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1 Overview

Our single-cycle, 32-bit CPU is a culmination of modules from previous labs and homework as-
signments. Running off of machine code compiled from assembly files, our CPU is capable of load-
ing/storing variables to data memory, jumping (jump, jump register, jump and return), branching,
and completing various ALU based tasks: ADDI, ADD, SUB, SLT, XORI.

Figure 1: The block diagram of our Single-Cycle CPU.

In order to run our CPU, we must upload assembly code directly to the data memory, which
the program counter then reads. The instructions our CPU needs to run, which is held in this
assembly code, and the data memory, which can also be modified using a data file from the mars
assembly simulator, are stored in the same memory array. However, in the diagram in Figure 1, we
separated our instruction and data memories to simplify and improve the readability of our block
diagram. To accommodate for all of its purposes, we included two read ports in the memory unit so
instructions and stored variables can be read at the same time. In order to run a given instruction,
our program counter sends its position to the instruction memory, at which point an instruction
is selected and the instruction decoder defines all of the control logic for the CPU, as is shown in
Figure 2. These control signals manipulate the CPU such that the instruction is properly run and
the correct value is stored or loaded by our register file or memory unit and the program counter
accurately adjusts itself on each clock cycle.
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Figure 2: Table of control signals based on various instructions.

2 Test Case Strategy

Because of the single-cycle nature of this CPU, debugging using waveforms proved far more complex
than in previous assignments, which utilized components that took multiple cycles to run. Still,
we were able to drill down into the components with these waveforms in order to identify issues
with control signals and output values, as we discuss with regards to our multiplexer in Section
3. Additionally, we ran extensive tests with assembly code, during which we read the states of
several registers during each program and when these registers reached their final stable states,
which we then compared with the expected outcome based on results from the assembly simulator.
We automated this process with a cpu.t.v file that ran multiple programs, checked the expected
outcomes versus reality, and reported the results of those tests.

We strategically chose several programs in order to construct an effective array of tests. We
varied our test cases from assembly code that tested only a few instructions in isolation to code that
stressed the system as a whole at once in order to ensure the functionality of all of the individual
commands that our CPU is designed to handle. Though code that relied on multiple instruction
codes proved difficult in terms of pinpointing small issues, it helped to prove the validity of the
system. Several of the tests we ran to observe our system under stress are listed below.

1. Test Cases 1, 2, and 3

• We utilized our own assembly test cases in order to calibrate our CPU. These test cases
involved utilizing all of the instructions our CPU is designed to handle.

2. Test Case Hanoi:

• This program contained code that appeared rather complicated and was written by fellow
students. We assumed this test would stress our system by running a large number of
instructions with large variables. See Figure 4.

3. Test Case Fib:

• The Fibonacci code is an assembly written following a pseudo c recursive Fibonacci
function. This program utilized a stack pointer, which was another variable we needed
to consider in constructing our CPU. Ultimately, we set the stack pointer using the
ADDI command in our assembly code. See Figure3.

Combined with the overall CPU.t.v file, we had individual test benches for each of the modules.
This helped with the initial implementation and validation of each module before we combined
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them all into the final system. While module test benches were not used in the final stages of
debugging our computer, we are confident that they prevented us from spending even more hours
debugging our system.

3 Results

During our initial implementation, we ran into several errors with hardware components and in-
struction decoding. Originally, our multiplexers returned only the four least significant bits of any
input pin. We addressed this issue by first changing the output of the muxes to be of the register
type such that we could assign them a value inside an always block with a combinational sensitivity
list. The design previously mapped the four inputs to a two-dimensional wire with a width of four
bits and chose one of the four two-dimensional wires to output based on the multiplexer’s select
pin inputs. Second, we used a “d̀efine” statement to avoid recursive includes.

We also encountered issues with the stack pointer. We had initially planned to implement the
initialization of our stack pointer with hardware logic; however, this would have required a major
redesign of the shift register where our pointer lies. As a result, we chose to set the stack pointer
at the beginning of each of our assembly test files.

After fixing our hardware setup, we were able to load and process machine code. However, this
system could only run simple commands and failed to run recursive functions. What we initially
thought was an error with our stack pointer was actually an extra right bit shift in our memory.v
file. After removing the extraneous bit shift, we were able to run the hanoi assembly code and a
Fibonacci to the tenth iteration. Figures 3 and 4 show glimpses of how the machine code drives
various pins in the system.

Figure 3: A snippet of the waveforms output by our CPU when we tested our
Fibonacci function are shown above. These waveforms clearly display the moment
that the q output value of register two in our register file transitioned to its final
correct and stable state of 8’h37, which is fifty-five in the decimal base-ten system.
Given that we had implemented our assembly code to look for the tenth number
in the Fibonacci sequence, and fifty-five is the tenth number in that sequence, we
know our CPU has successfully ran a variety of instructions, including recursive
calls.

Figure 4: A snippet of the waveforms output by our CPU when we tested
the Tower of Hanoi function are shown above. Prior to running this code, we had
checked the final values that should be stored in our registers in the Mars assembly
simulator. These waveforms demonstrate the q output value of register two as it
transitions to its final stable state of 8’h10E, which is the value we had expected
based on the Mars assembler.
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4 Performance Analysis

The size of our CPU is quite large due to not only the register file array and the sheer size of the
memory array used for the instructions and data/stack, but also due to the three arithmetic logic
units used for our program counter, branch operation, and actual arithmetic/logic operation. As
this is a single-cycle CPU, there are very few pieces of hardware that are being used across different
stages of within a single instruction. The size of the computer can be reduced, for example, by
directly feeding JAL′s PC + 4 to the WriteData of the register file instead of introducing an extra
input to the muxB or by utilizing adders rather than full ALUs for some arithmetic. Nonetheless,
this leaves flexible space for us to expand our CPU to allow for pipelined CPU’s PC + 8 way more
easily without any significant hardware redesign.

At the same time, we chose to employ existing Verilog modules in an effort to reduce the number
of distinct modules we have to write. That decision led us to, among other things, utilize a four
input mux for a three-input mux with one of the inputs left floating. Thus, the area of our current
design is significantly larger than what it actually could be if we spent time to optimize the system.

Unfortunately, we were unable to properly generate the Vivado file to get quantifiable perfor-
mance characteristics.

5 Work Plan Reflection

We set up our work schedule to be heavily skewed toward the second week of this lab because of
the PoE sprint reviews that happened during the first week of this lab. Despite the setback in time
we had, we were able to read through Section 7.3 of Digital Design and Computer Architecture
and work efficiently. We were able to move from just starting to draw our block diagrams and
control tables to collecting all the necessary Verilog modules in less than a day. However, we were
unable to produce a meaningful assembly test program by the time we started wiring our top
level designs together. The assembly program ended up taking triple the amount of time than we
expected as we rushed to finish our Assembly programs the day before they were due. Also, we
spent approximately 25 hours as a whole working to complete the test benches for the top level
cpu module and each submodule.

6 Module Reuse

For Lab 3, we reused the following modules, with alterations as deemed necessary, from the following
sources:

• Arithmetic Logic Unit and its accompanying test bench from Daniel’s and Josh’s Lab 1 design

• Register, multiplexer, and decoder from Daniel’s HW4

• RegisterFile from Josh’s HW4
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