDmqOwBAM5AGx8AAHujjQ8AAGyLZA8AcAbDgq2d8vPz5XK5lJ2d/VU4hqHc3FylpaUpLi5OEydO1O7du9v/Jd+AZA8AcIYwJfvt27frscce0/nnnx8wvmLFChUUFGjVqlXavn27PB6PJk+erBMnTrTvi74ByR4AgBA5efKkrrvuOj3++OPq3r27f9wwDBUWFionJ0ezZs3S0KFDVVRUpJqaGm3YsMHyOEj2AABHcFmwSVJVVVXAVl9ff9rvXLhwoa666ipdccUVAeOlpaUqLy/XlClT/GNut1sTJkzQ1q1brfhxA5DsAQDOYFEbPz09XUlJSf4tPz+/1a976qmnVFJS0ur+8vJySVJqamrAeGpqqn+flbj1DgDgCFbdeldWVqbExET/uNvtbnFsWVmZbr/9dm3evFmxsbGnv6bLFfDZMIwWY1Yg2QMAEITExMSAZN+akpISVVRUaNSoUf4xr9erN998U6tWrdK+ffskNVf4vXv39h9TUVHRotq3Am18AIAzdOBq/EmTJumDDz7Qrl27/Nvo0aN13XXXadeuXRowYIA8Ho+Ki4v95zQ0NGjLli0aP368BT9sICp7AIBzdNBT8BISEjR06NCAsS5duqhHjx7+8ezsbOXl5SkzM1OZmZnKy8tTfHy85syZY3k8JHsAAMJgyZIlqq2tVVZWliorKzV27Fht3rxZCQkJln8XyR4A4Ajhfjb+G2+8EXg9l0u5ubnKzc01d+E2INkDAJzBwW+9Y4EeAAA2R2UPAHCEcLfxw4lkDwBwBtr4AADArqjsAQCOQBsfAAC7c3Abn2QPAHAGByd75uwBALA5KnsAgCMwZw8AgN3RxgcAAHZFZQ8AcASXYchltL88N3NuuJHsAQDOQBsfAADYFZU9AMARWI0PAIDd0cYHAAB2RWUPAHAE2vgAANidg9v4JHsAgCM4ubJnzh4AAJujsgcAOANtfAAA7C+SW/Fm0MYHAMDmqOwBAM5gGM2bmfMjFMkeAOAIrMYHAAC2RWUPAHAGVuMDAGBvLl/zZub8SEUbHwAAm6Oyx7da99JWpZ5V12L8j0+dpdV5A8MQEWBO8ouH1OOlzwLGmhKiVZp3gf9zdHmtej5/UHH7T8hlGKrvHafyGzPVlOzu6HBhFdr4wOndPme0OkV99Vve75xq5T2+S29tTgljVIA59b3j9Nmtg74acLn8/zP6aJ3SH9qj4+N66diVfeSN66SY8loZ0TRDIxmr8cPkzTff1PTp05WWliaXy6VNmzaFMxycRlVljCr/6fZvF074XIcPxumDHd3CHRrQflEueRNjvtoSov27evyxTNVDkvTPmX1Vn95FTT1jVTO0e8AxiECn7rM3s0WosFb21dXVGj58uG688Ub927/9WzhDQRt17uzT5Vf9QxufSJfk+tbjgTNV9NE6ZeS8J6NzlOr6d9Hn09PV1DNW8hnqsvsLVV6RprRf/Z/ch6rV1MOtY5PTVD08OdxhA+0S1mQ/bdo0TZs2rc3H19fXq76+3v+5qqoqFGHhG4z7zlF1TWjSn5/vHe5QgHar69dV/7j+bDWkxKpTVaOSX/lM6QV7dCBnmFxeQ1H1PnUvPqx/XtVHn89IV5c9x9X7N3/XZ7cNVm1mYrjDRzvRxo8Q+fn5SkpK8m/p6enhDslxpnz/iHa8k6xjR1mkhMhVM6SbTo5IVkNavGoHJenwguaFpol/+dy/CKt6WHd98Z3eaujTRZVT0lQ9pJuS3q4IY9QwzbBgi1ARleyXLl2q48eP+7eysrJwh+QoKb1rNeKiY3rlubRwhwJYynB3UkNanKKP1snbpbOMKJfqPXEBxzR44tS5sv40VwDObBG1Gt/tdsvtpqIMl8kzj+j4sRj99a0e4Q4FsJSr0afof9Sq9uwEqXOU6vp1UUxFbcAxMRV13HYX4WjjA9/C5TI0ecYR/fkFj3xefm0Q2XpuPKC4v1ep8+d1cn96Up7/+bui6ryqGttLklQ5qbcS3jumxHcqFH20TklbytXlw0p9cWlqmCOHKazGB77ZiIuOKSWtXsWbaOEj8nX+okGe9fvVqbpJ3q6dVde/qw4tHuKv3KuHJ6vi2v7qXnxYvZ77VI0pcToyL1N1ZyeEOXKgfcKa7E+ePKn9+/f7P5eWlmrXrl1KTk5W3759wxgZvm7nuz105fnfCXcYgCXKb8z81mOqxqWoahwPjrITJ7fxw5rsd+zYocsvv9z/efHixZKkuXPnav369WGKCgBgSzwuNzwmTpwoI4LnQAAAiATM2QMAHIE2PgAAduczmjcz50cokj0AwBkcPGfPDdMAANgclT0AwBFcMjlnb1kkHY9kDwBwBrNPwYvgu8do4wMAYHNU9gAAR+DWOwAA7I7V+AAAwK6o7AEAjuAyDLlMLLIzc264kewBAM7g+3Izc36Eoo0PAIDNUdkDAByBNj4AAHbHanwAAGzu1BP0zGxByM/P15gxY5SQkKCUlBTNnDlT+/bt+1pIhnJzc5WWlqa4uDhNnDhRu3fvtvKnlkSyBwAgJLZs2aKFCxdq27ZtKi4uVlNTk6ZMmaLq6mr/MStWrFBBQYFWrVql7du3y+PxaPLkyTpx4oSlsdDGBwA4glVP0KuqqgoYd7vdcrvdLY5/+eWXAz6vW7dOKSkpKikp0WWXXSbDMFRYWKicnBzNmjVLklRUVKTU1FRt2LBBt9xyS/uD/RoqewCAM1jUxk9PT1dSUpJ/y8/Pb9PXHz9+XJKUnJwsSSotLVV5ebmmTJniP8btdmvChAnaunWrpT86lT0AAEEoKytTYmKi/3NrVf3XGYahxYsX65JLLtHQoUMlSeXl5ZKk1NTUgGNTU1N14MABCyMm2QMAHMLla97MnC9JiYmJAcm+LW699Vb97W9/09tvv93yui5XwGfDMFqMmUUbHwDgDB28Gv+U2267TS+88IJef/119enTxz/u8XgkfVXhn1JRUdGi2jeLZA8AQAgYhqFbb71Vv//97/Xaa68pIyMjYH9GRoY8Ho+Ki4v9Yw0NDdqyZYvGjx9vaSy08QEAztDBD9VZuHChNmzYoOeff14JCQn+Cj4pKUlxcXFyuVzKzs5WXl6eMjMzlZmZqby8PMXHx2vOnDkmAm2JZA8AcISOflzumjVrJEkTJ04MGF+3bp1uuOEGSdKSJUtUW1urrKwsVVZWauzYsdq8ebMSEhLaHWdrSPYAAISA0YY/Dlwul3Jzc5WbmxvSWEj2AABnMLHIzn9+hCLZAwCcwZC5d9JHbq4n2QMAnMHJr7jl1jsAAGyOyh4A4AyGTM7ZWxZJhyPZAwCcwcEL9GjjAwBgc1T2AABn8Eky834ZMyv5w4xkDwBwBFbjAwAA26KyBwA4g4MX6JHsAQDO4OBkTxsfAACbo7IHADiDgyt7kj0AwBm49Q4AAHvj1jsAAGBbVPYAAGdgzh4AAJvzGZLLRML2RW6yp40PAIDNUdkDAJyBNj4AAHZnMtkrcpM9bXwAAGyOyh4A4Ay08QEAsDmfIVOteFbjAwCAMxWVPQDAGQxf82bm/AhFsgcAOANz9gAA2Bxz9gAAwK6o7AEAzkAbHwAAmzNkMtlbFkmHo40PAIDNUdkDAJyBNj4AADbn80kyca+8L3Lvs6eNDwCAzVHZAwCcgTY+AAA25+BkTxsfAACbo7IHADiDgx+XS7IHADiCYfhkmHhznZlzw41kDwBwBsMwV50zZw8AAM5UVPYAAGcwTM7ZR3BlT7IHADiDzye5TMy7R/CcPW18AABsjsoeAOAMtPEBALA3w+eTYaKNH8m33tHGBwDA5qjsAQDOQBsfAACb8xmSy5nJnjY+AAA2R2UPAHAGw5Bk5j77yK3sSfYAAEcwfIYME218g2QPAMAZzvDJXGXPrXcAAOAMRWUPAHAE2vgAANidg9v4EZ3sT/2V1eRrCHMkQOj4auvCHQIQMr665t/vjqiam9Ro6pk6TWq0LpgO5jIiuC9x6NAhpaenhzsMAIBJZWVl6tOnT0iuXVdXp4yMDJWXl5u+lsfjUWlpqWJjYy2IrONEdLL3+Xw6fPiwEhIS5HK5wh2OI1RVVSk9PV1lZWVKTEwMdziApfj97niGYejEiRNKS0tTVFTo1ozX1dWpocF8FzgmJibiEr0U4W38qKiokP0liG+WmJjIfwxhW/x+d6ykpKSQf0dsbGxEJmmrcOsdAAA2R7IHAMDmSPYIitvt1n333Se32x3uUADL8fsNu4roBXoAAODbUdkDAGBzJHsAAGyOZA8AgM2R7AEAsDmSPdps9erVysjIUGxsrEaNGqW33nor3CEBlnjzzTc1ffp0paWlyeVyadOmTeEOCbAUyR5t8vTTTys7O1s5OTnauXOnLr30Uk2bNk0HDx4Md2iAadXV1Ro+fLhWrVoV7lCAkODWO7TJ2LFjdcEFF2jNmjX+scGDB2vmzJnKz88PY2SAtVwulzZu3KiZM2eGOxTAMlT2+FYNDQ0qKSnRlClTAsanTJmirVu3hikqAEBbkezxrT7//HN5vV6lpqYGjKemplryykgAQGiR7NFmX3+NsGEYvFoYACIAyR7fqmfPnurUqVOLKr6ioqJFtQ8AOPOQ7PGtYmJiNGrUKBUXFweMFxcXa/z48WGKCgDQVp3DHQAiw+LFi3X99ddr9OjRGjdunB577DEdPHhQCxYsCHdogGknT57U/v37/Z9LS0u1a9cuJScnq2/fvmGMDLAGt96hzVavXq0VK1boyJEjGjp0qB566CFddtll4Q4LMO2NN97Q5Zdf3mJ87ty5Wr9+fccHBFiMZA8AgM0xZw8AgM2R7AEAsDmSPQAANkeyBwDA5kj2AADYHMkeAACbI9kDAGBzJHsAAGyOZA+YlJubqxEjRvg/33DDDZo5c2aHx/Hpp5/K5XJp165dpz2mf//+KiwsbPM1169fr27dupmOzeVyadOmTaavA6B9SPawpRtuuEEul0sul0vR0dEaMGCA7rzzTlVXV4f8ux9++OE2P2K1LQkaAMziRTiwre9+97tat26dGhsb9dZbb2n+/Pmqrq7WmjVrWhzb2Nio6OhoS743KSnJkusAgFWo7GFbbrdbHo9H6enpmjNnjq677jp/K/lU6/1//ud/NGDAALndbhmGoePHj+unP/2pUlJSlJiYqO985zt6//33A6774IMPKjU1VQkJCZo3b57q6uoC9n+9je/z+bR8+XKdc845crvd6tu3r5YtWyZJysjIkCSNHDlSLpdLEydO9J+3bt06DR48WLGxsRo0aJBWr14d8D1//etfNXLkSMXGxmr06NHauXNn0P9GBQUFGjZsmLp06aL09HRlZWXp5MmTLY7btGmTzj33XMXGxmry5MkqKysL2P+HP/xBo0aNUmxsrAYMGKD7779fTU1NQccDIDRI9nCMuLg4NTY2+j/v379fzzzzjJ577jl/G/2qq65SeXm5XnzxRZWUlOiCCy7QpEmTdOzYMUnSM888o/vuu0/Lli3Tjh071Lt37xZJ+OuWLl2q5cuX65577tGePXu0YcMGpaamSmpO2JL05z//WUeOHNHvf/97SdLjjz+unJwcLVu2THv37lVeXp7uueceFRUVSZKqq6t19dVXa+DAgSopKVFubq7uvPPOoP9NoqKi9Mgjj+jDDz9UUVGRXnvtNS1ZsiTgmJqaGi1btkxFRUV65513VFVVpdmzZ/v3v/LKK/rxj3+sRYsWac+ePVq7dq3Wr1/v/4MGwBnAAGxo7ty5xowZM/yf//KXvxg9evQwrrnmGsMwDOO+++4zoqOjjYqKCv8xr776qpGYmGjU1dUFXOvss8821q5daxiGYYwbN85YsGBBwP6xY8caw4cPb/W7q6qqDLfbbTz++OOtxllaWmpIMnbu3Bkwnp6ebmzYsCFg7Be/+IUxbtw4wzAMY+3atUZycrJRXV3t379mzZpWr/Wv+vXrZzz00EOn3f/MM88YPXr08H9et26dIcnYtm2bf2zv3r2GJOMvf/mLYRiGcemllxp5eXkB13niiSeM3r17+z9LMjZu3Hja7wUQWszZw7b++Mc/qmvXrmpqalJjY6NmzJihlStX+vf369dPvXr18n8uKSnRyZMn1aNHj4Dr1NbW6uOPP5Yk7d27VwsWLAjYP27cOL3++uutxrB3717V19dr0qRJbY776NGjKisr07x583TzzTf7x5uamvzrAfbu3avhw4crPj4+II5gvf7668rLy9OePXtUVVWlpqYm1dXVqbq6Wl26dJEkde7cWaNHj/afM2jQIHXr1k179+7VhRdeqJKSEm3fvj2gkvd6vaqrq1NNTU1AjADCg2QP27r88su1Zs0aRUdHKy0trcUCvFPJ7BSfz6fevXvrjTfeaHGt9t5+FhcXF/Q5Pp9PUnMrf+zYsQH7OnXqJEkyDKNd8fyrAwcO6Morr9SCBQv0i1/8QsnJyXr77bc1b968gOkOqfnWua87Nebz+XT//fdr1qxZLY6JjY01HScA80j2sK0uXbronHPOafPxF1xwgcrLy9W5c2f179+/1WMGDx6sbdu26Sc/+Yl/bNu2bae9ZmZmpuLi4vTqq69q/vz5LfbHxMRIaq6ET0lNTdVZZ52lTz75RNddd12r1z3vvPP0xBNPqLa21v8HxTfF0ZodO3aoqalJv/zlLxUV1bx855lnnmlxXFNTk3bs2KELL7xQkrRv3z598cUXGjRokKTmf7d9+/YF9W8NoGOR7IEvXXHFFRo3bpxmzpyp5cuXa+DAgTp8+LBefPFFzZw5U6NHj9btt9+uuXPnavTo0brkkkv05JNPavfu3RowYECr14yNjdXdd9+tJUuWKCYmRhdffLGOHj2q3bt3a968eUpJSVFcXJxefvll9enTR7GxsUpKSlJubq4WLVqkxMRETZs2TfX19dqxY4cqKyu1ePFizZkzRzk5OZo3b55+/vOf69NPP9V///d/B/Xznn322WpqatLKlSs1ffp0vfPOO3r00UdbHBcdHa3bbrtNjzzyiKKjo3Xrrbfqoosu8if/e++9V1dffbXS09P1wx/+UFFRUfrb3/6mDz74QP/5n/8Z/P8RACzHanzgSy6XSy+++KIuu+wy3XTTTTr33HM1e/Zsffrpp/7V89dee63uvfde3X333Ro1apQOHDign/3sZ9943XvuuUd33HGH7r33Xg0ePFjXXnutKioqJDXPhz/yyCNau3at0tLSNGPGDEnS/Pnz9etf/1rr16/XsGHDNGHCBK1fv95/q17Xrl31hz/8QXv27NHIkSOVk5Oj5cuXB/XzjhgxQgUFBVq+fLmGDh2qJ598Uvn5+S2Oi4+P19133605c+Zo3LhxiouL01NPPeXfP3XqVP3xj39UcXGxxowZo4suukgFBQXq169fUPEACB2XYcXkHwAAOGNR2QMAYHMkewAAbI5kDwCAzZHsAQCwOZI9AAA2R7IHAMDmSPYAANgcyR4AAJsj2QMAYHMkewAAbI5kDwCAzf1/DgocZbP/3PQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_confusion_matrix(knn, scaled_X_test, y_test)" ] }, { "cell_type": "code", "execution_count": 236, "id": "cd878173", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.94 0.99 0.96 108\n", " 1 0.98 0.89 0.93 63\n", "\n", " accuracy 0.95 171\n", " macro avg 0.96 0.94 0.95 171\n", "weighted avg 0.95 0.95 0.95 171\n", "\n" ] } ], "source": [ "print(classification_report(y_test, y_pred))\n" ] }, { "cell_type": "markdown", "id": "b566347f", "metadata": {}, "source": [ "- the metrics for precisiona and recall are different because the data is unbalanced\n", "- It's better to have False Positives than False negatives.\n", "- Finetuning oroptimizing the Recall metric will be at the cost of a lower precision score (which is alriht in our data context)\n", "- Due to the context of the data, need to further optimize the model's ability to significantly minimize false negatives- which means ethe recall would be enhanced." ] }, { "cell_type": "code", "execution_count": 237, "id": "efba5574", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.04678362573099415" ] }, "execution_count": 237, "metadata": {}, "output_type": "execute_result" } ], "source": [ "error_rate = 1-(accuracy_score(y_test, y_pred))\n", "\n", "error_rate" ] }, { "cell_type": "markdown", "id": "a99db44e", "metadata": {}, "source": [ "#### Hypertune the parameters to improve the Metrics Score \n" ] }, { "cell_type": "code", "execution_count": 238, "id": "d24f7e17", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] } ], "source": [ "error_rate = [ ]\n", "\n", "for k in range (1, 50):\n", " knn = KNeighborsClassifier(n_neighbors=k)\n", " knn.fit(scaled_X_train, y_train)\n", " y_pred = knn.predict(scaled_X_test)\n", "\n", " error = 1-(accuracy_score(y_test, y_pred))\n", "\n", " error_rate.append(error)" ] }, { "cell_type": "code", "execution_count": 239, "id": "b97d46fe", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[0.04678362573099415,\n", " 0.04678362573099415,\n", " 0.040935672514619936,\n", " 0.040935672514619936,\n", " 0.040935672514619936,\n", " 0.03508771929824561,\n", " 0.040935672514619936,\n", " 0.040935672514619936,\n", " 0.0292397660818714,\n", " 0.040935672514619936,\n", " 0.0292397660818714,\n", " 0.040935672514619936,\n", " 0.03508771929824561,\n", " 0.04678362573099415,\n", " 0.040935672514619936,\n", " 0.04678362573099415,\n", " 0.04678362573099415,\n", " 0.04678362573099415,\n", " 0.052631578947368474,\n", " 0.04678362573099415,\n", " 0.052631578947368474,\n", " 0.04678362573099415,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.04678362573099415,\n", " 0.052631578947368474,\n", " 0.04678362573099415,\n", " 0.04678362573099415,\n", " 0.04678362573099415,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.04678362573099415,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.052631578947368474,\n", " 0.04678362573099415,\n", " 0.052631578947368474]" ] }, "execution_count": 239, "metadata": {}, "output_type": "execute_result" } ], "source": [ "error_rate" ] }, { "cell_type": "code", "execution_count": 240, "id": "81cce846", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 0, 'range')" ] }, "execution_count": 240, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAGwCAYAAAC99fF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjzElEQVR4nO3deXhc9ZUn/O+tXZZKErZsLY3xyCyxiR0WiQQ7MYYk2DGEhG76HZIJhJdt4jgEjMedDHjeDmGJkzTt0GDAgbhjTNNAd0MyTMdpcBPisJh0bORgljYwONhYJQsZpCottd/3j6rfrVulW1V3q+VK38/z6HmgVHV1VS7VPXXO+Z2fJMuyDCIiIiLK46r1CRARERHVIwZJRERERBoYJBERERFpYJBEREREpIFBEhEREZEGBklEREREGhgkEREREWnw1PoEnCqdTqO/vx/BYBCSJNX6dIiIiEgHWZYRiUTQ1dUFl6t0rohBkkn9/f2YO3durU+DiIiITDh8+DCOP/74kvdhkGRSMBgEkHmSm5uba3w2REREpEc4HMbcuXOV63gpDJJMEiW25uZmBklEREQOo6dVho3bRERERBoYJBERERFpYJBEREREpIFBEhEREZEGBklEREREGhgkEREREWlgkERERESkgUESERERkQYGSUREREQaGCQRERERaWCQRERERKSBQRIRERGRBm5wS0SGTcRTCHhdujaI1HOsBp/bhrMCBsNRxFNpW441q9Fvy3nFkim4JQked319Jv1wLI7xeLLWp+EIXrcL7c0BW441NBpDNJGy5Vj1SJIkdLUELL83DI/HMTyeQEdLAAGvPe8PZjBIIiJD+ocn8PlNu7Di1Hbc9ZUzLB3ruQODuHrbH/D/ffFUXPnpbkvHuvvZt7Fp51uWjqHW0uDFb9efi+MafaaPEU2k8Lm/3YVZTT48dd1nbDs3q576Yz+uf7Sv1qfhKN8670T81coFlo7xj78/hJt/sd+mM6pfqxZ14P7LeiwdY8f+Adz8i/347II5+Pv/9yybzsw4BklEZMi+w8MYj6fw4v89ZvlYL//fY0jLwIvvHLMcJL3wzhAAwOuW4LL4KTaeSmNkIoHX+8P4zMltpo/zp2NjODI8gSPDE4hEEwgGvJbOyy67/2/muXK7JHhc1rOBU1lalpFIyXjxnWP4q5XWjvVi9nn3uCS4p+DzLsuZv50Xs3+LVgyMTAAAOlvsyeCZxSCJiAwJjUQBZMoG8WQaPo/5MpI41kB4wvJ5DWSP9Y/Xno2z/stMS8f6+t//B3731gcIjVg7L/H7ifOrlyBJnNcP/nwRLj3rhBqfTX374+FhfPneF5XXlxXiGPd89QysWtxp+Xj1JhJNYPEtzyAcTWIslkSj33yI0Z99rrpaG+w6PVPqq0hORHUvNJwJHGQZOBq2duEQQUho2Npx0mlZuQB12NA70pk9RsjihVH9e/XbcJG1izivjpbaXoCcQGQyBiNRJC32u4m/nY4aZ0cqJRjwoikbGFn+28m+N9jx92wFgyQiMkT95mf1jbA/e7E+Nha31Mx6bCyOeCoNSYItDbadrSJIsppJyj1eXCDrQX/2vLqm6MXaTm1NfnhcEtIycDQSM32cVFpWHl/r7EgliaDSriys+FusFQZJRGRI3oXfwhthOi3nZaKsZKVEFqmtyW+p/Cfk3uitfhq2L6C0y2gsiUg0s6ptqmY07ORySUrgPWDh9f5BJIZUWobHJaGtyW/X6dWdDhv+dmRZVrKdXTXOdjJIIiJD7LrwD43GkEzLyv/3Wyi52Z0Z6cy+MVstA9oVUNpJXOiDfk/d9EjVu65sNsOO12h7c2BKNm0LXTb87YQnkpjIZpZrHcgzSCIi3ZKpNAZVJQcrJaTCHh0rQYTIJHXa9KlTuShaLRkM118mqV7KGE6iBM0WXg/itVDr1VqVZkepWvzdzWz01XRGEsAgiYgM+GA0UzIQrFz4C0sXVo4l3lTt+tQpGpoj0SRGY+YGLsqyXJflNjZtG2dH+TVk82u0Xtn6XNW4aRtgkEREBhSWGywFNpOOZf1TepdN2ZEmvwfBQGaVjtk+lJGJhFIyADJZN1mWSzyiOti0bZxy4bdQQgrVyZL2SrMl6zZi79+zFQySiEg3UdayY5nvQDj/WFbm0NhdbgNUvRUmzytU8FyNxVOImMxK2akSz9VU15kNbEI2LC6Y6uW2rlYbMknD9fMaZZBERLqJT4enz20FkGm+jiXNLd3vH84/lh1NsXZegDosZg/EczVv1gy0zvBaOpad+qfJxdpOuUyS9T6bqf6821Gqtrt8bgWDJCLSTQQyCzuD8GeX2h8dMTc7RnzSPPOE1uz/m7sAqUcJdNpYyrDavN2vatQVvRVWG8HtIC70bNzWT2Q0PshOmTejnrIjlaQuVZsNKgdYbiMiJxLbh3S1NlgeGifeCM+cdxwA4KPxhKmBkkNjMSRSMiQJmBO0b/5MR3ND3nkapS5riT4UO7a2sIrlNuNmNfrgc7sgy5nJ20ZlVoVOnwyeXaVq8TdYSwySiEi3ftWn4U4Lb4SptKz0JH2sI4gZPrfpY4lP6HOCfnjd9r2ldSqZJHNv9Ep5pTVgS7nGDpFoQumLmg4Xa7u4XBLaWzIBuJnX6GAkhrSc2Xx5Kg+SFDosfIDKrAoVH8Zq/xplkEREuqmbT8VF1kwJSUwfdrskzAkGVP0/xo8VqlBmJDcUz1xgo56LY9cEb6vEv19zwGNp89HpSLy++k29RnODJF1TeJCkYGX45vB4AtFEpqRpxxZDVjFIIiJd8koGrQEl02KmhKRcNIJ+uF2SpfR8qEINsSJwM11uC9uTdbNTP0ttpnVaeD2EplmzvJVStfjQNasOBkkCAD9KEJEuR9Ulg0a/6pO1hYtGtlfHSn9TxTJJ2SAwEksiEk0Y2sJDlmUl49DV0oB0dj5SrRu32bRtnpVAd7o0bQudFhY9KNnqOnmNMpNERLoMFJQMlE/WYfOBjcjWWClHVWrw3AyfBy0NmcDI6Cfi4fEEYtlVUO0tuYByYCRa04GSlQoop4MuC9ttTLetYLparGSS6us1yiCJiHTpL9iV28omsCEly5INklqtfEqv3EyVXN+VsfMSn6Dbmnzwe9zKccbjKYQnajdQslKlyelAjHGwVBKugx6bauiw8qFnuL5eowySiEiXwr2nxJvYsbG44aX7uUxSQ94xzTXFVu6Tp9lVabn90TKPD3jdOC47ULKWJbfp1htjJzHGwUx5ub+gvDzViazbaCyJcDRh6LH1NqKCQRIR6VJYMmid4UXAmx0oaXC7hlDB/mFKet7gcVLqQZIVuPB3mOxDCYUnv9F3WihB2GW67B9WCeL1NWRioOTANMvgWSlV19tkcgZJRKRLqKDcJkm5VWlGP11PatzOBl7D4wlMxPVnpYZGY0imZbhsHiQpdJlsKC8sJwLWJ3hbJctyRUuTU93MRh98HuMfChKpNAYjman09ZIdqYZOk9nhetvjjkESEekisiPqC6yZoXHJVHpS9ifo96AxO1DSSBAhgq325gA8Ng6SFMz2ShWWEzP/bW2kgFWRWBJj2QC0axpdrO0iSZKpC//RcBSyDPjcLsxq9FXq9OqOmcUYmUGS9ZXtZJBERLqEVEvaBTPLoj8YzYwS8Lhy04clSVICEiNBRKUzI2ZX3WlNDLYyMsEOIhPYOsOLBl/t5884UW5Fp/5/Q/F6bm/xT4tBkoKZDxgfjsWVVaFzmutjMjmDJCIqK55M44PRbMlAdeE3syxaBAntzQG4VRcNM5/SRUNspTIj6sZtI0v3tZrJrSwht4Oys/o0WWFVCWYC3Xpb0l4tYiWfkUUP4u+mrckPv6c+AnkGSURU1mAkVzKYOSNXMjBTQirWc2BmonGlG2LFhW0snlL2PCtHXTJQn5fVDXOtGqizMoYT5V6j+i/8AyOT+9OmAyUzbCDrVqmZZ1YwSCKistTDH9UlAzON28rMmIKLtfIp3UAQ0a86r0po8LnRml26r3ce1IdjcWX1k3rvKXXjdi0GSrJp2zozc7P6lXEQ0ys4NZMZDtVhtpNBEhGV1V/kAmumcbt/uHQmycixqpEdyQVv+s5LXTIQq6GAXMAUTaQxPG5sdowdcqXJ+rkAOU2uB8/4hb+esiPVoO7n0/uhoN6atgEGSUSkw0CRC6zIJH00ntA9UFJsYzIpSKrDxm3AeBmwWMkg4HUrq5tqsdFtvQ3pcyIzmzqL+9ZTdqQaxOtsPJ5COKqvVF2P2U4GSURUVuFcI6G5wYMZ2ZVSei/8/UU2++wymJ5PpWUczc6fqeSSdqNTt0tt/dFZw+btehvS50TiNTs0Gkcsqe9DQX8dZkeqIa9UbTALW0+vUQZJRFRWsQu/JEm5kpvFIEIcJxxNYkxHk/QHkRhSaRlul4TZFRgkKSjbUVgMAoFc83a1M0myLKt2V59eF2s7HTfDC3+2hKonmxRPpjEkVoXW0YW/Wozu78hyGxE5Uqn90boMzErKmz5cUI4KBrwI+j26jyUyI+1Bf94oAbuJMoneEkupFXe1GgMQnkhiPDtIcjperO0iSZJyAdfzGlUGSXpcmDmNBkkKXaq+pHLSabkuS5MMkoiorGLN1urb9Fz4ByMxyDLgdUtoa5yc/TFSjqpWZqTT4HYipTYzNfrJ2i7i3I+b4UXAWx/zZ5xKXMD1vEbV5SNJmj6DJAUjCzs+HI8jnkpDktiTREQOUq5kYGRZtCjJtTcHNKcPdxgIIkTvUqUzI12qc9KzSqdkT5LJCd5WsWnbPkrQrOM1Wuq1MB0opWo9z1X2PrOb/PBWYIshs2p+Jvfddx+6u7sRCATQ09OD559/vuT9d+3ahZ6eHgQCAcyfPx9btmzJ+/62bdsgSdKkr2g0/x/J6M8lmq7EPmvFSgZGVqUpPQdFLtZG0vPVavIUn2onEimEJ0r3SqXTMo6OlA8oq11u65+my9ArQbx2jbzep2twmtvGRU/WrT4DypoGSY8//jjWrl2LDRs2oK+vD8uWLcOqVatw6NAhzfsfPHgQF1xwAZYtW4a+vj7cfPPNuP766/HEE0/k3a+5uRmhUCjvKxDIPfFGfy7RdKbO2GiVDDoMrEpThsUVeSM0kp6vVnYk4HUrwWG5ktuxsVzJoF2jr0K91101B0qGlIGG9XUBciIjr9FQlbKd9Sq3qMO5AWVNg6RNmzbh6quvxjXXXIOFCxfirrvuwty5c3H//fdr3n/Lli044YQTcNddd2HhwoW45pprcNVVV+HOO+/Mu58kSejo6Mj7svJziaYzsa1AsTd65ZO1ju0HcqMESh/LSON2NS5Aepu3xfeLlQzaWzJ9WLFkGh9VcaBkvV6AnCjXfF8/2c561WXgQ0F/mQ9QtVKzICkej2Pv3r1YsWJF3u0rVqzASy+9pPmY3bt3T7r/ypUrsWfPHiQSuTec0dFRzJs3D8cffzy++MUvoq+vz9LPBYBYLIZwOJz3RTQdiH6CYiUyEfAMjycwES89Oyak81j6PqVXb0l7l87mbSVwK3JOfo8bbU2ZQMnIdg1W1Wspw4mMjHGY7sGpulQ9MlH6Q0Fuen59vUZrFiQNDQ0hlUqhvb097/b29nYMDAxoPmZgYEDz/slkEkNDQwCABQsWYNu2bXjqqafw6KOPIhAI4NOf/jTefvtt0z8XADZu3IiWlhbla+7cuYZ/ZyInGijzCS/o96AxO1CyXBBRrtzWqTM9n0ylMRgRAVfl31T1rkpTyislljCb2cjXKjZu20dcxD8ci5edMp/bp7C+LvzVkleqLvu3U5+v0Zo3bhf2OMiyXHKppNb91befffbZuOyyy3Daaadh2bJl+Kd/+ieccsopuOeeeyz93JtuugkjIyPK1+HDh8v/ckRTQKkl7UDmb0lv83a5xm3xBhmJJRGJFv/kORiJIS0DHpeEWU2VGyQpdOhsKA+J0mSJi2K1m7dlWWbjto1aGrxoyI5RKPV6jyVTGBqNA6i/C3816W3erteJ8DULktra2uB2uydlbwYHBydleYSOjg7N+3s8HsyaNUvzMS6XC2eddZaSSTLzcwHA7/ejubk574toOlA26Czx5qVnx+94Mo0PxCiBIhfrRr8HzYHMQMlSFyARrLQ3Byo6SFLQOwSyXDkxcyxjE7ytGh5PIJpIA9BuJidjJElSjb0o/noQqxz9HheOy27PMR3l3huKv97TaVlZRVtvE+FrFiT5fD709PRg586debfv3LkTS5cu1XzMkiVLJt3/mWeeQW9vL7xe7RehLMvYt28fOjs7Tf9coulMmYKrI0gqlWlRpg+7XZg5o/j0YfGpu1QQUe2d1Tt1NpSXKyeqv1etcps451mNPg6StInSO1fiwp/L3jVMy0GSQu5vp3hAOTQWQyIlwyUBcyq4xZAZnlr+8HXr1uHyyy9Hb28vlixZggceeACHDh3C6tWrAWRKXEeOHMH27dsBAKtXr8bmzZuxbt06XHvttdi9eze2bt2KRx99VDnm97//fZx99tk4+eSTEQ6Hcffdd2Pfvn249957df9cIspQlwxKZUf0BBFi9VtHi/YgSeVYrQEcOBpReqG05Ja0V+dTp7pEVqo0H9LRfKon62an6d4XUwmdOlZ01uMWG7XQqWM1oLIqNFhfgySBGgdJl156KY4dO4Zbb70VoVAIixYtwo4dOzBv3jwAQCgUyptd1N3djR07duDGG2/Evffei66uLtx999245JJLlPsMDw/jv//3/46BgQG0tLTgjDPOwO9+9zt88pOf1P1ziShDvHkFvC5lR28tespReidkK5mkEp/Sc71N1bkAiTJVNJHG8HgCx2kM1cwrGegot1Vr6na/crGurzKGk+kJdPsZnALQtxij1KbQtVbTIAkA1qxZgzVr1mh+b9u2bZNuW758OV555ZWix/vJT36Cn/zkJ5Z+LhFlqJcwlyoZdOiYQjygc2aMntVfespadgp43ZjV6MOxsThCI1HNIElvyUA9c6ncghE7DLBp23adNr7epzo9Wbd6HlFRX3ktIqoret+8unR8sg6VWSUn6GmKrcX8mXIznMQn5TnBADwlSgbtzQFIEhBPpXFsLG7/iRY5r3r8lO5UuU2PnZkdqaYuJTM8UXSgZD2PqGCQRERFhXQ0bau/H44mMRbT3t/MaLmtVDmq2o3bQPmGcr3ZLZ/HpQyUrEbz9nSf+lwJesY41OI1Wo/0TJnv19HLVysMkoioKD1L2gEgGPAi6M9U74sFNwM6+nWA3Kf0YgFEIpXGYCSzvLqaWxjkyoBFMkkG3uj1ZN7sUs+lDKcSr+FSU+YH2AsGQEyZz5Sni2dh63NLEoBBEhGVYGRlVLlyVK78oK8naTSWRFhjoORgJAZZBrxuCW2N1VsuXG7qtpESoN6RAlbJsjztt8aohOaABzOyU+a1Xu/RREoppdZjdqTaym10W8+vUQZJRFSUkVJNR4kgIjNKIKbrWDN8HrQ0eIseS/2ps9QoAbuV279NbzkR0D/B26qPxhOIJbODJFvqa/6Mk6kHSmr9G4osUoPXrbyWp7NSs5JSqlWh9RhQMkgioqKMfMLrKnHRGAznpg/P1FgZVqhUz4eyTUqVyxjqVWlajDSf6p3gbZUI3Nqa/PB7OEjSTqVGOag/XEznQZJCqfeGY6MxJNOZVaGzq7DFkFEMkohIUzSRwodj5QdJCqU+LaqzLHouGqUuQAM1mj+jPietVTq51Xs6SpM6N8y1ik3blSOC5pBGXxkHeObrKFFeFh962ptLrwqtlfo7IyKqC+qSQXND+ZFqJcsPqmnbepQqR/UPGzuWXeY0F1+lk8obJKknSMr+fmU2/bRqgE3bFSNGWYQ05v+E2LSdp1TmtJ6btgEGSURUhHpisJ7sT6nG7X6dq+QEJT2v8SldBG96j2WXzCqdTKBUuCptKFsycLskzAnqaXLPDSNMp7Vnx9ght7SaF2u7lXqNcvl/vlILFUI1+nvWi0ESEWkyOjG41PYDRidkl0rP13JJe1eRfahE0DQn6IdbRzP5nKAfkgQkUnJFB0rq2ZyYzCmV7eQAz3zqLHNhqbreR1QwSCIiTUaX5Yr7RWJJRAqW7uudti106WncrsEFKNe8nX9eRgNKr9ulbF1SyeZtIyvuyBi9jdukmjKfTCt9jkJ/nQfyDJKISJO4wOrdRLbR70FzINO7VLgCTCk/6M1KFWmSjifTuVECNShliAtj4dTtfoNBIKBvI1+rQiy3VYwIgEYmEhiP50+ZZ+N2PvWU+cKgcqDOX6MMkohIU65UY+LCXxgkGWy2Fhmb8XgK4YncBehoOApZBnxuF2bpGCVgt84ifSji/zub9V8Uy03wtkqWZdXUZ16s7RYMeNGUnTKvDnQn4imlsZ/lthxlT8ZifzvMJBGRk+SyIwYu/K2TL/x504d1XjQafG4cNyM7UFK1Aky9Sq4W82eK9aGIFU5mMkmVGih5bCyOeCoNScqUO8h+uUA3928oXqMzfG4ls0qq50q1GjCVlnE0IobM1mdAySCJiDTlSmTWSkhiaXzA60LrDP3Th7VmCdW6x6ZYH0rIYGkyc6zsJ+sKBUnieWtr8sPn4Vt9JYigWT2FPWRwJth0ofXe8EEkhlR2VejsYP0NkgQYJBGRhol4CsPZkoGRhkqtSdn9qpU+Ri4anVoXoBo3xKqnbquX7odMNJ92VLjcZrQPjIzr0grk63gfslrSfG/I/ne7zlWhtcAgiYgmEW9kjQZLBloDJQfC5rI/udKd6lgmGqTtlCnzAfFUGh+OZ0qIyVQag9mSgZHm00o3btfzpqFThfIaVZeE63xJe610amRha/33rAeDJCKaRP3mZST7o1WO6jc5M0YriDC64s5uXrdL2V9KZA8+GM2UDDwuSVnBo4cotx0NV2agpJnsFhmTa0bWyCTV8YW/FrSzzPUfUDJIIqJJ+k2WtTq0GllNHivX6Dm53GZkxZ3dCt/sxTm1NwcMlQxmN/nhkoBkWlbGGtiJU58rTwTydrzepzrxfBwdiSkfCmpdPteDQRIRTWJ2Wa64/2gsiXB2oKTZmTFajdv18KZauCotN13Z2Dl53C5l1Vklmrc59bnycs33zsqO1IIyUDKVVla7DjigJMwgiYgmCYXNZWxm+Dxoacgu3c9epPtNBhHqxm1ZlhFLppSMSy0Hz3UWXBiNbrmiVsnm7ZDJXjDST/x9RKJJjMYy87w4wFNbXqk6+3rvd0C2k0ESEU1iZkm7UFiOEnNRjH5aFAFENJHGyEQCg+FMgOT3uJQZSrVQOBvHykWxq0LN2+m07IimWKdr8nsQVKbMT2A8nsTIhPFVodNFYfO2mYG11cYgiYgmMbrXmpq6eTuaSCl7NRnd5TvgdStTtfuHo3lljFrOnyksA1rZoFOrmdUOQ2MxJFIyXBKUPeKoMtSBrvi7afJ70ByoXSBfr5Q9GYcnkEyllRlq9TymgkESEU1ipfenQ/VGKI7T4HWjucH49OEOVRBRL6u1Cuc3mS0nAqV3krdCfEKfHfTD6+bbfCXlvUYNbr8z3ahf74ORGNIy4HFJmGVgVWi18a+HiPKoSwZmLvxdqjdCddO2meyPuklaKWvVODUvsmti6b6V5tNSO8lbYXbsAhkn+mnyXu8MkjR1afw9G10VWm3cWIaI8og3r6Dfg6CJkkFeYDNsLbDJXYAmEIlmGmNrvbP6nGBm6X4iJeNoJIrBiChNmi+3DdieSeLFulo6mnPlV1f2g0CtA/l6lZ8Zrv+mbYBBEhEVsFoyUPfZqDekNUOdng9PJLO31fYC5HW7MDvox9FwDH88PIK0DHjdEtoajZcMlDk74aiyh5UdOG27ekRwHApH4cr++7Hcpk2ddXNC0zbAchsRFehXSmTm3rzUK1isTshW740lhkrWQ5OnCD76Dn0EIFMycJkIcGZn96xKpWV8ELFvoGS/suKu9s/VVJd7jTonO1Ir4u/maDiK9z+qn7/nUhgkEVEepcem2WT2J/u48XgKBwYimdtMflrUaoqth+yIuAjufS8TJJkta7ldEtqD+bNj7DBgYXYTGaPOdtbTa7QeqUvVrx0ZAVD/JWEGSUSUx+yEbKHB51bmGL0q3ghNHku9vFpM6a2HN1XRh6L8fhYuilobf1rFxu3qEQHzaCyJg8fGANTHa7QeedwuzAlmnhvxt8NyGxE5Sr/FZmsgd3GOJ9OWjtXeksmyxFOZ4wS8LrTWcJCkIC6M4vez0kye2yTVnkxSKi3n5s+w7FNx6inzuddDfV/4a6mz4G+n3l+jDJKIKM+ADfOICj9Jmz2W3+NGW5NPddyGmg6SFAp/H7OlScD+FW7HRmNIpjODJGfX8fyZqUT9eg/6PWjyc01UMXa9N1QLgyQiymPHfkrqzEqjz43mgPmLhrpkVC9ljMIylpXMQeGGuVb1q+bPeDhIsirUr8taj6iod+q/HbOrQquJf0FEpBiNJZV5RFZ6BfICm1Zr2Z+8C1Cd9C8UBpBWSpPqWVB24Iyk6lMHyfXyGq1X6tdlR4u5VaHVxCCJiBTiAhsMWCsZ5Ac21i7Wdh7LLrObMqt0BCslgw67M0ls2q46dbm1Xl6j9SrvA1Rz/b9GGSQRkcKOpm3A3hJZ3qf0OilleNwutGcvjD63S9mI1wwxJ+ZoOIpktkHdCm6NUX3MJOmn/huul7/nUhgkEZHCjqZtoDClbjXgyh2rnrZ7EOfV3uK3VDKY1eSHxyUhLQMfjFofKFkvGwFPJ+xJ0q8ey+elsAW/zozHk/gwOw+mnLYmPwJed4XPiColmkjB73HZslpreDyO0VjS8nHeOpoZ/mh1WW5HXmBjNeDKvZHW04U/c17Dlt/o3S4J7c0BHBmewKvvjyCVli0d7/CH4wBym+dS5dVjSbhezQkGlCnzTniuGCTVmX9/cxDXP9qn675zgn48t/5cNHK5qeMMjcZw3t/8FstOacN9X+uxdKwX3xnC1//+PyxfXNWsXvgDXjdmNfpwbCxueWZMvWeS7NhWoas1EyR94+G9lo8lOOECNFXkl5fr5zVaj8SU+f6RqCNeo7y61hm3JMHvKV8FjSXTGIzE8M7gKE6b21r5EyNbvTUQQSSWxAtvD1k+1svvHlM2R/XYsFKkdYYXn10wx/Jx/rL3eOw68AHOOKHV0nH+rLUBy05uQ6PPg+aG+nnLWrmoA//2+gAuWNxp+VgXn/FneDMUQcKGniQA+FhHEAs7m205FpXX4HPjy6d3ITQSxX+ZNaPWp1P3/rLnePz6tQF8sntmrU+lLEmWZfs+fk4j4XAYLS0tGBkZQXNz9d+MLr73Rew7PIwtl/XgC4s6qv7zyZqnXx9Qsgavf3+lpWzg+n/+I/5l7/v4q5Ufw7fOO8muUyQimpKMXL/ZuO1QIk1p56aYVD2j0Vz/kNWl3+I10GFh6jMREU3GIMmh7J7SS9UViSaU/7Ya6Co7j3NVDRGRrRgkOVQuk8QgyYnUK9Gs/BvKsqw8ng2jRET2YpDkUCJrELJp53Cqrog6SBo2HySNTCQwkUgB4GomIiK7MUhyKJbbnC2S15NkPtAV//4zG32cmUVEZDMGSQ7VqdrKwM75OFQddjVus2mbiKhyGCQ51JxgZoPNZFrGkA1bGVB15fckmc8kKXutsWmbiMh2DJIcSr3BJktuzpO/us38v98Am7aJiCqGQZKDiX2s2LztPOqepEg0aXrftX5RbmPTNhGR7RgkOZjYx6qfmSTHKQyKzAa6IpPEchsRkf0YJDmYyB4McOq244hMks+d+RM0W3ITj+toZrmNiMhuDJIcTKxwYybJWWRZVjJJJ85pAmCueVuWZfRnM1DMJBER2Y9BkoN1tWayBwMMkhwlmkgrYxtOac8ESf0mBkoOjycQS2Z2jW/nCAAiItsxSHIwNm47k1jZ5pKA7rZGAOYCXdG0PYuDJImIKoJBkoOJxu2jkRgHSjqI2JKkye9RsoH9Jspt3NiWiKiyGCQ52OygH26XhFRaxgcRDpR0CjFtOxjwKoGumUxSKMwZSURElcQgycHcLgntQT8Ac5kIqo2IEiR5ciVTM0FStszKjW2JiCqDQZLDdWbLNVZ2kqfqGo1lepKa/B4lwBmNJRFWTeHWg9O2iYgqi0GSw+UyEcwkOYXIJDUFPGj0e9Ac8AAwXnIT2UNmkoiIKoNBksN1WSjXUG2IGUnBgBdAbpRDv8FViiElk8QgiYioEmoeJN13333o7u5GIBBAT08Pnn/++ZL337VrF3p6ehAIBDB//nxs2bKl6H0fe+wxSJKEiy++OO/2W265BZIk5X11dHTY8etUXaeFxl+qDSWT5M9kkDpNBLqyLCv3F0EWERHZq6ZB0uOPP461a9diw4YN6Ovrw7Jly7Bq1SocOnRI8/4HDx7EBRdcgGXLlqGvrw8333wzrr/+ejzxxBOT7vvee+9h/fr1WLZsmeaxPv7xjyMUCilf+/fvt/V3q5bc1G2W25wil0nKBEkd2UDXSJD04Vgc8ewgyTnNfpvPkIiIgBoHSZs2bcLVV1+Na665BgsXLsRdd92FuXPn4v7779e8/5YtW3DCCSfgrrvuwsKFC3HNNdfgqquuwp133pl3v1Qqha997Wv4/ve/j/nz52sey+PxoKOjQ/maPXu27b9fNbBx23mU1W3ZTFKXiaGgIqBqa/LD7+EgSSKiSqhZkBSPx7F3716sWLEi7/YVK1bgpZde0nzM7t27J91/5cqV2LNnDxKJ3MqgW2+9FbNnz8bVV19d9Oe//fbb6OrqQnd3N77yla/g3XffLXm+sVgM4XA476seiAvsYCSKZCpd47MhPcTE7aZsJkkEugNh/YFurtTGfiQiokqpWZA0NDSEVCqF9vb2vNvb29sxMDCg+ZiBgQHN+yeTSQwNDQEAXnzxRWzduhUPPvhg0Z/9qU99Ctu3b8fTTz+NBx98EAMDA1i6dCmOHTtW9DEbN25ES0uL8jV37ly9v2pFzWryw+OSkJaBQQ6UdITRmHZPkpHGbbGasYN7thERVUzNG7clScr7f1mWJ91W7v7i9kgkgssuuwwPPvgg2traih5j1apVuOSSS7B48WJ8/vOfx69+9SsAwEMPPVT0MTfddBNGRkaUr8OHD5f93arB7ZKUzU05BsAZ1BO3gfzGbfF6LodN20REleep1Q9ua2uD2+2elDUaHByclC0SOjo6NO/v8Xgwa9YsvP766/jTn/6Eiy66SPl+Op0pQXk8Hhw4cAAnnnjipOM2NjZi8eLFePvtt4uer9/vh99fnw2ynS0BHBme4BgAh1BP3AZyKxTH4ymEo0m0NHjLHkP0L3Vw+T8RUcXULJPk8/nQ09ODnTt35t2+c+dOLF26VPMxS5YsmXT/Z555Br29vfB6vViwYAH279+Pffv2KV9f+tKXcN5552Hfvn1FS2SxWAxvvvkmOjs77fnlqozN285SWG5r8LnROiMTGOnNBvZzRhIRUcXVLJMEAOvWrcPll1+O3t5eLFmyBA888AAOHTqE1atXA8iUuI4cOYLt27cDAFavXo3Nmzdj3bp1uPbaa7F7925s3boVjz76KAAgEAhg0aJFeT+jtbUVAPJuX79+PS666CKccMIJGBwcxO23345wOIwrrriiCr+1/ThQ0llE47bIJAGZbNLweAKh4SgWdDSXPcYAy21ERBVX0yDp0ksvxbFjx3DrrbciFAph0aJF2LFjB+bNmwcACIVCeTOTuru7sWPHDtx4442499570dXVhbvvvhuXXHKJoZ/7/vvv46tf/SqGhoYwe/ZsnH322Xj55ZeVn+s03JrEOWRZzmWS8oKkAN4MhXUFuum0rARJbNwmIqqcmgZJALBmzRqsWbNG83vbtm2bdNvy5cvxyiuv6D6+1jEee+wx3Y93AtHT0s9MUt0bj6eQzvZmB/253qNOA4Huh+NxxFNpSBJ7koiIKqnmq9vIOjErZ4CZpLonskhul4SAN/fnl9u/rXygK3rPZjf54XXzT5iIqFL4DjsFdCgDJWNIcKBkXVP3I6nHWYiy2UC4fKArtqBh0zYRUWUxSJoC2hr98LolyDJw1MDUZqq+ws1thc5WsTVJ+X+/AWVlG5u2iYgqiUHSFOBSDZQcYF9SXStc/i90qTa5LTdQUmSS2I9ERFRZDJKmiC42bzuCyCQ1B/IHRoqAZyKRwshEYtLj1ES2ifu2ERFVFoOkKaKTzduOILYkUS//B4CA142ZjT4A5Zu3WW4jIqoOBklTRIeySSozSfUsUqTcBuQascs1b7Nxm4ioOhgkTRG5nhZmkuqZ1rRtoVNHoJtOy0pzfienbRMRVRSDpClCyUKwJ6muFSu3AbnyWalAd2gshkRKhksC5gTrc8NlIqKpgkHSFMGp284gVrcFtcptYgxAiX9DZZBkkIMkiYgqje+yU4S4wA6NxhBPcqBkvRKr24IFq9sA1dYkJcptITZtExFVDYOkKWLmDB98bhcHSta50o3bmcBnoMS/X4hN20REVcMgaYpwuSRlhZueneSpNkazjdvaPUmicXui6EBJLv8nIqoeBklTiJGd5Kk2lJ4kjSBJBLmxZBofjWsPlBQ9ZxwkSURUeQySppBOZpLqntKT5J/ck+T3uNHWlBkoWSzQDQ1zSxIiomphkDSFiLk54kJK9afUCAAgF/wUa95m4zYRUfUwSJpCuphJqmvptIzRePHGbaD0rKSUapAky21ERJXHIGkK6VDtJE/1ZyyehOjH1upJAkoHukOjMSTTmUGSs5s4SJKIqNIYJE0hbNyub6Jp2+uW4Pdo/+mVCnTFbe3NAXg4SJKIqOL4TjuFiCBpaDSOWDJV47OhQko/kt8DSZI079PVWjzQZdM2EVF1mQqSnn/+eVx22WVYsmQJjhw5AgB4+OGH8cILL9h6cmTMzEafkqE4OhKr8dlQoXCJadtCp45MUhebtomIqsJwkPTEE09g5cqVaGhoQF9fH2KxzMU4EongBz/4ge0nSPpJksSSWx0bLTFtW1CPcSgcKMlp20RE1WU4SLr99tuxZcsWPPjgg/B6c5+Ily5dildeecXWkyPjOHW7fpVb/g9k+o0AIJ5M48OxeN73xCBJltuIiKrDcJB04MABnHPOOZNub25uxvDwsB3nRBaIUkw/M0l1J5LdkqS5RJDk87jQll25VhjoDijTtlluIyKqBsNBUmdnJ955551Jt7/wwguYP3++LSdF5nVmG38HmEmqO3rKbUCuebu/YCioaNxmuY2IqDoMB0nf+MY3cMMNN+D3v/89JElCf38/HnnkEaxfvx5r1qypxDmSAWIJeX+Ric1UOxEd5TYgFwQNhHP/hqm0jKORWPb7zCQREVVD6XdrDd/5zncwMjKC8847D9FoFOeccw78fj/Wr1+P6667rhLnSAZ0sXG7bkV0rG4DckGQOtD9IBJDKi3D7ZIwO8hBkkRE1WA4SAKAO+64Axs2bMAbb7yBdDqNU089FU1NTXafG5kgmnpZbqs/o7FMT1K5cpvWCkXRY9Ye9MPt0p6xRERE9jJcbrvqqqsQiUQwY8YM9Pb24pOf/CSampowNjaGq666qhLnSAaIxu1jY3FEExwoWU9ET1KxLUkEZaNiVaArgt5ONm0TEVWN4SDpoYcewsTE5FLOxMQEtm/fbstJkXmtM7wIeLMDJcPMJtWTXLnNRCaJTdtERFWnu9wWDochyzJkWUYkEkEgkHuzTqVS2LFjB+bMmVORkyT9MgMlG3BwaAz9w1HMm9VY61OiLKVx21+uJynzt3V0JIZ0WobLJSlZJQZJRETVoztIam1thSRJkCQJp5xyyqTvS5KE73//+7aeHJnT2RLAwaExNm/XGb0jANqbA5AkIJ5K49hYHLOD/ly5jSvbiIiqRneQ9Nxzz0GWZXz2s5/FE088gZkzZyrf8/l8mDdvHrq6uipykmRMqf2/qHbEMMly5Tav24XZTX4MRmIIjUxgdtCvNG6LGUpERFR5uoOk5cuXAwAOHjyIuXPnwuUytTcuVQH3b6tPozp7koBMg3YmSIriE8fnGrc7mEkiIqoawyMA5s2bBwAYHx/HoUOHEI/n7y/1iU98wp4zI9PE1O0QB0rWjVRaxlg8s9qwXLkNyMy7+uPhzJTtZCqtNOF3sSeJiKhqDAdJH3zwAa688kr8+te/1vx+KsVl57XWyU1u647oRwLKT9wG8jcqHozEkJYBj0vCrCYOkiQiqhbDNbO1a9fio48+wssvv4yGhgb827/9Gx566CGcfPLJeOqppypxjmRQrieJ5bZ6IYIkn8cFv8dd9v5dqr4yEey2Nwc4SJKIqIoMZ5J+85vf4H//7/+Ns846Cy6XC/PmzcP555+P5uZmbNy4ERdeeGElzpMMEBfYj8YTiCZSCHjLX5SpspR+JB2lNkCdSZpQgl02bRMRVZfhTNLY2JgyD2nmzJn44IMPAACLFy/GK6+8Yu/ZkSnNDR40ZAMjltzqg7IliY5SG5ALiEIjUaW3jE3bRETVZThI+tjHPoYDBw4AAE4//XT89Kc/xZEjR7BlyxZ0dnbafoJknCRJquZtltzqQdjAyjYgVzI9Go7iSPbfkE3bRETVZbjctnbtWoRCIQDA9773PaxcuRKPPPIIfD4ftm3bZvf5kUldLQ1494MxZpLqxGhU3yBJYU7QD5cEJFIyXjsyAoDTtomIqs1wkPS1r31N+e8zzjgDf/rTn/Cf//mfOOGEE9DW1mbryZF5HZyVVFdy07ZLb0kieNwuzAkGMBCO4tVskMRyGxFRdRkqtyUSCcyfPx9vvPGGctuMGTNw5plnMkCqM6I0089MUl0Q07abdZbbgNy8q3gyDYCN20RE1WYoSPJ6vYjFYpAkLkOudyLrMMAgqS4o5TYjQVJBea2D5TYioqoy3Lj97W9/Gz/60Y+QTCbL35lqRmQh+tm4XRciOje3VVNvZut1S2hr5CBJIqJqMtyT9Pvf/x7PPvssnnnmGSxevBiNjY1533/yySdtOzkyT8xKGggzk1QPIsrqNn09SUB+JqmjJQAXB0kSEVWV4SCptbUVl1xySSXOhWwkSjPD4wlMxFNo8HGgZC2ZK7flMkmdzWzaJiKqNsNB0s9//vNKnAfZrDngQaPPjbF4Cv0jEzhxdlOtT2laE6vb9E7cBnIl08L/JiKi6jDck0TOkBkoyebteiFWt+kdJgnkl9s6ufyfiKjqDGeSyDk6WwJ4Z3AUb4bCmDdrhuXjtTR4DfXUFJNMpXX1SjX6PDiu0Wf558myjGgibUvJMZFKQ5YzG9UaYaZxe04ws6FtKi1zkCQRUQ0wSJrCxIX19l+9idt/9abl4/k8Luy4fhlOmmOtdHfJ/S/hj++PlL2fJAE/vawHKz7eYenn3fyL1/CLvvex88blmDvTfLAoyzK+vPlFjMWT+Pd1y+F16w+UzPQkuV0S2oN+9I9EGSQREdUAy21T2AWLO3HcDC/8HpflL5eUGWq4970PLZ1TJJpQAqRSP8/tkiDLwCuHhi0/D3/404eIJtJ4vb98YFbKeDyFN0JhvHdsHO9/ZGy0grK6TefEbeEve47HyXOa8MnumYYeR0RE1hnKJCUSCaxYsQI//elPccopp1TqnMgm535sDvr+eoUtx7rpyf149D8OWd4LTvRHtTR48cfvFT+3n+x8C3/37NsYjSUs/Twgl8URgYrp48Ryjw+NTKC7rbHEvXOSqTQmEikAxnqSAGDdio9h3YqPGXoMERHZw/DE7ddee40Tt6chUe4JDVsLksQ2KeXKRyKYGLUY2AC54EYd5JihDrKMPA9jsZTy340GepKIiKi2DJfbvv71r2Pr1q2VOBeqY53KXnDWJniHshPA9QZJVrM/qbSsBEdWjyVWqAHGNg4OZx/n97gMN3wTEVHtGP5YG4/H8bOf/Qw7d+5Eb2/vpInbmzZtsu3kqH502rQXnCjXldvRvinbuxOxmP0Zi+cebzWTlF9u0/88KDOSbFgZSERE1WM4SHrttddw5plnAgDeeuutvO+xDDd1iWGGVnuSRAamq0wmqcmmcpv68ZZ7kqJWgySW2oiInMTwu/Zzzz1XifOgOifKY6OxJMLRBJpNZkVEcCEGXRajlNssNm5H8oIk+45lJEgSP9fIjCQiIqo9Sw0S77//Po4cOWLXuVAdm+HzoKUhExhZKbmF9DZu+23KJKmCLMuN2wWr23Q/LspMEhGRExkOktLpNG699Va0tLRg3rx5OOGEE9Da2orbbrsN6XS6EudIdUJp3h4217wty7Luxm2l3BZLQpZlUz8PyM/+2Fm6ExsH63qciWnbRERUe4bftTds2ICtW7fihz/8IT796U9DlmW8+OKLuOWWWxCNRnHHHXdU4jypDnS1NuA/ByKmM0mRWBJj2cCi3F5kIqBIpGTEkmkEvOa2FInY2JNUWK4LjUxgvo6NgyMmpm0TEVHtGc4kPfTQQ/jZz36Gb37zm/jEJz6B0047DWvWrMGDDz6Ibdu2GT6B++67D93d3QgEAujp6cHzzz9f8v67du1CT08PAoEA5s+fjy1bthS972OPPQZJknDxxRdb/rkEdChjAMwFSWK2UOsMb9l91Bp9Hoh1AFaCG3WJzc7VbYD+viSRgTLbx0VERLVhOEj68MMPsWDBgkm3L1iwAB9+aGzLiscffxxr167Fhg0b0NfXh2XLlmHVqlU4dOiQ5v0PHjyICy64AMuWLUNfXx9uvvlmXH/99XjiiScm3fe9997D+vXrsWzZMss/lzK6lIGS5sptYsaSnh3tXS4JTb5cyc2sUTsbtwvOQ2/ZkeU2IiJnMhwknXbaadi8efOk2zdv3ozTTjvN0LE2bdqEq6++Gtdccw0WLlyIu+66C3PnzsX999+vef8tW7bghBNOwF133YWFCxfimmuuwVVXXYU777wz736pVApf+9rX8P3vfx/z58+3/HMBIBaLIRwO531NN2K20UDYXCZpQGfTttCkDJQ0H9xECjJJdvQ3+bIb2+otO7LcRkTkTIaDpB//+Mf4+7//e5x66qlKoHHqqadi27Zt+Ju/+Rvdx4nH49i7dy9WrMjfv2vFihV46aWXNB+ze/fuSfdfuXIl9uzZg0QidyG99dZbMXv2bFx99dW2/FwA2LhxI1paWpSvuXPnlv0dp5oui43bepu2BTu2JlEHWGk5s0mtWaPZY504J9OHpLfsKM6Bq9uIiJzFcJC0fPlyvPXWW/jzP/9zDA8P48MPP8Rf/MVf4MCBA5qlrWKGhoaQSqXQ3t6ed3t7ezsGBgY0HzMwMKB5/2QyiaGhIQDAiy++iK1bt+LBBx+07ecCwE033YSRkRHl6/Dhw2V/x6lGzDYKjURNZWREUNFVZkaSIMpTVqZuFwZYlkp32cee0p4JkgZ0jgFguY2IyJkMvWsnEgmsWLECP/3pT21bxVY4pVuW5ZKTu7XuL26PRCK47LLL8OCDD6Ktrc3Wn+v3++H3+0sec6rraM5kgMbjKYSjSWVukl6iPCWOU05TttHZrsZtcaz2ZnPHEudxcjaTpLtxmxO3iYgcydC7ttfrxWuvvWbL9iNtbW1wu92TsjeDg4OTsjxCR0eH5v09Hg9mzZqF119/HX/6059w0UUXKd8Xs5s8Hg8OHDiAuXPnGv65lNHgc+O4GV58NJ5AaGTCcJCkNG63Gi23WehJihYGSeaPJbJSJ7cHAegvOyo9SX6ubiMichLD5bavf/3r2Lp1q+Uf7PP50NPTg507d+bdvnPnTixdulTzMUuWLJl0/2eeeQa9vb3wer1YsGAB9u/fj3379ilfX/rSl3Deeedh3759mDt3rqmfSzliZZrRPdxkWVYySV06VrcBqqnbFkpkhaU6s8dKp2WMxkW5LRMkhaNJjOk4HiduExE5k+F37Xg8jp/97GfYuXMnent70djYmPf9TZs26T7WunXrcPnll6O3txdLlizBAw88gEOHDmH16tUAMn1AR44cwfbt2wEAq1evxubNm7Fu3Tpce+212L17N7Zu3YpHH30UABAIBLBo0aK8n9Ha2goAebeX+7lUXGdLAG+EwsrMI73CE0mlabpD7+o2W3qSMpkjSQJk2XwT+HgiBdGG1dkSQNDvQSSWRGgkipPmlB4oKbZGYU8SEZGzGH7Xfu2113DmmWcCAN5666287xktw1166aU4duwYbr31VoRCISxatAg7duzAvHnzAAChUChvdlF3dzd27NiBG2+8Effeey+6urpw991345JLLrH151JxolRmZO8yIFdqm9no0z09O2hDT5J47OwmPwYjMdPHEmU6j0uC3+NCZ2sAkaOjCI1MlAySEqk0oolMyZeZJCIiZzH0rp1KpXDLLbdg8eLFmDlzpi0nsGbNGqxZs0bze1oTvJcvX45XXnlF9/GLTQEv9XOpOLPlNqNN24Bq/zYbGrc7WxsyQZLJrNSoataRJEnoaGnAW0dHyz4P6nNnJomIyFkM9SS53W6sXLkSIyMjlTofqnNixpHZTFKXzqZtwHpPUiotKyW+zmxwZjbgihSsUMtNHy8TJGUf1+B1w+M23AJIREQ1ZPhde/HixXj33XcrcS7kAEomyWBPkri/ni1JhKDFidvqgEj0QZk9VuEKtU5l+njpYDGc/Xmctk1E5DyGg6Q77rgD69evx7/+678iFApN+606pptcJsnYQElRltLbtA2otyUxm/3JBCh+jwuzGn0AzGelRMAlsludyvRxfeU29iMRETmP4XfuL3zhCwCAL33pS3mN2mIYYyplftsHqn8iyJlIpDAykUDrDJ+ux4VMlNuaLJbb1EMclYDL9LHytxbR28CunAP7kYiIHMfwO/dzzz1XifMghwh43ZjV6MOxsThCI1HdQVJuc1sz5TazK9Jy24Eo4wSsHiuQn0kq17jNzW2JiJzL8Dv38uXLK3Ee5CAdLYFskDSBhZ3l9/iQZTk3bdtAuU2MABiNJctuG6MlV+ry5o5luSdJBEkNyu2jsWTRlWtKwzenbRMROY6p5TbPP/88LrvsMixduhRHjhwBADz88MN44YUXbD05qk8iQCjXjyMMjyeUWUHtRkYAZAOPVFpWHm9ERLWxrLLFieXSXSbYafR70Jw9ZqjE9iSjzCQRETmW4SDpiSeewMqVK9HQ0IBXXnkFsVgMABCJRPCDH/zA9hOk+iOyQQM6ZyWJktQsA4MkAWCGzw1XNnlkZlWaOkBR+pssDpNUN2DrmRklHscZSUREzmM4SLr99tuxZcsWPPjgg/B6cyWEpUuXGhrySM4lmpb7dc5KChnc2FaQJMnS1iTqwMZqf9NoLL/cBuhr3haPa2YmiYjIcQwHSQcOHMA555wz6fbm5mYMDw/bcU5U57oMzkrqN9G0LeR6iYwHN+qVZcr07ngS6bT+0QWC1ia1ejJJLLcRETmX4SCps7MT77zzzqTbX3jhBcyfP9+Wk6L6JsYADIT1BUkDJpq2BSur0tQry0TjtCxnNqs1fSx1JknH1O1wwRBKIiJyDsNB0je+8Q3ccMMN+P3vfw9JktDf349HHnkE69ev515o00SX0rg9oWugpJlp20Ku4dp4T1JEtbot4HXBk21wMtXfFJucEVIGSpYst3HiNhGRUxl+5/7Od76DkZERnHfeeYhGozjnnHPg9/uxfv16XHfddZU4R6oz7S1+AEAsmcZH4wnMbCw9K8nMvm2ClanbSoDiz2xK2xTwYHg8kSmBtRg8VlT0FuUyQsrWJKXKbbHJZToiInIGU+/cd9xxBzZs2IA33ngD6XQap556Kpqamuw+N6pTfo8bbU0+DI1mZiWVC5JEENFhYPm/YKXcVhigNPkzQZKVJnDtxu1Sq9s4cZuIyKlMv3PPmDEDvb29dp4LOUhnS0MmSBqO4uNdxdMysiwrQURXq4XGbVOBTX4fUeZYE4YDrlRaxlg808ekVW4bjSURjibyskwCG7eJiJzL1DBJItG8HSrTvP3ReAKxZGYQ5Jxmv+GfY2UIpHriNpDL5hhdKTcWz91fXTab4fOgpSFz7GIlt0jBEEoiInIOBklkSpeysqv0rKT+7Pfbmvzwe/QPkhRy5TYTjdsFs42aTDaBi8yTz+2a9Dsozdsaz0MsmUI8GyBymCQRkfMwSCJTOlvLzwhSf99M0zZgdQRA/pRsswMlS5XMuko8D+qMFYMkIiLnYZBEpigzgspM3RYzksw0bQPmy22JVFrZ703duA2YCJJik7ckEZSyo1aQlD3nRp8bbpexzXmJiKj2GCSRKXqmTQO5adtmmrYBVZBktI9IFVQ1Tiq3GTuW1iBJoVTZMcKmbSIiR2OQRKZ0qjIopQZKiuDBzLRtIDep2mj2R9w/4HXB6868zM02bpcKkjrErCSNBvZSjyMiovrHIIlMaW8OQJKAeDKND8fiRe8nMk0dJoMks+W2SHTyqjLx3xGDjdulBkJ2lWjcHuXKNiIiR2OQRKb4PC60NWWW9JcquVmZkQSoJ26bDGxUWRzTPUkaAZegbmAvzKiV6mUiIqL6xyCJTOss0bQMZAZJWpm2DahKZLGkrn3iBK0908z3JE2eti2I32s8nlI2s809juU2IiInY5BEppVb4XZsLI54Kg1JslJuy2Rv0nImENErV27LBShmRwBENDa3FRp8bhw3I3OOhc+D1jkQEZFzMEgi08QKt/5h7UxSKHv77Ca/0jxtVMDrUpbPG8kAaWVxgtkmcKON26Nlgh1lpV/B8zCqDLNkTxIRkRMxSCLTRCZpoEgmSWRWzK5sAwBJkkxN3dYKUKyOACi2SW2xsqNSpmMmiYjIkRgkkWmiabm/SE+SCBpEpsUsM2Wywmnb6v8ejSWRShvpbyo976izVbvsKDJQzQySiIgciUESmdZVpiepX2SSTG5JIjT5jWeAtEpk6tKbetPacpRNaouUzYoN1hyNsXGbiMjJGCSRaaIZ++hIDGmNzMyAkkmyFiSZyiRpBCh+jwted7a/yURWqmgmqUiwGObEbSIiR2OQRKYpAyVTaRzTGCgpGpmtl9uMN1xrbQkiSVJuoKSBY42WWcpftHGbIwCIiByNQRKZ5nW7MDs7UHJAoy8pFLbeuA2ohkCaKrfll8hypTvjTeDNRSZnF9uihRO3iYicjUESWZJr3s4vNaXTuUGSnSanbQtmpm5rTdwGjE/dTqbSynymYmUzUXacSKQwMpE7R63mcSIicg4GSWSJ0rxdsHfZ0FgMiZQMlwTMCfot/QwzG9MW6yMy2t80FssNsCxWNgt43ZjV6AOQmxklyzIbt4mIHI5BElkisiihcH65TWSRZgfND5IUzGxyW2xTWqPHEpvh+j0u+DzFfw/xPAxkS4yxZBqJlKx5DkRE5AwMksiSriJNy/02NW0D5jamLbZvWpPBrJTerUUKp4+rz7XRxyCJiMiJGCSRJcUGKYr/77I4IwkAmsSKNJ3Zn3gyjVgyDWDybKOgwWPpLZnlpo9HJz3Old1WhYiInIVBEllSbEsOESx0NFvPJCklMp2N2+pSWmFPktEm8GKr5AqJYFE0sJfb742IiOofgySyRJSZjoajeQMlxVYldmSSggYnbosAZYbPrWyOKxgut+nMJBWWHUUvE5u2iYici0ESWTIn6IdLAhIpGUOjMeV2sdqtw+KMJECd/THWbK0VoBhu3Na5SW2ucTu/J4nTtomInItBElnicbswJzi55GbX5raA8YnbpZqtjY4A0Fs261Iatycyy/91lumIiKh+MUgiywqbt1NpGUfD9pXblBJZPKm5R1whZTsQjQClyW+ucbtwKGWh9pbMLKhYMo2PxhO6H0dERPWLQRJZVti8fWw0hmQ6M0hSbFtihcjiyDIwFi8f3JQKUHI9Sfoat/WWzfweN9qaMgMlQyMTuTIdgyQiIsdikESWKRu8ZoMk0bTd3hyAx+IgSSAzyNHrzjRg6+klKhWgGC23RQyUzdQb3UaKDLMkIiLnYJBElolMUn+2WVs0bVvd2FaQJMnQqrRSAYrRxu1RA6vU1NPHR9m4TUTkeAySyDKRQRGzkexs2hZEsBHWESSVClBEsDMeTyGlo79J78RtIH8fu2ITv4mIyDkYJJFlucZtESTZm0kCcg3X+sptJXqSVMGOnqyUkU1qO1tzZcdie8cREZFzMEgiyzpVM4JSaVnpSbJjRpKQm7ptoHFbo4/I73ErG9WKeUolj2WoJym3yo8jAIiInI9BElk2JxiA2yUhlc4MlBxQpm3bV24LKpvclg9syq1IMzLBO2ygbKZuYA9zdRsRkeMxSCLL3C4J7cHMUv/+4QnbG7eBXMCjJ7Ap12xtLCuVyHtMKepRCJy4TUTkfAySyBaitHZkeAJHI5ntSexs3DaydL9cs7XebU4SqTSiiXTJY6m1NwcgSUA8mVa2J2lmkERE5FgMksgWoml5//sjSKVleFwSZgetD5IUlEnZhnqSigRJonRXJiulzjQ16iib+TwutGWHZ4qVc+K8iYjIeRgkkS3E8ve9730EIJNVcbsk246fm2+kv9m6WICidy84EWwFvC54dQ7FLCwxstxGRORcDJLIFh3Z0tqrR0ay/29fPxJgbAhkuXKb3iZwI9O2BXWQJElAo8+t+7FERFRfGCSRLUQmKZ7M9PDY2bQNqEpkZbI/sWQK8VTmHIplcfQ2gYsgysgmteo+rCa/B5JkXzaNiIiqi0ES2aIwc1SrICmvj8hXenVb2WPFjK9QU//eRoIrIiKqPwySyBaFM5HsXNkGqPqIymZ/cnONivVE6W0CNzM1u1P1PHCQJBGRszFIIlu0NfnhUQUlXa2V6Ukq10ekZxuRJp1N4EYGSQpdqkwSm7aJiJyNQRLZwu2S0N6cCxA6bM4kiUCl3Io0PUMcm3X2JJVbJadFXXbktG0iImdjkES2UffjdNndk5QNbMbiKWUGkZaIju1AdPc3GZi2LYiBkkYfR0RE9YdBEtlG9ON4XJIyVNEu6oBjLF48uNHTR6Q3KzVaZpSAFq/bhTnZIZoMkoiInK3mQdJ9992H7u5uBAIB9PT04Pnnny95/127dqGnpweBQADz58/Hli1b8r7/5JNPore3F62trWhsbMTpp5+Ohx9+OO8+t9xyCyRJyvvq6Oiw/XebbkQmqb05AJeNgyQBwO9xw5cd6FgqA6QrSBL9TQaawI0QpUaW24iInK2mQdLjjz+OtWvXYsOGDejr68OyZcuwatUqHDp0SPP+Bw8exAUXXIBly5ahr68PN998M66//no88cQTyn1mzpyJDRs2YPfu3Xj11Vdx5ZVX4sorr8TTTz+dd6yPf/zjCIVCytf+/fsr+rtOByJIsrtpW2jSsTGtnsCmOSBWt5UZJhkzPkwSyJUauSUJEZGz1fSj7qZNm3D11VfjmmuuAQDcddddePrpp3H//fdj48aNk+6/ZcsWnHDCCbjrrrsAAAsXLsSePXtw55134pJLLgEAnHvuuXmPueGGG/DQQw/hhRdewMqVK5XbPR6PoexRLBZDLBZT/j8cDut+7HSx/JTZmDdrBr58+p9V5PjBgAcfjsVLrkrTMyVbBFDRRBqJVLroliOjOprAtVx0Whde7w/j3I/NNvQ4IiKqLzXLJMXjcezduxcrVqzIu33FihV46aWXNB+ze/fuSfdfuXIl9uzZg0Ri8oVTlmU8++yzOHDgAM4555y877399tvo6upCd3c3vvKVr+Ddd98teb4bN25ES0uL8jV37lw9v+a0Mn92E3b91Xm47Ox5FTm+CG7CJcttOhq31f1NJUpukZjxidsAcMHiTvzuO+fhtLmthh5HRET1pWZB0tDQEFKpFNrb2/Nub29vx8DAgOZjBgYGNO+fTCYxNDSk3DYyMoKmpib4fD5ceOGFuOeee3D++ecr3//Upz6F7du34+mnn8aDDz6IgYEBLF26FMeOHSt6vjfddBNGRkaUr8OHD5v5tckCPQ3XepqtvW4XAl4d/U0mGreJiGjqqPm7f+HeVrIsl9zvSuv+hbcHg0Hs27cPo6OjePbZZ7Fu3TrMnz9fKcWtWrVKue/ixYuxZMkSnHjiiXjooYewbt06zZ/r9/vh99u7YouM0TN1u9zmtkKT34toIqarCZxDIYmIpqeavfu3tbXB7XZPyhoNDg5OyhYJHR0dmvf3eDyYNWuWcpvL5cJJJ50EADj99NPx5ptvYuPGjZP6lYTGxkYsXrwYb7/9toXfiCpNz9TtSEzfAMhgwIOh0VjJgMvMxG0iIpo6alZu8/l86Onpwc6dO/Nu37lzJ5YuXar5mCVLlky6/zPPPIPe3l54vcUvirIs5zVdF4rFYnjzzTfR2dlp4DegajNSbiuX/QmW2Zoklkwhnkxn78tVakRE01FNPyKvW7cOl19+OXp7e7FkyRI88MADOHToEFavXg0g0wd05MgRbN++HQCwevVqbN68GevWrcO1116L3bt3Y+vWrXj00UeVY27cuBG9vb048cQTEY/HsWPHDmzfvh3333+/cp/169fjoosuwgknnIDBwUHcfvvtCIfDuOKKK6r7BJAhQR3zjSI6p2SXm7o9FktNui8REU0vNX33v/TSS3Hs2DHceuutCIVCWLRoEXbs2IF58zKro0KhUN7MpO7ubuzYsQM33ngj7r33XnR1deHuu+9Wlv8DwNjYGNasWYP3338fDQ0NWLBgAf7hH/4Bl156qXKf999/H1/96lcxNDSE2bNn4+yzz8bLL7+s/FyqT8oQSD3N1mUCm3JBkijpzfC54bZ5MCYRETlDzT8ir1mzBmvWrNH83rZt2ybdtnz5crzyyitFj3f77bfj9ttvL/kzH3vsMUPnSPUhWKbcJsuy7mbrck3gZqdtExHR1FHzbUmI9CoX2MSSaSRSmdWO5YKbck3gerY3ISKiqY1BEjlGrkSmHdiI7I8kAY0+feW2YlkpJZPEpm0iommLQRI5RrmNaZVSm89TdoPdck3goyanbRMR0dTBIIkco3z2J7sliY4SWbkmcE7bJiIiBknkGM3Z0pcdgU25gIuDJImIiEESOYbI/kwkUkim0pO+n5u2XT6waS7TBM4tSYiIiEESOYY6+FEPexRGDTRbNykTt8tlpdi4TUQ0XTFIIsfweVzwezIv2YjGdiKiJ8lIua3sCACW24iIpi0GSeQowRIN10YCm1LHydyuvwmciIimJgZJ5ChKw7VGmcxIT1LQnymjxZJpZSPbvGNxdRsR0bTHIIkcRZm6rZEBihjoI2r0u5X/1gq4Rg0EXERENDUxSCJHEUFLWKOXKNe4XT6w8bhdaPC68x6nxkwSERExSCJHKbUqzWizdW7qtkbAFePqNiKi6Y5BEjmKCGy0sz/6V7cBpaduj3KYJBHRtMcgiRwl6C8e2EQMlNvUxyoMuKKJFOLZYZVc3UZENH0xSCJH0VNu05v9CRaZuq3+/yYfgyQioumKQRI5SpO/+P5tRputiw2UVJfaXC7J9LkSEZGzMUgiR8kNgcwPbGRZNtxsrfQkFWSSIuxHIiIiMEgihwkWKbdFE2mk0jIAI+U27Z4ksdqNy/+JiKY3BknkKMUmbovMkksCZvjckx6npVgTuJF5S0RENHUxSCJHEaW0wsBGvSWJJOnrIyrWBM5yGxERAQySyGGaymR/jAx/LBZwiaCpmYMkiYimNQZJ5Ci5nqSCFWkm9lrLle6sH4uIiKYeBknkKCJIiibSSGQHPgLGp20DxSdui33h2JNERDS9MUgiR2lUZXfUq9KMTtsGgOYiPUnckoSIiAAGSeQwXrcLAW/mZasObsyV27ITt4v0JHEEABHR9MYgiRxHNFyHVQMlIyYat4uV24xO7iYioqmJQRI5jtbGtGayP+K+8VQasWQqdyyl3MbVbURE0xmDJHIcrflGZmYbNfqK9Dex3EZERGCQRA6ktTWJWN1mJEhyuyQ0ZqdzR/KyUlzdRkREDJLIgUQgFLZYbgNKZ6WCXN1GRDStMUgix9FalTZqstm6cOq2LMumpncTEdHUwyCJHEdr6nbEZLN1bpuTzLFiyTSSaTnzPZbbiIimNQZJ5DhBjaX7Zstthf1NYqyAJAEzvG7L50pERM7FIIkcp0ljBEDE5FYihUGSetq2yyVZPlciInIuBknkOMoQyJiqjyhmrtk6V27LBkkmj0NERFMPgyRynFyzdSZ7NB5PIdtGZLjZWvQwiSDJzB5wREQ0NTFIIsdRJm7H8rM/bpek7Oum+1gFTeBmtjchIqKpiUESOY4y26gw++P3QJKM9REFC45lZqNcIiKamhgkkeMUrm4TZTcz24gU9iSZbQAnIqKph0ESOY4S2MSsZ3+U/qaC1W3NDJKIiKY9BknkOMFss3U8mUYsmTI9bRuYXLpjuY2IiAQGSeQ46lLYaDRpqdk6l5XKlNnCJid3ExHR1MMgiRzH7ZIww5eZhj0aSyqlMjPZn+YimSQzWSkiIppaGCSRI6kbrkctzDZqUk3czmxuy8ZtIiLKYJBEjtSkWuGmrG4zkUkSwVYiJSOWTOdKd+xJIiKa9hgkkSOJ/qPRWNJSiazR54EYrRSJqo/FniQioumOQRI5Um7qdsJST5LLJaHJlyu5cVsSIiISGCSRI4mASL26rclk9idXuktwBAARESkYJJEjidJaOJpUmq3NrkhTT/Dm6jYiIhIYJJEjqVelKYGNyeyPyBp9EIkhlZYzx2KQREQ07TFIIkcKqsptVkYAZB6XKdOFRqIAAJcENHjdNpwlERE5GYMkciRlz7VowtLEbSAXcIVGJgBkMkuSWPJGRETTFoMkcqQmdU9S3FqztSit9Q9Hs//P5f9ERMQgiRxKBESDkSjkTBuR6T4icayB8ISl4xAR0dTCIIkcSQQyoWz2x+uW4PeYezk3FRyLy/+JiAhgkEQOJYKkY2NxANb6iER5TRyLmSQiIgIYJJFDNfnz+4asTMguHB1gdiglERFNLQySyJEKsz2FQZMRhQEWy21ERAQwSCKHKgxsrJTICh/bzHIbERGhDoKk++67D93d3QgEAujp6cHzzz9f8v67du1CT08PAoEA5s+fjy1btuR9/8knn0Rvby9aW1vR2NiI008/HQ8//LDln0v1pdFXECRZyP4UZo6YSSIiIqDGQdLjjz+OtWvXYsOGDejr68OyZcuwatUqHDp0SPP+Bw8exAUXXIBly5ahr68PN998M66//no88cQTyn1mzpyJDRs2YPfu3Xj11Vdx5ZVX4sorr8TTTz9t+udS/XG7JDT6clOxLfUkFZbbmEkiIiIAkiyLKTPV96lPfQpnnnkm7r//fuW2hQsX4uKLL8bGjRsn3f+73/0unnrqKbz55pvKbatXr8Yf//hH7N69u+jPOfPMM3HhhRfitttuM/VztYTDYbS0tGBkZATNzc26HkP2OvsHz2IgnFm2f9nZJ+D2ixebOs7RcBSf+sGzyv/f+f+chr/sOd6WcyQiovpi5Ppds0xSPB7H3r17sWLFirzbV6xYgZdeeknzMbt37550/5UrV2LPnj1IJBKT7i/LMp599lkcOHAA55xzjumfCwCxWAzhcDjvi2pLnfGx1LjNchsREWmoWZA0NDSEVCqF9vb2vNvb29sxMDCg+ZiBgQHN+yeTSQwNDSm3jYyMoKmpCT6fDxdeeCHuuecenH/++aZ/LgBs3LgRLS0tytfcuXMN/b5kP3UwY6Vxe4bPDZdqxBLnJBEREVAHjduFAwBlWS45FFDr/oW3B4NB7Nu3D3/4wx9wxx13YN26dfjtb39r6efedNNNGBkZUb4OHz5c8veiylMHM1YCG0mSbAu4iIho6qjZ1aCtrQ1ut3tS9mZwcHBSlkfo6OjQvL/H48GsWbOU21wuF0466SQAwOmnn44333wTGzduxLnnnmvq5wKA3++H3+839DtSZQXzym3WXsrBgBfhqLWNcomIaGqpWSbJ5/Ohp6cHO3fuzLt9586dWLp0qeZjlixZMun+zzzzDHp7e+H1Fu9JkWUZsVjM9M+l+qQOZqwGNnnHYiaJiIhQw0wSAKxbtw6XX345ent7sWTJEjzwwAM4dOgQVq9eDSBT4jpy5Ai2b98OILOSbfPmzVi3bh2uvfZa7N69G1u3bsWjjz6qHHPjxo3o7e3FiSeeiHg8jh07dmD79u15K9nK/VxyhqBq+5Cgxa1E1FmpZm5LQkREqHGQdOmll+LYsWO49dZbEQqFsGjRIuzYsQPz5s0DAIRCobzZRd3d3dixYwduvPFG3Hvvvejq6sLdd9+NSy65RLnP2NgY1qxZg/fffx8NDQ1YsGAB/uEf/gGXXnqp7p9LzmBnH5HIHnlcEvyemrfqERFRHajpnCQn45yk2vvZ8+/i9l9lZmb9dv25+C9tjaaPdd0/voJ/fTWE1hle7PvrFeUfQEREjuSIOUlEVtm1ui3zeK8txyEioqmDQRI5lnqApNVmaxEcWRlKSUREUwuDJHIsERj53C74Pe4y9y5zrGx/k5WNcomIaGphkESOJQIbO5bs23ksIiKaGnhFIMc6tbMZi/6sGZ/qnlX+zmUsO7kN82bNwAWLO204MyIimgq4us0krm4jIiJyHq5uIyIiIrKIQRIRERGRBgZJRERERBoYJBERERFpYJBEREREpIFBEhEREZEGBklEREREGhgkEREREWlgkERERESkgUESERERkQYGSUREREQaGCQRERERaWCQRERERKSBQRIRERGRBk+tT8CpZFkGAITD4RqfCREREeklrtviOl4KgySTIpEIAGDu3Lk1PhMiIiIyKhKJoKWlpeR9JFlPKEWTpNNp9Pf3IxgMQpIkXY8Jh8OYO3cuDh8+jObm5gqfIQl83muDz3tt8HmvDT7vtWHmeZdlGZFIBF1dXXC5SncdMZNkksvlwvHHH2/qsc3NzfwjqgE+77XB5702+LzXBp/32jD6vJfLIAls3CYiIiLSwCCJiIiISAODpCry+/343ve+B7/fX+tTmVb4vNcGn/fa4PNeG3zea6PSzzsbt4mIiIg0MJNEREREpIFBEhEREZEGBklEREREGhgkEREREWlgkFRF9913H7q7uxEIBNDT04Pnn3++1qc0pfzud7/DRRddhK6uLkiShF/+8pd535dlGbfccgu6urrQ0NCAc889F6+//nptTnaK2LhxI8466ywEg0HMmTMHF198MQ4cOJB3Hz7v9rv//vvxiU98Qhmgt2TJEvz6179Wvs/nvDo2btwISZKwdu1a5TY+9/a75ZZbIElS3ldHR4fy/Uo+5wySquTxxx/H2rVrsWHDBvT19WHZsmVYtWoVDh06VOtTmzLGxsZw2mmnYfPmzZrf//GPf4xNmzZh8+bN+MMf/oCOjg6cf/75yj58ZNyuXbvwrW99Cy+//DJ27tyJZDKJFStWYGxsTLkPn3f7HX/88fjhD3+IPXv2YM+ePfjsZz+LL3/5y8qFgc955f3hD3/AAw88gE984hN5t/O5r4yPf/zjCIVCytf+/fuV71X0OZepKj75yU/Kq1evzrttwYIF8v/8n/+zRmc0tQGQf/GLXyj/n06n5Y6ODvmHP/yhcls0GpVbWlrkLVu21OAMp6bBwUEZgLxr1y5Zlvm8V9Nxxx0n/+xnP+NzXgWRSEQ++eST5Z07d8rLly+Xb7jhBlmW+XqvlO9973vyaaedpvm9Sj/nzCRVQTwex969e7FixYq821esWIGXXnqpRmc1vRw8eBADAwN5/wZ+vx/Lly/nv4GNRkZGAAAzZ84EwOe9GlKpFB577DGMjY1hyZIlfM6r4Fvf+hYuvPBCfP7zn8+7nc995bz99tvo6upCd3c3vvKVr+Ddd98FUPnnnBvcVsHQ0BBSqRTa29vzbm9vb8fAwECNzmp6Ec+z1r/Be++9V4tTmnJkWca6devwmc98BosWLQLA572S9u/fjyVLliAajaKpqQm/+MUvcOqppyoXBj7nlfHYY49h79692LNnz6Tv8fVeGZ/61Kewfft2nHLKKTh69Chuv/12LF26FK+//nrFn3MGSVUkSVLe/8uyPOk2qiz+G1TOddddh1dffRUvvPDCpO/xebffxz72Mezbtw/Dw8N44okncMUVV2DXrl3K9/mc2+/w4cO44YYb8MwzzyAQCBS9H597e61atUr578WLF2PJkiU48cQT8dBDD+Hss88GULnnnOW2Kmhra4Pb7Z6UNRocHJwU/VJliJUQ/DeojG9/+9t46qmn8Nxzz+H4449XbufzXjk+nw8nnXQSent7sXHjRpx22mn4u7/7Oz7nFbR3714MDg6ip6cHHo8HHo8Hu3btwt133w2Px6M8v3zuK6uxsRGLFy/G22+/XfHXO4OkKvD5fOjp6cHOnTvzbt+5cyeWLl1ao7OaXrq7u9HR0ZH3bxCPx7Fr1y7+G1ggyzKuu+46PPnkk/jNb36D7u7uvO/zea8eWZYRi8X4nFfQ5z73Oezfvx/79u1Tvnp7e/G1r30N+/btw/z58/ncV0EsFsObb76Jzs7Oyr/eLbd+ky6PPfaY7PV65a1bt8pvvPGGvHbtWrmxsVH+05/+VOtTmzIikYjc19cn9/X1yQDkTZs2yX19ffJ7770ny7Is//CHP5RbWlrkJ598Ut6/f7/81a9+Ve7s7JTD4XCNz9y5vvnNb8otLS3yb3/7WzkUCilf4+Pjyn34vNvvpptukn/3u9/JBw8elF999VX55ptvll0ul/zMM8/IssznvJrUq9tkmc99JfyP//E/5N/+9rfyu+++K7/88svyF7/4RTkYDCrXz0o+5wySqujee++V582bJ/t8PvnMM89UlkmTPZ577jkZwKSvK664QpblzFLR733ve3JHR4fs9/vlc845R96/f39tT9rhtJ5vAPLPf/5z5T583u131VVXKe8ls2fPlj/3uc8pAZIs8zmvpsIgic+9/S699FK5s7NT9nq9cldXl/wXf/EX8uuvv658v5LPuSTLsmw9H0VEREQ0tbAniYiIiEgDgyQiIiIiDQySiIiIiDQwSCIiIiLSwCCJiIiISAODJCIiIiINDJKIiIiINDBIIiIiItLAIImIiIhIA4MkIiIiIg0MkohoyorH47U+BSJyMAZJRDRlnHvuubjuuuuwbt06tLW14fzzz8emTZuwePFiNDY2Yu7cuVizZg1GR0eVx2zbtg2tra14+umnsXDhQjQ1NeELX/gCQqGQcp9kMonrr78era2tmDVrFr773e/iiiuuwMUXX6zcR5Zl/PjHP8b8+fPR0NCA0047Df/yL/9SzV+fiGzGIImIppSHHnoIHo8HL774In7605/C5XLh7rvvxmuvvYaHHnoIv/nNb/Cd73wn7zHj4+O488478fDDD+N3v/sdDh06hPXr1yvf/9GPfoRHHnkEP//5z/Hiiy8iHA7jl7/8Zd4x/tf/+l/4+c9/jvvvvx+vv/46brzxRlx22WXYtWtXNX5tIqoASZZludYnQURkh3PPPRcjIyPo6+srep9//ud/xje/+U0MDQ0ByGSSrrzySrzzzjs48cQTAQD33Xcfbr31VgwMDAAAOjo6sH79eiVwSqVSmD9/Ps444wz88pe/xNjYGNra2vCb3/wGS5YsUX7WNddcg/HxcfzjP/5jpX5lIqogT61PgIjITr29vXn//9xzz+EHP/gB3njjDYTDYSSTSUSjUYyNjaGxsREAMGPGDCVAAoDOzk4MDg4CAEZGRnD06FF88pOfVL7vdrvR09ODdDoNAHjjjTcQjUZx/vnn5/3seDyOM844oyK/JxFVHoMkIppSROADAO+99x4uuOACrF69GrfddhtmzpyJF154AVdffTUSiYRyP6/Xm3cMSZJQmGSXJCnv/9XfF8HSr371K/zZn/1Z3v38fr+1X4iIaoZBEhFNWXv27EEymcTf/u3fwuXKtGD+0z/9k6FjtLS0oL29Hf/xH/+BZcuWAciU2/r6+nD66acDAE499VT4/X4cOnQIy5cvt/V3IKLaYZBERFPWiSeeiGQyiXvuuQcXXXQRXnzxRWzZssXwcb797W9j48aNOOmkk7BgwQLcc889+Oijj5TsUjAYxPr163HjjTcinU7jM5/5DMLhMF566SU0NTXhiiuusPtXI6Iq4Oo2IpqyTj/9dGzatAk/+tGPsGjRIjzyyCPYuHGj4eN897vfxVe/+lV8/etfx5IlS9DU1ISVK1ciEAgo97ntttvw13/919i4cSMWLlyIlStX4v/8n/+D7u5uO38lIqoirm4jIjIonU5j4cKF+K//9b/itttuq/XpEFGFsNxGRFTGe++9h2eeeQbLly9HLBbD5s2bcfDgQfy3//bfan1qRFRBLLcREZXhcrmwbds2nHXWWfj0pz+N/fv349///d+xcOHCWp8aEVUQy21EREREGphJIiIiItLAIImIiIhIA4MkIiIiIg0MkoiIiIg0MEgiIiIi0sAgiYiIiEgDgyQiIiIiDQySiIiIiDT8/yzv7WSpMSkeAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(range(1, 50), error_rate)\n", "plt.ylabel('error rate')\n", "plt.xlabel('range')\n" ] }, { "cell_type": "markdown", "id": "d4bf6747", "metadata": {}, "source": [ "**Zone in on the graph, since the minimu error rate falls within the KNN range of 9 and 11**" ] }, { "cell_type": "code", "execution_count": 241, "id": "a7aa0ac3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(8.0, 12.0)" ] }, "execution_count": 241, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGwCAYAAAB1mRuuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMTElEQVR4nO3deVxU9f4G8GcWYNgRMRYFAjdckDUXDJduQmqWZql4NX+W92ZdNSWupt4WNcM2rykmZZZLinvlTW9KmaZJljLgiiuKIoigMgiyzZzfH+bcEFAGznBmed6v1/zBme855/Pt9IHHc86ckQmCIICIiIiIRCOXugAiIiIiS8OARURERCQyBiwiIiIikTFgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISmVLqAsyVTqfDlStX4OzsDJlMJnU5RERE1ACCIKCkpAQ+Pj6Qy413nokBq5GuXLkCX19fqcsgIiKiRrh06RLatGljtO0zYDWSs7MzgDsHyMXFReJqiIiIqCE0Gg18fX31f8eNhQGrke5eFnRxcWHAIiIiMjPGvr2HN7kTERERiYwBi4iIiEhkDFhEREREImPAIiIiIhIZAxYRERGRyBiwiIiIiETGgEVEREQkMgYsIiIiIpExYBERERGJjAGLiIiISGQMWEREREQiY8AiIiIiEhkDFhEREZHIGLCIiIiIRMaARURERCQyBiwiIiIikTFgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISGQMWERERkcgYsIiIiIhExoBFREREJDIGLCIiIiKRMWARERERiYwBi4iIiEhkDFhEREREImPAIiIiIhIZAxYRERGRyBiwiIiIiETGgEVEREQkMgYsIiIiIpExYBERERGJjAGLiIiISGQMWEREREQiY8AiIiIiEhkDFhEREZHIGLCIiIiIRMaARURERCQyBiwiIiIikTFgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISGQMWERERkcgYsIiIiIhExoBFREREJDIGLCIiIiKRSR6wPvnkEwQEBEClUiEiIgL79u277/i9e/ciIiICKpUKgYGBSE5OrvH+ypUrIZPJar3Ky8ubtF8iIiKihpI0YG3YsAFTp07F7NmzoVarER0djYEDByInJ6fO8dnZ2Rg0aBCio6OhVqsxa9YsTJkyBVu2bKkxzsXFBXl5eTVeKpWq0fslIiIiMoRMEARBqp336NED4eHhWLZsmX5Zp06dMHToUCQmJtYaP2PGDGzbtg0nT57UL5s4cSIyMzORlpYG4M4ZrKlTp+LmzZui7bcuGo0Grq6uKC4uhouLS4PWISIiImk1199vyc5gVVZW4vDhw4iJiamxPCYmBgcOHKhznbS0tFrjY2NjcejQIVRVVemX3bp1C/7+/mjTpg2efPJJqNXqJu0XACoqKqDRaGq8iIiIiOoiWcAqLCyEVquFp6dnjeWenp7Iz8+vc538/Pw6x1dXV6OwsBAAEBQUhJUrV2Lbtm1ISUmBSqVC7969cebMmUbvFwASExPh6uqqf/n6+ho8ZyIiIrIOkt/kLpPJavwsCEKtZQ8a/+flPXv2xJgxYxASEoLo6Ghs3LgRHTp0wJIlS5q035kzZ6K4uFj/unTp0oMnR0RERFZJKdWOPTw8oFAoap01KigoqHV26S4vL686xyuVSrRs2bLOdeRyOR555BH9GazG7BcA7OzsYGdn98B5EREREUl2BsvW1hYRERFITU2tsTw1NRVRUVF1rtOrV69a43ft2oXIyEjY2NjUuY4gCMjIyIC3t3ej90tERERkCMnOYAFAfHw8xo4di8jISPTq1QufffYZcnJyMHHiRAB3Lsvl5uZi9erVAO58YjApKQnx8fH429/+hrS0NKxYsQIpKSn6bc6ZMwc9e/ZE+/btodFosHjxYmRkZGDp0qUN3i8RERFRU0gasEaOHImioiLMnTsXeXl56Nq1K3bs2AF/f38AQF5eXo1nUwUEBGDHjh2YNm0ali5dCh8fHyxevBjDhw/Xj7l58yb+/ve/Iz8/H66urggLC8PPP/+M7t27N3i/RERERE0h6XOwzBmfg0VERGR+LP45WERERESWigGLiIiISGQMWEREREQiY8AiIiIiEhkDFhEREZHIGLCIiIiIRMaARURERCQyBiwiIiIikTFgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISGQMWERERkcgYsIiIiIhExoBFREREJDIGLCIiIiKRMWARERERiYwBi4iIiEhkDFhEREREImPAIiIiIhIZAxYRERGRyBiwiIiIiETGgEVEREQkMgYsIiIiIpExYBERERGJjAGLiIiISGQMWEREREQiY8AiIiIiEhkDFhEREZHIGLCIiIiIRMaARURERCQyBiwiIiIikTFgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISGQMWERERkcgYsIiIiIhExoBFREREJDIGLCIiIiKRMWARERERiYwBi4iIiEhkDFhEREREImPAIiIiIhIZAxYRERGRyBiwiIiIiETGgEVEREQkMgYsIiIiIpExYBERERGJjAGLiIiISGQMWEREREQiY8AiIiIiEhkDFhEREZHIGLCIiIiIRMaARURERCQyBiwiIiIikTFgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISGQMWERERkcgkD1iffPIJAgICoFKpEBERgX379t13/N69exEREQGVSoXAwEAkJyfXO3b9+vWQyWQYOnRojeVvv/02ZDJZjZeXl5cY0yEiIiKSNmBt2LABU6dOxezZs6FWqxEdHY2BAwciJyenzvHZ2dkYNGgQoqOjoVarMWvWLEyZMgVbtmypNfbixYtISEhAdHR0ndvq0qUL8vLy9K+jR4+KOjciIiKyXpIGrIULF+LFF1/EhAkT0KlTJyxatAi+vr5YtmxZneOTk5Ph5+eHRYsWoVOnTpgwYQJeeOEFfPjhhzXGabVa/PWvf8WcOXMQGBhY57aUSiW8vLz0r1atWok+PyIiIrJOkgWsyspKHD58GDExMTWWx8TE4MCBA3Wuk5aWVmt8bGwsDh06hKqqKv2yuXPnolWrVnjxxRfr3f+ZM2fg4+ODgIAAjBo1CufPn79vvRUVFdBoNDVeRERERHWRLGAVFhZCq9XC09OzxnJPT0/k5+fXuU5+fn6d46urq1FYWAgA+OWXX7BixQosX7683n336NEDq1evxs6dO7F8+XLk5+cjKioKRUVF9a6TmJgIV1dX/cvX17ehUyUiIiIrI/lN7jKZrMbPgiDUWvag8XeXl5SUYMyYMVi+fDk8PDzq3cbAgQMxfPhwBAcH4/HHH8f27dsBAKtWrap3nZkzZ6K4uFj/unTp0gPnRkRERNZJKdWOPTw8oFAoap2tKigoqHWW6i4vL686xyuVSrRs2RLHjx/HhQsXMGTIEP37Op0OwJ17rk6dOoW2bdvW2q6joyOCg4Nx5syZeuu1s7ODnZ1dg+dHRERE1kuyM1i2traIiIhAampqjeWpqamIioqqc51evXrVGr9r1y5ERkbCxsYGQUFBOHr0KDIyMvSvp556Cv3790dGRka9l/UqKipw8uRJeHt7izM5IiIismqSncECgPj4eIwdOxaRkZHo1asXPvvsM+Tk5GDixIkA7lyWy83NxerVqwEAEydORFJSEuLj4/G3v/0NaWlpWLFiBVJSUgAAKpUKXbt2rbEPNzc3AKixPCEhAUOGDIGfnx8KCgrwzjvvQKPRYNy4cc0wayIiIrJ0kgaskSNHoqioCHPnzkVeXh66du2KHTt2wN/fHwCQl5dX45lYAQEB2LFjB6ZNm4alS5fCx8cHixcvxvDhww3a7+XLlxEXF4fCwkK0atUKPXv2xK+//qrfLxEREVFTyIS7d4mTQTQaDVxdXVFcXAwXFxepyyEiIqIGaK6/35J/ipCIiIjI0jBgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISGQMWERERkcgYsIiIiIhExoBFREREJDIGLCIiIiKRMWARERERiYwBi4iIiEhkDFhEREREImPAIiIiIhIZAxYRERGRyBiwiIiIiETGgEVEREQkMgYsIiIiIpExYBERERGJjAGLiIiISGQMWEREREQia1TA2rdvH8aMGYNevXohNzcXALBmzRrs379f1OKIiIiIzJHBAWvLli2IjY2Fvb091Go1KioqAAAlJSV49913RS+QiIiIyNwYHLDeeecdJCcnY/ny5bCxsdEvj4qKQnp6uqjFEREREZkjgwPWqVOn0KdPn1rLXVxccPPmTTFqIiIiIjJrBgcsb29vnD17ttby/fv3IzAwUJSiiIiIiMyZwQHrpZdewquvvoqDBw9CJpPhypUrWLt2LRISEvDKK68Yo0YiIiIis6I0dIXp06ejuLgY/fv3R3l5Ofr06QM7OzskJCRg0qRJxqiRiIiIyKzIBEEQGrNiWVkZTpw4AZ1Oh86dO8PJyUns2kyaRqOBq6sriouL4eLiInU5RERE1ADN9ffb4EuEL7zwAkpKSuDg4IDIyEh0794dTk5OKC0txQsvvGCMGomIiIjMisEBa9WqVbh9+3at5bdv38bq1atFKYqIiIjInDX4HiyNRgNBECAIAkpKSqBSqfTvabVa7NixAw899JBRiiQiIiIyJw0OWG5ubpDJZJDJZOjQoUOt92UyGebMmSNqcURERETmqMEB66effoIgCHjsscewZcsWuLu769+ztbWFv78/fHx8jFIkERERkTlpcMDq27cvACA7Oxu+vr6Qyxv1PdFEREREFs/g52D5+/sDuPOYhpycHFRWVtZ4v1u3buJURkRERGSmDA5Y165dw/jx4/Hf//63zve1Wm2TiyIiIiIyZwZf55s6dSpu3LiBX3/9Ffb29vj++++xatUqtG/fHtu2bTNGjURERERmxeAzWLt378a3336LRx55BHK5HP7+/hgwYABcXFyQmJiIwYMHG6NOIiIiIrNh8Bms0tJS/fOu3N3dce3aNQBAcHAw0tPTxa2OiIiIyAwZHLA6duyIU6dOAQBCQ0Px6aefIjc3F8nJyfD29ha9QCIiIiJzY/AlwqlTpyIvLw8A8NZbbyE2NhZr166Fra0tVq5cKXZ9RERERGZHJgiC0JQNlJWVISsrC35+fvDw8BCrLpPXXN/GTUREROJprr/fBl0irKqqQmBgIE6cOKFf5uDggPDwcKsKV0RERET3Y1DAsrGxQUVFBWQymbHqISIiIjJ7Bt/kPnnyZLz33nuorq42Rj1EREREZs/gm9wPHjyIH3/8Ebt27UJwcDAcHR1rvL9161bRiiMiIiIyRwYHLDc3NwwfPtwYtRARERFZBIMD1pdffmmMOoiIiIgshsH3YBERERHR/TFgERHdo1qrw+1KrdRlEJERaHVNevxngzFgNdHpqxqpSyAiEVVUazHi0zT0ePcHZOWzv4ksSUW1Fv/3xW/Nsi8GrCZK2HQEZZV8ZAWRpUjckYX0nJvQlFdj0jo1+5vIgiTuyIL60s1m2ZfBT3Lv378/Tp8+bax6zM75a6V4e9txqcsgIhHsPJ6PlQcuAABc7W1wtuAW+5vIQvy5v5uDwU9yP3bsGJ/k/icyGbDx0GV8m5ErdSlE1AS5N29j+uYjAIC/9wnEsjHh7G8iC/Hn/v6/3g83yz4NvkT4/PPPY8WKFcaoxSy91KctAGDW1qPILiyVuBoiaowqrQ5TUtQovl2FEF83JMR0RFRbD0x+rD0A9jeRObu3v6f80dfGZvBzsCorK/H5558jNTUVkZGRtZ7kvnDhQtGKMwcT+wYi42oFfsu+jskp6djychTslAqpyyIiA/w79TQOX7wBZ5USSXFhsFXe+bfnlMfa4dfzRexvIjOm72+7u/3dPPdVGnwG69ixYwgPD4eLiwtOnz4NtVqtf2VkZBihRNOmVMixeFQYWjjY4FiuBok7sqQuiYgMsO/MNSzbew4A8N7wbvB1d9C/x/4mMm9/7u8F9/S3sckEQWieB0JYGI1GA1dXVxQXF8PFxQW7s67ihZWHAACfjY1ATBcviSskogcpKCnHoI/3ofBWJf7aww/zhwXXOY79TWR+/tzfo3v44d0/+vvev9/G0qTHNFy+fBm5ubz5EwAeC/LEhEcDAAD/3HwEV27elrgiIrofnU5A/IZMFN6qRJCXM954snO9Y9nfRObl3v5+8z79bSwGByydToe5c+fC1dUV/v7+8PPzg5ubG+bNmwedTmeMGs3G9CeCENLGFcW3qzAlRY1qrXX/9yAyZcv2nsP+s4Wwt1EgaXQYVDb3v7dq+hNB6Mb+JjILhva3MRgcsGbPno2kpCQsWLAAarUa6enpePfdd7FkyRK88cYbxqjRbNgq5VgSFw5nOyUOXbyBRT+ckbokIqrDoQvXsTD1zvP85jzdBe0ecn7gOnf6OwxO7G8ik9aY/jYGgwPWqlWr8Pnnn+Pll19Gt27dEBISgldeeQXLly/HypUrDS7gk08+QUBAAFQqFSIiIrBv3777jt+7dy8iIiKgUqkQGBiI5OTkeseuX78eMpkMQ4cObfJ+G8qvpQPefebOdd6le85i/5lCUbZLROK4WVaJKSlqaHUChob64LmINg1e17+lIxLZ30Qmqyn9LTaDA9b169cRFBRUa3lQUBCuX79u0LY2bNiAqVOnYvbs2VCr1YiOjsbAgQORk5NT5/js7GwMGjQI0dHRUKvVmDVrFqZMmYItW7bUGnvx4kUkJCQgOjq6yfs11JAQH8R194UgAFM3ZOBaSYUo2yWiphEEAdM3H8GV4nIEeDjinWHBBj84mf1NZJrE6G8xGRywQkJCkJSUVGt5UlISQkJCDNrWwoUL8eKLL2LChAno1KkTFi1aBF9fXyxbtqzO8cnJyfDz88OiRYvQqVMnTJgwAS+88AI+/PDDGuO0Wi3++te/Ys6cOQgMDGzyfgGgoqICGo2mxut+3nyyCzp4OqHwVgXiN2ZA10zf3k1E9Vt14AJ2nbgKW8X/Lvc1BvubyPSI1d9iMThgvf/++/jiiy/QuXNnfUjp3LkzVq5ciQ8++KDB26msrMThw4cRExNTY3lMTAwOHDhQ5zppaWm1xsfGxuLQoUOoqqrSL5s7dy5atWqFF198UZT9AkBiYiJcXV31L19f3/vOz95WgaWjw6GykWPfmUIk/3zuvuOJyLiO5Rbj3T+eYzVrUBC6tnZt9LbY30SmRcz+FovBAatv3744ffo0hg0bhps3b+L69et45plncOrUqTovx9WnsLAQWq0Wnp6eNZZ7enoiPz+/znXy8/PrHF9dXY3Cwjv3Qvzyyy9YsWIFli9fLtp+AWDmzJkoLi7Wvy5duvTAObb3dMacp7oAAD7adRqHLxp2CZWIxHGrohqT1qWjUqtDTGdPjIt6uMnbZH8TmQZj9LcYDDp/VlVVhZiYGHz66aeYP3++KAXce31UEIT7XjOta/zd5SUlJRgzZgyWL18ODw8PUfdrZ2cHOzu7+26zLiMiffHL2SJsy7yCKSkZ2D7lUbg52Bq8HSJqHEEQ8K+vj+JCURlau9nj/We7iXZfBvubSFrG7O+mMugMlo2NDY4dOyZK8R4eHlAoFLXOGhUUFNQ6u3SXl5dXneOVSiVatmyJc+fO4cKFCxgyZAiUSiWUSiVWr16Nbdu2QalU4ty5c43ab1PIZDLMH9YV/i0d9N/mzYfnEzWfTYcv45uMK1DIZVgcFypqAGJ/E0nLmP3dVAZfInz++eexYsWKJu/Y1tYWERERSE1NrbE8NTUVUVFRda7Tq1evWuN37dqFyMhI2NjYICgoCEePHkVGRob+9dRTT6F///7IyMiAr69vo/bbVM4qGyTFhcNGIcOuE1exOu2iUfZDRDWdLSjBW98eBwDED+iACH930ffB/iaSRnP0d1MYfIt9ZWUlPv/8c6SmpiIyMhKOjo413l+4cGGDtxUfH4+xY8ciMjISvXr1wmeffYacnBxMnDgRwJ37nnJzc7F69WoAwMSJE5GUlIT4+Hj87W9/Q1paGlasWIGUlBQAgEqlQteuXWvsw83NDQBqLH/Qfo0huI0rZg7shLnfncD87ScR4d/CJG7CI7JU5VVa/GOtGrertIhu74GX+7Y12r7Y30TNqzn7u7EMDljHjh1DeHg4AOD06dM13jP00uHIkSNRVFSEuXPnIi8vD127dsWOHTvg7+8PAMjLy6vxbKqAgADs2LED06ZNw9KlS+Hj44PFixdj+PDhou7XWMb3fhgHzhXhh5NXMTlFjf9MflTyj5ESWaq5353Aqasl8HCyw8IRoZDLjXtfBvubqPk0d383hkww4IYBrVaL/fv3Izg4GO7upnUqrrk19tu4b5RWYtDifcgrLsewsNZYOCLEZG7II7IU24/k4R/r0iGTAWte6IFH29//Qy9iYX8TGV9T+7uxf78NZdA9WAqFArGxsSguLjZWPRavhaMtFseFQSGX4Wt1LjYfvix1SUQWJaeoDK9vOQIAeKVf22YLVwD7m8jYpOxvQxl8k3twcDDOnz9vjFqsxiMPu2Pa4+0BAG9+exxnC0okrojIMlRW6zA5JR0lFdWI9G+BaY93aPYa2N9ExmEK/W0IgwPW/PnzkZCQgO+++w55eXkGfX0M/c/L/dqhd7uWuF2lxaR1apRXaaUuicjsfbAzC5mXi+Fqb4OP48KgVBj8K04U7G8i8ZlKfzeUwdU98cQTyMzMxFNPPYU2bdqgRYsWaNGiBdzc3NCiRQtj1GiRFHIZ/j0yFB5OtsjKL8G8705IXRKRWduddRXL92UDAD58LgSt3ewlq4X9TSQuU+rvhjL4Iy4//fSTMeqwSg85q7BwRCie/+I3rD2Yg6i2HhjczVvqsojMTn5xOV7bmAkA+L+ohzGgs/gPDTYU+5tIHKbY3w1hcMDq27evMeqwWn06tMLL/dpi2Z5zeH3LEXRr4wpfdwepyyIyG1qdgFfXq3GjrApdW7tg5qAgqUvSY38TNc2f+7uLj2n194M06gLmvn37MGbMGERFRSE3NxcAsGbNGuzfv1/U4qxF/IAOCPdzQ0lFNSalqFFZrZO6JCKzsfjHMziYfR2OtgosiQuHnVIhdUk1sL+JGu/P/Z002vT6+34MDlhbtmxBbGws7O3tkZ6ejoqKCgBASUkJ3n33XdELtAY2CjkWx4XBRaVE5qWb+GjXKalLIjILaeeKsGT3GQDA/GHBCPBwfMAazY/9TdQ45tDf92NwwHrnnXeQnJyM5cuXw8bGRr88KioK6enpohZnTdq0cMAHz4UAAD79+Tx+OlUgcUVEpq3oVgVeXa+GTgCei2iDoWGtpS6pXuxvIsOYU3/Xx+CAderUKfTp06fWchcXF9y8eVOMmqxWbBcvjOt15+t6XtuYiauacokrIjJNOp2A1zZloqCkAu0ecsKcp7tIXdIDsb+JGsYc+7suBgcsb29vnD17ttby/fv3IzAwUJSirNnMQZ3Q2dsF10srMXV9BrS6Bn+TEZHV+Hz/eew5dQ12SjmSRofBwdY8vvOP/U30YOba3/cyOGC99NJLePXVV3Hw4EHIZDJcuXIFa9euRUJCAl555RVj1GhVVDaKP/6HUiDtfBGSdtcOs0TWLOPSTbz//Z37mN4c0hlBXsb7LjGxsb+J7s+c+/teBges6dOnY+jQoejfvz9u3bqFPn36YMKECXjppZcwadIkY9RodQJbOWH+sK4AgI9/PI1fzxdJXBGRadCUV2FySjqqdQIGB3tjdHc/qUsyWGArJ7wzlP1NdC9L6O8/kwmC0Khz1GVlZThx4gR0Oh06d+4MJycnsWszac3xbdyvbczElvTL8HSxw39f7QN3R1uj7IfIHAiCgEnr1Nh+NA++7vbYPiUaLiqbB69ootjfRP/TnP3dHH+/gUY+BwsAHBwcEBkZie7du1tduGouc5/ugsBWjriqqUDCpkw0MgsTWYR1v+Vg+9E8KOUyLIkLN+twBbC/if7M0vobaELAIuNztFNi6ehw2Crl2J1VgBX7s6UuiUgSWfkazP3Pne/zm/FEEEJ93aQtSATsb6I7LLG/AQYsk9fJ2wVvPNkZAPDe91nIvHRT2oKImllZZTX+sTYdFdU69O/YCi8+GiB1SaJhf5O1s+T+ZsAyA2N6+GFgVy9UaQVMSkmHprxK6pKIms1b3x7HuWul8HSxw0cjQiGXy6QuSVTsb7JmltzfDFhmQCaTYcHwbmjTwh6Xrt/GzK1Heb8GWYVv1LnYdPgy5DLg41FhFnkjOPubrJWl9zcDlplwtbfBkrgwKOUybD+Sh5TfLkldEpFRZReWYvbXRwEAU/7SHj0DW0pckfGwv8naWEN/M2CZkTC/FvhnbEcAwJz/HEdWvkbiioiMo6Jai0nr0lFaqUXPQHdMfqy91CUZHfubrIW19DcDlpn5W3Qg+nVshYpqHSatU6OsslrqkohEl7gjC8evaODuaIuPR4VBYUH3ZdwP+5usgbX0NwOWmZHLZfjouRA85GyHswW38Pa241KXRCSqncfzsfLABQDARyNC4OmikragZsT+JktnTf3NgGWGWjrZYdGoUMhkwMZDl/FtRq7UJRGJIvfmbUzffAQA8Pc+gejf8SGJK2p+7G+yVNbW3wxYZiqqrYf+uvWsrUeRXVgqcUVETVOl1WFKihrFt6sQ4uuGhJiOUpckGfY3WRpr7G8GLDM25bF26B7gjtJKLSanpKOiWit1SUSN9u/U0zh88QacVUokxYXBVmndv57Y32RJ9P1tZz39bfkztGBKhRyLR4WhhYMNjuVqkLgjS+qSiBpl35lrWLb3HADgveHd4OvuIHFF0mN/k6X4c38vsKL+ZsAyc16uKnw0IgQAsPLABaSeuCpxRUSGKSgpx7QNGRAE4K89/DAo2FvqkkwG+5vM3Z/7e3QPPwzuZj39zYBlAR4L8sSEP76/6Z+bM3Hl5m2JKyJqGJ1OQPyGTBTeqkSQl7P+e/nof9jfZK7u7e83ray/GbAsxPQnghDSxhU3y6owJUWNaq1O6pKIHmjZ3nPYf7YQ9jYKJI0Og8pGIXVJJon9TebI2vubActC2CrlWBIXDmc7JQ5dvIFFP5yRuiSi+zp04ToWpp4GAMx5ugvaPeQscUWmi/1N5ob9zYBlUfxaOiBxeDAAYOmes9h/plDiiojqdrOsElNS1NDqBAwN9cFzEW2kLsnksb/JXLC/72DAsjBPdvNBXHc/CAIwdUMGrpVUSF0SUQ2CICBh0xFcKS5HgIcj3hkWDJnMMr8qQ2zsbzJ17O//YcCyQG8N6YyOns4ovFWB+I0Z0OkEqUsi0lt54AJ+OHkVtgo5lsSFwclOKXVJZoX9TaaM/f0/DFgWSKW/oVCOfWcKkfzzOalLIgIAHMst1j/PadagIHRt7SpxReaH/U2miv1dEwOWhWrv6Yy5T3UFAHy06zQOX7wucUVk7W5VVGPSunRUanWI6eyJcVEPS12S2Wrv6Yw5T3UBwP4m08D+ro0By4I9F9kGT4X4QKsTMCUlAzfLKqUuiayUIAj419dHcaGoDK3d7PH+s92s9r4MsYyI9GV/k0lgf9eNAcuCyWQyzB/WFf4tHfTfYi4IvF+Dmt+mw5fxTcYVKOQyLI4LhZuDrdQlmT32N5kK9nfdGLAsnLPKBklx4bBRyLDrxFWsTrsodUlkZc4WlOCtb48DAOIHdECEv7vEFVkO9jdJjf1dPwYsKxDcxhUzB3YCAMzffhLHcoslroisRXmVFv9Yq8btKi2i23vg5b5tpS7J4rC/SSrs7/tjwLIS43s/jMc7eaJSq8PkFDVuVVRLXRJZgbnfncCpqyXwcLLDwhGhkMt5X4YxsL9JCuzv+2PAshIymQwfPNsN3q4qZBeW4o1vjvF+DTKq7UfysO5gDmQyYNHIULRytpO6JIvF/qbmxv5+MAYsK9LC0RaL48KgkMvwtToXmw9flrokslA5RWV4fcsRAMAr/dri0fYeEldk+djf1FzY3w3DgGVlHnnYHdMebw8AePPb4zhbUCJxRWRpKqt1mJySjpKKakT6t8C0xztIXZLVYH+TsbG/G44Bywq93K8derdridtVWkxap0Z5lVbqksiCfLAzC5mXi+Fqb4OP48KgVPDXTHNif5Mxsb8bjv9lrJBCLsO/R4bCw8kWWfklmPfdCalLIguxO+sqlu/LBgB8+FwIWrvZS1yR9WF/k7Gwvw3DgGWlHnJWYeGIUADA2oM52H4kT9qCyOzlF5fjtY2ZAID/i3oYAzp7SlyR9WJ/k9jY34ZjwLJifTq0wsv97jy35PUtR3DpepnEFZG50uoEvLpejRtlVeji44KZg4KkLsnqsb9JLOzvxmHAsnLxAzog3M8NJRXVmJSiRpVWJ3VJZIYW/3gGB7Ovw9FWgaTR4bBTKqQuicD+JnGwvxuHAcvK2SjkWBwXBheVEpmXbuLDnaekLonMTNq5IizZfQYAMH9YMAI8HCWuiO5if1NTsb8bjwGL0KaFAz54LgQA8OnP5/HTqQKJKyJzUXSrAq+uV0MnAM9FtMHQsNZSl0T3YH9TY7G/m4YBiwAAsV28MK6XPwDgtY2ZuKopl7giMnU6nYDXNmWioKQC7R5ywpynu0hdEtWD/U2GYn83HQMW6c0c1AmdvV1wvbQSU9dnQKvjV21Q/T7ffx57Tl2DnVKOpNFhcLBVSl0S3Qf7mwzB/m46BizSU9ko/mgkBdLOFyFp91mpSyITpc65gfe/v3M/z5tDOiPIy0XiiuhB2N/UUOxvcTBgUQ2BrZwwf1hXAMDHP57Gr+eLJK6ITE3x7SpMTlGjWidgcLA3Rnf3k7okaiD2Nz0I+1s8DFhUy7CwNng2og10AvDqejWul1ZKXRKZCEEQMHPrEVy+cRu+7vZIHB4MmUwmdVlkAPY31Yf9LS4GLKrT3Ke7oG0rR1zVVCBhUyYEgfdr0J2ngu84mg+lXIYlceFwUdlIXRI1Avub6sL+FhcDFtXJwVaJpNHhsFXKsTurACv2Z0tdEknsZJ4Gc//4XrsZTwQh1NdN2oKo0djfdC/2t/gYsKhenbxd8OaTnQEA732fhcxLN6UtiCRTVlmNSevSUVmtQ/+OrfDiowFSl0RN1MnbBW+wvwnsb2NhwKL7+msPPwzs6oUqrYBJKenQlFdJXRJJ4K1vj+PctVJ4utjhoxGhkMt5X4YlGMP+JrC/jYUBi+5LJpNhwfBuaNPCHpeu38bMrUd5v4aV+Uadi02HL0MuAz4eFQZ3R1upSyKRsL+J/W08kgesTz75BAEBAVCpVIiIiMC+ffvuO37v3r2IiIiASqVCYGAgkpOTa7y/detWREZGws3NDY6OjggNDcWaNWtqjHn77bchk8lqvLy8vESfm6VwtbfBkrgwKOUybD+Sh5TfLkldEjWT7MJSzP76KABgyl/ao2dgS4krIrGxv60X+9u4JA1YGzZswNSpUzF79myo1WpER0dj4MCByMnJqXN8dnY2Bg0ahOjoaKjVasyaNQtTpkzBli1b9GPc3d0xe/ZspKWl4ciRIxg/fjzGjx+PnTt31thWly5dkJeXp38dPXrUqHM1d2F+LfDP2I4AgDn/OY6sfI3EFZGxVVRrMWldOkortegZ6I7Jj7WXuiQyEva39WF/G59MkPB8cI8ePRAeHo5ly5bpl3Xq1AlDhw5FYmJirfEzZszAtm3bcPLkSf2yiRMnIjMzE2lpafXuJzw8HIMHD8a8efMA3DmD9c033yAjI6PBtVZUVKCiokL/s0ajga+vL4qLi+HiYh1PudXpBLyw6nfsOXUN7R5ywrZJvfn1CRbs7W3HsfLABbg72uK/r0bD00UldUlkROxv62LN/a3RaODq6mr0v9+SncGqrKzE4cOHERMTU2N5TEwMDhw4UOc6aWlptcbHxsbi0KFDqKqqfXOmIAj48ccfcerUKfTp06fGe2fOnIGPjw8CAgIwatQonD9//r71JiYmwtXVVf/y9fVtyDQtilwuw0fPheAhZzucLbiFt7cdl7okMpKdx/Ox8sAFAMBHI0Ks6pevtWJ/Ww/2d/OQLGAVFhZCq9XC09OzxnJPT0/k5+fXuU5+fn6d46urq1FYWKhfVlxcDCcnJ9ja2mLw4MFYsmQJBgwYoH+/R48eWL16NXbu3Inly5cjPz8fUVFRKCqq/2sjZs6cieLiYv3r0iXrvE+hpZMdFo0KhUwGbDx0Gd9m5EpdEoks9+ZtTN98BADw9z6B6N/xIYkroubC/rZ87O/mI/lN7vc+hl8QhPs+mr+u8fcud3Z2RkZGBn7//XfMnz8f8fHx2LNnj/79gQMHYvjw4QgODsbjjz+O7du3AwBWrVpV737t7Ozg4uJS42Wtotp66K/Xz9p6FNmFpRJXRGKp0uowJUWN4ttVCPF1Q0JMR6lLombG/rZc7O/mJVnA8vDwgEKhqHW2qqCgoNZZqru8vLzqHK9UKtGy5f8+/SCXy9GuXTuEhobitddew7PPPlvnPV13OTo6Ijg4GGfOnGnCjKzLlMfaoXuAO0ortZicko6Kaq3UJZEI/p16Gocv3oCzSomkuDDYKiX/NxhJgP1tmfT9bafEklHsb2OT7L+ura0tIiIikJqaWmN5amoqoqKi6lynV69etcbv2rULkZGRsLGp/zuTBEGocYP6vSoqKnDy5El4e3sbMAPrplTIsXhUGFo42OBYrgYL/psldUnURPvOXMOyvecAAAue6QZfdweJKyKpsL8tT43+Ht4Nfi3Z38YmaXyNj4/H559/ji+++AInT57EtGnTkJOTg4kTJwK4c9/T888/rx8/ceJEXLx4EfHx8Th58iS++OILrFixAgkJCfoxiYmJSE1Nxfnz55GVlYWFCxdi9erVGDNmjH5MQkIC9u7di+zsbBw8eBDPPvssNBoNxo0b13yTtwBerip8NCIEAPDlLxeQeuKqxBVRYxWUlGPahgwIAjC6hx8Gd+M/Nqwd+9tysL+lIWnAGjlyJBYtWoS5c+ciNDQUP//8M3bs2AF/f38AQF5eXo1nYgUEBGDHjh3Ys2cPQkNDMW/ePCxevBjDhw/XjyktLcUrr7yCLl26ICoqCps3b8ZXX32FCRMm6MdcvnwZcXFx6NixI5555hnY2tri119/1e+XGu6xIE9M+ON7q/65ORNXbt6WuCIylE4nIH5DJgpvVSLIy1n//ZNE7G/zx/6WjqTPwTJnzfUcDXNQWa3Dc8kHkHm5GJH+LbD+7z2hVPDavrlY+tNZfLDzFOxtFPjP5N5o95Cz1CWRCWF/mzf2d20W/xwsshy2SjmWxIXD2U6JQxdvYNEP/LCAuTh04ToWpp4GAMx5ugt/+VIt7G/zxf6WFgMWicKvpQMShwcDAJbuOYv9ZwofsAZJ7WZZJaakqKHVCRga6oPnItpIXRKZKPa3+WF/S48Bi0TzZDcfxHX3gyAAUzdk4FpJ/Z/cJGkJgoCETUdwpbgcAR6OeGdY8H2fP0fE/jYf7G/TwIBFonprSGd09HRG4a0KxG/MgE7HW/xM0coDF/DDyauwVcixJC4MTnb8zjl6MPa3eWB/mwYGLBKVykaBpNFhUNnIse9MIZJ/Pid1SXSPY7nFSNxx57lGswYFoWtrV4krInPB/jZ97G/TwYBFomvv6Yy5T3UFAHy06zQOX7wucUV0162Kakxal45KrQ4xnT0xLuphqUsiM8P+Nl3sb9PCgEVG8VxkGzwd6gOtTsCUlAzcLKuUuiSrJwgCZn99FBeKytDazR7vP9uN92VQo7C/TQ/72/QwYJFRyGQyzB8WjIdbOui/vZ2PXJPWpkOX8W3GFSjkMiyOC4Wbg63UJZGZYn+bHva36WHAIqNxslMiaXQ4bBVy7DpxFavTLkpdktU6c7UEb247BgCIH9ABEf7uEldE5u5uf9soZOxvibG/TRMDFhlV19aumDkoCAAwf/tJHMstlrgi61NepcWkdWqUV+kQ3d4DL/dtK3VJZCG6tnbFzIGdALC/pcL+Nl0MWGR0/xf1MB7v5IlKrQ6TU9S4VVEtdUlWZe53J3Dqagk8nOywcEQo5HLel0HiGd+b/S0l9rfpYsAio5PJZPjg2W7wdlUhu7AUb3xzjPdrNJPtR/Kw7mAOZDJg0chQtHK2k7oksjDsb+mwv00bAxY1ixaOtlgcFwaFXIav1bnYfPiy1CVZvJyiMry+5QgA4JV+bfFoew+JKyJLxf5ufuxv08eARc3mkYfdMe3x9gCAN789jrMFJRJXZLkqq3WYnJKOkopqRPq3wLTHO0hdElk49nfzYX+bBwYsalYv92uH3u1a4rb+xkyt1CVZpA92ZiHzcjFc7W3wcVwYlAq2Ohkf+7t5sL/NA48KNSuFXIZ/jwyFh5MtsvJLMO+7E1KXZHF2Z13F8n3ZAIAPnwtBazd7iSsia8H+Nr4/9/cHz3Zjf5swBixqdg85q7BwRCgAYO3BHGw/kidtQRYkv7gcr23MBHDn05sDOntKXBFZG/a38dzb3zFdvCSuiO6HAYsk0adDK7zc787zWl7fegSXrpdJXJH50+oEvLpejRtlVeji46J//hhRc2N/i4/9bX4YsEgy8QM6INzPDSXl1ZicokaVVid1SWZt8Y9ncDD7OhxtFUgaHQ47pULqksiKsb/Fxf42PwxYJBkbhRyL48LgolIi49JNfLjzlNQlma20c0VYsvsMAGD+sGAEeDhKXBFZO/a3eNjf5okBiyTVpoUDPnguBADw6c/n8dOpAokrMj9Ftyrw6no1dALwXEQbDA1rLXVJRADY32Jgf5svBiySXGwXL4zr5Q8AeG1jJq5qyiWuyHzodAJe25SJgpIKtHvICXOe7iJ1SUQ1sL8bj/1t3hiwyCTMHNQJnb1dcL20ElPXZ0Cr41dtNMTn+89jz6lrsFPKkTQ6DA62SqlLIqqF/d047G/zxoBFJkFlo/jjF4gCaeeLkLT7rNQlmTx1zg28//2d+1reHNIZQV4uEldEVDf2t+HY3+aPAYtMRmArJ8wf1hUA8PGPp/Hr+SKJKzJdxberMDlFjWqdgMHB3hjd3U/qkojui/3dcOxvy8CARSZlWFgbPBvRBjoBeHW9GtdLK6UuyeQIgoCZW4/g8o3b8HW3R+LwYMhkMqnLInog9veDsb8tBwMWmZy5T3dB21aOuKqpQMKmTAgC79f4s7UHc7DjaD6UchmWxIXDRWUjdUlEDcb+vj/2t+VgwCKT42CrRNLocNgq5didVYAV+7OlLslknMzTYO4f3+8244kghPq6SVsQkYHY3/Vjf1sWBiwySZ28XfDmk50BAO99n4XMSzelLcgElFVWY9K6dFRW69C/Yyu8+GiA1CURNQr7uzb2t+VhwCKT9dcefhgU7IUqrYBJKenQlFdJXZKk3vz2OM5dK4Wnix0+GhEKuZz3ZZD5Yn/XxP62PAxYZLJkMhkSn+mGNi3scen6bczcetRq79f4Wn0Zmw9fhlwGfDwqDO6OtlKXRNQk7O//YX9bJgYsMmmu9jZIGh0OpVyG7UfykPLbJalLanbnr93C7K+PAQCm/KU9ega2lLgiInG42ttgSVwY+5v9bZEYsMjkhfq6YfoTHQEAc/5zHFn5Gokraj4V1VpMWqdGWaUWPQPdMfmx9lKXRCSqML8W+Gcs+5v9bXkYsMgsTHg0EP06tkJFte6PX0jVUpfULBJ3ZOFEngbujrb4eFQYFLwvgyzQ36LZ3+xvy8OARWZBLpfho+dC8JCzHc4W3MLb245LXZLR7Tyej5UHLgAAPhoRAk8XlbQFERkJ+5v9bYkYsMhstHSyw6JRoZDJgI2HLuPbjFypSzKa3Ju3MX3zEQDA3/sEon/HhySuiMi42N9kaRiwyKxEtfXQ36cwa+tRZBeWSlyR+Kq0OkxJUaP4dhVCfN2QENNR6pKImgX7mywJAxaZnSmPtUP3AHeUVmoxOSUdFdVaqUsS1b9TT+PwxRtwtlMiKS4Mtkq2KVkPa+rvJaPY35aMR5bMjlIhx+JRYWjhYINjuRos+G+W1CWJZt+Za1i29xwAYMHwbvB1d5C4IqLmZU397deS/W3JGLDILHm5qvDRiBAAwJe/XEDqiasSV9R0BSXlmLYhA4IAjO7hh8HdvKUuiUgS7G+yBAxYZLYeC/LEhD++r+ufmzNx5eZtiStqPJ1OQPyGTBTeqkSQl7P+e9qIrBX7m8wdAxaZtelPBCGkjStullVhSooa1Vqd1CU1yrK957D/bCHsbRRIGh0GlY1C6pKIJMf+JnPGgEVmzVYpx5K4cDjbKXHo4g0s+uGM1CUZ7NCF61iYehoAMOfpLmj3kLPEFRGZBvY3mTMGLDJ7fi0dkDg8GACwdM9Z7D9TKHFFDXezrBJTUtTQ6gQMDfXBcxFtpC6JyKSwv8lcMWCRRXiymw/iuvtBEICpGzJwraRC6pIeSBAEJGw6givF5QjwcMQ7w4Ihk/GrMojuxf4mc8SARRbjrSGd0dHTGYW3KhC/MQM6nSB1Sfe18sAF/HDyKmwVciyJC4OTnVLqkohMFvubzA0DFlkMlf4GUjn2nSlE8s/npC6pXsdyi5G4487zfWYNCkLX1q4SV0Rk2tjfZG4YsMiitPd0xtynugIAPtp1GocvXpe4otpuVVRj0rp0VGp1iOnsiXFRD0tdEpFZYH+TOWHAIovzXGQbPB3qA61OwJSUDNwsq5S6JD1BEDD766O4UFSG1m72eP/Zbrwvg8gA7G8yFwxYZHFkMhnmDwvGwy0d9N9aLwimcb/GpkOX8W3GFSjkMiyOC4Wbg63UJRGZFfY3mQsGLLJITnZKJI0Oh61Cjl0nrmJ12kWpS8KZqyV4c9sxAED8gA6I8HeXuCIi88T+JnPAgEUWq2trV8wcFAQAmL/9JI7lFktWS3mVFpPWqVFepUN0ew+83LetZLUQWQL2N5k6BiyyaP8X9TAGdPZEpVaHySlq3KqolqSOOf85gVNXS+DhZIeFI0Ihl/O+DKKmYn+TKWPAIosmk8nwwbPd4OOqQnZhKd745liz36/x3ZErSPktBzIZsGhkKFo52zXr/oksFfubTBkDFlk8NwdbLI4Lg0Iuw9fqXGw+fLnZ9p1TVIaZW44CAF7p1xaPtvdotn0TWQP2N5kqBiyyCpEPuyN+QAcAwJvfHsfZghKj77OyWofJKekoqahGpH8LTHu8g9H3SWSNIh92x7TH2wNgf5PpYMAiqzGxb1v0btcSt/U3pGqNur8PdmYh83IxXO1t8HFcGJQKthuRsbzcrx37m0wK/48gq6GQy/DvkaHwcLJFVn4J3tl+wmj72p11Fcv3ZQMAPni2G1q72RttX0TE/ibTw4BFVuUhZxUWjggFAHz1aw7+ezRP9H3kF5fjtY2ZAO58yimmi5fo+yCi2tjfZEoYsMjq9OnQCi/3u/OcmulbjuDS9TLRtq3VCXh1vRo3yqrQxcdF/5weImoe7G8yFZIHrE8++QQBAQFQqVSIiIjAvn377jt+7969iIiIgEqlQmBgIJKTk2u8v3XrVkRGRsLNzQ2Ojo4IDQ3FmjVrmrxfsizxAzog3M8NJeXVmJyiRpVWJ8p2F/94Bgezr8PRVoGk0eGwUypE2S4RNRz7m0yBpAFrw4YNmDp1KmbPng21Wo3o6GgMHDgQOTk5dY7Pzs7GoEGDEB0dDbVajVmzZmHKlCnYsmWLfoy7uztmz56NtLQ0HDlyBOPHj8f48eOxc+fORu+XLI+NQo7FcWFwUSmRcekmPtx5qsnbTDtXhCW7zwAA5g8LRoCHY5O3SUSGY3+TKZAJEn5LZo8ePRAeHo5ly5bpl3Xq1AlDhw5FYmJirfEzZszAtm3bcPLkSf2yiRMnIjMzE2lpafXuJzw8HIMHD8a8efMatd+6aDQauLq6ori4GC4uLg1ah0zPzuP5eGnNYQDAl+MfQf+ODzVqO0W3KjDw430oKKnAcxFt8MFzIWKWSUSNwP6mujTX32/JzmBVVlbi8OHDiImJqbE8JiYGBw4cqHOdtLS0WuNjY2Nx6NAhVFVV1RovCAJ+/PFHnDp1Cn369Gn0fgGgoqICGo2mxovMX2wXL4zr5Q8AeG1jJq5qyg3ehk4n4LVNmSgoqUC7h5ww5+kuYpdJRI3A/iYpSRawCgsLodVq4enpWWO5p6cn8vPz61wnPz+/zvHV1dUoLCzULysuLoaTkxNsbW0xePBgLFmyBAMGDGj0fgEgMTERrq6u+pevr69B8yXTNXNQJ3T2dsH10kpMXZ8Brc6wk7qf7z+PPaeuwU4pR9LoMDjYKo1UKREZiv1NUpH8JneZrOaXYgqCUGvZg8bfu9zZ2RkZGRn4/fffMX/+fMTHx2PPnj1N2u/MmTNRXFysf126dOm+8yLzobJR/PGLU4G080VI2n22weuqc27g/e/v3N/x5pDOCPLi5WIiU8L+JqlIFrA8PDygUChqnTUqKCiodXbpLi8vrzrHK5VKtGzZUr9MLpejXbt2CA0NxWuvvYZnn31Wf29VY/YLAHZ2dnBxcanxIssR2MoJ84d1BQB8/ONp/Hq+6IHrFN+uwuQUNap1AgYHe2N0dz9jl0lEjcD+JilIFrBsbW0RERGB1NTUGstTU1MRFRVV5zq9evWqNX7Xrl2IjIyEjY1NvfsSBAEVFRWN3i9Zh2FhbfBsRBvoBODV9WpcL62sd6wgCJi59Qgu37gNX3d7JA4Pvu8ZUCKSFvubmpuklwjj4+Px+eef44svvsDJkycxbdo05OTkYOLEiQDuXJZ7/vnn9eMnTpyIixcvIj4+HidPnsQXX3yBFStWICEhQT8mMTERqampOH/+PLKysrBw4UKsXr0aY8aMafB+yXrNfboL2rZyxFVNBRI2ZaK+D9muPZiDHUfzoZTLsCQuHC6q+gM+EZkG9jc1J0nv1hs5ciSKioowd+5c5OXloWvXrtixYwf8/e986iMvL6/Gs6kCAgKwY8cOTJs2DUuXLoWPjw8WL16M4cOH68eUlpbilVdeweXLl2Fvb4+goCB89dVXGDlyZIP3S9bLwVaJpNHheHrpL9idVYAV+7MxITqwxpiTeRrM/e7O95zNeCIIob5uElRKRIZif1NzkvQ5WOaMz8GybF/9ehH/+uYYbBQybJ4YhZA/fsmWVVZjyJL9OHetFP07tsKKcY9ALuelAyJzwv62bhb/HCwiU/bXHn4YFOyFKq2ASSnp0JTfec7am98ex7lrpfB0scNHI0L5y5fIDLG/qTkwYBHVQSaTIfGZbmjTwh6Xrt/GzK1H8bX6MjYfvgy5DPh4VBjcHW2lLpOIGoH9Tc2BlwgbiZcIrUPGpZt4dtkBVOsEKOUyVOsETH28PaY+3kHq0oioidjf1omXCIlMQKivG6Y/0REAUK0T0DPQHZMfay9xVUQkBvY3GROf+U/0ABMeDURWXglO5GmwaGQYFLwvg8hisL/JWHiJsJF4iZCIiMj88BIhERERkZliwCIiIiISGQMWERERkcgYsIiIiIhExoBFREREJDIGLCIiIiKRMWARERERiYwBi4iIiEhkDFhEREREImPAIiIiIhIZAxYRERGRyBiwiIiIiETGgEVEREQkMgYsIiIiIpEppS7AXAmCAADQaDQSV0JEREQNdffv9t2/48bCgNVIRUVFAABfX1+JKyEiIiJDFRUVwdXV1WjbZ8BqJHd3dwBATk6OUQ+QqdFoNPD19cWlS5fg4uIidTnNhvPmvK0B5815W4Pi4mL4+fnp/44bCwNWI8nld25fc3V1tar/Me9ycXHhvK0I521dOG/rYq3zvvt33GjbN+rWiYiIiKwQAxYRERGRyBiwGsnOzg5vvfUW7OzspC6lWXHenLc14Lw5b2vAeRt33jLB2J9TJCIiIrIyPINFREREJDIGLCIiIiKRMWARERERiYwBi4iIiEhkDFh1qK6uxr/+9S8EBATA3t4egYGBmDt3LnQ63X3X27t3LyIiIqBSqRAYGIjk5ORmqlgcjZn3nj17IJPJar2ysrKasfKmKykpwdSpU+Hv7w97e3tERUXh999/v+865n68AcPnbY7H++eff8aQIUPg4+MDmUyGb775psb7giDg7bffho+PD+zt7dGvXz8cP378gdvdsmULOnfuDDs7O3Tu3Blff/21kWbQOMaY98qVK+s8/uXl5UaciWEeNO+tW7ciNjYWHh4ekMlkyMjIaNB2zf14N2be5n68q6qqMGPGDAQHB8PR0RE+Pj54/vnnceXKlQduV4zjzYBVh/feew/JyclISkrCyZMn8f777+ODDz7AkiVL6l0nOzsbgwYNQnR0NNRqNWbNmoUpU6Zgy5YtzVh50zRm3nedOnUKeXl5+lf79u2boWLxTJgwAampqVizZg2OHj2KmJgYPP7448jNza1zvCUcb8Dwed9lTse7tLQUISEhSEpKqvP9999/HwsXLkRSUhJ+//13eHl5YcCAASgpKal3m2lpaRg5ciTGjh2LzMxMjB07FiNGjMDBgweNNQ2DGWPewJ2nfv/52Ofl5UGlUhljCo3yoHmXlpaid+/eWLBgQYO3aQnHuzHzBsz7eJeVlSE9PR1vvPEG0tPTsXXrVpw+fRpPPfXUfbcp2vEWqJbBgwcLL7zwQo1lzzzzjDBmzJh615k+fboQFBRUY9lLL70k9OzZ0yg1GkNj5v3TTz8JAIQbN24YuTrjKSsrExQKhfDdd9/VWB4SEiLMnj27znUs4Xg3Zt7mfrwBCF9//bX+Z51OJ3h5eQkLFizQLysvLxdcXV2F5OTkerczYsQI4YknnqixLDY2Vhg1apToNYtBrHl/+eWXgqurqxErFde98/6z7OxsAYCgVqsfuB1zP95/Zsi8Lel43/Xbb78JAISLFy/WO0as480zWHV49NFH8eOPP+L06dMAgMzMTOzfvx+DBg2qd520tDTExMTUWBYbG4tDhw6hqqrKqPWKpTHzvissLAze3t74y1/+gp9++snYpYqquroaWq221r/K7O3tsX///jrXsYTj3Zh532XOx/vPsrOzkZ+fX+NY2tnZoW/fvjhw4EC969V3/O+3jilp7LwB4NatW/D390ebNm3w5JNPQq1WG7tcyZn78W4KSzvexcXFkMlkcHNzq3eMWMebAasOM2bMQFxcHIKCgmBjY4OwsDBMnToVcXFx9a6Tn58PT0/PGss8PT1RXV2NwsJCY5csisbM29vbG5999hm2bNmCrVu3omPHjvjLX/6Cn3/+uRkrbxpnZ2f06tUL8+bNw5UrV6DVavHVV1/h4MGDyMvLq3MdSzjejZm3JRzvP8vPzweAOo/l3ffqW8/QdUxJY+cdFBSElStXYtu2bUhJSYFKpULv3r1x5swZo9YrNXM/3o1lace7vLwcr7/+OkaPHn3fL7cW63grG1WlhduwYQO++uorrFu3Dl26dEFGRgamTp0KHx8fjBs3rt71ZDJZjZ+FPx6Sf+9yU9WYeXfs2BEdO3bU/9yrVy9cunQJH374Ifr06dNcpTfZmjVr8MILL6B169ZQKBQIDw/H6NGjkZ6eXu865n68AcPnbSnH+151HcsHHcfGrGNqDJ1Dz5490bNnT/3PvXv3Rnh4OJYsWYLFixcbrU5TYAnH21CWdLyrqqowatQo6HQ6fPLJJw8cL8bx5hmsOvzzn//E66+/jlGjRiE4OBhjx47FtGnTkJiYWO86Xl5etdJtQUEBlEolWrZsaeySRdGYedelZ8+eZvcvnLZt22Lv3r24desWLl26hN9++w1VVVUICAioc7wlHG/A8HnXxRyP911eXl4AUOexvPdfsPeuZ+g6pqSx876XXC7HI488YrbHv6HM/XiLxVyPd1VVFUaMGIHs7Gykpqbe9+wVIN7xZsCqQ1lZGeTymv9pFArFfR9X0KtXL6SmptZYtmvXLkRGRsLGxsYodYqtMfOui1qthre3t5ilNRtHR0d4e3vjxo0b2LlzJ55++uk6x1nC8f6zhs67LuZ8vAMCAuDl5VXjWFZWVmLv3r2Iioqqd736jv/91jEljZ33vQRBQEZGhtke/4Yy9+MtFnM83nfD1ZkzZ/DDDz806B/Aoh1vg26JtxLjxo0TWrduLXz33XdCdna2sHXrVsHDw0OYPn26fszrr78ujB07Vv/z+fPnBQcHB2HatGnCiRMnhBUrVgg2NjbC5s2bpZhCozRm3v/+97+Fr7/+Wjh9+rRw7Ngx4fXXXxcACFu2bJFiCo32/fffC//973+F8+fPC7t27RJCQkKE7t27C5WVlYIgWObxFgTD522Ox7ukpERQq9WCWq0WAAgLFy4U1Gq1/lNECxYsEFxdXYWtW7cKR48eFeLi4gRvb29Bo9HotzF27Fjh9ddf1//8yy+/CAqFQliwYIFw8uRJYcGCBYJSqRR+/fXXZp9ffYwx77ffflv4/vvvhXPnzglqtVoYP368oFQqhYMHDzb7/OrzoHkXFRUJarVa2L59uwBAWL9+vaBWq4W8vDz9NizxeDdm3uZ+vKuqqoSnnnpKaNOmjZCRkSHk5eXpXxUVFfptGOt4M2DVQaPRCK+++qrg5+cnqFQqITAwUJg9e3aNAzJu3Dihb9++Ndbbs2ePEBYWJtja2goPP/ywsGzZsmauvGkaM+/33ntPaNu2raBSqYQWLVoIjz76qLB9+3YJqm+aDRs2CIGBgYKtra3g5eUl/OMf/xBu3rypf98Sj7cgGD5vczzedx8tce9r3LhxgiDceWTBW2+9JXh5eQl2dnZCnz59hKNHj9bYRt++ffXj79q0aZPQsWNHwcbGRggKCjK5kGmMeU+dOlXw8/MTbG1thVatWgkxMTHCgQMHmnFWD/ageX/55Zd1vv/WW2/pt2GJx7sx8zb34333kRR1vX766Sf9Nox1vGWC8MeduUREREQkCt6DRURERCQyBiwiIiIikTFgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISGQMWERERkcgYsIiIiIhExoBFREREJDIGLCIiIiKRMWARkcWqrKyUugQislIMWERkMfr164dJkyYhPj4eHh4eGDBgABYuXIjg4GA4OjrC19cXr7zyCm7duqVfZ+XKlXBzc8POnTvRqVMnODk54YknnkBeXp5+THV1NaZMmQI3Nze0bNkSM2bMwLhx4zB06FD9GEEQ8P777yMwMBD29vYICQnB5s2bm3P6RGRCGLCIyKKsWrUKSqUSv/zyCz799FPI5XIsXrwYx44dw6pVq7B7925Mnz69xjplZWX48MMPsWbNGvz888/IyclBQkKC/v333nsPa9euxZdffolffvkFGo0G33zzTY1t/Otf/8KXX36JZcuW4fjx45g2bRrGjBmDvXv3Nse0icjEyARBEKQugohIDP369UNxcTHUanW9YzZt2oSXX34ZhYWFAO6cwRo/fjzOnj2Ltm3bAgA++eQTzJ07F/n5+QAALy8vJCQk6EOXVqtFYGAgwsLC8M0336C0tBQeHh7YvXs3evXqpd/XhAkTUFZWhnXr1hlrykRkopRSF0BEJKbIyMgaP//000949913ceLECWg0GlRXV6O8vBylpaVwdHQEADg4OOjDFQB4e3ujoKAAAFBcXIyrV6+ie/fu+vcVCgUiIiKg0+kAACdOnEB5eTkGDBhQY9+VlZUICwszyjyJyLQxYBGRRbkbmgDg4sWLGDRoECZOnIh58+bB3d0d+/fvx4svvoiqqir9OBsbmxrbkMlkuPfkvkwmq/Hzn9+/G7S2b9+O1q1b1xhnZ2fXtAkRkVliwCIii3Xo0CFUV1fjo48+glx+55bTjRs3GrQNV1dXeHp64rfffkN0dDSAO5cI1Wo1QkNDAQCdO3eGnZ0dcnJy0LdvX1HnQETmiQGLiCxW27ZtUV1djSVLlmDIkCH45ZdfkJycbPB2Jk+ejMTERLRr1w5BQUFYsmQJbty4oT+r5ezsjISEBEybNg06nQ6PPvooNBoNDhw4ACcnJ4wbN07sqRGRieOnCInIYoWGhmLhwoV477330LVrV6xduxaJiYkGb2fGjBmIi4vD888/j169esHJyQmxsbFQqVT6MfPmzcObb76JxMREdOrUCbGxsfjPf/6DgIAAMadERGaCnyIkIjKQTqdDp06dMGLECMybN0/qcojIBPESIRHRA1y8eBG7du1C3759UVFRgaSkJGRnZ2P06NFSl0ZEJoqXCImIHkAul2PlypV45JFH0Lt3bxw9ehQ//PADOnXqJHVpRGSieImQiIiISGQ8g0VEREQkMgYsIiIiIpExYBERERGJjAGLiIiISGQMWEREREQiY8AiIiIiEhkDFhEREZHIGLCIiIiIRPb/67SxDpLvhsYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(range(1, 50), error_rate)\n", "plt.ylabel('error rate')\n", "plt.xlabel('range')\n", "\n", "plt.xlim(8, 12)" ] }, { "cell_type": "code", "execution_count": 248, "id": "c3f78f58", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] } ], "source": [ "knn_2 = KNeighborsClassifier(n_neighbors=9)\n", "\n", "knn_2.fit(scaled_X_train, y_train)\n", "y_pred_2 = knn.predict(scaled_X_test)" ] }, { "cell_type": "code", "execution_count": 249, "id": "f0ce67be", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.9473684210526315" ] }, "execution_count": 249, "metadata": {}, "output_type": "execute_result" } ], "source": [ "accuracy_score(y_test, y_pred_2)" ] }, { "cell_type": "code", "execution_count": 250, "id": "c4297ed7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.947" ] }, "execution_count": 250, "metadata": {}, "output_type": "execute_result" } ], "source": [ "round(accuracy_score(y_test, y_pred), 3)" ] }, { "cell_type": "markdown", "id": "bacac60e", "metadata": {}, "source": [ "Since the accuracy has no much diff- leave the knn as it was" ] }, { "cell_type": "markdown", "id": "c4a1eaaf", "metadata": {}, "source": [ "#### Hypertune the parameters using GrodSearchCV to improve the Recall score \n" ] }, { "cell_type": "code", "execution_count": 252, "id": "5ff4644b", "metadata": {}, "outputs": [], "source": [ "scaler = StandardScaler()" ] }, { "cell_type": "code", "execution_count": 253, "id": "5263350e", "metadata": {}, "outputs": [], "source": [ "knn = KNeighborsClassifier()" ] }, { "cell_type": "code", "execution_count": 254, "id": "c2332fb6", "metadata": {}, "outputs": [], "source": [ "operations = [('scaler', scaler), ('knn', knn)]" ] }, { "cell_type": "code", "execution_count": 255, "id": "6fc83957", "metadata": {}, "outputs": [], "source": [ "from sklearn.pipeline import Pipeline" ] }, { "cell_type": "code", "execution_count": 256, "id": "c21d5dab", "metadata": {}, "outputs": [], "source": [ "pipe = Pipeline(operations)" ] }, { "cell_type": "code", "execution_count": 257, "id": "d0ee6124", "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import GridSearchCV" ] }, { "cell_type": "code", "execution_count": 258, "id": "981de645", "metadata": {}, "outputs": [], "source": [ "k_values = range(1, 50)" ] }, { "cell_type": "code", "execution_count": 259, "id": "1556d961", "metadata": {}, "outputs": [], "source": [ "param_grid = {'knn__n_neighbors': k_values}" ] }, { "cell_type": "code", "execution_count": 260, "id": "90ca7c61", "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import make_scorer, recall_score" ] }, { "cell_type": "code", "execution_count": 261, "id": "0487e1a2", "metadata": {}, "outputs": [], "source": [ "scorer= make_scorer(recall_score)" ] }, { "cell_type": "code", "execution_count": 262, "id": "45f0456e", "metadata": {}, "outputs": [], "source": [ "full_cv_classifier = GridSearchCV(pipe, param_grid, cv=5, scoring=scorer)" ] }, { "cell_type": "code", "execution_count": 263, "id": "62d3ba82", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] }, { "data": { "text/plain": [ "GridSearchCV(cv=5,\n", " estimator=Pipeline(steps=[('scaler', StandardScaler()),\n", " ('knn', KNeighborsClassifier())]),\n", " param_grid={'knn__n_neighbors': range(1, 50)},\n", " scoring=make_scorer(recall_score))" ] }, "execution_count": 263, "metadata": {}, "output_type": "execute_result" } ], "source": [ "full_cv_classifier.fit(scaled_X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 264, "id": "eecadc67", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] }, { "data": { "text/plain": [ "array([0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,\n", " 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0,\n", " 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1,\n", " 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0,\n", " 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1,\n", " 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0,\n", " 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], dtype=int64)" ] }, "execution_count": 264, "metadata": {}, "output_type": "execute_result" } ], "source": [ "full_cv_classifier.predict(scaled_X_test)" ] }, { "cell_type": "code", "execution_count": 265, "id": "27ce06ce", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\utils\\deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator.\n", " warnings.warn(msg, category=FutureWarning)\n", "C:\\Users\\Teni\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 265, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAGwCAYAAACuFMx9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvkUlEQVR4nO3de3QU9f3/8dfmtkkgCQTIhkiAIOEiF8FAKXgBi2BRKJRvVQqtqKAiKKaoKCdeoi2JcNoYlYKCLcnXSsWfCtp+vZB6wQulQgQvQLFogCDEYI0Ecs/u/P5A1q6Bms1sstmZ5+OcOe1+dmb2vZiTd97vz2dmHIZhGAIAAJYVFuwAAABA6yLZAwBgcSR7AAAsjmQPAIDFkewBALA4kj0AABZHsgcAwOIigh2AGR6PR4cPH1ZcXJwcDkewwwEA+MkwDB0/flwpKSkKC2u9+rO2tlb19fWmzxMVFaXo6OgARNS2QjrZHz58WKmpqcEOAwBgUmlpqXr06NEq566trVVar44qK3ebPldycrJKSkpCLuGHdLKPi4uTJB14v7fiOzIjAWv6ab8hwQ4BaDWNatA7esn7+7w11NfXq6zcrQPFvRUf1/JcUXnco14Z+1VfX0+yb0unWvfxHcNM/QcE2rMIR2SwQwBazzc3bG+LqdiOcQ51jGv553gUutPFIZ3sAQBoLrfhkdvE02DchidwwbQxkj0AwBY8MuRRy7O9mWODjd43AAAWR2UPALAFjzwy04g3d3RwkewBALbgNgy5jZa34s0cG2y08QEAsDgqewCALdh5gR7JHgBgCx4Zcts02dPGBwDA4qjsAQC2QBsfAACLYzU+AACwLJI9AMAWPAHY/PHWW29pypQpSklJkcPh0MaNG33eNwxD2dnZSklJUUxMjMaNG6ddu3b57FNXV6dbbrlFXbt2VYcOHfSTn/xEhw4d8jMSkj0AwCbc36zGN7P5o6qqSueee65WrFhx2veXL1+uvLw8rVixQtu2bVNycrImTJig48ePe/fJzMzUhg0b9PTTT+udd97RiRMnNHnyZLndbr9iYc4eAGALbkMmn3p38n8rKyt9xp1Op5xOZ5P9J02apEmTJp32XIZhKD8/X1lZWZo+fbokqbCwUC6XS+vWrdONN96oY8eO6Q9/+IOefPJJXXLJJZKkP/3pT0pNTdXf/vY3XXrppc2OncoeAAA/pKamKiEhwbvl5ub6fY6SkhKVlZVp4sSJ3jGn06mxY8dqy5YtkqTi4mI1NDT47JOSkqLBgwd792kuKnsAgC20ZN79u8dLUmlpqeLj473jp6vqv09ZWZkkyeVy+Yy7XC4dOHDAu09UVJQ6d+7cZJ9TxzcXyR4AYAseOeSWw9TxkhQfH++T7M1wOHzjMQyjydh3NWef76KNDwBAG0tOTpakJhV6eXm5t9pPTk5WfX29KioqzrhPc5HsAQC24DHMb4GSlpam5ORkFRUVecfq6+u1efNmjRkzRpKUkZGhyMhIn32OHDmijz/+2LtPc9HGBwDYgttkG9/fY0+cOKF9+/Z5X5eUlGjnzp1KTExUz549lZmZqZycHKWnpys9PV05OTmKjY3VzJkzJUkJCQmaM2eObrvtNnXp0kWJiYm6/fbbNWTIEO/q/OYi2QMA0Aq2b9+uiy++2Pt60aJFkqTZs2eroKBAixcvVk1NjebPn6+KigqNGjVKmzZtUlxcnPeYhx56SBEREbryyitVU1Oj8ePHq6CgQOHh4X7F4jCM0L3Zb2VlpRISElTxSR/FxzEjAWu6NGVYsEMAWk2j0aA39YKOHTsWsEVv33UqV2zZ1V0dTeSKE8c9GjPoSKvG2lqo7AEAtuAxHPIYJlbjmzg22CiHAQCwOCp7AIAttPUCvfaEZA8AsAW3wuQ20dD279Ez7QvJHgBgC4bJOXuDOXsAANBeUdkDAGyBOXsAACzObYTJbZiYsw/Zu9LQxgcAwPKo7AEAtuCRQx4TNa5HoVvak+wBALZg5zl72vgAAFgclT0AwBbML9CjjQ8AQLt2cs7exINwaOMDAID2isoeAGALHpP3xmc1PgAA7Rxz9gAAWJxHYba9zp45ewAALI7KHgBgC27DIbeJx9SaOTbYSPYAAFtwm1yg56aNDwAA2isqewCALXiMMHlMrMb3sBofAID2jTY+AACwLCp7AIAteGRuRb0ncKG0OZI9AMAWzN9UJ3Sb4aEbOQAAaBYqewCALZi/N37o1sckewCALdj5efYkewCALdi5sg/dyAEAQLNQ2QMAbMH8TXVCtz4m2QMAbMFjOOQxc519CD/1LnT/TAEAAM1CZQ8AsAWPyTZ+KN9Uh2QPALAF80+9C91kH7qRAwCAZqGyBwDYglsOuU3cGMfMscFGsgcA2AJtfAAAYFlU9gAAW3DLXCveHbhQ2hzJHgBgC3Zu45PsAQC2wINwAACAZVHZAwBswTD5PHuDS+8AAGjfaOMDAADLorIHANiCnR9xS7IHANiC2+RT78wcG2yhGzkAAGgWKnsAgC3QxgcAwOI8CpPHREPbzLHBFrqRAwCAZqGyBwDYgttwyG2iFW/m2GAj2QMAbIE5ewAALM4w+dQ7gzvoAQCA9orKHgBgC2455DbxMBszxwYbyR4AYAsew9y8u8cIYDBtjDY+AAAWR7KHPtraQfdenaafDx+kS1OGacvLCT7vG4b05G+T9fPhgzSlz1Dd8T99tX9vtM8+d/xPX12aMsxny5nXqy2/BtBik6/+Uqv+tlfP7/1Iz+/9SA+9+C+NuLgy2GEhwDzfLNAzs/mjsbFRd999t9LS0hQTE6M+ffrogQcekMfj8e5jGIays7OVkpKimJgYjRs3Trt27Qr0V6eND6m2Okx9BtVo4oyv9Ou5aU3ef+b3SXp+dTfdln9QPfrUaV2+S0tmnK0/vL1HsR2//aGdNOtLXX1Hmfe1M9rT5FxAe3T0SKT+mNNdh/c7JUkTrvhK2Wv3a8HEfjrwSfT3HI1Q4ZFDHhPz7v4eu2zZMj322GMqLCzUoEGDtH37dl177bVKSEjQrbfeKklavny58vLyVFBQoH79+uk3v/mNJkyYoL179youLq7FsX5X0Cv7lStXKi0tTdHR0crIyNDbb78d7JBsZ+SPjuuaO8t0wWXHmrxnGNLGJ7ppxsIvdMFlx9R7QK1uf/ig6mrC9MaGzj77OmMMJSY1ercO8SR7hIZ/FCVo2+vx+vwzpz7/zKmCZd1VWxWmARlVwQ4NIezvf/+7pk6dqssvv1y9e/fWz372M02cOFHbt2+XdLKqz8/PV1ZWlqZPn67BgwersLBQ1dXVWrduXUBjCWqyX79+vTIzM5WVlaUdO3bowgsv1KRJk3Tw4MFghoX/UHYwSl+VRypj7HHvWJTT0JAfntDu7R189n3j+c66YtBgXT+uv1bfn6LqE0H/WxLwW1iYobFTK+SM9WjPd37GEdpO3UHPzCZJlZWVPltdXd1pP++CCy7Qa6+9pk8++USS9MEHH+idd97RZZddJkkqKSlRWVmZJk6c6D3G6XRq7Nix2rJlS0C/e1Db+Hl5eZozZ47mzp0rScrPz9err76qVatWKTc3N5ih4RtflZ/8EencrcFnvHO3BpUfivK+vnj6V0pOrVdiUqP2/zNaf8ztrs92x+jB9Z+2abxAS/UeUKP8v+xTlNOjmqowPTCntw7+ixa+lbRk3v27x0tSamqqz/h9992n7OzsJvvfeeedOnbsmAYMGKDw8HC53W4tXbpUP//5zyVJZWUnpz1dLpfPcS6XSwcOHGhxnKcTtGRfX1+v4uJi3XXXXT7jEydOPONfNHV1dT5/QVVWsoCmzXxnqsowHD5jl836yvv/ew+o1Vl96nTzj/vrXx/GKH1oTRsFCbTcoU+dmj+hnzrEu3XB5cd0+8MHdcf0viR8NFFaWqr4+Hjva6fTedr91q9frz/96U9at26dBg0apJ07dyozM1MpKSmaPXu2dz+Hw/cXrGEYTcbMClqy//LLL+V2u0/7F82pv3a+Kzc3V/fff39bhIdvJCY1SpIqyiPVxdXoHf/6ywh17tZ4psPUd0iNIiI9+rzESbJHSGhsCPMu0PvXh7HqP6xa0+Ye1SN3pn7PkQgVHpm8N/43FU58fLxPsj+TO+64Q3fddZdmzJghSRoyZIgOHDig3NxczZ49W8nJyZJOVvjdu3f3HldeXt4kN5oV9ElVf/6iWbJkiY4dO+bdSktL2yJEW0vuWa/EpAa9/9a3q0Ib6h36aGtHnTPizIuXDuyNVmNDmLq4Gs64D9DeRUaF8F1U0ITxzWr8lm6Gn6vxq6urFRbmm2bDw8O9l96lpaUpOTlZRUVF3vfr6+u1efNmjRkzxvwX/g9Bq+y7du2q8PDwJlX8f/uLxul0nrFdgparqQrT4ZJv/13LSqP06ccxiuvUqKQeDZo296ieftSls/rU6ay0Ov35EZecMR5d/NMKSdLh/VF6/fnO+sH4SsUnunXwE6dW33+W+g6u1jkjWc2M9u/au45o2+txOno4SjEd3Ro39WsNHXNCd8/qE+zQEEBt/dS7KVOmaOnSperZs6cGDRqkHTt2KC8vT9ddd52kk8VuZmamcnJylJ6ervT0dOXk5Cg2NlYzZ85scZynE7RkHxUVpYyMDBUVFemnP/2pd7yoqEhTp04NVli29MkHsVr8s77e149nnyVJmnDlV7o9/6CuXFCu+towrVjSQ8ePhWvA8Grl/vlT7zX2EZGGdr4Tp41/6KbaqjB1TWnQqPGVmrWoTOHhQflKgF86dWvUHY8eVGJSo6qPh6tkT7TuntXHp6MF+OvRRx/VPffco/nz56u8vFwpKSm68cYbde+993r3Wbx4sWpqajR//nxVVFRo1KhR2rRpU0CvsZckh2EYQetTrV+/Xr/85S/12GOPafTo0Vq9erXWrFmjXbt2qVev77/7WmVlpRISElTxSR/FxwV9RgJoFZemDAt2CECraTQa9KZe0LFjx5o1D94Sp3LFT4uuVWSHqO8/4Awaquq1YcLaVo21tQT10rurrrpK//73v/XAAw/oyJEjGjx4sF566aVmJXoAAPzR1m389iTot8udP3++5s+fH+wwAACwrKAnewAA2kJb3xu/PSHZAwBswc5tfFa1AQBgcVT2AABbsHNlT7IHANiCnZM9bXwAACyOyh4AYAt2ruxJ9gAAWzBk7vK5UH4sEskeAGALdq7smbMHAMDiqOwBALZg58qeZA8AsAU7J3va+AAAWByVPQDAFuxc2ZPsAQC2YBgOGSYStpljg402PgAAFkdlDwCwBZ5nDwCAxdl5zp42PgAAFkdlDwCwBTsv0CPZAwBswc5tfJI9AMAW7FzZM2cPAIDFUdkDAGzBMNnGD+XKnmQPALAFQ5JhmDs+VNHGBwDA4qjsAQC24JFDDu6gBwCAdbEaHwAAWBaVPQDAFjyGQw5uqgMAgHUZhsnV+CG8HJ82PgAAFkdlDwCwBTsv0CPZAwBsgWQPAIDF2XmBHnP2AABYHJU9AMAW7Lwan2QPALCFk8nezJx9AINpY7TxAQCwOCp7AIAtsBofAACLM2TumfQh3MWnjQ8AgNVR2QMAbIE2PgAAVmfjPj7JHgBgDyYre4VwZc+cPQAAFkdlDwCwBe6gBwCAxdl5gR5tfAAALI7KHgBgD4bD3CK7EK7sSfYAAFuw85w9bXwAACyOyh4AYA/cVAcAAGuz82r8ZiX7Rx55pNknXLhwYYuDAQAAgdesZP/QQw8162QOh4NkDwBov0K4FW9Gs5J9SUlJa8cBAECrsnMbv8Wr8evr67V37141NjYGMh4AAFqHEYAtRPmd7KurqzVnzhzFxsZq0KBBOnjwoKSTc/UPPvhgwAMEAADm+J3slyxZog8++EBvvvmmoqOjveOXXHKJ1q9fH9DgAAAIHEcAttDkd7LfuHGjVqxYoQsuuEAOx7df/JxzztGnn34a0OAAAAiYILTxP//8c/3iF79Qly5dFBsbq2HDhqm4uPjbkAxD2dnZSklJUUxMjMaNG6ddu3aZ+JKn53eyP3r0qJKSkpqMV1VV+SR/AADsrKKiQueff74iIyP18ssva/fu3frd736nTp06efdZvny58vLytGLFCm3btk3JycmaMGGCjh8/HtBY/L6pzsiRI/V///d/uuWWWyTJm+DXrFmj0aNHBzQ4AAACJkB30KusrPQZdjqdcjqdTXZftmyZUlNTtXbtWu9Y7969vz2dYSg/P19ZWVmaPn26JKmwsFAul0vr1q3TjTfeaCJYX35X9rm5ucrKytJNN92kxsZGPfzww5owYYIKCgq0dOnSgAUGAEBAnXrqnZlNUmpqqhISErxbbm7uaT/uxRdf1IgRI3TFFVcoKSlJw4cP15o1a7zvl5SUqKysTBMnTvSOOZ1OjR07Vlu2bAnoV/c72Y8ZM0bvvvuuqqurdfbZZ2vTpk1yuVz6+9//royMjIAGBwBAe1NaWqpjx455tyVLlpx2v88++0yrVq1Senq6Xn31Vc2bN08LFy7U//7v/0qSysrKJEkul8vnOJfL5X0vUFp0b/whQ4aosLAwoIEAANCaAvWI2/j4eMXHx3/v/h6PRyNGjFBOTo4kafjw4dq1a5dWrVqlq6++2rvfd9e7GYYR8DVwLUr2brdbGzZs0J49e+RwODRw4EBNnTpVERE8VwcA0E618VPvunfvrnPOOcdnbODAgXruueckScnJyZJOVvjdu3f37lNeXt6k2jfL7+z88ccfa+rUqSorK1P//v0lSZ988om6deumF198UUOGDAlogAAAhKLzzz9fe/fu9Rn75JNP1KtXL0lSWlqakpOTVVRUpOHDh0s6eXfazZs3a9myZQGNxe85+7lz52rQoEE6dOiQ3n//fb3//vsqLS3V0KFDdcMNNwQ0OAAAAiZAC/Sa61e/+pW2bt2qnJwc7du3T+vWrdPq1au1YMECSSfb95mZmcrJydGGDRv08ccf65prrlFsbKxmzpwZ0K/ud2X/wQcfaPv27ercubN3rHPnzlq6dKlGjhwZ0OAAAAgUh3FyM3O8P0aOHKkNGzZoyZIleuCBB5SWlqb8/HzNmjXLu8/ixYtVU1Oj+fPnq6KiQqNGjdKmTZsUFxfX8kBPw+9k379/f33xxRcaNGiQz3h5ebn69u0bsMAAAAioNp6zl6TJkydr8uTJZ3zf4XAoOztb2dnZLY+rGZrVxq+srPRuOTk5WrhwoZ599lkdOnRIhw4d0rPPPqvMzMyAzzEAAADzmlXZd+rUyecyAMMwdOWVV3rHjG+uR5gyZYrcbncrhAkAgEktmHdvcnyIalayf+ONN1o7DgAAWlcQ2vjtRbOS/dixY1s7DgAA0EpafBec6upqHTx4UPX19T7jQ4cONR0UAAABR2XffEePHtW1116rl19++bTvM2cPAGiXbJzs/b6pTmZmpioqKrR161bFxMTolVdeUWFhodLT0/Xiiy+2RowAAMAEvyv7119/XS+88IJGjhypsLAw9erVSxMmTFB8fLxyc3N1+eWXt0acAACYY+PV+H5X9lVVVUpKSpIkJSYm6ujRo5JOPgnv/fffD2x0AAAEyKk76JnZQpXfyb5///7eG/sPGzZMjz/+uD7//HM99thjPk/tAQAA7YPfbfzMzEwdOXJEknTffffp0ksv1VNPPaWoqCgVFBQEOj4AAALDxgv0/E72/3kD/+HDh2v//v365z//qZ49e6pr164BDQ4AAJjX4uvsT4mNjdV5550XiFgAAGg1Dpl86l3AIml7zUr2ixYtavYJ8/LyWhwMAAAIvGYl+x07djTrZP/5sJy29NMBwxThiAzKZwOt7ZPVdM5gXZ6aWmnhC23zYTa+9I4H4QAA7MHGC/T8vvQOAACEFtML9AAACAk2ruxJ9gAAWzB7Fzxb3UEPAACEFip7AIA92LiN36LK/sknn9T555+vlJQUHThwQJKUn5+vF15oo8snAADwlxGALUT5nexXrVqlRYsW6bLLLtPXX38tt9stSerUqZPy8/MDHR8AADDJ72T/6KOPas2aNcrKylJ4eLh3fMSIEfroo48CGhwAAIFi50fc+j1nX1JSouHDhzcZdzqdqqqqCkhQAAAEnI3voOd3ZZ+WlqadO3c2GX/55Zd1zjnnBCImAAACz8Zz9n5X9nfccYcWLFig2tpaGYah9957T3/+85+Vm5urJ554ojViBAAAJvid7K+99lo1NjZq8eLFqq6u1syZM3XWWWfp4Ycf1owZM1ojRgAATLPzTXVadJ399ddfr+uvv15ffvmlPB6PkpKSAh0XAACBZePr7E3dVKdr166BigMAALQSv5N9Wlraf31u/WeffWYqIAAAWoXZy+fsVNlnZmb6vG5oaNCOHTv0yiuv6I477ghUXAAABBZt/Oa79dZbTzv++9//Xtu3bzcdEAAACKyAPfVu0qRJeu655wJ1OgAAAovr7M179tlnlZiYGKjTAQAQUFx654fhw4f7LNAzDENlZWU6evSoVq5cGdDgAACAeX4n+2nTpvm8DgsLU7du3TRu3DgNGDAgUHEBAIAA8SvZNzY2qnfv3rr00kuVnJzcWjEBABB4Nl6N79cCvYiICN10002qq6trrXgAAGgVdn7Erd+r8UeNGqUdO3a0RiwAAKAV+D1nP3/+fN122206dOiQMjIy1KFDB5/3hw4dGrDgAAAIqBCuzs1odrK/7rrrlJ+fr6uuukqStHDhQu97DodDhmHI4XDI7XYHPkoAAMyy8Zx9s5N9YWGhHnzwQZWUlLRmPAAAIMCanewN4+SfNL169Wq1YAAAaC3cVKeZ/tvT7gAAaNdo4zdPv379vjfhf/XVV6YCAgAAgeVXsr///vuVkJDQWrEAANBqaOM304wZM5SUlNRasQAA0Hps3MZv9k11mK8HACA0+b0aHwCAkGTjyr7Zyd7j8bRmHAAAtCrm7AEAsDobV/Z+PwgHAACEFip7AIA92LiyJ9kDAGzBznP2tPEBALA4KnsAgD3QxgcAwNpo4wMAAMuisgcA2ANtfAAALM7GyZ42PgAArSw3N1cOh0OZmZneMcMwlJ2drZSUFMXExGjcuHHatWtXq3w+yR4AYAuOAGwtsW3bNq1evVpDhw71GV++fLny8vK0YsUKbdu2TcnJyZowYYKOHz/ewk86M5I9AMAejABsfjpx4oRmzZqlNWvWqHPnzt+GYhjKz89XVlaWpk+frsGDB6uwsFDV1dVat26diS95eiR7AIAtnLr0zswmSZWVlT5bXV3dGT9zwYIFuvzyy3XJJZf4jJeUlKisrEwTJ070jjmdTo0dO1ZbtmwJ+Hcn2QMA4IfU1FQlJCR4t9zc3NPu9/TTT6u4uPi075eVlUmSXC6Xz7jL5fK+F0isxgcA2EOAVuOXlpYqPj7eO+x0OpvsWlpaqltvvVWbNm1SdHT0GU/pcPiuBDAMo8lYIJDsAQD2EYDL5+Lj432S/ekUFxervLxcGRkZ3jG326233npLK1as0N69eyWdrPC7d+/u3ae8vLxJtR8ItPEBAAiw8ePH66OPPtLOnTu924gRIzRr1izt3LlTffr0UXJysoqKirzH1NfXa/PmzRozZkzA46GyBwDYQlveGz8uLk6DBw/2GevQoYO6dOniHc/MzFROTo7S09OVnp6unJwcxcbGaubMmS0P8gxI9gAAe2hnd9BbvHixampqNH/+fFVUVGjUqFHatGmT4uLiAvtBItkDANAm3nzzTZ/XDodD2dnZys7ObvXPJtkDAGzBzo+4JdkDAOyhnbXx2xKr8QEAsDgqewCALdDGBwDA6mzcxifZAwDswcbJnjl7AAAsjsoeAGALzNkDAGB1tPEBAIBVUdkDAGzBYRhyGC0vz80cG2wkewCAPdDGBwAAVkVlDwCwBVbjAwBgdbTxAQCAVVHZAwBsgTY+AABWZ+M2PskeAGALdq7smbMHAMDiqOwBAPZAGx8AAOsL5Va8GbTxAQCwOCp7AIA9GMbJzczxIYpkDwCwBVbjAwAAy6KyBwDYA6vxAQCwNofn5Gbm+FBFGx8AAIujsoffrlpQpuuWHNaGJ7rpsezUYIcD+K3Li5+ry18P+4w1xkfos98OlySFVzao63Ol6rC7UmHVbtX066jyGb3U4IoORrgIFNr4QPP0O7dKl836Up/tjgl2KIApdSkxOvSr/t8OnOpzGoZSVv5LRrhDny/oK090uDoXfaEeD+3V/vsHy3CGByVemMdq/CB56623NGXKFKWkpMjhcGjjxo3BDAffIzrWrTsf3a/8xT11/Bi/8BDajDDJnRD57RYXKUmKLK9TzGdVKp/VW3W9O6ohOUbls3oprM6tuPe+CnLUMOXUdfZmthAV1GRfVVWlc889VytWrAhmGGimm5eW6r3XErTjnfhghwKYFlVepz537FTakg+UvPpTRR6tlSQ5Gk6uwjIiHN/uHOaQER6mmH3HgxEqYFpQ2/iTJk3SpEmTmr1/XV2d6urqvK8rKytbIyycxtiffKX0IdW6+fIBwQ4FMK0mrYPqrk1TvStaEZUNSnzpiFKX7dH+7CGqT45WQ5codd1wSF/8orc8zjB1LvpCEZUNijjWEOzQYQJt/BCRm5urhIQE75aayuKwttCte71uuv+Qlt3SWw11IfUjA5xW9ZBOOpGRqPoesao+J0Gf35IuSYr/+5dSRJgOz+uryC9q1fdXO5R+c7FiP6lU1eAEKczxPWdGu2YEYAtRIbVAb8mSJVq0aJH3dWVlJQm/DfQdWq3O3Rq14uV/esfCI6Qho07oJ9cc1eQ+w+Xx8EsQoctwhqvurFhFlZ9s5df16qCD9w5WWHWjHG5D7rhIpebsVl3vDkGOFGiZkEr2TqdTTqcz2GHYzs534nTD+IE+Y7f97oBKP43WMytdJHqEPEeDR1FHalST3tFn3BN78ldk5Be1ij5QpX9PPSsY4SFA7NzGD6lkj+CoqQrXgb2+l9rV1oTpeEXTcSAUdP1/B1U1tJMauji/mbM/rLBatypHd5Ukddz+ldxxEWpMjFLU5zVKWn9QJ4Z1VvWghCBHDlN46h0A2EdERYO6P/GZwk80yh0XoZq0jiq96xw1djnZOYw41qBu/++gIiob1ZgQqcrRXfTvy1OCHDXQckFN9idOnNC+ffu8r0tKSrRz504lJiaqZ8+eQYwM32fxFf2CHQLQYmU3nP1f3/96vEtfj3e1UTRoK7Txg2T79u26+OKLva9PLb6bPXu2CgoKghQVAMCSuF1ucIwbN05GCM+BAAAQCpizBwDYAm18AACszmOc3MwcH6JI9gAAe7DxnD33PgUAwOKo7AEAtuCQyTn7gEXS9kj2AAB7sPEd9GjjAwBgcVT2AABb4NI7AACsjtX4AADAqqjsAQC24DAMOUwssjNzbLCR7AEA9uD5ZjNzfIiijQ8AgMVR2QMAbIE2PgAAVmfj1fgkewCAPXAHPQAAYFVU9gAAW+AOegAAWB1tfAAAYFUkewCALTg85jd/5ObmauTIkYqLi1NSUpKmTZumvXv3+uxjGIays7OVkpKimJgYjRs3Trt27Qrgtz6JZA8AsIdTbXwzmx82b96sBQsWaOvWrSoqKlJjY6MmTpyoqqoq7z7Lly9XXl6eVqxYoW3btik5OVkTJkzQ8ePHA/rVmbMHAMAPlZWVPq+dTqecTmeT/V555RWf12vXrlVSUpKKi4t10UUXyTAM5efnKysrS9OnT5ckFRYWyuVyad26dbrxxhsDFjOVPQDAHowAbJJSU1OVkJDg3XJzc5v18ceOHZMkJSYmSpJKSkpUVlamiRMnevdxOp0aO3astmzZYu67fgeVPQDAFgJ1u9zS0lLFx8d7x09X1X+XYRhatGiRLrjgAg0ePFiSVFZWJklyuVw++7pcLh04cKDFcZ4OyR4AAD/Ex8f7JPvmuPnmm/Xhhx/qnXfeafKew+HweW0YRpMxs2jjAwDsoY0X6J1yyy236MUXX9Qbb7yhHj16eMeTk5MlfVvhn1JeXt6k2jeLZA8AsAdD3z7TviWbn7neMAzdfPPNev755/X6668rLS3N5/20tDQlJyerqKjIO1ZfX6/NmzdrzJgxLfmGZ0QbHwBgC239iNsFCxZo3bp1euGFFxQXF+et4BMSEhQTEyOHw6HMzEzl5OQoPT1d6enpysnJUWxsrGbOnNniOE+HZA8AQCtYtWqVJGncuHE+42vXrtU111wjSVq8eLFqamo0f/58VVRUaNSoUdq0aZPi4uICGgvJHgBgD4ZM3hvfz92b8VkOh0PZ2dnKzs5uWUzNRLIHANgDD8IBAABWRWUPALAHjyQzl6/7+SCc9oRkDwCwhbZejd+e0MYHAMDiqOwBAPZg4wV6JHsAgD3YONnTxgcAwOKo7AEA9mDjyp5kDwCwBy69AwDA2rj0DgAAWBaVPQDAHpizBwDA4jyG5DCRsD2hm+xp4wMAYHFU9gAAe6CNDwCA1ZlM9grdZE8bHwAAi6OyBwDYA218AAAszmPIVCue1fgAAKC9orIHANiD4Tm5mTk+RJHsAQD2wJw9AAAWx5w9AACwKip7AIA90MYHAMDiDJlM9gGLpM3RxgcAwOKo7AEA9kAbHwAAi/N4JJm4Vt4TutfZ08YHAMDiqOwBAPZAGx8AAIuzcbKnjQ8AgMVR2QMA7MHGt8sl2QMAbMEwPDJMPLnOzLHBRrIHANiDYZirzpmzBwAA7RWVPQDAHgyTc/YhXNmT7AEA9uDxSA4T8+4hPGdPGx8AAIujsgcA2ANtfAAArM3weGSYaOOH8qV3tPEBALA4KnsAgD3QxgcAwOI8huSwZ7KnjQ8AgMVR2QMA7MEwJJm5zj50K3uSPQDAFgyPIcNEG98g2QMA0M4ZHpmr7Ln0DgAAtFNU9gAAW6CNDwCA1dm4jR/Syf7UX1mNRkOQIwFaj6emNtghAK3m1M93W1TNjWowdU+dRoVurnEYIdyXOHTokFJTU4MdBgDApNLSUvXo0aNVzl1bW6u0tDSVlZWZPldycrJKSkoUHR0dgMjaTkgne4/Ho8OHDysuLk4OhyPY4dhCZWWlUlNTVVpaqvj4+GCHAwQUP99tzzAMHT9+XCkpKQoLa70147W1taqvrzd9nqioqJBL9FKIt/HDwsJa7S9B/Hfx8fH8MoRl8fPdthISElr9M6Kjo0MySQcKl94BAGBxJHsAACyOZA+/OJ1O3XfffXI6ncEOBQg4fr5hVSG9QA8AAHw/KnsAACyOZA8AgMWR7AEAsDiSPQAAFkeyR7OtXLlSaWlpio6OVkZGht5+++1ghwQExFtvvaUpU6YoJSVFDodDGzduDHZIQECR7NEs69evV2ZmprKysrRjxw5deOGFmjRpkg4ePBjs0ADTqqqqdO6552rFihXBDgVoFVx6h2YZNWqUzjvvPK1atco7NnDgQE2bNk25ublBjAwILIfDoQ0bNmjatGnBDgUIGCp7fK/6+noVFxdr4sSJPuMTJ07Uli1bghQVAKC5SPb4Xl9++aXcbrdcLpfPuMvlCsgjIwEArYtkj2b77mOEDcPg0cIAEAJI9vheXbt2VXh4eJMqvry8vEm1DwBof0j2+F5RUVHKyMhQUVGRz3hRUZHGjBkTpKgAAM0VEewAEBoWLVqkX/7ylxoxYoRGjx6t1atX6+DBg5o3b16wQwNMO3HihPbt2+d9XVJSop07dyoxMVE9e/YMYmRAYHDpHZpt5cqVWr58uY4cOaLBgwfroYce0kUXXRTssADT3nzzTV188cVNxmfPnq2CgoK2DwgIMJI9AAAWx5w9AAAWR7IHAMDiSPYAAFgcyR4AAIsj2QMAYHEkewAALI5kDwCAxZHsAQCwOJI9YFJ2draGDRvmfX3NNddo2rRpbR7H/v375XA4tHPnzjPu07t3b+Xn5zf7nAUFBerUqZPp2BwOhzZu3Gj6PABahmQPS7rmmmvkcDjkcDgUGRmpPn366Pbbb1dVVVWrf/bDDz/c7FusNidBA4BZPAgHlvXjH/9Ya9euVUNDg95++23NnTtXVVVVWrVqVZN9GxoaFBkZGZDPTUhICMh5ACBQqOxhWU6nU8nJyUpNTdXMmTM1a9Ysbyv5VOv9j3/8o/r06SOn0ynDMHTs2DHdcMMNSkpKUnx8vH70ox/pgw8+8Dnvgw8+KJfLpbi4OM2ZM0e1tbU+73+3je/xeLRs2TL17dtXTqdTPXv21NKlSyVJaWlpkqThw4fL4XBo3Lhx3uPWrl2rgQMHKjo6WgMGDNDKlSt9Pue9997T8OHDFR0drREjRmjHjh1+/xvl5eVpyJAh6tChg1JTUzV//nydOHGiyX4bN25Uv379FB0drQkTJqi0tNTn/b/85S/KyMhQdHS0+vTpo/vvv1+NjY1+xwOgdZDsYRsxMTFqaGjwvt63b5+eeeYZPffcc942+uWXX66ysjK99NJLKi4u1nnnnafx48frq6++kiQ988wzuu+++7R06VJt375d3bt3b5KEv2vJkiVatmyZ7rnnHu3evVvr1q2Ty+WSdDJhS9Lf/vY3HTlyRM8//7wkac2aNcrKytLSpUu1Z88e5eTk6J577lFhYaEkqaqqSpMnT1b//v1VXFys7Oxs3X777X7/m4SFhemRRx7Rxx9/rMLCQr3++utavHixzz7V1dVaunSpCgsL9e6776qyslIzZszwvv/qq6/qF7/4hRYuXKjdu3fr8ccfV0FBgfcPGgDtgAFY0OzZs42pU6d6X//jH/8wunTpYlx55ZWGYRjGfffdZ0RGRhrl5eXefV577TUjPj7eqK2t9TnX2WefbTz++OOGYRjG6NGjjXnz5vm8P2rUKOPcc8897WdXVlYaTqfTWLNmzWnjLCkpMSQZO3bs8BlPTU011q1b5zP261//2hg9erRhGIbx+OOPG4mJiUZVVZX3/VWrVp32XP+pV69exkMPPXTG95955hmjS5cu3tdr1641JBlbt271ju3Zs8eQZPzjH/8wDMMwLrzwQiMnJ8fnPE8++aTRvXt372tJxoYNG874uQBaF3P2sKy//vWv6tixoxobG9XQ0KCpU6fq0Ucf9b7fq1cvdevWzfu6uLhYJ06cUJcuXXzOU1NTo08//VSStGfPHs2bN8/n/dGjR+uNN944bQx79uxRXV2dxo8f3+y4jx49qtLSUs2ZM0fXX3+9d7yxsdG7HmDPnj0699xzFRsb6xOHv9544w3l5ORo9+7dqqysVGNjo2pra1VVVaUOHTpIkiIiIjRixAjvMQMGDFCnTp20Z88e/eAHP1BxcbG2bdvmU8m73W7V1taqurraJ0YAwUGyh2VdfPHFWrVqlSIjI5WSktJkAd6pZHaKx+NR9+7d9eabbzY5V0svP4uJifH7GI/HI+lkK3/UqFE+74WHh0uSDMNoUTz/6cCBA7rssss0b948/frXv1ZiYqLeeecdzZkzx2e6Qzp56dx3nRrzeDy6//77NX369Cb7REdHm44TgHkke1hWhw4d1Ldv32bvf95556msrEwRERHq3bv3afcZOHCgtm7dqquvvto7tnXr1jOeMz09XTExMXrttdc0d+7cJu9HRUVJOlkJn+JyuXTWWWfps88+06xZs0573nPOOUdPPvmkampqvH9Q/Lc4Tmf79u1qbGzU7373O4WFnVy+88wzzzTZr7GxUdu3b9cPfvADSdLevXv19ddfa8CAAZJO/rvt3bvXr39rAG2LZA9845JLLtHo0aM1bdo0LVu2TP3799fhw4f10ksvadq0aRoxYoRuvfVWzZ49WyNGjNAFF1ygp556Srt27VKfPn1Oe87o6GjdeeedWrx4saKionT++efr6NGj2rVrl+bMmaOkpCTFxMTolVdeUY8ePRQdHa2EhARlZ2dr4cKFio+P16RJk1RXV6ft27eroqJCixYt0syZM5WVlaU5c+bo7rvv1v79+/Xb3/7Wr+979tlnq7GxUY8++qimTJmid999V4899liT/SIjI3XLLbfokUceUWRkpG6++Wb98Ic/9Cb/e++9V5MnT1ZqaqquuOIKhYWF6cMPP9RHH32k3/zmN/7/hwAQcKzGB77hcDj00ksv6aKLLtJ1112nfv36acaMGdq/f7939fxVV12le++9V3feeacyMjJ04MAB3XTTTf/1vPfcc49uu+023XvvvRo4cKCuuuoqlZeXSzo5H/7II4/o8ccfV0pKiqZOnSpJmjt3rp544gkVFBRoyJAhGjt2rAoKCryX6nXs2FF/+ctftHv3bg0fPlxZWVlatmyZX9932LBhysvL07JlyzR48GA99dRTys3NbbJfbGys7rzzTs2cOVOjR49WTEyMnn76ae/7l156qf7617+qqKhII0eO1A9/+EPl5eWpV69efsUDoPU4jEBM/gEAgHaLyh4AAIsj2QMAYHEkewAALI5kDwCAxZHsAQCwOJI9AAAWR7IHAMDiSPYAAFgcyR4AAIsj2QMAYHEkewAALO7/A3wg8CQoMfLOAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_confusion_matrix(full_cv_classifier, scaled_X_test, y_test)" ] }, { "cell_type": "code", "execution_count": 266, "id": "4d014e99", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'knn__n_neighbors': 3}" ] }, "execution_count": 266, "metadata": {}, "output_type": "execute_result" } ], "source": [ "full_cv_classifier.best_params_" ] }, { "cell_type": "code", "execution_count": 267, "id": "eb25373b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.9062068965517242" ] }, "execution_count": 267, "metadata": {}, "output_type": "execute_result" } ], "source": [ "full_cv_classifier.best_score_" ] }, { "cell_type": "markdown", "id": "eb854140", "metadata": {}, "source": [ "- The best knn value from the range using GridsearchCV is 3" ] }, { "cell_type": "markdown", "id": "1c17400b", "metadata": {}, "source": [ "\n", "## Conclusion: \n", "\n", "Through careful adjustments, I improved the model's performance significantly. I reduced false negatives from 7 to 4, ensuring more cancer cases were correctly identified. Additionally, precision increased from 1 to 3, meaning the model made fewer incorrect positive predictions. Overall, my refined model is more reliable for early cancer detection. These improvements not only enhance the model's accuracy but also its potential utility in clinical settings for better patient outcomes." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 5 }