= Numerical Analysis 24 Fall == I. Multiple Choice Questions (16 pts) #block[ #set enum(numbering: "1)", start: 1) + #strong[Evaluate the function] $f (x) = 2 x^2 - 0.1 x$ at $x = 5.21$ using 4-digit arithmetic with chopping. What is the result? ] #block[ #set enum(numbering: "(A)", start: 1) + 53.75 + 53.76 + 53.77 + 53.74 ] #block[ #set enum(numbering: "1)", start: 2) + #strong[Given a symmetric, positive real matrix $A$ and initial eigenvalue guesses $lambda_1^\* , lambda_2^\*$ such that $|lambda_1^\* - lambda_1| > |lambda_2^\* - lambda_2|$,] which iterative method will converge with the best rate? ] #block[ #set enum(numbering: "(A)", start: 1) + $x_n = (A - lambda_1^\* I) x_(n - 1)$ + $x_n = (A - lambda_2^\* I) x_(n - 1)$ + $(A - lambda_1^\* I) x_n = x_(n - 1)$ + $(A - lambda_2^\* I) x_n = x_(n - 1)$ ] #block[ #set enum(numbering: "1)", start: 3) + #strong[Which of the following iterative methods is unstable with respect to numerical error growth at $x_0$?] ] #block[ #set enum(numbering: "(A)", start: 1) + $x_(n + 1) = 3 x_n + 2$ + $x_(n + 1) = 1 / 6 x_n + 100$ + $x_(n + 1) = 7 / 8 x_n + 20$ + $x_(n + 1) = 0.1 x_n + 10$ ] #block[ #set enum(numbering: "1)", start: 4) + #strong[Given the points $x_0 = 1 , x_1 = 2 , x_2 = 3$, which of the following is not a Lagrange basis function?] ] #block[ #set enum(numbering: "(A)", start: 1) + $- (x - 1) (x - 3)$ + $frac((x - 1) (x - 2), 2)$ + $frac((x - 2) (x - 3), 2)$ + $frac((x - 1) (x - 3), 2)$ ] == II. Fill in the Blanks (30 pts) #block[ #set enum(numbering: "1)", start: 1) + #strong[For the equation] $5 x^2 + x - 6 = 0$, determine if the following fixed-point iterations starting with $x_0 = 0.9$ are convergent. Fill 'True' if convergent, 'False' if not. (2 pts each) ] - $x = sqrt(frac(6 - x, 5))$ - $x = 6 - 5 x^2$ - $x = sqrt(frac(- 3 x^2 - x + 6, 2))$ #block[ #set enum(numbering: "1)", start: 2) + #strong[Given points] $x_0 = 1 , x_1 = 2$, and the derivative at $x_0$, determine the three basis polynomials for Hermite interpolation. (2 pts each)] #block[ #set enum(numbering: "1)", start: 3) + #strong[Given the matrix] $mat(delim: "[", 100, 14; 14, 4)$, find its eigenvalues and condition number under the spectral norm. (2 pts each)] #block[ #set enum(numbering: "1)", start: 4) + #strong[To minimize the local truncation error of the formula] $ w_(l + 1) = a_0 w_l + a_1 w_(l - 1) + beta h f_(l + 1) $ for solving the IVP $y' = f (t , y)$, find the values of $a_0$, $a_1$, and $beta$. (2 pts each)] #block[ #set enum(numbering: "1)", start: 5) + #strong[Find the monic polynomials] $phi_k (x)$ (for $k = 0 , 1 , 2$) that are orthogonal on $[0 , 4]$ with respect to the weight function $rho (x) = 1$. (2 pts each)] == III. Iterative Method Convergence (12 pts) Given $A = mat(delim: "[", 8, 2; 0, 4)$, $arrow(b) = mat(delim: "[", 2; 1)$, and the iterative method $ arrow(x)^((k)) = arrow(x)^((k - 1)) + omega (A arrow(x)^((k - 1)) - arrow(b)) $ answer the following: #block[ #set enum(numbering: "1)", start: 1) + #strong[For which values of] $omega$ #strong[will the method converge?] (8 pts) + #strong[For which values of] $omega$ #strong[will the method converge the fastest?] (4 pts) ] == IV. Vector Norm Proof (10 pts) Prove that $||X||_1 = sum_(i = 1)^n |X_i|$ is a valid vector norm, where $X_i$ is the $i$-th component of vector $X$. == V. Richardson Extrapolation (10 pts) Given the formula for the second derivative approximation $ f^\* (x_0) = frac(f (x_0 + h) - 2 f (x_0) + f (x_0 - h), h^2) - h^2 / 12 f^((4)) (x_0) - h^4 / 360 f^((6)) (xi) , $ derive a better formula to approximate $f'' (x_0)$ with error $O (h^4)$ using Richardson extrapolation. == VI. Least Squares Fit (12 pts) Find the values of $a$ and $b$ such that $y = a x + b x^3$ fits the following data using least squares, weighted by the given weights: #figure( align(center)[#table( columns: 4, align: (auto,auto,auto,auto,), stroke: none, [$X$], table.vline(),[1], [2], [3], [$Y$], [-4], [24], [6], [Weights], [1], [1/4], [1/9], )] , kind: table ) == VII. Region of Absolute Stability (10 pts) For the following methods solving Initial-Value Problems for ODEs, calculate the region of absolute stability using the test equation $y' = lambda y$ with $"Re" (lambda) < 0$. Which method is more stable (or are they the same)? #block[ #set enum(numbering: "1)", start: 1) + #strong[Second-order Runge-Kutta implicit method] $ W_(i + 1) = w_i + h K_1 , quad K_1 = f (t_i + h / 2 , w_i + h / 2 K_1) $ + #strong[Adams-Moulton one-step implicit method] $ w_(i + 1) = w_i + h / 2 (f_(i + 1) + f_i) $ ]