
Learn to use
QuantConnect
and Explore
Our Features

LEAN CLI

An easy to use,
python shell wrapper
on LEAN
LEAN CLI provides notebooks,
backtesting, optimization and live
trading with a simple to use API,
deploying to the cloud or on premise.

Table of Content

1 Key Concepts

1.1 Getting Started

1.2 Troubleshooting

2 Installation

2.1 Installing pip

2.2 Installing Lean CLI

3 Initialization

3.1 Authentication

3.2 Organization Workspaces

3.3 Configuration

4 Datasets

4.1 Format and Storage

4.2 Downloading Data

4.2.1 Download By Ticker

4.2.1.1 Key Concepts

4.2.1.2 Costs

4.2.2 Download in Bulk

4.2.2.1 CFD Data

4.2.2.2 FOREX Data

4.2.2.3 US Equities

4.2.2.4 US Equity Coarse Universe

4.2.2.5 US Equity Options

4.2.2.6 US ETF Constituents

4.2.2.7 US Futures

4.2.2.8 US Index Options

4.3 Generating Data

4.4 Custom Data

5 Projects

5.1 Project Management

5.2 Cloud Synchronization

5.3 Structure

5.4 Workflows

5.5 Configuration

5.6 Autocomplete

5.7 Libraries

5.7.1 Third-Party Libraries

5.7.2 Project Libraries

5.8 Custom Docker Images

6 Research

7 Backtesting

7.1 Deployment

7.2 Debugging

8 Live Trading

8.1 Brokerages

8.1.1 QuantConnect Paper Trading

8.1.2 Binance

8.1.3 Bitfinex

8.1.4 Coinbase

8.1.5 Interactive Brokers

8.1.6 Kraken

8.1.7 Oanda

8.1.8 Prime Brokerages

8.1.9 Samco

8.1.10 TD Ameritrade

8.1.11 Tradier

8.1.12 Trading Technologies

8.1.13 Zerodha

8.2 Data Feeds

8.2.1 IQFeed

8.2.2 Polygon

8.3 Algorithm Control

9 Reports

10 Optimization

10.1 Parameters

10.2 Deployment

11 API Reference

11.1 lean backtest

11.2 lean build

11.3 lean cloud backtest

11.4 lean cloud live

11.5 lean cloud live liquidate

11.6 lean cloud live stop

11.7 lean cloud optimize

11.8 lean cloud pull

11.9 lean cloud push

11.10 lean cloud status

11.11 lean config get

11.12 lean config list

11.13 lean config set

11.14 lean config unset

11.15 lean data download

11.16 lean data generate

11.17 lean init

11.18 lean library add

11.19 lean library remove

11.20 lean live

11.21 lean live add-security

11.22 lean live cancel-order

11.23 lean live liquidate

11.24 lean live stop

11.25 lean live submit-order

11.26 lean live update-order

11.27 lean login

11.28 lean logout

11.29 lean logs

11.30 lean optimize

11.31 lean project-create

11.32 lean project-delete

11.33 lean report

11.34 lean research

11.35 lean whoami

Key Concepts

Key Concepts

Key Concepts > Getting Started

Key Concepts

Getting Started

Introduction

The Lean CLI is a cross-platform CLI which makes it easier to develop with the LEAN engine locally and in the

cloud.

Prerequisites

The Lean CLI is distributed as a Python package, so it requires pip to be installed. See Installing pip to learn how to

install pip on your operating system. Note that the Python distribution from the Microsoft Store is not supported,

we recommend using the Anaconda distribution instead.

The commands which run the LEAN engine locally also depend on Docker being installed and running. See Install

Docker to learn how to install Docker on your operating system.

To use the CLI, you must be a member in an organization on a paid tier.

Installation

Run pip install lean in a terminal to install the latest version of the CLI.

After installing the CLI, open a terminal in an empty directory and run lean login to log in to your QuantConnect

account and then run lean init to create your first organization workspace. The lean init command downloads

the latest configuration file and sample data from the QuantConnect/Lean repository. We recommend running all

Lean CLI commands in your organization workspace directory.

$ lean init
Downloading latest sample data from the Lean repository...
The following objects have been created:
- lean.json contains the configuration used when running the LEAN engine locally
- data/ contains the data that is used when running the LEAN engine locally
...

If you are running Docker on Windows using the legacy Hyper-V backend instead of the new WSL 2 backend, you

need to enable file sharing for your temporary directories and for your organization workspace. To do so, open

your Docker settings, go to Resources > File Sharing and add C: / Users / <username> / AppData / Local /

Temp and your organization workspace path to the list. Click Apply & Restart after making the required changes.

https://www.docker.com/
https://www.quantconnect.com/docs/v2//lean-cli/installation/installing-lean-cli#02-Install-Docker
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/tier-features
https://github.com/QuantConnect/Lean

Basic Usage

The CLI contains a lot of commands to make working on LEAN algorithms easier and more productive. Below we

list some of the most common tasks, see the pages in the sidebar and the API reference for a complete overview

of the supported features.

Authenticate W ith the Cloud

Before using the CLI to perform tasks in the cloud it is required to log in with your QuantConnect API credentials.

Run lean login to open an interactive wizard which asks you for your user Id and API token. Request these

credentials and we'll email them to you.

$ lean login
Your user Id and API token are needed to make authenticated requests to the QuantConnect API
You can request these credentials on https://www.quantconnect.com/account
Both will be saved in /home/<username>/.lean/credentials
User id: <user id>
API token: <api token>
Successfully logged in

Pull Pro jects From the Cloud

Run lean cloud pull to pull your QuantConnect projects to your local drive. This command pulls all your cloud

projects to your local drive while preserving your QuantConnect directory structure. If you have a lot of projects

and only want to work locally on a few of them you can run this command with the --project "<projectName>"

option, which makes the command pull a single project instead.

$ lean cloud pull
[1/3] Pulling 'Creative Red Mule'
Successfully pulled 'Creative Red Mule/main.py'
[2/3] Pulling 'Determined Yellow-Green Duck'
Successfully pulled 'Determined Yellow-Green Duck/main.py'
Successfully pulled 'Determined Yellow-Green Duck/research.ipynb'
[3/3] Pulling 'Halloween Strategy'
Successfully pulled 'Halloween Strategy/benchmark.py'
Successfully pulled 'Halloween Strategy/main.py'
Successfully pulled 'Halloween Strategy/research.ipynb'

Source Data

Run lean data generate --start 20180101 --symbol-count 100 to generate realistic fake market data to test

with. You can also choose to download data from QuantConnect Datasets or convert your own data into LEAN-

compatible data.

$ lean data generate --start 20180101 --symbol-count 100
Begin data generation of 100 randomly generated Equity assets...
...

Run a Local Backtest

https://www.quantconnect.com/docs/v2/cloud-platform/community/profile#09-Request-API-Token

Run lean backtest "<projectName>" to run a local backtest for the specified project. This command runs a

backtest in a Docker container containing the same packages as the ones used on QuantConnect.com, but with

your own data.

$ lean backtest "Project Name"
20210308 23:58:35.354 TRACE:: Engine.Main(): LEAN ALGORITHMIC TRADING ENGINE v2.5.0.0 Mode: DEBUG
(64bit)
20210308 23:58:35.360 TRACE:: Engine.Main(): Started 11:58 PM
...

Push Local Changes to the Cloud

Run lean cloud push to push local changes to the QuantConnect. This command pushes all your local projects to

the cloud and creates new cloud projects when necessary. If you only want to push a single project you can run

this command with the --project "<projectName>" option.

$ lean cloud push
[1/3] Pushing 'Creative Red Mule'
Successfully updated cloud file 'Creative Red Mule/main.py'
[2/3] Pushing 'Determined Yellow-Green Duck'
[3/3] Pushing 'Halloween Strategy'

Run a Cloud Backtest

Run lean cloud backtest "<projectName>" to run a cloud backtest for the specified project. By default, a

summary of the results and a link to the full results are shown in the terminal. Running this command with the

--open flag automatically opens the full results in the browser once the backtest is finished. Additionally, you can

run this command with the --push flag to push all local changes to the project to the cloud before running the

backtest.

$ lean cloud backtest "Project Name"
Started compiling project 'Project Name'
Detected parameters (2):
- main.py:19 :: 1 Order Event parameter detected near "SetHoldings(self.spy, 1)".
- main.py:21 :: 1 Order Event parameter detected near "SetHoldings(self.spy, 0)".
Build Request Successful for Project ID: 4882833, with CompileID: eaf9b677c91cfadd0a9032eb95918beb-
c3b92b55d26a6d610e9b792ce561a687, Lean Version: 2.5.0.0.11058
Successfully compiled project 'Project Name'
Started backtest named 'Swimming Orange Lemur' for project 'Project Name'
...

LEAN vs LEAN CLI

LEAN is the open-source algorithmic trading engine. LEAN CLI is the way we recommend you run LEAN on your

local machine. The LEAN CLI can do almost everything that LEAN can do. There are just some programs in the

ToolBox that the LEAN CLI can't currently run. The lean data generate is a wrapper for the random data

generator in the ToolBox. However, if you need any of the other programs in the ToolBox, you'll have to run LEAN

manually and move the downloaded/parsed data to the CLI's data directory.

https://github.com/QuantConnect/Lean/blob/master/ToolBox/README.md

Key Concepts > Troubleshooting

Key Concepts

Troubleshooting

Introduction

You might occassionally receive an error indicating that something went wrong. We try to provide accurate error

descriptions in the CLI, but in some cases, those might not be enough. This page lists common errors with their

possible cause and a way to fix them. In case you still need help after that this page also contains instructions on

how to report issues to our engineers in a way that makes it easy for us to help you with your issue.

Common Errors

The following table describes errors you may see when using the CLI:

Error Message Possible Cause and Fix

No such command '<name>'

No such option: <option>

The command you tried to run does not exist or it
doesn't support the option you provided. If the
documentation says it is available you are probably
using an outdated version of the CLI. Run
pip install --upgrade lean to update to the
latest version.

Invalid credentials, please log in using `lean login`

You are trying to use a command which
communicates with the QuantConnect API and you
haven't authenticated yourself yet. Run lean login
to log in with your API credentials.

Please make sure Docker is installed and running

You are trying to use a command which needs to run
the LEAN engine locally, which always happens in a
Docker container. Make sure Docker is running if you
installed it already, or visit Install Docker if you
haven't.

This command requires a Lean configuration file, run
`lean init` in an empty directory to create one, or
specify the file to use with --lean-config

The command you are trying to run requires a Lean
configuration file. The CLI automatically tries to find
this file by recursively looking in the current directory
and all of the parent directories for a lean. json file.
This error is shown if no such file can be found. It can
be fixed by running the command in your
organization workspace directory (which generates
the lean. json file), or by specifying the path to the
lean. json file with the --lean-config option.

We couldn't find you account in the given
organization, ORG: <32-char-hash>

The organization Id found in the lean. json is
incorrect. You need to re-install Lean CLI running
lean init in an empty directory.

https://www.quantconnect.com/docs/v2//lean-cli/installation/installing-lean-cli#02-Install-Docker

Invalid value for 'PROJECT': Path '<path>' does not
exist.

You are trying to run an action on a project but
specified an invalid project path. Make sure you are
running the command from your organization
workspace directory and make sure ./<path> points
to an existing directory.

'<path>' is not a valid path

You provided a path that is not valid for your
operating system. This error is most likely to appear
on Windows, where the following characters are not
allowed in path components: < , > , : , " , | , ? , and *
. On top of those characters the following names are
not allowed (case-insensitive): CON , PRN , AUX , NUL ,
COM1 until COM9 , and LPT1 until LPT9 . Last but not
least, path components cannot start or end with a
space or end with a period on Windows.

invalid mount config for type "bind": bind source path
does not exist: / var / fo lders / <path> /
config. json

Mounts denied: The path / Users / <path> / data is
not shared from the host and is not known to Docker

Your Mac's Docker file sharing settings do not permit
binding one or more directories that we need to
share with the container. Go to Docker's Settings >
Resources > File Sharing and add / private / var
/ fo lders and either / Users to share your entire /
Users directory, or / Users / <path> where
<path> is the path to your QuantConnect directory,
which should have a data child directory, and child
directories for your individual projects.

Docker wants access to <path>

You are running Docker on Windows using the legacy
Hyper-V backend and haven't configured file sharing
correctly. You need to enable file sharing for your
temporary directories and for your organization
workspace directory . To do so, open your Docker
settings, go to Resources > File Sharing and add
C: / Users / <username> / AppData / Local /
Temp and your organization workspace directory to
the list. Click Apply & Restart after making the
required changes.

Error Message Possible Cause and Fix

Report Issues

If with the information on this page and the error message shown by the CLI you're still unable to solve your issues

you are welcome to contact our engineers by opening an issue in the QuantConnect/lean-cli repository on GitHub.

Before doing so, please run the command that's giving issues with the --verbose flag and copy and paste the

output into the issue (feel free to mask sensitive information). The --verbose flag enables debug messages to be

printed, which makes it easier for us to help you.

https://github.com/QuantConnect/lean-cli

Installation

Installation

Installation > Installing pip

Installation

Installing pip

Introduction

The Lean CLI is distributed as a Python package, so it requires pip to be installed. Because pip is distributed as a

part of Python, you must install Python before you can install the CLI.

This page contains installation instructions for Anaconda , which is a Python distribution containing a lot of

packages that are also available when running the LEAN engine. Having these packages installed locally makes it

possible for your editor to provide autocomplete for them.

The Python distribution from the Microsoft Store is not supported. Docker doesn't support Python 3.10 , so you

must have 3.9.x or lower.

Install on Windows

Follow these steps to install Anaconda on your computer:

1. Download the latest 64-bit Graphical Installer for Windows.

2. Run the installer and click Next .

3. Read the licensing terms and click the I Agree check box.

4. Select the Just Me check box and click Next .

5. Select the destination folder to install Anaconda in (make sure this path does not contain spaces) and click

Next .

6. In the Advanced Options, enable the Add Anaconda3 to my PATH environment variable and Register

Anaconda3 as my defau lt Python 3.x check boxes and then click Install .

7. After the installation has completed, restart your computer to make sure changes are propagated.

8. Open a terminal and run:

$ conda update --all

Install on macOS (Intel)

Follow these steps to install Anaconda on your Mac with an Intel chip:

1. Download the latest 64-bit Graphical Installer for macOS.

https://docs.anaconda.com/anaconda/
https://github.com/QuantConnect/lean-cli/issues/54#issuecomment-1104148972
https://www.anaconda.com/products/individual#Downloads
https://www.anaconda.com/products/individual#Downloads

2. Click Continue on the Introduction, Read Me, and License pages.

3. Agree to the license by clicking Agree .

4. Click Install on the Installation Type page to install to start the installation.

5. After the installation has finished, click Continue on the PyCharm IDE page and Close on the Summary page

to close the installer.

Install on macOS (Apple)

Anaconda does not support Apple chips. Follow these steps to install Miniforge, a minimal version of Anaconda, on

your Mac with an Apple chip:

1. Download Miniforge3-MacOSX-arm64.sh .

2. Open a terminal in the directory containing the installer.

3. Run bash Miniforge3-MacOSX-arm64.sh to start the installer.

4. Press Enter to view the license terms, press Q to exit the license terms, and enter Yes to accept the license

terms.

5. Specify where Miniforge should be installed or accept the default.

6. Enter Yes when the installer prompts whether you want the installer to initialize Miniforge.

7. Re-open the terminal window after the installation has finished.

Install on Linux

Follow these steps to install Anaconda on your computer:

1. Download the latest 64-bit (x86) Installer for Linux.

2. Open a terminal in the directory containing the installer.

3. Run bash <fileName> where <fileName> is the name of the installer.

4. Press Enter to view the license terms, press Q to exit the license terms, and enter Yes to accept the license

terms.

5. Specify where Anaconda should be installed or accept the default.

6. Enter Yes when the installer prompts whether you want the installer to initialize Anaconda.

7. Re-open the terminal window after the installation has finished.

https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
https://www.anaconda.com/products/individual#Downloads

Installation > Installing Lean CLI

Installation

Installing Lean CLI

Introduction

The Lean CLI is distributed as a Python package, so it requires pip to be installed. To learn how to install pip on

your operating system, see Installing pip .

The commands which run the LEAN engine locally also depend on Docker being installed and running.

Install Docker

If you run the LEAN engine locally with the CLI, LEAN executes in a Docker container. These Docker containers

contain a minimal Linux-based operating system, the LEAN engine, and all the packages available to you on

QuantConnect.com. It is therefore required to install Docker if you plan on using the CLI to run the LEAN engine

locally.

Install on W indows

Windows systems must meet the following requirements to install Docker:

A 64-bit processor

4 GB RAM or more

Windows 10, version 1903 or higher (released May 2019)

Hardware virtualization enabled in the BIOS

20 GB hard drive or more

Follow these steps to install Docker:

1. Follow the Install Docker Desktop on Windows tutorial in the Docker documentation.

As you install docker, enable WSL 2 features.

2. Restart your computer.

3. If Docker prompts you that the WSL 2 installation is incomplete, follow the instructions in the dialog shown by

Docker to finish the WSL 2 installation.

4. Open PowerShell with adminstrator privledges and run:

$ wsl --update

By default, Docker doesn't automatically start when your computer starts. So, when you run the LEAN engine with

the CLI for the first time after starting your computer, you must manually start Docker. To automatically start

Docker, open the Docker Desktop application, click Settings > General , and then enable the Start Docker

https://www.docker.com/
https://docs.docker.com/desktop/install/windows-install/

Desktop when you log in check box.

Install on macOS

Mac systems must meet the following requirements to install Docker:

Mac hardware from 2010 or newer with an Intel processor

macOS 10.14 or newer (Mojave, Catalina, or Big Sur)

4 GB RAM or more

20 GB hard drive or more

To install Docker, see Install Docker Desktop on Mac in the Docker documentation.

Install on Linux

To install, see Install Docker Desktop on Linux in the Docker documentation.

Install LEAN CLI

Before you install the LEAN CLI, check if it's already installed.

$ lean --version

Follow these steps to install the LEAN CLI:

1. Install pip .

2. Install Docker .

3. If you are on a Windows machine, open PowerShell as the adminstrator for the following commands.

4. Install the LEAN CLI with pip.

$ pip install --upgrade lean

Next Steps

Log in to your account and then set up your first organization workspace .

Stay Up To Date

We regularly update the CLI to add new features and to fix issues. Therefore, it's important to keep both the CLI

and the Docker images that the CLI uses up-to-date.

Keep the CLI Up-To-Date

To update the CLI to the latest version, run pip install --upgrade lean . The CLI automatically performs a

version check once a day and warns you in case you are running an outdated version.

Keep the Docker Images Up-To-Date

https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/desktop/install/linux-install/
https://www.quantconnect.com/docs/v2//lean-cli/installation/installing-lean-cli#02-Install-Docker

Various commands like lean backtest , lean optimize and lean research run the LEAN engine in a Docker

container to ensure all the required dependencies are available. When you run these commands for the first time

the Docker image containing LEAN and its dependencies is downloaded and stored. Run these commands with the

--update flag to update the images they use. Additionally, these commands automatically perform a version check

once a week and update the image they use when you are using an outdated Docker image.

Uninstall

To uninstall the Lean CLI, run pip uninstall lean . To perform a full uninstallation, you must also delete

configuration files that the CLI generates, which you can find in the following directories:

The . lean directory in your user's home directory

Your organization workspaces

Initialization

Initialization

Initialization > Authentication

Initialization

Authentication

Introduction

Some of the Lean CLI commands need to communicate with the QuantConnect API. If you use any commands

which interact with the cloud, you must log in using your QuantConnect account so the CLI can send authenticated

API requests.

Log In

Follow these steps to log in to your QuantConnect account with the CLI:

1. Request your user-id and API token .

2. Retrieve your user-id and API token from the email you registered on QuantConnect.

3. Run lean login to log in to the CLI, and enter your user-id and token when prompted. This command opens

an interactive wizard asking you for your user-id and API token.

$ lean login

Your user Id and API token are needed to make authenticated requests to the QuantConnect API

You can request these credentials on https://www.quantconnect.com/account

Both will be saved in C:\Users\john\.lean\credentials

User id: 123456

API token: ******************

Successfully logged in

Log Out

Run lean logout to log out. This command removes the global configuration file containing your user Id and API

token.

Check Account Status

Run lean whoami to see the name and email address of the user who is currently logged in.

https://www.quantconnect.com/docs/v2/cloud-platform/community/profile#09-Request-API-Token

Initialization > Organization Workspaces

Initialization

Organization Workspaces

Introduction

After you install the CLI and log in to your account , you need to create an organization workspace. Your

organization workspace connects a directory on your local machine with one of your organizations in

QuantConnect Cloud. Your organization workspace includes the basic files and folders necessary to use LEAN,

including a local data directory and a LEAN configuration file.

We recommend running all Lean CLI commands in your root of your organization workspace directory. Doing so

ensures the directory structure is always kept consistent when synchronizing projects between the cloud and your

local drive. It also makes it possible for the CLI to automatically find the Lean configuration file when you run the

LEAN engine on your local machine.

Create Workspaces

To create an organization workspace for one of your organizations, open a terminal in an empty directory, run

lean init and then select an organization to link with the organization workspace. This command scaffolds a

standard directory structure containing a data directory and a Lean configuration file , both of which are required

to run the LEAN engine locally.

If you are running Docker on Windows using the legacy Hyper-V backend instead of the new WSL 2 backend, you

need to enable file sharing for your temporary directories and for your organization workspace. To do so, open

your Docker settings, go to Resources > File Sharing and add C: / Users / <username> / AppData / Local /

Temp and your organization workspace path to the list. Click Apply & Restart after making the required changes.

To set the default language of new projects in a new organization workspace, run lean init --language <value>

where the <value> is python or csharp .

Directory Structure

The lean init commands creates the following structure:

.
├── data/
│ ├── alternative/
│ ├── crypto/
│ ├── equity/
│ ├── ...
│ ├── market-hours/
│ ├── option/
│ ├── symbol-properties/
│ └── readme.md
└── lean.json

https://www.quantconnect.com/docs/v2//lean-cli/installation/installing-lean-cli
https://www.quantconnect.com/docs/v2//cloud-platform/organizations

These files contain the following content:

File/D irectory Description

data /

This directory contains the local data that LEAN uses
to run locally. This directory is comes with sample
data from the QuantConnect/Lean repository . As you
download additional data from the dataset market,
it's stored in this directory. Each organization
workspace has its own data directory because each
organization has its own data licenses.

lean. json This file contains the Lean configuration that is used
when running the LEAN engine locally.

When you create new projects or pull existing projects from the cloud, your organization workspace stores the

project files.

https://github.com/QuantConnect/Lean/tree/master/Data

Initialization > Configuration

Initialization

Configuration

Introduction

The CLI stores its persistent configuration in various places depending on the context of the configuration. We

make the distinction between global configuration, Lean configuration, and project configuration, all of which store

a specific subset of configurable properties.

Global Configuration

The global CLI configuration directory stores the CLI defaults and API credentials. The exact location of the

directory depends on your operating system. The following table shows the path of each operating system:

Operating System Path

Windows C: \ Users \ <username> \ . lean

macOS / Users / <username> / . lean

Linux / home / <username> / . lean

The global CLI configuration directory contains three files and one directory. The following table describes the files

and directory:

Name Description

credentials This file contains the API credentials given via lean login .

config This file contains the CLI defaults, like the default project language used when
running lean project-create .

cache
This file contains an internal cache that the CLI uses whenever it needs to
persistently store data. One of its uses is to store the last time an update check
has run to make sure we don't check for updates too often.

ssh This directory contains the SSH keys that are needed to debug over SSH when
debugging with Rider.

The global configuration files are always updated via the CLI and should not be updated or removed manually,

unless when you are uninstalling the CLI.

Lean Configuration

The Lean configuration contains settings for locally running the LEAN engine. This configuration is created in the

lean. json file when you run lean init in an empty directory. The configuration is stored as JSON, with support

for both single-line and multiline comments.

The Lean configuration file is based on the Launcher / config. json file from the Lean GitHub repository. When

you run lean init , the latest version of this file is downloaded and stored in your organization workspace. Before

the file is stored, some properties are automatically removed because the CLI automatically sets them.

The CLI commands can update most of the values of the lean. json file. The following table shows the

configuration settings that you need to manually adjust in the lean. json file if you want to change their values:

Name Description Defau lt

show-missing-data-logs Log missing data files. This is
useful for debugging. true

maximum-warmup-history-days-l
ook-back

The maximum number of days of
data the history provider will
provide during warm-up in live
trading. The history provider
expects older data to be on disk.

5

maximum-data-points-per-chart
-series

The maximum number of data
points you can add to a chart
series in backtests.

4000

Project Configuration

For information about project configuration, see Projects > Configuration .

https://github.com/QuantConnect/Lean/blob/master/Launcher/config.json
https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/warm-up-periods

Datasets

Datasets

Datasets > Format and Storage

Datasets

Format and Storage

Introduction

LEAN strives to use an open, human-readable format, so all data is stored in flat files (formatted as CSV or JSON).

The data is compressed on disk using zip

Default Location

When you create an organization workspace in an empty directory, the CLI downloads the latest data directory

from the LEAN repository . This directory contains a standard directory structure from which the LEAN engine

reads. Once downloaded, the data directory tree looks like this:

data
├── alternative/
├── cfd/
├── crypto/
├── equity/
├── forex/
├── future/
├── futureoption/
├── index/
├── indexoption/
├── market-hours/
├── option/
├── symbol-properties/
└── readme.md

By default, the data directory contains a small amount of sample data for all asset types to demonstrate how data

files must be formatted. Additionally, the data directory itself and most of its subdirectories contain readme.md

files containing more documentation on the format of the data files of each asset type.

Change Location

You can configure the data directory to use in the data-folder property in your Lean configuration file . The path

this property is set to is used as the data directory by all commands that run the LEAN engine locally. By default,

this property points to the data directory inside your organization workspace . If this property is set to a relative

path, it is resolved relative to the Lean configuration file's parent directory.

The data directory is the only local directory that is mounted into all Docker containers ran by the CLI, so it must

contain all the local files you want to read from your algorithms. You can get the path to this directory in your

https://github.com/QuantConnect/Lean/tree/master/Data

algorithm using the Globals.DataFolder variable.

Other Data Sources

If you already have data of your own you can convert it to a LEAN-compatible format yourself. In that case, we

recommend that you read the readme.md files generated by the lean init command in the data directory, as

these files contain up-to-date documentation on the expected format of the data files.

For development purposes, it is also possible to generate data using the CLI. This generator uses a Brownian

motion model to generate realistic market data, which might be helpful when you're testing strategies locally but

don't have access to real market data.

https://en.wikipedia.org/wiki/Brownian_model_of_financial_markets

Datasets > Downloading Data

Datasets

Downloading Data

To locally run the LEAN engine, you need local data. We recommend you source local data from our Dataset

Market , so you can use the same data that is available to your algorithm when you run it in the cloud. There are

two methods of downloading data. You can download smaller discrete datasets at a low cost or download

complete collections in bulk to avoid selection bias.

Download By Ticker

Low cost option for individual tickers

Download in Bu lk

All tickers to avoid selection bias

See Also

Datasets

https://www.quantconnect.com/datasets
https://www.quantconnect.com/docs/v2//writing-algorithms/datasets/overview

Datasets > Downloading Data > Download By Ticker

Downloading Data

Download By Ticker

Downloading data by the ticker is the ideal, low-cost option to acquiring local trading data if you don't need an

entire universe. This technique is for smaller, discrete downloads.

Key Concepts

Costs

See Also

Download in Bulk

Datasets > Downloading Data > Download By Ticker > Key Concepts

Download By Ticker

Key Concepts

Introduction

Downloading data by the ticker is the ideal, low-cost option to acquiring local trading data if you don't need an

entire universe. This technique is for smaller, discrete downloads. You can download our ticker data through the

CLI or LEAN in exchange for some QuantConnect Credit (QCC). Before the CLI or LEAN download new files, they

check if your local machine already stores the files.

Using the CLI

You can download datasets with the CLI using the non-interactive mode or the interactive mode.

Non-Interactive Mode

Follow these steps to download datasets with the non-interactive mode of the CLI:

1. Open the listing page of the dataset that you want to download.

2. Click the CLI tab.

If there is no CLI tab, you can't download the dataset.

3. Fill in the Command Line Generator form.

4. Select W indows or Unix .

5. Copy the CLI command that the form displays.

6. Open a terminal in your organization workspace and then run the command.

7. If you haven't already agreed to the CLI API Access and Data Agreement , in the browser window that opens,

read the document and click I Accept The Data Agreement .

The CLI displays a summary of your purchase and the download progress.

https://www.quantconnect.com/docs/v2/cloud-platform/organizations/credit
https://www.quantconnect.com/docs/v2//cloud-platform/datasets/navigating-the-market#02-View-All-Listings

Data that will be purchased and downloaded:
┌───────────────────────────┬─────────┬────────────────────────┬────────────┬─────────┐
│ Dataset │ Vendor │ Details │ File count │ Price │
├───────────────────────────┼─────────┼────────────────────────┼────────────┼─────────┤
│ Binance Crypto Price Data │ CoinAPI │ Data type: Trade │ 32 │ 800 QCC │
│ │ │ Ticker: BTCBUSD │ │ │
│ │ │ Resolution: Second │ │ │
│ │ │ Start date: 2022-05-05 │ │ │
│ │ │ End date: 2022-06-05 │ │ │
└───────────────────────────┴─────────┴────────────────────────┴────────────┴─────────┘
Total price: 800 QCC
Organization balance: 1,000 QCC

Data Terms of Use has been signed previously.
Find full agreement at: https://www.quantconnect.com/terms/data/?organization=<organizationId>
==
CLI API Access Agreement: On 2022-04-12 22:34:26 You Agreed:
- Display or distribution of data obtained through CLI API Access is not permitted.
- Data and Third Party Data obtained via CLI API Access can only be used for individual or internal
employee's use.
- Data is provided in LEAN format can not be manipulated for transmission or use in other
applications.
- QuantConnect is not liable for the quality of data received and is not responsible for trading
losses.
==

 ━━ 100% (32/32)

In teractive Mode

Follow these steps to download datasets with the interactive mode of the CLI:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in one of your organization workspace directories .

3. Run lean data download to start an interactive downloading wizard.

4. Go through the interactive wizard to configure the data you want to download.

5. After configuring the data you want to download, enter N when asked whether you want to download more

data.

$ lean data download

Selected data:

...

Total price: 10 QCC

Organization balance: 10,400 QCC

Do you want to download more data? [y/N]: N

6. In the browser window that opens, read the CLI API Access and Data Agreement and click I Accept The

Data Agreement .

7. Go back to the terminal and confirm the purchase to start downloading.

$ lean data download

You will be charged 10 QCC from your organization's QCC balance

After downloading all files your organization will have 10,400 QCC left

Continue? [y/N]: y

[1/1] Downloading equity/usa/daily/spy.zip (10 QCC)

Many of the datasets depend on the US Equity Security Master dataset because the US Equity Security Master

contains information on splits, dividends, and symbol changes. To check if a dataset depends the US Equity

Security Master, see the listing in the Dataset Market . If you try to download a dataset through the CLI that

depends on the US Equity Security Master and you don't have an active subscription to it, you'll get an error.

For example, follow these steps to download US Equity data from the Dataset Market:

1. Open a terminal in one of your organization workspace directories .

2. Run lean data download to start an interactive downloading wizard and then enter the dataset category

number.

$ lean data download

Select a category:

1) Commerce Data (3 datasets)

2) Consumer Data (2 datasets)

3) Energy Data (2 datasets)

4) Environmental Data (1 dataset)

5) Financial Market Data (30 datasets)

6) Industry Data (1 dataset)

7) Legal Data (2 datasets)

8) News and Events (4 datasets)

9) Political Data (2 datasets)

10) Transport and Logistics Data (1 dataset)

11) Web Data (9 datasets)

Enter an option: 5

3. Enter the dataset number.

https://www.quantconnect.com/datasets/quantconnect-us-equity-security-master
https://www.quantconnect.com/datasets/

$ lean data download

Select a dataset:

1) Binance Crypto Future Margin Rate Data

2) Binance Crypto Future Price Data

3) Binance Crypto Price Data

4) Binance US Crypto Price Data

5) Bitcoin Metadata

6) Bitfinex Crypto Price Data

7) Brain Language Metrics on Company Filings

8) Brain ML Stock Ranking

9) CFD Data

10) Coinbase Crypto Price Data

11) Composite Factor Bundle

12) Cross Asset Model

13) FOREX Data

14) Insider Trading

15) Kraken Crypto Price Data

16) NFT Sales

17) Tactical

18) Template (Do not Edit)

19) US Equity Coarse Universe

20) US Congress Trading

21) US ETF Constituents

22) US Equities

23) US Equity Options

24) US Equity Security Master

25) US Federal Reserve (FRED)

26) US Futures Security Master

27) US SEC Filings

28) US Treasury Yield Curve

29) VIX Central Contango

30) VIX Daily Price

Enter an option: 22

If you don't have an active subscription to the US Equity Security Master, you'll get the following error

message:

Your organization needs to have an active Security Master subscription to download data from the 'US

Equities' dataset

You can add the subscription at https://www.quantconnect.com/datasets/quantconnect-security-

master/pricing

4. Enter the data type.

$ lean data download

Data type:

1) Trade

2) Quote

3) Bulk

Enter an option: 1

5. Enter the ticker(s).

$ lean data download

Ticker(s) (comma-separated): SPY

6. Enter the resolution.

$ lean data download

Resolution:

1) Tick

2) Second

3) Minute

4) Hour

5) Daily

Enter an option: 3

7. If you selected tick, second, or minute resolution in the previous step, enter the start and end date.

$ lean data download

Start date (yyyyMMdd): 20230101

End date (yyyyMMdd): 20230105

8. Review your selected data and enter whether you would like to download more data.

$ lean data download

Selected data:

┌─────────────┬──────────┬────────────────────────┬────────────┬────────┐

│ Dataset │ Vendor │ Details │ File count │ Price │

├─────────────┼──────────┼────────────────────────┼────────────┼────────┤

│ US Equities │ AlgoSeek │ Data type: Trade │ 3 │ 15 QCC │

│ │ │ Ticker: SPY │ │ │

│ │ │ Resolution: Minute │ │ │

│ │ │ Start date: 2023-01-01 │ │ │

│ │ │ End date: 2023-01-05 │ │ │

└─────────────┴──────────┴────────────────────────┴────────────┴────────┘

Total price: 15 QCC

Organization balance: 10,000 QCC

Do you want to download more data? [y/N]: n

9. If you haven't already agreed to the CLI API Access and Data Agreement , in the browser window that opens,

read the document and click I Accept The Data Agreement .

10. Confirm your data purchase.

$ lean data download

Data Terms of Use has been signed previously.

Find full agreement at: https://www.quantconnect.com/terms/data/?organization=<organizationId>

==

CLI API Access Agreement: On 2022-04-12 22:34:26 You Agreed:

- Display or distribution of data obtained through CLI API Access is not permitted.

- Data and Third Party Data obtained via CLI API Access can only be used for individual or

internal employee's use.

- Data is provided in LEAN format can not be manipulated for transmission or use in other

applications.

- QuantConnect is not liable for the quality of data received and is not responsible for trading

losses.

==

You will be charged 15 QCC from your organization's QCC balance

After downloading all files your organization will have 9,985 QCC left

Continue? [y/N]: y

After you confirm your data purchsae, the CLI downloads the data and prints its progress.

$ lean data download
 ━━ 100% (3/3)

Using Lean

For more information about using LEAN to download datasets, see Deployment .

Supported Datasets

To view all of the supported datasets, see the Dataset Market .

https://www.quantconnect.com/datasets

Datasets > Downloading Data > Download By Ticker > Costs

Download By Ticker

Costs

Introduction

This page describes how to calculate the approximate cost of downloading local data for algorithms of each asset

class. The prices reflect the data prices at the time of writing. To view the current prices of each dataset, open a

dataset listing in the Dataset Market and then click the Pricing tab. To download the data, use the lean data

download command or the ApiDataProvider .

US Equity

US Equity algorithms require the US Equity Security Master and some data from the US Equities dataset. The

following table shows the cost of an annual subscription to the US Equity Security Master for each organization

tier:

Tier Price ($/Year)

Quant Researcher 600

Team 900

Trading Firm 1,200

Institution 1,800

The US Equities dataset is available is several resolutions. The resolution you need depends on the US Equity

subscriptions you create in your algorithm and the resolution of data you get in history requests . The following

table describes the file format and costs of each resolution:

https://www.quantconnect.com/datasets
https://www.quantconnect.com/datasets/quantconnect-us-equity-security-master/pricing
https://www.quantconnect.com/datasets/algoseek-us-equities/pricing
https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/history-requests

Resolution File Format Cost per file

Tick
One file per security per trading
day per data format. Quote and
trade data are separate files.

6 QCC = $0.06 USD

Second
One file per security per trading
day per data format. Quote and
trade data are separate files.

5 QCC = $0.05 USD

Minute
One file per security per trading
day per data format. Quote and
trade data are separate files.

5 QCC = $0.05 USD

Hour One file per security. 300 QCC = $3 USD

Daily One file per security. 100 QCC = $1 USD

If you add universes to your algorithm, the following table shows the additional datasets you need:

Universe Type Required Dataset File Format Cost per file

Coarse or Dollar Volume US Equity Coarse
Universe One file per day. 5 QCC = $0.05 USD

ETF Constituents US ETF Constituents One file per ETF per day. 50 QCC = $0.50 USD

For example, the following algorithm creates a dollar volume universe with 100 securities and then subscribes to

minute resolution data for each US Equity in the universe:

The following table shows the data cost of the preceding algorithm on the Quant Researcher tier:

namespace QuantConnect.Algorithm.CSharp
{
 public class USEquityDataAlgorithm : QCAlgorithm
 {
 public override void Initialize()
 {
 SetStartDate(2020, 1, 1);
 SetEndDate(2021, 1, 1);
 AddUniverse(Universe.DollarVolume.Top(100));
 }
 }
}

C#

https://www.quantconnect.com/docs/v2/writing-algorithms/universes/equity#02-Coarse-Universe-Selection
https://www.quantconnect.com/docs/v2/writing-algorithms/universes/equity#03-Dollar-Volume-Selection
https://www.quantconnect.com/datasets/quantconnect-us-coarse-universe-constituents/pricing
https://www.quantconnect.com/docs/v2/writing-algorithms/universes/equity#04-ETF-Constituents-Selection
https://www.quantconnect.com/datasets/quantconnect-us-etf-constituents/pricing

Dataset Package In itial Cost Ongoing Cost

US Equity Security
Master Download On Premise $600 USD $600 USD/year

US Equity Coarse
Universe On Premise Download

252 trading days
=> 252 files

252 files @ 5 QCC/file
=> 252 * 5 QCC
= 12,600 QCC
= $126 USD

1 trading day
=> 1 file

1 file/day @ 5 QCC/file
=> 5 QCC/day
= $0.05 USD/day

US Equity Minute Download

100 securities over 252
trading days with 2 data
formats
=> 100 * 252 * 2 files
= 50,400 files

50,400 files @ 5
QCC/file
=> 50,400 * 5 QCC
= 252,000 QCC
= $2,520 USD

100 securities with 2
data formats
=> 100 * 2 files/day
= 200 files/day

200 files/day @ 5
QCC/file
=> 200 * 5 QCC/day
= 1,000 QCC/day
= $10 USD/day

The preceding table assumes you download trade and quote data, but you can run backtests with only trade data.

Equity Options

Equity Option algorithms require the US Equity Security Master , some data from the US Equity Options dataset,

and data for the underlying US Equity universes and assets. The following table shows the cost of an annual

subscription to the US Equity Security Master for each organization tier:

Tier Price ($/Year)

Quant Researcher 600

Team 900

Trading Firm 1,200

Institution 1,800

The US Equity Options dataset is available is several resolutions. The resolution you need depends on the US

Equity Option subscriptions you create in your algorithm and the resolution of data you get in history requests .

The following table describes the file format and costs of each resolution:

https://www.quantconnect.com/datasets/quantconnect-us-equity-security-master/pricing
https://www.quantconnect.com/datasets/algoseek-us-equity-options/pricing
https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/history-requests

Resolution File Format Cost per file

Minute

One file per Option per trading
day per data format. Quote, trade,
and open interest data are
separate files.

15 QCC = $0.15 USD

Hour
One file per Option per year per
data format. Trade and open
interest data are separate files.

900 QCC = $9 USD

Daily
One file per Option per year.
Trade and open interest data are
separate files.

300 QCC = $3 USD

For example, the following algorithm subscribes to minute resolution data for an Equity Option and its underlying

asset:

The following table shows the data cost of the preceding algorithm on the Quant Researcher tier:

namespace QuantConnect.Algorithm.CSharp
{
 public class USEquityOptionsDataAlgorithm : QCAlgorithm
 {
 public override void Initialize()
 {
 SetStartDate(2020, 1, 1);
 SetEndDate(2021, 1, 1);
 var underlying = AddEquity("GOOG").Symbol;
 AddOption(underlying);
 }
 }
}

C#

Dataset Package In itial Cost Ongoing Cost

US Equity Security
Master Download On Premise $600 USD $600 USD/year

US Equity Minute Download

1 security over 252
trading days with 2 data
formats
=> 1 * 252 * 2 files
= 504 files

504 files @ 5 QCC/file
=> 504 * 5 QCC
= 2,520 QCC
= $25.20 USD

1 security with 2 data
formats
=> 2 files/day

2 files/day @ 5 QCC/file
=> 2 * 5 QCC/day
= 10 QCC/day
= $0.10 USD/day

US Equity Options Minute Download

1 Option over 252
trading days with 3 data
formats
=> 1 * 252 * 3 files
= 756 files

756 files @ 15 QCC/file
=> 756 * 15 QCC
= 11,360 QCC
= $113.60 USD

1 Option with 3 data
formats
=> 3 files/day

3 files/day @ 15
QCC/file
=> 3 * 15 QCC/day
= 45 QCC/day
= $0.45 USD/day

The preceding table assumes you download trade, quote, and open interest data. However, you can run backtests

with only trade data.

Crypto

Crypto algorithms require at least one of the CoinAPI datasets . The CoinAPI datasets are available is several

resolutions. The resolution you need depends on the Crypto subscriptions you create in your algorithm and the

resolution of data you get in history requests . The following table describes the file format and costs of each

resolution:

https://www.quantconnect.com/docs/v2/writing-algorithms/datasets/coinapi
https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/history-requests

Resolution File Format Cost per file

Tick

One file per security per trading
day per brokerage per data
format. Quote and trade data are
separate files.

100 QCC = $1 USD

Second

One file per security per trading
day per brokerage per data
format. Quote and trade data are
separate files.

25 QCC = $0.25 USD

Minute

One file per security per trading
day per brokerage per data
format. Quote and trade data are
separate files.

5 QCC = $0.05 USD

Hour One file per security per
brokerage. 400 QCC = $4 USD

Daily One file per security per
brokerage. 100 QCC = $1 USD

If you add universes to your algorithm, you also need CryptoCoarseFundamental data. The file format of

CryptoCoarseFundamental data is one file per day per brokerage and each file costs 100 QCC = $1 USD.

For example, the following algorithm creates a universe of 100 Cryptocurrencies and then subscribes to minute

resolution data for each one in the universe:

The following table shows the data cost of the preceding algorithm:

namespace QuantConnect.Algorithm.CSharp
{
 public class CryptoDataAlgorithm : QCAlgorithm
 {
 public override void Initialize()
 {
 SetStartDate(2020, 1, 1);
 SetEndDate(2021, 1, 1);
 AddUniverse(new CryptoCoarseFundamentalUniverse(Market.GDAX, UniverseSettings,
 cryptoCoarse => cryptoCoarse.OrderByDescending(cf =>
cf.VolumeInUsd).Take(100).Select(x => x.Symbol))
);
 }
 }
}

C#

Dataset Package In itial Cost Ongoing Cost

Coinbase Crypto Price
Data Universe Download

365 days
=> 365 files

365 files @ 100 QCC/file
=> 365 * 100 QCC
= 36,500 QCC
= $365 USD

1 file per day @ 100
QCC/file
=> 100 QCC/day
= $1 USD/day

Coinbase Crypto Price
Data Minute Download

100 securities over 365
trading days with 2 data
formats
=> 1 * 100 * 365 * 2
files
= 73,000 files

73,000 files @ 5
QCC/file
=> 73,000 * 5 QCC
= 365,000 QCC
= $3,650 USD

100 securities with 2
data formats
=> 100 * 2 files/day
= 200 files/day

200 files/day @ 5
QCC/file
=> 200 * 5 QCC/day
= 1,000 QCC/day
= $10 USD/day

The preceding table assumes you download trade and quote data, but you can run backtests with only trade data.

Forex

Forex algorithms require some data from the FOREX dataset. The FOREX dataset is available is several resolutions.

The resolution you need depends on the Forex subscriptions you create in your algorithm and the resolution of

data you get in history requests . The following table describes the file format and costs of each resolution:

Resolution File Format Cost per file

Second One file per currency pair per
trading day. 3 QCC = $0.03 USD

Minute One file per currency pair per
trading day. 3 QCC = $0.03 USD

Hour One file per currency pair. 3 QCC = $0.03 USD

Daily One file per currency pair. 3 QCC = $0.03 USD

For example, the following algorithm subscribes to minute resolution data for one Forex pair:

https://www.quantconnect.com/datasets/oanda-forex/pricing
https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/history-requests

The following table shows the data cost of the preceding algorithm:

Dataset Package In itial Cost Ongoing Cost

FOREX Data Minute Download

1 currency pair over 312
trading days
=> 312 files

312 files @ 3 QCC/file
=> 312 * 3 QCC
= 936 QCC
= $9.36 USD

1 currency pair/day
=> 1 file/day

1 file/day @ 3 QCC/file
=> 3 QCC/day
= $0.03 USD/day

Futures

Futures algorithms require some data from the US Futures dataset. The US Futures dataset is available in several

resolutions. The resolution you need depends on the US Future subscriptions you create in your algorithm and the

resolution of data you get in history requests . The following table describes the file format and costs of each

resolution:

namespace QuantConnect.Algorithm.CSharp
{
 public class ForexDataAlgorithm : QCAlgorithm
 {
 public override void Initialize()
 {
 SetStartDate(2020, 1, 1);
 SetEndDate(2021, 1, 1);
 AddForex("USDCAD");
 }
 }
}

C#

https://www.quantconnect.com/datasets/algoseek-us-futures
https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/history-requests

Resolution File Format Cost per file

Tick

One file per ticker per trading day
per data format. Trade, quote,
and open interest data are
separate files.

6 QCC = $0.06 USD

Second

One file per ticker per trading day
per data format. Trade, quote,
and open interest data are
separate files.

5 QCC = $0.05 USD

Minute

One file per ticker per trading day
per data format. Trade, quote,
and open interest data are
separate files.

5 QCC = $0.05 USD

Hour
One file per ticker per data
format. Trade, quote, and open
interest data are separate files.

300 QCC = $3 USD

Daily
One file per ticker per data
format. Trade, quote, and open
interest data are separate files.

100 QCC = $1 USD

If you want continuous contracts in your algorithm, you also need the US Futures Security Master dataset. The

following table shows the cost of an annual subscription to the US Futures Security Master for each organization

tier:

Tier Price ($/Year)

Quant Researcher 600

Team 900

Trading Firm 1,200

Institution 1,800

For example, the following algorithm subscribes to minute resolution data for a universe of ES Futures contracts

and creates a continuous contract:

https://www.quantconnect.com/docs/v2/writing-algorithms/universes/futures#12-Continous-Contracts
https://www.quantconnect.com/datasets/quantconnect-us-futures-security-master

The following table shows the data cost of the preceding algorithm on the Quant Researcher tier:

Dataset Package In itial Cost Ongoing Cost

US Futures Security
Master Download On Premise $600 USD $0 USD/year

US Futures Minute Download

1 ticker over 252 trading
days with 3 data
formats
=> 1 * 252 * 3 files
= 756 files

756 files @ 5 QCC/file
=> 756 * 5 QCC
= 3,780 QCC
= $37.80 USD

1 ticker with 3 data
formats
=> 3 files/day

3 file/day @ 5 QCC/file
=> 15 QCC/day
= $0.15 USD/day

The preceding table assumes you download trade, quote, and open interest data. However, you can run backtests

with only trade data.

Index Options

Index Options algorithms require some data from the US Index Options dataset. The US Index Options dataset is

available in several resolutions. The resolution you need depends on the US Index Option subscriptions you create

in your algorithm and the resolution of data you get in history requests . The following table describes the file

format and costs of each resolution:

namespace QuantConnect.Algorithm.CSharp
{
 public class USFuturesDataAlgorithm : QCAlgorithm
 {
 public override void Initialize()
 {
 SetStartDate(2020, 1, 1);
 SetEndDate(2021, 1, 1);
 var future = AddFuture(Futures.Indices.SP500EMini,
 dataNormalizationMode: DataNormalizationMode.BackwardsRatio,
 dataMappingMode: DataMappingMode.OpenInterest,
 contractDepthOffset: 0
);
 future.SetFilter(0, 90);
 }
 }
}

C#

https://www.quantconnect.com/datasets/algoseek-us-index-options
https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/history-requests

Resolution File Format Cost per file

Minute

One file per ticker per trading day
per data format. Trade, quote,
and open interest data are
separate files.

15 QCC = $0.15 USD

Hour
One file per ticker per data
format. Trade, quote, and open
interest data are separate files.

900 QCC = $9 USD

Daily
One file per ticker per data
format. Trade, quote, and open
interest data are separate files.

300 QCC = $3 USD

For example, the following algorithm subscribes to minute resolution data for a universe of VIX Index Option

contracts:

The following table shows the data cost of the preceding algorithm:

Dataset Package In itial Cost Ongoing Cost

US Index Options Minute Download

1 ticker over 252 trading
days with 3 data
formats
=> 1 * 252 * 3 files
= 756 files

756 files @ 15 QCC/file
=> 756 * 15 QCC
= 11,340 QCC
= $113.40 USD

1 ticker with 3 data
formats
=> 3 files/day

3 files/day @ 15
QCC/file
=> 45 QCC/day
= $0.45 USD/day

The preceding table assumes you download trade, quote, and open interest data. However, you can run backtests

with only trade data.

CFD

CFD algorithms require some data from the CFD dataset. The CFD dataset is available is several resolutions. The

resolution you need depends on the CFD subscriptions you create in your algorithm and the resolution of data you

get in history requests . The following table describes the file format and costs of each resolution:

namespace QuantConnect.Algorithm.CSharp
{
 public class USIndexOptionsDataAlgorithm : QCAlgorithm
 {
 public override void Initialize()
 {
 SetStartDate(2020, 1, 1);
 SetEndDate(2021, 1, 1);
 AddIndexOption("VIX");
 }
 }
}

C#

https://www.quantconnect.com/datasets/oanda-cfd-data/pricing
https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/history-requests

Resolution File Format Cost per file

Second One file per contract per trading
day. 3 QCC = $0.03 USD

Minute One file per contract per trading
day. 3 QCC = $0.03 USD

Hour One file per contract. 3 QCC = $0.03 USD

Daily One file per contract. 3 QCC = $0.03 USD

For example, the following algorithm subscribes to minute resolution data for one CFD contract:

The following table shows the data cost of the preceding algorithm:

Dataset Package In itial Cost Ongoing Cost

CFD Data Minute Download

1 contract over 314
trading days
=> 314 files

314 files @ 3 QCC/file
=> 314 * 3 QCC
= 942 QCC
= $9.42 USD

1 contract/day
=> 1 file/day

1 file/day @ 3 QCC/file
=> 3 QCC/day
= $0.03 USD/day

Alternative Data

Algorithms that use alternative data require some data from the associated alternative dataset. To view the cost of

each alternative dataset, open a dataset listing in the Dataset Market and then click the Pricing tab.

namespace QuantConnect.Algorithm.CSharp
{
 public class CFDDataAlgorithm : QCAlgorithm
 {
 public override void Initialize()
 {
 SetStartDate(2020, 1, 1);
 SetEndDate(2021, 1, 1);
 AddCfd("XAUUSD");
 }
 }
}

C#

https://www.quantconnect.com/datasets

Datasets > Downloading Data > Download in Bulk

Downloading Data

Download in Bulk

Download any of the following datasets in bulk to get all of the data and avoid selection bias:

CFD Data

FOREX Data

US Equ ities

US Equ ity Coarse Universe

US Equ ity Options

US ETF Constituents

US Futures

US Index Options

See Also

Datasets

https://www.quantconnect.com/docs/v2//writing-algorithms/datasets/overview

Datasets > Downloading Data > Download in Bulk > CFD Data

Download in Bulk

CFD Data

Introduction

Download the CFD dataset in bulk to get the full dataset without any selection bias. The bulk dataset packages

contain data for every ticker and trading day.

Download History

To unlock local access to the CFD dataset, open the Pricing page of your organization and subscribe to at least

one of the following data packages:

OANDA CFD - Daily History

OANDA CFD - Hour History

OANDA CFD - Minute History

OANDA CFD - Second History

You need billing permissions to change the organization's subscriptions.

After you subscribe to local access, follow these steps to download the data:

1. Log in to the Algorithm Lab.

2. On the CLI tab of the dataset listing , use the CLI Command Generator to generate your download

command and then copy it.

The Ticker , Start Date , and End Date fields are irrelevant for bulk downloads.

3. Open a terminal in your organization workspace and then run the command from the CLI Command

Generator .

Download Daily Updates

After you bulk download the CFD dataset, new daily updates are available at 3 PM Coordinated Universal Time

(UTC) after each trading day. To unlock local access to the data updates, open the Pricing page of your

organization and subscribe to at least one of the following data packages:

OANDA CFD - Daily Updates

OANDA CFD - Hour Updates

OANDA CFD - Minute Updates

OANDA CFD - Second Updates

You need billing permissions to change the organization's subscriptions.

After you subscribe to dataset updates, to update your local copy of the CFD dataset, use the CLI Command

https://www.quantconnect.com/datasets/oanda-cfd-data
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/datasets/oanda-cfd-data/cli
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/datasets/oanda-cfd-data/cli

Generator to generate your download command and then run it in a terminal in your organization workspace .

Alternatively, instead of directly calling the lean data download command, you can place a Python script in the

data directory of your organization workspace and run it to update your data files. The following example script

updates all data resolutions:

The preceding script checks the date of the most recent XAUUSD data you have for second and minute

resolutions. If there is new data available for either of these resolutions, it downloads the new data files and

overwrites your hourly and daily files. If you don't intend to download all resolutions, adjust this script to your

needs.

Size and Format

The following table shows the size and format of the CFD dataset for each resolution:

Resolution Size Format

Daily 500 MB 1 file per ticker

Hour 1 GB 1 file per ticker

Minute 50 GB 1 file per ticker per day

Second 200 TB 1 file per ticker per day

Price

The following table shows the price of the CFD dataset subscriptions:

Resolution Price of Historical Data ($) Price of Daily Updates
($/Year)

Daily 799.92 199.92

Hour 799.92 199.92

Minute 799.92 199.92

Second 799.92 199.92

Datasets > Downloading Data > Download in Bulk > FOREX Data

Download in Bulk

FOREX Data

Introduction

Download the FOREX dataset in bulk to get the full dataset without any selection bias. The bulk dataset packages

contain data for every ticker and trading day.

Download History

To unlock local access to the Forex dataset, open the Pricing page of your organization and subscribe to at least

one of the following data packages:

OANDA Forex - Daily History

OANDA Forex - Hour History

OANDA Forex - Minute History

OANDA Forex - Second History

You need billing permissions to change the organization's subscriptions.

After you subscribe to local access, follow these steps to download the data:

1. Log in to the Algorithm Lab.

2. On the CLI tab of the dataset listing , use the CLI Command Generator to generate your download

command and then copy it.

The Ticker , Start Date , and End Date fields are irrelevant for bulk downloads.

3. Open a terminal in your organization workspace and then run the command from the CLI Command

Generator .

Download Daily Updates

After you bulk download the Forex dataset, new daily updates are available at 3 PM Coordinated Universal Time

(UTC) after each trading day. To gain access to the data updates, open the Pricing page of your organization and

subscribe to at least one of the following data packages:

OANDA Forex - Daily Updates

OANDA Forex - Hour Updates

OANDA Forex - Minute Updates

OANDA Forex - Second Updates

You need billing permissions to change the organization's subscriptions.

After you subscribe to dataset updates, to update your local copy of the Forex dataset, use the CLI Command

https://www.quantconnect.com/datasets/oanda-forex
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/datasets/oanda-forex/cli
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/datasets/oanda-forex/cli

Generator to generate your download command and then run it in a terminal in your organization workspace .

Alternatively, instead of directly calling the lean data download command, you can place a Python script in the

data directory of your organization workspace and run it to update your data files. The following example script

updates all data resolutions:

To update your local dataset, the preceding script checks the date of the most recent EURUSD data you have for

second and minute resolutions. If there is new data available for either of these resolutions, it downloads the new

data files and overwrites your hourly and daily files. If you don't intend to download all resolutions, adjust this

script to your needs.

Size and Format

The following table shows the size of the Forex dataset for each resolution:

Resolution Size Format

Daily 500 MB 1 file per ticker

Hour 1 GB 1 file per ticker

Minute 50 GB 1 file per ticker per day

Second 200 TB 1 file per ticker per day

Price

The following table shows the price of the Forex dataset subscriptions:

Resolution Price of Historical Data ($) Price of Daily Updates
($/Year)

Daily 799.92 199.92

Hour 799.92 199.92

Minute 799.92 199.92

Second 799.92 199.92

Datasets > Downloading Data > Download in Bulk > US Equities

Download in Bulk

US Equities

Introduction

Download the US Equities dataset in bulk to get the full dataset without any selection bias. The bulk dataset

packages contain data for every ticker and trading day. If the resolution you download provides trade and quote

data, the bulk download contains both data types. To check which data types each resolution provides, see

Resolutions .

The US Equities dataset depends on the US Equity Security Master dataset because the US Equity Security Master
contains information on splits, dividends, and symbol changes.

Download History

To unlock local access to the US Equities dataset, open the Pricing page of your organization and subscribe to at

least one of the following data packages:

US Equity Daily History by AlgoSeek

US Equity Hourly History by AlgoSeek

US Equity Minute History by AlgoSeek

US Equity Second History by AlgoSeek

US Equity Tick History by AlgoSeek

If you don't already subscribe to the US Equ ity Security Master by QuantConnect data package, subscribe to

it too. You need billing permissions to change the organization's subscriptions.

After you subscribe to local access, to download the US Equities data, follow these steps:

1. Log in to the Algorithm Lab.

2. On the CLI tab of the dataset listing , use the CLI Command Generator to generate your download

command and then copy it.

The Ticker , Start Date , and End Date fields are irrelevant for bulk downloads.

3. Open a terminal in your organization workspace and then run the command from the CLI Command

Generator .

To download the US Equity Security Master, run:

$ lean data download --dataset "US Equity Security Master"

Download Daily Updates

https://www.quantconnect.com/datasets/algoseek-us-equities
https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/us-equity/requesting-data#03-Resolutions
https://www.quantconnect.com/datasets/quantconnect-us-equity-security-master
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/datasets/algoseek-us-equities/cli

After you bulk download the US Equities dataset, new daily updates are available at 7 AM Eastern Time (ET) after

each trading day. To unlock local access to the data updates, open the Pricing page of your organization and

subscribe to at least one of the following data packages:

US Equity Daily Updates by AlgoSeek

US Equity Hourly Updates by AlgoSeek

US Equity Minute Updates by AlgoSeek

US Equity Second Updates by AlgoSeek

US Equity Tick Updates by AlgoSeek

You need billing permissions to change the organization's subscriptions.

After you subscribe to dataset updates, to update your local copy of the US Equities dataset, use the CLI

Command Generator to generate your download command and then run it in a terminal in your organization

workspace . To update your local copy of the US Equity Security Master, run:

$ lean data download --dataset "US Equity Security Master"

Alternatively, instead of directly calling the lean data download command, you can place a Python script in the

data directory of your organization workspace and run it to update your data files. The following example script

updates all data resolutions:

The preceding script checks the date of the most recent SPY data you have for tick, second, and minute

resolutions. If there is new data available for any of these resolutions, it downloads the new data files and

overwrites your hourly and daily files. If you don't intend to download all resolutions, adjust this script to your

needs.

Size and Format

The following table shows the size and format of the US Equities dataset for each resolution:

Resolution Size Format

Daily 2 GB 1 file per ticker

Hour 4 GB 1 file per ticker

Minute 500 GB 1 file per ticker per day

Second 1.5 TB 1 file per ticker per day

Tick 1.5 TB 1 file per ticker per day

Price

The following table shows the price of an annual subscription to the US Equity Security Master for each

https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/datasets/algoseek-us-equities/cli

organization tier:

Tier Price ($/Year)

Quant Researcher 600

Team 900

Trading Firm 1,200

Institution 1,800

The following table shows the price of the US Equity dataset subscriptions:

Resolution Price of Historical Data ($) Price of Daily Updates
($/Year)

Daily 3,480 2,640

Hour 3,480 2,640

Minute Contact us 2,640

Second Contact us 2,640

Tick Contact us 2,640

https://www.quantconnect.com/contact
https://www.quantconnect.com/contact
https://www.quantconnect.com/contact

Datasets > Downloading Data > Download in Bulk > US Equity Coarse Universe

Download in Bulk

US Equity Coarse Universe

Introduction

Download the US Equity Coarse Universe dataset in bulk to get the full dataset without any selection bias. The bulk

dataset packages contain data for every trading day.

The US Equity Coarse Universe dataset depends on the US Equity Security Master dataset because the US Equity
Security Master contains information on splits, dividends, and symbol changes.

Download History

To unlock local access to the US Equity Coarse Universe dataset, open the Pricing page of your organization and

subscribe to the US Equ ity Coarse Universe History by QuantConnect data package. If you don't already

subscribe to the US Equ ity Security Master by QuantConnect data package, subscribe to it too. You need

billing permissions to change the organization's subscriptions.

After you subscribe to local access, to download the US Equity Coarse Universe data, open a terminal in your

organization workspace and run:

$ lean data download --dataset "US Equity Coarse Universe" --data-type "Bulk"

To download the US Equity Security Master, run:

$ lean data download --dataset "US Equity Security Master"

Download Daily Updates

After you bulk download the US Equity Coarse Universe dataset, new daily updates are available at 7 AM Eastern

Time (ET) after each trading day. To unlock local access to the data updates, open the Pricing page of your

organization and subscribe to the US Equ ity Coarse Universe Updates by QuantConnect data package. You

need billing permissions to change the organization's subscriptions.

After you subscribe to dataset updates, to update your local copy of the US Equity Coarse Universe dataset, open

a terminal in your organization workspace and run:

$ lean data download --dataset "US Equity Coarse Universe" --data-type "Bulk"

To update your local copy of the US Equity Security Master, run:

https://www.quantconnect.com/datasets/quantconnect-us-coarse-universe-constituents
https://www.quantconnect.com/datasets/quantconnect-us-equity-security-master
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions

$ lean data download --dataset "US Equity Security Master"

Alternatively, instead of directly calling the lean data download command, you can place a Python script in the

data directory of your organization workspace and run it to update your data files. The following example script

downloads the latest data when it's available:

The preceding script checks the date of the most recent US Equity Coarse Universe data you have. If there is new

data available, it downloads the new data files.

Size and Format

The US Equity Coarse Universe dataset is 4 GB in size. We structure the data files so there is one file per day.

Price

The following table shows the price of an annual subscription to the US Equity Security Master for each

organization tier:

Tier Price ($/Year)

Quant Researcher 600

Team 900

Trading Firm 1,200

Institution 1,800

All of the historical US Equity Coarse Universe data costs $1,800. An annual subscription to daily updates costs

$960/year.

Datasets > Downloading Data > Download in Bulk > US Equity Options

Download in Bulk

US Equity Options

Introduction

Download the US Equity Options dataset in bulk to get the full dataset without any selection bias. The bulk dataset

packages contain trade, quote, and open interest data for every ticker and trading day.

The US Equity Options dataset depends on the US Equity Security Master dataset because the US Equity Security
Master contains information on splits, dividends, and symbol changes.

Download History

To unlock local access to the US Equity Options dataset, open the Pricing page of your organization and subscribe

to at least one of the following data packages:

US Equity Options Daily History by AlgoSeek

US Equity Options Hour History by AlgoSeek

US Equity Options Minute History by AlgoSeek

If you don't already subscribe to the US Equ ity Security Master by QuantConnect data package, subscribe to

it too. You need billing permissions to change the organization's subscriptions.

After you subscribe to local access, to download the US Equity Options data, follow these steps:

1. Log in to the Algorithm Lab.

2. On the CLI tab of the dataset listing , use the CLI Command Generator to generate your download

command and then copy it.

The Ticker , Start Date , and End Date fields are irrelevant for bulk downloads.

3. Open a terminal in your organization workspace and then run the command from the CLI Command

Generator .

To download the US Equity Security Master, run:

$ lean data download --dataset "US Equity Security Master"

Download Daily Updates

After you bulk download the US Equity Options dataset, new daily updates are available at 8 PM Coordinated

Universal Time (UTC) two days after each trading day. For example, the minute resolution data for Monday is

available on Wednesday at 8 PM UTC. To unlock local access to the data updates, open the Pricing page of your

organization and subscribe to at least one of the following data packages:

https://www.quantconnect.com/datasets/algoseek-us-equity-options
https://www.quantconnect.com/datasets/quantconnect-us-equity-security-master
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/datasets/algoseek-us-equity-options/cli
https://www.quantconnect.com/pricing

US Equity Options Daily Updates by AlgoSeek

US Equity Options Minute Updates by AlgoSeek

US Equity Options Hour Updates by AlgoSeek

You need billing permissions to change the organization's subscriptions.

After you subscribe to dataset updates, to update your local copy of the US Equity Options dataset, use the CLI

Command Generator to generate your download command and then run it in a terminal in your organization

workspace . To update your local copy of the US Equity Security Master, run:

$ lean data download --dataset "US Equity Security Master"

Alternatively, instead of directly calling the lean data download command, you can place a Python script in the

data directory of your organization workspace and run it to update your data files. The following example script

updates all data resolutions:

The preceding script checks the date of the most recent minute resolution data you have for AAPL. If there is new

minute data available, it downloads the new data files and overwrites your hourly and daily files. If you don't intend

to download all resolutions, adjust this script to your needs.

Size and Format

The following table shows the size and format of the US Equity Options dataset for each resolution:

Resolution Size Format

Daily 200 GB 1 file per ticker

Hour 500 GB 1 file per ticker

Minute 6 TB 1 file per ticker per day

Price

The following table shows the price of an annual subscription to the US Equity Security Master for each

organization tier:

Tier Price ($/Year)

Quant Researcher 600

Team 900

Trading Firm 1,200

Institution 1,800

https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/datasets/algoseek-us-equity-options/cli

The following table shows the price of the US Equity Options dataset subscriptions:

Resolution Price of Historical Data ($) Price of Daily Updates
($/Year)

Daily Contact us 1,920

Hour Contact us 2,640

Minute Contact us 2,880

https://www.quantconnect.com/contact
https://www.quantconnect.com/contact
https://www.quantconnect.com/contact

Datasets > Downloading Data > Download in Bulk > US ETF Constituents

Download in Bulk

US ETF Constituents

Introduction

Download the US ETF Constituents dataset in bulk to get the full dataset without any ETF selection bias. The bulk

dataset package contains constituents data for all of the supported ETFs for every trading day.

The US ETF Constituents dataset depends on the US Equity Security Master dataset because the US Equity
Security Master contains information on splits, dividends, and symbol changes.

Download History

To unlock local access to the US ETF Constituents dataset, open the Pricing page of your organization and

subscribe to the US ETF Constituents History by QuantConnect data package. If you don't already subscribe

to the US Equ ity Security Master by QuantConnect data package, subscribe to it too. You need billing

permissions to change the organization's subscriptions.

After you subscribe to local access, to download the US ETF Consitutents data, open a terminal in your

organization workspace and run:

$ lean data download --dataset "US ETF Constituents" --data-type "Download in Bulk"

To download the US Equity Security Master, run:

$ lean data download --dataset "US Equity Security Master"

Download Daily Updates

After you bulk download the US ETF Constituents dataset, new daily updates are available at 7 AM Eastern Time

(ET) after each trading day. To unlock local access to the data updates, open the Pricing page of your organization

and subscribe to the US ETF Constituents Updates by QuantConnect data package. You need billing

permissions to change the organization's subscriptions.

After you subscribe to dataset updates, to update your local copy of the US ETF Constituents dataset, open a

terminal in your organization workspace and run:

$ lean data download --dataset "US ETF Constituents" --data-type "Download in Bulk"

To update your local copy of the US Equity Security Master, run:

https://www.quantconnect.com/datasets/quantconnect-us-etf-constituents
https://www.quantconnect.com/docs/v2/writing-algorithms/datasets/quantconnect/us-etf-constituents#05-Supported-ETFs
https://www.quantconnect.com/datasets/quantconnect-us-equity-security-master
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions

$ lean data download --dataset "US Equity Security Master"

Alternatively, instead of directly calling the lean data download command, you can place a Python script in the

data directory of your organization workspace and run it to update your data files. The following example script

updates all of the new data that's missing from your local copy:

The preceding script checks the date of the most recent SPY data you have. If there is new data available for SPY,

it downloads the new data files for all of the ETFs. You may need to adjust this script to fit your needs.

Size and Format

The US ETF Constituents dataset is 50 GB in size. We structure the data files so there is one file per ETF per day.

Price

The following table shows the price of an annual subscription to the US Equity Security Master for each

organization tier:

Tier Price ($/Year)

Quant Researcher 600

Team 900

Trading Firm 1,200

Institution 1,800

All of the historical US ETF Constituents data costs $3,960. An annual subscription to daily updates costs

$1,200/year.

Datasets > Downloading Data > Download in Bulk > US Futures

Download in Bulk

US Futures

Introduction

Download the US Futures dataset in bulk to get the full dataset without any selection bias. The bulk dataset

packages contain trade, quote, and open interest data for every ticker and trading day.

Download History

To unlock local access to the US Futures dataset, open the Pricing page of your organization and subscribe to at

least one of the following data packages:

US Futures Daily History by AlgoSeek

US Futures Hour History by AlgoSeek

US Futures Minute History by AlgoSeek

US Futures Second History by AlgoSeek

US Futures Tick History by AlgoSeek

You need billing permissions to change the organization's subscriptions.

After you subscribe to local access, follow these steps to download the data:

1. Log in to the Algorithm Lab.

2. On the CLI tab of the dataset listing , use the CLI Command Generator to generate your download

command and then copy it.

The Ticker , Start Date , and End Date fields are irrelevant for bulk downloads.

3. Open a terminal in your organization workspace and then run the command from the CLI Command

Generator .

Download Daily Updates

After you bulk download the US Futures dataset, new daily updates are available at 7 AM Eastern Time (ET) after

each trading day. To unlock local access to the data updates, open the Pricing page of your organization and

subscribe to at least one of the following data packages:

US Futures Daily Updates by AlgoSeek

US Futures Hour Updates by AlgoSeek

US Futures Minute Updates by AlgoSeek

US Futures Second Updates by AlgoSeek

US Futures Tick Updates by AlgoSeek

https://www.quantconnect.com/datasets/algoseek-us-futures
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/datasets/algoseek-us-futures/cli
https://www.quantconnect.com/pricing

You need billing permissions to change the organization's subscriptions.

After you subscribe to dataset updates, to update your local copy of the US Futures dataset, use the CLI

Command Generator to generate your download command and then run it in a terminal in your organization

workspace . Alternatively, instead of directly calling the lean data download command, you can place a Python

script in the data directory of your organization workspace and run it to update your data files. The following

example script updates all data resolutions and markets:

The preceding script checks the date of the most recent ZC data you have from the CBOT market for tick, second,

and minute resolutions. If there is new data available for any of these resolutions, it downloads the new data files

and overwrites your hourly and daily files. If you don't intend to download all resolutions and markets, adjust this

script to your needs.

Size and Format

The following table shows the size and format of the US Futures dataset for each resolution:

Resolution Size Format

Daily 500 MB 1 file per ticker

Hour 1 GB 1 file per ticker

Minute 24 GB 1 file per ticker per day

Second 300 GB 1 file per ticker per day

Tick 1.5 TB 1 file per ticker per day

Price

The following table shows the price of the US Futures dataset subscriptions:

Resolution Price of Historical Data ($) Price of Daily Updates
($/Year)

Daily Contact us 1,920

Hour Contact us 2,640

Minute Contact us 2,880

Second Contact us 2,880

Tick Contact us 2,880

https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/datasets/algoseek-us-equities/cli
https://www.quantconnect.com/contact
https://www.quantconnect.com/contact
https://www.quantconnect.com/contact
https://www.quantconnect.com/contact
https://www.quantconnect.com/contact

Datasets > Downloading Data > Download in Bulk > US Index Options

Download in Bulk

US Index Options

Introduction

Download the US Index Options dataset in bulk to get the full dataset without any selection bias. The bulk dataset

packages contain trade and quote data for every ticker and trading day.

Download History

To unlock local access to the US Index Options dataset, open the Pricing page of your organization and subscribe

to at least one of the following data packages:

US Index Options Daily Updates by AlgoSeek

US Index Options Hour History by AlgoSeek

US Index Options Minute History by AlgoSeek

You need billing permissions to change the organization's subscriptions.

After you subscribe to local access, follow these steps to download the data:

1. Log in to the Algorithm Lab.

2. On the CLI tab of the dataset listing , use the CLI Command Generator to generate your download

command and then copy it.

The Ticker , Start Date , and End Date fields are irrelevant for bulk downloads.

3. Open a terminal in your organization workspace and then run the command from the CLI Command

Generator .

Download Daily Updates

After you bulk download the US Index Options dataset, new daily updates are available at 8 PM Coordinated

Universal Time (UTC) two days after each trading day. For example, the minute resolution data for Monday is

available on Wednesday at 8 PM UTC. To unlock local access to the data updates, open the Pricing page of your

organization and subscribe to at least one of the following data packages:

US Index Options Daily Updates by AlgoSeek

US Index Options Minute Updates by AlgoSeek

US Index Options Hour Updates by AlgoSeek

You need billing permissions to change the organization's subscriptions.

After you subscribe to dataset updates, to update your local copy of the US Index Options dataset, use the CLI

Command Generator to generate your download command and then run it in a terminal in your organization

https://www.quantconnect.com/datasets/algoseek-us-index-options
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/datasets/algoseek-us-index-options/cli
https://www.quantconnect.com/pricing
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/datasets/algoseek-us-index-options/cli

workspace . Alternatively, instead of directly calling the lean data download command, you can place a Python

script in the data directory of your organization workspace and run it to update your data files. The following

example script updates all data resolutions:

The preceding script checks the date of the most recent minute resolution data you have for SPX. If there is new

minute data available, it downloads the new data files and overwrites your hourly and daily files. If you don't intend

to download all resolutions, adjust this script to your needs.

Size and Format

The following table shows the size of the US Index Options dataset for each resolution:

Resolution Size Format

Daily 5 GB 1 file per ticker

Hour 40 GB 1 file per ticker

Minute 500 GB 1 file per ticker per day

Price

The following table shows the price of the US Index Options dataset subscriptions:

Resolution Price of Historical Data ($) Price of Daily Updates
($/Year)

Daily Contact us 1,920

Hour Contact us 2,640

Minute Contact us 2,880

https://www.quantconnect.com/contact
https://www.quantconnect.com/contact
https://www.quantconnect.com/contact

Datasets > Generating Data

Datasets

Generating Data

Introduction

Running the LEAN engine locally with the CLI requires you to have your own local data, but real market data can be

expensive and governed by difficult redistribution licenses. Instead of using actual market data, you can also opt to

use realistic fake data by using LEAN's random data generator. This generator uses a Brownian motion model to

generate realistic market data. It is capable of generating data for most of LEAN's supported security types and

resolutions, which makes it a good solution to design and test algorithms without the need to buy real financial

data.

Supported Security Types

The random data generator supports the following security types and resolutions:

Security Type Supported Resolutions

Equity Tick, Second, Minute, Hour, and Daily

Forex Tick, Second, Minute, Hour, and Daily

CFD Tick, Second, Minute, Hour, and Daily

Future Tick, Second, Minute, Hour, and Daily

Crypto Tick, Second, Minute, Hour, and Daily

Option Minute

Supported Densities

The random data generator supports the following densities:

Density Description

Dense At least one data point per resolution step.

Sparse At least one data point per 5 resolution steps.

VerySparse At least one data point per 50 resolution steps.

Run the Generator

Follow these steps to generate random data:

1. Open a terminal in one of your organization workspaces .

2. Run lean data generate --start 20150101 --symbol-count 10 to generate dense minute Equity data

since 01-01-2015 for 10 random symbols.

$ lean data generate --start 20150101 --symbol-count 10

Begin data generation of 10 randomly generated Equity assets...

You can also specify an end date using --end <yyyyMMdd> , generate data for a different security type using

--security-type <type> , for a different resolution using --resolution <resolution> , or with a different

density using --data-density <density> .

For a full list of options, run lean data generate --help or see Options .

The following image shows an example time series of simulated data:

Datasets > Custom Data

Datasets

Custom Data

Introduction

Running the LEAN engine locally with the CLI requires you to have your own local data. Besides market data, LEAN

also supports importing custom data into your algorithm. This page explains how to access data from local files in

your algorithm when running the LEAN engine locally.

Import Local Files

When running LEAN locally using the CLI, you can already use all of the features explained in the Importing Data

page of the LEAN documentation. However, sometimes you may not want to upload your file to a cloud storage

service like Dropbox. You can follow these steps to convert your custom data class (the class extending BaseData

) to retrieve data from a local file instead of a remote one:

1. Copy the data file that you want to use to the data directory in your organization workspace .

2. Open the source file containing your custom data class in an editor.

3. Update your GetSource method to load data from the local file in your data directory. Make sure you only

use forward slashes. Backward slashes as path separators don't work. For the Weather example in the LEAN

documentation, that is done like this:

https://www.quantconnect.com/docs/v2/writing-algorithms/importing-data/key-concepts
https://www.quantconnect.com/docs/v1/algorithm-reference/importing-custom-data#Importing-Custom-Data-Creating-and-Reading-Custom-Data

4. Save the source file.

using System;

using System.IO;

using QuantConnect.Data;

namespace QuantConnect.Algorithm.CSharp

{

 public class Weather : BaseData

 {

 public override SubscriptionDataSource GetSource(SubscriptionDataConfig config, DateTime

date, bool isLive)

 {

 // Old:

 // var source = "https://www.dropbox.com/s/8v6z949n25hyk9o/custom_weather_data.csv?

dl=1";

 // return new SubscriptionDataSource(source,

SubscriptionTransportMedium.RemoteFile);

 // New:

 // Replace custom_weather_data.csv with the path to your data file in the data

directory

 var source = Path.Combine(Globals.DataFolder, "custom_weather_data.csv");

 return new SubscriptionDataSource(source, SubscriptionTransportMedium.LocalFile);

 }

 }

}

C#

Projects

Projects

Projects > Project Management

Projects

Project Management

Introduction

Creating new projects is an important feature of the Lean CLI. The CLI can automatically scaffold basic Python and

C# projects, creating basic algorithm files, research notebooks, and the required editor configuration. Projects

scaffolded by the CLI are similar to the ones created on QuantConnect, making it easy to switch between your

local environment and the cloud.

Create Projects

Follow these steps to create a new Python project:

1. Open a terminal in one of your organization workspaces .

2. Run lean project-create --language python "<projectName>" to create a new project named

<projectName> .

$ lean project-create --language python "My Python Project"

Successfully created Python project 'My Python Project'

This command creates the . / <pro jectName> directory and creates a simple main.py file, a Python-based

research notebook, a project configuration file , and editor configuration for PyCharm and VS Code.

Follow these steps to create a new C# project:

1. Open a terminal in one of your organization workspaces .

2. Run lean project-create --language csharp " <projectName> " to create a new C# project named

<projectName> .

$ lean project-create --language csharp "My CSharp Project"

Successfully created C# project 'My CSharp Project'

This command creates the . / <pro jectName> directory and creates a simple Main.cs file, a C#-based

research notebook, a project configuration file , and editor configuration for Visual Studio, Rider, and VS

Code.

The project name must only contain - , _ , letters, numbers, and spaces. The project name can't start with a space

or be any of the following reserved names: CON, PRN, AUX, NUL, COM1, COM2, COM3, COM4, COM5, COM6,

COM7, COM8, COM9, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, or LPT9.

You can provide a project name containing forward slashes to create a project in a sub-directory. In case any of

the given sub-directories does not exist yet, the CLI creates them for you.

Set the Default Language

It is also possible to set the default language to use when running lean project-create :

Run lean config set default-language python to set the default language to Python, after which you no

longer need to provide the --language python option to create Python projects.

$ lean config set default-language python

$ lean project-create "My Python Project"

Successfully created Python project 'My Python Project'

Run lean config set default-language csharp to set the default language to C#, after which you no

longer need to provide the --language csharp option to create C# projects.

$ lean config set default-language csharp

$ lean project-create "My CSharp Project"

Successfully created C# project 'My CSharp Project'

Rename Projects

Follow these steps to rename a project that you have on your local machine and in QuantConnect Cloud:

1. Open the organization workspaces on your local machine where you store the project.

2. Rename the project file.

The project name must only contain - , _ , letters, numbers, and spaces. The project name can't start with a

space or be any of the following reserved names: CON, PRN, AUX, NUL, COM1, COM2, COM3, COM4, COM5,

COM6, COM7, COM8, COM9, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, or LPT9.

3. Log in to the CLI if you haven't done so already.

4. Open a terminal in the same organization workspace.

5. Run lean cloud push --project "<projectName>" .

$ lean cloud push --project "My Renamed Project"
[1/1] Pushing "My Renamed Project"
Renaming project in the cloud from 'My Project' to 'My Renamed Project'
Successfully updated name and files and libraries for 'My Project'

Alternatively, you can rename the project in QuantConnect Cloud and then pull the project to your local machine.

Delete Projects

Follow these steps to delete a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that stores the project.

3. Run lean project-delete "<projectName>" .

$ lean project-delete "My Project"
Successfully deleted project 'My Project'

This command deletes the project on your local machine and in QuantConnect Cloud.

If you are a collaborator on the project, this command doesn't delete the project for the other collaborators, but it

removes you as a collaborator.

https://www.quantconnect.com/docs/v2//cloud-platform/projects/getting-started#07-Rename-Projects

Projects > Cloud Synchronization

Projects

Cloud Synchronization

Introduction

Cloud synchronization allows you to synchronize your projects in QuantConnect Cloud with your local drive using

the Lean CLI. Cloud synchronization makes it possible to use your local development environment when writing

your algorithms while using QuantConnect's infrastructure and data library when executing them.

Pulling Cloud Projects

Follow these steps to pull all the cloud projects that you store in an organization to your local drive:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace from which you want to pull projects.

3. Run lean cloud pull to pull all your cloud projects to the current directory, creating directories where

necessary.

$ lean cloud pull

[1/3] Pulling 'Creative Red Mule'

Successfully pulled 'Creative Red Mule/main.py'

[2/3] Pulling 'Determined Yellow-Green Duck'

Successfully pulled 'Determined Yellow-Green Duck/main.py'

Successfully pulled 'Determined Yellow-Green Duck/research.ipynb'

[3/3] Pulling 'Halloween Strategy'

Successfully pulled 'Halloween Strategy/benchmark.py'

Successfully pulled 'Halloween Strategy/main.py'

Successfully pulled 'Halloween Strategy/research.ipynb'

4. Update your projects to include the required imports to run the projects locally and to make autocomplete

work.

Follow these steps to pull a single cloud project to your local drive:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that stores the project.

3. Run lean cloud pull --project "<projectName>" to pull the project named "<projectName>" to . /

<pro jectName> .

https://www.quantconnect.com/docs/v2//cloud-platform/organizations/getting-started

$ lean cloud pull --project "My Project"

[1/1] Pulling 'My Project'

Successfully pulled 'My Project/main.py'

Successfully pulled 'My Project/research.ipynb'

4. Update your project to include the required imports to run the project locally and to make autocomplete

work.

If you have a local copy of the project when you pull the project from the cloud, the configuration values of the

cloud project overwrite the configuration values of your local copy .

If one of your team members creates a project library , adds it to a project, and then adds you as a collaborator to

the project, you can pull the project but not the library. To pull the library as well, your team member must add you

as a collaborator on the library project.

Pushing Local Projects

Follow these steps to push all the local projects in an organization workspace to the cloud:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace.

3. Run lean cloud push to push all your local projects in the organization to the cloud, creating new cloud

projects where necessary.

$ lean cloud push

[1/3] Pushing 'Alpha'

Successfully created cloud project 'Alpha'

Successfully created cloud file 'Alpha/benchmark.py'

Successfully updated cloud file 'Alpha/main.py'

Successfully updated cloud file 'Alpha/research.ipynb'

[2/3] Pushing 'Buy and Hold BNBUSDT'

Successfully created cloud project 'Buy and Hold BNBUSDT'

Successfully updated cloud file 'Buy and Hold BNBUSDT/main.py'

Successfully updated cloud file 'Buy and Hold BNBUSDT/research.ipynb'

[3/3] Pushing 'Creative Red Mule'

Successfully updated cloud file 'Creative Red Mule/main.py'

Follow these steps to push a single local project to the cloud:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project you want to push.

3. Run lean cloud push --project "<projectName>" to push the project stored in . / <pro jectName> to the

cloud.

$ lean cloud push --project "My Project"

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

If you create a project on your local machine and push it to the cloud, the lean cloud push command creates the

cloud version of the project in the organization that's linked to your current organization workspace.

If you have a cloud copy of the project when you push the project from your local machine, the configuration

values of your local project overwrite the configuration values of your cloud copy.

Detecting Environment

Sometimes it might be useful to run certain logic only when your algorithm is running locally, or when it is running

in the cloud. You can use the following code snippet to check where your algorithm is running (replace Computer

with your computer's hostname):

using System;

if (Environment.MachineName == "Computer")
{
 // Running locally
}
else
{
 // Running in the cloud
}

C#

Projects > Structure

Projects

Structure

Introduction

When you run the lean project-create or lean cloud pull commands, the CLI creates the basic files and

folders most editors need to open your source code, provide autocomplete, and enable local debugging. This page

documents exactly which files are created when you create a new local project with lean project-create or

lean cloud pull .

Project Structure

New projects have the following structure:

.
├── .vscode/
│ └── launch.json
├── config.json
├── <projectName>.csproj
├── Main.cs (only generated by lean project-create)
└── research.ipynb (only generated by lean project-create)

These files contain the following content:

File Content

.vscode / launch. json This file contains debug configuration to make
debugging with VS Code easier.

config. json This file contains the project configuration of the
created project.

<projectName>.csproj

This file contains project configuration which Visual
Studio, Rider, and VS Code can read to provide
accurate C# autocomplete.

Main.cs This file contains a basic C# algorithm to help you
get started.

research. ipynb This file contains a C#-based research notebook
which can be opened in a research environment .

Projects > Workflows

Projects

Workflows

Introduction

The Lean CLI supports multiple workflows, ranging from running everything locally to just using your local

development environment but keeping all execution in the cloud. This page contains several examples of common

workflows, but you're free to mix local and cloud features in any way you'd like.

Cloud-focused Workflow

A cloud-focused workflow (local development, cloud execution) with the CLI might look like this:

1. Open a terminal in one of your organization workspaces .

2. Run lean cloud pull to pull remotely changed files.

3. Start programming locally and run backtests in the cloud with

lean cloud backtest "<projectName>" --open --push whenever there is something to backtest. The

--open flag means that the backtest results are opened in the browser when done, while the --push flag

means that local changes are pushed to the cloud before running the backtest.

4. Whenever you want to create a new project, run lean project-create "<projectName>" --push and

lean cloud push --project "<projectName>" to create a new project containing some basic code and to

push it to the cloud.

5. When you're finished for the moment, run lean cloud push to push all locally changed files to the cloud.

The advantage of this workflow is that you can use all the tools in your local development environment to write

your code (i.e. autocomplete, auto-formatting, etc.) while using QuantConnect's computing infrastructure and data

when running your code. This advantage means you don't need to have a powerful computer and you don't need to

have your own data, since that's all provided by us. The downside to this workflow is that you need a constant

internet connection because without an internet connection the CLI can't communicate with the cloud.

Locally-focused Workflow

A locally-focused workflow (local development, local execution) with the CLI might look like this:

1. Open a terminal in one of your organization workspaces .

2. Run lean project-create "<projectName>" to create a new project with some basic code to get you

started.

3. Work on your strategy in . / <pro jectName> .

4. Run lean research "<projectName>" to start a Jupyter Lab session to perform research.

5. Run lean backtest "<projectName>" to run a backtest whenever there's something to test. This command

runs your strategy in a Docker container containing the same packages as the ones used on

QuantConnect.com, but with your own data.

6. Whenever you want to debug a strategy in your local development environment, see Debugging .

With this workflow, you are not limited to the computing power that's available in QuantConnect's infrastructure,

because everything runs locally. On the other hand, this also means you must have all your required data available

locally. To download some of QuantConnect's data for local usage, see Downloading Data .

Mixed Workflow

A mixed workflow (local development, local debugging, and cloud execution) with the CLI might look like this:

1. Open a terminal in one of your organization workspaces .

2. Run lean cloud pull to pull remotely changed files.

3. Start programming on your strategies.

4. Whenever you want to debug a strategy in your local development environment, see Debugging .

5. Whenever you want to backtest a strategy, run lean cloud backtest "<projectName>" --open --push to

push local changes to the cloud, run a backtest in the cloud, and open the results in the browser once

finished.

6. When you're finished for the moment, run lean cloud push to push all locally changed files in the

organization workspace to the cloud.

The advantage of this workflow is that you can use your local development environment and its debugging tools

when writing your algorithms while using QuantConnect's infrastructure and data in backtesting and live trading.

Although this does require you to have a local copy of the data that your strategy needs, it doesn't require you to

maintain your own infrastructure and data feeds in live trading. To download some of QuantConnect's data for

local usage, see Downloading Data .

Projects > Configuration

Projects

Configuration

Introduction

Project-specific configuration is stored in the project directory in the config. json file. This file is automatically

generated when you run lean project-create or lean cloud pull . Just like the global and Lean configuration

files, the project configuration is stored as JSON but without support for comments.

Properties

The following properties are stored in the config. json file:

Property Description

description
This property contains the project's description,
which is displayed in backtest reports. It must always
be a string.

parameters

This property is a key/value object containing the
project's parameters. Both the keys and the values
must be strings. To load parameter values into your
algorithm, see Get Parameters . The parameter values
are sent to your algorithm when you deploy the
algorithm, so it's not possible to change the
parameter values while the algorithm runs.

cloud-id

This property is set automatically after the project
has been pulled from or pushed to the cloud. It
contains the id of the project's counterpart in the
cloud and must not be modified or removed
manually.

local-id

This property is set automatically when the CLI needs
to uniquely identify the current project. It contains a
unique id that is specific to the project and must not
be modified or removed manually.

libraries

This property is set automatically when you add a
project library to the project. It contains a list of
dictionaries that hold the name and path of each
library.

organization-id

This property is set automatically after the project
has been pulled from or pushed to the cloud. It
contains the Id of the organization that the project is
saved to in the cloud.

algorithm-language
This property contains the language of the project. It
is automatically set when the project is created and
must not be modified or removed manually.

docker

This property is a key/value object containing the
docker instance's "environment" and "ports"
command line run arguments. For example, to expose
host port 999 to internal port 6006, write
"docker": { "ports": { "999": "6006"} } .

lean-engine This property is the version number of the LEAN
Engine version that the project uses.

python-venv This property is an integer that represents the Python
environment that the project uses.

https://www.quantconnect.com/docs/v2/writing-algorithms/parameters#03-Get-Parameters
https://www.quantconnect.com/docs/v2/cloud-platform/projects/shared-libraries
https://www.quantconnect.com/docs/v2/cloud-platform/projects/lean-engine-versions
https://www.quantconnect.com/docs/v2/cloud-platform/projects/package-environments

Projects > Autocomplete

Projects

Autocomplete

Introduction

Local autocomplete is an important feature of the Lean CLI, making you more productive in your local development

environment. The CLI automatically generates the necessary editor configuration when creating new projects to

make local autocomplete almost seamless for most popular editors. However, not everything can be configured

automatically. This page explains how to make local autocomplete work for Python and C# with all editors

supported by the CLI.

Python and PyCharm

Follow these steps to set up local autocomplete for Python in PyCharm:

1. Open a project directory, generated by the CLI, with PyCharm and wait for the project to load.

2. Wait for PyCharm to index all packages and autocomplete starts working.

3. Update your project to include the required imports .

Python and VS Code

Follow these steps to set up local autocomplete for Python in VS Code:

1. Install the Python and Pylance extensions in VS Code.

2. Open a project directory, generated by the CLI, with VS Code and Python autocomplete works automatically.

3. Update your project to include the required imports .

C# and Visual Studio

Follow these steps to set up local autocomplete for C# in Visual Studio:

1. Make sure the .NET 6.0 Runtime is installed in the Visual Studio Installer by clicking Modify in the installed

Visual Studio version and opening the Individual components tab on the window that shows up.

2. Click Open a pro ject or so lution on Visual Studio's home screen and open the .cspro j file in one of the

project directories generated by the CLI. Visual Studio automatically downloads the required dependencies

and indexes them to provide autocomplete.

3. Update your project to include the required imports .

C# and Rider

Follow these steps to set up local autocomplete for C# in Rider:

1. Make sure the .NET 6.0 Runtime is installed.

2. Open the .cspro j file in a project directory, generated by the CLI, with Rider and wait for the project to load.

Rider automatically downloads the required dependencies and indexes them to provide autocomplete.

https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
https://dotnet.microsoft.com/download/dotnet/6.0

3. Update your project to include the required imports .

C# and VS Code

Follow these steps to set up local autocomplete for C# in VS Code:

1. Make sure the .NET 6.0 Runtime is installed.

2. Install the C# extension in VS Code.

3. Open a project directory, generated by the CLI, with VS Code and wait for the project to load.

4. Click Restore if a pop-up shows in the bottom-right telling you there are dependencies to restore.

5. Update your project to include the required imports .

Imports

Some imports are automatically added to your files when you run them in the cloud. This does not happen locally,

so in your local environment, you need to manually import all the classes that you use. You can copy the following

code snippet to the top of every file to have the same imports as the ones used in the cloud:

Staying Up-to-date

Follow these steps to update Python autocomplete to be aware of the latest changes to LEAN:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Drawing;
using System.Globalization;
using System.Linq;
using QuantConnect;
using QuantConnect.Parameters;
using QuantConnect.Benchmarks;
using QuantConnect.Brokerages;
using QuantConnect.Util;
using QuantConnect.Interfaces;
using QuantConnect.Algorithm;
using QuantConnect.Algorithm.Framework;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Execution;
using QuantConnect.Algorithm.Framework.Risk;
using QuantConnect.Indicators;
using QuantConnect.Data;
using QuantConnect.Data.Consolidators;
using QuantConnect.Data.Custom;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Notifications;
using QuantConnect.Orders;
using QuantConnect.Orders.Fees;
using QuantConnect.Orders.Fills;
using QuantConnect.Orders.Slippage;
using QuantConnect.Scheduling;
using QuantConnect.Securities;
using QuantConnect.Securities.Equity;
using QuantConnect.Securities.Forex;
using QuantConnect.Securities.Interfaces;
using QuantConnect.Python;
using QuantConnect.Storage;

C#

https://dotnet.microsoft.com/download/dotnet/6.0
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp

1. Open a terminal.

2. Run pip install --upgrade quantconnect-stubs to update the Python autocomplete.

$ pip install --upgrade quantconnect-stubs

Collecting quantconnect-stubs

Installing collected packages: quantconnect-stubs

Successfully installed quantconnect-stubs-11657

Follow these steps to update C# autocomplete to be aware of the latest changes to LEAN:

1. Open a terminal in one of your organization workspaces .

2. Run dotnet add "<projectName>" package QuantConnect.Lean to update the C# autocomplete for the

project in . / <pro jectName> .

$ dotnet add "My Project" package QuantConnect.Lean

info : Adding PackageReference for package 'QuantConnect.Lean' into project '/home/john/My

Project/My Project.csproj'.

info : PackageReference for package 'QuantConnect.Lean' version '2.5.11800' updated in file

'/home/john/My Project/My Project.csproj'.

Additionally, you can also update C# autocomplete by updating the version of the QuantConnect.Lean

package reference in the C# project file (the file ending with .cspro j). This can be done manually or through

your editor's built-in NuGet tooling if your editor has such a feature.

Projects > Libraries

Projects

Libraries

Projects > Libraries > Third-Party Libraries

Libraries

Third-Party Libraries

Introduction

The Lean CLI supports using dozens of open source packages in your algorithms. These packages are reviewed by

our security team, and when approved, can be used in backtesting, live trading, and research. To use these

packages in your algorithm, you will need to add the relevant using statement at the top of your code file.

By default, only the libraries in the official LEAN Docker images can be referenced in your algorithms. However, the

CLI also supports using custom libraries. This makes it possible to use a library that is not available in the official

LEAN Docker images or to use a newer version of an existing library.

Supported Libraries for AMD64 Systems

The CLI supports many of the most popular C# and Python open-source libraries. On AMD64-based systems, the

CLI supports the same C# and Python libraries as are supported on QuantConnect. If you're unsure about the

architecture of your system, it's most likely AMD64. The following libraries are available on AMD64-based systems:

Supported Libraries for ARM64 Systems

On ARM64-based systems, the list of available libraries is a bit shorter because ARM64 is not as well supported as

AMD64. The following libraries are available on ARM64-based systems:

Name Version
Accord 3.6.0
Accord.Fuzzy 3.6.0
Accord.MachineLearning 3.6.0
Accord.Math 3.6.0
Accord.Statistics 3.6.0
CloneExtensions 1.3.0
Common.Logging 3.4.1
Common.Logging.Core 3.4.1
CsvHelper 19.0.0
Deedle 2.1.0
DotNetZip 1.16.0
DynamicInterop 0.9.1
fasterflect 3.0.0
FSharp.Core 4.5.2
MathNet.Numerics 4.15.0
McMaster.Extensions.CommandLineUtils 2.6.0
Microsoft.IO.RecyclableMemoryStream 2.3.1
Microsoft.NET.Test.Sdk 16.9.4
Microsoft.TestPlatform.ObjectModel 16.9.4
Moq 4.16.1
NetMQ 4.0.1.6
Newtonsoft.Json 13.0.2
NodaTime 3.0.5
NUnit 3.13.3
NUnit3TestAdapter 4.2.1
protobuf-net 3.1.33
QLNet 1.12.0
QuantConnect.pythonnet 2.0.18
RestSharp 106.12.0
SharpZipLib 1.3.3
System.ComponentModel.Composition 6.0.0

C#

Custom C# Libraries

Follow these steps to add custom libraries to your C# project:

// Name Version
Accord 3.5.0
Accord.Fuzzy 3.5.0
Accord.MachineLearning 3.5.0
Accord.Math 3.5.0
Accord.Math.Core 3.5.0
Accord.Statistics 3.5.0
AsyncIO 0.1.26.0
CloneExtensions 1.3.0
CoinAPI.WebSocket.V1 1.6.0
Common.Logging 3.4.1
Common.Logging.Core 3.4.1
CSharpAPI 1.0.0.0
CsvHelper 19.0.0
DotNetZip 1.13.3.506
DynamicInterop 0.9.0
Fasterflect 3.0.0.0
FSharp.Core 4.5.0.0
ICSharpCode.SharpZipLib 1.2.0
IQFeed.CSharpApiClient 2.5.1
LaunchDarkly.EventSource 3.3.2
MathNet.Numerics 4.15.0
McMaster.Extensions.CommandLineUtils 2.6.0
Microsoft.IO.RecyclableMemoryStream 1.3.5.0
Microsoft.Win32.SystemEvents 3.1.0
NetMQ 4.0.0.1
Newtonsoft.Json 12.0.3
NodaTime 3.0.5
protobuf-net 3.0.29
protobuf-net.Core 3.0.29
Python.Runtime 2.0.1.0
QLNet 1.11.3
QuantConnect.Algorithm 2.5.0.0
QuantConnect.Algorithm.CSharp 2.5.0.0
QuantConnect.Algorithm.Framework 2.5.0.0
QuantConnect.AlgorithmFactory 2.5.0.0
QuantConnect.Api 2.5.0.0
QuantConnect.Brokerages 2.5.0.0
QuantConnect.Common 2.5.0.0
QuantConnect.Compression 2.5.0.0
QuantConnect.Configuration 2.5.0.0
QuantConnect.IBAutomater.exe 2.0.17
QuantConnect.Indicators 2.5.0.0
QuantConnect.Lean.Engine 2.5.0.0
QuantConnect.Lean.Launcher.exe 2.5.0.0
QuantConnect.Logging 2.5.0.0
QuantConnect.Messaging 2.5.0.0
QuantConnect.Queues 2.5.0.0
QuantConnect.Research 2.5.0.0
QuantConnect.ToolBox.exe 2.5.0.0
RDotNet 1.9.0
RestSharp 106.6.10
SuperSocket.ClientEngine 0.10.0.0
System.ComponentModel.Composition 5.0.0
System.Configuration.ConfigurationManager 3.1.0
System.Drawing.Common 4.6.26919.02
System.Private.ServiceModel 3.1.0
System.Security.Cryptography.Pkcs 4.6.26515.06
System.Security.Cryptography.ProtectedData 3.1.0
System.Security.Cryptography.Xml 4.6.26515.06
System.Security.Permissions 3.1.0
System.ServiceModel 3.1.0
System.ServiceModel.Primitives 3.1.0
System.Windows.Extensions 3.1.0
Utf8Json 1.3.7.0
WebSocket4Net 0.15.2.11

C#

1. Find the name of the package that you want to add on NuGet .

2. Open a terminal in the organization workspace that stores the project.

3. Run lean library add "<projectName>" <packageName> to add the <packageName> NuGet package to the

project in . / <pro jectName> .

$ lean library add "My Project" Microsoft.ML

Retrieving latest available version from NuGet

Adding Microsoft.ML 1.5.5 to 'My Project/My Project.csproj'

Restoring packages in 'My Project' to provide local autocomplete

This command installs the latest version of the Microsoft.ML package. If you want to use a different version

you can use the --version <value> option. Additionally, you can pass the --no-local flag to skip restoring

the packages locally.

Follow these steps to remove custom libraries from your C# project:

1. Open a terminal in the organization workspace that stores the project.

2. Run lean library remove "<projectName>" <packageName> to remove the <packageName> NuGet package

from the project in . / <pro jectName> .

$ lean library remove "My Project" Microsoft.ML

Removing Microsoft.ML from 'My Project/My Project.csproj'

Restoring packages in 'My Project'

You can pass the --no-local flag to skip restoring the packages locally.

Additionally, you can also add or remove custom C# libraries by modifying the C# project file (the file ending with

.cspro j). This can be done manually or through your editor's built-in NuGet tooling if your editor has such a

feature.

Custom Python Libraries

Follow these steps to add custom libraries to your Python project:

1. Find the name of the package that you want to add on PyPI .

2. Open a terminal in the organization workspace that stores the project.

3. Run lean library add "<projectName>" <packageName> to add the <packageName> PyPI package to the

project in . / <pro jectName> .

$ lean library add "My Project" altair

Retrieving latest compatible version from PyPI

Adding altair 4.1.0 to 'My Project/requirements.txt'

Installing altair 4.1.0 in local Python environment to provide local autocomplete

https://www.nuget.org/
https://pypi.org/

This command installs the latest version of the altair package that is compatible with Python 3.8 (which is

what the official LEAN Docker images use). If you want to use a different version you can use the

--version <value> option. Additionally, you can pass the --no-local flag to skip installing the package in

your local Python environment.

4. If you are using VS Code, restart your editor for autocomplete to start working on the new library.

Follow these steps to remove custom libraries from your Python project:

1. Open a terminal in the organization workspace that stores the project.

2. Run lean library remove " <projectName> " <packageName> to remove the <packageName> PyPI package

from the project in . / <pro jectName> .

$ lean library remove "My Project" altair

Removing altair from 'My Project/requirements.txt'

Additionally, you can also add or remove custom Python libraries by modifying the project's requ irements.txt

file. If you choose to do this, make sure that the library versions that you add to this file are compatible with

Python 3.6, because that's what the official LEAN Docker images use.

Projects > Libraries > Project Libraries

Libraries

Project Libraries

Introduction

Project libraries are QuantConnect projects you can merge into your project to avoid duplicating code files. If you

have tools that you use across several projects, create a library.

Create Libraries

To create a library, open a terminal in one of your organization workspaces and then create a project in the

Library directory.

$ lean project-create "Library/MyLibrary"
Restoring packages in 'Library\MyLibrary' to provide local autocomplete
Restored successfully
Successfully created C# project 'Library/MyLibrary'

The lean project-create command creates a new project based on your default programming language . To

create a Python library, add the --language python option.

$ lean project-create "Library/MyLibrary" --language python
Successfully created Python project 'Library/MyLibrary'

Add Libraries

Follow these steps to add a library to your project:

1. Open a terminal in your organization workspace that contains the library.

2. Run lean library add "<projectName>" "Library/<libraryName>" .

$ lean library add "My Project" "Library/MyLibrary"

Adding Lean CLI library D:\qc\lean-cli\Library\MyLibrary to project D:\qc\lean-cli\My Project

Restoring packages in 'My Project' to provide local autocomplete

Restored successfully

3. In your project files, add the library namespace to the top of the page.

By default, the namespace is QuantConnect .

4. In your project files, instantiate the library class and call its methods.

Rename Libraries

Follow these steps to rename a library:

1. Open the organization workspace that contains the library.

2. In the Library directory, rename the library project.

3. If you have a copy of the library in QuantConnect Cloud, open a terminal in your organization workspace and

push the library project.

$ lean cloud push --project "Library/MySpecialLibrary"
[1/1] Pushing 'Library\MySpecialLibrary'
Renaming project in cloud from 'Library/MyLibrary' to 'Library/MySpecialLibrary'
Successfully updated name, files, and libraries for 'Library/MyLibrary'

Remove Libraries

Follow these steps to remove a library from a project, open a terminal in your organization workspace that stores

the project and then run lean library remove "<projectName>" "Library/<libraryName>" .

$ lean library remove "My Project" "Library/MyLibrary"
Removing D:\qc\workspaces\Quant Organization\Library\MyLibrary from 'My Project\My Project.csproj'
Restoring packages in 'My Project'
 Determining projects to restore...
 Restored D:\qc\workspaces\Quant Organization\My Project\My Project.csproj (in 399 ms).

Delete Libraries

To delete a library, open a terminal in your organization workspace that contains the library and then run

lean project-delete "Library/<libraryName>" .

$ lean project-delete "Library/MyLibrary"
Successfully deleted project 'Library/MyLibrary'

using QuantConnect;

var x = new MyLibrary();
var value = x.Add(1, 2);

C#

C#

Projects > Custom Docker Images

Projects

Custom Docker Images

Introduction

By default, the CLI uses the official LEAN Docker images when running the LEAN engine or the research

environment. However, the CLI also supports custom Docker images, making it possible to use your own version of

LEAN. To make this feature easier to use, the CLI is also capable of building Docker images of your own version of

LEAN using a single command.

Using Custom Images

Follow these steps to make the CLI use custom Docker images when running the LEAN engine or the research

environment:

1. Open a terminal.

2. Run lean config set engine-image <value> , where <value> is the full name of your Docker image

containing the LEAN engine (example: quantconnect/lean:latest).

$ lean config set engine-image quantconnect/lean:latest

Successfully updated the value of 'engine-image' to 'quantconnect/lean:latest'

3. Run lean config set research-image <value> , where <value> is the full name of your Docker image

containing the research environment (example: quantconnect/research:latest).

$ lean config set research-image quantconnect/research:latest

Successfully updated the value of 'research-image' to 'quantconnect/research:latest'

Follow these steps to revert the CLI to using the default Docker images when running the LEAN engine or the

research environment:

1. Open a terminal.

2. Run lean config unset engine-image to configure the CLI to use the default engine image instead of a

custom one.

$ lean config unset engine-image

Successfully unset 'engine-image'

3. Run lean config unset research-image to configure the CLI to use the default research image instead of a

custom one.

$ lean config unset research-image

Successfully unset 'research-image'

Building Custom Images

Follow these steps to build custom LEAN Docker images using the CLI:

1. Create a new directory that will hold the LEAN repository.

2. Clone the QuantConnect / Lean GitHub repository using git or download and extract the latest master

branch archive . Save this repository to a directory called Lean in the directory created in step 1.

3. Make your changes to LEAN.

4. Open a terminal in the directory created in step 1.

5. Run lean build to build the foundation image, compile LEAN, build the engine image, and build the research

image.

$ lean build

Building 'lean-cli/foundation:latest' from

'/home/johndoe/QuantConnect/Lean/DockerfileLeanFoundation'

Compiling the C# code in '/home/johndoe/QuantConnect/Lean'

Building 'lean-cli/engine:latest' from '/home/johndoe/QuantConnect/Lean/Dockerfile' using 'lean-

cli/foundation:latest' as base image

Building 'lean-cli/research:latest' from '/home/johndoe/QuantConnect/Lean/DockerfileJupyter'

using 'lean-cli/engine:latest' as base image

Setting default engine image to 'lean-cli/engine:latest'

Setting default research image to 'lean-cli/research:latest'

After running this command the CLI uses your newly built images instead of the official ones.

By default the lean build command tags all custom images with latest . You can specify a different tag using

the --tag <value> option.

If you haven't changed the foundation Dockerfile, the CLI automatically skips building the custom foundation image

and uses the official quantconnect/lean:foundation image instead.

https://github.com/QuantConnect/Lean
https://github.com/QuantConnect/Lean/archive/refs/heads/master.zip

Research

Research

Introduction

Starting local Jupyter Lab environments is a powerful feature of the Lean CLI. Jupyter Lab environments allow you

to work on research notebooks locally. These environments contain the same features as QuantConnect's research

environment but run locally with your own data.

Running Local Research Environment

You can run the Research Environment with your current configuration or an old configuration from QuantConnect.

Current Configuration

The default Research Environment configuration is the latest master branch of LEAN. If you set a different research

image , the image you set is your current configuration. Follow these steps to start a local research environment

with your current configuration:

1. Open a terminal in one of your organization workspaces .

2. Run lean research "<projectName>" to start a local research environment for the project in . /

<pro jectName> on port 8888 .

$ lean research "My Project"

Starting JupyterLab, access in your browser at localhost:8888

You can run the environment on a different port by providing the --port <port> option.

3. In the browser window that opens, open a research notebook.

If your configuration is set to the master branch of LEAN, the CLI automatically checks if your image is behind

master every seven days. If your image falls behind master, the CLI automatically updates your image to the lastest

version. To force an update before the automatic check, add the --update option. To avoid updates, add the

--no-update option.

Old Configurations from QuantConnect

Follow these steps to start a local Research Environment with an old research configuration from QuantConnect:

1. View the available versions on the quantconnect/research Docker Hub tags page .

2. Copy the name of the tag you want to run.

3. Open a terminal in one of your organization workspaces .

4. Run lean research "<projectName>" --image quantconnect/research:<tagFromStep2> to start a local

Research Environment for the project in . / <pro jectName> .

https://www.quantconnect.com/docs/v2/research-environment
https://hub.docker.com/r/quantconnect/research/tags

$ lean research "My Project" --image quantconnect/research:11154

Pulling quantconnect/research:11154...

20210322 17:27:46.658 TRACE:: Engine.Main(): LEAN ALGORITHMIC TRADING ENGINE v2.5.0.0 Mode:

DEBUG (64bit)

20210322 17:27:46.664 TRACE:: Engine.Main(): Started 5:27 PM

Opening Research Notebooks in PyCharm

Follow these steps to open a research notebook in PyCharm:

1. Start a local research environment for the project containing the notebook.

2. Open the project containing the notebook in PyCharm.

3. Open PyCharm's settings and go to Build, Execution, Deployment > Jupyter > Jupyter Servers .

4. Tick the radio box in front of Configured Server and enter http://localhost:8888/?token= as the

Jupyter Server URL.

5. Click Apply in the bottom-right to save the changes and OK to exit settings window.

6. Open the notebook file you want to work in PyCharm's file tree.

Opening Research Notebooks in VS Code

Follow these steps to open a research notebook in VS Code:

1. Start a local research environment for the project containing the notebook.

2. Open the project containing the notebook in VS Code.

3. Open the notebook file you want to work in VS Code's file tree.

4. Open the Kernel Picker button on the top right-hand side of the notebook (or run the Notebook: Select

Notebook Kernel command from the Command Palette by pressing Ctrl+Shift+P).

5. Pick Select Another Kernel in the list of choices that pops up.

6. Select Existing Jupyter Server. . . in the list of choices that pops up.

7. Enter http://localhost:8888/ when asked for the URI of the running Jupyter server.

8. Select Foundation-Py-Defau lt in the list of choices that pops up. This choice gives you access to a kernel

for Python notebooks. For C# notebooks, select Foundation-C#-Defau lt .

Retrieving Local Backtests

Sometimes it might be useful to retrieve the results of a previously ran local backtest in the research environment.

By default, backtests are saved in the <projectName> / backtests / <timestamp> directory, which is also

available in the research environment. You can use the following code snippet to read the contents of a backtest's

result file into a local variable and to print its statistics (make sure to replace the path to the backtest with your

own):

Retrieving Cloud Backtests

If you are logged in using lean login you can also retrieve cloud backtest results in your local research

environment. If you know the name of the project and the backtest you can use the following code snippet to

retrieve the backtest's results and to print its statistics:

using Newtonsoft.Json;
using QuantConnect.Packets;

var backtestPath = "backtests/2021-03-03_23-46-43/CSharpProject.json";

var json = File.ReadAllText(backtestPath);
var data = JsonConvert.DeserializeObject<BacktestResultParameters>(json);

foreach (var item in data.Statistics) {
 Console.WriteLine($"{item.Key}: {item.Value}");
}

var projectName = "Python Template";
var backtestName = "Adaptable Tan Frog";

var project = api.ListProjects().Projects.First(p => p.Name == projectName);
var partialBacktest = api.ListBacktests(project.ProjectId).Backtests.First(b => b.Name ==
backtestName);
var backtest = api.ReadBacktest(project.ProjectId, partialBacktest.BacktestId);

foreach (var item in backtest.Statistics) {
 Console.WriteLine($"{item.Key}: {item.Value}");
}

C#

C#

Backtesting

Backtesting

Backtesting > Deployment

Backtesting

Deployment

Introduction

Backtesting is a way to test your algorithm on historic data. The CLI makes backtesting easier by providing simple

commands to backtest your algorithms locally with your own data, or in the cloud with QuantConnect's data.

Run Local Backtests

By default, local backtests run in the LEAN engine in the quantconnect/lean Docker image. This Docker image

contains all the libraries available on QuantConnect , meaning your algorithm also has access to those libraries. If

the specified project is a C# project, it is first compiled using the same Docker image. See Third-Party Libraries to

learn how to use custom libraries and see Custom Docker Images to learn how to build and use custom Docker

images.

Because algorithms run in a Docker container, localhost does not point to your computer's localhost . Substitute

localhost with host.docker.internal if your algorithm needs to connect to other services running on your

computer. In other words, instead of connecting to http://localhost:<port>/ , connect to

http://host.docker.internal:<port>/ .

You can run local backtests with the regular version of the LEAN engine or a custom version.

Regular LEAN Engine

Follow these steps to run a local backtest with the latest version of LEAN engine:

1. Set up your local data for all the data required by your project.

2. Open a terminal in the organization workspace that contains the project you want to backtest.

3. Run lean backtest "<projectName>" to run a local backtest for the project in . / <pro jectName> .

$ lean backtest "My Project"

20210322 17:27:46.658 TRACE:: Engine.Main(): LEAN ALGORITHMIC TRADING ENGINE v2.5.0.0 Mode:

DEBUG (64bit)

20210322 17:27:46.664 TRACE:: Engine.Main(): Started 5:27 PM

Successfully ran 'My Project' in the 'backtesting' environment and stored the output in 'My

Project/backtests/2021-03-22_18-51-28'

https://hub.docker.com/r/quantconnect/lean

4. View the result in the <projectName> / backtests / <timestamp> directory. Results are stored in JSON

files and can be analyzed in a local research environment . You can save results to a different directory by

providing the --output <path> option in step 3.

$ lean backtest "My Project" --output "My Project/custom-output"

20210322 17:27:46.658 TRACE:: Engine.Main(): LEAN ALGORITHMIC TRADING ENGINE v2.5.0.0 Mode:

DEBUG (64bit)

20210322 17:27:46.664 TRACE:: Engine.Main(): Started 5:27 PM

Successfully ran 'My Project' in the 'backtesting' environment and stored the output in 'My

Project/custom-output'

Custom LEAN Engine

Follow these steps to run a local backtest with a custom version of the LEAN engine:

1. Set up your local data for all the data required by your project.

2. View the available versions on the quantconnect/lean Docker Hub tags page .

3. Copy the name of the tag that you want to run.

4. Run lean backtest "<projectName> --image quantconnect/lean:<tagFromStep2>" to run a local backtest

for the project in . / <pro jectName> .

$ lean backtest "My Project" --image quantconnect/lean:11154

Pulling quantconnect/lean:11154...

20210322 17:27:46.658 TRACE:: Engine.Main(): LEAN ALGORITHMIC TRADING ENGINE v2.5.0.0 Mode:

DEBUG (64bit)

20210322 17:27:46.664 TRACE:: Engine.Main(): Started 5:27 PM

US Equ ity Options Algorithms

Follow these steps to run a local US Equity Options backtest:

1. Download the US Equity Security Master dataset.

$ lean data download --dataset "US Equity Security Master"

2. Download minute resolution trade data from the US Equity dataset.

$ lean data download --dataset "US Equities" --data-type "Trade" --ticker "SPY" --resolution

"Minute" --start "20210101" --end "20210720"

3. Download minute resolution trade and quote data from the US Equity Options dataset.

https://hub.docker.com/r/quantconnect/lean/tags
https://www.quantconnect.com/datasets/quantconnect-us-equity-security-master/cli
https://www.quantconnect.com/datasets/algoseek-us-equities/cli
https://www.quantconnect.com/datasets/algoseek-us-equity-options/cli

$ lean data download --dataset "US Equity Options" --data-type "Trade" --option-style "American"

--ticker "SPY" --resolution "Minute" --start "20210101" --end "20210720"

$ lean data download --dataset "US Equity Options" --data-type "Quote" --option-style "American"

--ticker "SPY" --resolution "Minute" --start "20210101" --end "20210720"

4. Create a new local project .

$ lean project-create --language python "<projectName>"

You can use the following example algorithm:

If you have the latest version of LEAN and you get different overall statistics when you run the algorithm on your

local machine versus in the cloud, delete your local data files and re-download them . Some of your local files may

be outdated and the preceding download commands didn't update them.

The following table shows a breakdown of the data costs for this example algorithm:

Dataset In itial Cost (USD) Update Cost (USD)

US Equity Security Master $1,200/year $1,200/year

US Equity $7.05 $0.05/day

US Equity Options $41.70 $0.30/day

Run Cloud Backtests

 Charts  Statistics  Code Clone Algorithm

https://www.quantconnect.com/docs/v2/cloud-platform/backtesting/results#08-Key-Statistics

Follow these steps to run a cloud backtest:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project you want to backtest.

3. Run lean cloud backtest "<projectName>" --push --open to push . / <pro jectName> to the cloud, run

a cloud backtest for the project, and open the results in the browser.

$ lean cloud backtest "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Started backtest named 'Muscular Black Chinchilla' for project 'My Project'

4. Inspect the result in the browser, which opens automatically after the backtest finishes.

Download Datasets During Backtests

An alternative to manually downloading all required data before running the backtest is to use the

ApiDataProvider in LEAN. This data provider automatically downloads the required data files when your backtest

requests them. After it downloads a data file, it stores it in your local data directory so that in future runs, it'll not

have to download it again.

Follow these steps to use the ApiDataProvider to automatically download data when needed:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project you want to backtest.

3. Run lean backtest "<projectName>" --download-data to run a local backtest for the project in . /

<pro jectName> and update the Lean configuration to use the ApiDataProvider .

$ lean backtest "My Project" --download-data

20210322 17:27:46.658 TRACE:: Engine.Main(): LEAN ALGORITHMIC TRADING ENGINE v2.5.0.0 Mode:

DEBUG (64bit)

20210322 17:27:46.664 TRACE:: Engine.Main(): Started 5:27 PM

Successfully ran 'My Project' in the 'backtesting' environment and stored the output in 'My

Project/backtests/2021-03-22_18-51-28'

Setting the --download-data flag updates your Lean configuration. This means that you only need to use the

flag once, all future backtests will automatically use the ApiDataProvider .

Follow these steps to revert the Lean configuration changes so that it uses only local data again:

1. Open a terminal in your organization workspace .

2. Run lean backtest "<projectName>" --data-provider Local to run a local backtest for the project in . /

<pro jectName> and update the Lean configuration to only use local data.

$ lean backtest "My Project" --data-provider Local

20210322 17:27:46.658 TRACE:: Engine.Main(): LEAN ALGORITHMIC TRADING ENGINE v2.5.0.0 Mode:

DEBUG (64bit)

20210322 17:27:46.664 TRACE:: Engine.Main(): Started 5:27 PM

Successfully ran 'My Project' in the 'backtesting' environment and stored the output in 'My

Project/backtests/2021-03-22_18-51-28'

The --data-provider option updates your Lean configuration. This means that you only need to use the

option once, all future backtests will automatically use the newly configured data provider.

By default the ApiDataProvider does not have a spending limit and will keep downloading files until your

QuantConnect organization runs out of QuantConnect Credit (QCC). You can use the

--data-purchase-limit <value> option to set the QCC spending limit for the backtest.

All the options documented above are also available on the lean research command.

Backtesting > Debugging

Backtesting

Debugging

Introduction

Debugging is an important part of writing any algorithm. The CLI makes it easy to use the builtin debugger of the

most popular editors to debug LEAN algorithms. This page explains how to start local debugging for Python and

C# with all editors supported by the CLI.

Python and PyCharm

Local debugging for Python in PyCharm requires PyCharm's remote debugging functionality, which is only available

in PyCharm Professional. After making sure you are running the Professional edition, follow these steps to start

local debugging for Python in PyCharm:

1. Follow the How to set up local autocomplete for Python in PyCharm tutorial.

2. Open the directory containing the main.py file in a new PyCharm window. It is important that you open the

project directory itself, not your organization workspace .

3. Start debugging using the Debug with Lean CLI run configuration (this configuration is created when you

create a new project with the CLI).

4. Run the lean backtest command with the --debug pycharm option.

$ lean backtest "My Project" --debug pycharm

20210322 18:58:23.355 TRACE:: Engine.Main(): LEAN ALGORITHMIC TRADING ENGINE v2.5.0.0 Mode:

DEBUG (64bit)

20210322 18:58:23.360 TRACE:: Engine.Main(): Started 6:58 PM

5. Terminate the debugger in PyCharm once LEAN has exited.

After finishing Python debugging with PyCharm, you will see a message saying "Connection to Python debugger

failed". You can safely ignore this message.

Python and VS Code

Follow these steps to start local debugging for Python in VS Code:

1. Follow the How to set up local autocomplete for Python in VS Code tutorial.

2. Open the directory containing the main.py file in a new VS Code window. It is important that you open the

project directory itself, not your organization workspace .

3. Run the lean backtest command with the --debug ptvsd option and wait until the CLI tells you to attach to

the debugger.

$ lean backtest "My Project" --debug ptvsd

20210322 18:59:37.352 TRACE:: Engine.Main(): LEAN ALGORITHMIC TRADING ENGINE v2.5.0.0 Mode:

DEBUG (64bit)

20210322 18:59:37.359 TRACE:: Engine.Main(): Started 6:59 PM

20210322 18:59:39.055 TRACE:: DebuggerHelper.Initialize(): waiting for PTVSD debugger to attach

at localhost:5678...

4. In VS Code, open the Run tab and run the configuration called Debug with Lean CLI (this configuration is

created when you create a new project with the CLI).

C# and Visual Studio

Follow these steps to start local debugging for C# in Visual Studio:

1. Follow the How to set up local autocomplete for C# in Visual Studio tutorial.

2. Open the project containing the Main.cs file in a new Visual Studio window. It is important that you open the

project directory itself, not your organization workspace .

3. Run the lean backtest command with the --debug vsdbg option and wait until the CLI tells you to attach to

the debugger.

$ lean backtest "My Project" --debug vsdbg

20210423 13:50:54.634 TRACE:: DebuggerHelper.Initialize(): waiting for debugger to attach...

4. In Visual Studio, open the process selector using Debug > Attach to Process. . . .

5. Select Docker (Linux Container) as the connection type.

6. Select lean_cli_vsdbg as connection target.

7. Double-click on the process named dotnet .

8. Tick the checkbox in front of Managed (.NET Core for Unix) and click OK to start debugging.

After finishing C# debugging with Visual Studio you will see a message saying "The debug adapter exited

unexpectedly.". You can safely ignore this message.

C# and Rider

Follow these steps to start local debugging for C# in Rider:

1. Follow the How to set up local autocomplete for C# in Rider tutorial.

2. Open the project containing the Main.cs file in a new Rider window. It is important that you open the project

directory itself, not your organization workspace .

3. Run the lean backtest command with the --debug rider option and wait until the CLI tells you to attach to

the debugger.

$ lean backtest "My Project" --debug rider

20210423 13:50:54.634 TRACE:: DebuggerHelper.Initialize(): waiting for debugger to attach...

4. In Rider, select Run > Attach To Remote Process. . . .

5. In the pop-up that opens, select the target named root@localhost:2222 .

6. Wait for Rider to connect and select the process named dotnet QuantConnect.Lean.Launcher.dll when a

selector pops up to start debugging. You may have to select Remote debugger tools are not loaded to

the remote host. Click to load first.

C# and VS Code

Follow these steps to start local debugging for C# in VS Code:

1. Follow the How to set up local autocomplete for C# in VS Code tutorial.

2. Open the directory containing the Main.cs file in a new VS Code window. It is important that you open the

project directory itself, not your organization workspace .

3. Run the lean backtest command with the --debug vsdbg option and wait until the CLI tells you to attach to

the debugger.

$ lean backtest "My Project" --debug vsdbg

20210423 13:50:54.634 TRACE:: DebuggerHelper.Initialize(): waiting for debugger to attach...

4. In VS Code, open the Run tab and run the configuration called Debug with Lean CLI (this configuration is

created when you create a new project with the CLI).

After finishing C# debugging with VS Code you will see a message saying "The pipe program 'docker' exited

unexpectedly with code 137.". You can safely ignore this message.

Live Trading

Live Trading

Live Trading > Brokerages

Live Trading

Brokerages

Brokerages supply a connection to the exchanges so that you can automate orders using LEAN. You can use

multiple data feeds in live trading algorithms.

QuantConnect Paper Trading

Equities, Forex, CFD, Crypto, Futures, & Future Options

Binance

Crypto

Bitfinex

Crypto

Coinbase

Crypto

In teractive Brokers

Equities, Options, Forex, Futures, & Future Options

Kraken

Crypto

Oanda

Forex & CFD

Prime Brokerages

Equities, Forex, Crypto, Futures, & Options

Samco

India Equities

TD Ameritrade

Equities

Tradier

Equities & Options

Trading Technologies

Futures

Zerodha

India Equities

See Also

IQ Feed
Polygon

Live Trading > Brokerages > QuantConnect Paper Trading

Brokerages

QuantConnect Paper Trading

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

QuantConnect Paper Trading brokerage.

Deploy Local Algorithms

Follow these steps to start local live trading with the QuantConnect Paper Trading brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

If your algorithm only uses custom data, you can select the "Custom data only" data feed option. This data

feed doesn't require any brokerage credentials, but only works if your algorithm doesn't subscribe to non-

custom data. Your algorithm crashes if it attempts to subscribe to non-custom data with this data feed in

place, including the benchmark security. To avoid data issues with the benchmark security, either set the

benchmark to the subscribed custom data or a constant.

4. Set your initial cash balance.

$ lean live "My Project"

Previous cash balance: [{'currency': 'USD', 'amount': 100000.0}]

Do you want to set a different initial cash balance? [y/N]: y

Setting initial cash balance...

Currency: USD

Amount: 95800

Cash balance: [{'currency': 'USD', 'amount': 95800.0}]

Do you want to add more currency? [y/N]: n

5. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

SetBenchmark(x => 0);

C#

https://www.quantconnect.com/docs/v2//writing-algorithms/importing-data/streaming-data/custom-securities/key-concepts#07-Set-the-Benchmark

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Deploy Cloud Algorithms

Follow these steps to start live trading a project in the cloud with the QuantConnect Paper Trading brokerage:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud live "<projectName>" --push --open to push . / <pro jectName> . to the cloud, start a

live deployment wizard, and open the results in the browser once the deployment starts.

$ lean cloud live "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) Oanda

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Trading Technologies

11) Kraken

12) TD Ameritrade

Enter an option:

4. Enter the number of the QuantConnect Paper Trading brokerage.

5. Select the live node that you want to use. If you only have one idle live trading node, it is selected

automatically and this step is skipped.

$ lean cloud live "My Project" --push --open

Select a node:

1) L-MICRO node 89c90172 - 1 CPU @ 2.4GHz, 0.5GB Ram

2) L-MICRO node 85a52135 - 1 CPU @ 2.4GHz, 0.5GB Ram

Enter an option: 1

6. Configure your notification settings. You can configure any combination of email, webhook, SMS, and

Telegram notifications for order events and emitted insights. To view the number of notification you can send

for free, see the Live Trading Notification Quotas .

$ lean cloud live "My Project" --push --open

Do you want to send notifications on order events? [y/N]: y

Do you want to send notifications on insights? [y/N]: y

Email notifications: None

Webhook notifications: None

SMS notifications: None

Select a notification method:

1) Email

2) Webhook

3) SMS

4) Telegram

Enter an option: 1

Email address: john.doe@example.com

Subject: Algorithm notification

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Do you want to add another notification method? [y/N]: n

7. Enable or disable automatic algorithm restarting. This feature attempts to restart your algorithm if it fails due

to a runtime error, like a brokerage API disconnection.

$ lean cloud live "My Project" --push --open

Do you want to enable automatic algorithm restarting? [Y/n]: y

8. Verify the configured settings and confirm them to start the live deployment in the cloud.

https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#12-Live-Trading-Notification-Quotas

$ lean cloud live "My Project" --push --open

Brokerage: QuantConnect Paper TradingProject id: 1234567

Environment: Live

Server name: L-MICRO node 89c90172

Server type: L-MICRO

Data provider: QuantConnect

LEAN version: 11157

Order event notifications: Yes

Insight notifications: Yes

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Automatic algorithm restarting: Yes

Are you sure you want to start live trading for project 'My Project'? [y/N]: y

9. Inspect the result in the browser, which opens automatically after the deployment starts.

Follow these steps to see the live status of a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud status "<projectName>" to show the status of the cloud project named "<projectName>".

$ lean cloud status "My Project"

Project id: 1234567

Project name: My Project

Project url: https://www.quantconnect.com/project/1234567

Live status: Running

Live id: L-1234567a8901d234e5e678ddd9b0123c

Live url: https://www.quantconnect.com/project/1234567/live

Brokerage: QuantConnect Paper TradingLaunched: 2021-06-09 15:10:12 UTC

Live Trading > Brokerages > Binance

Brokerages

Binance

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

Binance or Binance US brokerage.

To view the implementation of the Binance brokerage integration, see the Lean.Brokerages.Binance repository .

Deploy Local Algorithms

Follow these steps to start local live trading with the Binance or Binance US brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Enter the exchange to use.

https://github.com/QuantConnect/Lean.Brokerages.Binance

$ lean live "My Project"

Binance Exchange (Binance, BinanceUS): BinanceUS

4. Enter the environment to use.

$ lean live "My Project"

Use the testnet? (live, paper): live

5. Enter your API key and API secret.

$ lean live "My Project"

API key: 6d3ef5ca2d2fa52e4ee55624b0471261

API secret: ********************************

To create a new API key, see the API Management page on Binance or Binance US .

6. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

7. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

https://www.binance.com/en/my/settings/api-management
https://www.binance.us/en/usercenter/settings/api-management

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Deploy Cloud Algorithms

Follow these steps to start live trading a project in the cloud with the Binance brokerage:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud live "<projectName>" --push --open to push . / <pro jectName> . to the cloud, start a

live deployment wizard, and open the results in the browser once the deployment starts.

$ lean cloud live "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) Oanda

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Trading Technologies

11) Kraken

12) TD Ameritrade

Enter an option:

4. Enter the number of the Binance brokerage.

5. Enter the exchange to use.

$ lean cloud live "My Project" --push --open

Binance Exchange (Binance, BinanceUS):

6. Enter the environment to use.

$ lean cloud live "My Project" --push --open

Environment (live, paper):

7. Enter your Binance API key and secret.

$ lean cloud live "My Project" --push --open

API key: wL1waeOC7VD447skCFeiat9pP3r1uKXfYomGg43uyCOgzl8xsI9SZsX97AXP4zWv

API secret: **

To create a new API key, see the API Management page on Binance or Binance US .

8. Select the live node that you want to use. If you only have one idle live trading node, it is selected

automatically and this step is skipped.

$ lean cloud live "My Project" --push --open

Select a node:

1) L-MICRO node 89c90172 - 1 CPU @ 2.4GHz, 0.5GB Ram

2) L-MICRO node 85a52135 - 1 CPU @ 2.4GHz, 0.5GB Ram

Enter an option: 1

9. Configure your notification settings. You can configure any combination of email, webhook, SMS, and

Telegram notifications for order events and emitted insights. To view the number of notification you can send

for free, see the Live Trading Notification Quotas .

$ lean cloud live "My Project" --push --open

Do you want to send notifications on order events? [y/N]: y

Do you want to send notifications on insights? [y/N]: y

Email notifications: None

Webhook notifications: None

SMS notifications: None

Select a notification method:

1) Email

2) Webhook

3) SMS

4) Telegram

Enter an option: 1

Email address: john.doe@example.com

Subject: Algorithm notification

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Do you want to add another notification method? [y/N]: n

10. Enable or disable automatic algorithm restarting. This feature attempts to restart your algorithm if it fails due

to a runtime error, like a brokerage API disconnection.

https://www.binance.com/en/my/settings/api-management
https://www.binance.us/en/usercenter/settings/api-management
https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#12-Live-Trading-Notification-Quotas

$ lean cloud live "My Project" --push --open

Do you want to enable automatic algorithm restarting? [Y/n]: y

11. Set your initial cash balance.

$ lean cloud live "My Project" --push --open

Previous cash balance: [{'currency': 'USD', 'amount': 100000.0}]

Do you want to set a different initial cash balance? [y/N]: y

Setting initial cash balance...

Currency: USD

Amount: 95800

Cash balance: [{'currency': 'USD', 'amount': 95800.0}]

Do you want to add more currency? [y/N]: n

12. Set your initial portfolio holdings.

$ lean cloud live "My Project" --push --open

Do you want to set the initial portfolio holdings? [y/N]: y

Do you want to use the last portfolio holdings? [] [y/N]: n

Setting custom initial portfolio holdings...

Symbol: GOOG

Symbol ID: GOOCV VP83T1ZUHROL

Quantity: 10

Average Price: 50

Portfolio Holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL', 'quantity': 10,

'averagePrice': 50.0}]

Do you want to add more holdings? [y/N]: n

13. Verify the configured settings and confirm them to start the live deployment in the cloud.

$ lean cloud live "My Project" --push --open

Brokerage: BinanceProject id: 1234567

Environment: Live

Server name: L-MICRO node 89c90172

Server type: L-MICRO

Data provider: QuantConnect

LEAN version: 11157

Order event notifications: Yes

Insight notifications: Yes

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

 Initial live cash balance: [{'currency': 'USD', 'amount': 95800.0}]

 Initial live portfolio holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL',

'quantity': 10, 'averagePrice': 50.0}]

Automatic algorithm restarting: Yes

Are you sure you want to start live trading for project 'My Project'? [y/N]: y

14. Inspect the result in the browser, which opens automatically after the deployment starts.

Follow these steps to see the live status of a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud status "<projectName>" to show the status of the cloud project named "<projectName>".

$ lean cloud status "My Project"

Project id: 1234567

Project name: My Project

Project url: https://www.quantconnect.com/project/1234567

Live status: Running

Live id: L-1234567a8901d234e5e678ddd9b0123c

Live url: https://www.quantconnect.com/project/1234567/live

Brokerage: BinanceLaunched: 2021-06-09 15:10:12 UTC

Live Trading > Brokerages > Bitfinex

Brokerages

Bitfinex

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

Bitfinex brokerage.

To view the implementation of the Bitfinex brokerage integration, see the Lean.Brokerages.Bitfinex repository .

Deploy Local Algorithms

Follow these steps to start local live trading with the Bitfinex brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Enter your API key Id and secret.

https://github.com/QuantConnect/Lean.Brokerages.Bitfinex

$ lean live "My Project"

API key: bbbMsqbxjytVM9cGvnLpKguz9rZf2T5qACxaVx7E8Mm

API secret: ***

To create new API credentials, see the API Management page on the Bitfinex website.

4. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

5. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Deploy Cloud Algorithms

Follow these steps to start live trading a project in the cloud with the Bitfinex brokerage:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud live "<projectName>" --push --open to push . / <pro jectName> . to the cloud, start a

live deployment wizard, and open the results in the browser once the deployment starts.

https://www.bitfinex.com/api

$ lean cloud live "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) Oanda

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Trading Technologies

11) Kraken

12) TD Ameritrade

Enter an option:

4. Enter the number of the Bitfinex brokerage.

5. Enter your API key Id and secret.

$ lean cloud live "My Project" --push --open

API key: bbbMsqbxjytVM9cGvnLpKguz9rZf2T5qACxaVx7E8Mm

Secret key: ***

To create new API credentials, see the API Management page on the Bitfinex website.

6. Select the live node that you want to use. If you only have one idle live trading node, it is selected

automatically and this step is skipped.

$ lean cloud live "My Project" --push --open

Select a node:

1) L-MICRO node 89c90172 - 1 CPU @ 2.4GHz, 0.5GB Ram

2) L-MICRO node 85a52135 - 1 CPU @ 2.4GHz, 0.5GB Ram

Enter an option: 1

7. Configure your notification settings. You can configure any combination of email, webhook, SMS, and

Telegram notifications for order events and emitted insights. To view the number of notification you can send

for free, see the Live Trading Notification Quotas .

https://www.bitfinex.com/api
https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#12-Live-Trading-Notification-Quotas

$ lean cloud live "My Project" --push --open

Do you want to send notifications on order events? [y/N]: y

Do you want to send notifications on insights? [y/N]: y

Email notifications: None

Webhook notifications: None

SMS notifications: None

Select a notification method:

1) Email

2) Webhook

3) SMS

4) Telegram

Enter an option: 1

Email address: john.doe@example.com

Subject: Algorithm notification

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Do you want to add another notification method? [y/N]: n

8. Enable or disable automatic algorithm restarting. This feature attempts to restart your algorithm if it fails due

to a runtime error, like a brokerage API disconnection.

$ lean cloud live "My Project" --push --open

Do you want to enable automatic algorithm restarting? [Y/n]: y

9. Set your initial cash balance.

$ lean cloud live "My Project" --push --open

Previous cash balance: [{'currency': 'USD', 'amount': 100000.0}]

Do you want to set a different initial cash balance? [y/N]: y

Setting initial cash balance...

Currency: USD

Amount: 95800

Cash balance: [{'currency': 'USD', 'amount': 95800.0}]

Do you want to add more currency? [y/N]: n

10. Set your initial portfolio holdings.

$ lean cloud live "My Project" --push --open

Do you want to set the initial portfolio holdings? [y/N]: y

Do you want to use the last portfolio holdings? [] [y/N]: n

Setting custom initial portfolio holdings...

Symbol: GOOG

Symbol ID: GOOCV VP83T1ZUHROL

Quantity: 10

Average Price: 50

Portfolio Holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL', 'quantity': 10,

'averagePrice': 50.0}]

Do you want to add more holdings? [y/N]: n

11. Verify the configured settings and confirm them to start the live deployment in the cloud.

$ lean cloud live "My Project" --push --open

Brokerage: BitfinexProject id: 1234567

Environment: Live

Server name: L-MICRO node 89c90172

Server type: L-MICRO

Data provider: QuantConnect

LEAN version: 11157

Order event notifications: Yes

Insight notifications: Yes

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

 Initial live cash balance: [{'currency': 'USD', 'amount': 95800.0}]

 Initial live portfolio holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL',

'quantity': 10, 'averagePrice': 50.0}]

Automatic algorithm restarting: Yes

Are you sure you want to start live trading for project 'My Project'? [y/N]: y

12. Inspect the result in the browser, which opens automatically after the deployment starts.

Follow these steps to see the live status of a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud status "<projectName>" to show the status of the cloud project named "<projectName>".

$ lean cloud status "My Project"

Project id: 1234567

Project name: My Project

Project url: https://www.quantconnect.com/project/1234567

Live status: Running

Live id: L-1234567a8901d234e5e678ddd9b0123c

Live url: https://www.quantconnect.com/project/1234567/live

Brokerage: BitfinexLaunched: 2021-06-09 15:10:12 UTC

Live Trading > Brokerages > Coinbase

Brokerages

Coinbase

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

Coinbase brokerage.

To view the implementation of the Coinbase brokerage integration, see the Lean.Brokerages.CoinbasePro

repository .

Deploy Local Algorithms

Follow these steps to start local live trading with the Coinbase brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Enter the environment to use.

https://github.com/QuantConnect/Lean.Brokerages.CoinbasePro

$ lean live "My Project"

Use sandbox? (live, paper): live

4. Enter your API key, API secret, and passphrase.

$ lean live "My Project"

API key: 6d3ef5ca2d2fa52e4ee55624b0471261

API secret:

**

Passphrase: ****************

To create new API credentials, see the API settings page on the Coinbase website.

5. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

6. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

https://pro.coinbase.com/profile/api

Deploy Cloud Algorithms

Follow these steps to start live trading a project in the cloud with the Coinbase brokerage:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud live "<projectName>" --push --open to push . / <pro jectName> . to the cloud, start a

live deployment wizard, and open the results in the browser once the deployment starts.

$ lean cloud live "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) Oanda

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Trading Technologies

11) Kraken

12) TD Ameritrade

Enter an option:

4. Enter the number of the Coinbase brokerage.

5. Enter whether the sandbox should be used.

$ lean cloud live "My Project" --push --open

Use sandbox? (live, paper): live

6. Enter your API key, API secret, and passphrase.

$ lean cloud live "My Project" --push --open

API key: 6d3ef5ca2d2fa52e4ee55624b0471261

API secret:

**

Passphrase: ****************

To create new API credentials, see the API settings page on the Coinbase website.

https://pro.coinbase.com/profile/api

7. Select the live node that you want to use. If you only have one idle live trading node, it is selected

automatically and this step is skipped.

$ lean cloud live "My Project" --push --open

Select a node:

1) L-MICRO node 89c90172 - 1 CPU @ 2.4GHz, 0.5GB Ram

2) L-MICRO node 85a52135 - 1 CPU @ 2.4GHz, 0.5GB Ram

Enter an option: 1

8. Configure your notification settings. You can configure any combination of email, webhook, SMS, and

Telegram notifications for order events and emitted insights. To view the number of notification you can send

for free, see the Live Trading Notification Quotas .

$ lean cloud live "My Project" --push --open

Do you want to send notifications on order events? [y/N]: y

Do you want to send notifications on insights? [y/N]: y

Email notifications: None

Webhook notifications: None

SMS notifications: None

Select a notification method:

1) Email

2) Webhook

3) SMS

4) Telegram

Enter an option: 1

Email address: john.doe@example.com

Subject: Algorithm notification

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Do you want to add another notification method? [y/N]: n

9. Enable or disable automatic algorithm restarting. This feature attempts to restart your algorithm if it fails due

to a runtime error, like a brokerage API disconnection.

$ lean cloud live "My Project" --push --open

Do you want to enable automatic algorithm restarting? [Y/n]: y

10. Set your initial cash balance.

https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#12-Live-Trading-Notification-Quotas

$ lean cloud live "My Project" --push --open

Previous cash balance: [{'currency': 'USD', 'amount': 100000.0}]

Do you want to set a different initial cash balance? [y/N]: y

Setting initial cash balance...

Currency: USD

Amount: 95800

Cash balance: [{'currency': 'USD', 'amount': 95800.0}]

Do you want to add more currency? [y/N]: n

11. Set your initial portfolio holdings.

$ lean cloud live "My Project" --push --open

Do you want to set the initial portfolio holdings? [y/N]: y

Do you want to use the last portfolio holdings? [] [y/N]: n

Setting custom initial portfolio holdings...

Symbol: GOOG

Symbol ID: GOOCV VP83T1ZUHROL

Quantity: 10

Average Price: 50

Portfolio Holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL', 'quantity': 10,

'averagePrice': 50.0}]

Do you want to add more holdings? [y/N]: n

12. Verify the configured settings and confirm them to start the live deployment in the cloud.

$ lean cloud live "My Project" --push --open

Brokerage: CoinbaseProject id: 1234567

Environment: Live

Server name: L-MICRO node 89c90172

Server type: L-MICRO

Data provider: QuantConnect

LEAN version: 11157

Order event notifications: Yes

Insight notifications: Yes

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

 Initial live cash balance: [{'currency': 'USD', 'amount': 95800.0}]

 Initial live portfolio holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL',

'quantity': 10, 'averagePrice': 50.0}]

Automatic algorithm restarting: Yes

Are you sure you want to start live trading for project 'My Project'? [y/N]: y

13. Inspect the result in the browser, which opens automatically after the deployment starts.

Follow these steps to see the live status of a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud status "<projectName>" to show the status of the cloud project named "<projectName>".

$ lean cloud status "My Project"

Project id: 1234567

Project name: My Project

Project url: https://www.quantconnect.com/project/1234567

Live status: Running

Live id: L-1234567a8901d234e5e678ddd9b0123c

Live url: https://www.quantconnect.com/project/1234567/live

Brokerage: CoinbaseLaunched: 2021-06-09 15:10:12 UTC

Live Trading > Brokerages > Interactive Brokers

Brokerages

Interactive Brokers

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

Interactive Brokers (IB) brokerage.

To view the implementation of the IB brokerage integration, see the Lean.Brokerages.InteractiveBrokers repository .

Deploy Local Algorithms

Follow these steps to start local live trading with the Interactive Brokers brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Set up IB Key Security via IBKR Mobile. For instructions, see IB Key Security via IBKR Mobile on the IB website.

4. Go back to the terminal and enter your Interactive Brokers username, account id, and password.

https://github.com/QuantConnect/Lean.Brokerages.InteractiveBrokers
https://guides.interactivebrokers.com/iphone/log_in/ibkey.htm?tocpath=IB%20Key%20Security%20Protocol%257C_____0

$ lean live "My Project"

Username: trader777

Account id: DU1234567

Account password: ****************

5. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

6. Enter whether you want to enable delayed market data.

$ lean live "My Project"

Enable delayed market data? [yes/no]:

This property configures the behavior when your algorithm attempts to subscribe to market data for which

you don't have a market data subscription on Interactive Brokers. When enabled, your algorithm continues

running using delayed market data. When disabled, live trading will stop and LEAN will shut down.

7. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Deploy Cloud Algorithms

Follow these steps to start live trading a project in the cloud with the Interactive Brokers brokerage:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud live "<projectName>" --push --open to push . / <pro jectName> . to the cloud, start a

live deployment wizard, and open the results in the browser once the deployment starts.

$ lean cloud live "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) Oanda

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Trading Technologies

11) Kraken

12) TD Ameritrade

Enter an option:

4. Enter the number of the Interactive Brokers brokerage.

5. Set up IB Key Security via IBKR Mobile. For instructions, see IB Key Security via IBKR Mobile on the IB website.

6. Go back to the terminal and enter your Interactive Brokers username, account id, and password.

$ lean cloud live "My Project" --push --open

Username: trader777

Account id: DU1234567

Account password: ****************

7. Enter whether you want to use the price data feed from Interactive Brokers instead of the one from

QuantConnect. Enabling this feature requires you to have active Interactive Brokers market data subscriptions

for all data required by your algorithm.

https://guides.interactivebrokers.com/iphone/log_in/ibkey.htm?tocpath=IB%20Key%20Security%20Protocol%257C_____0
https://www.quantconnect.com/docs/v2/cloud-platform/live-trading/data-feeds/brokerage-data-feeds/interactive-brokers

$ lean cloud live "My Project" --push --open

Do you want to use the Interactive Brokers price data feed instead of the QuantConnect price

data feed? (yes/no): y

8. Select the live node that you want to use. If you only have one idle live trading node, it is selected

automatically and this step is skipped.

$ lean cloud live "My Project" --push --open

Select a node:

1) L-MICRO node 89c90172 - 1 CPU @ 2.4GHz, 0.5GB Ram

2) L-MICRO node 85a52135 - 1 CPU @ 2.4GHz, 0.5GB Ram

Enter an option: 1

9. Configure your notification settings. You can configure any combination of email, webhook, SMS, and

Telegram notifications for order events and emitted insights. To view the number of notification you can send

for free, see the Live Trading Notification Quotas .

$ lean cloud live "My Project" --push --open

Do you want to send notifications on order events? [y/N]: y

Do you want to send notifications on insights? [y/N]: y

Email notifications: None

Webhook notifications: None

SMS notifications: None

Select a notification method:

1) Email

2) Webhook

3) SMS

4) Telegram

Enter an option: 1

Email address: john.doe@example.com

Subject: Algorithm notification

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Do you want to add another notification method? [y/N]: n

10. Enable or disable automatic algorithm restarting. This feature attempts to restart your algorithm if it fails due

to a runtime error, like a brokerage API disconnection.

https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#12-Live-Trading-Notification-Quotas

$ lean cloud live "My Project" --push --open

Do you want to enable automatic algorithm restarting? [Y/n]: y

11. Set your initial cash balance.

$ lean cloud live "My Project" --push --open

Previous cash balance: [{'currency': 'USD', 'amount': 100000.0}]

Do you want to set a different initial cash balance? [y/N]: y

Setting initial cash balance...

Currency: USD

Amount: 95800

Cash balance: [{'currency': 'USD', 'amount': 95800.0}]

Do you want to add more currency? [y/N]: n

12. Set your initial portfolio holdings.

$ lean cloud live "My Project" --push --open

Do you want to set the initial portfolio holdings? [y/N]: y

Do you want to use the last portfolio holdings? [] [y/N]: n

Setting custom initial portfolio holdings...

Symbol: GOOG

Symbol ID: GOOCV VP83T1ZUHROL

Quantity: 10

Average Price: 50

Portfolio Holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL', 'quantity': 10,

'averagePrice': 50.0}]

Do you want to add more holdings? [y/N]: n

13. Verify the configured settings and confirm them to start the live deployment in the cloud.

$ lean cloud live "My Project" --push --open

Brokerage: Interactive BrokersProject id: 1234567

Environment: Live

Server name: L-MICRO node 89c90172

Server type: L-MICRO

Data provider: QuantConnect

LEAN version: 11157

Order event notifications: Yes

Insight notifications: Yes

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

 Initial live cash balance: [{'currency': 'USD', 'amount': 95800.0}]

 Initial live portfolio holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL',

'quantity': 10, 'averagePrice': 50.0}]

Automatic algorithm restarting: Yes

Are you sure you want to start live trading for project 'My Project'? [y/N]: y

14. Inspect the result in the browser, which opens automatically after the deployment starts.

Follow these steps to see the live status of a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud status "<projectName>" to show the status of the cloud project named "<projectName>".

$ lean cloud status "My Project"

Project id: 1234567

Project name: My Project

Project url: https://www.quantconnect.com/project/1234567

Live status: Running

Live id: L-1234567a8901d234e5e678ddd9b0123c

Live url: https://www.quantconnect.com/project/1234567/live

Brokerage: Interactive BrokersLaunched: 2021-06-09 15:10:12 UTC

Live Trading > Brokerages > Kraken

Brokerages

Kraken

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

Kraken brokerage.

To view the implementation of the Kraken brokerage integration, see the Lean.Brokerages.Kraken repository .

Deploy Local Algorithms

Follow these steps to start local live trading with the Kraken brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Enter your API key and API secret.

https://github.com/QuantConnect/Lean.Brokerages.Kraken

$ lean live "My Project"

API key:

API secret:

To get your API credentials, see the API Management Settings page on the Kraken website.

4. Enter your verification tier.

$ lean live "My Project"

Select the Verification Tier (Starter, Intermediate, Pro):

For more information about verification tiers, see Verification levels explained on the Kraken website.

5. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

6. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

https://www.kraken.com/u/security/api
https://support.kraken.com/hc/en-us/articles/360001395743-Verification-levels-explained

Deploy Cloud Algorithms

Follow these steps to start live trading a project in the cloud with the Kraken brokerage:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud live "<projectName>" --push --open to push . / <pro jectName> . to the cloud, start a

live deployment wizard, and open the results in the browser once the deployment starts.

$ lean cloud live "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) Oanda

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Trading Technologies

11) Kraken

12) TD Ameritrade

Enter an option:

4. Enter the number of the Kraken brokerage.

5. Enter your API key and API secret.

$ lean cloud live "My Project" --push --open

API key:

Secret key:

To get your API credentials, see the API Management Settings page on the Kraken website.

6. Enter your verification tier.

$ lean cloud live "My Project" --push --open

Select the Verification Tier (Starter, Intermediate, Pro):

For more information about verification tiers, see Verification levels explained on the Kraken website.

7. Select the live node that you want to use. If you only have one idle live trading node, it is selected

https://www.kraken.com/u/security/api
https://support.kraken.com/hc/en-us/articles/360001395743-Verification-levels-explained

automatically and this step is skipped.

$ lean cloud live "My Project" --push --open

Select a node:

1) L-MICRO node 89c90172 - 1 CPU @ 2.4GHz, 0.5GB Ram

2) L-MICRO node 85a52135 - 1 CPU @ 2.4GHz, 0.5GB Ram

Enter an option: 1

8. Configure your notification settings. You can configure any combination of email, webhook, SMS, and

Telegram notifications for order events and emitted insights. To view the number of notification you can send

for free, see the Live Trading Notification Quotas .

$ lean cloud live "My Project" --push --open

Do you want to send notifications on order events? [y/N]: y

Do you want to send notifications on insights? [y/N]: y

Email notifications: None

Webhook notifications: None

SMS notifications: None

Select a notification method:

1) Email

2) Webhook

3) SMS

4) Telegram

Enter an option: 1

Email address: john.doe@example.com

Subject: Algorithm notification

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Do you want to add another notification method? [y/N]: n

9. Enable or disable automatic algorithm restarting. This feature attempts to restart your algorithm if it fails due

to a runtime error, like a brokerage API disconnection.

$ lean cloud live "My Project" --push --open

Do you want to enable automatic algorithm restarting? [Y/n]: y

10. Set your initial cash balance.

https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#12-Live-Trading-Notification-Quotas

$ lean cloud live "My Project" --push --open

Previous cash balance: [{'currency': 'USD', 'amount': 100000.0}]

Do you want to set a different initial cash balance? [y/N]: y

Setting initial cash balance...

Currency: USD

Amount: 95800

Cash balance: [{'currency': 'USD', 'amount': 95800.0}]

Do you want to add more currency? [y/N]: n

11. Set your initial portfolio holdings.

$ lean cloud live "My Project" --push --open

Do you want to set the initial portfolio holdings? [y/N]: y

Do you want to use the last portfolio holdings? [] [y/N]: n

Setting custom initial portfolio holdings...

Symbol: GOOG

Symbol ID: GOOCV VP83T1ZUHROL

Quantity: 10

Average Price: 50

Portfolio Holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL', 'quantity': 10,

'averagePrice': 50.0}]

Do you want to add more holdings? [y/N]: n

12. Verify the configured settings and confirm them to start the live deployment in the cloud.

$ lean cloud live "My Project" --push --open

Brokerage: KrakenProject id: 1234567

Environment: Live

Server name: L-MICRO node 89c90172

Server type: L-MICRO

Data provider: QuantConnect

LEAN version: 11157

Order event notifications: Yes

Insight notifications: Yes

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

 Initial live cash balance: [{'currency': 'USD', 'amount': 95800.0}]

 Initial live portfolio holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL',

'quantity': 10, 'averagePrice': 50.0}]

Automatic algorithm restarting: Yes

Are you sure you want to start live trading for project 'My Project'? [y/N]: y

13. Inspect the result in the browser, which opens automatically after the deployment starts.

Follow these steps to see the live status of a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud status "<projectName>" to show the status of the cloud project named "<projectName>".

$ lean cloud status "My Project"

Project id: 1234567

Project name: My Project

Project url: https://www.quantconnect.com/project/1234567

Live status: Running

Live id: L-1234567a8901d234e5e678ddd9b0123c

Live url: https://www.quantconnect.com/project/1234567/live

Brokerage: KrakenLaunched: 2021-06-09 15:10:12 UTC

Live Trading > Brokerages > Oanda

Brokerages

Oanda

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

Oanda brokerage.

To view the implementation of the Oanda brokerage integration, see the Lean.Brokerages.OANDA repository .

Deploy Local Algorithms

Follow these steps to start local live trading with the Oanda brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Enter the environment to use. Enter Trade for fxTrade or Practice for fxTrade Practice.

https://github.com/QuantConnect/Lean.Brokerages.OANDA

$ lean live "My Project"

Environment? (Practice, Trade): Trade

4. Enter your OANDA account ID.

$ lean live "My Project"

Account id: 001-011-5838423-001

To get your account ID, see your Account Statement page on the OANDA website.

5. Enter your OANDA API token.

$ lean live "My Project"

API token: ****************

To create a token, see the Manage API Access page on the OANDA website.

6. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

7. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

https://www.oanda.com/account/statement/
https://www.oanda.com/account/tpa/personal_token

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Deploy Cloud Algorithms

Follow these steps to start live trading a project in the cloud with the Oanda brokerage:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud live "<projectName>" --push --open to push . / <pro jectName> . to the cloud, start a

live deployment wizard, and open the results in the browser once the deployment starts.

$ lean cloud live "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) Oanda

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Trading Technologies

11) Kraken

12) TD Ameritrade

Enter an option:

4. Enter the number of the Oanda brokerage.

5. Enter the environment to use. Enter Trade for fxTrade or Practice for fxTrade Practice.

$ lean cloud live "My Project" --push --open

Environment? (Practice, Trade):

6. Enter your OANDA account ID.

$ lean cloud live "My Project" --push --open

Account id: 001-011-5838423-001

To get your account ID, see your Account Statement page on the OANDA website.

7. Enter your OANDA API token.

$ lean cloud live "My Project" --push --open

API token: ****************

To create a token, see the Manage API Access page on the OANDA website.

8. Select the live node that you want to use. If you only have one idle live trading node, it is selected

automatically and this step is skipped.

$ lean cloud live "My Project" --push --open

Select a node:

1) L-MICRO node 89c90172 - 1 CPU @ 2.4GHz, 0.5GB Ram

2) L-MICRO node 85a52135 - 1 CPU @ 2.4GHz, 0.5GB Ram

Enter an option: 1

9. Configure your notification settings. You can configure any combination of email, webhook, SMS, and

Telegram notifications for order events and emitted insights. To view the number of notification you can send

for free, see the Live Trading Notification Quotas .

https://www.oanda.com/account/statement/
https://www.oanda.com/account/tpa/personal_token
https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#12-Live-Trading-Notification-Quotas

$ lean cloud live "My Project" --push --open

Do you want to send notifications on order events? [y/N]: y

Do you want to send notifications on insights? [y/N]: y

Email notifications: None

Webhook notifications: None

SMS notifications: None

Select a notification method:

1) Email

2) Webhook

3) SMS

4) Telegram

Enter an option: 1

Email address: john.doe@example.com

Subject: Algorithm notification

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Do you want to add another notification method? [y/N]: n

10. Enable or disable automatic algorithm restarting. This feature attempts to restart your algorithm if it fails due

to a runtime error, like a brokerage API disconnection.

$ lean cloud live "My Project" --push --open

Do you want to enable automatic algorithm restarting? [Y/n]: y

11. Set your initial cash balance.

$ lean cloud live "My Project" --push --open

Previous cash balance: [{'currency': 'USD', 'amount': 100000.0}]

Do you want to set a different initial cash balance? [y/N]: y

Setting initial cash balance...

Currency: USD

Amount: 95800

Cash balance: [{'currency': 'USD', 'amount': 95800.0}]

Do you want to add more currency? [y/N]: n

12. Set your initial portfolio holdings.

$ lean cloud live "My Project" --push --open

Do you want to set the initial portfolio holdings? [y/N]: y

Do you want to use the last portfolio holdings? [] [y/N]: n

Setting custom initial portfolio holdings...

Symbol: GOOG

Symbol ID: GOOCV VP83T1ZUHROL

Quantity: 10

Average Price: 50

Portfolio Holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL', 'quantity': 10,

'averagePrice': 50.0}]

Do you want to add more holdings? [y/N]: n

13. Verify the configured settings and confirm them to start the live deployment in the cloud.

$ lean cloud live "My Project" --push --open

Brokerage: OandaProject id: 1234567

Environment: Live

Server name: L-MICRO node 89c90172

Server type: L-MICRO

Data provider: QuantConnect

LEAN version: 11157

Order event notifications: Yes

Insight notifications: Yes

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

 Initial live cash balance: [{'currency': 'USD', 'amount': 95800.0}]

 Initial live portfolio holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL',

'quantity': 10, 'averagePrice': 50.0}]

Automatic algorithm restarting: Yes

Are you sure you want to start live trading for project 'My Project'? [y/N]: y

14. Inspect the result in the browser, which opens automatically after the deployment starts.

Follow these steps to see the live status of a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud status "<projectName>" to show the status of the cloud project named "<projectName>".

$ lean cloud status "My Project"

Project id: 1234567

Project name: My Project

Project url: https://www.quantconnect.com/project/1234567

Live status: Running

Live id: L-1234567a8901d234e5e678ddd9b0123c

Live url: https://www.quantconnect.com/project/1234567/live

Brokerage: OandaLaunched: 2021-06-09 15:10:12 UTC

Live Trading > Brokerages > Prime Brokerages

Brokerages

Prime Brokerages

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

Terminal Link brokerage.

Asset Classes

Terminal Link supports trading the following asset classes:

Equities

Equity Options

Futures

You may not be able to trade all assets with Terminal Link. For example, if you live in the EU, you can't trade US

ETFs. Check with your local regulators to know which assets you are allowed to trade. You may need to adjust

settings in your brokerage account to live trade some assets.

Data Feeds

Terminal Link lets you source a live data feed from the Bloomberg™ Terminal for live trading. You also can use the

LEAN paper trading functionality to test your strategy on Bloomberg™’s live data feed.

Orders

Terminal Link enables you to create and manage Bloomberg™ orders.

Order Types

The following table describes the available order types for each asset class that Terminal Link supports:

https://www.quantconnect.com/docs/v2//writing-algorithms/securities/asset-classes/us-equity
https://www.quantconnect.com/docs/v2//writing-algorithms/securities/asset-classes/equity-options
https://www.quantconnect.com/docs/v2//writing-algorithms/securities/asset-classes/futures

Order Type Equity Equ ity Options Futures

MarketOrder

LimitOrder

StopMarketOrder

StopLimitOrder

Time In Force

Terminal Link supports the following TimeInForce instructions:

Day

GoodTilCanceled

GoodTilDate

Get Open Orders

Terminal Link lets you access open orders .

Monitor Fills

Terminal Link allows you to monitor orders as they fill through order events .

Updates

Terminal Link doesn't support order updates .

Cancellations

Terminal Link enables you to cancel open orders .

Fees

Orders filled with Terminal Link are subject to the fees of the Bloomberg Execution Management System.

Historical Data

When LEAN taps into Bloomberg™ via Terminal Link, it can run backtests and research notebooks with rich

historical data sourced from the Bloomberg™ Terminal. LEAN provides accurate slippage, spread, and transaction

fee models for realistic backtesting. All models are customizable to adapt to your strategy requirements. Historical

data is cached locally in an efficient format for quick backtesting in the LEAN engine. If you request intraday

historical data, you can request data from within the last 6 months. Historical open interest and custom data isn't

available.

Compliance

Bloomberg™ is not affiliated with QuantConnect, nor does it endorse Terminal Link. All users of the integration must

hold a Bloomberg™ License to be defined as an “Entitled User.” All products must be used in accordance with

https://www.quantconnect.com/docs/v2//writing-algorithms/trading-and-orders/order-types/market-orders
https://www.quantconnect.com/docs/v2//writing-algorithms/trading-and-orders/order-types/limit-orders
https://www.quantconnect.com/docs/v2//writing-algorithms/trading-and-orders/order-types/stop-market-orders
https://www.quantconnect.com/docs/v2//writing-algorithms/trading-and-orders/order-types/stop-limit-orders
https://www.quantconnect.com/docs/v2//writing-algorithms/trading-and-orders/order-properties#03-Time-In-Force
https://www.quantconnect.com/docs/v2//writing-algorithms/trading-and-orders/order-management/transaction-manager
https://www.quantconnect.com/docs/v2//writing-algorithms/trading-and-orders/order-events
https://www.quantconnect.com/docs/v2//writing-algorithms/trading-and-orders/order-management/order-tickets#04-Update-Orders
https://www.quantconnect.com/docs/v2//writing-algorithms/trading-and-orders/order-management/order-tickets#05-Cancel-Orders

established licensing terms set by Bloomberg™. All data accessed via the Bloomberg™ Desktop API must remain on

the host computer. The Bloomberg™ Terminal and the LEAN instance must be on the same computer. The

Bloomberg™ Server API cannot be used for black-box trading. Any Bloomberg™ Server API Data usage will require

soliciting permission via the Bloomberg™ Permission System. QuantConnect requires installing the LEAN GUI along

with any Terminal Link subscription.

The following rules apply:

All users of the integration must hold a Bloomberg License to be defined as an "Entitled User".

All data accessed via the Bloomberg Desktop API must remain on the host computer. The Bloomberg Terminal

and the LEAN instance must be on the same computer.

The Bloomberg Server API cannot be used for black-box trading. Any Bloomberg Server API Data usage will

require soliciting permission via the Bloomberg Permission System.

The following table shows the activities each of the Bloomberg technologies support:

Technology Research Backtesting Paper Trading Live Trading

Desktop API

B.PIPE

Server API -

CLI Commands

Execute the CLI commands in the following sections to interact with Terminal Link. If you need further assistance,

see the CLI Reference .

Run Local Backtests

Launch local backtests with data from the Bloomberg Terminal desktop API. Lean automatically fetches the data

required for your backtest.

$ lean backtest "<projectName>" --data-provider "Terminal Link"

Launch Research Notebooks

Start Jupyter Research Notebooks, tapping into the entire QuantConnect API with the data sourced from a

Bloomberg Terminal.

$ lean research "<projectName>" --data-provider "Terminal Link"

Deploy Live Algorithms

Launch live trading algorithms to trade with any of the 1300+ routing destinations in the Bloomberg EMSX network.

https://www.quantconnect.com/docs/v2//lean-cli

$ lean live "<projectName>" --brokerage "Terminal Link" --data-feed "Terminal Link"

Deploy Local Algorithms

Follow these steps to start local live trading with the Terminal Link brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Enter the environment to use.

$ lean live "My Project"

Environment (Production, Beta): Production

4. Enter the host and port of the Bloomberg server.

$ lean live "My Project"

Server host: 127.0.0.1

Server port: 8194

5. Enter your EMSX configuration

$ lean live "My Project"

EMSX broker: someValue

EMSX account:

6. Enter your Open FIGI API key.

$ lean live "My Project"

Open FIGI API key:

7. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

8. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Deploy Cloud Algorithms

The CLI doesn't currently support deploying cloud algorithms with Terminal Link.

Live Trading > Brokerages > Samco

Brokerages

Samco

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

Samco brokerage.

To view the implementation of the Samco brokerage integration, see the Lean.Brokerages.Samco repository .

Deploy Local Algorithms

Follow these steps to start local live trading with the Samco brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Enter your Samco credentials.

https://github.com/QuantConnect/Lean.Brokerages.Samco

$ lean live "My Project"

Client ID:

Client Password:

4. Enter your year of birth.

$ lean live "My Project"

Year of Birth:

5. Enter the product type.

$ lean live "My Project"

Product type (mis, cnc, nrml):

The following table describes the product types:

Product Type Description

mis Intraday products

cnc Delivery products

nrml Carry forward products

6. Enter the trading segment.

$ lean live "My Project"

Trading segment (equity, commodity):

The following table describes when to use each trading segment:

Trading Segment Description

equity
For trading Equities on the National Stock Exchange of India (NSE) or the

Bombay Stock Exchange (BSE)

commodity For trading commodities on the Multi Commodity Exchange of India (MCX)

7. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

8. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Deploy Cloud Algorithms

Follow these steps to start live trading a project in the cloud with the Samco brokerage:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud live "<projectName>" --push --open to push . / <pro jectName> . to the cloud, start a

live deployment wizard, and open the results in the browser once the deployment starts.

$ lean cloud live "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) Oanda

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Trading Technologies

11) Kraken

12) TD Ameritrade

Enter an option:

4. Enter the number of the Samco brokerage.

5. Enter your Samco credentials.

$ lean cloud live "My Project" --push --open

Client ID:

Client Password:

6. Enter your year of birth.

$ lean cloud live "My Project" --push --open

Year of Birth:

7. Enter the product type.

$ lean cloud live "My Project" --push --open

Product type (mis, cnc, nrml):

The following table describes the product types:

Product Type Description

mis Intraday products

cnc Delivery products

nrml Carry forward products

8. Enter the trading segment.

$ lean cloud live "My Project" --push --open

Trading segment (equity, commodity):

The following table describes when to use each trading segment:

Trading Segment Description

equity
For trading Equities on the National Stock Exchange of India (NSE) or the

Bombay Stock Exchange (BSE)

commodity For trading commodities on the Multi Commodity Exchange of India (MCX)

9. Select the live node that you want to use. If you only have one idle live trading node, it is selected

automatically and this step is skipped.

$ lean cloud live "My Project" --push --open

Select a node:

1) L-MICRO node 89c90172 - 1 CPU @ 2.4GHz, 0.5GB Ram

2) L-MICRO node 85a52135 - 1 CPU @ 2.4GHz, 0.5GB Ram

Enter an option: 1

10. Configure your notification settings. You can configure any combination of email, webhook, SMS, and

Telegram notifications for order events and emitted insights. To view the number of notification you can send

for free, see the Live Trading Notification Quotas .

https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#12-Live-Trading-Notification-Quotas

$ lean cloud live "My Project" --push --open

Do you want to send notifications on order events? [y/N]: y

Do you want to send notifications on insights? [y/N]: y

Email notifications: None

Webhook notifications: None

SMS notifications: None

Select a notification method:

1) Email

2) Webhook

3) SMS

4) Telegram

Enter an option: 1

Email address: john.doe@example.com

Subject: Algorithm notification

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Do you want to add another notification method? [y/N]: n

11. Enable or disable automatic algorithm restarting. This feature attempts to restart your algorithm if it fails due

to a runtime error, like a brokerage API disconnection.

$ lean cloud live "My Project" --push --open

Do you want to enable automatic algorithm restarting? [Y/n]: y

12. Set your initial cash balance.

$ lean cloud live "My Project" --push --open

Previous cash balance: [{'currency': 'USD', 'amount': 100000.0}]

Do you want to set a different initial cash balance? [y/N]: y

Setting initial cash balance...

Currency: USD

Amount: 95800

Cash balance: [{'currency': 'USD', 'amount': 95800.0}]

Do you want to add more currency? [y/N]: n

13. Set your initial portfolio holdings.

$ lean cloud live "My Project" --push --open

Do you want to set the initial portfolio holdings? [y/N]: y

Do you want to use the last portfolio holdings? [] [y/N]: n

Setting custom initial portfolio holdings...

Symbol: GOOG

Symbol ID: GOOCV VP83T1ZUHROL

Quantity: 10

Average Price: 50

Portfolio Holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL', 'quantity': 10,

'averagePrice': 50.0}]

Do you want to add more holdings? [y/N]: n

14. Verify the configured settings and confirm them to start the live deployment in the cloud.

$ lean cloud live "My Project" --push --open

Brokerage: SamcoProject id: 1234567

Environment: Live

Server name: L-MICRO node 89c90172

Server type: L-MICRO

Data provider: QuantConnect

LEAN version: 11157

Order event notifications: Yes

Insight notifications: Yes

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

 Initial live cash balance: [{'currency': 'USD', 'amount': 95800.0}]

 Initial live portfolio holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL',

'quantity': 10, 'averagePrice': 50.0}]

Automatic algorithm restarting: Yes

Are you sure you want to start live trading for project 'My Project'? [y/N]: y

15. Inspect the result in the browser, which opens automatically after the deployment starts.

Follow these steps to see the live status of a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud status "<projectName>" to show the status of the cloud project named "<projectName>".

$ lean cloud status "My Project"

Project id: 1234567

Project name: My Project

Project url: https://www.quantconnect.com/project/1234567

Live status: Running

Live id: L-1234567a8901d234e5e678ddd9b0123c

Live url: https://www.quantconnect.com/project/1234567/live

Brokerage: SamcoLaunched: 2021-06-09 15:10:12 UTC

Live Trading > Brokerages > TD Ameritrade

Brokerages

TD Ameritrade

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

TD Ameritrade brokerage.

To view the implementation of the TD Ameritrade brokerage integration, see the Lean.Brokerages.TDAmeritrade

repository .

Deploy Local Algorithms

Follow these steps to start local live trading with the TD Ameritrade brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Enter your TD Ameritrade credentials.

https://github.com/QuantConnect/Lean.Brokerages.TDAmeritrade

$ lean live "My Project"

API key:

OAuth Access Token:

Account number:

To get your account credentials, see Account Types .

4. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

5. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Deploy Cloud Algorithms

Follow these steps to start live trading a project in the cloud with the TD Ameritrade brokerage:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

https://www.quantconnect.com/docs/v2/cloud-platform/live-trading/brokerages/td-ameritrade#02-Account-Types

3. Run lean cloud live "<projectName>" --push --open to push . / <pro jectName> . to the cloud, start a

live deployment wizard, and open the results in the browser once the deployment starts.

$ lean cloud live "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) Oanda

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Trading Technologies

11) Kraken

12) TD Ameritrade

Enter an option:

4. Enter the number of the TD Ameritrade brokerage.

5. Enter your TD Ameritrade credentials.

$ lean cloud live "My Project"

API key:

OAuth Access Token:

Account number:

To get your account credentials, see Account Types .

6. Select the live node that you want to use. If you only have one idle live trading node, it is selected

automatically and this step is skipped.

$ lean cloud live "My Project" --push --open

Select a node:

1) L-MICRO node 89c90172 - 1 CPU @ 2.4GHz, 0.5GB Ram

2) L-MICRO node 85a52135 - 1 CPU @ 2.4GHz, 0.5GB Ram

Enter an option: 1

7. Configure your notification settings. You can configure any combination of email, webhook, SMS, and

Telegram notifications for order events and emitted insights. To view the number of notification you can send

https://www.quantconnect.com/docs/v2/cloud-platform/live-trading/brokerages/td-ameritrade#02-Account-Types

for free, see the Live Trading Notification Quotas .

$ lean cloud live "My Project" --push --open

Do you want to send notifications on order events? [y/N]: y

Do you want to send notifications on insights? [y/N]: y

Email notifications: None

Webhook notifications: None

SMS notifications: None

Select a notification method:

1) Email

2) Webhook

3) SMS

4) Telegram

Enter an option: 1

Email address: john.doe@example.com

Subject: Algorithm notification

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Do you want to add another notification method? [y/N]: n

8. Enable or disable automatic algorithm restarting. This feature attempts to restart your algorithm if it fails due

to a runtime error, like a brokerage API disconnection.

$ lean cloud live "My Project" --push --open

Do you want to enable automatic algorithm restarting? [Y/n]: y

9. Set your initial cash balance.

$ lean cloud live "My Project" --push --open

Previous cash balance: [{'currency': 'USD', 'amount': 100000.0}]

Do you want to set a different initial cash balance? [y/N]: y

Setting initial cash balance...

Currency: USD

Amount: 95800

Cash balance: [{'currency': 'USD', 'amount': 95800.0}]

Do you want to add more currency? [y/N]: n

10. Set your initial portfolio holdings.

https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#12-Live-Trading-Notification-Quotas

$ lean cloud live "My Project" --push --open

Do you want to set the initial portfolio holdings? [y/N]: y

Do you want to use the last portfolio holdings? [] [y/N]: n

Setting custom initial portfolio holdings...

Symbol: GOOG

Symbol ID: GOOCV VP83T1ZUHROL

Quantity: 10

Average Price: 50

Portfolio Holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL', 'quantity': 10,

'averagePrice': 50.0}]

Do you want to add more holdings? [y/N]: n

11. Verify the configured settings and confirm them to start the live deployment in the cloud.

$ lean cloud live "My Project" --push --open

Brokerage: TD AmeritradeProject id: 1234567

Environment: Live

Server name: L-MICRO node 89c90172

Server type: L-MICRO

Data provider: QuantConnect

LEAN version: 11157

Order event notifications: Yes

Insight notifications: Yes

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

 Initial live cash balance: [{'currency': 'USD', 'amount': 95800.0}]

 Initial live portfolio holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL',

'quantity': 10, 'averagePrice': 50.0}]

Automatic algorithm restarting: Yes

Are you sure you want to start live trading for project 'My Project'? [y/N]: y

12. Inspect the result in the browser, which opens automatically after the deployment starts.

Follow these steps to see the live status of a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud status "<projectName>" to show the status of the cloud project named "<projectName>".

$ lean cloud status "My Project"

Project id: 1234567

Project name: My Project

Project url: https://www.quantconnect.com/project/1234567

Live status: Running

Live id: L-1234567a8901d234e5e678ddd9b0123c

Live url: https://www.quantconnect.com/project/1234567/live

Brokerage: TD AmeritradeLaunched: 2021-06-09 15:10:12 UTC

Live Trading > Brokerages > Tradier

Brokerages

Tradier

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

Tradier brokerage.

To view the implementation of the Tradier brokerage integration, see the Lean.Brokerages.Tradier repository .

Deploy Local Algorithms

Follow these steps to start local live trading with the Tradier brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Enter your Tradier account Id and access token.

https://github.com/QuantConnect/Lean.Brokerages.Tradier

$ lean live "My Project"

Account id: VA000001

Access token: ****************

To get these credentials, see your Settings/API Access page on the Tradier website.

4. Enter whether the developer sandbox should be used.

$ lean live "My Project"

Use the developer sandbox? (live, paper): live

5. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

6. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Deploy Cloud Algorithms

https://dash.tradier.com/settings/api

Follow these steps to start live trading a project in the cloud with the Tradier brokerage:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud live "<projectName>" --push --open to push . / <pro jectName> . to the cloud, start a

live deployment wizard, and open the results in the browser once the deployment starts.

$ lean cloud live "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) Oanda

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Trading Technologies

11) Kraken

12) TD Ameritrade

Enter an option:

4. Enter the number of the Tradier brokerage.

5. Enter your Tradier account Id and access token.

$ lean cloud live "My Project" --push --open

Account id: VA000001

Access token: ****************

To get these credentials, see your Settings/API Access page on the Tradier website.

6. Enter whether the developer sandbox should be used.

$ lean cloud live "My Project" --push --open

Use the developer sandbox? (live, paper):

7. Select the live node that you want to use. If you only have one idle live trading node, it is selected

automatically and this step is skipped.

https://dash.tradier.com/settings/api

$ lean cloud live "My Project" --push --open

Select a node:

1) L-MICRO node 89c90172 - 1 CPU @ 2.4GHz, 0.5GB Ram

2) L-MICRO node 85a52135 - 1 CPU @ 2.4GHz, 0.5GB Ram

Enter an option: 1

8. Configure your notification settings. You can configure any combination of email, webhook, SMS, and

Telegram notifications for order events and emitted insights. To view the number of notification you can send

for free, see the Live Trading Notification Quotas .

$ lean cloud live "My Project" --push --open

Do you want to send notifications on order events? [y/N]: y

Do you want to send notifications on insights? [y/N]: y

Email notifications: None

Webhook notifications: None

SMS notifications: None

Select a notification method:

1) Email

2) Webhook

3) SMS

4) Telegram

Enter an option: 1

Email address: john.doe@example.com

Subject: Algorithm notification

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Do you want to add another notification method? [y/N]: n

9. Enable or disable automatic algorithm restarting. This feature attempts to restart your algorithm if it fails due

to a runtime error, like a brokerage API disconnection.

$ lean cloud live "My Project" --push --open

Do you want to enable automatic algorithm restarting? [Y/n]: y

10. Set your initial cash balance.

https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#12-Live-Trading-Notification-Quotas

$ lean cloud live "My Project" --push --open

Previous cash balance: [{'currency': 'USD', 'amount': 100000.0}]

Do you want to set a different initial cash balance? [y/N]: y

Setting initial cash balance...

Currency: USD

Amount: 95800

Cash balance: [{'currency': 'USD', 'amount': 95800.0}]

Do you want to add more currency? [y/N]: n

11. Set your initial portfolio holdings.

$ lean cloud live "My Project" --push --open

Do you want to set the initial portfolio holdings? [y/N]: y

Do you want to use the last portfolio holdings? [] [y/N]: n

Setting custom initial portfolio holdings...

Symbol: GOOG

Symbol ID: GOOCV VP83T1ZUHROL

Quantity: 10

Average Price: 50

Portfolio Holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL', 'quantity': 10,

'averagePrice': 50.0}]

Do you want to add more holdings? [y/N]: n

12. Verify the configured settings and confirm them to start the live deployment in the cloud.

$ lean cloud live "My Project" --push --open

Brokerage: TradierProject id: 1234567

Environment: Live

Server name: L-MICRO node 89c90172

Server type: L-MICRO

Data provider: QuantConnect

LEAN version: 11157

Order event notifications: Yes

Insight notifications: Yes

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

 Initial live cash balance: [{'currency': 'USD', 'amount': 95800.0}]

 Initial live portfolio holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL',

'quantity': 10, 'averagePrice': 50.0}]

Automatic algorithm restarting: Yes

Are you sure you want to start live trading for project 'My Project'? [y/N]: y

13. Inspect the result in the browser, which opens automatically after the deployment starts.

Follow these steps to see the live status of a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud status "<projectName>" to show the status of the cloud project named "<projectName>".

$ lean cloud status "My Project"

Project id: 1234567

Project name: My Project

Project url: https://www.quantconnect.com/project/1234567

Live status: Running

Live id: L-1234567a8901d234e5e678ddd9b0123c

Live url: https://www.quantconnect.com/project/1234567/live

Brokerage: TradierLaunched: 2021-06-09 15:10:12 UTC

Live Trading > Brokerages > Trading Technologies

Brokerages

Trading Technologies

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

Trading Technologies brokerage.

To view the implementation of the Trading Technologies integration, see the Lean.Brokerages.TradingTechnologies

repository .

Deploy Local Algorithms

Follow these steps to start local live trading with the Trading Technologies brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Enter your Trading Technologies credentials.

https://github.com/QuantConnect/Lean.Brokerages.TradingTechnologies

$ lean live "My Project"

User name: john

Session password: ****************

Account name: jane

4. Enter the REST configuration.

$ lean live "My Project"

REST app key: my-rest-app-key

REST app secret: ******************

REST environment: my-environment

5. Enter the market data configuration.

$ lean live "My Project"

Market data sender comp id:

Market data target comp id:

Market data host:

Market data port:

6. Enter the order routing configuration.

$ lean live "My Project"

Order routing sender comp id:

Order routing target comp id:

Order routing host:

Order routing port:

7. Enter whether FIX messages must be logged.

$ lean live "My Project"

Log FIX messages (yes/no): yes

8. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

9. Set your initial cash balance.

$ lean live "My Project"

Previous cash balance: [{'currency': 'USD', 'amount': 100000.0}]

Do you want to set a different initial cash balance? [y/N]: y

Setting initial cash balance...

Currency: USD

Amount: 95800

Cash balance: [{'currency': 'USD', 'amount': 95800.0}]

Do you want to add more currency? [y/N]: n

10. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Deploy Cloud Algorithms

Follow these steps to start live trading a project in the cloud with the Trading Technologies brokerage:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud live "<projectName>" --push --open to push . / <pro jectName> . to the cloud, start a

live deployment wizard, and open the results in the browser once the deployment starts.

$ lean cloud live "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) Oanda

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Trading Technologies

11) Kraken

12) TD Ameritrade

Enter an option:

4. Enter the number of the Trading Technologies brokerage.

5. Enter your Trading Technologies credentials.

$ lean cloud live "My Project" --push --open

User name: john

Session password: ****************

Account name: jane

6. Enter the REST configuration.

$ lean cloud live "My Project" --push --open

REST app key: my-rest-app-key

REST app secret: ******************

REST environment: my-environment

7. Enter the order routing configuration.

$ lean cloud live "My Project" --push --open

Order routing sender comp id:

Our TT integration routes orders via the TT FIX 4.4 Connection. Contact your TT representative to set the

exchange where you would like your orders sent. Your account details are not saved on QuantConnect.

8. Select the live node that you want to use. If you only have one idle live trading node, it is selected

automatically and this step is skipped.

$ lean cloud live "My Project" --push --open

Select a node:

1) L-MICRO node 89c90172 - 1 CPU @ 2.4GHz, 0.5GB Ram

2) L-MICRO node 85a52135 - 1 CPU @ 2.4GHz, 0.5GB Ram

Enter an option: 1

9. Configure your notification settings. You can configure any combination of email, webhook, SMS, and

Telegram notifications for order events and emitted insights. To view the number of notification you can send

for free, see the Live Trading Notification Quotas .

$ lean cloud live "My Project" --push --open

Do you want to send notifications on order events? [y/N]: y

Do you want to send notifications on insights? [y/N]: y

Email notifications: None

Webhook notifications: None

SMS notifications: None

Select a notification method:

1) Email

2) Webhook

3) SMS

4) Telegram

Enter an option: 1

Email address: john.doe@example.com

Subject: Algorithm notification

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Do you want to add another notification method? [y/N]: n

10. Enable or disable automatic algorithm restarting. This feature attempts to restart your algorithm if it fails due

to a runtime error, like a brokerage API disconnection.

https://www.tradingtechnologies.com/contact/
https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#12-Live-Trading-Notification-Quotas

$ lean cloud live "My Project" --push --open

Do you want to enable automatic algorithm restarting? [Y/n]: y

11. Set your initial portfolio holdings.

$ lean cloud live "My Project" --push --open

Do you want to set the initial portfolio holdings? [y/N]: y

Do you want to use the last portfolio holdings? [] [y/N]: n

Setting custom initial portfolio holdings...

Symbol: GOOG

Symbol ID: GOOCV VP83T1ZUHROL

Quantity: 10

Average Price: 50

Portfolio Holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL', 'quantity': 10,

'averagePrice': 50.0}]

Do you want to add more holdings? [y/N]: n

12. Verify the configured settings and confirm them to start the live deployment in the cloud.

$ lean cloud live "My Project" --push --open

Brokerage: Trading TechnologiesProject id: 1234567

Environment: Live

Server name: L-MICRO node 89c90172

Server type: L-MICRO

Data provider: QuantConnect

LEAN version: 11157

Order event notifications: Yes

Insight notifications: Yes

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

 Initial live portfolio holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL',

'quantity': 10, 'averagePrice': 50.0}]

Automatic algorithm restarting: Yes

Are you sure you want to start live trading for project 'My Project'? [y/N]: y

13. Inspect the result in the browser, which opens automatically after the deployment starts.

Follow these steps to see the live status of a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud status "<projectName>" to show the status of the cloud project named "<projectName>".

$ lean cloud status "My Project"

Project id: 1234567

Project name: My Project

Project url: https://www.quantconnect.com/project/1234567

Live status: Running

Live id: L-1234567a8901d234e5e678ddd9b0123c

Live url: https://www.quantconnect.com/project/1234567/live

Brokerage: Trading TechnologiesLaunched: 2021-06-09 15:10:12 UTC

Live Trading > Brokerages > Zerodha

Brokerages

Zerodha

Introduction

The Lean CLI supports local live trading with all brokerages supported by LEAN, which makes the transfer from

backtesting to live trading as seamless as possible. The Lean CLI also supports starting live trading for a cloud

project on any of the brokerages supported in the cloud. We recommend live trading your projects in our cloud

because we provide a battle-tested, colocated infrastructure racked in Equinix, maintained by our engineers to

ensure the best possible stability and uptime. This page contains instructions on how to start live trading with the

Zerodha brokerage.

To view the implementation of the Zerodha brokerage integration, see the Lean.Brokerages.Zerodha repository .

Deploy Local Algorithms

Follow these steps to start local live trading with the Zerodha brokerage:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter the brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option:

3. Enter your Kite Connect API key and access token.

https://github.com/QuantConnect/Lean.Brokerages.Zerodha
https://kite.trade/

$ lean live "My Project"

API key: hp9erb9ct0lqaxpm

Access token: ********************

4. Enter the product type.

$ lean live "My Project"

Product type (mis, cnc, nrml):

The following table describes the product types:

Product Type Description

mis Intraday products

cnc Delivery products

nrml Carry forward products

5. Enter the trading segment.

$ lean live "My Project"

Trading segment (equity, commodity):

The following table describes when to use each trading segment:

Trading Segment Description

equity
For trading Equities on the National Stock Exchange of India (NSE) or the

Bombay Stock Exchange (BSE)

commodity For trading commodities on the Multi Commodity Exchange of India (MCX)

6. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

If you select IQFeed, see IQFeed for set up instructions.

If you select Polygon Data Feed, see Polygon for set up instructions.

7. Enter whether you have a history API subscription.

$ lean live "My Project"

Do you have a history API subscription? (true, false): true

8. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Deploy Cloud Algorithms

Follow these steps to start live trading a project in the cloud with the Zerodha brokerage:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud live "<projectName>" --push --open to push . / <pro jectName> . to the cloud, start a

live deployment wizard, and open the results in the browser once the deployment starts.

$ lean cloud live "My Project" --push --open

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) Oanda

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Trading Technologies

11) Kraken

12) TD Ameritrade

Enter an option:

4. Enter the number of the Zerodha brokerage.

5. Enter your Kite Connect API key and access token.

$ lean cloud live "My Project" --push --open

API key: hp9erb9ct0lqaxpm

Access token: ********************

6. Enter the product type.

$ lean cloud live "My Project" --push --open

Product type (mis, cnc, nrml):

The following table describes the product types:

Product Type Description

mis Intraday products

cnc Delivery products

nrml Carry forward products

https://kite.trade/

7. Enter the trading segment.

$ lean cloud live "My Project" --push --open

Trading segment (equity, commodity):

The following table describes when to use each trading segment:

Trading Segment Description

equity
For trading Equities on the National Stock Exchange of India (NSE) or the

Bombay Stock Exchange (BSE)

commodity For trading commodities on the Multi Commodity Exchange of India (MCX)

8. Enter whether you have a history API subscription.

$ lean live "My Project"

Do you have a history API subscription? (true, false): true

9. Select the live node that you want to use. If you only have one idle live trading node, it is selected

automatically and this step is skipped.

$ lean cloud live "My Project" --push --open

Select a node:

1) L-MICRO node 89c90172 - 1 CPU @ 2.4GHz, 0.5GB Ram

2) L-MICRO node 85a52135 - 1 CPU @ 2.4GHz, 0.5GB Ram

Enter an option: 1

10. Configure your notification settings. You can configure any combination of email, webhook, SMS, and

Telegram notifications for order events and emitted insights. To view the number of notification you can send

for free, see the Live Trading Notification Quotas .

https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#12-Live-Trading-Notification-Quotas

$ lean cloud live "My Project" --push --open

Do you want to send notifications on order events? [y/N]: y

Do you want to send notifications on insights? [y/N]: y

Email notifications: None

Webhook notifications: None

SMS notifications: None

Select a notification method:

1) Email

2) Webhook

3) SMS

4) Telegram

Enter an option: 1

Email address: john.doe@example.com

Subject: Algorithm notification

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

Do you want to add another notification method? [y/N]: n

11. Enable or disable automatic algorithm restarting. This feature attempts to restart your algorithm if it fails due

to a runtime error, like a brokerage API disconnection.

$ lean cloud live "My Project" --push --open

Do you want to enable automatic algorithm restarting? [Y/n]: y

12. Set your initial cash balance.

$ lean cloud live "My Project" --push --open

Previous cash balance: [{'currency': 'USD', 'amount': 100000.0}]

Do you want to set a different initial cash balance? [y/N]: y

Setting initial cash balance...

Currency: USD

Amount: 95800

Cash balance: [{'currency': 'USD', 'amount': 95800.0}]

Do you want to add more currency? [y/N]: n

13. Set your initial portfolio holdings.

$ lean cloud live "My Project" --push --open

Do you want to set the initial portfolio holdings? [y/N]: y

Do you want to use the last portfolio holdings? [] [y/N]: n

Setting custom initial portfolio holdings...

Symbol: GOOG

Symbol ID: GOOCV VP83T1ZUHROL

Quantity: 10

Average Price: 50

Portfolio Holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL', 'quantity': 10,

'averagePrice': 50.0}]

Do you want to add more holdings? [y/N]: n

14. Verify the configured settings and confirm them to start the live deployment in the cloud.

$ lean cloud live "My Project" --push --open

Brokerage: ZerodhaProject id: 1234567

Environment: Live

Server name: L-MICRO node 89c90172

Server type: L-MICRO

Data provider: QuantConnect

LEAN version: 11157

Order event notifications: Yes

Insight notifications: Yes

Email notifications: john.doe@example.com

Webhook notifications: None

SMS notifications: None

Telegram notifications: None

 Initial live cash balance: [{'currency': 'USD', 'amount': 95800.0}]

 Initial live portfolio holdings: [{'symbol': 'GOOG', 'symbolId': 'GOOCV VP83T1ZUHROL',

'quantity': 10, 'averagePrice': 50.0}]

Automatic algorithm restarting: Yes

Are you sure you want to start live trading for project 'My Project'? [y/N]: y

15. Inspect the result in the browser, which opens automatically after the deployment starts.

Follow these steps to see the live status of a project:

1. Log in to the CLI if you haven't done so already.

2. Open a terminal in the organization workspace that contains the project.

3. Run lean cloud status "<projectName>" to show the status of the cloud project named "<projectName>".

$ lean cloud status "My Project"

Project id: 1234567

Project name: My Project

Project url: https://www.quantconnect.com/project/1234567

Live status: Running

Live id: L-1234567a8901d234e5e678ddd9b0123c

Live url: https://www.quantconnect.com/project/1234567/live

Brokerage: ZerodhaLaunched: 2021-06-09 15:10:12 UTC

Live Trading > Data Feeds

Live Trading

Data Feeds

Data feeds supply data to run your live algorithm using LEAN. You can use multiple data feeds in live trading

algorithms.

IQFeed

US Equities, US Options, Forex, & Futures

Polygon

Equities, Forex, & Cryptos

See Also

Brokerages

Live Trading > Data Feeds > IQFeed

Data Feeds

IQFeed

Introduction

Instead of using the data feed from your brokerage, you can also use IQFeed if you're on Windows. Using IQFeed

requires you to have an IQFeed developer account and you need to have the IQFeed client installed locally. This

tutorial demonstrates how to set up the IQ Feed data feed with the QuantConnect Paper Trading brokerage.

Deploy Local Algorithms

Follow these steps to start local live trading with the IQ Feed data feed:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter a brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option: 1

3. Enter the number of the data feed to use and then follow the steps required for the data connection.

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

4. Enter the path to the IQConnect binary.

The default path is C: / Program Files (x86) / DTN / IQFeed / iqconnect.exe if you used the default

settings when installing the IQFeed client.

$ lean live "My Project"

IQConnect binary location [C:/Program Files (x86)/DTN/IQFeed/iqconnect.exe]:

5. Enter your IQFeed username and password.

$ lean live "My Project"

Username: 123456

Password: **********

6. If you have an IQFeed developer account, enter the product Id and version of your account.

$ lean live "My Project"

Product id: <yourID>

Product version: 1.0

7. If you don't have an IQFeed developer account, open iq link.exe , log in to IQLink with your username and

password, and then enter random numbers for the product id and version.

$ lean live "My Project"

Product id: 123

Product version: 1.0

8. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Supported Assets

Our IQFeed integration supports securities from the following asset classes:

US Equity

Forex (listed on FXCM)

US Option

Future

Live Trading > Data Feeds > Polygon

Data Feeds

Polygon

Introduction

Instead of using the data feed from your brokerage, you can also use Polygon . This tutorial demonstrates how to

set up the Polygon data feed with the QuantConnect Paper Trading brokerage.

Deploy Local Algorithms

Follow these steps to start local live trading with the Polygon data feed:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean live "<projectName>" to start a live deployment wizard for the project in . / <pro jectName>

and then enter a brokerage number.

$ lean live "My Project"

Select a brokerage:

1) Paper Trading

2) Interactive Brokers

3) Tradier

4) OANDA

5) Bitfinex

6) Coinbase Pro

7) Binance

8) Zerodha

9) Samco

10) Terminal Link

11) Atreyu

12) Trading Technologies

13) Kraken

14) TD Ameritrade

Enter an option: 1

3. Enter the number of the data feed to use and then follow the steps required for the data connection.

https://polygon.io/

$ lean live "My Project"

Select a data feed:

1) Interactive Brokers

2) Tradier

3) Oanda

4) Bitfinex

5) Coinbase Pro

6) Binance

7) Zerodha

8) Samco

9) Terminal Link

10) Kraken

11) TD Ameritrade

12) IQFeed

13) Polygon Data Feed

14) Custom data only

To enter multiple options, separate them with comma.:

4. Enter your Polygon API key.

$ lean live "My Project"

Configure credentials for Polygon Data Feed

Your Polygon data feed API Key:

To get your API key, see the API Keys page on the Polygon website.

5. View the result in the <projectName> / live / <timestamp> directory. Results are stored in real-time in

JSON format. You can save results to a different directory by providing the --output <path> option in step

2.

If you already have a live environment configured in your Lean configuration file , you can skip the interactive

wizard by providing the --environment <value> option in step 2. The value of this option must be the name of an

environment which has live-mode set to true .

Supported Assets

Our Polygon integration supports securities from the following asset classes:

Equity

Forex

Crypto (listed on Coinbase or Bitfinex)

https://polygon.io/dashboard/api-keys

Live Trading > Algorithm Control

Live Trading

Algorithm Control

Introduction

The algorithm control features let you adjust your algorithm while it executes live so that you can perform actions

that are not written in the project files. The control features let you intervene in the execution of your algorithm and

make adjustments. The control features that are available to you depend on if you deploy the algorithm on your

local machine or on the QuantConnect cloud servers.

Control Local Algorithms

While your local algorithms run, you can add security subscriptions, submit orders, adjust orders, and stop their

execution.

Add Security Subscriptions

You can manually create security subscriptions for your algorithm instead of calling the Add securityType

methods in your code files. If you add security subscriptions to your algorithm, you can place manual trades

without having to edit and redeploy the algorithm. To add security subscriptions, open a terminal in the

organization workspace that contains the project and then run lean live add-security "My Project" .

$ lean live add-security "My Project" --ticker "SPY" --market "usa" --security-type "equity"

For more information about the command options, see Options .

You can't manually remove security subscriptions.

Submit Orders

In local deployments, you can manually place orders instead of calling the automated methods in your project files.

You can use any order type that is supported by the brokerage that you used when deploying the algorithm. To

view the supported order types of your brokerage, see the Orders section of your brokerage model . Some

example situations where it may be helpful to place manual orders instead of stopping and redeploying the

algorithm include the following:

Your brokerage account had holdings in it before you deployed your algorithm

Your algorithm had bugs in it that caused it to purchase the wrong security

You want to add a hedge to your portfolio without adjusting the algorithm code

You want to rebalance your portfolio before the rebalance date

To submit orders, open a terminal in the organization workspace that contains the project and then run

https://www.quantconnect.com/docs/v2//writing-algorithms/reality-modeling/brokerages/key-concepts

lean live submit-order "My Project" .

$ lean live submit-order "My Project" --ticker "SPY" --market "usa" --security-type "equity" --order-
type "market" --quantity 10

For more information about the command options, see Options .

Update Orders

To update an existing order, open a terminal in the organization workspace that contains the project and then run

lean live update-order "My Project" .

$ lean live update-order "My Project" --order-id 1 --quantity 5

For more information about the command options, see Options .

Cancel Orders

To cancel an existing order, open a terminal in the organization workspace that contains the project and then run

lean live cancel-order "My Project" .

$ lean live cancel-order "My Project" --order-id 1

For more information about the command options, see Options .

Liqu idate Positions

To liquidate a specific asset in your algorithm, open a terminal in the organization workspace that contains the

project and then run lean live liquidate "My Project" .

$ lean live liquidate "My Project" --ticker "SPY" --market "usa" --security-type "equity"

When you run the command, if the market is open for the asset, the algorithm liquidates it with market orders. If the

market is not open, the algorithm places market on open orders.

For more information about the command options, see Options .

Stop Algorithms

The lean live stop command immediately stops your algorithm from executing. When you stop a live algorithm,

your portfolio holdings are retained. Stop your algorithm if you want to perform any of the following actions:

Update your project's code files

Update the settings you entered into the deployment command

Place manual orders through your brokerage account

Furthermore, if you receive new securities in your portfolio because of a reverse merger, you also need to stop and

redeploy the algorithm.

LEAN actively terminates live algorithms when it detects interference outside of the algorithm's control to avoid

conflicting race conditions between the owner of the account and the algorithm, so avoid manipulating your

brokerage account and placing manual orders on your brokerage account while your algorithm is running. If you

need to adjust your brokerage account holdings, stop the algorithm, manually place your trades, and then redeploy

the algorithm.

To stop an algorithm, open a terminal in the organization workspace that contains the project and then run

lean live stop "My Project" .

$ lean live stop "My Project"

For more information about the command options, see Options .

Control Cloud Algorithms

While your cloud algorithms run, you can liquidate their positions and stop their exeuction.

Liqu idate Positions

The lean cloud live liquidate command acts as a "kill switch" to sell all of your portfolio holdings. If your

algorithm has a bug in it that caused it to purchase a lot of securities that you didn't want, this command let's you

easily liquidate your portfolio instead of placing many manual trades. When you run the command, if the market is

open for an asset you hold, the algorithm liquidates it with market orders. If the market is not open, the algorithm

places market on open orders. After the algorithm submits the liquidation orders, it stops executing.

To stop an algorithm, open a terminal in the organization workspace that contains the project and then run

lean cloud live liquidate "My Project" .

$ lean cloud live liquidate "My Project"

For more information about the command options, see Options .

Stop Algorithms

The lean live stop command immediately stops your algorithm from executing. When you stop a live algorithm,

your portfolio holdings are retained. Stop your algorithm if you want to perform any of the following actions:

Update your project's code files

Update the settings you entered into the deployment command

Place manual orders through your brokerage account

Furthermore, if you receive new securities in your portfolio because of a reverse merger, you also need to stop and

redeploy the algorithm.

LEAN actively terminates live algorithms when it detects interference outside of the algorithm's control to avoid

conflicting race conditions between the owner of the account and the algorithm, so avoid manipulating your

brokerage account and placing manual orders on your brokerage account while your algorithm is running. If you

need to adjust your brokerage account holdings, stop the algorithm, manually place your trades, and then redeploy

the algorithm.

To stop an algorithm, open a terminal in the organization workspace that contains the project and then run

lean cloud live stop "My Project" .

$ lean cloud live stop "My Project"

For more information about the command options, see Options .

Reports

Reports

Introduction

The lean report command in the Lean CLI is a wrapper around the LEAN Report Creator. The LEAN Report

Creator is a program included with LEAN which allows you to quickly generate polished, professional-grade

reports of your backtests and live trading results. We hope that you can use these reports to share your strategy

performance with prospective investors.

Generate Reports

Follow these steps to generate a report of a trading algorithm:

1. Open a terminal in the organization workspace that contains the project.

2. Run lean report to generate a report of the most recent backtest.

$ lean report

20210322 20:03:48.718 TRACE:: QuantConnect.Report.Main(): Parsing source files...backtest-data-

source-file.json,

20210322 20:03:51.602 TRACE:: QuantConnect.Report.Main(): Instantiating report...

Successfully generated report to './report.html'

By default, the generated report is saved to . / report.html , although you can change this by providing a

custom path with the --report-destination <path> option. To generate a report of a backtest that is not

the most recent one, you can use the --backtest-results <path> option to specify the path to the backtest

results JSON file to generate a report for it.

3. Open the generated report in the browser and inspect its results.

You can also configure the following optional details:

Detail Description

Strategy name

This name is displayed in the top-right corner of each
page and can be configured using
--strategy-name <value> . This value defaults to
the name of the project directory.

Strategy version
This version is displayed next to the strategy name
and can be configured using
--strategy-version <value> .

Strategy description

This description is displayed underneath the
"Strategy Description" header on the first page and
can be configured using --strategy-description .
This value defaults to the description stored in the
project's configuration .

Live results

These results are displayed over the backtest results
and can be configured using
--live-results <path> . The provided path must
point to a JSON file containing live results. For
example,
--live-results "My Project/live/2022-03-17_10
-53-12/L-3578882079.json"
.

Key Statistics

The top of the backtest report displays statistics to summarize your algorithm's performance. The following table

describes the key statistics in the report:

Statistic Description

Runtime Days The number of days in the backtest or live trading
period.

Turnover The percentage of the algorithm's portfolio that was
replaced in a given year.

CAGR
The annual percentage return that would be required
to grow a portfolio from its starting value to its
ending value.

Markets The asset classes that the algorithm trades.

Trades per day

The total number of trades during the backtest
divided by the number of days in the backtest.
Trades per day is an approximation of the algorithm's
trading frequency.

Drawdown The largest peak to trough decline in an algorithm's
equity curve.

Probabilistic SR The probability that the estimated Sharpe ratio of an
algorithm is greater than a benchmark (1).

Sharpe Ratio A measure of the risk-adjusted return, developed by
William Sharpe.

Information Ratio The amount of excess return from the risk-free rate
per unit of systematic risk.

Strategy Capacity
The maximum amount of money an algorithm can
trade before its performance degrades from market
impact.

Returns

The backtest report displays charts to show the algorithm's returns per trade, per day, per month, per year, and the

cumulative returns over the backtest.

Returns per Trade

This chart displays a histogram that shows the distribution of returns per trade over the backtesting period.

Daily Returns

This chart displays the returns of each day. Blue bars represent profitable days and gray bars represent

unprofitable days.

Monthly Returns

This chart displays the return of each month. We convert the original equity curve series into a monthly series and

calculate the returns of each month. Green cells represent months with a positive return and red cells represent

months with a negative return. Months that have a greater magnitude of returns are represented with darker cells.

Yellow cells represent months with a relatively small gain or loss. White rectangles represent months that are not

included in the backtest period. The values in the cells are percentages.

Annual Returns

This chart displays the return of each year. We calculate the total return within each year and represent each year

with a blue bar. The red dotted line represents the average of the annual returns.

Cumulative Returns

This chart displays the cumulative returns of your algorithm. The blue line represents your algorithm and the gray

line represents the benchmark.

Asset Allocation

This chart displays a time-weighted average of the absolute holdings value for each asset that entered your

portfolio during the backtest. When an asset has a percentage that is too small to be shown in the pie chart, it is

incorporated into an "Others" category.

Drawdown

This chart displays the peak-to-trough drawdown of your portfolio's equity throughout the backtest period. The

drawdown of each day is defined as the percentage loss since the maximum equity value before the current day.

The drawdowns are calculated based on daily data. The top 5 drawdown periods are marked in the chart with

different colors.

Rolling Statistics

The backtest report displays time series for your portfolio's rolling beta and Sharpe ratio .

Rolling Portfo lio Beta

https://www.quantconnect.com/docs/v2//writing-algorithms/key-concepts/glossary#07-beta
https://www.quantconnect.com/docs/v2//writing-algorithms/key-concepts/glossary#24-Sharpe-ratio

This chart displays the rolling portfolio beta over trailing 6 and 12 month periods. The light blue line represents the

6 month period and the dark blue line represents the 12 month period.

Rolling Sharpe Ratio

This chart displays the rolling portfolio Sharpe ratio over trailing 6 and 12 month periods. The light blue line

represents the 6 month period and the dark blue line represents the 12 month period.

Exposure

The backtest report displays time series for your portfolio's overall leverage and your portfolio's long-short

exposure by asset class.

Leverage

This chart displays your algorithm's utilization of leverage over time.

Long-Short Exposure By Asset Class

This chart displays your algorithm's long-short exposure by asset class over time.

Crisis Events

This set of charts displays the cumulative returns of your algorithm and the benchmark during various historical

periods. The blue line represents the cumulative returns of your algorithm and the grey line represents the

cumulative return of the benchmark. The report only contains the crisis event that occurred during your algorithm's

backtest period. The following table shows the crisis events that may be included in your backtest report:

Cris is Name Start Date End Date

DotCom Bubble 2000 2/26/2000 9/10/2000

September 11, 2001 9/5/2001 10/10/2001

U.S. Housing Bubble 2003 1/1/2003 2/20/2003

Global Financial Crisis 2007 10/1/2007 12/1/2011

Flash Crash 2010 5/1/2010 5/22/2010

Fukushima Meltdown 2011 3/1/2011 4/22/2011

U.S. Credit Downgrade 2011 8/5/2011 9/1/2011

ECB IR Event 2012 9/5/2012 10/12/2012

European Debt Crisis 2014 10/1/2014 10/29/2014

Market Sell-Off 2015 8/10/2015 10/10/2015

Recovery 2010-2012 1/1/2010 10/1/2012

New Normal 2014-2019 1/1/2014 1/1/2019

COVID-19 Pandemic 2020 2/10/2020 9/20/2020

Optimization

Optimization

Optimization > Parameters

Optimization

Parameters

Introduction

Project parameters are parameters that are defined in your project's configuration file . These parameters are a

replacement for constants in your algorithm and can be optimized using one of LEAN's optimization strategies

either locally or in the cloud.

Configure Project Parameters

Follow these steps to make your algorithm use project parameters instead of constant values:

1. Open your project in your preferred editor.

2. Open the project's config. json file.

3. Add the required parameters in the parameters property. All keys and values of this object must be strings.

Example:

{

 "parameters": {

 "ema-fast": "10",

 "ema-medium": "30",

 "ema-slow": "50"

 }

}

4. Open your algorithm in the editor.

5. Call QCAlgorithm.GetParameter(name) in your algorithm to retrieve the string value of a parameter and use

that instead of constant values.

namespace QuantConnect.Algorithm.CSharp

{

 public class ParameterizedAlgorithm : QCAlgorithm

 {

 private ExponentialMovingAverage _fast;

 private ExponentialMovingAverage _medium;

 private ExponentialMovingAverage _slow;

 public override void Initialize()

 {

 SetStartDate(2020, 1, 1);

 SetCash(100000);

 AddEquity("SPY");

 var fastPeriod = GetParameter("ema-fast", 10);

 var mediumPeriod = GetParameter("ema-medium", 30);

 var slowPeriod = GetParameter("ema-slow", 50);

 _fast = EMA("SPY", fastPeriod);

 _medium = EMA("SPY", mediumPeriod);

 _slow = EMA("SPY", slowPeriod);

 }

 }

}

C#

Optimization > Deployment

Optimization

Deployment

Introduction

The Lean CLI supports optimizing a project's parameters on your local machine or in the cloud using LEAN's

powerful optimization strategies. Optimization is helpful when you want to find the best combination of parameters

to minimize or maximize a certain statistic, like the algorithm's Sharpe ratio or drawdown . If your run optimizations

in the cloud, you don't need your own powerful machine or data library.

Run Local Optimizations

Follow these steps to run a local optimization:

1. Set up your local data for all the data required by your project.

2. Convert your project to use project parameters instead of constants for all values that must be optimized.

3. Open a terminal in the organization workspace that contains the project.

4. Run lean optimize "<projectName>" to start optimizing the project in . / <pro jectName> . This command

starts an interactive wizard which lets you configure the optimizer.

$ lean optimize "My Project"

Select the optimization strategy to use:

1) Grid Search

2) Euler Search

Enter an option:

5. Enter the number of the optimization strategy to use. You can either choose for Grid Search, which runs

through all possible combinations of parameters, or for Euler Search, which performs an Euler-like which

gradually works towards smaller optimizations.

$ lean optimize "My Project"

Select the optimization strategy to use:

1) Grid Search

2) Euler Search

Enter an option: 1

6. Enter the number of the optimization target to use. The target specifies what statistic you want to optimize

and whether you want to minimize or maximize it.

https://www.quantconnect.com/docs/v2/writing-algorithms/key-concepts/glossary#27-Sharpe-ratio
https://www.quantconnect.com/docs/v2/writing-algorithms/key-concepts/glossary#11-drawdown

$ lean optimize "My Project"

Select an optimization target:

1) Sharpe Ratio (min)

2) Sharpe Ratio (max)

3) Compounding Annual Return (min)

4) Compounding Annual Return (max)

5) Probabilistic Sharpe Ratio (min)

6) Probabilistic Sharpe Ratio (max)

7) Drawdown (min)

8) Drawdown (max)

Enter an option: 2

7. For each parameter, enter whether you want to optimize it and what its values can be.

$ lean optimize "My Project"

Should the 'ema-fast' parameter be optimized? [Y/n]: y

Minimum value for 'ema-fast': 5

Maximum value for 'ema-fast': 10

Step size for 'ema-fast' [1.0]: 1

Should the 'ema-medium' parameter be optimized? [Y/n]: y

Minimum value for 'ema-medium': 25

Maximum value for 'ema-medium': 30

Step size for 'ema-medium' [1.0]: 1

Should the 'ema-slow' parameter be optimized? [Y/n]: y

Minimum value for 'ema-slow': 45

Maximum value for 'ema-slow': 50

Step size for 'ema-slow' [1.0]: 1

8. Enter the constraints of the optimization. An example optimization is "Drawdown <= 0.25", which discards all

parameter combinations resulting in a drawdown higher than 25%.

$ lean optimize "My Project"

Current constraints: None

Do you want to add a constraint? [y/N]: y

Select a constraint target:

1) Sharpe Ratio

2) Compounding Annual Return

3) Probabilistic Sharpe Ratio

4) Drawdown

Enter an option: 4

Select a constraint operator (<value> will be asked after this):

1) Less than <value>

2) Less than or equal to <value>

3) Greater than <value>

4) Greater than or equal to <value>

5) Equal to <value>

6) Not equal to <value>

Enter an option: 2

Set the <value> for the selected operator: 0.25

Current constraints: TotalPerformance.PortfolioStatistics.Drawdown <= 0.25

Do you want to add a constraint? [y/N]: n

After configuring the constraints the optimizer starts running.

9. View the results in the terminal after the optimizer finished. The logs contains the optimal parameter

combination.

$ lean optimize "My Project"

20220223 18:26:20.000 TRACE:: Program.Main(): Exiting Lean...

20220223 18:26:20.079 TRACE:: LeanOptimizer.TriggerOnEndEvent(OID 2313bbba-9c71-4b9e-8b91-

c70cc117b0c7): Optimization has ended. Result for Target: ['TotalPerformance'].

['PortfolioStatistics'].['SharpeRatio'] at: 3.6205: was reached using ParameterSet: (ema-

slow:47,ema-medium:26,ema-fast:5) backtestId '21c30000-dc5a-4dec-b75a-da5b1796ccba'.

Constraints: (['TotalPerformance'].['PortfolioStatistics'].['Drawdown'] 'LessOrEqual' 0.25)

Optimal parameters: ema-slow: 47, ema-medium: 26, ema-fast: 5

Successfully optimized 'My Project' and stored the output in 'My Project/optimizations/2021-03-

24_00-22-15'

10. View the individual backtest results in the <project> / optimizations / <timestamp> directory. Results are

stored in JSON files and can be analyzed in a local research environment . You can save results to a different

directory by providing the --output <path> option in step 4.

$ lean optimize "My Project" --output "My Project/custom-output"

20220223 18:28:20.000 TRACE:: Program.Main(): Exiting Lean...

20220223 18:28:20.079 TRACE:: LeanOptimizer.TriggerOnEndEvent(OID 1ac5e638-aae0-4aa9-80d4-

02c51bb7b84d): Optimization has ended. Result for Target: ['TotalPerformance'].

['PortfolioStatistics'].['SharpeRatio'] at: 3.6205: was reached using ParameterSet: (ema-

slow:47,ema-medium:26,ema-fast:5) backtestId 'e2aa3abf-bb60-4e91-a281-59c882ada62f'.

Constraints: (['TotalPerformance'].['PortfolioStatistics'].['Drawdown'] 'LessOrEqual' 0.25)

Optimal parameters: ema-slow: 47, ema-medium: 26, ema-fast: 5

Successfully optimized 'My Project' and stored the output in 'My Project/custom-output'

By default, local optimizations run in the LEAN engine in the quantconnect/lean Docker image. This Docker image

contains all the libraries available on QuantConnect , meaning your algorithm also has access to those libraries. If

the specified project is a C# project it is first compiled using the same Docker image. See Project Libraries to learn

how to use project libraries, and Custom Docker Images to learn how to build and use custom Docker images.

Run Cloud Optimizations

Follow these steps to run a cloud optimization:

1. Log in to the CLI if you haven't done so already.

2. Convert your project to use project parameters instead of constants for all values that must be optimized.

3. Open a terminal in the organization workspace that contains the project.

4. Run lean cloud optimize "<projectName>" --push to push . / <pro jectName> to the cloud and start

optimizing the project in the cloud.

$ lean cloud optimize "My Project" --push

[1/1] Pushing 'My Project'

Successfully updated cloud file 'My Project/main.py'

Started compiling project 'My Project'

Successfully compiled project 'My Project'

Select an optimization target:

1) Sharpe Ratio (min)

2) Sharpe Ratio (max)

3) Compounding Annual Return (min)

4) Compounding Annual Return (max)

5) Probabilistic Sharpe Ratio (min)

6) Probabilistic Sharpe Ratio (max)

7) Drawdown (min)

8) Drawdown (max)

Enter an option:

5. Enter the number of the optimization target to use. The target specifies what statistic you want to optimize

and whether you want to minimize or maximize it.

https://hub.docker.com/r/quantconnect/lean

$ lean cloud optimize "My Project" --push

Select an optimization target:

1) Sharpe Ratio (min)

2) Sharpe Ratio (max)

3) Compounding Annual Return (min)

4) Compounding Annual Return (max)

5) Probabilistic Sharpe Ratio (min)

6) Probabilistic Sharpe Ratio (max)

7) Drawdown (min)

8) Drawdown (max)

Enter an option: 2

6. For each parameter, enter whether you want to optimize it and what its values can be.

$ lean cloud optimize "My Project" --push

Should the 'ema-fast' parameter be optimized? [Y/n]: y

Minimum value for 'ema-fast': 1

Maximum value for 'ema-fast': 10

Step size for 'ema-fast' [1.0]: 1

Should the 'ema-slow' parameter be optimized? [Y/n]: y

Minimum value for 'ema-slow': 21

Maximum value for 'ema-slow': 30

Step size for 'ema-slow' [1.0]: 1

7. Enter the constraints of the optimization. An example optimization is "Drawdown <= 0.25", which discards all

parameter combinations resulting in a drawdown higher than 25%.

$ lean cloud optimize "My Project" --push

Current constraints: None

Do you want to add a constraint? [y/N]: y

Select a constraint target:

1) Sharpe Ratio

2) Compounding Annual Return

3) Probabilistic Sharpe Ratio

4) Drawdown

Enter an option: 4

Select a constraint operator (<value> will be asked after this):

1) Less than <value>

2) Less than or equal to <value>

3) Greater than <value>

4) Greater than or equal to <value>

5) Equal to <value>

6) Not equal to <value>

Enter an option: 2

Set the <value> for the selected operator: 0.25

Current constraints: TotalPerformance.PortfolioStatistics.Drawdown <= 0.25

Do you want to add a constraint? [y/N]: n

8. Enter the number of the optimization node type to use.

$ lean cloud optimize "My Project" --push

Select the optimization node type:

1) O2-8 (2 cores, 8 GB RAM) @ $0.15 per hour

2) O4-12 (4 cores, 12 GB RAM) @ $0.30 per hour

3) O8-16 (8 cores, 16 GB RAM) @ $0.60 per hour

Enter an option: 2

9. Enter the number of nodes that should run in parallel.

$ lean cloud optimize "My Project" --push

How many nodes should run in parallel (1-12) [6]: 10

10. Confirm the given input to start the optimizer.

$ lean cloud optimize "My Project" --push

Estimated number of backtests: 100

Estimated batch time: 8 minutes

Estimated batch cost: $0.38

Organization balance: 173,368 QCC ($1,733.68)

Do you want to start the optimization on the selected node type? [Y/n]: y

11. Inspect the optimal parameter combination and the full statistics of the backtest that ran with this

combination at the bottom of the logs when the optimizer has finished.

API Reference

API Reference

API Reference > lean backtest

API Reference

lean backtest

Introduction

Backtest a project locally using Docker.

$ lean backtest <project> [options]

Description

Runs a local backtest in a Docker container using the quantconnect/lean Docker image. The logs of the backtest

are shown in real-time and the full results are stored in the <project> / backtest / <timestamp> directory. You

can use the --output option to change the output directory.

The given <project> argument must be either a project directory or a file containing the algorithm to backtest. If it

is a project directory, the CLI looks for a main.py or Main.cs file, assuming the first file it finds to be the

algorithm to run.

If the --debug option is given, this command configures the Docker container in such a way to allow debugging

using your editor's debugger. The exact ways to get local debugging to work depends on your editor and

language, see Debugging for more information on how to set this up.

You can use the --data-provider option to change where the data is retrieved. This option updates the Lean

configuration file , so you don't need to use this option multiple times for the same data provider if you are not

switching between them. If you use the Terminal Link data provider, you must also provide the following options:

--terminal-link-environment

--terminal-link-server-host

--terminal-link-server-port

--terminal-link-openfigi-api-key

You can use the --download-data flag as an alias for --data-provider QuantConnect and the

--data-purchase-limit option to set the maximum amount of QuantConnect Credit (QCC) to spend during the

backtest when using QuantConnect as data provider. The --data-purchase-limit option is not persistent.

The Docker image that's used contains the same libraries as the ones available on QuantConnect . If the selected

https://hub.docker.com/r/quantconnect/lean
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/credit

project is a C# project, it is compiled before starting the backtest.

By default, the official LEAN engine image is used. You can override this using the --image <value> option.

Alternatively, you can set the default engine image for all commands using

lean config set engine-image <value> . The image is pulled before running the backtest if it doesn't exist

locally yet or if you pass the --update flag.

Arguments

The lean backtest command expects the following arguments:

Argument Description

<project> The path to the project directory or algorithm file to
backtest.

Options

The lean backtest command supports the following options:

Option Description

--output <path> Directory to store results in (defaults to <project> /
backtests / <timestamp>).

--detach , -d

Run the backtest in a detached Docker container and
return immediately. The name of the Docker
container is shown before the command ends. You
can use Docker's own commands to manage the
detached container.

--debug Enable a certain debugging method, see Debugging
for more information.

--data-provider <value>
Update the Lean configuration file to retrieve data
from the given provider, which must be Local ,
QuantConnect , or Terminal Link .

--download-data
Update the Lean configuration file to download data
from the QuantConnect API, alias for
--data-provider QuantConnect .

--data-purchase-limit <value>
The maximum amount of QCC to spend on
downloading data during the backtest when using
QuantConnect as data provider.

--terminal-link-environment <value> The environment to run in, which must be Production
or Beta .

--terminal-link-server-host <value> The host on which the Terminal Link server is running.

--terminal-link-server-port <value> The port on which the Terminal Link server is running.

--terminal-link-openfigi-api-key <value> The Open FIGI API key to use for mapping Options.

--image <value> The LEAN engine image to use (defaults to
quantconnect/lean:latest).

--python-venv <value> The path of the python virtual environment to use.

--update Pull the LEAN engine image before running the
backtest.

--no-update Use the local LEAN engine image instead of pulling
the latest version.

--lean-config <path> The Lean configuration file that should be used
(defaults to the nearest lean. json file).

--release Compile C# projects in release configuration instead
of debug.

--verbose Enable debug logging.

--help Display the help text of the lean backtest command
and exit.

Option Description

API Reference > lean build

API Reference

lean build

Introduction

Build Docker images of your own version of LEAN.

$ lean build [root] [options]

Description

Builds local Docker images of a local version of LEAN and sets them up for local usage with the CLI. After running

this command, all commands that run the LEAN engine or the research environment use your custom images. This

command performs the following actions:

1. The lean-cli/foundation:latest image is built from Lean / DockerfileLeanFoundation (if you're using

an AMD64-based system) or Lean / DockerfileLeanFoundationARM (if you're using an ARM64-based

system).

2. LEAN is compiled in a Docker container using the lean-cli/foundation:latest image.

3. The lean-cli/engine:latest image is built from Lean / Dockerfile using lean-cli/foundation:latest as

the base image.

4. The lean-cli/research:latest image is built from Lean / DockerfileJupyter using

lean-cli/engine:latest as the base image.

5. The default engine image is set to lean-cli/engine:latest .

6. The default research image is set to lean-cli/research:latest .

When the foundation Dockerfile is the same as the one used for the official foundation image, step 1 is skipped and

quantconnect/lean:foundation is used instead of lean-cli/foundation:latest .

Arguments

The lean build command expects the following arguments:

Argument Description

<lean> The path to the directory containing the LEAN
repository. Defaults to the current working directory.

Options

The lean build command supports the following options:

https://github.com/QuantConnect/Lean

Option Description

--tag <value> The tag to apply to custom images (defaults to
latest).

--verbose Enable debug logging.

--help Display the help text of the lean build command
and exit.

API Reference > lean cloud backtest

API Reference

lean cloud backtest

Introduction

Backtest a project in the cloud.

$ lean cloud backtest <project> [options]

Description

Runs a backtest for a cloud project. While running the backtest, a progress bar shows to keep you up-to-date on

the status of the backtest. After running the backtest, the resulting statistics and a link to the full results on

QuantConnect are logged. You can use the --open option to automatically open the full results in the browser after

the backtest has finished.

If you have a local copy of the cloud project, you can use the --push option to push local modifications to the

cloud before running the backtest.

Arguments

The lean cloud backtest command expects the following arguments:

Argument Description

<project> The name or Id of the project for which to run a
backtest.

Options

The lean cloud backtest command supports the following options:

Option Description

--name <value> The name of the backtest (a random one is
generated if not specified).

--push Push local modifications to the cloud before running
the backtest.

--open Automatically open the results in the browser when
the backtest is finished.

--verbose Enable debug logging.

--help Display the help text of the lean cloud backtest
command and exit.

API Reference > lean cloud live

API Reference

lean cloud live

Introduction

Start live trading for a project in the cloud.

$ lean cloud live <project> [options]

Description

Starts live trading for a cloud project. Before starting live trading, the CLI shows an interactive wizard letting you

configure the brokerage, the live node, and the notifications. After starting live trading, the CLI displays a URL to

the live results. You can use the --open flag to automatically open this URL in the browser once the deployment

starts.

If you specify the --brokerage option, the interactive wizard is skipped and the command runs in non-interactive

mode. In this mode, the command doesn't prompt for input or confirmation and reads all configuration from the

provided command-line options. In non-interactive mode, all options specific to the selected brokerage become

required, as well as --node , --auto-restart , --notify-order-events , and --notify-insights .

The following options are required for each brokerage in non-interactive mode:

--brokerage Required Options

"Paper Trading" N/A

"Binance"

--binance-exchange-name

--binance-api-key or --binanceus-api-key

--binance-api-secret or --binanceus-api-secret

--binance-use-testnet

"Bitfinex"

--bitfinex-api-key

--bitfinex-api-secret

--gdax-api-key

--gdax-api-secret

"Coinbase Pro"

--gdax-passphrase

--gdax-use-sandbox

"Interactive Brokers"

--ib-user-name

--ib-account

--ib-password

--ib-data-feed

"Kraken"

--kraken-api-key

--kraken-api-secret

--kraken-verification-tier

"OANDA"

--oanda-account-id

--oanda-access-token

--oanda-environment

"Samco"

--samco-client-id

--samco-client-password

--samco-year-of-birth

--samco-product-type

--samco-trading-segment

"TDAmeritrade"

--tdameritrade-api-key

--tdameritrade-access-token

--tdameritrade-account-number

"Tradier"

--tradier-account-id

--tradier-access-token

--tradier-environment

--tt-user-name

--brokerage Required Options

"Trading Technologies"

--tt-session-password

--tt-account-name

--tt-rest-app-key

--tt-rest-app-secret

--tt-rest-environment

--tt-order-routing-sender-comp-id

"Zerodha"

--zerodha-api-key

--zerodha-access-token

--zerodha-product-type

--zerodha-trading-segment

--zerodha-history-subscription

--brokerage Required Options

If you omit some of the required brokerage options when running in non-interactive mode, the CLI uses the option

values in your LEAN configuration file .

Example non-interactive usage:

$ lean cloud live "My Project" \
 --brokerage "Paper Trading" \
 --node "My Node" \
 --auto-restart yes
 --notify-order-events no \
 --notify-insights no \
 --push \
 --open

If you have a local copy of the cloud project, you can use the --push option to push local modifications to the

cloud before starting live trading.

Arguments

The lean cloud live command expects the following arguments:

Argument Description

<project> The name or Id of the project to start live trading.

Options

The lean cloud live command supports the following options:

Option Description

--brokerage <value> The brokerage to use when running in non-interactive
mode.

--binance-exchange-name <value> Binance or BinanceUS

--binance-api-key <value> Your Binance API key, which you can generate on the
API Management page on the Binance website.

--binanceus-api-key <value>
Your Binance US API key, which you can generate on
the API Management page on the Binance US
website.

--binance-api-secret <value> Your Binance API secret.

--binanceus-api-secret <value> Your Binance US API secret.

--binance-use-testnet <value> live to use the production environment or paper to
use the testnet.

--bitfinex-api-key <value> Your Bitfinex API key, which you can generate on the
API Management page on the Bitfinex website.

--bitfinex-api-secret <value> Your Bitfinex API secret.

--gdax-api-key <value> Your Coinbase API key, which you can generate on
the API settings page on the Coinbase website.

--gdax-api-secret <value> Your Coinbase API secret.

--gdax-passphrase <value> Your Coinbase API passphrase.

--gdax-use-sandbox <value> live to use the live trading environment or paper to
use the sandbox.

--ib-user-name <value> Your Interactive Brokers username (example:
trader777).

--ib-account <value> Your Interactive Brokers account Id (example:
DU1234567).

--ib-password <value> Your Interactive Brokers password.

--ib-data-feed <boolean>
Whether the Interactive Brokers price data feed must
be used instead of the one from QuantConnect (yes
or no).

--kraken-api-key <value> Your Kraken API key, which you can find on the API
Management Settings page on the Kraken website.

--kraken-api-secret <value> Your Kraken API secret.

https://www.binance.com/en/my/settings/api-management
https://www.binance.us/en/usercenter/settings/api-management
https://www.bitfinex.com/api
https://pro.coinbase.com/profile/api
https://www.quantconnect.com/docs/v2/cloud-platform/live-trading/data-feeds/brokerage-data-feeds/interactive-brokers
https://www.kraken.com/u/security/api

--kraken-verification-tier <value>

Your Kraken verification tier (Starter ,
Intermediate , or Pro). For more information about
verification tiers, see Verification levels explained on
the Kraken website.

--oanda-account-id <value>
Your OANDA account id, which you can find on your
Account Statement page on the OANDA website.

--oanda-access-token <value> Your OANDA API token, which you can generate on
the Manage API Access page on the OANDA website.

--oanda-environment <value> Practice to trade on fxTrade Practice or Trade to
trade on fxTrade.

--samco-client-id <value> Your Samco account Client ID.

--samco-client-password <value> Your Samco account password.

--samco-year-of-birth <value> Your year of birth (YYYY) registered with Samco.

--samco-product-type <value>

The product type, which must be mis if you are
targeting intraday products, cnc if you are targeting
delivery products, or nrml if you are targeting carry
forward products.

--samco-trading-segment <value>
The trading segment, which must be equity if you
are trading equities on NSE or BSE, or commodity if
you are trading commodities on MCX.

--tdameritrade-api-key <value> Your TDAmeritrade API key.

--tdameritrade-access-token <value> Your TDAmeritrade OAuth Access Token.

--tdameritrade-account-number <value> Your TDAmeritrade account number.

--tradier-account-id <value> Your Tradier account id, which you can find on your
Settings > API Access page on the Tradier website.

--tradier-access-token <value> Your Tradier access token.

--tradier-environment <value> live to use the live environment or paper to use the
developer sandbox.

--tt-user-name <value> Your Trading Technologies username.

--tt-session-password <value> Your Trading Technologies session password.

--tt-account-name <value> Your Trading Technologies account name.

--tt-rest-app-key <value> Your Trading Technologies REST app key.

--tt-rest-app-secret <value> Your Trading Technologies REST app secret.

Option Description

https://support.kraken.com/hc/en-us/articles/360001395743-Verification-levels-explained
https://www.oanda.com/account/statement/
https://www.oanda.com/account/tpa/personal_token
https://dash.tradier.com/settings/api

--tt-rest-environment <value> The REST environment in which to run.

--tt-order-routing-sender-comp-id <value> The order routing sender comp Id to use.

--zerodha-api-key <value> Your Kite Connect API key.

--zerodha-access-token <value> Your Zerodha access token.

--zerodha-product-type <value>

The product type, which must be mis if you are
targeting intraday products, cnc if you are targeting
delivery products, or nrml if you are targeting carry
forward products.

--zerodha-trading-segment <value>
The trading segment, which must be equity if you
are trading equities on NSE or BSE, or commodity if
you are trading commodities on MCX.

--zerodha-history-subscription <boolean> Whether you have a history API subscription for
Zerodha.

--node <value> The name or Id of the live node to run on.

--auto-restart <boolean> Whether automatic algorithm restarting must be
enabled.

--notify-order-events <boolean> Whether notifications must be sent for order events.

--notify-insights <boolean> Whether notifications must be sent for emitted
insights.

--notify-emails <email> <subject> A comma-separated list of "email:subject" pairs
configuring email-notifications.

--notify-webhooks <url> <headers>
A comma-separated list of
"url:HEADER_1=VALUE_1:HEADER_2=VALUE_2:etc"
pairs configuring webhook-notifications.

--notify-sms <value> A comma-separated list of phone numbers
configuring SMS notifications.

--notify-telegram <value>
A comma-separated list of "user/group
Id:token(optional)" pairs configuring telegram
notifications.

--live-cash-balance <value> A comma-separated list of "currency:amount" pairs
that define the initial cash balance.

--live-holdings <value>

A comma-separated list of
"symbol:symbolId:quantity:averagePrice" pairs that
define the initial portfolio holdings. For example,
"GOOG:GOOCV VP83T1ZUHROL:10:50.0" .

Option Description

https://kite.trade/

--push
Push local modifications to the cloud before starting
live trading.

--open Automatically open the live results in the browser
once the deployment starts.

--verbose Enable debug logging.

--help Display the help text of the lean cloud live
command and exit.

Option Description

API Reference > lean cloud live liquidate

API Reference

lean cloud live liquidate

Introduction

Stop live trading and liquidate existing positions for a certain project.

$ lean cloud live liquidate <project> [options]

Description

Arguments

The lean cloud live liquidate command expects the following arguments:

Argument Description

<project> The name or Id of the project to liquidate.

Options

The lean cloud live liquidate command supports the following options:

Option Description

--verbose Enable debug logging.

--help Display the help text of the
lean cloud live liquidate command and exit.

API Reference > lean cloud live stop

API Reference

lean cloud live stop

Introduction

Stop live trading a certain project without liquidating existing positions.

$ lean cloud live stop <project> [options]

Description

Arguments

The lean cloud live stop command expects the following arguments:

Argument Description

<project> The name or Id of the project to stop live trading.

Options

The lean cloud live stop command supports the following options:

Option Description

--verbose Enable debug logging.

--help Display the help text of the lean cloud live stop
command and exit.

API Reference > lean cloud optimize

API Reference

lean cloud optimize

Introduction

Optimize a project in the cloud.

$ lean cloud optimize <project> [options]

Description

Runs an optimization for a cloud project. While running the optimization, a progress bar shows to keep you up-to-

date on the status of the optimization. After running the optimization, the optimal parameters and the statistics of

the backtest with the optimal parameters are logged.

By default, an interactive wizard is shown, letting you configure the target, the parameters, the constraints, the

node type, and the number of parallel nodes. When --target is given the command runs in non-interactive mode

and does not prompt for input or confirmation.

When --target is given, the optimizer configuration is read from the command-line options. This means the

--target , --target-direction , --parameter , --node , and --parallel-nodes options become required.

Additionally, you can also use --constraint to specify optimization constraints.

In non-interactive mode, the parameters can be configured using the --parameter option. This option takes the

following values: the name of the parameter, its minimum value, its maximum value, and its step size. You can

provide this option multiple times to configure multiple parameters.

In non-interactive mode, the constraints can be configured using the --constraint option. This option takes a

"statistic operator value" string as value, where the statistic must be a path to a property in a backtest's output file,

like "TotalPerformance.PortfolioStatistics.SharpeRatio". This statistic can also be shortened to "SharpeRatio" or

"Sharpe Ratio", in which case, the command automatically converts it to the longer version. The value must be a

number and the operator must be < , > , <= , >= , == , or == . You can provide this option multiple times to configure

multiple constraints.

Example non-interactive usage:

$ lean cloud optimize "My Project" \
 --target "Sharpe Ratio" \
 --target-direction "max" \
 --parameter my-first-parameter 1 10 0.5 \
 --parameter my-second-parameter 20 30 5 \
 --constraint "Drawdown < 0.5" \
 --constraint "Sharpe Ratio >= 1" \
 --node O4-12 \
 --parallel-nodes 12 \
 --push

If you have a local copy of the cloud project, you can use the --push option to push local modifications to the

cloud before starting the optimization.

Arguments

The lean cloud optimize command expects the following arguments:

Argument Description

<project> The name or Id of the project to optimize.

Options

The lean cloud optimize command supports the following options:

Option Description

--target <value>

The path to the property in the backtest's output file
to target in non-interactive mode, like
"TotalPerformance.PortfolioStatistics.SharpeRatio".
May also be a shortened version, like "SharpeRatio"
or "Sharpe Ratio".

--target-direction <value> min if the target must be minimized, max if it must be
maximized.

--parameter <name> <min> <max> <step> The 'parameter min max step' pairs configuring the
parameters to optimize. May be used multiple times.

--constraint <value>
The 'statistic operator value' pairs configuring the
constraints of the optimization. May be used multiple
times.

--node <value> The node to optimize on, must O2-8 , O4-12 , or
O8-16 .

--parallel-nodes <value> The number of nodes to run in parallel.

--name <value> The name of the optimization (a random one is
generated if not specified).

--push Push local modifications to the cloud before starting
the optimization.

--verbose Enable debug logging.

--help Display the help text of the lean cloud optimize
command and exit.

API Reference > lean cloud pull

API Reference

lean cloud pull

Introduction

Pull projects from QuantConnect to the local drive.

$ lean cloud pull [options]

Description

Pulls projects from QuantConnect to your local directory while preserving the directory structure of your projects

on QuantConnect. The project's files, description, and parameters are pulled from the cloud. By default, all cloud

projects are pulled from the organization that's linked to your current organization workspace . If you provide a

--project option, you only pull a single project from the cloud.

Before pulling a cloud project, the CLI checks if the local directory with the same path already exists. If it does and

the local directory is not linked to the cloud project (because of an earlier lean cloud pull or lean cloud push),

the CLI skips pulling the cloud project and logs a descriptive warning message.

If you have a local copy of a project when you pull it from the cloud, local files that don't exist in the cloud are not

deleted, but the configuration values of your cloud project overwrite the configuration values of the local version .

If you have renamed the project in the cloud, when you pull the project from the cloud, the local project is renamed

to match the name of the cloud project.

If one of your team members creates a project library , adds it to a project, and then adds you as a collaborator to

the project, you can pull the project but not the library. To pull the library as well, your team member must add you

as a collaborator on the library project.

Options

The lean cloud pull command supports the following options:

Option Description

--project <value> The name or Id of the cloud project to pull (all your
cloud projects in the organization if not specified).

--pull-bootcamp Pull Boot Camp projects (disabled by default).

--verbose Enable debug logging.

--help Display the help text of the lean cloud pull
command and exit.

API Reference > lean cloud push

API Reference

lean cloud push

Introduction

Push local projects to QuantConnect.

$ lean cloud push [options]

Description

Pushes local projects to QuantConnect while preserving the directory structure of your local projects. The project's

files, description, and parameters are pushed to the cloud. By default, all local projects in your current organization

workspace directory are pushed. If you provide a --project option, you only push a single project to the cloud.

Before pushing a local project, the CLI checks if the cloud project with the same path already exists. If it does and

the cloud project is not linked to the local project (because of an earlier lean cloud pull or lean cloud push),

the CLI adds a 1 to the end of the name of your local project and then pushes it to the cloud. If the cloud project

doesn't exist yet, the CLI creates it for you and pushes the contents of the local project to the newly created cloud

project.

If you have a cloud copy of a project when you push it from your local machine, files in the cloud which don't exist

locally are deleted and the configuration values of your local project overwrite the configuration values of the

cloud version. If you have renamed the project on your local machine or in the cloud before you push, the cloud

project is renamed to match the name of the local project.

Options

The lean cloud push command supports the following options:

Option Description

--project <path>
Path to the local project to push (all local projects in
your current organization workspace if not
specified).

--verbose Enable debug logging.

--help Display the help text of the lean cloud push
command and exit.

API Reference > lean cloud status

API Reference

lean cloud status

Introduction

Show the live trading status of a project in the cloud.

$ lean cloud status <project> [options]

Description

Shows the live status of a cloud project. Displays the project id, project name, project URL, and live status. If the

project has been deployed before, it also shows the deployment id, results URL, brokerage, and when it launched. If

the project has been stopped, it also shows when it was stopped and the error that caused it, if there is one.

Arguments

The lean cloud status command expects the following arguments:

Argument Description

<project> The name or Id of the cloud project for which to
show the status.

Options

The lean cloud status command supports the following options:

Option Description

--verbose Enable debug logging.

--help Display the help text of the lean cloud status
command and exit.

API Reference > lean config get

API Reference

lean config get

Introduction

Get the current value of a configurable option.

$ lean config get <key> [options]

Description

Prints the value of the requested option or aborts if the value is not set.

This command doesn't print the values of credentials for security reasons. Open the credentials file in your global

configuration directory to see your stored credentials.

Arguments

The lean config get command expects the following arguments:

Argument Description

<key> The key of the value to retrieve. Run
lean config list to get a list of all available keys.

Options

The lean config get command supports the following options:

Option Description

--verbose Enable debug logging.

--help Display the help text of the lean config get
command and exit.

API Reference > lean config list

API Reference

lean config list

Introduction

List the configurable options and their current values.

$ lean config list [options]

Description

Displays a table containing all configurable options and their current values. Credentials are masked with asterisks

for security reasons.

Options

The lean config list command supports the following options:

Option Description

--verbose Enable debug logging.

--help Display the help text of the lean config list
command and exit.

API Reference > lean config set

API Reference

lean config set

Introduction

Set a configurable option.

$ lean config set <key> <value> [options]

Description

Updates the value of a configurable option in your global configuration directory. The command aborts with a

descriptive error message if the given value is invalid for the given key.

The following keys can be set:

Key Description

user-id The user Id used when making authenticated requests
to the QuantConnect API.

api-token The API token used when making authenticated
requests to the QuantConnect API.

default-language The default language used when creating new
projects (must be either python or csharp).

engine-image The Docker image used when running the LEAN
engine (quantconnect/lean:latest if not set).

research-image
The Docker image used when running the research
environment (quantconnect/research:latest if not
set).

Arguments

The lean config set command expects the following arguments:

Argument Description

<key> The key of the option to update.

<value> The new value for the option with the given key.

Options

The lean config set command supports the following options:

Option Description

--verbose Enable debug logging.

--help Display the help text of the lean config set
command and exit.

API Reference > lean config unset

API Reference

lean config unset

Introduction

Unset a configurable option.

$ lean config unset <key> [options]

Description

Unsets the value of a configurable option in your global configuration directory. The command aborts with a

descriptive error message if the given value is invalid for the given key.

Arguments

The lean config unset command expects the following arguments:

Argument Description

<key> The key of the option to unset.

Options

The lean config unset command supports the following options:

Option Description

--verbose Enable debug logging.

--help Display the help text of the lean config unset
command and exit.

API Reference > lean data download

API Reference

lean data download

Introduction

Purchase and download data from QuantConnect Datasets.

$ lean data download [options]

Description

Lets you purchase and download data from QuantConnect Datasets. This command performs the following actions:

1. An interactive wizard is shown allowing you to configure exactly which data you want to download.

2. You are asked to accept the CLI API Access and Data Agreement in your web browser.

3. You are asked to confirm the purchase one last time.

4. The CLI downloads the requested files while charging the organization that's linked to your current

organization workspace.

The available datasets and their pricing can be found in QuantConnect Datasets . Data is priced on a per-file per-

download basis, meaning you pay a certain number of QuantConnect Credits (QCC) for each file you download.

The required QCC is deducted from your organization's QCC balance when a file is downloaded. If you force-quit

the command before it downloaded all requested files, you are not charged for the files you didn't download.

When --dataset is given, the command runs in non-interactive mode and several steps in the preceding list are

skipped. Instead, the command reads the downloading configuration from the given command-line options. In this

mode, the --dataset option is required, as well as all options specific to the selected dataset.

Example non-interactive usage:

$ lean data download \
 --dataset "Bitfinex Crypto Price Data" \
 --data-type "Trade" \
 --ticker "BTCUSDT" \
 --resolution "Daily" \
 --start "20201208" \
 --end "20221208"

In case the local data already exists, a warning is logged and you are given the choice of whether you want to

enable overwriting existing data or not. Use the --overwrite flag to override this behavior and enable overwriting

existing data in all such cases.

Options

https://www.quantconnect.com/datasets
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/credit

The lean data download command supports the following options:

Option Description

--dataset <value> The name of the dataset to download data from in
non-interactive mode.

--overwrite Overwrite existing local data.

--verbose Enable debug logging.

--help Display the help text of the lean data download
command and exit.

API Reference > lean data generate

API Reference

lean data generate

Introduction

Generate realistic market data.

$ lean data generate [options]

Description

Runs the random data generator in the LEAN ToolBox to generate realistic market data using a Brownian motion

model. Requires --start <yyyyMMdd> and --symbol-count <amount> to be set. The rest of the options have

default values.

If --end <yyyyMMdd> isn't set, data is generated from the start date until the current date. If the --end option is set,

data is generated between the given --start and --end values (inclusive).

By default, dense data is generated, which means the generated data contains at least one data point per

resolution step. You can use --data-density Sparse to change this to at least one data point per 5 resolution

steps, or --data-density VerySparse to change it to at least one data point per 50 resolution steps.

If the security type is set to Equity , this command will automatically generate map files, factor files, and coarse

universe data. To not generate coarse universe data, set the --include-coarse option to false .

The following combinations of security types and resolutions are supported:

Security Type
Supported Resolutions

Tick Second Minute Hour Daily

Equity

Forex

CFD

Future

Crypto

Option

By default, the official LEAN engine image is used. You can override this using the --image <value> option.

Alternatively, you can set the default engine image for all commands using

lean config set engine-image <value> . The image is pulled before running the random data generator if it

doesn't exist locally yet or if you pass the --update flag.

Options

The lean data generate command supports the following options:

Option Description

--start <yyyyMMdd> The inclusive start date for the data to generate in
yyyyMMdd format. Must be at least 19980101 .

--end <yyyyMMdd> The inclusive end date for the data to generate in
yyyyMMdd format (defaults to today).

--symbol-count <value>
The number of symbols for which to generate data.
This value is ignored if you provide the --tickers
option.

--tickers <value> Comma-separated list of tickers to use for
generating data.

--security-type <value>
The security type for which to generate data
(defaults to Equity). Must be Equity , Forex , Cfd ,
Future , Crypto or Option .

--resolution <value>

The resolution of the generated data (defaults to
Minute). Must be Tick , Second , Minute , Hour or
Daily . See the description for the supported
combinations of security types and resolutions.

--data-density <value>

The density of the generated data (defaults to Dense
). Must be Dense (at least one data point per
resolution step), Sparse (at least one data point per
5 resolution steps), or VerySparse (at least one data
point per 50 resolution steps).

--include-coarse <true/false> Whether coarse universe data must be generated for
Equity data (defaults to true).

--market <market>
The market for which to generate data. This option
defaults to LEAN's default market for the requested
security type.

--image <value> The LEAN engine image to use (defaults to
quantconnect/lean:latest).

--update Pull the LEAN engine image before running the
generator.

--lean-config <path> The Lean configuration file that should be used
(defaults to the nearest lean. json file).

--verbose Enable debug logging.

--help Display the help text of the lean data generate
command and exit.

API Reference > lean init

API Reference

lean init

Introduction

Scaffold a Lean configuration file and data directory.

$ lean init [options]

Description

Fills the current directory with all the files needed to get going. It'll create a Lean configuration file and a data

directory containing some sample data. To view a full list of the created files, see Directory Structure .

Options

The lean init command supports the following options:

Option Description

--organization <value> The name or Id of the organization to link with the
organization workspace.

--language <value> , -l <value> The default language of new projects (python or
csharp).

--verbose Enable debug logging.

--help Display the help text of the lean init command and
exit.

API Reference > lean library add

API Reference

lean library add

Introduction

Add a custom library to a project.

$ lean library add <project> <name> [options]

Description

Adds a third-party or project library to a project so you can use it in local backtesting, local live trading, local

optimizations, and the local research environment. Additionally, this command updates your local environment so

you get autocomplete on the libraries.

C# libraries are added to your C# project file (the file ending in .cspro j). If dotnet is on your PATH and

--no-local is not given, the CLI also restores all dependencies using dotnet restore to make local autocomplete

work.

Third-party Python libraries are added to your project's requ irements.txt file. If pip is on your PATH and

--no-local is not given, the CLI also installs the Python package in your local Python environment to make local

autocomplete work.

If --version is not given, the package is pinned to the latest compatible version. For C# projects, this is the latest

available version. For Python projects, this is the latest version compatible with Python 3.8 (which is what the

Docker images use).

If --version is given and the project is a Python project, the CLI will additionally check whether the given version

is compatible with Python 3.6. If this is not the case, the command aborts because libraries incompatible with

Python 3.8 cannot be installed in the official Docker images.

If you add a project library to the project, the name and path of the library is added to the project configuration file

.

Arguments

The lean library add command expects the following arguments:

Argument Description

<project> The path to the project directory.

<name>

For third-party C# libraries, the name of the NuGet
package to add. For third-party Python libraries, the
name of the PyPI package to add. For project
libraries, the path to the library in the Library
directory of your organization workspace .

Options

The lean library add command supports the following options:

Option Description

--version <value> The version of the package to add to the project
(defaults to the latest compatible version).

--no-local Skip making changes to the local environment.

--verbose Enable debug logging.

--help Display the help text of the lean library add
command and exit.

API Reference > lean library remove

API Reference

lean library remove

Introduction

Remove a custom library from a project.

$ lean library remove <project> <name> [options]

Description

Removes a library from a project. This command can remove libraries that are added using lean library add , as

well as libraries that were manually added to the C# project file or a Python project's requ irements.txt file.

C# libraries are removed from your C# project file (the file ending in .cspro j). If dotnet is on your PATH and

--no-local is not given, the CLI also restores all dependencies using dotnet restore .

Third-party Python libraries are removed from your project's requ irements.txt file.

Project libraries are removed from your project configuration file .

Arguments

The lean library remove command expects the following arguments:

Argument Description

<project> The path to the project directory.

<name>

For third-party C# libraries, the name of the NuGet
package to remove. For third-party Python libraries,
the name of the PyPI package to remove. For project
libraries, the path to the library in the Library
directory of your organization workspace .

Options

The lean library remove command supports the following options:

Option Description

--no-local Skip making changes to the local environment.

--verbose Enable debug logging.

--help Display the help text of the lean library remove
command and exit.

API Reference > lean live

API Reference

lean live

Introduction

Start live trading a project locally using Docker.

$ lean live <project> [options]

Description

Starts local live trading in a Docker container using the quantconnect/lean Docker image. The logs of the algorithm

are shown in real-time and the full results are stored in the <project> / live / <timestamp> directory. You can

use the --output option to change the output directory.

The given <project> argument must be either a project directory or a file containing the algorithm to backtest. If it

is a project directory, the CLI looks for a main.py or Main.cs file, assuming the first file it finds to contain the

algorithm to run.

By default, an interactive wizard is shown letting you configure the brokerage and data feed to use. When

--environment , --brokerage , or --data-feed is given, the command runs in non-interactive mode and does not

prompt for input.

When the --environment option is given, the environment with the given name is used. The given environment

must be one of the live environments stored in your Lean configuration file . This means the environment must have

the live-mode property set to true .

When --brokerage or --data-feed is given, the live configuration is read from the command-line options. In case

a required option has not been provided, the command falls back to the property with the same name in your Lean

configuration file. The command aborts if this property also hasn't been set. The required options depend on the

selected brokerage or data feed.

The following options are required for each brokerage in non-interactive mode:

--brokerage Required Options

"Paper Trading" N/A

--binance-exchange-name

--binance-api-key or --binanceus-api-key

https://hub.docker.com/r/quantconnect/lean

"Binance"

--binance-api-secret or --binanceus-api-secret

--binance-use-testnet

"Bitfinex"

--bitfinex-api-key

--bitfinex-api-secret

"Coinbase Pro"

--gdax-api-key

--gdax-api-secret

--gdax-passphrase

--gdax-use-sandbox

"Interactive Brokers
"

--ib-user-name

--ib-account

--ib-password

"Kraken"

--kraken-api-key

--kraken-api-secret

--kraken-verification-tier

"OANDA"

--oanda-account-id

--oanda-access-token

--oanda-environment

"Samco"

--samco-client-id

--samco-client-password

--samco-year-of-birth

--samco-product-type

--samco-trading-segment

"TDAmeritrade"

--tdameritrade-api-key

--tdameritrade-access-token

--tdameritrade-account-number

--brokerage Required Options

"Terminal Link"

--terminal-link-environment

--terminal-link-server-host

--terminal-link-server-port

--terminal-link-emsx-broker

--terminal-link-openfigi-api-key

"Tradier"

--tradier-account-id

--tradier-access-token

--tradier-environment

"Trading Technologie
s"

--tt-user-name

--tt-session-password

--tt-account-name

--tt-rest-app-key

--tt-rest-app-secret

--tt-rest-environment

--tt-market-data-sender-comp-id

--tt-market-data-target-comp-id

--tt-market-data-host

--tt-market-data-port

--tt-order-routing-sender-comp-id

--tt-order-routing-target-comp-id

--tt-order-routing-host

--tt-order-routing-port

--tt-log-fix-messages

--zerodha-api-key

--zerodha-access-token

--brokerage Required Options

"Zerodha"

--zerodha-product-type

--zerodha-trading-segment

--brokerage Required Options

The --data-feed option is required. The following table shows the available data feeds and their required options

in non-interactive mode:

--data-feed Required Options

"Binance"

--binance-exchange-name

--binance-api-key or --binanceus-api-key

--binance-api-secret or --binanceus-api-secret

"Bitfinex" All options required by --brokerage "Bitfinex" .

"Coinbase Pro"

--gdax-api-key

--gdax-api-secret

--gdax-passphrase

"Custom data only" N/A

"Interactive Brokers
"

All options required by --brokerage "Interactive Brokers" .

--ib-enable-delayed-streaming-data

"IQFeed"

--iqfeed-iqconnect

--iqfeed-username

--iqfeed-password

--iqfeed-product-name

--iqfeed-version

"Kraken" All options required by --brokerage "Kraken" .

"OANDA"

--oanda-account-id

--oanda-access-token

"Polygon Data Feed" --polygon-api-key

"Samco" All options required by --brokerage "Samco" .

"TDAmeritrade" All options required by --brokerage "TDAmeritrade" .

"Terminal Link" All options required by --brokerage "Terminal Link" .

"Tradier"

--tradier-account-id

--tradier-access-token

"Zerodha"

All options required by --brokerage "Zerodha" .

--zerodha-history-subscription

--data-feed Required Options

If you omit some of the required brokerage or data feed options when running in non-interactive mode, the CLI

uses the option values in your LEAN configuration file .

Example non-interactive usage:

$ lean live "My Project" \
 --brokerage "Paper Trading" \
 --data-feed "Interactive Brokers" \
 --ib-user-name "trader777" \
 --ib-account "DU1234567" \
 --ib-password "hunter2" \
 --ib-enable-delayed-streaming-data yes

The Docker image that is used contains the same libraries as the ones available on QuantConnect . If the selected

project is a C# project, it is compiled before starting live trading.

By default, the official LEAN engine image is used. You can override this using the --image <value> option.

Alternatively, you can set the default engine image for all commands using

lean config set engine-image <value> . The image is pulled before starting the local live trading if it doesn't

exist locally yet or if you pass the --update flag.

Arguments

The lean live command expects the following arguments:

Argument Description

<project> The path to the project directory or algorithm file to
start local live trading.

Options

The lean live command supports the following options:

Option Description

--environment <value> The name of the environment in the Lean
configuration file to use.

--output <path> Directory to store results in (defaults to <project> /
live / <timestamp>).

--detach , -d

Run the live deployment in a detached Docker
container and return immediately. The name of the
Docker container is shown before the command
ends. You can use Docker's own commands to
manage the detached container.

--brokerage <value> The brokerage to use when running in non-interactive
mode.

--data-feed <value> The data feed to use when running in non-interactive
mode.

--data-provider <value> Update the Lean configuration file to retrieve data
from the given provider (QuantConnect or Local).

--binance-exchange-name <value> Binance or BinanceUS

--binance-api-key <value> Your Binance API key, which you can generate on the
API Management page on the Binance website.

--binanceus-api-key <value>
Your Binance US API key, which you can generate on
the API Management page on the Binance US
website.

--binance-api-secret <value> Your Binance API secret.

--binanceus-api-secret <value> Your Binance US API secret.

--binance-use-testnet <value> live to use the production environment or paper to
use the testnet.

--bitfinex-api-key <value> Your Bitfinex API key, which you can generate on the
API Management page on the Bitfinex website.

--bitfinex-api-secret <value> Your Bitfinex API secret.

--gdax-api-key <value> Your Coinbase API key, which you can generate on
the API settings page on the Coinbase website.

--gdax-api-secret <value> Your Coinbase API secret.

--gdax-passphrase <value> Your Coinbase API passphrase.

--gdax-use-sandbox <value> live to use the live trading environment or paper to
use the sandbox.

Option Description

https://www.binance.com/en/my/settings/api-management
https://www.binance.us/en/usercenter/settings/api-management
https://www.bitfinex.com/api
https://pro.coinbase.com/profile/api

--ib-user-name <value> Your Interactive Brokers username (example:
trader777).

--ib-account <value> Your Interactive Brokers account Id (example:
DU1234567).

--ib-password <value> Your Interactive Brokers password.

--ib-enable-delayed-streaming-data <boolean>
Whether delayed data may be used when your
algorithm subscribes to a security for which you
don't have a market data subscription.

--iqfeed-iqconnect <path> The path to your IQConnect binary.

--iqfeed-username <value> Your IQFeed username.

--iqfeed-password <value> Your IQFeed password.

--iqfeed-product-name <value> The product name of your IQFeed developer account.

--iqfeed-version <value> The product version of your IQFeed developer
account.

--kraken-api-key <value> Your Kraken API key, which you can find on the API
Management Settings page on the Kraken website.

--kraken-api-secret <value> Your Kraken API secret.

--kraken-verification-tier <value>

Your Kraken verification tier (Starter ,
Intermediate , or Pro). For more information about
verification tiers, see Verification levels explained on
the Kraken website.

--oanda-account-id <value> Your OANDA account id, which you can find on your
Account Statement page on the OANDA website.

--oanda-access-token <value> Your OANDA API token, which you can generate on
the Manage API Access page on the OANDA website.

--oanda-environment <value> Practice to trade on fxTrade Practice or Trade to
trade on fxTrade.

--polygon-api-key <value> Your Polygon data feed API Key.

--samco-client-id <value> Your Samco account Client ID.

--samco-client-password <value> Your Samco account password.

--samco-year-of-birth <value> Your year of birth (YYYY) registered with Samco.

Option Description

https://www.kraken.com/u/security/api
https://support.kraken.com/hc/en-us/articles/360001395743-Verification-levels-explained
https://www.oanda.com/account/statement/
https://www.oanda.com/account/tpa/personal_token

--samco-product-type <value>

The product type, which must be mis if you are
targeting intraday products, cnc if you are targeting
delivery products, or nrml if you are targeting carry
forward products.

--samco-trading-segment <value>
The trading segment, which must be equity if you
are trading equities on NSE or BSE, or commodity if
you are trading commodities on MCX.

--tdameritrade-api-key <value> Your TDAmeritrade API key.

--tdameritrade-access-token <value> Your TDAmeritrade OAuth Access Token.

--tdameritrade-account-number <value> Your TDAmeritrade account number.

--terminal-link-environment <value> The environment to run in, which must be Production
or Beta .

--terminal-link-server-host <value> The host on which the Terminal Link server is running.

--terminal-link-server-port <value> The port on which the Terminal Link server is running.

--terminal-link-emsx-broker <value> The EMSX broker to use.

--terminal-link-emsx-account <value> The EMSX account to use (optional).

--terminal-link-openfigi-api-key <value> The Open FIGI API key to use for mapping Options.

--tradier-account-id <value> Your Tradier account id, which you can find on your
Settings > API Access page on the Tradier website.

--tradier-access-token <value> Your Tradier access token.

--tradier-environment <value> live to use the live environment or paper to use the
developer sandbox.

--tt-user-name <value> Your Trading Technologies username.

--tt-session-password <value> Your Trading Technologies session password.

--tt-account-name <value> Your Trading Technologies account name.

--tt-rest-app-key <value> Your Trading Technologies REST app key.

--tt-rest-app-secret <value> Your Trading Technologies REST app secret.

--tt-rest-environment <value> The REST environment in which to run.

--tt-market-data-sender-comp-id <value> The market data sender comp Id to use.

--tt-market-data-target-comp-id <value> The market data target comp Id to use.

Option Description

https://dash.tradier.com/settings/api

--tt-market-data-host <value> The host of the market data server.

--tt-market-data-port <value> The port of the market data server.

--tt-order-routing-sender-comp-id <value> The order routing sender comp Id to use.

--tt-order-routing-target-comp-id <value> The order routing target comp Id to use.

--tt-order-routing-host <value> The host of the order routing server.

--tt-order-routing-port <value> The port of the order routing server.

--tt-log-fix-messages <boolean> Whether FIX messages should be logged.

--zerodha-api-key <value> Your Kite Connect API key.

--zerodha-access-token <value> Your Zerodha access token.

--zerodha-product-type <value>

The product type, which must be mis if you are
targeting intraday products, cnc if you are targeting
delivery products, or nrml if you are targeting carry
forward products.

--zerodha-trading-segment <value>
The trading segment, which must be equity if you
are trading equities on NSE or BSE, or commodity if
you are trading commodities on MCX.

--zerodha-history-subscription <boolean> Whether you have a history API subscription for
Zerodha.

--live-cash-balance <value> A comma-separated list of currency:amount pairs
that define the initial cash balance.

--live-holdings <value>

A comma-separated list of
"symbol:symbolId:quantity:averagePrice" pairs that
define the initial portfolio holdings. For example,
"GOOG:GOOCV VP83T1ZUHROL:10:50.0" .

--image <value> The LEAN engine image to use (defaults to
quantconnect/lean:latest).

--python-venv <value> The path of the python virtual environment to use.

--update Pull the LEAN engine image before starting live
trading.

--no-update Use the local LEAN engine image instead of pulling
the latest version.

--lean-config <path> The Lean configuration file that should be used
(defaults to the nearest lean. json file).

Option Description

https://kite.trade/

--release Compile C# projects in release configuration instead
of debug.

--verbose Enable debug logging.

--help Display the help text of the lean live command and
exit.

Option Description

API Reference > lean live add-security

API Reference

lean live add-security

Introduction

Add a security subscription to a local live algorithm.

$ lean live add-security <project> [options]

Description

Arguments

The lean live add-security command expects the following arguments:

Argument Description

<project> The path to the project directory or algorithm file to
which you want to add the security.

Options

The lean live add-security command supports the following options:

Option Description

--ticker <value> The ticker of the symbol to add.

--market <value> The market of the symbol to add.

--security-type <value> The security type of the symbol to add.

--resolution <value> The resolution of the symbol to add. Defaults to
"Minute .

--fill-data-forward <boolean> The fill forward behavior. true to fill forward or
false to not fill forward. Defaults to true .

--leverage <value> The leverage for the security. Defaults to 2 for
Equity, 50 for Forex, and 1 for everything else.

--extended-market-hours <boolean>
The extended market hours flag. true to allow
pre/post market data or false for only in market
data. Defaults to false

--lean-config <value>
The Lean configuration file that should be used
(defaults to the nearest lean. json).

--verbose Enable debug logging.

--help Display the help text of the
lean live add-security command and exit.

API Reference > lean live cancel-order

API Reference

lean live cancel-order

Introduction

Cancel an order with a specific Id in a local live trading project.

$ lean live cancel-order <project> [options]

Description

Arguments

The lean live cancel-order command expects the following arguments:

Argument Description

<project> The path to the project directory or algorithm file
that contains the order you want to cancel.

Options

The lean live cancel-order command supports the following options:

Option Description

--order-id <value> The Id of the order to cancel.

--lean-config <value> The Lean configuration file that should be used
(defaults to the nearest lean. json).

--verbose Enable debug logging.

--help Display the help text of the
lean live cancel-order command and exit.

API Reference > lean live liquidate

API Reference

lean live liquidate

Introduction

Liquidate a specific symbol from the latest local deployment of a project.

$ lean live liquidate <project> [options]

Description

Arguments

The lean live liquidate command expects the following arguments:

Argument Description

<project> The path to the project directory or algorithm file to
liquidate.

Options

The lean live update-order command supports the following options:

Option Description

--ticker <value> The ticker of the symbol to liquidate.

--market <value> The market of the symbol to liquidate.

--security-type <value> The security type of the symbol to liquidate.

--lean-config <value> The Lean configuration file that should be used
(defaults to the nearest lean. json).

--verbose Enable debug logging.

--help Display the help text of the lean live liquidate
command and exit.

API Reference > lean live stop

API Reference

lean live stop

Introduction

Stop a local live trading algorithm.

$ lean live stop <project> [options]

Description

Arguments

The lean live stop command expects the following arguments:

Argument Description

<project> The path to the project directory or algorithm file to
stop live trading.

Options

The lean live stop command supports the following options:

Option Description

--lean-config <value> The Lean configuration file that should be used
(defaults to the nearest lean. json).

--verbose Enable debug logging.

--help Display the help text of the lean live stop
command and exit.

API Reference > lean live submit-order

API Reference

lean live submit-order

Introduction

Submit an order in a local live trading project.

$ lean live submit-order <project> [options]

Description

Arguments

The lean live submit-order command expects the following arguments:

Argument Description

<project> The path to the project directory or algorithm file in
which you want to submit the order.

Options

The lean live submit-order command supports the following options:

Option Description

--ticker <value> The ticker for the order.

--market <value> The market for the order.

--security-type <value> The security type for the order.

--order-type <value> The type of the order.

--quantity <value> The number of units to be ordered (directional).

--limit-price <value> The limit price of the order.

--stop-price <value> The stop price of the order.

--tag <value> The order tag.

--lean-config <value> The Lean configuration file that should be used
(defaults to the nearest lean. json).

--verbose Enable debug logging.

--help Display the help text of the
lean live submit-order command and exit.

API Reference > lean live update-order

API Reference

lean live update-order

Introduction

Update an order with a specific Id in a local live trading project.

$ lean live update-order <project> [options]

Description

Arguments

The lean live update-order command expects the following arguments:

Argument Description

<project> The path to the project directory or algorithm file
that contains the order you want to update.

Options

The lean live update-order command supports the following options:

Option Description

--order-id <value> The Id of the order to update.

--quantity <value> The number of units to be updated (directional).

--limit-price <value> The limit price of the order to be updated.

--stop-price <value> The stop price of the order to be updated.

--tag <value> The new order tag.

--lean-config <value> The Lean configuration file that should be used
(defaults to the nearest lean. json).

--verbose Enable debug logging.

--help Display the help text of the
lean live update-order command and exit.

API Reference > lean login

API Reference

lean login

Introduction

Log in with a QuantConnect account.

$ lean login [options]

Description

Lets you log in with your QuantConnect API credentials and stores the given values in the credentials file in your

global configuration directory.

If --user-id or --api-token is not provided, an interactive prompt is shown and the missing values are read from

stdin.

You can request your user Id and API token on your Account page.

Options

The lean login command supports the following options:

Option Description

-u, --user-id <value> The QuantConnect user Id to log in with.

-t, --api-token <value> The QuantConnect API token to log in with.

--verbose Enable debug logging.

--help Display the help text of the lean login command
and exit.

https://www.quantconnect.com/docs/v2/cloud-platform/community/profile#09-Request-API-Token

API Reference > lean logout

API Reference

lean logout

Introduction

Log out and remove stored credentials.

$ lean logout [options]

Description

Removes the credentials stored in the credentials file in your global configuration directory.

Options

The lean logout command supports the following options:

Option Description

--verbose Enable debug logging.

--help Display the help text of the lean logout command
and exit.

API Reference > lean logs

API Reference

lean logs

Introduction

Display the most recent backtest/live/optimization logs.

$ lean logs [options]

Description

Displays the most recent backtest/live/optimization logs. By default, the most recent backtest logs are shown

unless --live or --optimization is given. You can pass in a project with --project <directory> to display the

most recent logs from a specific project.

Options

The lean logs command supports the following options:

Option Description

--backtest Display the most recent backtest logs (default).

--live Display the most recent live logs.

--optimization Display the most recent optimization logs.

--project <directory> The project of which to show the most recent logs
of.

--lean-config <path> The Lean configuration file that should be used
(defaults to the nearest lean. json file).

--verbose Enable debug logging.

--help Display the help text of the lean logs command and
exit.

API Reference > lean optimize

API Reference

lean optimize

Introduction

Optimize a project's parameters locally using Docker.

$ lean optimize <project> [options]

Description

Runs a local optimization in a Docker container using the quantconnect/lean Docker image. The logs of the

optimizer are shown in real-time and the full results of the optimizer and all executed backtests are stored in the

<project> / optimizations / <timestamp> directory. You can use the --output option to change the output

directory.

The given <project> argument must be either a project directory or a file containing the algorithm to optimize. If it

is a project directory, the CLI looks for a main.py or Main.cs file, assuming the first file it finds to contain the

algorithm to optimize.

By default, an interactive wizard is shown letting you configure the optimizer. When --optimizer-config or

--strategy is given, the command runs in non-interactive mode and doesn't prompt for input.

When the --optimizer-config <config file> option is given, the specified config file is used. This option must

point to a file containing a full optimizer config (the algorithm-type-name , algorithm-language and

algorithm-location properties may be omitted). See the Optimizer.Launcher / config.example. json file in

the LEAN repository for an example optimizer configuration file, which also contains documentation on all the

required properties.

When --strategy is given, the optimizer configuration is read from the command-line options. This means the

--strategy , --target , --target-direction , and --parameter options become required. Additionally, you can

also use --constraint to specify optimization constraints.

In non-interactive mode, the parameters can be configured using the --parameter option. This option takes the

following values: the name of the parameter, its minimum value, its maximum value, and its step size. You can

provide this option multiple times to configure multiple parameters.

In non-interactive mode, the constraints can be configured using the --constraint option. This option takes a

"statistic operator value" string as value, where the statistic must be a path to a property in a backtest's output file,

like "TotalPerformance.PortfolioStatistics.SharpeRatio". This statistic can also be shortened to "SharpeRatio" or

"Sharpe Ratio", in which case the command automatically converts it to the longer version. The value must be a

https://hub.docker.com/r/quantconnect/lean
https://github.com/QuantConnect/Lean/blob/master/Optimizer.Launcher/config.example.json

number and the operator must be < , > , <= , >= , == , or == . You can provide this option multiple times to configure

multiple constraints.

Example non-interactive usage:

$ lean optimize "My Project" \
 --strategy "Grid Search" \
 --target "Sharpe Ratio" \
 --target-direction "max" \
 --parameter my-first-parameter 1 10 0.5 \
 --parameter my-second-parameter 20 30 5 \
 --constraint "Drawdown < 0.5" \
 --constraint "Sharpe Ratio >= 1"

To estimate the cost of running an optimization job without actually running it, add the --estimate option to the

command. You need to backtest the project at least once in order to estimate the cost of optimizing it.

To set the maximum number of concurrent backtests to run, use the --max-concurrent-backtests option.

The Docker image that's used contains the same libraries as the ones available on QuantConnect . If the selected

project is a C# project, it is compiled before starting the optimization.

By default, the official LEAN engine image is used. You can override this using the --image <value> option.

Alternatively, you can set the default engine image for all commands using

lean config set engine-image <value> . The image is pulled before running the optimizer if it doesn't exist

locally yet or if you pass the --update flag.

Arguments

The lean optimize command expects the following arguments:

Argument Description

<project> The path to the project directory or algorithm file to
optimize.

Options

The lean optimize command supports the following options:

Option Description

--output <path> Directory to store results in (defaults to <project> /
optimizations / <timestamp>).

--detach , -d

Run the optimization in a detached Docker container
and return immediately. The name of the Docker
container is shown before the command ends. You
can use Docker's own commands to manage the
detached container.

--optimizer-config <path>

The optimizer configuration file that should be used
(the algorithm-type-name , algorithm-language
and algorithm-location properties may be
omitted). See the Optimizer.Launcher /
config.example. json file in the LEAN repository for
an example optimizer config file.

--strategy <value> The optimization strategy to use in non-interactive
mode. Must be Grid Search or Euler Search .

--target <value>

The path to the property in the backtest's output file
to target, like
"TotalPerformance.PortfolioStatistics.SharpeRatio".
May also be a shortened version, like "SharpeRatio"
or "Sharpe Ratio".

--target-direction <value> min if the target must be minimized, max if it must be
maximized.

--parameter <name> <min> <max> <step> The 'parameter min max step' pairs configuring the
parameters to optimize. May be used multiple times.

--constraint <value>
The 'statistic operator value' pairs configuring the
constraints of the optimization. May be used multiple
times.

--estimate Estimate optimization runtime without running it.

--max-concurrent-backtests <value> Maximum number of concurrent backtests to run (x
>= 1).

--image <value> The LEAN engine image to use (defaults to
quantconnect/lean:latest).

--update Pull the LEAN engine image before running the
optimizer.

--no-update Use the local LEAN engine image instead of pulling
the latest version.

--lean-config <path> The Lean configuration file that should be used
(defaults to the nearest lean. json file).

--release Compile C# projects in release configuration instead
of debug.

--verbose Enable debug logging.

--help Display the help text of the lean optimize command
and exit.

Option Description

https://github.com/QuantConnect/Lean/blob/master/Optimizer.Launcher/config.example.json

API Reference > lean project-create

API Reference

lean project-create

Introduction

Create a new project containing starter code.

$ lean project-create <name> [options]

Description

Creates a new project with some basic starter code. If the language is set to python , this generates a main.py

file, a Python-based research notebook, a project configuration file, and editor configuration files for PyCharm and

VS Code.

If the language is set to csharp this generates a Main.cs file, a C#-based research notebook, a project

configuration file, and editor configuration files for Visual Studio, Rider, and VS Code.

A full list of the created files can be found on the Projects > Structure page.

If no --language is given, the default language saved in the global configuration is used. You can update the

default language to Python by running lean config set default-language python or to C# by running

lean config set default-language csharp .

If the given project name contains slashes, the name is parsed as a path and the project is created in a

subdirectory. Any subdirectories that don't exist yet are created automatically.

Arguments

The lean project-create command expects the following arguments:

Argument Description

<name>

The name of the project to create. This name may
contain slashes to create a project in a subdirectory.
The project name must only contain - , _ , letters,
numbers, and spaces. The project name can't start
with a space or be any of the following reserved
names: CON, PRN, AUX, NUL, COM1, COM2, COM3,
COM4, COM5, COM6, COM7, COM8, COM9, LPT1,
LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, or LPT9.
If the project is a Python library, the library name can
only contain letters (a-z), numbers (0-9), and
underscores (_). Python library names can't contain
spaces or start with a number.

Options

The lean project-create command supports the following options:

Option Description

--language <value> The language of the project to create, must be either
python or csharp .

--verbose Enable debug logging.

--help Display the help text of the lean project-create
command and exit.

API Reference > lean project-delete

API Reference

lean project-delete

Introduction

Delete a project on your local machine and in the cloud.

$ lean project-delete <project> [options]

Description

Deletes a project from your local machine and in the cloud. If you are a collaborator on the project, this command

doesn't delete the project for the other collaborators, but it removes you as a collaborator.

Options

The lean project-delete command supports the following options:

Option Description

--verbose Enable debug logging.

--help Display the help text of the lean project-delete
command and exit.

API Reference > lean report

API Reference

lean report

Introduction

Generate a report of a backtest or live trading algorithm.

$ lean report [options]

Description

Runs the LEAN Report Creator in a Docker container using the quantconnect/lean Docker image. By default, this

command generates a report of the most recent backtest. This behavior can be overridden by using

--backtest-results <path> and providing the path to the backtest results JSON file. If --live-results <path>

is also given, the generated report will contain both the backtest and the live results.

The --strategy-name , --strategy-version , and --strategy-description options can be used to set the name,

version, and description that are shown in the report. The name and version are shown in the top-right corner of

each page, while the description is shown on the top of the first page. These fields are blank by default.

When the given backtest results are stored in a project directory or one of its subdirectories, the default name is

the name of the project directory and the default description is the description in the project's config. json file.

By default, the official LEAN engine image is used. You can override this using the --image <value> option.

Alternatively, you can set the default engine image for all commands using

lean config set engine-image <value> . The image is pulled before running the report creator if it doesn't exist

locally yet or if you pass the --update flag.

Options

The lean report command supports the following options:

https://hub.docker.com/r/quantconnect/lean

Option Description

--backtest-results <path>

The path to the JSON file containing the backtest
results. Defaults to the most recent backtest results
file in the current working directory or one of its
subdirectories.

--live-results <path> The path to the JSON file containing the live trading
results.

--report-destination <path> The path where the generated report is stored as
HTML (defaults to . / report.html).

--detach , -d

Run the report creator in a detached Docker
container and return immediately. The name of the
Docker container is shown before the command
ends. You can use Docker's own commands to
manage the detached container.

--strategy-name <value> The name of the strategy. It will appear at the top-
right corner of each page.

--strategy-version <value> The version of the strategy. It will appear next to the
project name.

--strategy-description <value>
The description of the strategy. It will appear under
the Strategy Description section on the first page
of the report.

--pdf Create a PDF version along with the HTML version of
the report.

--overwrite Overwrite the given --report-destination if it
already contains a file.

--image <value> The LEAN engine image to use (defaults to
quantconnect/lean:latest).

--update Pull the LEAN engine image before running the report
creator.

--lean-config <path> The Lean configuration file that should be used
(defaults to the nearest lean. json file).

--verbose Enable debug logging.

--help Display the help text of the lean report command
and exit.

API Reference > lean research

API Reference

lean research

Introduction

Run a Jupyter Lab environment locally using Docker.

$ lean research <project> [options]

Description

Runs a local Jupyter Lab environment in a Docker container using the quantconnect/research Docker image. The

project directory is mounted in the Docker container and the Jupyter Lab instance is exposed on a local port. After

the Jupyter Lab instance has started, the browser automatically opens.

By default, Jupyter Lab is exposed on port 8888. To use a custom port, you can use the --port option, which is

required to run two Jupyter Lab instances side-by-side.

You can use the --data-provider option to change where data is retrieved. This option updates the Lean

configuration file , so you don't need to use this option multiple times for the same data provider if you are not

switching between them. If you use the Terminal Link data provider, you must also provide the following options:

--terminal-link-environment

--terminal-link-server-host

--terminal-link-server-port

--terminal-link-openfigi-api-key

You can use the --download-data flag as an alias for --data-provider QuantConnect and the

--data-purchase-limit option to set the maximum amount of QuantConnect Credit (QCC) to spend during the

research session when using QuantConnect as data provider. The --data-purchase-limit option is not persistent.

If you have previously logged in using lean login , the CLI automatically makes your credentials available in the

Jupyter Lab instance. If this happens, the api variable is automatically assigned an instance of Api in your research

notebooks, which you can use to make authenticated requests to the QuantConnect API.

The default Research Environment configuration is the latest master branch of LEAN. If you set a different research

image , the image you set is your current configuration. To start the Research Environment with a different

configuration than your current configuration, use the --image <value> option. If the image doesn't exist on your

local machine or you pass the --update flag, the image is pulled before starting the Research Environment. To

avoid updating the image, pass the --no-update flag.

Arguments

https://hub.docker.com/r/quantconnect/research
https://www.quantconnect.com/docs/v2/cloud-platform/organizations/credit
https://github.com/QuantConnect/Lean/blob/master/Api/Api.cs

The lean research command expects the following arguments:

Argument Description

<project> The path to the project directory for which to run a
research environment.

Options

The lean research command supports the following options:

Option Description

--port <value> The port to run Jupyter Lab on (defaults to 8888).

--data-provider <value>
Update the Lean configuration file to retrieve data
from the given provider, which must be Local ,
QuantConnect , or Terminal Link .

--download-data
Update the Lean configuration file to download data
from the QuantConnect API, alias for
--data-provider QuantConnect .

--data-purchase-limit <value>
The maximum amount of QCC to spend on
downloading data during the research session when
using QuantConnect as data provider.

--terminal-link-environment <value> The environment to run in, which must be Production
or Beta .

--terminal-link-server-host <value> The host on which the Terminal Link server is running.

--terminal-link-server-port <value> The port on which the Terminal Link server is running.

--terminal-link-openfigi-api-key <value> The Open FIGI API key to use for mapping Options.

--detach , -d

Run Jupyter Lab in a detached Docker container and
return immediately. The name of the Docker
container is shown before the command ends. You
can use Docker's own commands to manage the
detached container.

--no-open Don't open the Jupyter Lab environment in the
browser after starting it.

--image <value> The LEAN research image to use (defaults to
quantconnect/research:latest).

--update Pull the LEAN research image before starting the
research environment.

--no-update Use the current LEAN research image.

--lean-config <path> The Lean configuration file that should be used
(defaults to the nearest lean. json file).

--verbose Enable debug logging.

--help Display the help text of the lean research command
and exit.

API Reference > lean whoami

API Reference

lean whoami

Introduction

Display who is logged in.

$ lean whoami [options]

Description

Displays the name and the email address of the user who is currently logged in or "You are not logged in" if no-one

is logged in.

Options

The lean whoami command supports the following options:

Option Description

--verbose Enable debug logging.

--help Display the help text of the lean whoami command
and exit.

	Learn to use QuantConnect and Explore Our Features
	LEAN CLI

	An easy to use, python shell wrapper on LEAN
	LEAN CLI provides notebooks, backtesting, optimization and live trading with a simple to use API, deploying to the cloud or on premise.
	Table of Content

	Key Concepts
	Key Concepts
	Getting Started
	Introduction
	Prerequisites
	Installation
	Basic Usage
	Authenticate With the Cloud
	Pull Projects From the Cloud
	Source Data
	Run a Local Backtest
	Push Local Changes to the Cloud
	Run a Cloud Backtest

	LEAN vs LEAN CLI

	Key Concepts
	Troubleshooting
	Introduction
	Common Errors
	Report Issues

	Installation
	Installation
	Installing pip
	Introduction
	Install on Windows
	Install on macOS (Intel)
	Install on macOS (Apple)
	Install on Linux

	Installation
	Installing Lean CLI
	Introduction
	Install Docker
	Install on Windows
	Install on macOS
	Install on Linux

	Install LEAN CLI
	Next Steps
	Stay Up To Date
	Keep the CLI Up-To-Date
	Keep the Docker Images Up-To-Date

	Uninstall

	Initialization
	Initialization
	Authentication
	Introduction
	Log In
	Log Out
	Check Account Status

	Initialization
	Organization Workspaces
	Introduction
	Create Workspaces
	Directory Structure

	Initialization
	Configuration
	Introduction
	Global Configuration
	Lean Configuration
	Project Configuration

	Datasets
	Datasets
	Format and Storage
	Introduction
	Default Location
	Change Location
	Other Data Sources

	Datasets
	Downloading Data
	Download By Ticker
	Download in Bulk
	See Also

	Downloading Data
	Download By Ticker
	Key Concepts
	Costs
	See Also

	Download By Ticker
	Key Concepts
	Introduction
	Using the CLI
	Non-Interactive Mode
	Interactive Mode

	Using Lean
	Supported Datasets

	Download By Ticker
	Costs
	Introduction
	US Equity
	Equity Options
	Crypto
	Forex
	Futures
	Index Options
	CFD
	Alternative Data

	Downloading Data
	Download in Bulk
	CFD Data
	FOREX Data
	US Equities
	US Equity Coarse Universe
	US Equity Options
	US ETF Constituents
	US Futures
	US Index Options
	See Also

	Download in Bulk
	CFD Data
	Introduction
	Download History
	Download Daily Updates
	Size and Format
	Price

	Download in Bulk
	FOREX Data
	Introduction
	Download History
	Download Daily Updates
	Size and Format
	Price

	Download in Bulk
	US Equities
	Introduction
	Download History
	Download Daily Updates
	Size and Format
	Price

	Download in Bulk
	US Equity Coarse Universe
	Introduction
	Download History
	Download Daily Updates
	Size and Format
	Price

	Download in Bulk
	US Equity Options
	Introduction
	Download History
	Download Daily Updates
	Size and Format
	Price

	Download in Bulk
	US ETF Constituents
	Introduction
	Download History
	Download Daily Updates
	Size and Format
	Price

	Download in Bulk
	US Futures
	Introduction
	Download History
	Download Daily Updates
	Size and Format
	Price

	Download in Bulk
	US Index Options
	Introduction
	Download History
	Download Daily Updates
	Size and Format
	Price

	Datasets
	Generating Data
	Introduction
	Supported Security Types
	Supported Densities
	Run the Generator

	Datasets
	Custom Data
	Introduction
	Import Local Files

	Projects
	Projects
	Project Management
	Introduction
	Create Projects
	Set the Default Language
	Rename Projects
	Delete Projects

	Projects
	Cloud Synchronization
	Introduction
	Pulling Cloud Projects
	Pushing Local Projects
	Detecting Environment

	Projects
	Structure
	Introduction
	Project Structure

	Projects
	Workflows
	Introduction
	Cloud-focused Workflow
	Locally-focused Workflow
	Mixed Workflow

	Projects
	Configuration
	Introduction
	Properties

	Projects
	Autocomplete
	Introduction
	Python and PyCharm
	Python and VS Code
	C# and Visual Studio
	C# and Rider
	C# and VS Code
	Imports
	Staying Up-to-date

	Projects
	Libraries

	Libraries
	Third-Party Libraries
	Introduction
	Supported Libraries for AMD64 Systems
	Supported Libraries for ARM64 Systems
	Custom C# Libraries
	Custom Python Libraries

	Libraries
	Project Libraries
	Introduction
	Create Libraries
	Add Libraries
	Rename Libraries
	Remove Libraries
	Delete Libraries

	Projects
	Custom Docker Images
	Introduction
	Using Custom Images
	Building Custom Images

	Research
	Introduction
	Running Local Research Environment
	Current Configuration
	Old Configurations from QuantConnect

	Opening Research Notebooks in PyCharm
	Opening Research Notebooks in VS Code
	Retrieving Local Backtests
	Retrieving Cloud Backtests

	Backtesting
	Backtesting
	Deployment
	Introduction
	Run Local Backtests
	Regular LEAN Engine
	Custom LEAN Engine
	US Equity Options Algorithms

	Run Cloud Backtests
	Download Datasets During Backtests

	Backtesting
	Debugging
	Introduction
	Python and PyCharm
	Python and VS Code
	C# and Visual Studio
	C# and Rider
	C# and VS Code

	Live Trading
	Live Trading
	Brokerages
	QuantConnect Paper Trading
	Binance
	Bitfinex
	Coinbase
	Interactive Brokers
	Kraken
	Oanda
	Prime Brokerages
	Samco
	TD Ameritrade
	Tradier
	Trading Technologies
	Zerodha
	See Also

	Brokerages
	QuantConnect Paper Trading
	Introduction
	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Brokerages
	Binance
	Introduction
	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Brokerages
	Bitfinex
	Introduction
	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Brokerages
	Coinbase
	Introduction
	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Brokerages
	Interactive Brokers
	Introduction
	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Brokerages
	Kraken
	Introduction
	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Brokerages
	Oanda
	Introduction
	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Brokerages
	Prime Brokerages
	Introduction
	Asset Classes
	Data Feeds
	Orders
	Order Types
	Time In Force
	Get Open Orders
	Monitor Fills
	Updates
	Cancellations

	Fees
	Historical Data
	Compliance
	CLI Commands
	Run Local Backtests
	Launch Research Notebooks
	Deploy Live Algorithms

	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Brokerages
	Samco
	Introduction
	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Brokerages
	TD Ameritrade
	Introduction
	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Brokerages
	Tradier
	Introduction
	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Brokerages
	Trading Technologies
	Introduction
	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Brokerages
	Zerodha
	Introduction
	Deploy Local Algorithms
	Deploy Cloud Algorithms

	Live Trading
	Data Feeds
	IQFeed
	Polygon
	See Also

	Data Feeds
	IQFeed
	Introduction
	Deploy Local Algorithms
	Supported Assets

	Data Feeds
	Polygon
	Introduction
	Deploy Local Algorithms
	Supported Assets

	Live Trading
	Algorithm Control
	Introduction
	Control Local Algorithms
	Add Security Subscriptions
	Submit Orders
	Update Orders
	Cancel Orders
	Liquidate Positions
	Stop Algorithms

	Control Cloud Algorithms
	Liquidate Positions
	Stop Algorithms

	Reports
	Introduction
	Generate Reports
	Key Statistics
	Returns
	Returns per Trade
	Daily Returns
	Monthly Returns
	Annual Returns
	Cumulative Returns

	Asset Allocation
	Drawdown
	Rolling Statistics
	Rolling Portfolio Beta
	Rolling Sharpe Ratio

	Exposure
	Leverage
	Long-Short Exposure By Asset Class

	Crisis Events

	Optimization
	Optimization
	Parameters
	Introduction
	Configure Project Parameters

	Optimization
	Deployment
	Introduction
	Run Local Optimizations
	Run Cloud Optimizations

	API Reference
	API Reference
	lean backtest
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean build
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean cloud backtest
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean cloud live
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean cloud live liquidate
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean cloud live stop
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean cloud optimize
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean cloud pull
	Introduction
	Description
	Options

	API Reference
	lean cloud push
	Introduction
	Description
	Options

	API Reference
	lean cloud status
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean config get
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean config list
	Introduction
	Description
	Options

	API Reference
	lean config set
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean config unset
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean data download
	Introduction
	Description
	Options

	API Reference
	lean data generate
	Introduction
	Description
	Options

	API Reference
	lean init
	Introduction
	Description
	Options

	API Reference
	lean library add
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean library remove
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean live
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean live add-security
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean live cancel-order
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean live liquidate
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean live stop
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean live submit-order
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean live update-order
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean login
	Introduction
	Description
	Options

	API Reference
	lean logout
	Introduction
	Description
	Options

	API Reference
	lean logs
	Introduction
	Description
	Options

	API Reference
	lean optimize
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean project-create
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean project-delete
	Introduction
	Description
	Options

	API Reference
	lean report
	Introduction
	Description
	Options

	API Reference
	lean research
	Introduction
	Description
	Arguments
	Options

	API Reference
	lean whoami
	Introduction
	Description
	Options

