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Key Concepts

Getting Started

Introduction

The Research Environment is a Jupyter notebook -based, interactive commandline environment where you can

access our data through the QuantBook class. The environment supports both Python and C#. If you use Python,

you can import code from the code files in your project into the Research Environment to aid development.

Before you run backtests, we recommend testing your hypothesis in the Research Environment. It's easier to

perform data analysis and produce plots in the Research Environment than in a backtest.

Before backtesting or live trading with machine learning models, you may find it beneficial to train them in the

Research Environment, save them in the ObjectStore, and then load them from the ObjectStore into the backtesting

https://jupyter-notebook.readthedocs.io/en/stable/notebook.html


and live trading environment

In the Research Environment, you can also use the QuantConnect API to import your backtest results for further

analysis.

Example

The following snippet demonstrates how to use the Research Environment to plot the price and Bollinger Bands of

the S&P 500 index ETF, SPY:

Open Notebooks

Each new project you create contains a notebook file by default. Follow these steps to open the notebook:

1. Open the project .

2. In the right navigation menu, click the  Explorer  icon.

3. In the Explorer panel, expand the W orkspace (W orkspace)   section.

4. Click the research. ipynb  file.

Run Notebook Cells

Notebooks are a collection of cells where you can write code snippets or MarkDown. To execute a cell, press

Shift+Enter  .

# Create a QuantBook
qb = QuantBook()

# Create a security subscription
spy = qb.AddEquity("SPY")

# Request some historical data
history = qb.History(qb.Securities.Keys, 360, Resolution.Daily)

# Calculate the Bollinger Bands
bbdf = qb.Indicator(BollingerBands(30, 2), spy.Symbol, 360, Resolution.Daily)

# Plot the data
bbdf.drop('standarddeviation', 1).plot()

PY

https://www.quantconnect.com/docs/v2//cloud-platform/projects/getting-started#02-View-All-Projects


The following describes some helpful keyboard shortcuts to speed up your research:

Keyboard Shortcut Description

Shift+Enter Run the selected cell.

a Insert a cell above the selected cell.

b Insert a cell below the selected cell.

x Cut the selected cell.

v Paste the copied or cut cell.

z Undo cell actions.

Stop Nodes

You need stop node permissions to stop research nodes in the cloud.

Follow these steps to stop a research node:

1. Open the project .

2. In the right navigation menu, click the  Resources  icon.

3. Click the stop button next to the research node you want to stop.

Add Notebooks

Follow these steps to add notebook files to a project:

1. Open the project .

2. In the right navigation menu, click the  Explorer  icon.

3. In the Explorer panel, expand the W orkspace (W orkspace)   section.

4. Click the  New File  icon.

5. Enter fileName . ipynb   .

6. Press Enter  .

https://www.quantconnect.com/docs/v2//cloud-platform/organizations/members#08-Permissions
https://www.quantconnect.com/docs/v2//cloud-platform/projects/getting-started#02-View-All-Projects
https://www.quantconnect.com/docs/v2//cloud-platform/projects/getting-started#02-View-All-Projects


Rename Notebooks

Follow these steps to rename a notebook in a project:

1. Open the project .

2. In the right navigation menu, click the  Explorer  icon.

3. In the Explorer panel, right-click the notebook you want to rename and then click Rename  .

4. Enter the new name and then press Enter  .

Delete Notebooks

Follow these steps to delete a notebook in a project:

1. Open the project .

2. In the right navigation menu, click the  Explorer  icon.

3. In the Explorer panel, right-click the notebook you want to delete and then click Delete Permanently  .

4. Click Delete  .

Learn Jupyter

The following table lists some helpful resources to learn Jupyter:

Type Name Producer

Text Jupyter Tutorial tutorialspoint

Text Jupyter Notebook Tutorial: The
Definitive Guide DataCamp

Text An Introduction to DataFrame Microsoft Developer Blogs

 

https://www.quantconnect.com/docs/v2//cloud-platform/projects/getting-started#02-View-All-Projects
https://www.quantconnect.com/docs/v2//cloud-platform/projects/getting-started#02-View-All-Projects
https://www.tutorialspoint.com/jupyter/index.htm
https://www.datacamp.com/tutorial/tutorial-jupyter-notebook
https://devblogs.microsoft.com/dotnet/an-introduction-to-dataframe/
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Research Engine

Introduction

The Research Environment is a Jupyter notebook -based, interactive commandline environment where you can

access our data through the QuantBook class. The environment supports both Python and C#. If you use Python,

you can import code from the code files in your project into the Research Environment to aid development.

Before you run backtests, we recommend testing your hypothesis in the Research Environment. It's easier to

perform data analysis and produce plots in the Research Environment than in a backtest.

Before backtesting or live trading with machine learning models, you may find it beneficial to train them in the

Research Environment, save them in the ObjectStore, and then load them from the ObjectStore into the backtesting

and live trading environment

In the Research Environment, you can also use the QuantConnect API to import your backtest results for further

analysis.

Batch vs Stream Analysis

The backtesting environment is an event-based simulation of the market. Backtests aim to provide an accurate

representation of whether a strategy would have performed well in the past, but they are generally slow and aren't

the most efficient way to test the foundational ideas behind strategies. You should only use backtests to verify an

idea after you have already tested it with statistical analysis.

The Research Environment lets you build a strategy by starting with a central hypothesis about the market. For

example, you might hypothesize that an increase in sunshine hours will increase the production of oranges, which

will lead to an increase in the supply of oranges and a decrease in the price of Orange Juice Futures. You can

attempt to confirm this working hypothesis by analyzing weather data, production of oranges data, and the price

of Orange Juice futures. If the hypothesis is confirmed with a degree of statistical significance, you can be

confident in the hypothesis and translate it into an algorithm you can backtest.

Jupyter Notebooks

Jupyter notebooks support interactive data science and scientific computing across various programming

languages. We carry on that philosophy by providing an environment for you to perform exploratory research and

brainstorm new ideas for algorithms. A Jupyter notebook installed in QuantConnect allows you to directly explore

the massive amounts of data that is available in the Dataset Market and analyze it with python or C# commands.

We call this exploratory notebook environment the Research Environment.

Open Notebooks

https://jupyter-notebook.readthedocs.io/en/stable/notebook.html


To open a notebook, open one of the . ipynb  files in your cloud projects or see Running Local Research

Environment .

Execute Code

The notebook allows you to run code in a safe and disposable environment. It's composed of independent cells

where you can write, edit, and execute code. The notebooks support Python, C#, and Markdown code. 

Keyboard Shortcuts

The following table describes some useful keyboard shortcuts:

Shortcut Description

Shift+Enter Run the selected cell

a Insert a cell above the selected cell

b Insert a cell below the selected cell

x Cut the selected cell

v Paste the copied or cut cell

z Undo cell actions

Terminate Research Sessions

If you use the Research Environment in QuantConnect Cloud, to terminate a research session, stop the research

node in the Resources panel . If you use the local Research Environment, see Managing Kernels and Terminals in the

JupyterLab documentation.

Your Research and LEAN

To analyze data in a research notebook, create an instance of the QuantBook class. QuantBook is a wrapper on

QCAlgorithm , which means QuantBook allows you to access all the methods available to QCAlgorithm and some

additional methods. The following table describes the helper methods of the QuantBook class that aren't available

in the QCAlgorithm class:

https://www.quantconnect.com/docs/v2//cloud-platform/projects/files#05-Open-Files
https://www.quantconnect.com/docs/v2//lean-cli/research#02-Running-Local-Research-Environment
https://www.quantconnect.com/docs/v2//cloud-platform/projects/ide#07-Manage-Nodes
https://jupyterlab.readthedocs.io/en/stable/user/running.html


Method Description

GetFundamental Get fundamental data for some Symbol(s).

GetFutureHistory Get the expiration, open interest, and price data of
the contracts in a Futures chain.

GetOptionHistory Get the strike, expiration, open interest, option right,
and price data of the contracts in an Options chain.

Indicator Get the values of an indicator for an asset over time.

QuantBook gives you access to the vast amounts of data in the Dataset Market. Similar to backtesting, you can

access that data using history calls. You can also create indicators, consolidate data, and access charting features.

However, keep in mind that event-driven features available in backtesting, like universe selection and OnData

events, are not available in research. After you analyze a dataset in the Research Environment, you can easily

transfer the logic to the backtesting environment. For example, consider the following code in the Research

Environment:

To use the preceding code in a backtest, replace QuantBook() with self .

Import Project Code

One of the drawbacks of using the Research Environment you may encounter is the need to rewrite code you've

already written in a file in the backtesting environment. Instead of rewriting the code, you can import the methods

from the backtesting environment into the Research Environment to reduce development time. For example, say

you have the following helpers .py  file in your project:

# Initialize QuantBook
qb = QuantBook()

# Subscribe to SPY data with QuantBook
symbol = qb.AddEquity("SPY").Symbol

# Make history call with QuantBook
history = qb.History(symbol, timedelta(days=10), Resolution.Daily)

def Initialize(self) -> None:

    # Set qb to instance of QCAlgorithm
    qb = self
    
    # Subscribe to SPY data with QCAlgorithm
    symbol = qb.AddEquity("SPY").Symbol
    
    # Make history call with QCAlgorithm
    history = qb.History(symbol, timedelta(days=10), Resolution.Daily)

PY

PY



To import the preceding method into your research notebook, use the import statement.

If you adjust the file that you import, restart the Research Environment session to import the latest version of the

file. To restart the Research Environment, stop the research node and then open the notebook again.

 

def Add(a, b): 
   return a+b

from helpers import Add

# reuse method from helpers.py
Add(3, 4)

PY

PY



Initialization

Initialization

Introduction

Before you request and manipulate historical data in the Research Environment, you should set the notebook dates,

add data subscriptions, and set the time zone.

Set Dates

The start date of your QuantBook determines the latest date of data you get from history requests . By default, the

start date is the current day. To change the start date, call the SetStartDate method.

The end date of your QuantBook should be greater than the end date. By default, the start date is the current day.

To change the end date, call the SetEndDate method.

Add Data

You can subscribe to asset, fundamental, alternative, and custom data. The Dataset Market provides 400TB of data

that you can easily import into your notebooks.

Asset Data

To subscribe to asset data, call one of the asset subscription methods like AddEquity or AddForex . Each asset

class has its own method to create subscriptions. For more information about how to create subscriptions for each

asset class, see the Create Subscriptions section of an asset class in the Datasets chapter.

Alternative Data

To add alternative datasets to your notebooks, call the AddData method. For a full example, see Alternative Data .

Custom Data

To add custom data to your notebooks, call the AddData method. For more information about custom data, see

Custom Data .

qb.SetStartDate(2022, 1, 1)

qb.SetEndDate(2022, 8, 15)

qb.AddEquity("SPY")  # Add Apple 1 minute bars (minute by default)
qb.AddForex("EURUSD", Resolution.Second) # Add EURUSD 1 second bars

PY

PY

PY

https://www.quantconnect.com/datasets


Limitations

There is no official limit to how much data you can add to your notebooks, but there are practical resource

limitations. Each security subscription requires about 5MB of RAM, so larger machines let you request more data.

For more information about our cloud nodes, see Research Nodes .

Set Time Zone

The notebook time zone determines which time zone the datetime objects are in when you make a history request

based on a defined period of time. When your history request returns a DataFrame , the timestamps in the

DataFrame are based on the data time zone . When your history request returns a TradeBars , QuoteBars , Ticks ,

or Slice object, the Time properties of these objects are based on the notebook time zone, but the EndTime

properties of the individual TradeBar , QuoteBar , and Tick objects are based on the data time zone.

The default time zone is Eastern Time (ET), which is UTC-4 in summer and UTC-5 in winter. To set a different time

zone, call the SetTimeZone method. This method accepts either a string following the IANA Time Zone database

convention or a NodaTime .DateTimeZone object. If you pass a string, the method converts it to a

NodaTime.DateTimeZone object. The TimeZones class provides the following helper attributes to create

NodaTime.DateTimeZone objects:

 

qb.SetTimeZone("Europe/London")
qb.SetTimeZone(TimeZones.Chicago)

PY

https://www.quantconnect.com/docs/v2//cloud-platform/organizations/resources#03-Research-Nodes
https://www.quantconnect.com/docs/v2//writing-algorithms/key-concepts/time-modeling/time-zones#05-Data-Time-Zone
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://nodatime.org/
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Datasets

Key Concepts

Introduction

You can access most of the data from the Dataset Market in the Research Environment. The data includes Equity,

Crypto, Forex, and derivative data going back as far as 1998. Similar to backtesting, to access the data, create a

security subscription and then make a history request.

Key History Concepts

The historical data API has many different options to give you the greatest flexibility in how to apply it to your

algorithm.

Time Period Options

You can request historical data based on a trailing number of bars, a trailing period of time, or a defined period of

time. If you request data in a defined period of time, the datetime objects you provide are based in the notebook

time zone .

Return  Formats

Each asset class supports slightly different data formats. When you make a history request, consider what data

returns. Depending on how you request the data, history requests return a specific data type. For example, if you

don't provide Symbol objects, you get Slice objects that contain all of the assets you created subscriptions for in

the notebook.

The most popular return type is a DataFrame . If you request a DataFrame , LEAN unpacks the data from Slice

objects to populate the DataFrame . If you intend to use the data in the DataFrame to create TradeBar or QuoteBar

objects, request that the history request returns the data type you need. Otherwise, LEAN will waste computational

resources populating the DataFrame .

Time Index

When your history request returns a DataFrame , the timestamps in the DataFrame are based on the data time zone

. When your history request returns a TradeBars , QuoteBars , Ticks , or Slice object, the Time properties of these

objects are based on the notebook time zone, but the EndTime properties of the individual TradeBar , QuoteBar ,

and Tick objects are based on the data time zone . The EndTime is the end of the sampling period and when the

https://www.quantconnect.com/docs/v2//writing-algorithms/key-concepts/time-modeling/time-zones#05-Data-Time-Zone


data is actually available. For daily US Equity data, this results in data points appearing on Saturday and skipping

Monday.

Request Data

The simplest form of history request is for a known set of Symbol objects. History requests return slightly different

data depending on the overload you call. The data that returns is in ascending order from oldest to newest.

Single Symbol History Requests

To request history for a single asset, pass the asset Symbol to the History method. The return type of the method

call depends on the history request [Type] . The following table describes the return type of each request [Type] :

Request Type Return  Data Type

No argument DataFrame

TradeBar List[TradeBars]

QuoteBar List[QuoteBars]

Tick List[Ticks]

alternativeDataClass 
(ex: CBOE )

List[ alternativeDataClass ] 
(ex: List[CBOE] )

Each row of the DataFrame represents the prices at a point in time. Each column of the DataFrame is a property of

that price data (for example, open, high, low, and close (OHLC)). If you request a DataFrame object and pass

TradeBar as the first argument, the DataFrame that returns only contains the OHLC and volume columns. If you

request a DataFrame object and pass QuoteBar as the first argument, the DataFrame that returns contains the

OHLC of the bid and ask and it contains OHLC columns, which are the respective means of the bid and ask OHLC

values. If you request a DataFrame and don't pass TradeBar or QuoteBar as the first arugment, the DataFrame that

returns contains columns for all of the data that's available for the given resolution.

# EXAMPLE 1: Requesting By Bar Count: 5 bars at the security resolution:
vix_symbol = qb.AddData(CBOE, "VIX", Resolution.Daily).Symbol
cboe_data = qb.History[CBOE](vix_symbol, 5)

btc_symbol = qb.AddCrypto("BTCUSD", Resolution.Minute).Symbol
trade_bars = qb.History[TradeBar](btc_symbol, 5)
quote_bars = qb.History[QuoteBar](btc_symbol, 5)
trade_bars_df = qb.History(TradeBar, btc_symbol, 5)
quote_bars_df = qb.History(QuoteBar, btc_symbol, 5)
df = qb.History(btc_symbol, 5)   # Includes trade and quote data

PY



# EXAMPLE 2: Requesting By Bar Count: 5 bars with a specific resolution:
trade_bars = qb.History[TradeBar](btc_symbol, 5, Resolution.Daily)
quote_bars = qb.History[QuoteBar](btc_symbol, 5, Resolution.Minute)
trade_bars_df = qb.History(TradeBar, btc_symbol, 5, Resolution.Minute)
quote_bars_df = qb.History(QuoteBar, btc_symbol, 5, Resolution.Minute)
df = qb.History(btc_symbol, 5, Resolution.Minute)  # Includes trade and quote data

# EXAMPLE 3: Requesting By a Trailing Period: 3 days of data at the security resolution: 
eth_symbol = qb.AddCrypto('ETHUSD', Resolution.Tick).Symbol
ticks = qb.History[Tick](eth_symbol, timedelta(days=3))
ticks_df = qb.History(eth_symbol, timedelta(days=3))

vix_data = qb.History[CBOE](vix_symbol, timedelta(days=3)) 
trade_bars = qb.History[TradeBar](btc_symbol, timedelta(days=3)) 
quote_bars = qb.History[QuoteBar](btc_symbol, timedelta(days=3))
trade_bars_df = qb.History(TradeBar, btc_symbol, timedelta(days=3))
quote_bars_df = qb.History(QuoteBar, btc_symbol, timedelta(days=3))
df = qb.History(btc_symbol, timedelta(days=3))  # Includes trade and quote data

# EXAMPLE 4: Requesting By a Trailing Period: 3 days of data with a specific resolution: 
trade_bars = qb.History[TradeBar](btc_symbol, timedelta(days=3), Resolution.Daily) 
quote_bars = qb.History[QuoteBar](btc_symbol, timedelta(days=3), Resolution.Minute)
ticks = qb.History[Tick](eth_symbol, timedelta(days=3), Resolution.Tick)

trade_bars_df = qb.History(TradeBar, btc_symbol, timedelta(days=3), Resolution.Daily)
quote_bars_df = qb.History(QuoteBar, btc_symbol, timedelta(days=3), Resolution.Minute)
ticks_df = qb.History(eth_symbol, timedelta(days=3), Resolution.Tick)
df = qb.History(btc_symbol, timedelta(days=3), Resolution.Hour)  # Includes trade and quote data

# Important Note: Period history requests are relative to "now" notebook time.

PY

PY

PY



Multiple Symbol History Requests

To request history for multiple symbols at a time, pass an array of Symbol objects to the same API methods shown

in the preceding section. The return type of the method call depends on the history request [Type] . The following

table describes the return type of each request [Type] :

Request Type Return  Data Type

No argument DataFrame

TradeBar List[TradeBars]

QuoteBar List[QuoteBars]

Tick List[Ticks]

alternativeDataClass 
(ex: CBOE )

List[Dict[Symbol, alternativeDataClass ]] 
(ex: List[Dict[Symbol, CBOE]] )

# EXAMPLE 5: Requesting By a Defined Period: 3 days of data at the security resolution: 
start_time = datetime(2022, 1, 1)
end_time = datetime(2022, 1, 4)

vix_data = qb.History[CBOE](vix_symbol, start_time, end_time) 
trade_bars = qb.History[TradeBar](btc_symbol, start_time, end_time) 
quote_bars = qb.History[QuoteBar](btc_symbol, start_time, end_time)
ticks = qb.History[Tick](eth_symbol, start_time, end_time)

trade_bars_df = qb.History(TradeBar, btc_symbol, start_time, end_time)
quote_bars_df = qb.History(QuoteBar, btc_symbol, start_time, end_time)
ticks_df = qb.History(Tick, eth_symbol, start_time, end_time)
df = qb.History(btc_symbol, start_time, end_time)  # Includes trade and quote data

# EXAMPLE 6: Requesting By a Defined Period: 3 days of data with a specific resolution: 
trade_bars = qb.History[TradeBar](btc_symbol, start_time, end_time, Resolution.Daily) 
quote_bars = qb.History[QuoteBar](btc_symbol, start_time, end_time, Resolution.Minute)
ticks = qb.History[Tick](eth_symbol, start_time, end_time, Resolution.Tick)

trade_bars_df = qb.History(TradeBar, btc_symbol, start_time, end_time, Resolution.Daily)
quote_bars_df = qb.History(QuoteBar, btc_symbol, start_time, end_time, Resolution.Minute)
ticks_df = qb.History(eth_symbol, start_time, end_time, Resolution.Tick)
df = qb.History(btc_symbol, start_time, end_time, Resolution.Hour)  # Includes trade and quote data

PY

PY



# EXAMPLE 7: Requesting By Bar Count for Multiple Symbols: 2 bars at the security 
resolution:
vix = qb.AddData[CBOE]("VIX", Resolution.Daily).Symbol
v3m = qb.AddData[CBOE]("VIX3M", Resolution.Daily).Symbol
cboe_data = qb.History[CBOE]([vix, v3m], 2)

ibm = qb.AddEquity("IBM", Resolution.Minute).Symbol
aapl = qb.AddEquity("AAPL", Resolution.Minute).Symbol
trade_bars_list = qb.History[TradeBar]([ibm, aapl], 2)
quote_bars_list = qb.History[QuoteBar]([ibm, aapl], 2)

trade_bars_df = qb.History(TradeBar, [ibm, aapl], 2)
quote_bars_df = qb.History(QuoteBar, [ibm, aapl], 2)
df = qb.History([ibm, aapl], 2)  # Includes trade and quote data

# EXAMPLE 8: Requesting By Bar Count for Multiple Symbols: 5 bars with a specific 
resolution:
trade_bars_list = qb.History[TradeBar]([ibm, aapl], 5, Resolution.Daily)
quote_bars_list = qb.History[QuoteBar]([ibm, aapl], 5, Resolution.Minute)

trade_bars_df = qb.History(TradeBar, [ibm, aapl], 5, Resolution.Daily)
quote_bars_df = qb.History(QuoteBar, [ibm, aapl], 5, Resolution.Minute)
df = qb.History([ibm, aapl], 5, Resolution.Daily)  # Includes trade data only. No quote for daily 
equity data

# EXAMPLE 9: Requesting By Trailing Period: 3 days of data at the security resolution: 
ticks = qb.History[Tick]([eth_symbol], timedelta(days=3))

trade_bars = qb.History[TradeBar]([btc_symbol], timedelta(days=3)) 
quote_bars = qb.History[QuoteBar]([btc_symbol], timedelta(days=3))
trade_bars_df = qb.History(TradeBar, [btc_symbol], timedelta(days=3))
quote_bars_df = qb.History(QuoteBar, [btc_symbol], timedelta(days=3))
df = qb.History([btc_symbol], timedelta(days=3))  # Includes trade and quote data 

PY

PY

PY



If you request data for multiple securities and you use the Tick request type, each Ticks object in the list of results

only contains the last tick of each security for that particular timeslice .

All Symbol History Requests

You can request history for all the securities you have created subscriptions for in your notebook session. The

parameters are very similar to other history method calls, but the return type is an array of Slice objects. The Slice

object holds all of the results in a sorted enumerable collection that you can iterate over with a loop.

# EXAMPLE 10: Requesting By Defined Period: 3 days of data at the security resolution: 
trade_bars = qb.History[TradeBar]([btc_symbol], start_time, end_time) 
quote_bars = qb.History[QuoteBar]([btc_symbol], start_time, end_time)
ticks = qb.History[Tick]([eth_symbol], start_time, end_time)
trade_bars_df = qb.History(TradeBar, btc_symbol, start_time, end_time)
quote_bars_df = qb.History(QuoteBar, btc_symbol, start_time, end_time)
ticks_df = qb.History(Tick, eth_symbol, start_time, end_time)
df = qb.History([btc_symbol], start_time, end_time)  # Includes trade and quote data

# EXAMPLE 11: Requesting 5 bars for all securities at their respective resolution:

# Create subscriptions
qb.AddEquity("IBM", Resolution.Daily)
qb.AddEquity("AAPL", Resolution.Daily)

# Request history data and enumerate results
slices = qb.History(5)
for s in slices:
    print(str(s.Time) + " AAPL:" + str(s.Bars["AAPL"].Close) + " IBM:" + str(s.Bars["IBM"].Close))

# EXAMPLE 12: Requesting 5 minutes for all securities:

slices = qb.History(timedelta(minutes=5), Resolution.Minute)
for s in slices:
    print(str(s.Time) + " AAPL:" + str(s.Bars["AAPL"].Close) + " IBM:" + str(s.Bars["IBM"].Close))

# timedelta history requests are relative to "now" in notebook Time. If you request this data at 
16:05, it returns an empty array because the market is closed.

PY

PY

PY

https://www.quantconnect.com/docs/v2//writing-algorithms/key-concepts/time-modeling/timeslices
https://www.quantconnect.com/docs/v2//writing-algorithms/key-concepts/time-modeling/timeslices


Assumed Defau lt Values

The following table describes the assumptions of the History API:

Argument Assumption

Resolution

LEAN guesses the resolution you request by looking
at the securities you already have in your notebook.
If you have a security subscription in your notebook
with a matching Symbol , the history request uses the
same resolution as the subscription. If you don't have
a security subscription in your notebook with a
matching Symbol , Resolution.Minute is the default.

Additional Options

The History method accepts the following additional arguments:

Argument Data Type Description Defau lt Value

fillForward bool/NoneType
True to fill forward
missing data. Otherwise,
false.

None

extendedMarketHours bool/NoneType
True to include
extended market hours
data. Otherwise, false.

None

dataMappingMode
DataMappingMode/NoneT
ype

The contract mapping
mode to use for the
security history request. None

dataNormalizationMod
e

DataNormalizationMode
/NoneType

The price scaling mode
to use for US Equities or
continuous Futures
contracts . If you don't
provide a value, it uses
the data normalization
mode of the security
subscription.

None

contractDepthOffset int/NoneType

The desired offset from
the current front month
for continuous Futures
contracts .

None

future = qb.AddFuture(Futures.Currencies.BTC)
history = qb.History(
    tickers=[future.Symbol], 
    start=qb.Time - timedelta(days=15), 
    end=qb.Time, 
    resolution=Resolution.Minute, 
    fillForward=False, 
    extendedMarketHours=False, 
    dataMappingMode=DataMappingMode.OpenInterest, 
    dataNormalizationMode=DataNormalizationMode.Raw, 
    contractDepthOffset=0)
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Resolutions

Resolution is the duration of time that's used to sample a data source. The Resolution enumeration has the

following members:

The default resolution for market data is Minute . To set the resolution for a security, pass the resolution

argument when you create the security subscription.

When you request historical data, the History method uses the resolution of your security subscription. To get

historical data with a different resolution, pass a resolution argument to the History method.

Markets

The datasets integrated into the Dataset Market cover many markets. The Market enumeration has the following

members:

LEAN can usually determine the correct market based on the ticker you provide when you create the security

subscription. To manually set the market for a security, pass a market argument when you create the security

subscription.

Fill Forward

Fill forward means if there is no data point for the current sample, LEAN uses the previous data point. Fill forward

is the default data setting. To disable fill forward for a security, set the fillForward argument to false when you

create the security subscription.

When you request historical data, the History method uses the fill forward setting of your security subscription. To

get historical data with a different fill forward setting, pass a fillForward argument to the History method.

Extended Market Hours

qb.AddEquity("SPY", Resolution.Daily)

history = qb.History(spy, 10, Resolution.Minute)

qb.AddEquity("SPY", market=Market.USA)

qb.AddEquity("SPY", fillForward=False)

history = qb.History(qb.Securities.Keys, qb.Time-timedelta(days=10), qb.Time, fillForward=True)
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By default, your security subscriptions only cover regular trading hours. To subscribe to pre and post-market

trading hours for a specific asset, enable the extendedMarketHours argument when you create the security

subscription.

You only receive extended market hours data if you create the subscription with minute, second, or tick resolution.

If you create the subscription with daily or hourly resolution, the bars only reflect the regular trading hours.

When you request historical data, the History method uses the extended market hours setting of your security

subscription. To get historical data with a different extended market hours setting, pass an extendedMarketHours

argument to the History method.

Look-Ahead Bias

In the Research Environment, all the historical data is directly available. In backtesting, you can only access the

data that is at or before the algorithm time. If you make a history request for the previous 10 days of data in the

Research Environment, you get the previous 10 days of data from today's date. If you request the same data in a

backtest, you get the previous 10 days of data from the algorithm time.

Consolidate Data

History requests usually return data in one of the standard resolutions . To analyze data on custom time frames like

5-minute bars or 4-hour bars, you need to aggregate it. Consider an example where you make a history call for

minute resolution data and want to create 5-minute resolution data. 

self.AddEquity("SPY", extendedMarketHours=True)

history = qb.History(qb.Securities.Keys, qb.Time-timedelta(days=10), qb.Time, 
extendedMarketHours=False)

qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol
start_date = datetime(2018, 4, 1)
end_date = datetime(2018, 7, 15)
history = qb.History(symbol, start_date, end_date, Resolution.Minute)
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To aggregate the data, use a consolidator or the pandas resample method. 

Consolidators

The following snippet demonstrates how to use a consolidator to aggregate data:

Resample Method

The resample method converts the frequency of a time series DataFrame into a custom frequency. The method

only works on DataFrame objects that have a datetime index. The History method returns a DataFrame with a

multi-index. The first index is a Symbol index for each security and the second index is a time index for the

timestamps of each row of data. To make the DataFrame compatible with the resample method, call the

reset_index method to drop the Symbol index.

The resample method returns a Resampler object, which needs to be downsampled using one of the pandas

downsampling computations . For example, you can use the Resampler.ohlc downsampling method to aggregate

price data.

When you resample a DataFrame with the ohlc downsampling method, it creates an OHLC row for each column in

the DataFrame. To just calculate the OHLC of the close column, select the close column before you resample the

DataFrame. A resample offset of 5T corresponds to a 5-minute resample. Other resampling offsets include 2D = 2

days, 5H = 5 hours, and 3S = 3 seconds.

# Set up a consolidator and a RollingWindow to save the data
consolidator = TradeBarConsolidator(timedelta(7))
window = RollingWindow[TradeBar](20)

# Attach a consolidation handler method that saves the consolidated bars in the RollingWindow   
consolidator.DataConsolidated += lambda _, bar: window.Add(bar)

# Iterate the historical market data and feed each bar into the consolidator
for bar in history.itertuples():
    tradebar = TradeBar(bar.Index[1], bar.Index[0], bar.open, bar.high, bar.low, bar.close, 
bar.volume)
    consolidator.Update(tradebar)

# Drop level 0 index (Symbol index) from the DataFrame
history.reset_index(level = 0, drop = True, inplace=True)
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Common Errors

If the history request returns an empty DataFrame and you try to slice it, it throws an exception. To avoid issues,

check if the DataFrame contains data before slicing it.

If you run the Research Environment on your local machine and history requests return no data, check if your data

directory contains the data you request. To download datasets, see Download .

 

close_prices = history["close"]

offset = "5T" 
close_5min_ohlc = close_prices.resample(offset).ohlc()

df = qb.History(symbol, 10).close    # raises exception if the request is empty

def GetSafeHistoryCloses(symbols):
    if not symbols:
        print(f'No symbols')
        return  False, None
    df = qb.History(symbols, 100, Resolution.Daily)
    if df.empty:
        print(f'Empy history for {symbols}')
        return  False, None
     return True, df.close.unstack(0)
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Datasets > US Equity

Datasets

US Equity

Introduction

This page explains how to request, manipulate, and visualize historical US Equity data.

Create Subscriptions

Follow these steps to subscribe to a US Equity security:

1. Create a QuantBook .

2. Call the AddEquity method with a ticker and then save a reference to the US Equity Symbol .

To view the supported assets in the US Equities dataset, see the Data Explorer .

Get Historical Data

You need a subscription before you can request historical data for a security. On the time dimension, you can

request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined

period of time. On the security dimension, you can request historical data for a single US Equity, a subset of the US

Equities you created subscriptions for in your notebook, or all of the US Equities in your notebook.

Trailing Number of Bars  

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an

integer.

qb = QuantBook()

spy = qb.AddEquity("SPY").Symbol
tlt = qb.AddEquity("TLT").Symbol

PY

PY

https://www.quantconnect.com/data/tree/equity/usa/daily


The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time 

To get historical data for a trailing period of time, call the History method with the Symbol object(s) and a

timedelta .

# DataFrame of trade and quote data
single_history_df = qb.History(spy, 10)
subset_history_df = qb.History([spy, tlt], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, spy, 10)
subset_history_trade_bar_df = qb.History(TradeBar, [spy, tlt], 10)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, 10)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, spy, 10)
subset_history_quote_bar_df = qb.History(QuoteBar, [spy, tlt], 10)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, 10)

# Slice objects
all_history_slice = qb.History(10)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](spy, 10)
subset_history_trade_bars = qb.History[TradeBar]([spy, tlt], 10)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, 10)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](spy, 10)
subset_history_quote_bars = qb.History[QuoteBar]([spy, tlt], 10)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, 10)
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The preceding calls return the most recent bars or ticks, excluding periods of time when the exchange was closed.

Defined Period of Time 

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start

datetime , and an end datetime . The start and end times you provide are based in the notebook time zone .

# DataFrame of trade and quote data
single_history_df = qb.History(spy, timedelta(days=3))
subset_history_df = qb.History([spy, tlt], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, spy, timedelta(days=3))
subset_history_trade_bar_df = qb.History(TradeBar, [spy, tlt], timedelta(days=3))
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, spy, timedelta(days=3))
subset_history_quote_bar_df = qb.History(QuoteBar, [spy, tlt], timedelta(days=3))
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of tick data
single_history_tick_df = qb.History(spy, timedelta(days=3), Resolution.Tick)
subset_history_tick_df = qb.History([spy, tlt], timedelta(days=3), Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, timedelta(days=3), Resolution.Tick)

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](spy, timedelta(days=3))
subset_history_trade_bars = qb.History[TradeBar]([spy, tlt], timedelta(days=3))
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, timedelta(days=3))

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](spy, timedelta(days=3), Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([spy, tlt], timedelta(days=3), Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, timedelta(days=3), 
Resolution.Minute)

# Tick objects
single_history_ticks = qb.History[Tick](spy, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick]([spy, tlt], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, timedelta(days=3), Resolution.Tick)
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The preceding calls return the bars or ticks that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Equity subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick

Second

Minute

Hour

Daily

Markets

LEAN groups all of the US Equity exchanges under Market.USA .

Data Normalization

start_time = datetime(2021, 1, 1)
end_time = datetime(2021, 2, 1)

# DataFrame of trade and quote data
single_history_df = qb.History(spy, start_time, end_time)
subset_history_df = qb.History([spy, tlt], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, spy, start_time, end_time)
subset_history_trade_bar_df = qb.History(TradeBar, [spy, tlt], start_time, end_time)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, spy, start_time, end_time)
subset_history_quote_bar_df = qb.History(QuoteBar, [spy, tlt], start_time, end_time)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of tick data
single_history_tick_df = qb.History(spy, start_time, end_time, Resolution.Tick)
subset_history_tick_df = qb.History([spy, tlt], start_time, end_time, Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, start_time, end_time, Resolution.Tick)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](spy, start_time, end_time)
subset_history_trade_bars = qb.History[TradeBar]([spy, tlt], start_time, end_time)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](spy, start_time, end_time, Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([spy, tlt], start_time, end_time, Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, 
Resolution.Minute)

# Tick objects
single_history_ticks = qb.History[Tick](spy, start_time, end_time, Resolution.Tick)
subset_history_ticks = qb.History[Tick]([spy, tlt], start_time, end_time, Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, start_time, end_time, Resolution.Tick)
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The data normalization mode defines how historical data is adjusted for corporate actions . By default, LEAN

adjusts US Equity data for splits and dividends to produce a smooth price curve, but the following data

normalization modes are available:

We use the entire split and dividend history to adjust historical prices. This process ensures you get the same

adjusted prices, regardless of the QuantBook time.

To set the data normalization mode for a security, pass a dataNormalizationMode argument to the AddEquity

method.

When you request historical data, the History method uses the data normalization of your security subscription.

To get historical data with a different data normalization, pass a dataNormalizationMode argument to the History

method.

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data

depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last

line. To display other data formats, call the print method.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded Equity Symbol

and the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

To select the historical data of a single Equity, index the loc property of the DataFrame with the Equity Symbol .

spy = qb.AddEquity("SPY", dataNormalizationMode=DataNormalizationMode.Raw).Symbol

history = qb.History(qb.Securities.Keys, qb.Time-timedelta(days=10), qb.Time, 
dataNormalizationMode=DataNormalizationMode.SplitAdjusted)

all_history_df.loc[spy]  # or all_history_df.loc['SPY']
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To select a column of the DataFrame , index it with the column name.

If you request historical data for multiple Equities, you can transform the DataFrame so that it's a time series of

close values for all of the Equities. To transform the DataFrame , select the column you want to display for each

Equity and then call the unstack method.

The DataFrame is transformed so that the column indices are the Symbol of each Equity and each row contains the

close value.

all_history_df.loc[spy]['close']

all_history_df['close'].unstack(level=0)
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If you prefer to display the ticker of each Symbol instead of the string representation of the SecurityIdentifier ,

follow these steps:

1. Create a dictionary where the keys are the string representations of each SecurityIdentifier and the values

are the ticker.

2. Get the values of the symbol level of the DataFrame index and create a list of tickers.

3. Set the values of the symbol level of the DataFrame index to the list of tickers.

The new DataFrame is keyed by the ticker.

After the index renaming, the unstacked DataFrame has the following format:

tickers_by_id = {str(x.ID): x.Value for x in qb.Securities.Keys}

tickers = set([tickers_by_id[x] for x in all_history_df.index.get_level_values('symbol')])

all_history_df.index.set_levels(tickers, 'symbol', inplace=True)

all_history_df.loc[spy.Value]  # or all_history_df.loc["SPY"]  
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Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects

may not have data for all of your Equity subscriptions. To avoid issues, check if the Slice contains data for your

Equity before you index it with the Equity Symbol .

You can also iterate through each TradeBar and QuoteBar in the Slice .

TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Equity. The

TradeBars may not have data for all of your Equity subscriptions. To avoid issues, check if the TradeBars object

contains data for your security before you index it with the Equity Symbol .

You can also iterate through each of the TradeBars .

for slice in all_history_slice:
    for kvp in slice.Bars:
        symbol = kvp.Key
        trade_bar = kvp.Value
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for trade_bar in single_history_trade_bars:
    print(trade_bar)

for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(spy):
        trade_bar = trade_bars[spy]
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QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Equity. The

QuoteBars may not have data for all of your Equity subscriptions. To avoid issues, check if the QuoteBars object

contains data for your security before you index it with the Equity Symbol .

You can also iterate through each of the QuoteBars .

Tick Objects

If the History method returns Tick objects, iterate through the Tick objects to get each one.

If the History method returns Ticks , iterate through the Ticks to get the Tick of each Equity. The Ticks may not

have data for all of your Equity subscriptions. To avoid issues, check if the Ticks object contains data for your

security before you index it with the Equity Symbol .

You can also iterate through each of the Ticks .

for trade_bars in all_history_trade_bars:
    for kvp in trade_bars:
        symbol = kvp.Key
        trade_bar = kvp.Value

for quote_bar in single_history_quote_bars:
    print(quote_bar)

for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(spy):
        quote_bar = quote_bars[spy]

for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for tick in single_history_ticks:
    print(tick)

for ticks in all_history_ticks:
    if ticks.ContainsKey(spy):
        ticks = ticks[spy]
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The Ticks objects only contain the last tick of each security for that particular timeslice

Plot Data

You need some historical Equity data to produce plots. You can use many of the supported plotting libraries to

visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart 

Follow these steps to plot candlestick charts:

1. Get some historical data.

2. Import the plotly library.

3. Create a Candlestick chart. 

4. Create a Layout . 

5. Create the Figure . 

6. Show the plot. 

for ticks in all_history_ticks:
    for kvp in ticks:
        symbol = kvp.Key
        tick = kvp.Value

history = qb.History(spy, datetime(2021, 11, 23), datetime(2021, 12, 8), 
Resolution.Daily).loc[spy]

import plotly.graph_objects as go

candlestick = go.Candlestick(x=history.index,
                             open=history['open'],
                             high=history['high'],
                             low=history['low'],
                             close=history['close'])

layout = go.Layout(title=go.layout.Title(text='SPY OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig = go.Figure(data=[candlestick], layout=layout)
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Candlestick charts display the open, high, low, and close prices of the security.

Line Chart

Follow these steps to plot line charts using built-in methods :

1. Get some historical data.

2. Select the data to plot.

3. Call the plot method on the pandas object.

4. Show the plot.

fig.show()

history = qb.History([spy, tlt], datetime(2021, 11, 23), datetime(2021, 12, 8), 
Resolution.Daily)

volume = history['volume'].unstack(level=0)

volume.plot(title="Volume", figsize=(15, 10))
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Line charts display the value of the property you selected in a time series.

Common Errors

Some factor files have INF split values, which indicate that the stock has so many splits that prices can't be

calculated with correct numerical precision. To allow history requests with these symbols, we need to move the

starting date forward when reading the data. If there are numerical precision errors in the factor files for a security

in your history request, LEAN throws the following error:

"Warning: when performing history requests, the start date will be adjusted if there are numerical precision errors in
the factor files."

 

plt.show()
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Datasets

Equity Fundamental Data

Introduction

This page explains how to request, manipulate, and visualize historical Equity Fundamental data. Corporate

fundamental data is available through the US Fundamental Data from Morningstar .

Create Subscriptions

Follow these steps to subscribe to an Equity security:

1. Create a QuantBook .

2. Call the AddEquity method with a ticker and then save a reference to the Equity Symbol .

To view the supported assets in the US Equities dataset, see the Data Explorer .

Get Historical Data

You need a subscription before you can request historical fundamental data for a US Equity.

To get historical data, call the GetFundamental method with a list of Symbol objects, a fundamental data field

name, a start datetime , and an end datetime . The start and end times you provide are based in the notebook

time zone . To view the possible fundamental data field names, see the FineFundamental attributes in Data Point

Attributes . For example, to get data for airline companies over 2014, run:

The preceding method returns the fundamental data field values that are timestamped within the defined period of

qb = QuantBook()

symbols = [qb.AddEquity(ticker).Symbol
    for ticker in [
        "AAL",   # American Airlines Group, Inc.
        "ALGT",  # Allegiant Travel Company
        "ALK",   # Alaska Air Group, Inc.
        "DAL",   # Delta Air Lines, Inc.
        "LUV",   # Southwest Airlines Company
        "SKYW",  # SkyWest, Inc.
        "UAL"    # United Air Lines
    ]]

start_time = datetime(2014, 1, 1)
end_time = datetime(2015, 1, 1)
history = qb.GetFundamental(symbols, "ValuationRatios.PERatio", start_time, end_time)
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time.

Wrangle Data

You need some historical data to perform wrangling operations. To display pandas objects, run a cell in a notebook

with the pandas object as the last line. To display other data formats, call the print method.

The DataFrame index is the EndTime of the data sample. The columns of the DataFrame are the Equity Symbol

objects.

To select the historical data of a single Equity, index the DataFrame with the Equity Symbol . Each history slice may

not have data for all of your Equity subscriptions. To avoid issues, check if it contains data for your Equity before

you index it with the Equity Symbol .

Plot Data

You need some historical Equity fundamental data to produce plots. You can use many of the supported plotting

libraries to visualize data in various formats. For example, you can plot line charts.

Follow these steps to plot line charts using built-in methods :

1. Call the plot method on the history DataFrame .

history[symbols[1]]

PY



history.plot(title='PE Ratio Over Time', figsize=(15, 8))

2. Show the plot.

Line charts display the value of the property you selected in a time series.

 

plt.show()

PY
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Datasets

Equity Options

Introduction

This page explains how to request, manipulate, and visualize historical Equity Options data.

Create Subscriptions

Follow these steps to subscribe to an Equity Option security:

1. Create a QuantBook .

2. Subscribe to the underlying Equity with raw data normalization and save a reference to the Equity Symbol .

To view the supported underlying assets in the US Equity Options dataset, see the Data Explorer .

3. Call the AddOption method with the underlying Equity Symbol .

4. (Optional) Set a contract filter .

The filter determines which contracts the GetOptionHistory method returns. If you don't set a filter, the

default filter selects the contracts that have the following characteristics:

Standard type (exclude weeklys)

Within 1 strike price of the underlying asset price

Expire within 31 days

(Optional) Set the price model .

qb = QuantBook()

equity_symbol = qb.AddEquity("SPY", dataNormalizationMode=DataNormalizationMode.Raw).Symbol

option = qb.AddOption(equity_symbol)

option.SetFilter(-1, 1, 0, 90)

option.PriceModel = OptionPriceModels.BjerksundStensland()
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If you want historical data on individual contracts and their OpenInterest , follow these steps to subscribe to the

individual Equity Option contracts:

1. Call the GetOptionsContractList method with the underlying Equity Symbol and a datetime .

This method returns a list of Symbol objects that reference the Option contracts that were trading at the given

time. If you set a contract filter with SetFilter , it doesn't affect the results of GetOptionsContractList .

2. Select the Symbol of the OptionContract object(s) for which you want to get historical data.

To filter and select contracts, you can use the following properties of each Symbol object:

Property Description

ID.Date The expiration date of the contract.

ID.StrikePrice The strike price of the contract.

ID.OptionRight The contract type. The OptionRight enumeration
has the following members:

ID.OptionStyle The contract style. The OptionStyle enumeration
has the following members:

3. Call the AddOptionContract method with an OptionContract Symbol and disable fill-forward.

Disable fill-forward because there are only a few OpenInterest data points per day.

4. (Optional) Set the price model .

Get Historical Data

You need a subscription before you can request historical data for Equity Option contracts. On the time dimension,

start_date = datetime(2021, 12, 31)
contract_symbols = qb.OptionChainProvider.GetOptionContractList(equity_symbol, start_date)

contract_symbol = [s for s in contract_symbols 
    if s.ID.OptionRight == OptionRight.Call 
        and s.ID.StrikePrice == 477 
        and s.ID.Date == datetime(2022, 1, 21)][0]

option_contract = qb.AddOptionContract(contract_symbol, fillForward = False)

option_contract.PriceModel = OptionPriceModels.BjerksundStensland()
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you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a

defined period of time. On the contract dimension, you can request historical data for a single contract, a subset of

the contracts you created subscriptions for in your notebook, or all of the contracts in your notebook.

Before you request historical data, call the SetStartDate method with a datetime to reduce the risk of look-ahead

bias .

If you call the SetStartDate method, the date that you pass to the method is the latest date for which your history

requests will return data.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the contract Symbol object(s) and

an integer.

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time

qb.SetStartDate(start_date)

# DataFrame of trade and quote data
single_history_df = qb.History(contract_symbol, 10)
subset_history_df = qb.History([contract_symbol], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, contract_symbol, 10)
subset_history_trade_bar_df = qb.History(TradeBar, [contract_symbol], 10)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, 10)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, contract_symbol, 10)
subset_history_quote_bar_df = qb.History(QuoteBar, [contract_symbol], 10)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, 10)

# DataFrame of open interest data
single_history_open_interest_df = qb.History(OpenInterest, contract_symbol, 400)
subset_history_open_interest_df = qb.History(OpenInterest, [contract_symbol], 400)
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, 400)

# Slice objects
all_history_slice = qb.History(10)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](contract_symbol, 10)
subset_history_trade_bars = qb.History[TradeBar]([contract_symbol], 10)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, 10)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](contract_symbol, 10)
subset_history_quote_bars = qb.History[QuoteBar]([contract_symbol], 10)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, 10)

# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest](contract_symbol, 400)
subset_history_open_interest = qb.History[OpenInterest]([contract_symbol], 400)
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, 400)

PY

PY

https://www.quantconnect.com/docs/v2//writing-algorithms/key-concepts/glossary#16-look-ahead-bias


To get historical data for a trailing period of time, call the History method with the contract Symbol object(s) and

a timedelta .

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Defined Period of Time

To get historical data for individual Equity Option contracts during a specific period of time, call the History

method with the Equity Option contract Symbol object(s), a start datetime , and an end datetime . The start and

end times you provide are based in the notebook time zone .

# DataFrame of trade and quote data
single_history_df = qb.History(contract_symbol, timedelta(days=3))
subset_history_df = qb.History([contract_symbol], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, contract_symbol, timedelta(days=3))
subset_history_trade_bar_df = qb.History(TradeBar, [contract_symbol], timedelta(days=3))
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, contract_symbol, timedelta(days=3))
subset_history_quote_bar_df = qb.History(QuoteBar, [contract_symbol], timedelta(days=3))
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of open interest data
single_history_open_interest_df = qb.History(OpenInterest, contract_symbol, timedelta(days=3))
subset_history_open_interest_df = qb.History(OpenInterest, [contract_symbol], timedelta(days=3))
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, timedelta(days=3))

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](contract_symbol, timedelta(days=3))
subset_history_trade_bars = qb.History[TradeBar]([contract_symbol], timedelta(days=3))
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, timedelta(days=3))

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](contract_symbol, timedelta(days=3), 
Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([contract_symbol], timedelta(days=3), 
Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, timedelta(days=3), 
Resolution.Minute) 

# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest](contract_symbol, timedelta(days=2))
subset_history_open_interest = qb.History[OpenInterest]([contract_symbol], timedelta(days=2))
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, timedelta(days=2))

PY



To get historical data for all of the Equity Option contracts that pass your filter during a specific period of time,

call the GetOptionHistory method with the underlying Equity Symbol object, a start datetime , and an end

datetime .

The preceding calls return data that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Equity Option contract subscriptions:

start_time = datetime(2021, 12, 1)
end_time = datetime(2021, 12, 31)

# DataFrame of trade and quote data
single_history_df = qb.History(contract_symbol, start_time, end_time)
subset_history_df = qb.History([contract_symbol], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, contract_symbol, start_time, end_time)
subset_history_trade_bar_df = qb.History(TradeBar, [contract_symbol], start_time, end_time)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, contract_symbol, start_time, end_time)
subset_history_quote_bar_df = qb.History(QuoteBar, [contract_symbol], start_time, end_time)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of open interest data
single_history_open_interest_df = qb.History(OpenInterest, contract_symbol, start_time, end_time)
subset_history_open_interest_df = qb.History(OpenInterest, [contract_symbol], start_time, end_time)
all_history_trade_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, start_time, 
end_time)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](contract_symbol, start_time, end_time)
subset_history_trade_bars = qb.History[TradeBar]([contract_symbol], start_time, end_time)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](contract_symbol, start_time, end_time, 
Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([contract_symbol], start_time, end_time, 
Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, 
Resolution.Minute)

# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest](contract_symbol, start_time, end_time)
subset_history_open_interest = qb.History[OpenInterest]([contract_symbol], start_time, end_time)
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, start_time, end_time)

option_history = qb.GetOptionHistory(equity_symbol, end_time-timedelta(days=2), end_time, 
Resolution.Minute, fillForward=False, extendedMarketHours=False)
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Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick

Second

Minute

Hour

Daily

Markets

LEAN groups all of the US Equity Option exchanges under Market.USA , so you don't need to pass a Market to the

AddOption or AddOptionContract methods.

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data

depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last

line. To display other data formats, call the print method.

DataFrame Objects

If your history request returns a DataFrame , the DataFrame has the following index levels:

1. Contract expiry

2. Contract strike price

3. Contract type (call or put)

4. Encoded contract Symbol

5. The EndTime of the data sample

The columns of the DataFrame are the data properties. Depending on how you request data, the DataFrame may

contain data for the underlying security, which causes some of the index levels to be an empty string for the

corresponding rows.

To select the rows of the contract(s) that expire at a specific time, index the loc property of the DataFrame with

the expiry time.

https://www.quantconnect.com/docs/v2//writing-algorithms/key-concepts/security-identifiers#02-Encoding-Symbols


If you remove the first three index levels, you can index the DataFrame with just the contract Symbol , similiar to

how you would with non-derivative asset classes. To remove the first three index levels, call the droplevel method.

To select the historical data of a single Equity Options contract, index the loc property of the DataFrame with the

contract Symbol .

To select a column of the DataFrame , index it with the column name.

all_history_df.loc[datetime(2022, 1, 21)]

all_history_df.index = all_history_df.index.droplevel([0,1,2])

all_history_df.loc[contract_symbol]
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If you request historical data for multiple Equity Option contracts, you can transform the DataFrame so that it's a

time series of close values for all of the Equity Option contracts. To transform the DataFrame , select the column

you want to display for each Equity Option contract and then call the unstack method.

The DataFrame is transformed so that the column indices are the Symbol of each security and each row contains

the close value.

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects

may not have data for all of your Equity Options subscriptions. To avoid issues, check if the Slice contains data

for your Equity Option contract before you index it with the Equity Options Symbol .

You can also iterate through each TradeBar and QuoteBar in the Slice .

all_history_df.loc[contract_symbol]['close']

all_history_df['close'].unstack(level=0)
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TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Equity

Option contract. The TradeBars may not have data for all of your Equity Options subscriptions. To avoid issues,

check if the TradeBars object contains data for your security before you index it with the Equity Options Symbol .

You can also iterate through each of the TradeBars .

QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Equity

Option contract. The QuoteBars may not have data for all of your Equity Options subscriptions. To avoid issues,

check if the QuoteBars object contains data for your security before you index it with the Equity Options Symbol .

for slice in all_history_slice:
    for kvp in slice.Bars:
        symbol = kvp.Key
        trade_bar = kvp.Value
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for trade_bar in single_history_trade_bars:
    print(trade_bar)

for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(contract_symbol):
        trade_bar = trade_bars[contract_symbol]

for trade_bars in all_history_trade_bars:
    for kvp in trade_bars:
        symbol = kvp.Key
        trade_bar = kvp.Value

for quote_bar in single_history_quote_bars:
    print(quote_bar)

for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(contract_symbol):
        quote_bar = quote_bars[contract_symbol]
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You can also iterate through each of the QuoteBars .

OpenInterest Objects

If the History method returns OpenInterest objects, iterate through the OpenInterest objects to get each one.

If the History method returns a dictionary of OpenInterest objects, iterate through the dictionary to get the

OpenInterest of each Equity Option contract. The dictionary of OpenInterest objects may not have data for all of

your Equity Options contract subscriptions. To avoid issues, check if the dictionary contains data for your contract

before you index it with the Equity Options contract Symbol .

You can also iterate through each of the OpenInterest dictionaries.

OptionHistory Objects

The GetOptionHistory method returns an OptionHistory object. To get each slice in the OptionHistory object,

iterate through it.

To convert the OptionHistory object to a DataFrame that contains the trade and quote information of each

contract and the underlying, call the GetAllData method.

for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for open_interest in single_history_open_interest:
    print(open_interest)

for open_interest_dict in all_history_open_interest:
    if open_interest_dict.ContainsKey(contract_symbol):
        open_interest = open_interest_dict[contract_symbol]

for open_interest_dict in all_history_open_interest:
    for kvp in open_interest_dict:
        symbol = kvp.Key
        open_interest = kvp.Value

for slice in option_history:
    for canonical_symbol, chain in slice.OptionChains.items(): 
        for contract in chain:
            pass
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To get the expiration dates of all the contracts in an OptionHistory object, call the GetExpiryDates method.

To get the strike prices of all the contracts in an OptionHistory object, call the GetStrikes method.

Plot Data

You need some historical Equity Options data to produce plots. You can use many of the supported plotting

libraries to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart 

Follow these steps to plot candlestick charts:

1. Get some historical data.

2. Drop the first four index levels of the DataFrame that returns.

history.index = history.index.droplevel([0,1,2,3])

3. Import the plotly library.

4. Create a Candlestick .

5. Create a Layout .

option_history.GetAllData()

option_history.GetExpiryDates()

option_history.GetStrikes()

history = qb.History(contract_symbol, datetime(2021, 12, 30), datetime(2021, 12, 31))

import plotly.graph_objects as go

candlestick = go.Candlestick(x=history.index,
                             open=history['open'],
                             high=history['high'],
                             low=history['low'],
                             close=history['close'])
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LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"{contractSymbol} Price");

Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);

6. Create the Figure . 

fig = go.Figure(data=[candlestick], layout=layout)

7. Show the plot. 

The Jupyter Notebook displays a candlestick chart of the Option contract's price.

Line Chart

Follow these steps to plot line charts using built-in methods :

1. Get some historical data.

layout = go.Layout(title=go.layout.Title(text=f'{symbol.Value} OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig.show()
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2. Drop the first three index levels of the DataFrame that returns. 

3. Select the open interest data.

4. Rename the column to the Symbol of the contract.

5. Call the plot method with a title.

6. Show the plot.

The Jupyter Notebook displays a line chart of open interest data. 

history = qb.History(OpenInterest, contract_symbol, datetime(2021, 12, 1), datetime(2021, 12, 
31))

history.index = history.index.droplevel([0, 1, 2])

history = history['openinterest'].unstack(level=0)

history.columns = [
    Symbol.GetAlias(SecurityIdentifier.Parse(x), equity_symbol)
        for x in history.columns]

history.plot(title="Open Interest")

plt.show()
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Get Price Model Data

Follow these steps to get the values of theoretical prices, implied volatility, and Greeks:

1. Create subscriptions and set the price model .

2. Set the underlying volatility model .

You need to reset the volatility before you start calculating the theoretical prices, implied volatility, and

Greeks.

3. Get historical data for the underlying Equity and the Option contract(s).

4. Iterate through the historical data and calculate the values.

qb.Securities[equity_symbol].VolatilityModel = StandardDeviationOfReturnsVolatilityModel(30, 
Resolution.Daily)
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For a full example, see the following project:

df = pd.DataFrame()
for slice in history:
    underlying_price = None
    underlying_volatility = None

    # Update the security with QuoteBar information
    for bar in slice.QuoteBars.Values:
        qb.Securities[bar.Symbol].SetMarketPrice(bar)

    # Update the security with TradeBar information
    for bar in slice.Bars.Values:
        symbol = bar.Symbol
        security = qb.Securities[symbol]
        security.SetMarketPrice(bar)

        if security.Type == SecurityType.Equity:
            underlying_volatility = security.VolatilityModel.Volatility
            underlying_price = security.Price
            continue
        
        # Create the Option contract
        contract = OptionContract.Create(symbol, symbol.Underlying, bar.EndTime, security, 
underlying_price)
        contract.LastPrice = bar.Close

        # Evaluate the price model to get the IV, Greeks, and theoretical price
        result = security.PriceModel.Evaluate(security, None, contract)
        greeks = result.Greeks
        
        # Append the data to the DataFrame
        data = {
            "IV" : result.ImpliedVolatility,
            "Delta": greeks.Delta,
            "Gamma": greeks.Gamma,
            "Vega": greeks.Vega,
            "Rho": greeks.Rho,
            "Theta": greeks.Theta,
            "LastPrice": contract.LastPrice,
            "Close": security.Close,
            "theoreticalPrice" : result.TheoreticalPrice,
            "underlyingPrice": underlying_price,
            "underlyingVolatility": underlying_volatility
        }
        right = "Put" if symbol.ID.OptionRight == 1 else "Call"
        index = pd.MultiIndex.from_tuples([(symbol.ID.Date, symbol.ID.StrikePrice, right, 
symbol.Value, bar.EndTime)], names=["expiry", "strike", "type", "symbol", "endTime"])
        df = pd.concat([df, pd.DataFrame(data, index=index)])
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Datasets

Crypto

Introduction

This page explains how to request, manipulate, and visualize historical Crypto data.

Create Subscriptions

Follow these steps to subscribe to a Crypto security:

1. Create a QuantBook .

2. Call the AddCrypto method with a ticker and then save a reference to the Crypto Symbol .

To view the supported assets in the Crypto datasets, see the Supported Assets   section of the CoinAPI dataset

listings .

Get Historical Data

You need a subscription before you can request historical data for a security. On the time dimension, you can

request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined

period of time. On the security dimension, you can request historical data for a single Cryptocurrency, a subset of

the Cryptocurrencies you created subscriptions for in your notebook, or all of the Cryptocurrencies in your

notebook.

Trailing Number of Bars  

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an

integer.

qb = QuantBook()

btcusd = qb.AddCrypto("BTCUSD").Symbol
ethusd = qb.AddCrypto("ETHUSD").Symbol
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Trailing Period of Time 

To get historical data for a trailing period of time, call the History method with the Symbol object(s) and a

timedelta .

# DataFrame of trade and quote data
single_history_df = qb.History(btcusd, 10)
subset_history_df = qb.History([btcusd, ethusd], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, btcusd, 10)
subset_history_trade_bar_df = qb.History(TradeBar, [btcusd, ethusd], 10)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, 10)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, btcusd, 10)
subset_history_quote_bar_df = qb.History(QuoteBar, [btcusd, ethusd], 10)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, 10)

# Slice objects
all_history_slice = qb.History(10)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](btcusd, 10)
subset_history_trade_bars = qb.History[TradeBar]([btcusd, ethusd], 10)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, 10)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](btcusd, 10)
subset_history_quote_bars = qb.History[QuoteBar]([btcusd, ethusd], 10)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, 10)
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Defined Period of Time 

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start

datetime , and an end datetime . The start and end times you provide are based in the notebook time zone .

# DataFrame of trade and quote data
single_history_df = qb.History(btcusd, timedelta(days=3))
subset_history_df = qb.History([btcusd, ethusd], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, btcusd, timedelta(days=3))
subset_history_trade_bar_df = qb.History(TradeBar, [btcusd, ethusd], timedelta(days=3))
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, btcusd, timedelta(days=3))
subset_history_quote_bar_df = qb.History(QuoteBar, [btcusd, ethusd], timedelta(days=3))
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of tick data
single_history_tick_df = qb.History(btcusd, timedelta(days=3), Resolution.Tick)
subset_history_tick_df = qb.History([btcusd, ethusd], timedelta(days=3), Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, timedelta(days=3), Resolution.Tick)

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](btcusd, timedelta(days=3))
subset_history_trade_bars = qb.History[TradeBar]([btcusd, ethusd], timedelta(days=3))
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, timedelta(days=3))

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](btcusd, timedelta(days=3), Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([btcusd, ethusd], timedelta(days=3), 
Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, timedelta(days=3), 
Resolution.Minute)

# Tick objects
single_history_ticks = qb.History[Tick](btcusd, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick]([btcusd, ethusd], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, timedelta(days=3), Resolution.Tick)
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Resolutions

The following table shows the available resolutions and data formats for Crypto subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick

Second

Minute

Hour

Daily

Markets

The following Market enumeration members are available for Crypto:

Wrangle Data

start_time = datetime(2021, 1, 1)
end_time = datetime(2021, 2, 1)

# DataFrame of trade and quote data
single_history_df = qb.History(btcusd, start_time, end_time)
subset_history_df = qb.History([btcusd, ethusd], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, btcusd, start_time, end_time)
subset_history_trade_bar_df = qb.History(TradeBar, [btcusd, ethusd], start_time, end_time)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, btcusd, start_time, end_time)
subset_history_quote_bar_df = qb.History(QuoteBar, [btcusd, ethusd], start_time, end_time)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of tick data
single_history_tick_df = qb.History(btcusd, start_time, end_time, Resolution.Tick)
subset_history_tick_df = qb.History([btcusd, ethusd], start_time, end_time, Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, start_time, end_time, Resolution.Tick)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](btcusd, start_time, end_time)
subset_history_trade_bars = qb.History[TradeBar]([btcusd, ethusd], start_time, end_time)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](btcusd, start_time, end_time, Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([btcusd, ethusd], start_time, end_time, 
Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, 
Resolution.Minute)

# Tick objects
single_history_ticks = qb.History[Tick](btcusd, start_time, end_time, Resolution.Tick)
subset_history_ticks = qb.History[Tick]([btcusd, ethusd], start_time, end_time, Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, start_time, end_time, Resolution.Tick)
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You need some historical data to perform wrangling operations. The process to manipulate the historical data

depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last

line. To display other data formats, call the print method.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded Crypto Symbol

and the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

To select the historical data of a single Crypto, index the loc property of the DataFrame with the Crypto Symbol .

To select a column of the DataFrame , index it with the column name.

all_history_df.loc[btcusd]  # or all_history_df.loc['BTCUSD']

all_history_df.loc[btcusd]['close']
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If you request historical data for multiple Crypto pairs, you can transform the DataFrame so that it's a time series of

close values for all of the Crypto pairs. To transform the DataFrame , select the column you want to display for

each Crypto pair and then call the unstack method.

The DataFrame is transformed so that the column indices are the Symbol of each Crypto pair and each row

contains the close value.

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects

may not have data for all of your Crypto subscriptions. To avoid issues, check if the Slice contains data for your

Crypto pair before you index it with the Crypto Symbol .

You can also iterate through each TradeBar and QuoteBar in the Slice .

all_history_df['close'].unstack(level=0)
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TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Crypto pair.

The TradeBars may not have data for all of your Crypto subscriptions. To avoid issues, check if the TradeBars

object contains data for your security before you index it with the Crypto Symbol .

You can also iterate through each of the TradeBars .

QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Crypto pair.

The QuoteBars may not have data for all of your Crypto subscriptions. To avoid issues, check if the QuoteBars

object contains data for your security before you index it with the Crypto Symbol .

for slice in all_history_slice:
    for kvp in slice.Bars:
        symbol = kvp.Key
        trade_bar = kvp.Value
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for trade_bar in single_history_trade_bars:
    print(trade_bar)

for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(btcusd):
        trade_bar = trade_bars[btcusd]

for trade_bars in all_history_trade_bars:
    for kvp in trade_bars:
        symbol = kvp.Key
        trade_bar = kvp.Value

for quote_bar in single_history_quote_bars:
    print(quote_bar)

for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(btcusd):
        quote_bar = quote_bars[btcusd]
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You can also iterate through each of the QuoteBars .

Tick Objects

If the History method returns Tick objects, iterate through the Tick objects to get each one.

If the History method returns Ticks , iterate through the Ticks to get the Tick of each Crypto pair. The Ticks

may not have data for all of your Crypto subscriptions. To avoid issues, check if the Ticks object contains data for

your security before you index it with the Crypto Symbol .

You can also iterate through each of the Ticks .

The Ticks objects only contain the last tick of each security for that particular timeslice

Plot Data

You need some historical Crypto data to produce plots. You can use many of the supported plotting libraries to

visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart 

Follow these steps to plot candlestick charts:

1. Get some historical data.

2. Import the plotly library.

for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for tick in single_history_ticks:
    print(tick)

for ticks in all_history_ticks:
    if ticks.ContainsKey(btcusd):
        ticks = ticks[btcusd]

for ticks in all_history_ticks:
    for kvp in ticks:
        symbol = kvp.Key
        tick = kvp.Value

history = qb.History(btcusd, datetime(2020, 12, 27), datetime(2021, 12, 21), 
Resolution.Daily).loc[btcusd]
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3. Create a Candlestick . 

4. Create a Layout . 

5. Create the Figure . 

fig = go.Figure(data=[candlestick], layout=layout)

6. Show the Figure . 

Candlestick charts display the open, high, low, and close prices of the security.

Line Chart

import plotly.graph_objects as go

candlestick = go.Candlestick(x=history.index,
                             open=history['open'],
                             high=history['high'],
                             low=history['low'],
                             close=history['close'])

layout = go.Layout(title=go.layout.Title(text='BTCUSD OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig.show()
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Follow these steps to plot line charts using built-in methods :

1. Get some historical data.

var history = qb.History<TradeBar>(new[] {btcusd, ethusd}, new DateTime(2020, 12, 27), new 
DateTime(2021, 12, 21), Resolution.Daily);

2. Select the data to plot.

volume = history['volume'].unstack(level=0)

3. Call the plot method on the pandas object.

volume.plot(title="Volume", figsize=(15, 10))

4. Show the plot.

Line charts display the value of the property you selected in a time series.

history = qb.History([btcusd, ethusd], datetime(2020, 12, 27), datetime(2021, 12, 21), 
Resolution.Daily)

plt.show()
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Crypto Futures

Introduction

This page explains how to request, manipulate, and visualize historical Crypto Futures data.

Create Subscriptions

Follow these steps to subscribe to a perpetual Crypto Futures contract:

1. Create a QuantBook .

2. Call the AddCryptoFuture method with a ticker and then save a reference to the Crypto Future Symbol .

To view the supported assets in the Crypto Futures datasets, see the Data Explorer .

Get Historical Data

You need a subscription before you can request historical data for a security. You can request an amount of

historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. You can

also request historical data for a single contract, a subset of the contracts you created subscriptions for in your

notebook, or all of the contracts in your notebook.

Trailing Number of Bars  

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an

integer.

qb = QuantBook()

btcusd = qb.AddCryptoFuture("BTCUSD").Symbol
ethusd = qb.AddCryptoFuture("ETHUSD").Symbol
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Trailing Period of Time 

To get historical data for a trailing period of time, call the History method with the Symbol object(s) and a

timedelta .

# DataFrame of trade and quote data
single_history_df = qb.History(btcusd, 10)
subset_history_df = qb.History([btcusd, ethusd], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, btcusd, 10)
subset_history_trade_bar_df = qb.History(TradeBar, [btcusd, ethusd], 10)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, 10)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, btcusd, 10)
subset_history_quote_bar_df = qb.History(QuoteBar, [btcusd, ethusd], 10)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, 10)

# Slice objects
all_history_slice = qb.History(10)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](btcusd, 10)
subset_history_trade_bars = qb.History[TradeBar]([btcusd, ethusd], 10)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, 10)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](btcusd, 10)
subset_history_quote_bars = qb.History[QuoteBar]([btcusd, ethusd], 10)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, 10)
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Defined Period of Time 

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start

datetime , and an end datetime . The start and end times you provide are based in the notebook time zone .

# DataFrame of trade and quote data
single_history_df = qb.History(btcusd, timedelta(days=3))
subset_history_df = qb.History([btcusd, ethusd], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, btcusd, timedelta(days=3))
subset_history_trade_bar_df = qb.History(TradeBar, [btcusd, ethusd], timedelta(days=3))
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, btcusd, timedelta(days=3))
subset_history_quote_bar_df = qb.History(QuoteBar, [btcusd, ethusd], timedelta(days=3))
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of tick data
single_history_tick_df = qb.History(btcusd, timedelta(days=3), Resolution.Tick)
subset_history_tick_df = qb.History([btcusd, ethusd], timedelta(days=3), Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, timedelta(days=3), Resolution.Tick)

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](btcusd, timedelta(days=3))
subset_history_trade_bars = qb.History[TradeBar]([btcusd, ethusd], timedelta(days=3))
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, timedelta(days=3))

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](btcusd, timedelta(days=3), Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([btcusd, ethusd], timedelta(days=3), 
Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, timedelta(days=3), 
Resolution.Minute)

# Tick objects
single_history_ticks = qb.History[Tick](btcusd, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick]([btcusd, ethusd], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, timedelta(days=3), Resolution.Tick)
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Resolutions

The following table shows the available resolutions and data formats for Crypto Futures contract subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick

Second

Minute

Hour

Daily

Markets

Crypto Futures are currently only available on Market.Binance .

Wrangle Data

start_time = datetime(2021, 1, 1)
end_time = datetime(2021, 2, 1)

# DataFrame of trade and quote data
single_history_df = qb.History(btcusd, start_time, end_time)
subset_history_df = qb.History([btcusd, ethusd], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, btcusd, start_time, end_time)
subset_history_trade_bar_df = qb.History(TradeBar, [btcusd, ethusd], start_time, end_time)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, btcusd, start_time, end_time)
subset_history_quote_bar_df = qb.History(QuoteBar, [btcusd, ethusd], start_time, end_time)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of tick data
single_history_tick_df = qb.History(btcusd, start_time, end_time, Resolution.Tick)
subset_history_tick_df = qb.History([btcusd, ethusd], start_time, end_time, Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, start_time, end_time, Resolution.Tick)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](btcusd, start_time, end_time)
subset_history_trade_bars = qb.History[TradeBar]([btcusd, ethusd], start_time, end_time)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](btcusd, start_time, end_time, Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([btcusd, ethusd], start_time, end_time, 
Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, 
Resolution.Minute)

# Tick objects
single_history_ticks = qb.History[Tick](btcusd, start_time, end_time, Resolution.Tick)
subset_history_ticks = qb.History[Tick]([btcusd, ethusd], start_time, end_time, Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, start_time, end_time, Resolution.Tick)
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You need some historical data to perform wrangling operations. The process to manipulate the historical data

depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last

line. To display other data formats, call the print method.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded Crypto Future

Symbol and the second level is the EndTime of the data sample. The columns of the DataFrame are the data

properties.

To select the historical data of a single Crypto Future, index the loc property of the DataFrame with the Crypto

Future Symbol .

To select a column of the DataFrame , index it with the column name.

all_history_df.loc[btcusd]  # or all_history_df.loc['BTCUSD']

all_history_df.loc[btcusd]['close']
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If you request historical data for multiple Crypto Futures contracts, you can transform the DataFrame so that it's a

time series of close values for all of the Crypto Futures contracts. To transform the DataFrame , select the column

you want to display for each Crypto Futures contract and then call the unstack method.

The DataFrame is transformed so that the column indices are the Symbol of each Crypto Futures contract and each

row contains the close value.

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects

may not have data for all of your Crypto Future subscriptions. To avoid issues, check if the Slice contains data for

your Crypto Futures contract before you index it with the Crypto Future Symbol .

You can also iterate through each TradeBar and QuoteBar in the Slice .

all_history_df['close'].unstack(level=0)
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TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Crypto

Futures contract. The TradeBars may not have data for all of your Crypto Future subscriptions. To avoid issues,

check if the TradeBars object contains data for your security before you index it with the Crypto Future Symbol .

You can also iterate through each of the TradeBars .

QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Crypto

Futures contract. The QuoteBars may not have data for all of your Crypto Future subscriptions. To avoid issues,

check if the QuoteBars object contains data for your security before you index it with the Crypto Future Symbol .

for slice in all_history_slice:
    for kvp in slice.Bars:
        symbol = kvp.Key
        trade_bar = kvp.Value
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for trade_bar in single_history_trade_bars:
    print(trade_bar)

for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(btcusd):
        trade_bar = trade_bars[btcusd]

for trade_bars in all_history_trade_bars:
    for kvp in trade_bars:
        symbol = kvp.Key
        trade_bar = kvp.Value

for quote_bar in single_history_quote_bars:
    print(quote_bar)

for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(btcusd):
        quote_bar = quote_bars[btcusd]
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You can also iterate through each of the QuoteBars .

Tick Objects

If the History method returns Tick objects, iterate through the Tick objects to get each one.

If the History method returns Ticks , iterate through the Ticks to get the Tick of each Crypto Futures contract.

The Ticks may not have data for all of your Crypto Future subscriptions. To avoid issues, check if the Ticks object

contains data for your security before you index it with the Crypto Future Symbol .

You can also iterate through each of the Ticks .

The Ticks objects only contain the last tick of each security for that particular timeslice

Plot Data

You need some historical Crypto Futures data to produce plots. You can use many of the supported plotting

libraries to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart 

Follow these steps to plot candlestick charts:

1. Get some historical data.

2. Import the plotly library.

for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for tick in single_history_ticks:
    print(tick)

for ticks in all_history_ticks:
    if ticks.ContainsKey(btcusd):
        ticks = ticks[btcusd]

for ticks in all_history_ticks:
    for kvp in ticks:
        symbol = kvp.Key
        tick = kvp.Value

history = qb.History(btcusd, datetime(2021, 11, 23), datetime(2021, 12, 8), 
Resolution.Daily).loc[btcusd]
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3. Create a Candlestick . 

4. Create a Layout . 

5. Create the Figure . 

fig = go.Figure(data=[candlestick], layout=layout)

6. Show the Figure . 

Candlestick charts display the open, high, low, and close prices of the security.

import plotly.graph_objects as go

candlestick = go.Candlestick(x=history.index,
                             open=history['open'],
                             high=history['high'],
                             low=history['low'],
                             close=history['close'])

layout = go.Layout(title=go.layout.Title(text='BTCUSD 18R OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig.show()
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Line Chart

Follow these steps to plot line charts using built-in methods :

1. Get some historical data.

2. Select the data to plot.

volume = history['volume'].unstack(level=0)

3. Call the plot method on the pandas object.

volume.plot(title="Volume", figsize=(15, 10))

4. Show the plot.

Line charts display the value of the property you selected in a time series.

history = qb.History([btcusd, ethusd], datetime(2021, 11, 23), datetime(2021, 12, 8), 
Resolution.Daily)

plt.show()
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Futures

Introduction

This page explains how to request, manipulate, and visualize historical Futures data.

Create Subscriptions

Follow these steps to subscribe to a Future security:

1. Create a QuantBook .

2. Call the AddFuture method with a ticker, resolution, and contract rollover settings .

To view the available tickers in the US Futures dataset, see Supported Assets .

If you omit any of the arguments after the ticker, see the following table for their default values:

Argument Defau lt Value

resolution Resolution.Minute

dataNormalizationMode DataNormalizationMode.Adjusted

dataMappingMode DataMappingMode.OpenInterest

contractDepthOffset 0

3. (Optional) Set a contract filter .

If you don't call the SetFilter method, the GetFutureHistory method won't return historical data.

If you want historical data on individual contracts and their OpenInterest , follow these steps to subscribe to

qb = QuantBook()

future = qb.AddFuture(Futures.Indices.SP500EMini, Resolution.Minute,
                dataNormalizationMode = DataNormalizationMode.BackwardsRatio,
                dataMappingMode = DataMappingMode.LastTradingDay,
                contractDepthOffset = 0)

future.SetFilter(0, 90)
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individual Future contracts:

1. Call the GetFuturesContractList method with the underlying Future Symbol and a datetime .

This method returns a list of Symbol objects that reference the Future contracts that were trading at the given

time. If you set a contract filter with SetFilter , it doesn't affect the results of GetFutureContractList .

2. Select the Symbol of the FutureContract object(s) for which you want to get historical data.

For example, select the Symbol of the contract with the closest expiry. 

3. Call the AddFutureContract method with an FutureContract Symbol and disable fill-forward.

Disable fill-forward because there are only a few OpenInterest data points per day.

Get Historical Data

You need a subscription before you can request historical data for Futures contracts. On the time dimension, you

can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined

period of time. On the contract dimension, you can request historical data for a single contract, a subset of the

contracts you created subscriptions for in your notebook, or all of the contracts in your notebook.

Before you request historical data, call the SetStartDate method with a datetime to reduce the risk of look-ahead

bias .

If you call the SetStartDate method, the date that you pass to the method is the latest date for which your history

requests will return data.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the contract Symbol object(s) and

an integer.

start_date = datetime(2021,12,20)
symbols = qb.FutureChainProvider.GetFutureContractList(future.Symbol, start_date)

contract_symbol = sorted(symbols, key=lambda s: s.ID.Date)[0]

qb.AddFutureContract(contract_symbol, fillForward = False)

qb.SetStartDate(start_date)
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The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

To get historical data for the continous Futures contract, in the preceding history requests, replace

contract_symbol with future.Symbol .

Trailing Period of Time

To get historical data for a trailing period of time, call the History method with the contract Symbol object(s) and

a timedelta .

# DataFrame of trade and quote data
single_history_df = qb.History(contract_symbol, 10)
subset_history_df = qb.History([contract_symbol], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, contract_symbol, 10)
subset_history_trade_bar_df = qb.History(TradeBar, [contract_symbol], 10)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, 10)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, contract_symbol, 10)
subset_history_quote_bar_df = qb.History(QuoteBar, [contract_symbol], 10)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, 10)

# DataFrame of open interest data
single_history_open_interest_df = qb.History(OpenInterest, contract_symbol, 400)
subset_history_open_interest_df = qb.History(OpenInterest, [contract_symbol], 400)
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, 400)

# Slice objects
all_history_slice = qb.History(10)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](contract_symbol, 10)
subset_history_trade_bars = qb.History[TradeBar]([contract_symbol], 10)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, 10)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](contract_symbol, 10)
subset_history_quote_bars = qb.History[QuoteBar]([contract_symbol], 10)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, 10)

# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest](contract_symbol, 400)
subset_history_open_interest = qb.History[OpenInterest]([contract_symbol], 400)
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, 400)
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The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

To get historical data for the continous Futures contract, in the preceding history requests, replace

contract_symbol with future.Symbol .

Defined Period of Time

To get historical data for individual Futures contracts during a specific period of time, call the History method

with the Futures contract Symbol object(s), a start datetime , and an end datetime . The start and end times you

provide are based in the notebook time zone .

# DataFrame of trade and quote data
single_history_df = qb.History(contract_symbol, timedelta(days=3))
subset_history_df = qb.History([contract_symbol], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, contract_symbol, timedelta(days=3))
subset_history_trade_bar_df = qb.History(TradeBar, [contract_symbol], timedelta(days=3))
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, contract_symbol, timedelta(days=3))
subset_history_quote_bar_df = qb.History(QuoteBar, [contract_symbol], timedelta(days=3))
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of open interest data
single_history_open_interest_df = qb.History(OpenInterest, contract_symbol, timedelta(days=3))
subset_history_open_interest_df = qb.History(OpenInterest, [contract_symbol], timedelta(days=3))
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, timedelta(days=3))

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](contract_symbol, timedelta(days=3))
subset_history_trade_bars = qb.History[TradeBar]([contract_symbol], timedelta(days=3))
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, timedelta(days=3))

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](contract_symbol, timedelta(days=3), 
Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([contract_symbol], timedelta(days=3), 
Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, timedelta(days=3), 
Resolution.Minute) 

# Tick objects
single_history_ticks = qb.History[Tick](contract_symbol, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick]([contract_symbol], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, timedelta(days=3), Resolution.Tick)

# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest](contract_symbol, timedelta(days=2))
subset_history_open_interest = qb.History[OpenInterest]([contract_symbol], timedelta(days=2))
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, timedelta(days=2))
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To get historical data for the continous Futures contract, in the preceding history requests, replace

contract_symbol with future.Symbol .

To get historical data for all of the Futures contracts that pass your filter during a specific period of time, call the

GetFutureHistory method with the Symbol object of the continuous Future, a start datetime , and an end

datetime .

The preceding calls return data that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Futures subscriptions:

start_time = datetime(2021, 12, 1)
end_time = datetime(2021, 12, 31)

# DataFrame of trade and quote data
single_history_df = qb.History(contract_symbol, start_time, end_time)
subset_history_df = qb.History([contract_symbol], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, contract_symbol, start_time, end_time)
subset_history_trade_bar_df = qb.History(TradeBar, [contract_symbol], start_time, end_time)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, contract_symbol, start_time, end_time)
subset_history_quote_bar_df = qb.History(QuoteBar, [contract_symbol], start_time, end_time)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of open interest data
single_history_open_interest_df = qb.History(OpenInterest, contract_symbol, start_time, end_time)
subset_history_open_interest_df = qb.History(OpenInterest, [contract_symbol], start_time, end_time)
all_history_trade_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, start_time, 
end_time)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](contract_symbol, start_time, end_time)
subset_history_trade_bars = qb.History[TradeBar]([contract_symbol], start_time, end_time)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](contract_symbol, start_time, end_time, 
Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([contract_symbol], start_time, end_time, 
Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, 
Resolution.Minute)

# Tick objects
single_history_ticks = qb.History[Tick](contract_symbol, start_time, end_time, Resolution.Tick)
subset_history_ticks = qb.History[Tick]([contract_symbol], start_time, end_time, Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, start_time, end_time, Resolution.Tick)

# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest](contract_symbol, start_time, end_time)
subset_history_open_interest = qb.History[OpenInterest]([contract_symbol], start_time, end_time)
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, start_time, end_time)

future_history = qb.GetFutureHistory(future.Symbol, end_time-timedelta(days=2), end_time, 
Resolution.Minute, fillForward=False, extendedMarketHours=False)
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Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick

Second

Minute

Hour

Daily

Markets

The following Market enumeration members are available for Futures:

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data

depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last

line. To display other data formats, call the print method.

DataFrame Objects

If your history request returns a DataFrame , the DataFrame has the following index levels:

1. Contract expiry

2. Encoded contract Symbol

3. The EndTime of the data sample

The columns of the DataFrame are the data properties. Depending on how you request data, the DataFrame may

contain data for the continuous Futures contract. The continuous contract doesn't expire, so the default expiry

date of December 30, 1899 doesn't have any practical meaning.

To select the rows of the contract(s) that expire at a specific time, index the loc property of the DataFrame with

the expiry time.

all_history_df.loc[datetime(2022, 3, 18, 13, 30)]
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If you remove the first index level, you can index the DataFrame with just the contract Symbol , similiar to how you

would with non-derivative asset classes. To remove the first index level, call the droplevel method.

To select the historical data of a single Futures contract, index the loc property of the DataFrame with the contract

Symbol .

To select a column of the DataFrame , index it with the column name.

all_history_df.index = all_history_df.index.droplevel(0)

all_history_df.loc[contract_symbol]

all_history_df.loc[contract_symbol]['close']
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If you request historical data for multiple Futures contracts, you can transform the DataFrame so that it's a time

series of close values for all of the Futures contracts. To transform the DataFrame , select the column you want to

display for each Futures contract and then call the unstack method.

The DataFrame is transformed so that the column indices are the Symbol of each security and each row contains

the close value.

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects

may not have data for all of your Futures subscriptions. To avoid issues, check if the Slice contains data for your

Futures contract before you index it with the Futures Symbol .

You can also iterate through each TradeBar and QuoteBar in the Slice .

all_history_df['close'].unstack(level=0)
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TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Futures

contract. The TradeBars may not have data for all of your Futures subscriptions. To avoid issues, check if the

TradeBars object contains data for your security before you index it with the Futures Symbol .

You can also iterate through each of the TradeBars .

QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Futures

contract. The QuoteBars may not have data for all of your Futures subscriptions. To avoid issues, check if the

QuoteBars object contains data for your security before you index it with the Futures Symbol .

for slice in all_history_slice:
    for kvp in slice.Bars:
        symbol = kvp.Key
        trade_bar = kvp.Value
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for trade_bar in single_history_trade_bars:
    print(trade_bar)

for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(contract_symbol):
        trade_bar = trade_bars[contract_symbol]

for trade_bars in all_history_trade_bars:
    for kvp in trade_bars:
        symbol = kvp.Key
        trade_bar = kvp.Value

for quote_bar in single_history_quote_bars:
    print(quote_bar)

for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(contract_symbol):
        quote_bar = quote_bars[contract_symbol]
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You can also iterate through each of the QuoteBars .

Tick Objects

If the History method returns Tick objects, iterate through the Tick objects to get each one.

If the History method returns Ticks , iterate through the Ticks to get the Tick of each Futures contract. The

Ticks may not have data for all of your Futures subscriptions. To avoid issues, check if the Ticks object contains

data for your security before you index it with the Futures Symbol .

You can also iterate through each of the Ticks .

The Ticks objects only contain the last tick of each security for that particular timeslice

OpenInterest Objects

If the History method returns OpenInterest objects, iterate through the OpenInterest objects to get each one.

If the History method returns a dictionary of OpenInterest objects, iterate through the dictionary to get the

OpenInterest of each Futures contract. The dictionary of OpenInterest objects may not have data for all of your

Futures contract subscriptions. To avoid issues, check if the dictionary contains data for your contract before you

index it with the Futures contract Symbol .

for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for tick in single_history_ticks:
    print(tick)

for ticks in all_history_ticks:
    if ticks.ContainsKey(contract_symbol):
        ticks = ticks[contract_symbol]

for ticks in all_history_ticks:
    for kvp in ticks:
        symbol = kvp.Key
        tick = kvp.Value

for open_interest in single_history_open_interest:
    print(open_interest)
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You can also iterate through each of the OpenInterest dictionaries.

FutureHistory Objects

The GetFutureHistory method returns a FutureHistory object. To get each slice in the FutureHistory object,

iterate through it.

To convert the FutureHistory object to a DataFrame that contains the trade and quote information of each

contract, call the GetAllData method.

To get the expiration dates of all the contracts in an FutureHistory object, call the GetExpiryDates method.

Plot Data

You need some historical Futures data to produce plots. You can use many of the supported plotting libraries to

visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart 

Follow these steps to plot candlestick charts:

1. Get some historical data.

for open_interest_dict in all_history_open_interest:
    if open_interest_dict.ContainsKey(contract_symbol):
        open_interest = open_interest_dict[contract_symbol]

for open_interest_dict in all_history_open_interest:
    for kvp in open_interest_dict:
        symbol = kvp.Key
        open_interest = kvp.Value

for slice in future_history:
    for continuous_contract_symbol, chain in slice.FuturesChains.items(): 
        for contract in chain:
            pass

future_history.GetAllData()

future_history.GetExpiryDates()

history = qb.History(contract_symbol, datetime(2021, 12, 1), datetime(2021, 12, 31), 
Resolution.Daily)
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2. Drop the first two index levels.

history.index = history.index.droplevel([0, 1])

3. Import the plotly library.

4. Create a Candlestick . 

5. Create a Layout . 

6. Create the Figure . 

fig = go.Figure(data=[candlestick], layout=layout)

7. Show the Figure . 

Candlestick charts display the open, high, low, and close prices of the contract.

import plotly.graph_objects as go

candlestick = go.Candlestick(x=history.index,
                             open=history['open'],
                             high=history['high'],
                             low=history['low'],
                             close=history['close'])

layout = go.Layout(title=go.layout.Title(text=f'{contract_symbol.Value} OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig.show()
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Line Chart

Follow these steps to plot line charts using built-in methods :

1. Get some historical data.

2. Drop the first index level.

history.index = history.index.droplevel(0)

3. Select data to plot.

closing_prices = history['close'].unstack(level=0)

4. Rename the columns to be the Symbol of each contract.

closing_prices.columns = [Symbol.GetAlias(SecurityIdentifier.Parse(x)) for x in 
closing_prices.columns]

5. Call the plot method on the pandas object.

closing_prices.plot(title="Close", figsize=(15, 8))

6. Show the plot.

history = qb.History(symbols, datetime(2021, 12, 1), datetime(2021, 12, 31), Resolution.Daily)
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Line charts display the value of the property you selected in a time series.

 

plt.show()
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Futures Options

Introduction

This page explains how to request, manipulate, and visualize historical Future Options data.

Create Subscriptions

Follow these steps to subscribe to a Futures Option contract:

1. Create a QuantBook .

2. Subscribe to a Futures contract .

To view the available underlying Futures in the US Future Options dataset, see Supported Assets .

3. (Optional) Set a contract filter .

The filter determines which contracts the GetOptionHistory method returns. If you don't set a filter, the

default filter selects the contracts that have the following characteristics:

Standard type (exclude weeklys)

Within 1 strike price of the underlying asset price

Expire within 31 days

If you want historical data on individual contracts and their OpenInterest , follow these steps to subscribe to the

individual Futures Option contracts:

1. Call the GetOptionsContractList method with the underlying Futures Contract Symbol and a datetime

object.

qb = QuantBook()

future = qb.AddFuture(Futures.Indices.SP500EMini, Resolution.Minute)
start_date = datetime(2021,12,20)
futures_contract_symbols = qb.FutureChainProvider.GetFutureContractList(future.Symbol, 
start_date)
futures_contract_symbol = sorted(futures_contract_symbols, key=lambda s: s.ID.Date)[0]
qb.AddFutureContract(futures_contract_symbol, fillForward = False)

qb.AddFutureOption(future.Symbol, lambda option_filter_universe: 
option_filter_universe.Strikes(-1, 1))
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This method returns a list of Symbol objects that reference the Option contracts that were trading for the

underlying Future contract at the given time. If you set a contract filter with SetFilter , it doesn't affect the

results of GetOptionContractList .

2. Select the Symbol of the OptionContract object(s) for which you want to get historical data.

To filter and select contracts, you can use the following properties of each Symbol object:

Property Description

ID.Date The expiration date of the contract.

ID.StrikePrice The strike price of the contract.

ID.OptionRight The contract type. The OptionRight enumeration
has the following members:

ID.OptionStyle
The contract style. The OptionStyle enumeration
has the following members:

3. Call the AddFutureOptionContract method with an OptionContract Symbol and disable fill-forward.

Disable fill-forward because there are only a few OpenInterest data points per day.

Get Historical Data

You need a subscription before you can request historical data for Futures Option contracts. On the time

dimension, you can request an amount of historical data based on a trailing number of bars, a trailing period of

time, or a defined period of time. On the contract dimension, you can request historical data for a single contract, a

subset of the contracts you created subscriptions for in your notebook, or all of the contracts in your notebook.

Before you request historical data, call the SetStartDate method with a datetime to reduce the risk of look-ahead

bias .

fop_contract_symbols = qb.OptionChainProvider.GetOptionContractList(futures_contract_symbol, 
start_date)

closest_expiry = min([c.ID.Date for c in fop_contract_symbols])
calls = [c for c in fop_contract_symbols if c.ID.Date == closest_expiry and c.ID.OptionRight == 
OptionRight.Call]
fop_contract_symbol = sorted(calls, key=lambda c: c.ID.StrikePrice)[0]

qb.AddFutureOptionContract(fop_contract_symbol, fillForward = False)
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If you call the SetStartDate method, the date that you pass to the method is the latest date for which your history

requests will return data.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the contract Symbol object(s) and

an integer.

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time

To get historical data for a trailing period of time, call the History method with the contract Symbol object(s) and

a timedelta .

qb.SetStartDate(start_date)

# DataFrame of trade and quote data
single_history_df = qb.History(fop_contract_symbol, 10)
subset_history_df = qb.History([fop_contract_symbol], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, fop_contract_symbol, 10)
subset_history_trade_bar_df = qb.History(TradeBar, [fop_contract_symbol], 10)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, 10)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, fop_contract_symbol, 10)
subset_history_quote_bar_df = qb.History(QuoteBar, [fop_contract_symbol], 10)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, 10)

# DataFrame of open interest data
single_history_open_interest_df = qb.History(OpenInterest, fop_contract_symbol, 400)
subset_history_open_interest_df = qb.History(OpenInterest, [fop_contract_symbol], 400)
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, 400)

# Slice objects
all_history_slice = qb.History(10)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](fop_contract_symbol, 10)
subset_history_trade_bars = qb.History[TradeBar]([fop_contract_symbol], 10)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, 10)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](fop_contract_symbol, 10)
subset_history_quote_bars = qb.History[QuoteBar]([fop_contract_symbol], 10)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, 10)

# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest](fop_contract_symbol, 400)
subset_history_open_interest = qb.History[OpenInterest]([fop_contract_symbol], 400)
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, 400)
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The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Defined Period of Time

To get historical data for individual Futures Option contracts during a specific period of time, call the History

method with the Futures Option contract Symbol object(s), a start datetime , and an end datetime . The start and

end times you provide are based in the notebook time zone .

# DataFrame of trade and quote data
single_history_df = qb.History(fop_contract_symbol, timedelta(days=3))
subset_history_df = qb.History([fop_contract_symbol], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, fop_contract_symbol, timedelta(days=3))
subset_history_trade_bar_df = qb.History(TradeBar, [fop_contract_symbol], timedelta(days=3))
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, fop_contract_symbol, timedelta(days=3))
subset_history_quote_bar_df = qb.History(QuoteBar, [fop_contract_symbol], timedelta(days=3))
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of open interest data
single_history_open_interest_df = qb.History(OpenInterest, fop_contract_symbol, timedelta(days=3))
subset_history_open_interest_df = qb.History(OpenInterest, [fop_contract_symbol], timedelta(days=3))
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, timedelta(days=3))

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](fop_contract_symbol, timedelta(days=3))
subset_history_trade_bars = qb.History[TradeBar]([fop_contract_symbol], timedelta(days=3))
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, timedelta(days=3))

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](fop_contract_symbol, timedelta(days=3), 
Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([fop_contract_symbol], timedelta(days=3), 
Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, timedelta(days=3), 
Resolution.Minute) 

# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest](fop_contract_symbol, timedelta(days=2))
subset_history_open_interest = qb.History[OpenInterest]([fop_contract_symbol], timedelta(days=2))
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, timedelta(days=2))
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To get historical data for all of the Futures Option contracts that traded during a specific period of time, call the

GetOptionHistory method with the underlying Futures contract Symbol object, a start datetime , and an end

datetime .

The preceding calls return data that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Future Option contract subscriptions:

start_time = datetime(2021, 12, 1)
end_time = datetime(2021, 12, 31)

# DataFrame of trade and quote data
single_history_df = qb.History(fop_contract_symbol, start_time, end_time)
subset_history_df = qb.History([fop_contract_symbol], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, fop_contract_symbol, start_time, end_time)
subset_history_trade_bar_df = qb.History(TradeBar, [fop_contract_symbol], start_time, end_time)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, fop_contract_symbol, start_time, end_time)
subset_history_quote_bar_df = qb.History(QuoteBar, [fop_contract_symbol], start_time, end_time)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of open interest data
single_history_open_interest_df = qb.History(OpenInterest, fop_contract_symbol, start_time, end_time)
subset_history_open_interest_df = qb.History(OpenInterest, [fop_contract_symbol], start_time, 
end_time)
all_history_trade_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, start_time, 
end_time)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](fop_contract_symbol, start_time, end_time)
subset_history_trade_bars = qb.History[TradeBar]([fop_contract_symbol], start_time, end_time)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](fop_contract_symbol, start_time, end_time, 
Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([fop_contract_symbol], start_time, end_time, 
Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, 
Resolution.Minute)

# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest](fop_contract_symbol, start_time, end_time)
subset_history_open_interest = qb.History[OpenInterest]([fop_contract_symbol], start_time, end_time)
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, start_time, end_time)

option_history = qb.GetOptionHistory(futures_contract_symbol, end_time-timedelta(days=2), end_time, 
Resolution.Minute, fillForward=False, extendedMarketHours=False)
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Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick

Second

Minute

Hour

Daily

Markets

The following Market enumeration members are available for Future Options:

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data

depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last

line. To display other data formats, call the print method.

DataFrame Objects

If your history request returns a DataFrame , the DataFrame has the following index levels:

1. Contract expiry

2. Contract strike price

3. Contract type (call or put)

4. Encoded contract Symbol

5. The EndTime of the data sample

The columns of the DataFrame are the data properties. Depending on how you request data, the DataFrame may

contain data for the underlying security, which causes some of the index levels to be an empty string for the

corresponding rows.

https://www.quantconnect.com/docs/v2//writing-algorithms/key-concepts/security-identifiers#02-Encoding-Symbols


To select the rows of the contract(s) that expire at a specific time, index the loc property of the DataFrame with

the expiry time.

If you remove the first three index levels, you can index the DataFrame with just the contract Symbol , similiar to

how you would with non-derivative asset classes. To remove the first three index levels, call the droplevel method.

To select the historical data of a single Futures Option contract, index the loc property of the DataFrame with the

contract Symbol .

all_history_df.loc[datetime(2022, 3, 18)]

all_history_df.index = all_history_df.index.droplevel([0,1,2])

all_history_df.loc[fop_contract_symbol]

PY

PY

PY

https://pandas.pydata.org/docs/reference/api/pandas.Index.droplevel.html


To select a column of the DataFrame , index it with the column name.

If you request historical data for multiple Futures Option contracts, you can transform the DataFrame so that it's a

time series of close values for all of the Futures Option contracts. To transform the DataFrame , select the column

you want to display for each Futures Option contract and then call the unstack method.

The DataFrame is transformed so that the column indices are the Symbol of each security and each row contains

the close value.

all_history_df.loc[fop_contract_symbol]['close']

all_history_df['close'].unstack(level=0)
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Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects

may not have data for all of your Futures Option subscriptions. To avoid issues, check if the Slice contains data

for your Futures Option contract before you index it with the Futures Option Symbol .

You can also iterate through each TradeBar and QuoteBar in the Slice .

TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Futures

Option contract. The TradeBars may not have data for all of your Futures Option subscriptions. To avoid issues,

check if the TradeBars object contains data for your security before you index it with the Futures Option Symbol .

You can also iterate through each of the TradeBars .

for slice in all_history_slice:
    for kvp in slice.Bars:
        symbol = kvp.Key
        trade_bar = kvp.Value
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for trade_bar in single_history_trade_bars:
    print(trade_bar)

for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(fop_contract_symbol):
        trade_bar = trade_bars[fop_contract_symbol]
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QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Futures

Option contract. The QuoteBars may not have data for all of your Futures Option subscriptions. To avoid issues,

check if the QuoteBars object contains data for your security before you index it with the Futures Option Symbol .

You can also iterate through each of the QuoteBars .

OpenInterest Objects

If the History method returns OpenInterest objects, iterate through the OpenInterest objects to get each one.

If the History method returns a dictionary of OpenInterest objects, iterate through the dictionary to get the

OpenInterest of each Futures Option contract. The dictionary of OpenInterest objects may not have data for all

of your Futures Option contract subscriptions. To avoid issues, check if the dictionary contains data for your

contract before you index it with the Futures Option contract Symbol .

for trade_bars in all_history_trade_bars:
    for kvp in trade_bars:
        symbol = kvp.Key
        trade_bar = kvp.Value

for quote_bar in single_history_quote_bars:
    print(quote_bar)

for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(fop_contract_symbol):
        quote_bar = quote_bars[fop_contract_symbol]

for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for open_interest in single_history_open_interest:
    print(open_interest)

for open_interest_dict in all_history_open_interest:
    if open_interest_dict.ContainsKey(fop_contract_symbol):
        open_interest = open_interest_dict[fop_contract_symbol]
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You can also iterate through each of the OpenInterest dictionaries.

OptionHistory Objects

The GetOptionHistory method returns an OptionHistory object. To get each slice in the OptionHistory object,

iterate through it.

To convert the OptionHistory object to a DataFrame that contains the trade and quote information of each

contract and the underlying, call the GetAllData method.

To get the expiration dates of all the contracts in an OptionHistory object, call the GetExpiryDates method.

To get the strike prices of all the contracts in an OptionHistory object, call the GetStrikes method.

Plot Data

You need to get some historical Future Options data to plot it. You can use many of the supported plotting libraries

to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

Follow these steps to plot candlestick charts:

1. Get some historical data.

for open_interest_dict in all_history_open_interest:
    for kvp in open_interest_dict:
        symbol = kvp.Key
        open_interest = kvp.Value

for slice in option_history:
    for canonical_symbol, chain in slice.OptionChains.items(): 
        for contract in chain:
            pass

option_history.GetAllData()

option_history.GetExpiryDates()

option_history.GetStrikes()

history = qb.History(fop_contract_symbol, datetime(2021, 12, 2), datetime(2021, 12, 3))
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2. Drop the first four index levels of the DataFrame that returns.

history.index = history.index.droplevel([0,1,2,3])

3. Import the plotly library.

4. Create a Candlestick . 

5. Create a Layout . 

6. Create the Figure . 

fig = go.Figure(data=[candlestick], layout=layout)

7. Show the Figure . 

Candlestick charts display the open, high, low, and close prices of the contract.

import plotly.graph_objects as go

candlestick = go.Candlestick(x=history.index,
                             open=history['open'],
                             high=history['high'],
                             low=history['low'],
                             close=history['close'])

layout = go.Layout(title=go.layout.Title(text=f'{fop_contract_symbol.Value} OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig.show()
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Line Chart

Follow these steps to plot line charts using built-in methods :

1. Get some historical data.

history = qb.History(fop_contract_symbols[:5], datetime(2021, 12, 2), datetime(2021, 12, 30), 
Resolution.Daily)

2. Drop the first three index levels of the returned pandas.DataFrame .

history.index = history.index.droplevel([0,1,2])

3. Select the data to plot.

closes = history['close'].unstack(level=0)

4. Call the plot method on the pandas object.

closes.plot(title="Close", figsize=(15, 5))

5. Show the plot.

Line charts display the value of the property you selected in a time series.

plt.show()
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Forex

Introduction

This page explains how to request, manipulate, and visualize historical Forex data.

Create Subscriptions

Follow these steps to subscribe to a Forex security:

1. Create a QuantBook .

2. Call the AddForex method with a ticker and then save a reference to the Forex Symbol .

To view all of the available Forex pairs, see Supported Assets .

Get Historical Data

You need a subscription before you can request historical data for a security. On the time dimension, you can

request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined

period of time. On the security dimension, you can request historical data for a single Forex pair, a subset of the

pairs you created subscriptions for in your notebook, or all of the pairs in your notebook.

Trailing Number of Bars  

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an

integer.

qb = QuantBook()

eurusd = qb.AddForex("EURUSD").Symbol
gbpusd = qb.AddForex("GBPUSD").Symbol
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The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time 

To get historical data for a trailing period of time, call the History method with the Symbol object(s) and a

timedelta .

The preceding calls return the most recent bars or ticks, excluding periods of time when the exchange was closed.

Defined Period of Time 

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start

datetime , and an end datetime . The start and end times you provide are based in the notebook time zone .

# DataFrame
single_history_df = qb.History(eurusd, 10)
subset_history_df = qb.History([eurusd, gbpusd], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)

# Slice objects
all_history_slice = qb.History(10)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](eurusd, 10)
subset_history_quote_bars = qb.History[QuoteBar]([eurusd, gbpusd], 10)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, 10)

# DataFrame of quote data (Forex data doesn't have trade data)
single_history_df = qb.History(eurusd, timedelta(days=3))
subset_history_df = qb.History([eurusd, gbpusd], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))

# DataFrame of tick data
single_history_tick_df = qb.History(eurusd, timedelta(days=3), Resolution.Tick)
subset_history_tick_df = qb.History([eurusd, gbpusd], timedelta(days=3), Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, timedelta(days=3), Resolution.Tick)

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](eurusd, timedelta(days=3), Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([eurusd, gbpusd], timedelta(days=3), 
Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, timedelta(days=3), 
Resolution.Minute)

# Tick objects
single_history_ticks = qb.History[Tick](eurusd, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick]([eurusd, gbpusd], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, timedelta(days=3), Resolution.Tick)
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The preceding calls return the bars or ticks that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Forex subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick

Second

Minute

Hour

Daily

Markets

The only market available for Forex pairs is Market.Oanda .

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data

depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last

line. To display other data formats, call the print method.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded Forex Symbol

and the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

start_time = datetime(2021, 1, 1)
end_time = datetime(2021, 2, 1)

# DataFrame of quote data (Forex data doesn't have trade data)
single_history_df = qb.History(eurusd, start_time, end_time)
subset_history_df = qb.History([eurusd, gbpusd], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)

# DataFrame of tick data
single_history_tick_df = qb.History(eurusd, start_time, end_time, Resolution.Tick)
subset_history_tick_df = qb.History([eurusd, gbpusd], start_time, end_time, Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, start_time, end_time, Resolution.Tick)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](eurusd, start_time, end_time, Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([eurusd, gbpusd], start_time, end_time, 
Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, 
Resolution.Minute)

# Tick objects
single_history_ticks = qb.History[Tick](eurusd, start_time, end_time, Resolution.Tick)
subset_history_ticks = qb.History[Tick]([eurusd, gbpusd], start_time, end_time, Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, start_time, end_time, Resolution.Tick)
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To select the historical data of a single Forex, index the loc property of the DataFrame with the Forex Symbol .

To select a column of the DataFrame , index it with the column name.

If you request historical data for multiple Forex pairs, you can transform the DataFrame so that it's a time series of

close values for all of the Forex pairs. To transform the DataFrame , select the column you want to display for each

all_history_df.loc[eurusd]  # or all_history_df.loc['EURUSD']

all_history_df.loc[eurusd]['close']
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Forex pair and then call the unstack method.

The DataFrame is transformed so that the column indices are the Symbol of each Forex pair and each row contains

the close value.

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects

may not have data for all of your Forex subscriptions. To avoid issues, check if the Slice contains data for your

Forex pair before you index it with the Forex Symbol .

You can also iterate through each QuoteBar in the Slice .

QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Forex pair.

The QuoteBars may not have data for all of your Forex subscriptions. To avoid issues, check if the QuoteBars

object contains data for your security before you index it with the Forex Symbol .

all_history_df['close'].unstack(level=0)

for slice in all_history_slice:
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for quote_bar in single_history_quote_bars:
    print(quote_bar)
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You can also iterate through each of the QuoteBars .

Tick Objects

If the History method returns Tick objects, iterate through the Tick objects to get each one.

If the History method returns Ticks , iterate through the Ticks to get the Tick of each Forex pair. The Ticks may

not have data for all of your Forex subscriptions. To avoid issues, check if the Ticks object contains data for your

security before you index it with the Forex Symbol .

You can also iterate through each of the Ticks .

The Ticks objects only contain the last tick of each security for that particular timeslice

Plot Data

You need some historical Forex data to produce plots. You can use many of the supported plotting libraries to

visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart 

Follow these steps to plot candlestick charts:

1. Get some historical data.

for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(eurusd):
        quote_bar = quote_bars[eurusd]

for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for tick in single_history_ticks:
    print(tick)

for ticks in all_history_ticks:
    if ticks.ContainsKey(eurusd):
        ticks = ticks[eurusd]

for ticks in all_history_ticks:
    for kvp in ticks:
        symbol = kvp.Key
        tick = kvp.Value
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2. Import the plotly library.

3. Create a Candlestick . 

4. Create a Layout . 

5. Create the Figure . 

fig = go.Figure(data=[candlestick], layout=layout)

6. Show the Figure . 

Candlestick charts display the open, high, low, and close prices of the security.

history = qb.History(eurusd, datetime(2021, 11, 26), datetime(2021, 12, 8), 
Resolution.Daily).loc[eurusd]

import plotly.graph_objects as go

candlestick = go.Candlestick(x=history.index,
                             open=history['open'],
                             high=history['high'],
                             low=history['low'],
                             close=history['close'])

layout = go.Layout(title=go.layout.Title(text='EURUSD OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig.show()
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Line Chart

Follow these steps to plot line charts using built-in methods :

1. Get some historical data.

2. Select the data to plot.

pct_change = history['close'].unstack(0).pct_change().dropna()

3. Call the plot method on the pandas object.

pct_change.plot(title="Close Price %Change", figsize=(15, 10))

4. Show the plot.

Line charts display the value of the property you selected in a time series.

history = qb.History([eurusd, gbpusd], datetime(2021, 11, 26), datetime(2021, 12, 8), 
Resolution.Daily)

plt.show()
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Introduction

This page explains how to request, manipulate, and visualize historical CFD data.

Create Subscriptions

Follow these steps to subscribe to a CFD security:

1. Create a QuantBook .

2. Call the AddCfd method with a ticker and then save a reference to the CFD Symbol .

To view all of the available contracts, see Supported Assets .

Get Historical Data

You need a subscription before you can request historical data for a security. On the time dimension, you can

request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined

period of time. On the security dimension, you can request historical data for a single CFD contract, a subset of the

contracts you created subscriptions for in your notebook, or all of the contracts in your notebook.

Trailing Number of Bars  

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an

integer.

qb = QuantBook()

spx = qb.AddCfd("SPX500USD").Symbol
usb = qb.AddCfd("USB10YUSD").Symbol
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The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time 

To get historical data for a trailing period of time, call the History method with the Symbol object(s) and a

timedelta .

The preceding calls return the most recent bars or ticks, excluding periods of time when the exchange was closed.

Defined Period of Time 

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start

datetime , and an end datetime . The start and end times you provide are based in the notebook time zone .

# DataFrame
single_history_df = qb.History(spx, 10)
subset_history_df = qb.History([spx, usb], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)

# Slice objects
all_history_slice = qb.History(10)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](spx, 10)
subset_history_quote_bars = qb.History[QuoteBar]([spx, usb], 10)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, 10)

# DataFrame of quote data (CFD data doesn't have trade data)
single_history_df = qb.History(spx, timedelta(days=3))
subset_history_df = qb.History([spx, usb], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))

# DataFrame of tick data
single_history_tick_df = qb.History(spx, timedelta(days=3), Resolution.Tick)
subset_history_tick_df = qb.History([spx, usb], timedelta(days=3), Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, timedelta(days=3), Resolution.Tick)

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](spx, timedelta(days=3), Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([spx, usb], timedelta(days=3), Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, timedelta(days=3), 
Resolution.Minute)

# Tick objects
single_history_ticks = qb.History[Tick](spx, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick]([spx, usb], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, timedelta(days=3), Resolution.Tick)
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The preceding calls return the bars or ticks that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for CFD subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick

Second

Minute

Hour

Daily

Markets

The only market available for CFD contracts is Market.Oanda .

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data

depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last

line. To display other data formats, call the print method.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded CFD Symbol and

the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

start_time = datetime(2021, 1, 1)
end_time = datetime(2021, 2, 1)

# DataFrame of quote data (CFD data doesn't have trade data)
single_history_df = qb.History(spx, start_time, end_time)
subset_history_df = qb.History([spx, usb], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)

# DataFrame of tick data
single_history_tick_df = qb.History(spx, start_time, end_time, Resolution.Tick)
subset_history_tick_df = qb.History([spx, usb], start_time, end_time, Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, start_time, end_time, Resolution.Tick)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](spx, start_time, end_time, Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([spx, usb], start_time, end_time, Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, 
Resolution.Minute)

# Tick objects
single_history_ticks = qb.History[Tick](spx, start_time, end_time, Resolution.Tick)
subset_history_ticks = qb.History[Tick]([spx, usb], start_time, end_time, Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, start_time, end_time, Resolution.Tick)
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To select the historical data of a single CFD, index the loc property of the DataFrame with the CFD Symbol .

To select a column of the DataFrame , index it with the column name.

If you request historical data for multiple CFD contracts, you can transform the DataFrame so that it's a time series

of close values for all of the CFD contracts. To transform the DataFrame , select the column you want to display

all_history_df.loc[spx]  # or all_history_df.loc['SPX500USD']

all_history_df.loc[spx]['close']
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for each CFD contract and then call the unstack method.

The DataFrame is transformed so that the column indices are the Symbol of each CFD contract and each row

contains the close value.

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects

may not have data for all of your CFD subscriptions. To avoid issues, check if the Slice contains data for your

CFD contract before you index it with the CFD Symbol .

You can also iterate through each QuoteBar in the Slice .

QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each CFD

contract. The QuoteBars may not have data for all of your CFD subscriptions. To avoid issues, check if the

QuoteBars object contains data for your security before you index it with the CFD Symbol .

all_history_df['close'].unstack(level=0)

for slice in all_history_slice:
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for quote_bar in single_history_quote_bars:
    print(quote_bar)
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You can also iterate through each of the QuoteBars .

Tick Objects

If the History method returns Tick objects, iterate through the Tick objects to get each one.

If the History method returns Ticks , iterate through the Ticks to get the Tick of each CFD contract. The Ticks

may not have data for all of your CFD subscriptions. To avoid issues, check if the Ticks object contains data for

your security before you index it with the CFD Symbol .

You can also iterate through each of the Ticks .

The Ticks objects only contain the last tick of each security for that particular timeslice

Plot Data

You need some historical CFD data to produce plots. You can use many of the supported plotting libraries to

visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart 

Follow these steps to plot candlestick charts:

1. Get some historical data.

for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(spx):
        quote_bar = quote_bars[spx]

for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for tick in single_history_ticks:
    print(tick)

for ticks in all_history_ticks:
    if ticks.ContainsKey(spx):
        ticks = ticks[spx]

for ticks in all_history_ticks:
    for kvp in ticks:
        symbol = kvp.Key
        tick = kvp.Value
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2. Import the plotly library.

3. Create a Candlestick . 

4. Create a Layout . 

5. Create the Figure . 

fig = go.Figure(data=[candlestick], layout=layout)

6. Show the Figure . 

Candlestick charts display the open, high, low, and close prices of the security.

history = qb.History(spx, datetime(2021, 11, 26), datetime(2021, 12, 8), 
Resolution.Daily).loc[spx]

import plotly.graph_objects as go

candlestick = go.Candlestick(x=history.index,
                             open=history['open'],
                             high=history['high'],
                             low=history['low'],
                             close=history['close'])

layout = go.Layout(title=go.layout.Title(text='SPX CFD OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig.show()
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Line Chart

Follow these steps to plot line charts using built-in methods :

1. Get some historical data.

2. Select the data to plot.

pct_change = history['close'].unstack(0).pct_change().dropna()

3. Call the plot method on the pandas object.

pct_change.plot(title="Close Price %Change", figsize=(15, 10))

4. Show the plot.

Line charts display the value of the property you selected in a time series.

history = qb.History([spx, usb], datetime(2021, 11, 26), datetime(2021, 12, 8), 
Resolution.Daily)

plt.show()
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Indices

Introduction

This page explains how to request, manipulate, and visualize historical Index data.

Create Subscriptions

Follow these steps to subscribe to an Index security:

1. Create a QuantBook .

2. Call the AddIndex method with a ticker and then save a reference to the Index Symbol .

To view all of the available indices, see Supported Indices .

Get Historical Data

You need a subscription before you can request historical data for a security. On the time dimension, you can

request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined

period of time. On the security dimension, you can request historical data for a single Index, a subset of the Indices

you created subscriptions for in your notebook, or all of the Indices in your notebook.

Trailing Number of Bars  

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an

integer.

qb = QuantBook()

spx = qb.AddIndex("SPX").Symbol
vix = qb.AddIndex("VIX").Symbol
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The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time 

To get historical data for a trailing period of time, call the History method with the Symbol object(s) and a

timedelta .

The preceding calls return the most recent bars or ticks, excluding periods of time when the exchange was closed.

Defined Period of Time 

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start

datetime , and an end datetime . The start and end times you provide are based in the notebook time zone .

# DataFrame
single_history_df = qb.History(spx, 10)
single_history_trade_bar_df = qb.History(TradeBar, spx, 10)
subset_history_df = qb.History([spx, vix], 10)
subset_history_trade_bar_df = qb.History(TradeBar, [spx, vix], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, 10)

# Slice objects
all_history_slice = qb.History(10)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](spx, 10)
subset_history_trade_bars = qb.History[TradeBar]([spx, vix], 10)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, 10)

# DataFrame of trade data (indices don't have quote data)
single_history_df = qb.History(spx, timedelta(days=3))
subset_history_df = qb.History([spx, vix], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))

# DataFrame of tick data
single_history_tick_df = qb.History(spx, timedelta(days=3), Resolution.Tick)
subset_history_tick_df = qb.History([spx, usb], timedelta(days=3), Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, timedelta(days=3), Resolution.Tick)

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](spx, timedelta(days=3))
subset_history_trade_bars = qb.History[TradeBar]([spx, vix], timedelta(days=3))
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, timedelta(days=3))

# Tick objects
single_history_ticks = qb.History[Tick](spx, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick]([spx, vix], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, timedelta(days=3), Resolution.Tick)
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The preceding calls return the bars or ticks that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Index subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick

Second

Minute

Hour

Daily

Markets

The only market available for Indices is Market.USA .

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data

depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last

line. To display other data formats, call the print method.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded Index Symbol

and the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

start_time = datetime(2021, 1, 1)
end_time = datetime(2021, 2, 1)

# DataFrame of trade data (indices don't have quote data)
single_history_df = qb.History(spx, start_time, end_time)
subset_history_df = qb.History([spx, vix], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)

# DataFrame of tick data
single_history_tick_df = qb.History(spx, start_time, end_time, Resolution.Tick)
subset_history_tick_df = qb.History([spx, vix], start_time, end_time, Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, start_time, end_time, Resolution.Tick)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](spx, start_time, end_time)
subset_history_trade_bars = qb.History[TradeBar]([spx, vix], start_time, end_time)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)

# Tick objects
single_history_ticks = qb.History[Tick](spx, start_time, end_time, Resolution.Tick)
subset_history_ticks = qb.History[Tick]([spx, vix], start_time, end_time, Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, start_time, end_time, Resolution.Tick)
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To select the historical data of a single Index, index the loc property of the DataFrame with the Index Symbol .

To select a column of the DataFrame , index it with the column name.

all_history_df.loc[spx]  # or all_history_df.loc['SPX']

all_history_df.loc[spx]['close']
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If you request historical data for multiple Indices, you can transform the DataFrame so that it's a time series of

close values for all of the Indices. To transform the DataFrame , select the column you want to display for each

Index and then call the unstack method.

The DataFrame is transformed so that the column indices are the Symbol of each Index and each row contains the

close value.

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects

may not have data for all of your Index subscriptions. To avoid issues, check if the Slice contains data for your

Index before you index it with the Index Symbol .

You can also iterate through each TradeBar in the Slice .

TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Index. The

TradeBars may not have data for all of your Index subscriptions. To avoid issues, check if the TradeBars object

all_history_df['close'].unstack(level=0)

for slice in all_history_slice:
    for kvp in slice.Bars:
        symbol = kvp.Key
        trade_bar = kvp.Value

for trade_bar in single_history_trade_bars:
    print(trade_bar)
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contains data for your security before you index it with the Index Symbol .

You can also iterate through each of the TradeBars .

Tick Objects

If the History method returns Tick objects, iterate through the Tick objects to get each one.

If the History method returns Ticks , iterate through the Ticks to get the Tick of each Index. The Ticks may not

have data for all of your Index subscriptions. To avoid issues, check if the Ticks object contains data for your

security before you index it with the Index Symbol .

You can also iterate through each of the Ticks .

The Ticks objects only contain the last tick of each security for that particular timeslice

Plot Data

You need some historical Indices data to produce plots. You can use many of the supported plotting libraries to

visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart 

Follow these steps to plot candlestick charts:

for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(spx):
        trade_bar = trade_bars[spx]

for trade_bars in all_history_trade_bars:
    for kvp in trade_bars:
        symbol = kvp.Key
        trade_bar = kvp.Value

for tick in single_history_ticks:
    print(tick)

for ticks in all_history_ticks:
    if ticks.ContainsKey(spx):
        ticks = ticks[spx]

for ticks in all_history_ticks:
    for kvp in ticks:
        symbol = kvp.Key
        tick = kvp.Value
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1. Get some historical data.

2. Import the plotly library.

3. Create a Candlestick . 

4. Create a Layout . 

5. Create a Figure . 

fig = go.Figure(data=[candlestick], layout=layout)

6. Show the Figure . 

Candlestick charts display the open, high, low, and close prices of the security.

history = qb.History(spx, datetime(2021, 11, 24), datetime(2021, 12, 8), 
Resolution.Daily).loc[spx]

import plotly.graph_objects as go

candlestick = go.Candlestick(x=history.index,
                             open=history['open'],
                             high=history['high'],
                             low=history['low'],
                             close=history['close'])

layout = go.Layout(title=go.layout.Title(text='SPX OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig.show()
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Line Chart

Follow these steps to plot line charts using built-in methods :

1. Get some historical data.

2. Select the data to plot.

pct_change = history['close'].unstack(0).pct_change().dropna()

3. Call the plot method on the pandas object.

pct_change.plot(title="Close Price %Change", figsize=(15, 10))

4. Show the plot.

Line charts display the value of the property you selected in a time series.

history = qb.History([spx, vix], datetime(2021, 11, 24), datetime(2021, 12, 8), 
Resolution.Daily)

plt.show()
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Index Options

Introduction

This page explains how to request, manipulate, and visualize historical Index Options data.

Create Subscriptions

Follow these steps to subscribe to an Index Option security:

1. Instantiate a QuantBook .

2. Call the AddIndex method with a ticker and resolution.

To view the available indices, see Supported Assets .

If you do not pass a resolution argument, Resolution.Minute is used by default. 

3. Call the AddIndexOption method with the underlying Index Symbol and, if you want non-standard Index

Options, the target Option ticker .

4. (Optional) Set a contract filter .

The filter determines which contracts the GetOptionHistory method returns. If you don't set a filter, the

default filter selects the contracts that have the following characteristics:

Standard type (exclude weeklys)

Within 1 strike price of the underlying asset price

Expire within 31 days

If you want historical data on individual contracts and their OpenInterest , follow these steps to subscribe to

qb = QuantBook()

index_symbol = qb.AddIndex("SPX", Resolution.Minute).Symbol

option = qb.AddIndexOption(index_symbol)

option.SetFilter(-1, 1, 0, 90)
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individual Index Option contracts:

1. Call the GetOptionsContractList method with the underlying Index Symbol and a datetime .

This method returns a list of Symbol objects that reference the Option contracts that were trading at the given

time. If you set a contract filter with SetFilter , it doesn't affect the results of GetOptionContractList .

2. Select the Symbol of the OptionContract object(s) for which you want to get historical data.

To filter and select contracts, you can use the following properties of each Symbol object:

Property Description

ID.Date The expiration date of the contract.

ID.StrikePrice The strike price of the contract.

ID.OptionRight The contract type. The OptionRight enumeration
has the following members:

ID.OptionStyle The contract style. The OptionStyle enumeration
has the following members:

3. Call the AddIndexOptionContract method with an OptionContract Symbol and disable fill-forward.

Disable fill-forward because there are only a few OpenInterest data points per day.

start_date = datetime(2021, 12, 31)

# Standard contracts
canonical_symbol = Symbol.CreateCanonicalOption(index_symbol, Market.USA, "?SPX")
contract_symbols = qb.OptionChainProvider.GetOptionContractList(canonical_symbol, start_date)

# Weekly contracts
weekly_canonical_symbol = Symbol.CreateCanonicalOption(index_symbol, "SPXW", Market.USA, "?
SPXW")
weekly_contract_symbols = qb.OptionChainProvider.GetOptionContractList(weekly_canonical_symbol, 
start_date)
weekly_contract_symbols = [s for s in weekly_contract_symbols if OptionSymbol.IsWeekly(s)]

# Standard contracts
contract_symbol = [s for s in contract_symbols 
    if s.ID.OptionRight == OptionRight.Call 
        and s.ID.StrikePrice == 4460 
        and s.ID.Date == datetime(2022, 4, 14)][0]

# Weekly contracts
weekly_contract_symbol = [s for s in weekly_contract_symbols 
    if s.ID.OptionRight == OptionRight.Call 
        and s.ID.StrikePrice == 4460 
        and s.ID.Date == datetime(2021, 12, 31)][0]

qb.AddIndexOptionContract(contract_symbol, fillForward = False)
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Get Historical Data

You need a subscription before you can request historical data for Index Option contracts. On the time dimension,

you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a

defined period of time. On the contract dimension, you can request historical data for a single contract, a subset of

the contracts you created subscriptions for in your notebook, or all of the contracts in your notebook.

Before you request historical data, call the SetStartDate method with a datetime to reduce the risk of look-ahead

bias .

If you call the SetStartDate method, the date that you pass to the method is the latest date for which your history

requests will return data.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the contract Symbol object(s) and

an integer.

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

qb.SetStartDate(start_date)

# DataFrame of trade and quote data
single_history_df = qb.History("SPX", 10)
subset_history_df = qb.History(["SPX"], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, "SPX", 10)
subset_history_trade_bar_df = qb.History(TradeBar, ["SPX"], 10)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, 10)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, "SPX", 10)
subset_history_quote_bar_df = qb.History(QuoteBar, ["SPX"], 10)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, 10)

# DataFrame of open interest data
single_history_open_interest_df = qb.History(OpenInterest, "SPX", 400)
subset_history_open_interest_df = qb.History(OpenInterest, ["SPX"], 400)
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, 400)

# Slice objects
all_history_slice = qb.History(10)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar]("SPX", 10)
subset_history_trade_bars = qb.History[TradeBar](["SPX"], 10)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, 10)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar]("SPX", 10)
subset_history_quote_bars = qb.History[QuoteBar](["SPX"], 10)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, 10)

# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest]("SPX", 400)
subset_history_open_interest = qb.History[OpenInterest](["SPX"], 400)
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, 400)
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Trailing Period of Time

To get historical data for a trailing period of time, call the History method with the contract Symbol object(s) and

a timedelta .

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Defined Period of Time

To get historical data for individual Index Option contracts during a specific period of time, call the History

method with the Index Option contract Symbol object(s), a start datetime , and an end datetime . The start and

end times you provide are based in the notebook time zone .

# DataFrame of trade and quote data
single_history_df = qb.History("SPX", timedelta(days=3))
subset_history_df = qb.History(["SPX"], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, "SPX", timedelta(days=3))
subset_history_trade_bar_df = qb.History(TradeBar, ["SPX"], timedelta(days=3))
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, "SPX", timedelta(days=3))
subset_history_quote_bar_df = qb.History(QuoteBar, ["SPX"], timedelta(days=3))
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of open interest data
single_history_open_interest_df = qb.History(OpenInterest, "SPX", timedelta(days=3))
subset_history_open_interest_df = qb.History(OpenInterest, ["SPX"], timedelta(days=3))
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, timedelta(days=3))

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar]("SPX", timedelta(days=3))
subset_history_trade_bars = qb.History[TradeBar](["SPX"], timedelta(days=3))
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, timedelta(days=3))

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar]("SPX", timedelta(days=3), Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar](["SPX"], timedelta(days=3), Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, timedelta(days=3), 
Resolution.Minute) 

# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest]("SPX", timedelta(days=2))
subset_history_open_interest = qb.History[OpenInterest](["SPX"], timedelta(days=2))
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, timedelta(days=2))
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To get historical data for all of the Index Option contracts that pass your filter during a specific period of time, call

the GetOptionHistory method with the canonical Index Option Symbol object, a start datetime , and an end

datetime .

The preceding calls return data that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Index Option contract subscriptions:

start_time = datetime(2021, 12, 1)
end_time = datetime(2021, 12, 31)

# DataFrame of trade and quote data
single_history_df = qb.History("SPX", start_time, end_time)
subset_history_df = qb.History(["SPX"], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)

# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, "SPX", start_time, end_time)
subset_history_trade_bar_df = qb.History(TradeBar, ["SPX"], start_time, end_time)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, "SPX", start_time, end_time)
subset_history_quote_bar_df = qb.History(QuoteBar, ["SPX"], start_time, end_time)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)

# DataFrame of open interest data
single_history_open_interest_df = qb.History(OpenInterest, "SPX", start_time, end_time)
subset_history_open_interest_df = qb.History(OpenInterest, ["SPX"], start_time, end_time)
all_history_trade_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, start_time, 
end_time)

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar]("SPX", start_time, end_time)
subset_history_trade_bars = qb.History[TradeBar](["SPX"], start_time, end_time)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar]("SPX", start_time, end_time, Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar](["SPX"], start_time, end_time, Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, 
Resolution.Minute)

# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest]("SPX", start_time, end_time)
subset_history_open_interest = qb.History[OpenInterest](["SPX"], start_time, end_time)
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, start_time, end_time)

option_history = qb.GetOptionHistory(option.Symbol, end_time-timedelta(days=2), end_time, 
Resolution.Minute, fillForward=False, extendedMarketHours=False)
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Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick

Second

Minute

Hour

Daily

Markets

The following Market enumeration members are available for Index Options:

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data

depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last

line. To display other data formats, call the print method.

DataFrame Objects

If your history request returns a DataFrame , the DataFrame has the following index levels:

1. Contract expiry

2. Contract strike price

3. Contract type (call or put)

4. Encoded contract Symbol

5. The EndTime of the data sample

The columns of the DataFrame are the data properties. Depending on how you request data, the DataFrame may

contain data for the underlying security, which causes some of the index levels to be an empty string for the

corresponding rows.

To select the rows of the contract(s) that expire at a specific time, index the loc property of the DataFrame with

the expiry time.

https://www.quantconnect.com/docs/v2//writing-algorithms/key-concepts/security-identifiers#02-Encoding-Symbols


If you remove the first three index levels, you can index the DataFrame with just the contract Symbol , similiar to

how you would with non-derivative asset classes. To remove the first three index levels, call the droplevel method.

To select the historical data of a single Index Options contract, index the loc property of the DataFrame with the

contract Symbol .

To select a column of the DataFrame , index it with the column name.

all_history_df.loc[datetime(2022, 4, 14)]

all_history_df.index = all_history_df.index.droplevel([0,1,2])

all_history_df.loc[contract_symbol]
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If you request historical data for multiple Index Option contracts, you can transform the DataFrame so that it's a

time series of close values for all of the Index Option contracts. To transform the DataFrame , select the column

you want to display for each Index Option contract and then call the unstack method.

The DataFrame is transformed so that the column indices are the Symbol of each security and each row contains

the close value.

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects

may not have data for all of your Index Options subscriptions. To avoid issues, check if the Slice contains data for

your Index Option contract before you index it with the Index Options Symbol .

You can also iterate through each TradeBar and QuoteBar in the Slice .

all_history_df.loc[contract_symbol]['close']

all_history_df['close'].unstack(level=0)
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TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Index Option

contract. The TradeBars may not have data for all of your Index Options subscriptions. To avoid issues, check if

the TradeBars object contains data for your security before you index it with the Index Options Symbol .

You can also iterate through each of the TradeBars .

QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Index Option

contract. The QuoteBars may not have data for all of your Index Options subscriptions. To avoid issues, check if

the QuoteBars object contains data for your security before you index it with the Index Options Symbol .

for slice in all_history_slice:
    for kvp in slice.Bars:
        symbol = kvp.Key
        trade_bar = kvp.Value
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for trade_bar in single_history_trade_bars:
    print(trade_bar)

for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(contract_symbol):
        trade_bar = trade_bars[contract_symbol]

for trade_bars in all_history_trade_bars:
    for kvp in trade_bars:
        symbol = kvp.Key
        trade_bar = kvp.Value

for quote_bar in single_history_quote_bars:
    print(quote_bar)

for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(contract_symbol):
        quote_bar = quote_bars[contract_symbol]
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You can also iterate through each of the QuoteBars .

OpenInterest Objects

If the History method returns OpenInterest objects, iterate through the OpenInterest objects to get each one.

If the History method returns a dictionary of OpenInterest objects, iterate through the dictionary to get the

OpenInterest of each Index Option contract. The dictionary of OpenInterest objects may not have data for all of

your Index Options contract subscriptions. To avoid issues, check if the dictionary contains data for your contract

before you index it with the Index Options contract Symbol .

You can also iterate through each of the OpenInterest dictionaries.

OptionHistory Objects

The GetOptionHistory method returns an OptionHistory object. To get each slice in the OptionHistory object,

iterate through it.

To convert the OptionHistory object to a DataFrame that contains the trade and quote information of each

contract and the underlying, call the GetAllData method.

for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value

for open_interest in single_history_open_interest:
    print(open_interest)

for open_interest_dict in all_history_open_interest:
    if open_interest_dict.ContainsKey(contract_symbol):
        open_interest = open_interest_dict[contract_symbol]

for open_interest_dict in all_history_open_interest:
    for kvp in open_interest_dict:
        symbol = kvp.Key
        open_interest = kvp.Value

for slice in option_history:
    for canonical_symbol, chain in slice.OptionChains.items(): 
        for contract in chain:
            pass
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To get the expiration dates of all the contracts in an OptionHistory object, call the GetExpiryDates method.

To get the strike prices of all the contracts in an OptionHistory object, call the GetStrikes method.

Plot Data

You need some historical Index Options data to produce plots. You can use many of the supported plotting

libraries to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart 

Follow these steps to plot candlestick charts:

1. Get some historical data.

2. Drop the first four index levels of DataFrame that returns. 

history.index = history.index.droplevel([0,1,2,3])

3. Import the plotly library.

4. Create a Candlestick . 

5. Create a Layout .

option_history.GetAllData()

option_history.GetExpiryDates()

option_history.GetStrikes()

history = qb.History(contract_symbol, datetime(2021, 12, 30), datetime(2021, 12, 31))

import plotly.graph_objects as go

candlestick = go.Candlestick(x=history.index,
                             open=history['open'],
                             high=history['high'],
                             low=history['low'],
                             close=history['close'])
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6. Create a Figure . 

fig = go.Figure(data=[candlestick], layout=layout)

7. Show the Figure . 

The Jupyter Notebook displays a candlestick chart of the Option contract's price.

Line Chart

Follow these steps to plot line charts using built-in methods :

1. Get some historical data.

2. Drop the first three index levels of the DataFrame that returns.

history.index = history.index.droplevel([0,1,2])

3. Select the open interest data.

history = history['openinterest'].unstack(level=0).ffill()

layout = go.Layout(title=go.layout.Title(text=f'{symbol.Value} OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig.show()

history = qb.History(OpenInterest, contract_symbol, datetime(2021, 12, 1), datetime(2021, 12, 
31))
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4. Rename the column to be the Symbol of each contract.

history.columns = [
    Symbol.GetAlias(SecurityIdentifier.Parse(x), index_symbol)
        for x in history.columns]

5. Call the plot method with a title and figure size.

history.plot(title="Open Interest", figsize=(16, 8))

6. Show the plot.

The Jupyter Notebook displays a line chart of open interest data.

 

plt.show()
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Datasets > Alternative Data

Datasets

Alternative Data

Introduction

This page explains how to request, manipulate, and visualize historical alternative data. This tutorial uses the VIX

Daily Price dataset from the CBOE as the example dataset.

Create Subscriptions

Follow these steps to subscribe to an alternative dataset from the Dataset Market :

1. Create a QuantBook .

2. Call the AddData method with the dataset class, a ticker, and a resolution and then save a reference to the

alternative data Symbol .

To view the arguments that the AddData method accepts for each dataset, see the dataset listing .

If you don't pass a resolution argument, the default resolution of the dataset is used by default. To view the

supported resolutions and the default resolution of each dataset, see the dataset listing .

Get Historical Data

You need a subscription before you can request historical data for a dataset. On the time dimension, you can

request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined

period of time. On the dataset dimension, you can request historical data for a single dataset subscription, a subset

of the dataset subscriptions you created in your notebook, or all of the dataset subscriptions in your notebook.

Trailing Number of Bars  

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an

integer.

qb = QuantBook()

vix = qb.AddData(CBOE, "VIX", Resolution.Daily).Symbol
v3m = qb.AddData(CBOE, "VIX3M", Resolution.Daily).Symbol
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The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time 

To get historical data for a trailing period of time, call the History method with the Symbol object(s) and a

timedelta .

The preceding calls return the most recent bars or ticks, excluding periods of time when the exchange was closed.

Defined Period of Time 

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start

datetime , and an end datetime . The start and end times you provide are based in the notebook time zone .

The preceding calls return the bars or ticks that have a timestamp within the defined period of time.

# DataFrame
single_history_df = qb.History(vix, 10)
subset_history_df = qb.History([vix, v3m], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)

# Slice objects
all_history_slice = qb.History(10)

# CBOE objects
single_history_data_objects = qb.History[CBOE](vix, 10)
subset_history_data_objects = qb.History[CBOE]([vix, v3m], 10)
all_history_data_objects = qb.History[CBOE](qb.Securities.Keys, 10)

# DataFrame
single_history_df = qb.History(vix, timedelta(days=3))
subset_history_df = qb.History([vix, v3m], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# CBOE objects
single_history_data_objects = qb.History[CBOE](vix, timedelta(days=3))
subset_history_data_objects = qb.History[CBOE]([vix, v3m], timedelta(days=3))
all_history_data_objects = qb.History[CBOE](qb.Securities.Keys, timedelta(days=3))

start_time = datetime(2021, 1, 1)
end_time = datetime(2021, 3, 1)

# DataFrame
single_history_df = qb.History(vix, start_time, end_time)
subset_history_df = qb.History([vix, v3m], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)

# Slice objects
all_history_slice = qb.History(start_time, end_time)

# CBOE objects
single_history_data_objects = qb.History[CBOE](vix, start_time, end_time)
subset_history_data_objects = qb.History[CBOE]([vix, v3m], start_time, end_time)
all_history_data_objects = qb.History[CBOE](qb.Securities.Keys, start_time, end_time)
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If you do not pass a resolution to the History method, the History method uses the resolution that the AddData

method used when you created the subscription .

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data

depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last

line. To display other data formats, call the print method.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded dataset Symbol

and the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

To select the historical data of a single dataset, index the loc property of the DataFrame with the dataset Symbol .

To select a column of the DataFrame , index it with the column name.

all_history_df.loc[vix]  # or all_history_df.loc['VIX']

all_history_df.loc[vix]['close']
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If you request historical data for multiple tickers, you can transform the DataFrame so that it's a time series of

close values for all of the tickers. To transform the DataFrame , select the column you want to display for each

ticker and then call the unstack method.

The DataFrame is transformed so that the column indices are the Symbol of each ticker and each row contains the

close value.

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects

may not have data for all of your dataset subscriptions. To avoid issues, check if the Slice contains data for your

ticker before you index it with the dataset Symbol .

Plot Data

You need some historical alternative data to produce plots. You can use many of the supported plotting libraries to

visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart 

You can only create candlestick charts for alternative datasets that have open, high, low, and close properties.

Follow these steps to plot candlestick charts:

1. Get some historical data.

2. Import the plotly library.

all_history_df['close'].unstack(level=0)

history = qb.History(vix, datetime(2021, 1, 1), datetime(2021, 2, 1)).loc[vix]
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3. Create a Candlestick . 

4. Create a Layout . 

5. Create a Figure . 

fig = go.Figure(data=[candlestick], layout=layout)

6. Show the Figure . 

Candlestick charts display the open, high, low, and close prices of the alternative data.

import plotly.graph_objects as go

candlestick = go.Candlestick(x=history.index,
                             open=history['open'],
                             high=history['high'],
                             low=history['low'],
                             close=history['close'])

layout = go.Layout(title=go.layout.Title(text='VIX from CBOE OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig.show()
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Line Chart

Follow these steps to plot line charts using built-in methods :

1. Get some historical data.

2. Select the data to plot.

values = history['close'].unstack(0)

3. Call the plot method on the pandas object.

values.plot(title = 'Close', figsize=(15, 10))

4. Show the plot.

Line charts display the value of the property you selected in a time series.

history = qb.History([vix, v3m], datetime(2021, 1, 1), datetime(2021, 2, 1))

plt.show()
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Datasets

Custom Data

Introduction

This page explains how to request, manipulate, and visualize historical user-defined custom data.

Define Custom Data

You must format the data file into chronological order before you define the custom data class.

To define a custom data class, extend the PythonData class and override the GetSource and Reader methods.

Create Subscriptions

You need to define a custom data class before you can subscribe to it.

Follow these steps to subscribe to custom dataset:

1. Create a QuantBook .

class Nifty(PythonData):
    '''NIFTY Custom Data Class'''
    def GetSource(self, config: SubscriptionDataConfig, date: datetime, isLiveMode: bool) -> 
SubscriptionDataSource:
        url = "http://cdn.quantconnect.com.s3.us-east-1.amazonaws.com/uploads/CNXNIFTY.csv"
        return SubscriptionDataSource(url, SubscriptionTransportMedium.RemoteFile)

    def Reader(self, config: SubscriptionDataConfig, line: str, date: datetime, isLiveMode: bool) -> 
BaseData:
        if not (line.strip() and line[0].isdigit()): return None

        # New Nifty object
        index = Nifty()
        index.Symbol = config.Symbol

        try:
            # Example File Format:
            # Date,       Open       High        Low       Close     Volume      Turnover
            # 2011-09-13  7792.9    7799.9     7722.65    7748.7    116534670    6107.78
            data = line.split(',')
            index.Time = datetime.strptime(data[0], "%Y-%m-%d")
            index.EndTime = index.Time + timedelta(days=1)
            index.Value = data[4]
            index["Open"] = float(data[1])
            index["High"] = float(data[2])
            index["Low"] = float(data[3])
            index["Close"] = float(data[4])

        except:
            pass

        return index

qb = QuantBook()
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2. Call the AddData method with a ticker and then save a reference to the data Symbol .

Custom data has its own resolution, so you don't need to specify it.

Get Historical Data

You need a subscription before you can request historical data for a security. You can request an amount of

historical data based on a trailing number of bars, a trailing period of time, or a defined period of time.

Before you request data, call SetStartDate method with a datetime to reduce the risk of look-ahead bias .

If you call the SetStartDate method, the date that you pass to the method is the latest date for which your history

requests will return data.

Trailing Number of Bars  

Call the History method with a symbol, integer, and resolution to request historical data based on the given

number of trailing bars and resolution.

This method returns the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time 

Call the History method with a symbol, timedelta , and resolution to request historical data based on the given

trailing period of time and resolution.

This method returns the most recent bars, excluding periods of time when the exchange was closed.

Defined Period of Time 

Call the History method with a symbol, start datetime , end datetime , and resolution to request historical data

based on the defined period of time and resolution. The start and end times you provide are based in the notebook

time zone .

symbol = qb.AddData(Nifty, "NIFTY").Symbol

qb.SetStartDate(2014, 7, 29)

history = qb.History(symbol, 10)

history = qb.History(symbol, timedelta(days=10))
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This method returns the bars that are timestamped within the defined period of time.

In all of the cases above, the History method returns a DataFrame with a MultiIndex .

Download Method 

To download the data directly from the remote file location instead of using your custom data class, call the

Download method with the data URL.

Follow these steps to convert the content to a DataFrame :

1. Import the StringIO from the io library.

2. Create a StringIO .

3. Call the read_csv method.

start_time = datetime(2013, 7, 29)
end_time = datetime(2014, 7, 29)
history = qb.History(symbol, start_time, end_time)

content = qb.Download("http://cdn.quantconnect.com.s3.us-east-1.amazonaws.com/uploads/CNXNIFTY.csv")

from io import StringIO

data = StringIO(content)

dataframe = pd.read_csv(data, index_col=0)
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Wrangle Data

You need some historical data to perform wrangling operations. To display pandas objects, run a cell in a notebook

with the pandas object as the last line. To display other data formats, call the print method.

The DataFrame that the History method returns has the following index levels:

1. Dataset Symbol

2. The EndTime of the data sample

The columns of the DataFrame are the data properties.

To select the data of a single dataset, index the loc property of the DataFrame with the data Symbol .

history.loc[symbol]
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To select a column of the DataFrame , index it with the column name.

Plot Data

You need some historical custom data to produce plots. You can use many of the supported plotting libraries to

visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart 

Follow these steps to plot candlestick charts:

1. Import the plotly library.

2. Select the data:

history.loc[symbol]['close']

import plotly.graph_objects as go
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3. Create a Candlestick . 

4. Create a Layout . 

5. Create a Figure . 

fig = go.Figure(data=[candlestick], layout=layout)

6. Show the Figure . 

Candlestick charts display the open, high, low, and close prices of the security.

history = history.loc[symbol]

candlestick = go.Candlestick(x=history.index,
                             open=history['open'],
                             high=history['high'],
                             low=history['low'],
                             close=history['close'])

layout = go.Layout(title=go.layout.Title(text=f'{symbol} OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig.show()
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Line Chart

Follow these steps to plot line charts using built-in methods :

1. Select data to plot.

values = history['value'].unstack(level=0)

2. Call the plot method on the pandas object.

values.plot(title="Value", figsize=(15, 10))

3. Show the plot.

Line charts display the value of the property you selected in a time series.

plt.show()
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Charting

Charting

The Research Environment is centered around analyzing and understanding data. One way to gain a more intuitive

understanding of the existing relationships in our data is to visualize it using charts. There are many different

libraries that allow you to chart our data in different ways. Sometimes the right chart can illuminate an interesting

relationship in the data. Click one of the following libraries to learn more about it:

Bokeh

Matplotlib

Plotly

Seaborn

Plotly NET

See Also

Supported Libraries 
Algorithm Charting 

 

https://www.quantconnect.com/docs/v2//writing-algorithms/key-concepts/libraries
https://www.quantconnect.com/docs/v2//writing-algorithms/charting


Charting > Bokeh

Charting

Bokeh

Introduction

bokeh is a Python library you can use to create interactive visualizations. It helps you build beautiful graphics,

ranging from simple plots to complex dashboards with streaming datasets. With bokeh , you can create JavaScript-

powered visualizations without writing any JavaScript.

Import Libraries

Follow these steps to import the libraries that you need:

1. Import the bokeh library.

2. Call the output_notebook method.

3. Import the numpy library.

Get Historical Data

Get some historical market data to produce the plots. For example, to get data for a bank sector ETF and some

banking companies over 2021, run:

Create Candlestick Chart

from bokeh.plotting import figure, show
from bokeh.models import BasicTicker, ColorBar, ColumnDataSource, LinearColorMapper
from bokeh.palettes import Category20c
from bokeh.transform import cumsum, transform
from bokeh.io import output_notebook

output_notebook()

import numpy as np

qb = QuantBook()
tickers = ["XLF",   # Financial Select Sector SPDR Fund
           "COF",   # Capital One Financial Corporation
           "GS",    # Goldman Sachs Group, Inc.
           "JPM",   # J P Morgan Chase & Co
           "WFC"]   # Wells Fargo & Company   
symbols = [qb.AddEquity(ticker, Resolution.Daily).Symbol for ticker in tickers]
history = qb.History(symbols, datetime(2021, 1, 1), datetime(2022, 1, 1))
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You must import the plotting libraries and get some historical data to create candlestick charts.

In this example, you create a candlestick chart that shows the open, high, low, and close prices of one of the

banking securities. Follow these steps to create the candlestick chart:

1. Select a Symbol .

2. Slice the history DataFrame with the symbol .

3. Divide the data into days with positive returns and days with negative returns.

4. Call the figure function with a title, axis labels and x-axis type.

5. Call the segment method with the data timestamps, high prices, low prices, and a color.

This method call plots the candlestick wicks.

6. Call the vbar method for the up and down days with the data timestamps, open prices, close prices, and a

color.

This method call plots the candlestick bodies.

7. Call the show function.

symbol = symbols[0]

data = history.loc[symbol]

up_days = data[data['close'] > data['open']]
down_days = data[data['open'] > data['close']]

plot = figure(title=f"{symbol} OHLC", x_axis_label='Date', y_axis_label='Price', 
x_axis_type='datetime')

plot.segment(data.index, data['high'], data.index, data['low'], color="black")

width = 12*60*60*1000
plot.vbar(up_days.index, width, up_days['open'], up_days['close'], 
          fill_color="green", line_color="green")
plot.vbar(down_days.index, width, down_days['open'], down_days['close'],
          fill_color="red", line_color="red")
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The Jupyter Notebook displays the candlestick chart.

Create Line Plot

You must import the plotting libraries and get some historical data to create line charts.

In this example, you create a line chart that shows the closing price for one of the banking securities. Follow these

steps to create the line chart:

1. Select a Symbol .

2. Slice the history DataFrame with the symbol and then select the close column.

3. Call the figure function with title, axis labels and x-axis type..

show(plot)

symbol = symbols[0]

close_prices = history.loc[symbol]['close']
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4. Call the line method with the timestamps, close_prices , and some design settings.

5. Call the show function.

The Jupyter Notebook displays the line plot.

Create Scatter Plot

You must import the plotting libraries and get some historical data to create scatter plots.

In this example, you create a scatter plot that shows the relationship between the daily returns of two banking

securities. Follow these steps to create the scatter plot:

1. Select 2 Symbol s.

plot = figure(title=f"{symbol} Close Price", x_axis_label='Date', y_axis_label='Price', 
x_axis_type='datetime')

plot.line(close_prices.index, close_prices, 
          legend_label=symbol.Value, color="blue", line_width=2)

show(plot)
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For example, to select the Symbol s of the first 2 bank stocks, run:

2. Slice the history DataFrame with each Symbol and then select the close column.

3. Call the pct_change and dropna methods on each Series .

4. Call the polyfit method with the daily_returns1 , daily_returns2 , and a degree.

This method call returns the slope and intercept of the ordinary least squares regression line.

5. Call the linspace method with the minimum and maximum values on the x-axis.

6. Calculate the y-axis coordinates of the regression line.

7. Call the figure function with a title and axis labels.

8. Call the line method with x- and y-axis values, a color, and a line width.

This method call plots the regression line.

symbol1 = symbols[1]
symbol2 = symbols[2]

close_price1 = history.loc[symbol1]['close']
close_price2 = history.loc[symbol2]['close']

daily_return1 = close_price1.pct_change().dropna()
daily_return2 = close_price2.pct_change().dropna()

m, b = np.polyfit(daily_returns1, daily_returns2, deg=1)

x = np.linspace(daily_returns1.min(), daily_returns1.max())

y = m*x + b

plot = figure(title=f"{symbol1} vs {symbol2} Daily Return", 
              x_axis_label=symbol1.Value, y_axis_label=symbol2.Value)

plot.line(x, y, color="red", line_width=2)
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9. Call the dot method with the daily_returns1 , daily_returns2 , and some design settings.

This method call plots the scatter plot dots.

10. Call the show function.

The Jupyter Notebook displays the scatter plot.

Create Histogram

You must import the plotting libraries and get some historical data to create histograms.

In this example, you create a histogram that shows the distribution of the daily percent returns of the bank sector

ETF. In addition to the bins in the histogram, you overlay a normal distribution curve for comparison. Follow these

steps to create the histogram:

1. Select the Symbol .

plot.dot(daily_returns1, daily_returns2, size=20, color="navy", alpha=0.5)

show(plot)
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2. Slice the history DataFrame with the symbol and then select the close column.

3. Call the pct_change method and then call the dropna method.

4. Call the histogram method with the daily_returns , the density argument enabled, and a number of bins.

This method call returns the following objects:

hist : The value of the probability density function at each bin, normalized such that the integral over the

range is 1.

edges : The x-axis value of the edges of each bin.

Call the figure method with a title and axis labels.

Call the quad method with the coordinates of the bins and some design settings.

This method call plots the histogram bins.

Call the mean and std methods.

Call the linspace method with the lower limit, upper limit, and number data points for the x-axis of the normal

distribution curve.

symbol = symbols[0]

close_prices = history.loc[symbol]['close']

daily_returns = close_prices.pct_change().dropna()

hist, edges = np.histogram(daily_returns, density=True, bins=20)

plot = figure(title=f"{symbol} Daily Return Distribution", 
              x_axis_label='Return', y_axis_label='Frequency')

plot.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],
          fill_color="navy", line_color="white", alpha=0.5)

mean = daily_returns.mean()
std = daily_returns.std()
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Calculate the y-axis values of the normal distribution curve.

Call the line method with the data and style of the normal distribution PDF curve.

This method call plots the normal distribution PDF curve.

Call show to show the plot.

The Jupyter Notebook displays the histogram.

Create Bar Chart

x = np.linspace(-3*std, 3*std, 1000)

pdf = 1/(std * np.sqrt(2*np.pi)) * np.exp(-(x-mean)**2 / (2*std**2))

plot.line(x, pdf, color="red", line_width=4, 
          alpha=0.7, legend_label="Normal Distribution PDF")

show(plot)

PY

PY

PY

PY



You must import the plotting libraries and get some historical data to create bar charts.

In this example, you create a bar chart that shows the average daily percent return of the banking securities. Follow

these steps to create the bar chart:

1. Select the close column and then call the unstack method.

2. Call the pct_change method and then multiply by 100.

3. Call the mean method.

4. Call the DataFrame constructor with the data Series and then call the reset_index method.

5. Call the figure function with a title, x-axis values, and axis labels.

6. Call the vbar method with the avg_daily_returns , x- and y-axis column names, and a bar width.

7. Rotate the x-axis label and then call the show function. 

The Jupyter Notebook displays the bar chart.

close_prices = history['close'].unstack(level=0)

daily_returns = close_prices.pct_change() * 100

avg_daily_returns = daily_returns.mean()

avg_daily_returns = pd.DataFrame(avg_daily_returns, columns=['avg_return']).reset_index()

plot = figure(title='Banking Stocks Average Daily % Returns', 
x_range=avg_daily_returns['symbol'], 
              x_axis_label='%', y_axis_label='Stocks')

plot.vbar(source=avg_daily_returns, x='symbol', top='avg_return', width=0.8)

plot.xaxis.major_label_orientation = 0.6
show(plot)
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Create Heat Map

You must import the plotting libraries and get some historical data to create heat maps.

In this example, you create a heat map that shows the correlation between the daily returns of the banking

securities. Follow these steps to create the heat map:

1. Select the close column and then call the unstack method.

2. Call the pct_change method.

3. Call the corr method.

4. Set the index and columns of the corr_matrix to the ticker of each security and then set the name of the

column and row indices.

close_prices = history['close'].unstack(level=0)

daily_returns = close_prices.pct_change()

corr_matrix = daily_returns.corr()
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5. Call the stack , rename , and reset_index methods.

6. Call the figure function with a title, axis ticks, and some design settings.

7. Select a color palette and then call the LinearColorMapper constructor with the color pallet, the minimum

correlation, and the maximum correlation.

8. Call the rect method with the correlation plot data and design setting.

9. Call the ColorBar constructor with the mapper , a location, and a BaseTicker .

This snippet creates a color bar to represent the correlation coefficients of the heat map cells.

10. Call the add_layout method with the color_bar and a location.

corr_matrix.index = corr_matrix.columns = [symbol.Value for symbol in symbols]
corr_matrix.index.name = 'symbol'
corr_matrix.columns.name = "stocks"

corr_matrix = corr_matrix.stack().rename("value").reset_index()

plot = figure(title=f"Banking Stocks and Bank Sector ETF Correlation Heat Map",
              x_range=list(corr_matrix.symbol.drop_duplicates()),
              y_range=list(corr_matrix.stocks.drop_duplicates()),
              toolbar_location=None,
              tools="",
              x_axis_location="above")

colors = Category20c[len(corr_matrix.columns)]
mapper = LinearColorMapper(palette=colors, low=corr_matrix.value.min(), 
                           high=corr_matrix.value.max())

plot.rect(source=ColumnDataSource(corr_matrix), 
          x="stocks", 
          y="symbol",
          width=1,
          height=1,
          line_color=None,
          fill_color=transform('value', mapper))

color_bar = ColorBar(color_mapper=mapper,
                    location=(0, 0),
                    ticker=BasicTicker(desired_num_ticks=len(colors)))

plot.add_layout(color_bar, 'right')
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This method call plots the color bar to the right of the heat map.

11. Call the show function.

The Jupyter Notebook displays the heat map.

Create Pie Chart

You must import the plotting libraries and get some historical data to create pie charts.

In this example, you create a pie chart that shows the weights of the banking securities in a portfolio if you allocate

to them based on their inverse volatility. Follow these steps to create the pie chart:

1. Select the close column and then call the unstack method.

2. Call the pct_change method.

show(plot)

close_prices = history['close'].unstack(level=0)

daily_returns = close_prices.pct_change()
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3. Call the var method, take the inverse, and then normalize the result.

4. Call the DataFrame constructor with the inverse_variance Series and then call the reset_index method.

5. Add a color column to the inverse_variance DataFrame .

6. Call the figure function with a title.

7. Call the wedge method with design settings and the inverse_variance DataFrame .

8. Call the show function.

The Jupyter Notebook displays the pie chart.

inverse_variance = 1 / daily_returns.var()
inverse_variance /= np.sum(inverse_variance)   # Normalization
inverse_variance *= np.pi*2    # For a full circle circumference in radian

inverse_variance = pd.DataFrame(inverse_variance, columns=["inverse variance"]).reset_index()

inverse_variance['color'] = Category20c[len(inverse_variance.index)]

plot = figure(title=f"Banking Stocks and Bank Sector ETF Allocation")

plot.wedge(x=0, y=1, radius=0.6, start_angle=cumsum('inverse variance', include_zero=True), 
           end_angle=cumsum('inverse variance'), line_color="white", fill_color='color', 
           legend_field='symbol', source=inverse_variance)

show(plot)
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Charting

Matplotlib

Introduction

matplotlib is the most popular 2d-charting library for python. It allows you to easily create histograms, scatter

plots, and various other charts. In addition, pandas is integrated with matplotlib , so you can seamlessly move

between data manipulation and data visualization. This makes matplotlib great for quickly producing a chart to

visualize your data.

Import Libraries

Follow these steps to import the libraries that you need:

1. Import the matplotlib , mplfinance , and numpy libraries.

2. Import, and then call, the register_matplotlib_converters method.

Get Historical Data

Get some historical market data to produce the plots. For example, to get data for a bank sector ETF and some

banking companies over 2021, run:

Create Candlestick Chart

You must import the plotting libraries and get some historical data to create candlestick charts.

In this example, we'll create a candlestick chart that shows the open, high, low, and close prices of one of the

banking securities. Follow these steps to create the candlestick chart:

import matplotlib.pyplot as plt
import mplfinance
import numpy as np

from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

qb = QuantBook()
tickers = ["XLF",   # Financial Select Sector SPDR Fund
           "COF",   # Capital One Financial Corporation
           "GS",    # Goldman Sachs Group, Inc.
           "JPM",   # J P Morgan Chase & Co
           "WFC"]   # Wells Fargo & Company   
symbols = [qb.AddEquity(ticker, Resolution.Daily).Symbol for ticker in tickers]
history = qb.History(symbols, datetime(2021, 1, 1), datetime(2022, 1, 1))
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1. Select a Symbol .

2. Slice the history DataFrame with the symbol .

3. Rename the columns.

4. Call the plot method with the data , chart type, style, title, y-axis label, and figure size.

The Jupyter Notebook displays the candlestick chart.

symbol = symbols[0]

data = history.loc[symbol]

data.columns = ['Close', 'High', 'Low', 'Open', 'Volume']

mplfinance.plot(data,
                type='candle',
                style='charles',
                title=f'{symbol.Value} OHLC',
                ylabel='Price ($)',
                figratio=(15, 10))
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Create Line Plot

You must import the plotting libraries and get some historical data to create line charts.

In this example, you create a line chart that shows the closing price for one of the banking securities. Follow these

steps to create the line chart:

1. Select a Symbol .

2. Slice the history DataFrame with symbol and then select the close column.

3. Call the plot method with a title and figure size.

The Jupyter Notebook displays the line plot.

symbol = symbols[0]

data = history.loc[symbol]['close']

data.plot(title=f"{symbol} Close Price", figsize=(15, 10));
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Create Scatter Plot

You must import the plotting libraries and get some historical data to create scatter plots.

In this example, you create a scatter plot that shows the relationship between the daily returns of two banking

securities. Follow these steps to create the scatter plot:

1. Select the 2 Symbol s.

For example, to select the Symbol s of the first 2 bank stocks, run:

2. Slice the history DataFrame with each Symbol and then select the close column.

3. Call the pct_change and dropna methods on each Series .

4. Call the polyfit method with the daily_returns1 , daily_returns2 , and a degree.

symbol1 = symbols[1]
symbol2 = symbols[2]

close_price1 = history.loc[symbol1]['close']
close_price2 = history.loc[symbol2]['close']

daily_returns1 = close_price1.pct_change().dropna()
daily_returns2 = close_price2.pct_change().dropna()
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This method call returns the slope and intercept of the ordinary least squares regression line.

5. Call the linspace method with the minimum and maximum values on the x-axis.

6. Calculate the y-axis coordinates of the regression line.

7. Call the plot method with the coordinates and color of the regression line.

8. In the same cell that you called the plot method, call the scatter method with the 2 daily return series.

9. In the same cell that you called the scatter method, call the title , xlabel , and ylabel methods with a title

and axis labels.

The Jupyter Notebook displays the scatter plot.

m, b = np.polyfit(daily_returns1, daily_returns2, deg=1)

x = np.linspace(daily_returns1.min(), daily_returns1.max())

y = m*x + b

plt.plot(x, y, color='red')

plt.scatter(daily_returns1, daily_returns2)

plt.title(f'{symbol1} vs {symbol2} daily returns Scatter Plot')
plt.xlabel(symbol1.Value)
plt.ylabel(symbol2.Value);
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Create Histogram

You must import the plotting libraries and get some historical data to create histograms.

In this example, you create a histogram that shows the distribution of the daily percent returns of the bank sector

ETF. In addition to the bins in the histogram, you overlay a normal distribution curve for comparison. Follow these

steps to create the histogram:

1. Select the Symbol .

2. Slice the history DataFrame with the symbol and then select the close column.

3. Call the pct_change method and then call the dropna method.

4. Call the mean and std methods.

symbol = symbols[0]

close_prices = history.loc[symbol]['close']

daily_returns = close_prices.pct_change().dropna()
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5. Call the linspace method with the lower limit, upper limit, and number data points for the x-axis of the

normal distribution curve.

6. Calculate the y-axis values of the normal distribution curve.

7. Call the plot method with the data for the normal distribution curve.

8. In the same cell that you called the plot method, call the hist method with the daily return data and the

number of bins.

9. In the same cell that you called the hist method, call the title , xlabel , and ylabel methods with a title

and the axis labels.

The Jupyter Notebook displays the histogram.

mean = daily_returns.mean()
std = daily_returns.std()

x = np.linspace(-3*std, 3*std, 1000)

pdf = 1/(std * np.sqrt(2*np.pi)) * np.exp(-(x-mean)**2 / (2*std**2))

plt.plot(x, pdf, label="Normal Distribution")

plt.hist(daily_returns, bins=20)

plt.title(f'{symbol} Return Distribution')
plt.xlabel('Daily Return')
plt.ylabel('Count');
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Create Bar Chart

You must import the plotting libraries and get some historical data to create bar charts.

In this example, you create a bar chart that shows the average daily percent return of the banking securities. Follow

these steps to create the bar chart:

1. Select the close column and then call the unstack method.

2. Call the pct_change method and then multiply by 100.

3. Call the mean method.

4. Call the figure method with a figure size.

close_prices = history['close'].unstack(level=0)

daily_returns = close_prices.pct_change() * 100

avg_daily_returns = daily_returns.mean()

plt.figure(figsize=(15, 10))
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5. Call the bar method with the x-axis and y-axis values.

6. In the same cell that you called the bar method, call the title , xlabel , and ylabel methods with a title and

the axis labels.

The Jupyter Notebook displays the bar chart.

Create Heat Map

You must import the plotting libraries and get some historical data to create heat maps.

In this example, you create a heat map that shows the correlation between the daily returns of the banking

securities. Follow these steps to create the heat map:

1. Select the close column and then call the unstack method.

plt.bar(avg_daily_returns.index, avg_daily_returns)

plt.title('Banking Stocks Average Daily % Returns')
plt.xlabel('Tickers')
plt.ylabel('%');

close_prices = history['close'].unstack(level=0)
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2. Call the pct_change method.

3. Call the corr method.

4. Call the imshow method with the correlation matrix, a color map, and an interpolation method.

5. In the same cell that you called the imshow method, call the title , xticks , and yticks , methods with a title

and the axis tick labels.

6. In the same cell that you called the imshow method, call the colorbar method.

The Jupyter Notebook displays the heat map.

daily_returns = close_prices.pct_change()

corr_matrix = daily_returns.corr()

plt.imshow(corr_matrix, cmap='hot', interpolation='nearest')

plt.title('Banking Stocks and Bank Sector ETF Correlation Heat Map')
plt.xticks(np.arange(len(tickers)), labels=tickers)
plt.yticks(np.arange(len(tickers)), labels=tickers)

plt.colorbar();
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Create Pie Chart

You must import the plotting libraries and get some historical data to create pie charts.

In this example, you create a pie chart that shows the weights of the banking securities in a portfolio if you allocate

to them based on their inverse volatility. Follow these steps to create the pie chart:

1. Select the close column and then call the unstack method.

2. Call the pct_change method.

3. Call the var method and then take the inverse.

4. Call the pie method with the inverse_variance Series , the plot labels, and a display format.

close_prices = history['close'].unstack(level=0)

daily_returns = close_prices.pct_change()

inverse_variance = 1 / daily_returns.var()
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5. In the cell that you called the pie method, call the title method with a title.

The Jupyter Notebook displays the pie chart.

 

plt.pie(inverse_variance, labels=inverse_variance.index, autopct='%1.1f%%')

plt.title('Banking Stocks and Bank Sector ETF Allocation');
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Charting

Plotly

Introduction

plotly is an online charting tool with a python API. It offers the ability to create rich and interactive graphs.

Import Libraries

Import the plotly library.

Get Historical Data

Get some historical market data to produce the plots. For example, to get data for a bank sector ETF and some

banking companies over 2021, run:

Create Candlestick Chart

You must import the plotting libraries and get some historical data to create candlestick charts.

In this example, you create a candlestick chart that shows the open, high, low, and close prices of one of the

banking securities. Follow these steps to create the candlestick chart:

1. Select a Symbol .

2. Slice the history DataFrame with the symbol .

import plotly.express as px
import plotly.graph_objects as go

qb = QuantBook()
tickers = ["XLF",   # Financial Select Sector SPDR Fund
           "COF",   # Capital One Financial Corporation
           "GS",    # Goldman Sachs Group, Inc.
           "JPM",   # J P Morgan Chase & Co
           "WFC"]   # Wells Fargo & Company   
symbols = [qb.AddEquity(ticker, Resolution.Daily).Symbol for ticker in tickers]
history = qb.History(symbols, datetime(2021, 1, 1), datetime(2022, 1, 1))

symbol = symbols[0]

data = history.loc[symbol]
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3. Call the Candlestick constructor with the time and open, high, low, and close price Series .

4. Call the Layout constructor with a title and axes labels. 

5. Call the Figure constructor with the candlestick and layout .

6. Call the show method. 

The Jupyter Notebook displays the candlestick chart.

Create Line Chart

You must import the plotting libraries and get some historical data to create line charts.

candlestick = go.Candlestick(x=data.index,
                             open=data['open'],
                             high=data['high'],
                             low=data['low'],
                             close=data['close'])

layout = go.Layout(title=go.layout.Title(text=f'{symbol.Value} OHLC'),
                   xaxis_title='Date',
                   yaxis_title='Price',
                   xaxis_rangeslider_visible=False)

fig = go.Figure(data=[candlestick], layout=layout)

fig.show()
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In this example, you create a line chart that shows the closing price for one of the banking securities. Follow these

steps to create the line chart:

1. Select a Symbol .

2. Slice the history DataFrame with the symbol and then select the close column.

3. Call the DataFrame constructor with the data Series and then call the reset_index method.

4. Call the line method with data , the column names of the x- and y-axis in data , and the plot title.

5. Call the show method.

The Jupyter Notebook displays the line chart.

symbol = symbols[0]

data = history.loc[symbol]['close']

data = pd.DataFrame(data).reset_index()

fig = px.line(data, x='time', y='close', title=f'{symbol} Close price')

fig.show()
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Create Scatter Plot

You must import the plotting libraries and get some historical data to create scatter plots.

In this example, you create a scatter plot that shows the relationship between the daily returns of two banking

securities. Follow these steps to create the scatter plot:

1. Select 2 Symbol s.

For example, to select the Symbol s of the first 2 bank stocks, run:

2. Slice the history DataFrame with each Symbol and then select the close column.

3. Call the pct_change and dropna methods on each Series .

4. Call the scatter method with the 2 return Series , the trendline option, and axes labels.

5. Call the update_layout method with a title.

6. Call the show method.

The Jupyter Notebook displays the scatter plot.

symbol1 = symbols[1]
symbol2 = symbols[2]

close_price1 = history.loc[symbol1]['close']
close_price2 = history.loc[symbol2]['close']

daily_return1 = close_price1.pct_change().dropna()
daily_return2 = close_price2.pct_change().dropna()

fig = px.scatter(x=daily_return1, y=daily_return2, trendline='ols', 
                 labels={'x': symbol1.Value, 'y': symbol2.Value}) 

fig.update_layout(title=f'{symbol1.Value} vs {symbol2.Value} Daily % Returns');

fig.show()
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Create Histogram

You must import the plotting libraries and get some historical data to create histograms.

In this example, you create a histogram that shows the distribution of the daily percent returns of the bank sector

ETF. Follow these steps to create the histogram:

1. Select the Symbol .

2. Slice the history DataFrame with the symbol and then select the close column.

3. Call the pct_change method and then call the dropna method.

4. Call the DataFrame constructor with the data Series and then call the reset_index method.

5. Call the histogram method with the daily_returns DataFrame, the x-axis label, a title, and the number of

bins.

symbol = symbols[0]

data = history.loc[symbol]['close']

daily_returns = data.pct_change().dropna()

daily_returns = pd.DataFrame(daily_returns).reset_index()
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6. Call the show method.

The Jupyter Notebook displays the histogram.

Create Bar Chart

You must import the plotting libraries and get some historical data to create bar charts.

In this example, you create a bar chart that shows the average daily percent return of the banking securities. Follow

these steps to create the bar chart:

1. Select the close column and then call the unstack method. 

2. Call the pct_change method and then multiply by 100.

3. Call the mean method.

fig = px.histogram(daily_returns, x='close', 
                   title=f'{symbol} Daily Return of Close Price Distribution', 
                   nbins=20)

fig.show()

close_prices = history['close'].unstack(level=0)

daily_returns = close_prices.pct_change() * 100
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4. Call the DataFrame constructor with the avg_daily_returns Series and then call the reset_index method.

5. Call the bar method with the avg_daily_returns and the axes column names.

6. Call the update_layout method with a title.

7. Call the show method.

The Jupyter Notebook displays the bar plot.

Create Heat Map

You must import the plotting libraries and get some historical data to create heat maps.

avg_daily_returns = daily_returns.mean()

avg_daily_returns = pd.DataFrame(avg_daily_returns, columns=["avg_daily_ret"]).reset_index()

fig = px.bar(avg_daily_returns, x='symbol', y='avg_daily_ret')

fig.update_layout(title='Banking Stocks Average Daily % Returns');

fig.show()
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In this example, you create a heat map that shows the correlation between the daily returns of the banking

securities. Follow these steps to create the heat map:

1. Select the close column and then call the unstack method.

2. Call the pct_change method.

3. Call the corr method.

4. Call the imshow method with the corr_matrix and the axes labels.

5. Call the update_layout method with a title.

6. Call the show method.

The Jupyter Notebook displays the heat map.

close_prices = history['close'].unstack(level=0)

daily_returns = close_prices.pct_change()

corr_matrix = daily_returns.corr()

fig = px.imshow(corr_matrix, x=tickers, y=tickers)

fig.update_layout(title='Banking Stocks and bank sector ETF Correlation Heat Map');

fig.show()
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Create Pie Chart

You must import the plotting libraries and get some historical data to create pie charts.

In this example, you create a pie chart that shows the weights of the banking securities in a portfolio if you allocate

to them based on their inverse volatility. Follow these steps to create the pie chart:

1. Select the close column and then call the unstack method.

2. Call the pct_change method.

3. Call the var method and then take the inverse.

4. Call the DataFrame constructor with the inverse_variance Series and then call the reset_index method. 

5. Call the pie method with the inverse_variance DataFrame , the column name of the values, and the column

name of the names.

close_prices = history['close'].unstack(level=0)

daily_returns = close_prices.pct_change()

inverse_variance = 1 / daily_returns.var()

inverse_variance = pd.DataFrame(inverse_variance, columns=["inverse variance"]).reset_index()
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6. Call the update_layout method with a title.

7. Call the show method.

The Jupyter Notebook displays the pie chart.

 

fig = px.pie(inverse_variance, values='inverse variance', names='symbol')

fig.update_layout(title='Asset Allocation of bank stocks and bank sector ETF');

fig.show()
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Charting > Seaborn

Charting

Seaborn

Introduction

seaborn is a data visualization library based on matplotlib . It makes it easier to create more complicated plots

and allows us to create much more visually-appealing charts than matplotlib charts.

Import Libraries

Follow these steps to import the libraries that you need:

1. Import the seaborn and matplotlib libraries.

2. Import, and then call, the register_matplotlib_converters method.

Get Historical Data

Get some historical market data to produce the plots. For example, to get data for a bank sector ETF and some

banking companies over 2021, run:

Create Candlestick Chart

Seaborn does not currently support candlestick charts. Use one of the other plotting libraries to create candlestick

charts.

Create Line Chart

You must import the plotting libraries and get some historical data to create line charts.

import seaborn as sns
import matplotlib.pyplot as plt

from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

qb = QuantBook()
tickers = ["XLF",   # Financial Select Sector SPDR Fund
           "COF",   # Capital One Financial Corporation
           "GS",    # Goldman Sachs Group, Inc.
           "JPM",   # J P Morgan Chase & Co
           "WFC"]   # Wells Fargo & Company   
symbols = [qb.AddEquity(ticker, Resolution.Daily).Symbol for ticker in tickers]
history = qb.History(symbols, datetime(2021, 1, 1), datetime(2022, 1, 1))
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In this example, you create a line chart that shows the closing price for one of the banking securities. Follow these

steps to create the chart:

1. Select a Symbol .

2. Slice the history DataFrame with the symbol and then select the close column.

3. Call the DataFrame constructor with the data Series and then call the reset_index method.

4. Call the lineplot method with the data Series and the column name of each axis.

5. In the same cell that you called the lineplot method, call the set method with the y-axis label and a title.

The Jupyter Notebook displays the line chart.

symbol = symbols[0]

data = history.loc[symbol]['close']

data = pd.DataFrame(data).reset_index()

plot = sns.lineplot(data=data,
                    x='time', 
                    y='close')

plot.set(ylabel="price", title=f"{symbol} Price Over Time");
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Create Scatter Plot

You must import the plotting libraries and get some historical data to create scatter plots.

In this example, you create a scatter plot that shows the relationship between the daily returns of two banking

securities. Follow these steps to create the scatter plot:

1. Select 2 Symbol s.

For example, to select the Symbol s of the first 2 bank stocks, run:

2. Select the close column of the history DataFrame, call the unstack method, and then select the symbol1 and

symbol2 columns.

3. Call the pct_change method and then call the dropna method.

4. Call the regplot method with the daily_returns DataFrame and the column names.

symbol1 = symbols[1]
symbol2 = symbols[2]

close_prices = history['close'].unstack(0)[[symbol1, symbol2]]

daily_returns = close_prices.pct_change().dropna()

plot = sns.regplot(data=daily_returns, 
                   x=daily_returns.columns[0], 
                   y=daily_returns.columns[1])
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5. In the same cell that you called the regplot method, call the set method with the axis labels and a title.

The Jupyter Notebook displays the scatter plot.

Create Histogram

You must import the plotting libraries and get some historical data to create histograms.

In this example, you create a histogram that shows the distribution of the daily percent returns of the bank sector

ETF. Follow these steps to create the histogram:

1. Select the Symbol .

2. Slice the history DataFrame with the symbol and then select the close column.

3. Call the pct_change method and then call the dropna method.

plot.set(xlabel=f'{daily_returns.columns[0]} % Returns', 
         ylabel=f'{daily_returns.columns[1]} % Returns', 
         title=f'{symbol1} vs {symbol2} Daily % Returns');

symbol = symbols[0]

data = history.loc[symbol]['close']

daily_returns = data.pct_change().dropna()
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4. Call the DataFrame constructor with the daily_returns Series and then call the reset_index method.

5. Call the histplot method with the daily_returns , the close column name, and the number of bins.

6. In the same cell that you called the histplot method, call the set method with the axis labels and a title.

The Jupyter Notebook displays the histogram.

Create Bar Chart

You must import the plotting libraries and get some historical data to create bar charts.

In this example, you create a bar chart that shows the average daily percent return of the banking securities. Follow

these steps to create the bar chart:

1. Select the close column and then call the unstack method.

daily_returns = pd.DataFrame(daily_returns).reset_index()

plot = sns.histplot(daily_returns, x='close', bins=20)

plot.set(xlabel='Return', 
         ylabel='Frequency', 
         title=f'{symbol} Daily Return of Close Price Distribution');

close_prices = history['close'].unstack(level=0)
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2. Call the pct_change method and then multiply by 100.

3. Call the mean method.

4. Call the DataFrame constructor with the avg_daily_returns Series and then call the reset_index method.

5. Call barplot method with the avg_daily_returns  Series and the axes column names.

6. In the same cell that you called the barplot method, call the set method with the axis labels and a title.

7. In the same cell that you called the set method, call the tick_params method to rotate the x-axis labels.

The Jupyter Notebook displays the bar chart.

daily_returns = close_prices.pct_change() * 100

avg_daily_returns = daily_returns.mean()

avg_daily_returns = pd.DataFrame(avg_daily_returns, columns=["avg_daily_ret"]).reset_index()

plot = sns.barplot(data=avg_daily_returns, x='symbol', y='avg_daily_ret')

plot.set(xlabel='Tickers', 
         ylabel='%', 
         title='Banking Stocks Average Daily % Returns')

plot.tick_params(axis='x', rotation=90)
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Create Heat Map

You must import the plotting libraries and get some historical data to create heat maps.

In this example, you create a heat map that shows the correlation between the daily returns of the banking

securities. Follow these steps to create the heat map:

1. Select the close column and then call the unstack method.

2. Call the pct_change method.

3. Call the corr method.

4. Call the heatmap method with the corr_matrix and the annotation argument enabled.

close_prices = history['close'].unstack(level=0)

daily_returns = close_prices.pct_change()

corr_matrix = daily_returns.corr()
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5. In the same cell that you called the heatmap method, call the set method with a title.

The Jupyter Notebook displays the heat map.

Create Pie Chart

You must import the plotting libraries and get some historical data to create pie charts.

In this example, you create a pie chart that shows the weights of the banking securities in a portfolio if you allocate

to them based on their inverse volatility. Follow these steps to create the pie chart:

1. Select the close column and then call the unstack method.

2. Call the pct_change method.

3. Call var method and then take the inverse.

plot = sns.heatmap(corr_matrix, annot=True)

plot.set(title='Bank Stocks and Bank Sector ETF Correlation Coefficients');

close_prices = history['close'].unstack(level=0)

daily_returns = close_prices.pct_change()
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4. Call the color_palette method with a palette name and then truncate the returned colors to so that you have

one color for each security.

5. Call the pie method with the security weights, labels, and colors.

6. In the same cell that you called the pie method, call the title method with a title.

The Jupyter Notebook displays the pie chart.

 

inverse_variance = 1 / daily_returns.var()

colors = sns.color_palette('pastel')[:len(inverse_variance.index)]

plt.pie(inverse_variance, labels=inverse_variance.index, colors=colors, autopct='%1.1f%%')

plt.title(title='Banking Stocks and Bank Sector ETF Allocation');
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Charting > Plotly NET

Charting

Plotly NET

Introduction

Plotly.NET provides functions for generating and rendering plotly.js charts in .NET programming languages. Our

.NET interactive notebooks support its C# implementation.

Import Libraries

Follow these steps to import the libraries that you need:

1. Load the necessary assembly files.

2. Import the Plotly.NET and Plotly.NET.LayoutObjects packages.

Get Historical Data

Get some historical market data to produce the plots. For example, to get data for a bank sector ETF and some

banking companies over 2021, run:

Create Candlestick Chart

You must import the plotting libraries and get some historical data to create candlestick charts.

In this example, you create a candlestick chart that shows the open, high, low, and close prices of one of the

banking securities. Follow these steps to create the candlestick chart:

1. Select a Symbol .

2. Call the Chart2D.Chart.Candlestick constructor with the time and open, high, low, and close price

IEnumerable .

3. Call the Layout constructor and set the title , xaxis , and yaxis properties as the title and axes label

objects. 

4. Assign the Layout to the chart. 

5. Show the plot. 

The Jupyter Notebook displays the candlestick chart.



Create Line Chart

You must import the plotting libraries and get some historical data to create line charts.

In this example, you create a line chart that shows the volume of a security. Follow these steps to create the chart:

1. Select a Symbol .

2. Call the Chart2D.Chart.Line constructor with the timestamps and volumes.

3. Create a Layout . 

4. Assign the Layout to the chart. 

5. Show the plot.

The Jupyter Notebook displays the line chart.



Create Scatter Plot

You must import the plotting libraries and get some historical data to create scatter plots.

In this example, you create a scatter plot that shows the relationship between the daily price of two securities.

Follow these steps to create the scatter plot:

1. Select two Symbol objects.

2. Call the Chart2D.Chart.Point constructor with the closing prices of both securities.

3. Create a Layout . 

4. Assign the Layout to the chart. 

5. Show the plot.

The Jupyter Notebook displays the scatter plot.



 



Indicators

Indicators

Indicators let you analyze market data in an abstract form rather than in its raw form. For example, indicators like

the RSI tell you, based on price and volume data, if the market is overbought or oversold. Because indicators can

extract overall market trends from price data, sometimes, you may want to look for correlations between

indicators and the market, instead of between raw price data and the market. To view all of the indicators and

candlestick patterns we provide, see the Supported Indicators .

Data Point Indicators

Indicators that process IndicatorDataPoint objects

Bar Indicators

Indicators that process Bar objects

Trade Bar Indicators

Indicators that process TradeBar objects

Combin ing Indicators

Chain indicators together

Custom Indicators

Create your own

Custom Resolutions

Beyond the standard resolutions

See Also

Key Concepts 

 

https://www.quantconnect.com/docs/v2//writing-algorithms/indicators/supported-indicators
https://www.quantconnect.com/docs/v2//writing-algorithms/indicators/key-concepts


Indicators > Data Point Indicators

Indicators

Data Point Indicators

Introduction

This page explains how to create, update, and visualize LEAN data-point indicators.

Create Subscriptions

You need to subscribe to some market data in order to calculate indicator values.

Create Indicator Timeseries

You need to subscribe to some market data and create an indicator in order to calculate a timeseries of indicator

values. In this example, use a 20-period 2-standard-deviation BollingerBands indicator.

You can create the indicator timeseries with the Indicator helper method or you can manually create the

timeseries.

Indicator Helper Method

To create an indicator timeseries with the helper method, call the Indicator method.

Manually Create the Indicator Timeseries

Follow these steps to manually create the indicator timeseries:

qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol

bb = BollingerBands(20, 2)

bb_dataframe = qb.Indicator(bb, symbol, 50, Resolution.Daily)
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1. Get some historical data .

2. Create a RollingWindow for each attribute of the indicator to hold their values.

3. Attach a handler method to the indicator that updates the RollingWindow objects.

When the indicator receives new data, the preceding handler method adds the new IndicatorDataPoint

values into the respective RollingWindow .

4. Iterate through the historical market data and update the indicator.

5. Populate a DataFrame with the data in the RollingWindow objects.

history = qb.History[TradeBar](symbol, 70, Resolution.Daily)

window = {}
window['time'] = RollingWindow[DateTime](50)
window["bollingerbands"] = RollingWindow[float](50)
window["lowerband"] = RollingWindow[float](50)
window["middleband"] = RollingWindow[float](50)
window["upperband"] = RollingWindow[float](50)
window["bandwidth"] = RollingWindow[float](50)
window["percentb"] = RollingWindow[float](50)
window["standarddeviation"] = RollingWindow[float](50)
window["price"] = RollingWindow[float](50)

def UpdateBollingerBandWindow(sender: object, updated: IndicatorDataPoint) -> None:
    indicator = sender
    window['time'].Add(updated.EndTime)
    window["bollingerbands"].Add(updated.Value)
    window["lowerband"].Add(indicator.LowerBand.Current.Value)
    window["middleband"].Add(indicator.MiddleBand.Current.Value)
    window["upperband"].Add(indicator.UpperBand.Current.Value)
    window["bandwidth"].Add(indicator.BandWidth.Current.Value)
    window["percentb"].Add(indicator.PercentB.Current.Value)
    window["standarddeviation"].Add(indicator.StandardDeviation.Current.Value)
    window["price"].Add(indicator.Price.Current.Value)

bb.Updated += UpdateBollingerBandWindow

for bar in history:
    bb.Update(bar.EndTime, bar.Close)

bb_dataframe = pd.DataFrame(window).set_index('time')
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Plot Indicators

You need to create an indicator timeseries to plot the indicator values.

Follow these steps to plot the indicator values:

1. Select the columns/features to plot.

2. Call the plot method.

3. Show the plots.

bb_plot = bb_indicator[["upperband", "middleband", "lowerband", "price"]]

bb_plot.plot(figsize=(15, 10), title="SPY BB(20,2)"))

plt.show()
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Indicators > Bar Indicators

Indicators

Bar Indicators

Introduction

This page explains how to create, update, and visualize LEAN bar indicators.

Create Subscriptions

You need to subscribe to some market data in order to calculate indicator values.

Create Indicator Timeseries

You need to subscribe to some market data and create an indicator in order to calculate a timeseries of indicator

values. In this example, use a 20-period AverageTrueRange indicator.

You can create the indicator timeseries with the Indicator helper method or you can manually create the

timeseries.

Indicator Helper Method

To create an indicator timeseries with the helper method, call the Indicator method.

Manually Create the Indicator Timeseries

Follow these steps to manually create the indicator timeseries:

1. Get some historical data .

qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol

atr = AverageTrueRange(20)

atr_dataframe = qb.Indicator(atr, symbol, 50, Resolution.Daily)
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2. Create a RollingWindow for each attribute of the indicator to hold their values.

3. Attach a handler method to the indicator that updates the RollingWindow objects.

When the indicator receives new data, the preceding handler method adds the new IndicatorDataPoint

values into the respective RollingWindow .

4. Iterate through the historical market data and update the indicator.

5. Populate a DataFrame with the data in the RollingWindow objects.

Plot Indicators

You need to create an indicator timeseries to plot the indicator values.

Follow these steps to plot the indicator values:

history = qb.History[TradeBar](symbol, 70, Resolution.Daily)

window = {}
window['time'] = RollingWindow[DateTime](50)
window['averagetruerange'] = RollingWindow[float](50)
window["truerange"] = RollingWindow[float](50)

def UpdateAverageTrueRangeWindow(sender: object, updated: IndicatorDataPoint) -> None:
    indicator = sender
    window['time'].Add(updated.EndTime)
    window["averagetruerange"].Add(updated.Value)
    window["truerange"].Add(indicator.TrueRange.Current.Value)

atr.Updated += UpdateAverageTrueRangeWindow

for bar in history:
    atr.Update(bar)

atr_dataframe = pd.DataFrame(window).set_index('time')
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1. Call the plot method.

2. Show the plots.

 

atr_indicator.plot(title="SPY ATR(20)", figsize=(15, 10))

plt.show()

PY

PY



Indicators > Trade Bar Indicators

Indicators

Trade Bar Indicators

Introduction

This page explains how to create, update, and visualize LEAN TradeBar indicators.

Create Subscriptions

You need to subscribe to some market data in order to calculate indicator values.

Create Indicator Timeseries

You need to subscribe to some market data and create an indicator in order to calculate a timeseries of indicator

values. In this example, use a 20-period VolumeWeightedAveragePriceIndicator indicator.

You can create the indicator timeseries with the Indicator helper method or you can manually create the

timeseries.

Indicator Helper Method

To create an indicator timeseries with the helper method, call the Indicator method.

Manually Create the Indicator Timeseries

Follow these steps to create an indicator timeseries:

1. Get some historical data .

qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol

vwap = VolumeWeightedAveragePriceIndicator(20)

vwap_dataframe = qb.Indicator(vwap, symbol, 50, Resolution.Daily)
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2. Create a RollingWindow for each attribute of the indicator to hold their values.

3. Attach a handler method to the indicator that updates the RollingWindow objects.

When the indicator receives new data, the preceding handler method adds the new IndicatorDataPoint

values into the respective RollingWindow .

4. Iterate through the historical market data and update the indicator.

5. Populate a DataFrame with the data in the RollingWindow objects.

Plot Indicators

Follow these steps to plot the indicator values:

1. Call the plot method.

history = qb.History[TradeBar](symbol, 70, Resolution.Daily)

window = {}
window['time'] = RollingWindow[DateTime](50)
window['volumeweightedaveragepriceindicator'] = RollingWindow[float](50)

def UpdateVWAPWindow(sender: object, updated: IndicatorDataPoint) -> None:
    window['time'].Add(updated.EndTime)
    window["volumeweightedaveragepriceindicator"].Add(updated.Value)

vwap.Updated += UpdateVWAPWindow

for bar in history:
    vwap.Update(bar)

vwap_dataframe = pd.DataFrame(window).set_index('time')

vwap_indicator.plot(title="SPY VWAP(20)", figsize=(15, 10))
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2. Show the plots.

 

plt.show()
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Indicators

Combining Indicators

Introduction

This page explains how to create, update, and visualize LEAN Composite indicators.

Create Subscriptions

You need to subscribe to some market data in order to calculate indicator values.

Create Indicator Timeseries

You need to subscribe to some market data and create a composite indicator in order to calculate a timeseries of

indicator values. In this example, use a 10-period SimpleMovingAverage of a 10-period RelativeStrengthIndex

indicator.

Follow these steps to create an indicator timeseries:

1. Get some historical data .

2. Create a RollingWindow for each attribute of the indicator to hold their values.

In this example, save 50 data points.

3. Attach a handler method to the indicator that updates the RollingWindow objects.

qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol

rsi = RelativeStrengthIndex(10)
sma = SimpleMovingAverage(10)
sma_of_rsi = IndicatorExtensions.Of(sma, rsi)

history = qb.History[TradeBar](symbol, 70, Resolution.Daily)

window = {}
window['time'] = RollingWindow[DateTime](50)
window["SMA Of RSI"] = RollingWindow[float](50)
window["rollingsum"] = RollingWindow[float](50)(50)
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When the indicator receives new data, the preceding handler method adds the new IndicatorDataPoint

values into the respective RollingWindow .

4. Iterate the historical market data to update the indicators and the RollingWindow s.

5. Populate a DataFrame with the data in the RollingWindow objects.

Plot Indicators

Follow these steps to plot the indicator values:

1. Select the columns/features to plot.

2. Call the plot method.

3. Show the plots.

def UpdateSmaOfRsiWindow(sender: object, updated: IndicatorDataPoint) -> None:
    indicator = sender
    window['time'].Add(updated.EndTime)
    window["SMA Of RSI"].Add(updated.Value)
    window["rollingsum"].Add(indicator.RollingSum.Current.Value)

sma_of_rsi.Updated += UpdateSmaOfRsiWindow

for bar in history:
    rsi.Update(bar.EndTime, bar.Close)

sma_of_rsi_dataframe = pd.DataFrame(window).set_index('time')

sma_of_rsi_plot = sma_of_rsi_dataframe[["SMA Of RSI"]]

sma_of_rsi_plot.plot(title="SPY SMA(10) of RSI(10)", figsize=(15, 10))

plt.show()
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Indicators

Custom Indicators

Introduction

This page explains how to create and update custom indicators.

Create Subscriptions

You need to subscribe to some market data in order to calculate indicator values.

Create Indicator Timeseries

You need to subscribe to some market data in order to calculate a timeseries of indicator values.

Follow these steps to create an indicator timeseries:

1. Get some historical data .

2. Define a custom indicator class. Note the PythonIndicator superclass inheritance, Value attribute, and

Update method are mandatory.

In this tutorial, create an ExpectedShortfallPercent indicator that uses Monte Carlo to calculate the

expected shortfall of returns.

qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol

history = qb.History[TradeBar](symbol, 70, Resolution.Daily)
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3. Initialize a new instance of the custom indicator.

4. Create a RollingWindow for each attribute of the indicator to hold their values.

In this example, save 20 data points.

5. Attach a handler method to the indicator that updates the RollingWindow objects.

When the indicator receives new data, the preceding handler method adds the new IndicatorDataPoint

values into the respective RollingWindow .

6. Iterate through the historical market data and update the indicator.

class ExpectedShortfallPercent(PythonIndicator):
    import math, numpy as np
    
    def __init__(self, period, alpha):
        self.Value = None   # Attribute represents the indicator value
        self.ValueAtRisk = None
        
        self.alpha = alpha
        
        self.window = RollingWindow[float](period)
    
    # Override the IsReady attribute to flag all attributes values are ready.
    @property
    def IsReady(self) -> bool:
        return self.Value and self.ValueAtRisk
    
    # Method to update the indicator values. Note that it only receives 1 IBaseData object 
(Tick, TradeBar, QuoteBar) argument.
    def Update(self, input: BaseData) -> bool:
        count = self.window.Count
        
        self.window.Add(input.Close)
        
        # Update the Value and other attributes as the indicator current value.
        if count >= 2:
            cutoff = math.ceil(self.alpha * count)
            
            ret = [ (self.window[i] - self.window[i+1]) / self.window[i+1] for i in range(count-
1) ]
            lowest = sorted(ret)[:cutoff]
            
            self.Value = np.mean(lowest)
            self.ValueAtRisk = lowest[-1]
            
        # return a boolean to indicate IsReady.
        return count >= 2

custom = ExpectedShortfallPercent(50, 0.05)

window = {}
window['time'] = RollingWindow[DateTime](20)
window['expectedshortfall'] = RollingWindow[float](20)
window['valueatrisk'] = RollingWindow[float](20)
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7. Populate a DataFrame with the data in the RollingWindow objects.

Plot Indicators

Follow these steps to plot the indicator values:

1. Call the plot method.

2. Show the plot.

for bar in history:
    custom.Update(bar)
    
    # The Updated event handler is not available for custom indicator in Python, RollingWindows 
are needed to be updated in here.
    if custom.IsReady:
        window['time'].Add(bar.EndTime)
        window['expectedshortfall'].Add(custom.Value)
        window['valueatrisk'].Add(custom.ValueAtRisk)

custom_dataframe = pd.DataFrame(window).set_index('time'))

custom_dataframe.plot()

plt.show()
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Indicators

Custom Resolutions

Introduction

This page explains how to create and update indicators with data of a custom resolution.

Create Subscriptions

You need to subscribe to some market data in order to calculate indicator values.

Create Indicator Timeseries

You need to subscribe to some market data and create an indicator in order to calculate a timeseries of indicator

values.

Follow these steps to create an indicator timeseries:

1. Get some historical data .

2. Create a data-point indicator.

In this example, use a 20-period 2-standard-deviation BollingerBands indicator.

3. Create a RollingWindow for each attribute of the indicator to hold their values.

qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol

history = qb.History[TradeBar](symbol, 70, Resolution.Daily)

bb = BollingerBands(20, 2)

window = {}
window['time'] = RollingWindow[DateTime](50)
window["bollingerbands"] = RollingWindow[float](50)
window["lowerband"] = RollingWindow[float](50)
window["middleband"] = RollingWindow[float](50)
window["upperband"] = RollingWindow[float](50)
window["bandwidth"] = RollingWindow[float](50)
window["percentb"] = RollingWindow[float](50)
window["standarddeviation"] = RollingWindow[float](50)
window["price"] = RollingWindow[float](50)
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4. Attach a handler method to the indicator that updates the RollingWindow objects.

When the indicator receives new data, the preceding handler method adds the new IndicatorDataPoint

values into the respective RollingWindow .

5. Create a TradeBarConsolidator to consolidate data into the custom resolution.

6. Attach a handler method to feed data into the consolidator and updates the indicator with the consolidated

bars.

When the consolidator receives 7 days of data, the handler generates a 7-day TradeBar and update the

indicator.

7. Iterate through the historical market data and update the indicator.

8. Populate a DataFrame with the data in the RollingWindow objects.

def UpdateBollingerBandWindow(sender: object, updated: IndicatorDataPoint) -> None:
    indicator = sender
    window['time'].Add(updated.EndTime)
    window["bollingerbands"].Add(updated.Value)
    window["lowerband"].Add(indicator.LowerBand.Current.Value)
    window["middleband"].Add(indicator.MiddleBand.Current.Value)
    window["upperband"].Add(indicator.UpperBand.Current.Value)
    window["bandwidth"].Add(indicator.BandWidth.Current.Value)
    window["percentb"].Add(indicator.PercentB.Current.Value)
    window["standarddeviation"].Add(indicator.StandardDeviation.Current.Value)
    window["price"].Add(indicator.Price.Current.Value)

bb.Updated += UpdateBollingerBandWindow

consolidator = TradeBarConsolidator(timedelta(days=7))

consolidator.DataConsolidated += lambda sender, consolidated: bb.Update(consolidated.EndTime, 
consolidated.Close)

for bar in history:
    consolidator.Update(bar)

bb_dataframe = pd.DataFrame(window).set_index('time')
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Plot Indicators

Follow these steps to plot the indicator values:

1. Select the columsn to plot.

2. Call the plot method.

3. Show the plot.

 

df = bb_dataframe[['lowerband', 'middleband', 'upperband', 'price']]

df.plot()

plt.show()
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Object Store

Object Store

Introduction

The Object Store is a file system that you can use in your algorithms to save, read, and delete data. The Object

Store is organization-specific, so you can save or read data from the same Object Store in all of your

organization's projects. The Object Store works like a key-value storage system where you can store regular

strings, JSON encoded strings, XML encoded strings, and bytes. You can access the data you store in the Object

Store from backtests, the Research Environment, and live algorithms.

Get All Stored Data

To get all of the keys and values in the Object Store, iterate through the ObjectStore object.

To iterate through just the keys in the Object Store, iterate through the Keys property.

Create Sample Data

You need some data to store data in the Object Store.

Follow these steps to create some sample data:

1. Create a string .

2. Create a Bytes object.

Save Data

The Object Store saves objects under a key-value system. If you save objects in backtests, you can access them

from the Research Environment.

for kvp in qb.ObjectStore:
    key = kvp.Key
    value = kvp.Value

for key in qb.ObjectStore.Keys:
    continue

string_sample = "My string"

bytes_sample = str.encode("My String")
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If you run algorithms in QuantConnect Cloud, you need storage create permissions to save data in the Object

Store.

If you don't have data to store, create some sample data .

You can save Bytes and string objects in the Object Store.

Bytes

To save a Bytes object, call the SaveBytes method.

Strings

To save a string object, call the Save or SaveString method.

Read Data

To read data from the Object Store, you need to provide the key you used to store the object.

You can load Bytes and string objects from the Object Store.

Before you read data from the Object Store, check if the key exists.

Bytes

To read a Bytes object, call the ReadBytes method.

Strings

To read a string object, call the Read or ReadString method.

Delete Data

save_successful = qb.ObjectStore.SaveBytes(f"{qb.ProjectId}/bytes_key", bytes_sample)

save_successful = qb.ObjectStore.Save(f"{qb.ProjectId}/string_key", string_sample)

if qb.ObjectStore.ContainsKey(key):
    # Read data

byte_data = qb.ObjectStore.ReadBytes(f"{qb.ProjectId}/bytes_key")

string_data = qb.ObjectStore.Read(f"{qb.ProjectId}/string_key")
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Delete objects in the Object Store to remove objects that you no longer need. If you use the Research Environment

in QuantConnect Cloud, you need storage delete permissions to delete data from the Object Store.

To delete objects from the Object Store, call the Delete method. Before you delete data, check if the key exists. If

you try to delete an object with a key that doesn't exist in the Object Store, the method raises an exception.

To delete all of the content in the Object Store, iterate through all the stored data.

Cache Data

When you write to or read from the Object Store, the notebook caches the data. The cache speeds up the

notebook execution because if you try to read the Object Store data again with the same key, it returns the cached

data instead of downloading the data again. The cache speeds up execution, but it can cause problems if you are

trying to share data between two nodes under the same Object Store key. For example, consider the following

scenario:

1. You open project A and save data under the key 123 .

2. You open project B and save new data under the same key 123 .

3. In project A, you read the Object Store data under the key 123 , expecting the data from project B, but you

get the original data you saved in step #1 instead.

You get the data from step 1 instead of step 2 because the cache contains the data from step 1.

To clear the cache, call the Clear method.

Get File Path

To get the file path for a specific key in the Object Store, call the GetFilePath method. If the key you pass to the

method doesn't already exist in the Object Store, it's added to the Object Store.

Storage Quotas

If you use the Research Environment locally, you can store as much data as your hardware will allow. If you use the

if qb.ObjectStore.ContainsKey(key):
    qb.ObjectStore.Delete(key)

for kvp in qb.ObjectStore:
    qb.ObjectStore.Delete(kvp.Key)

qb.ObjectStore.Clear()

file_path = qb.ObjectStore.GetFilePath(key)
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Research Environment in QuantConnect Cloud, you must stay within your storage quota . If you need more storage

space, edit your storage plan .

Example

You can use the ObjectStore to plot data from your backtests and live algorithm in the Research Environment. In

the following example, you will learn how to plot the Simple Moving Average indicator generated in a backtest.

1. Create a algorithm, add a data subscription and a Simple Moving Average indicator.

The algorithm will save self.content to the ObjectStore .

2. Save indicator data as string in self.content .

3. To store the collected data, call the Save method with a key.

4. Open the Research Environment, and create a QuantBook .

5. To read data from the Object Store, call the Read method. You need to provide the key you used to store the

object.

6. Convert the data to a pandas object, and create a chart.

class ObjectStoreChartingAlgorithm(QCAlgorithm):
    def Initialize(self):
        self.AddEquity("SPY")
    
        self.content = ''
        self.sma = self.SMA("SPY", 22)

def OnData(self, data: Slice):
    self.Plot('SMA', 'Value', self.sma.Current.Value)
    self.content += f'{self.sma.Current.EndTime},{self.sma.Current.Value}\n'

def OnEndOfAlgorithm(self):
    self.ObjectStore.Save('sma_values_python', self.content)

qb = QuantBook()

content = qb.ObjectStore.Read("sma_values_python")
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data = {}
for line in content.split('\n'):
    csv = line.split(',')
    if len(csv) > 1:
        data[csv[0]] = float(csv[1])

series = pd.Series(data, index=data.keys())
series.plot()

 Charts  Statistics  Code Clone Algorithm
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Machine Learning > Key Concepts

Machine Learning

Key Concepts

Introduction

Machine learning is a field of study that combines statistics and computer science to build intelligent systems that

predict outcomes. Quant researchers commonly use machine learning models to optimize portfolios, make trading

signals, and manage risk. These models can find relationships in datasets that humans struggle to find, are subtle,

or are too complex. You can use machine learning techniques in your research notebooks.

Supported Libraries

The following table shows the supported machine learning libraries:

Library Research Tutorial Documentation

Keras Tutorial Documentation

TensorFlow Tutorial Documentation

Scikit-Learn Tutorial Documentation

hmmlearn Tutorial Documentation

gplearn Tutorial Documentation

PyTorch Tutorial Documentation

Stable Baselines Tutorial Documentation

tslearn Tutorial Documentation

XGBoost Tutorial Documentation

Add New Libraries

To request a new library, contact us . We will add the library to the queue for review and deployment. Since the

libraries run on our servers, we need to ensure they are secure and won't cause harm. The process of adding new

libraries takes 2-4 weeks to complete. View the list of libraries currently under review on the Issues list of the Lean

GitHub repository .

https://keras.io/
https://www.tensorflow.org/
https://scikit-learn.org/stable/index.html
https://hmmlearn.readthedocs.io/en/latest/
https://gplearn.readthedocs.io/en/stable/intro.html
https://pytorch.org/
https://stable-baselines.readthedocs.io/en/master/
https://tslearn.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/latest/
https://www.quantconnect.com/contact
https://github.com/QuantConnect/Lean/issues?q=is%253Aissue+is%253Aopen+label%253Alibrary-request


Transfer Models

You can load machine learning models from the Object Store or a custom data file like pickle. If you train a model

in the Research Environment, you can also save it into the Object Store to transfer it to the backtesting and live

trading environment.

 

https://www.quantconnect.com/docs/v2//writing-algorithms/machine-learning/key-concepts#09-Load-Models
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Machine Learning

Keras

Introduction

This page explains how to build, train, test, and store keras models.

Import Libraries

Import the keras libraries.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020

and 2021, run:

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train

and test the model. In this example, use the following features and labels:

Data Category Description

Features Daily percent change of the open, high, low, close,
and volume of the SPY over the last 5 days

Labels Daily percent return of the SPY over the next day

The following image shows the time difference between the features and labels:

from tensorflow.keras import utils, models
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import RMSprop

qb = QuantBook()
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]
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Follow these steps to prepare the data:

1. Call the pct_change and dropna methods.

2. Loop through the daily_pct_change DataFrame and collect the features and labels.

3. Convert the lists of features and labels into numpy arrays.

4. Split the data into training and testing periods.

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build

daily_pct_change = history.pct_change().dropna()

n_steps = 5
features = []
labels = []
for i in range(len(daily_pct_change)-n_steps):
    features.append(daily_pct_change.iloc[i:i+n_steps].values)
    labels.append(daily_pct_change['close'].iloc[i+n_steps])

features = np.array(features)
labels = np.array(labels)

train_length = int(len(features) * 0.7)
X_train = features[:train_length]
X_test = features[train_length:]
y_train = labels[:train_length]
y_test = labels[train_length:]
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and train the model. In this example, build a neural network model that predicts the future return of the SPY. Follow

these steps to create the model: 

1. Call the Sequential constructor with a list of layers.

Set the input_shape of the first layer to (5, 5) because each sample contains the percent change of 5

factors (percent change of the open, high, low, close, and volume) over the previous 5 days. Call the Flatten

constructor because the input is 2-dimensional but the output is just a single value.

2. Call the compile method with a loss function, an optimizer, and a list of metrics to monitor.

3. Call the fit method with the features and labels of the training dataset and a number of epochs.

Test Models

You need to build and train the model before you test its performance. If you have trained the model, test it on the

out-of-sample data. Follow these steps to test the model:

1. Call the predict method with the features of the testing period.

2. Plot the actual and predicted labels of the testing period.

model = Sequential([Dense(10, input_shape=(5,5), activation='relu'),
                    Dense(10, activation='relu'),
                    Flatten(),
                    Dense(1)])

model.compile(loss='mse',
              optimizer=RMSprop(0.001),
              metrics=['mae', 'mse'])

model.fit(X_train, y_train, epochs=5)

y_hat = model.predict(X_test)

results = pd.DataFrame({'y': y_test.flatten(), 'y_hat': y_hat.flatten()})
df.plot(title='Model Performance: predicted vs actual %change in closing price')
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Store Models

You can save and load keras models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Set the key name of the model to be stored in the ObjectStore.

2. Call the GetFilePath method with the key.

This method returns the file path where the model will be stored.

3. Call the save method the file path.

Load Models

model_key = "model"

file_name = qb.ObjectStore.GetFilePath(model_key)

model.save(file_name)
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You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model,

follow these steps to load it:

1. Call the ContainsKey method with the model key.

This method returns a boolean that represents if the model_key is in the ObjectStore. If the ObjectStore does

not contain the model_key , save the model using the model_key before you proceed.

2. Call the GetFilePath method with the key name.

This method returns the path where the model is stored.

3. Call the load_model method with the file path.

This method returns the saved model.

 

qb.ObjectStore.ContainsKey(model_key)

file_name = qb.ObjectStore.GetFilePath(model_key)

loaded_model = load_model(file_name)
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Machine Learning

TensorFlow

Introduction

This page explains how to build, train, test, and store Tensorflow models.

Import Libraries

Import the tensorflow , sklearn , json5 and google.protobuf libraries.

You need the sklearn library to prepare the data and the json5 and google.protobuf libraries to save models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020

and 2021, run:

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train

and test the model. In this example, use the following features and labels:

Data Category Description

Features The last 5 closing prices

Labels The following day's closing price

Follow these steps to prepare the data:

1. Loop through the DataFrame of historical prices and collect the features.

import tensorflow as tf
from sklearn.model_selection import train_test_split
import json5
from google.protobuf import json_format

qb = QuantBook()
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]
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The following image shows the format of the features DataFrame:

2. Select the close column and then call the shift method to collect the labels.

3. Drop the first 5 features and then call the reset_index method.

This method aligns the history of the features and labels.

4. Call the train_text_split method with the datasets and a split size.

For example, to use the last third of data to test the model, run:

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build

and train the model. In this example, build a neural network model that predicts the future price of the SPY.

Build the Model

lookback = 5
lookback_series = []
for i in range(1, lookback + 1):
    df = history['close'].shift(i)[lookback:-1]
    df.name = f"close_-{i}"
    lookback_series.append(df)
X = pd.concat(lookback_series, axis=1).reset_index(drop=True)

Y = history['close'].shift(-1)

Y = Y[lookback:-1].reset_index(drop=True)

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, shuffle=False)
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Follow these steps to build the model:

1. Call the reset_default_graph method.

This method clears the default graph stack and resets the global default graph.

2. Call the Session constructor.

3. Declare the number of factors and then create placeholders for the input and output layers.

4. Set up the weights and bias initializers for each layer.

5. Create hidden layers that use the Relu activator.

6. Create the output layer and give it a name.

tf.reset_default_graph()

sess = tf.Session()

num_factors = X_test.shape[1]
X = tf.placeholder(dtype=tf.float32, shape=[None, num_factors], name='X')
Y = tf.placeholder(dtype=tf.float32, shape=[None])

weight_initializer = tf.variance_scaling_initializer(mode="fan_avg", distribution="uniform", 
scale=1)
bias_initializer = tf.zeros_initializer()

num_neurons_1 = 32
num_neurons_2 = 16
num_neurons_3 = 8

W_hidden_1 = tf.Variable(weight_initializer([num_factors, num_neurons_1]))
bias_hidden_1 = tf.Variable(bias_initializer([num_neurons_1]))
hidden_1 = tf.nn.relu(tf.add(tf.matmul(X, W_hidden_1), bias_hidden_1))

W_hidden_2 = tf.Variable(weight_initializer([num_neurons_1, num_neurons_2]))
bias_hidden_2 = tf.Variable(bias_initializer([num_neurons_2]))
hidden_2 = tf.nn.relu(tf.add(tf.matmul(hidden_1, W_hidden_2), bias_hidden_2))

W_hidden_3 = tf.Variable(weight_initializer([num_neurons_2, num_neurons_3]))
bias_hidden_3 = tf.Variable(bias_initializer([num_neurons_3]))
hidden_3 = tf.nn.relu(tf.add(tf.matmul(hidden_2, W_hidden_3), bias_hidden_3))

W_out = tf.Variable(weight_initializer([num_neurons_3, 1]))
bias_out = tf.Variable(bias_initializer([1]))
output = tf.transpose(tf.add(tf.matmul(hidden_3, W_out), bias_out), name='outer')
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This snippet creates a 1-node output for both weight and bias. You must name the output layer so you can

access it after you load and save the model.

7. Set up the loss function and optimizers for gradient descent optimization and backpropagation.

Use mean-square error as the loss function because the close price is a continuous data and use Adam as the

optimizer because of its adaptive step size.

8. Set the batch size and number of epochs to bootstrap the training process.

Train  the Model

Follow these steps to train the model:

1. Call the run method with the result from the global_variables_initializer method.

2. Loop through the number of epochs, select a subset of the training data, and then call the run method with

the subset of data.

Test Models

To test the model, we'll setup a method to plot test set predictions ontop of the SPY price.

loss = tf.reduce_mean(tf.squared_difference(output, Y))
optimizer = tf.train.AdamOptimizer().minimize(loss)

batch_size = len(y_train) // 10
epochs = 20

sess.run(tf.global_variables_initializer())

for _ in range(epochs):
    for i in range(0, len(y_train) // batch_size):
        start = i * batch_size
        batch_x = X_train[start:start + batch_size]
        batch_y = y_train[start:start + batch_size]
        sess.run(optimizer, feed_dict={X: batch_x, Y: batch_y})
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Store Models

You can save and load TensorFlow models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Export the TensorFlow graph as a JSON object.

2. Export the TensorFlow weights as a JSON object.

def test_model(sess, output, title, X):
    prediction = sess.run(output, feed_dict={X: X_test})
    prediction = prediction.reshape(prediction.shape[1], 1)

    y_test.reset_index(drop=True).plot(figsize=(16, 6), label="Actual")
    plt.plot(prediction, label="Prediction")
    plt.title(title)
    plt.xlabel("Time step")
    plt.ylabel("SPY Price")
    plt.legend()
    plt.show()

test_model(sess, output, "Test Set Results from Original Model", X)

graph_definition = tf.compat.v1.train.export_meta_graph()
json_graph = json_format.MessageToJson(graph_definition)

# Define a function to get the weights from the tensorflow session
def get_json_weights(sess):
    weights = sess.run(tf.compat.v1.trainable_variables())
    weights = [w.tolist() for w in weights]
    weights_list = json5.dumps(weights)
    return weights_list
    
json_weights = get_json_weights(sess)
sess.close()    # Close the session opened by the `get_json_weights` function
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3. Save the graph and weights to the ObjectStore .

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model,

follow these steps to load it:

1. Read the model graph and weights from the ObjectStore .

2. Restore the TensorFlow graph from the JSON object.

3. Select the input and output tensors. 

4. Restore the model weights from the JSON object.

 

qb.ObjectStore.Save('graph', json_graph)
qb.ObjectStore.Save('weights', json_weights)

json_graph = qb.ObjectStore.Read('graph')
json_weights = qb.ObjectStore.Read('weights')

tf.reset_default_graph()
graph_definition = json_format.Parse(json_graph, tf.compat.v1.MetaGraphDef())
sess = tf.Session()
tf.compat.v1.train.import_meta_graph(graph_definition)

X = tf.compat.v1.get_default_graph().get_tensor_by_name('X:0')
output = tf.compat.v1.get_default_graph().get_tensor_by_name('outer:0')

weights = [np.asarray(x) for x in json5.loads(json_weights)]
assign_ops = []
feed_dict = {}
vs = tf.compat.v1.trainable_variables()
zipped_values = zip(vs, weights)
for var, value in zipped_values:
    value = np.asarray(value)
    assign_placeholder = tf.placeholder(var.dtype, shape=value.shape)
    assign_op = var.assign(assign_placeholder)
    assign_ops.append(assign_op)
    feed_dict[assign_placeholder] = value
sess.run(assign_ops, feed_dict=feed_dict)
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Machine Learning > Scikit-Learn

Machine Learning

Scikit-Learn

Introduction

This page explains how to build, train, test, and store Scikit-Learn / sklearn models.

Import Libraries

Import the sklearn libraries.

You need the joblib library to store models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020

and 2021, run:

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train

and test the model. In this example, use the following features and labels:

Data Category Description

Features Daily percent change of the open, high, low, close,
and volume of the SPY over the last 5 days

Labels Daily percent return of the SPY over the next day

The following image shows the time difference between the features and labels:

from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
import joblib

qb = QuantBook()
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]

PY

PY



Follow these steps to prepare the data:

1. Call the pct_change method and then drop the first row.

2. Loop through the daily_returns DataFrame and collect the features and labels.

3. Convert the lists of features and labels into numpy arrays.

4. Split the data into training and testing periods.

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build

and train the model. In this example, build a Support Vector Regressor model and optimize its hyperparameters

with grid search cross-validation. Follow these steps to create the model:

daily_returns = history['close'].pct_change()[1:]

n_steps = 5
features = []
labels = []
for i in range(len(daily_returns)-n_steps):
    features.append(daily_returns.iloc[i:i+n_steps].values)
    labels.append(daily_returns.iloc[i+n_steps])

X = np.array(features)
y = np.array(labels)

X_train, X_test, y_train, y_test = train_test_split(X, y)
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1. Set the choices of hyperparameters used for grid search testing.

2. Call the GridSearchCV constructor with the SVR model, the parameter grid, a scoring method, the number of

cross-validation folds.

3. Call the fit method and then select the best estimator.

Test Models

You need to build and train the model before you test its performance. If you have trained the model, test it on the

out-of-sample data. Follow these steps to test the model:

1. Call the predict method with the features of the testing period.

2. Plot the actual and predicted labels of the testing period.

param_grid = {'C': [.05, .1, .5, 1, 5, 10], 
              'epsilon': [0.001, 0.005, 0.01, 0.05, 0.1], 
              'gamma': ['auto', 'scale']}

gsc = GridSearchCV(SVR(), param_grid, scoring='neg_mean_squared_error', cv=5)

model = gsc.fit(X_train, y_train).best_estimator_

y_hat = model.predict(X_test)

df = pd.DataFrame({'y': y_test.flatten(), 'y_hat': y_hat.flatten()})
df.plot(title='Model Performance: predicted vs actual %change in closing price', figsize=(15, 
10))
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Store Models

You can save and load sklearn models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Set the key name of the model to be stored in the ObjectStore.

2. Call the GetFilePath method with the key.

This method returns the file path where the model will be stored.

3. Call the dump method with the model and file path.

If you dump the model using the joblib module before you save the model, you don't need to retrain the

model_key = "model"

file_name = qb.ObjectStore.GetFilePath(model_key)

joblib.dump(model, file_name)
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model.

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model,

follow these steps to load it:

1. Call the ContainsKey method with the model key.

This method returns a boolean that represents if the model_key is in the ObjectStore. If the ObjectStore does

not contain the model_key , save the model using the model_key before you proceed.

2. Call GetFilePath with the key.

This method returns the path where the model is stored.

3. Call load with the file path.

This method returns the saved model.

 

qb.ObjectStore.ContainsKey(model_key)

file_name = qb.ObjectStore.GetFilePath(model_key)

loaded_model = joblib.load(file_name)
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Machine Learning > Hmmlearn

Machine Learning

Hmmlearn

Introduction

This page explains how to build, train, test, and store Hmmlearn models.

Import Libraries

Import the Hmmlearn library.

You need the joblib library to store models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020

and 2021, run:

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train

and test the model. Follow these steps to prepare the data:

1. Select the close column of the historical data DataFrame.

2. Call the pct_change method and then drop the first row.

3. Call the reshape method.

from hmmlearn import hmm
import joblib

qb = QuantBook()
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]

closes = history['close']

daily_returns = closes.pct_change().iloc[1:]
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Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build

and train the model. In this example, assume the market has only 2 regimes and the market returns follow a

Gaussian distribution. Therefore, create a 2-component Hidden Markov Model with Gaussian emissions, which is

equivalent to a Gaussian mixture model with 2 means. Follow these steps to create the model:

1. Call the GaussianHMM constructor with the number of components, a covariance type, and the number of

iterations.

2. Call the fit method with the training data.

Test Models

You need to build and train the model before you test its performance. If you have trained the model, test it on the

out-of-sample data. Follow these steps to test the model:

1. Call the predict method with the testing dataset.

2. Plot the regimes in a scatter plot.

X = daily_returns.values.reshape(-1, 1)

model = hmm.GaussianHMM(n_components=2, covariance_type="full", n_iter=100)

model.fit(X)

y = model.predict(X)

plt.figure(figsize=(15, 10))
plt.scatter(ret.index, [f'Regime {n+1}' for n in y])
plt.title(f'{symbol} market regime')
plt.xlabel("time")
plt.show()
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Store Models

You can save and load Hmmlearn models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Set the key name of the model to be stored in the ObjectStore.

2. Call the GetFilePath method with the key.

This method returns the file path where the model will be stored.

3. Call the dump method with the model and file path.

If you dump the model using the joblib module before you save the model, you don't need to retrain the

model_key = "model"

file_name = qb.ObjectStore.GetFilePath(model_key)

joblib.dump(model, file_name)
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model.

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model,

follow these steps to load it:

1. Call the ContainsKey method.

This method returns a boolean that represents if the model_key is in the ObjectStore. If the ObjectStore does

not contain the model_key , save the model using the model_key before you proceed.

2. Call the GetFilePath method with the key.

This method returns the path where the model is stored.

3. Call the load method with the file path.

This method returns the saved model.

 

qb.ObjectStore.ContainsKey(model_key)

file_name = qb.ObjectStore.GetFilePath(model_key)

loaded_model = joblib.load(file_name)
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Machine Learning

Gplearn

Introduction

This page introduces how to build, train, test, and store GPlearn models.

Import Libraries

Import the GPlearn library.

You need the sklearn library to prepare the data and the joblib library to store models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020

and 2021, run:

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train

and test the model. In this example, use the following features and labels:

Data Category Description

Features Daily percent change of the open, high, low, close,
and volume of the SPY over the last 5 days

Labels Daily percent return of the SPY over the next day

The following image shows the time difference between the features and labels:

from gplearn.genetic import SymbolicRegressor, SymbolicTransformer
from sklearn.model_selection import train_test_split
import joblib

qb = QuantBook()
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]

PY

PY



Follow these steps to prepare the data:

1. Call the pct_change method and then drop the first row.

2. Loop through the daily_returns DataFrame and collect the features and labels.

3. Convert the lists of features and labels into numpy arrays.

4. Split the data into training and testing periods.

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build

and train the model. In this example, create a Symbolic Transformer to generate new non-linear features and then

build a Symbolic Regressor model. Follow these steps to create the model:

daily_returns = history['close'].pct_change()[1:]

n_steps = 5
features = []
labels = []
for i in range(len(daily_returns)-n_steps):
    features.append(daily_returns.iloc[i:i+n_steps].values)
    labels.append(daily_returns.iloc[i+n_steps])

X = np.array(features)
y = np.array(labels)

X_train, X_test, y_train, y_test = train_test_split(X, y)
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1. Declare a set of functions to use for feature engineering.

2. Call the SymbolicTransformer constructor with the preceding set of functions.

3. Call the fit method with the training features and labels.

This method displays the following output:

4. Call the transform method with the original features.

5. Call the hstack method with the original features and the transformed features.

6. Call the SymbolicRegressor constructor.

function_set = ['add', 'sub', 'mul', 'div',
                'sqrt', 'log', 'abs', 'neg', 'inv',
                'max', 'min']

gp_transformer = SymbolicTransformer(function_set=function_set,
                                     random_state=0, 
                                     verbose=1)

gp_transformer.fit(X_train, y_train)

gp_features_train = gp_transformer.transform(X_train)

new_X_train = np.hstack((X_train, gp_features_train))
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7. Call the fit method with the engineered features and the original labels.

Test Models

You need to build and train the model before you test its performance. If you have trained the model, test it on the

out-of-sample data. Follow these steps to test the model:

1. Feature engineer the testing set data.

2. Call the predict method with the engineered testing set data.

3. Plot the actual and predicted labels of the testing period.

gp_regressor = SymbolicRegressor(random_state=0, verbose=1)

gp_regressor.fit(new_X_train, y_train)

gp_features_test = gp_transformer.transform(X_test)
new_X_test = np.hstack((X_test, gp_features_test))

y_predict = gp_regressor.predict(new_X_test)

df = pd.DataFrame({'Real': y_test.flatten(), 'Predicted': y_predict.flatten()})
df.plot(title='Model Performance: predicted vs actual closing price', figsize=(15, 10))
plt.show()
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4. Calculate the R-square value.

Store Models

You can save and load GPlearn models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Set the key names of the models to be stored in the ObjectStore.

2. Call the GetFilePath method with the key names.

This method returns the file paths where the models will be stored.

r2 = gp_regressor.score(new_X_test, y_test)
print(f"The explained variance of the GP model: {r2*100:.2f}%")

transformer_key = "transformer"
regressor_key = "regressor"

transformer_file = qb.ObjectStore.GetFilePath(transformer_key)
regressor_file = qb.ObjectStore.GetFilePath(regressor_key)
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3. Call the dump method with the models and file paths.

If you dump the model using the joblib module before you save the model, you don't need to retrain the

model.

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model,

follow these steps to load it:

1. Call the ContainsKey method.

This method returns a boolean that represents if the model_key is in the ObjectStore. If the ObjectStore does

not contain the model_key , save the model using the model_key before you proceed.

2. Call the GetFilePath method with the keys.

This method returns the path where the model is stored.

3. Call the load method with the file paths.

This method returns the saved models.

 

joblib.dump(gp_transformer, transformer_file)
joblib.dump(gp_regressor, regressor_file)

qb.ObjectStore.ContainsKey(transformer_key)
qb.ObjectStore.ContainsKey(regressor_key)

transformer_file = qb.ObjectStore.GetFilePath(transformer_key)
regressor_file = qb.ObjectStore.GetFilePath(regressor_key)

loaded_transformer = joblib.load(transformer_file)
loaded_regressor = joblib.load(regressor_file)
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Machine Learning

PyTorch

Introduction

This page explains how how to build, train, test, and store PyTorch models.

Import Libraries

Import the torch , sklearn , and joblib libraries by the following:

You need the sklearn library to prepare the data and the joblib library to store models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020

and 2021, run:

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train

and test the model. In this example, use the following features and labels:

Data Category Description

Features The last 5 closing prices

Labels The following day's closing price

The following image shows the time difference between the features and labels:

import torch
from torch import nn
from sklearn.model_selection import train_test_split
import joblib

qb = QuantBook()
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]
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Follow these steps to prepare the data:

1. Perform fractional differencing on the historical data.

Fractional differencing helps make the data stationary yet retains the variance information.

2. Loop through the df DataFrame and collect the features and labels.

3. Convert the lists of features and labels into numpy arrays.

4. Standardize the features and labels

5. Split the data into training and testing periods.

df = (history['close'] * 0.5 + history['close'].diff() * 0.5)[1:]

n_steps = 5
features = []
labels = []
for i in range(len(df)-n_steps):
    features.append(df.iloc[i:i+n_steps].values)
    labels.append(df.iloc[i+n_steps])

features = np.array(features)
labels = np.array(labels)

X = (features - features.mean()) / features.std()
y = (labels - labels.mean()) / labels.std()
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Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build

and train the model. In this example, create a deep neural network with 2 hidden layers. Follow these steps to

create the model:

1. Define a subclass of nn.Module to be the model. 

In this example, use the ReLU activation function for each layer.

2. Create an instance of the model and set its configuration to train on the GPU if it's available.

3. Set the loss and optimization functions.

In this example, use the mean squared error as the loss function and stochastic gradient descent as the

optimizer.

4. Train the model.

In this example, train the model through 5 epochs.

X_train, X_test, y_train, y_test = train_test_split(X, y)

class NeuralNetwork(nn.Module):
    # Model Structure
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(5, 5),   # input size, output size of the layer
            nn.ReLU(),         # Relu non-linear transformation
            nn.Linear(5, 5),
            nn.ReLU(),  
            nn.Linear(5, 1),   # Output size = 1 for regression
        )
    
    # Feed-forward training/prediction
    def forward(self, x):
        x = torch.from_numpy(x).float()   # Convert to tensor in type float
        result = self.linear_relu_stack(x)
        return result

device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = NeuralNetwork().to(device)

loss_fn = nn.MSELoss()
learning_rate = 0.001
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
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Test Models

You need to build and train the model before you test its performance. If you have trained the model, test it on the

out-of-sample data. Follow these steps to test the model:

1. Predict with the testing data.

2. Plot the actual and predicted values of the testing period.

epochs = 5
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    
    # Since we're using SGD, we'll be using the size of data as batch number.
    for batch, (X, y) in enumerate(zip(X_train, y_train)):
        # Compute prediction and loss
        pred = model(X)
        real = torch.from_numpy(np.array(y).flatten()).float()
        loss = loss_fn(pred, real)

        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch
            print(f"loss: {loss:.5f}  [{current:5d}/{len(X_train):5d}]")

predict = model(X_test)
y_predict = predict.detach().numpy()   # Convert tensor to numpy ndarray
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3. Calculate the R-square value.

Store Models

You can save and load PyTorch models using the ObjectStore.

Save Models

Don't use the torch.save method to save models because the tensor data will be lost and corrupt the save. Follow

these steps to save models in the ObjectStore:

1. Set the key name of the model to be stored in the ObjectStore.

df = pd.DataFrame({'Real': y_test.flatten(), 'Predicted': y_predict.flatten()})
df.plot(title='Model Performance: predicted vs actual standardized fractional return', figsize=
(15, 10))
plt.show()

r2 = 1 - np.sum(np.square(y_test.flatten() - y_predict.flatten())) / 
np.sum(np.square(y_test.flatten() - y_test.mean()))
print(f"The explained variance by the model (r-square): {r2*100:.2f}%")

model_key = "model"
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2. Call the GetFilePath method with the key.

This method returns the file path where the model will be stored.

3. Call the dump method with the model and file path.

If you dump the model using the joblib module before you save the model, you don't need to retrain the

model.

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model,

follow these steps to load it:

1. Call the ContainsKey method.

This method returns a boolean that represents if the model_key is in the ObjectStore. If the ObjectStore does

not contain the model_key , save the model using the model_key before you proceed.

2. Call the GetFilePath method with the key.

This method returns the path where the model is stored.

3. Call the load method with the file path.

This method returns the saved model.

 

file_name = qb.ObjectStore.GetFilePath(model_key)

joblib.dump(model, file_name)

qb.ObjectStore.ContainsKey(model_key)

file_name = qb.ObjectStore.GetFilePath(model_key)

loaded_model = joblib.load(file_name)
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Machine Learning

Stable Baselines

Introduction

This page introduces how to use stable baselines library in Python for reinforcement machine learning (RL)

model building, training, saving in the ObjectStore, and loading, through an example of a single-asset deep Q-

network learning (DQN) trading bot.

Import Libraries

Import the stable_baselines , and gym .

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020

and 2021, run:

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train

and test the model. In this example, calculate the log return time-series of the securities:

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build

and train the environment and the model. In this example, create a gym environment to initialize the training

environment, agent and reward. Then, create a RL model by DQN algorithm. Follow these steps to create the

environment and the model:

1. Split the data for training and testing to evaluate our model.

import gym
from stable_baselines import DQN
from stable_baselines.deepq.policies import MlpPolicy

qb = QuantBook()
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]

ret = np.log(history/history.shift(1)).iloc[1:].close
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2. Create a custom gym environment class.

In this example, create a custom environment with previous 5 OHLCV log-return data as observation and the

highest portfolio value as reward.

X_train = history.iloc[:-50].values
X_test = history.iloc[-50:].values
y_train = ret.iloc[:-50].values
y_test = ret.iloc[-50:].values
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3. Initialize the environment.

class TradingEnv(gym.Env):
    metadata = {'render.modes': ['console']}
    
    FLAT = 0
    LONG = 1
    SHORT = 2

    def __init__(self, ohlcv, ret):
        super(TradingEnv, self).__init__()
        
        self.ohlcv = ohlcv
        self.ret = ret
        self.trading_cost = 0.01
        self.reward = 1
        
        # The number of step the training has taken, starts at 5 since we're using the previous 
5 data for observation.
        self.current_step = 5
        # The last action
        self.last_action = 0

        # Define action and observation space
        # Example when using discrete actions, we have 3: LONG, SHORT and FLAT.
        n_actions = 3
        self.action_space = gym.spaces.Discrete(n_actions)
        # The observation will be the coordinate of the agent, shape for (5 previous data 
poionts, OHLCV)
        self.observation_space = gym.spaces.Box(low=-np.inf, high=np.inf, shape=(5, 5), 
dtype=np.float64)

    def reset(self):
        # Reset the number of step the training has taken
        self.current_step = 5
        # Reset the last action
        self.last_action = 0
        # must return np.array type
        return self.ohlcv[self.current_step-5:self.current_step].astype(np.float32)

    def step(self, action):
        if action == self.LONG:
            self.reward *= 1 + self.ret[self.current_step] - (self.trading_cost if 
self.last_action != action else 0)
        elif action == self.SHORT:
            self.reward *= 1 + -1 * self.ret[self.current_step] - (self.trading_cost if 
self.last_action != action else 0)
        elif action == self.FLAT:
             self.reward *= 1 - (self.trading_cost if self.last_action != action else 0)
        else:
            raise ValueError("Received invalid action={} which is not part of the action 
space".format(action))
            
        self.last_action = action
        self.current_step += 1

        # Have we iterate all data points?
        done = (self.current_step == self.ret.shape[0]-1)

        # Reward as return
        return self.ohlcv[self.current_step-5:self.current_step].astype(np.float32), 
self.reward, done, {}

    def render(self, mode='console'):
        if mode != 'console':
            raise NotImplementedError()
        print(f'Equity Value: {self.reward}')

env = TradingEnv(X_train, y_train)
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4. Train the model.

In this example, create a RL model and train with MLP-policy DQN algorithm.

Test Models

You need to build and train the model before you test its performance. If you have trained the model, test it on the

out-of-sample data. Follow these steps to test the model:

1. Initialize a list to store the equity value with initial capital in each timestep, and variables to store last action

and trading cost.

2. Iterate each testing data point for prediction and trading.

3. Plot the result.

model = DQN(MlpPolicy, env, verbose=1)
model.learn(total_timesteps=1000)

equity = [1]
last_action = 0
trading_cost = 0.01

for i in range(5, X_test.shape[0]):
    action, _ = model.predict(X_test[i-5:i], deterministic=True)
    
    if action == 0:
        new = equity[-1] * (1 - (trading_cost if last_action != action else 0))
    elif action == 1:
        new = equity[-1] * (1 + y_test[i] - (trading_cost if last_action != action else 0))
    elif action == 2:
        new = equity[-1] * (1 + -1 * y_test[i] - (trading_cost if last_action != action else 0))
    
    equity.append(new)
    last_action = action

plt.figure(figsize=(15, 10))
plt.title("Equity Curve")
plt.xlabel("timestep")
plt.ylabel("equity")
plt.plot(equity)
plt.show()
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Store Models

You can save and load stable baselines models using the ObjectStore.

Save Models

1. Set the key name of the model to be stored in the ObjectStore.

2. Call the GetFilePath method with the key.

This method returns the file path where the model will be stored.

3. Call the save method with the file path.

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model,

follow these steps to load it:

model_key = "model"

file_name = qb.ObjectStore.GetFilePath(model_key)

model.save(file_name)
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1. Call the ContainsKey method.

This method returns a boolean that represents if the model_key is in the ObjectStore. If the ObjectStore does

not contain the model_key , save the model using the model_key before you proceed.

2. Call the GetFilePath method with the key.

This method returns the path where the model is stored.

3. Call the load method with the file path, environment and policy.

This method returns the saved model.

 

qb.ObjectStore.ContainsKey(model_key)

file_name = qb.ObjectStore.GetFilePath(model_key)

loaded_model = DQN.load(file_name, env=env, policy=MlpPolicy)
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Machine Learning

Tslearn

Introduction

This page explains how to build, train, test, and store tslearn models.

Import Libraries

Import the tslearn libraries.

Get Historical Data

Get some historical market data to train and test the model. For example, get data for the securities shown in the

following table:

Group Name Tickers

Overall US market SPY, QQQ, DIA

Tech companies AAPL, MSFT, TSLA

Long-term US Treasury ETFs IEF, TLT

Short-term US Treasury ETFs SHV, SHY

Heavy metal ETFs GLD, IAU, SLV

Energy sector USO, XLE, XOM

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train

and test the model. In this example, standardize the log close price time-series of the securities. Follow these steps

from tslearn.barycenters import softdtw_barycenter
from tslearn.clustering import TimeSeriesKMeans

qb = QuantBook()
tickers = ["SPY", "QQQ", "DIA", 
           "AAPL", "MSFT", "TSLA", 
           "IEF", "TLT", "SHV", "SHY", 
           "GLD", "IAU", "SLV", 
           "USO", "XLE", "XOM"]
symbols = [qb.AddEquity(ticker, Resolution.Daily).Symbol for ticker in tickers]
history = qb.History(symbols, datetime(2020, 1, 1), datetime(2022, 2, 20))
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to prepare the data:

1. Unstack the historical DataFrame and select the close column.

2. Take the logarithm of the historical time series.

Taking the logarithm eases the compounding effect.

3. Standardize the data.

Train Models

Instead of using real-time comparison, we could apply a technique call Dynamic Time Wrapping (DTW) with

Barycenter Averaging (DBA). Intuitively, it is a technique of averaging a few time-series into a single one without

losing much of their information. Since not all time-series would move efficiently like in ideal EMH assumption, this

would allow similarity analysis of different time-series with sticky lags. Check the technical details from tslearn

documentation page .

We then can separate different clusters by KMean after DBA.

close = history.unstack(0).close

log_close = np.log(close)

standard_close = (log_close - log_close.mean()) / log_close.std()
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Test Models

We visualize the clusters and their corresponding underlying series.

1. Predict with the label of the data.

2. Create a class to aid plotting.

3. Plot the results.

# Set up the Time Series KMean model with soft DBA.
km = TimeSeriesKMeans(n_clusters=6,   # We have 6 main groups
                      metric="softdtw",  # soft for differentiable
                      random_state=0)

# Fit the model.
km.fit(standard_close.T)

labels = km.predict(standard_close.T)

def plot_helper(ts):
    # plot all points of the data set
    for i in range(ts.shape[0]):
        plt.plot(ts[i, :], "k-", alpha=.2)
        
    # plot the given barycenter of them
    barycenter = softdtw_barycenter(ts, gamma=1.)
    plt.plot(barycenter, "r-", linewidth=2)

j = 1
plt.figure(figsize=(15, 10))
for i in set(labels):
    # Select the series in the i-th cluster.
    X = standard_close.iloc[:, [n for n, k in enumerate(labels) if k == i]].values
    
    # Plot the series and barycenter-averaged series.
    plt.subplot(len(set(labels)) // 3 + (1 if len(set(labels))%3 != 0 else 0), 3, j)
    plt.title(f"Cluster {i+1}")
    plot_helper(X.T)
    
    j += 1

plt.show()
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4. Display the groupings.

Store Models

You can save and load tslearn models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Set the key name of the model to be stored in the ObjectStore.

2. Call the GetFilePath method with the key.

for i in set(labels):
    print(f"Cluster {i+1}: {standard_close.columns[[n for n, k in enumerate(labels) if k == 
i]]}")

model_key = "model"
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This method returns the file path where the model will be stored.

3. Call the to_hdf5 method with the file path.

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model,

follow these steps to load it:

1. Call the ContainsKey method.

This method returns a boolean that represents if the model_key is in the ObjectStore. If the ObjectStore does

not contain the model_key , save the model using the model_key before you proceed.

2. Call the GetFilePath method with the key.

This method returns the path where the model is stored.

3. Call the from_hdf5 method with the file path.

This method returns the saved model.

Reference

F. Petitjean, A. Ketterlin, P. Gancarski. (2010). A global averaging method for dynamic time warping, with

applications to clustering. Pattern Recognition. 44(2011). 678-693. Retreived from https://lig-

membres.imag.fr/bisson/cours/M2INFO-AIW-ML/papers/PetitJean11.pdf

 

file_name = qb.ObjectStore.GetFilePath(model_key)

km.to_hdf5(file_name + ".hdf5")

qb.ObjectStore.ContainsKey(model_key)

file_name = qb.ObjectStore.GetFilePath(model_key)

loaded_model = TimeSeriesKMeans.from_hdf5(file_name + ".hdf5")
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Machine Learning

XGBoost

Introduction

This page explains how to build, train, test, and store XGBoost models.

Import Libraries

Import the xgboost , sklearn , and joblib libraries.

You need the sklearn library to prepare the data and the joblib library to save models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020

and 2021, run:

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train

and test the model. In this example, use the following features and labels:

Data Category Description

Features The last 5 closing prices

Labels The following day's closing price

The following image shows the time difference between the features and labels:

import xgboost as xgb
from sklearn.model_selection import train_test_split
import joblib

qb = QuantBook()
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]
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Follow these steps to prepare the data:

1. Perform fractional differencing on the historical data.

Fractional differencing helps make the data stationary yet retains the variance information.

2. Loop through the df DataFrame and collect the features and labels.

3. Convert the lists of features and labels into numpy arrays.

4. Standardize the features and labels

5. Split the data into training and testing periods.

df = (history['close'] * 0.5 + history['close'].diff() * 0.5)[1:]

n_steps = 5
features = []
labels = []
for i in range(len(df)-n_steps):
    features.append(df.iloc[i:i+n_steps].values)
    labels.append(df.iloc[i+n_steps])

features = np.array(features)
labels = np.array(labels)

X = (features - features.mean()) / features.std()
y = (labels - labels.mean()) / labels.std()
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Train Models

We're about to train a gradient-boosted random forest for future price prediction.

1. Split the data for training and testing to evaluate our model.

2. Format training set into XGBoost matrix.

3. Train the model with parameters.

Test Models

We then make predictions on the testing data set. We compare our Predicted Values with the Expected Values by

plotting both to see if our Model has predictive power.

1. Format testing set into XGBoost matrix.

2. Predict with the testing set data.

3. Plot the result.

X_train, X_test, y_train, y_test = train_test_split(X, y)

X_train, X_test, y_train, y_test = train_test_split(X, y)

dtrain = xgb.DMatrix(X_train, label=y_train)

params = {
  'booster': 'gbtree',
  'colsample_bynode': 0.8,
  'learning_rate': 0.1,
  'lambda': 0.1,
  'max_depth': 5,
  'num_parallel_tree': 100,
  'objective': 'reg:squarederror',
  'subsample': 0.8,
}
model = xgb.train(params, dtrain, num_boost_round=10)

dtest = xgb.DMatrix(X_test, label=y_test)

y_predict = model.predict(dtest)

PY

PY

PY

PY

PY

PY



Store Models

Saving the Model

We dump the model using the joblib module and save it to ObjectStore file path. This way, the model doesn't

need to be retrained, saving time and computational resources.

1. Set the key name of the model to be stored in the ObjectStore.

2. Call GetFilePath with the key's name to get the file path.

3. Call dump with the model and file path to save the model to the file path.

df = pd.DataFrame({'Real': y_test.flatten(), 'Predicted': y_predict.flatten()})
df.plot(title='Model Performance: predicted vs actual closing price', figsize=(15, 10))
plt.show()

model_key = "model"

file_name = qb.ObjectStore.GetFilePath(model_key)

joblib.dump(model, file_name)
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Loading the Model

Let's retrieve the model from ObjectStore file path and load by joblib .

1. Call the ContainsKey method.

This method returns a boolean that represents if the model_key is in the ObjectStore. If the ObjectStore does

not contain the model_key , save the model using the model_key before you proceed.

2. Call GetFilePath with the key's name to get the file path.

3. Call load with the file path to fetch the saved model.

To ensure loading the model was successfuly, let's test the model.

qb.ObjectStore.ContainsKey(model_key)

file_name = qb.ObjectStore.GetFilePath(model_key)

loaded_model = joblib.load(file_name)

y_pred = loaded_model.predict(dtest)
df = pd.DataFrame({'Real': y_test.flatten(), 'Predicted': y_pred.flatten()})
df.plot(title='Model Performance: predicted vs actual closing price', figsize=(15, 10))
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Machine Learning

Aesera

Introduction

This page explains how to build, train, test, and store Aesera models.

Import Libraries

Import the aesera , and sklearn libraries.

You need the joblib library to store models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020

and 2021, run:

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train

and test the model. In this example, use the following features and labels:

Data Category Description

Features Normalized close price of the SPY over the last 5
days

Labels Return direction of the SPY over the next day

The following image shows the time difference between the features and labels:

import aesara
import aesara.tensor as at
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import joblib

qb = QuantBook()
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]
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Follow these steps to prepare the data:

1. Obtain the close price and return direction series.

2. Loop through the close Series and collect the features.

3. Convert the lists of features and labels into numpy arrays.

4. Split the data into training and testing periods.

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build

close = history['close']
returns = data['close'].pct_change().shift(-1)[lookback*2-1:-1].reset_index(drop=True)
labels = pd.Series([1 if y > 0 else 0 for y in returns])   # binary class

lookback = 5
lookback_series = []
for i in range(1, lookback + 1):
    df = data['close'].shift(i)[lookback:-1]
    df.name = f"close-{i}"
    lookback_series.append(df)
X = pd.concat(lookback_series, axis=1)
# Normalize using the 5 day interval
X = MinMaxScaler().fit_transform(X.T).T[4:]

X = np.array(features)
y = np.array(labels)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
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and train the model. In this example, build a Logistic Regression model with log loss cross entropy and square error

as cost function. Follow these steps to create the model:

1. Generate a dataset.

2. Initialize variables.

3. Construct the model graph.

4. Compile the model.

5. Train the model with training dataset.

# D = (input_values, target_class)
D = (np.array(X_train), np.array(y_train))

# Declare Aesara symbolic variables
x = at.dmatrix("x")
y = at.dvector("y")

# initialize the weight vector w randomly using share so model coefficients keep their values
# between training iterations (updates)
rng = np.random.default_rng(100)
w = aesara.shared(rng.standard_normal(X.shape[1]), name="w")

# initialize the bias term
b = aesara.shared(0., name="b")

# Construct Aesara expression graph
p_1 = 1 / (1 + at.exp(-at.dot(x, w) - b))       # Logistic transformation
prediction = p_1 > 0.5                          # The prediction thresholded
xent = y * at.log(p_1) - (1 - y) * at.log(1 - p_1)  # Cross-entropy log-loss function
cost = xent.mean() + 0.01 * (w ** 2).sum()      # The cost to minimize (MSE)
gw, gb = at.grad(cost, [w, b])                  # Compute the gradient of the cost

train = aesara.function(
          inputs=[x, y],
          outputs=[prediction, xent],
          updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))
predict = aesara.function(inputs=[x], outputs=prediction)

pred, err = train(D[0], D[1])

# We can also inspect the final outcome
print("Final model:")
print(w.get_value())
print(b.get_value())
print("target values for D:")
print(D[1])
print("prediction on D:")
print(predict(D[0]))    # whether > 0.5 or not
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Test Models

You need to build and train the model before you test its performance. If you have trained the model, test it on the

out-of-sample data. Follow these steps to test the model:

1. Call the predict method with the features of the testing period.

2. Plot the actual and predicted labels of the testing period.

3. Calculate the prediction accuracy.

y_hat = predict(np.array(X_test))

df = pd.DataFrame({'y': y_test, 'y_hat': y_hat}).astype(int)
df.plot(title='Model Performance: predicted vs actual return direction in closing price', 
figsize=(12, 5))

correct = sum([1 if x==y else 0 for x, y in zip(y_test, y_hat)])
print(f"Accuracy: {correct}/{y_test.shape[0]} ({correct/y_test.shape[0]}%)")
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Store Models

You can save and load aesera models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Set the key name of the model to be stored in the ObjectStore.

2. Call the GetFilePath method with the key.

This method returns the file path where the model will be stored.

3. Call the dump method with the model and file path.

If you dump the model using the joblib module before you save the model, you don't need to retrain the

model.

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model,

follow these steps to load it:

model_key = "model"

file_name = qb.ObjectStore.GetFilePath(model_key)

joblib.dump(predict, file_name)
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1. Call the ContainsKey method with the model key.

This method returns a boolean that represents if the model_key is in the ObjectStore. If the ObjectStore does

not contain the model_key , save the model using the model_key before you proceed.

2. Call GetFilePath with the key.

This method returns the path where the model is stored.

3. Call load with the file path.

This method returns the saved model.

 

qb.ObjectStore.ContainsKey(model_key)

file_name = qb.ObjectStore.GetFilePath(model_key)

loaded_model = joblib.load(file_name)
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Debugging

Debugging

Introduction

The debugger is a built-in tool to help you debug coding errors while in the Research Environment. The debugger

enables you to slow down the code execution, step through the program line-by-line, and inspect the variables to

understand the internal state of the notebook.

The Research Environment debugger isn't currently available for C#.

Breakpoints

Breakpoints are lines in your notebook where execution pauses. You need at least one breakpoint in your notebook

to start the debugger. Open a project to start adjusting its breakpoints.

Add Breakpoints

Click to the left of a line to add a breakpoint on that line.

Edit Breakpoint Conditions

Follow these steps to customize what happens when a breakpoint is hit:

1. Right-click the breakpoint and then click Edit Breakpoint. . .      .

2. Click one of the options in the following table:

Option Additional Steps Description

Express ion  Enter an expression and then
press Enter  .

The breakpoint only pauses the
notebook when the expression is
true.

Hit Count Enter an integer and then press
Enter  .

The breakpoint doesn't pause the
notebook until its hit the number
of times you specify.

Enable and D isable Breakpoints

To enable a breakpoint, right-click it and then click Enable Breakpoint  .

To disable a breakpoint, right-click it and then click Disable Breakpoint   .

Follow these steps to enable and disable all breakpoints:

1. In the right navigation menu, click the  Run and Debug  icon.

https://www.quantconnect.com/docs/v2//cloud-platform/projects/getting-started#02-View-All-Projects


2. In the Run and Debug panel, hover over the Breakpoints   section and then click the  Toggle Active

Breakpoints    icon.

Remove Breakpoints

To remove a breakpoint, right-click it and then click Remove Breakpoint  .

Follow these steps to remove all breakpoints:

1. In the right navigation menu, click the  Run and Debug  icon.

2. In the Run and Debug panel, hover over the Breakpoints   section and then click the  Remove All

Breakpoints    icon.

Launch Debugger

Follow these steps to launch the debugger:

1. Open the project you want to debug.

2. Open the notebook file in your project.

3. In a notebook cell, add at least one breakpoint.

4. In the top-left corner of the cell, click the drop-down arrow and then click Debug Cell  .

If the Run and Debug panel is not open, it opens when the first breakpoint is hit.

Control Debugger

After you launch the debugger, you can use the following buttons to control it:

Button Name Defau lt Keyboard
Shortcut Description

Continue Continue execution until
the next breakpoint

Step Over Alt+F10
Step to the next line of
code in the current or
parent scope

Step Into Alt+F11
Step into the definition
of the function call on
the current line

Restart Shift+F11 Restart the debugger

Disconnect Shift+F5 Exit the debugger

Inspect Variables

After you launch the debugger, you can inspect the state of your notebook as it executes each line of code. You

can inspect local variables or custom expressions. The values of variables in your notebook are formatted in the

https://www.quantconnect.com/docs/v2//cloud-platform/projects/getting-started#02-View-All-Projects
https://www.quantconnect.com/docs/v2//cloud-platform/projects/files#05-Open-Files


IDE to improve readability. For example, if you inspect a variable that references a DataFrame, the debugger

represents the variable value as the following:

Local Variables

The Variables   section of the Run and Debug panel shows the local variables at the current breakpoint. If a variable

in the panel is an object, click it to see its members. The panel updates as the notebook runs.

Follow these steps to update the value of a variable:

1. In the Run and Debug panel, right-click a variable and then click Set Value  .

2. Enter the new value and then press Enter  .

Custom Express ions

The W atch  section of the Run and Debug panel shows any custom expressions you add. For example, you can add

an expression to show a datetime object.

Follow these steps to add a custom expression:

1. Hover over the W atch  section and then click the plus    icon that appears.

2. Enter an expression and then press Enter  .

 



Meta Analysis

Meta Analysis

Meta Analysis > Key Concepts

Meta Analysis

Key Concepts

Introduction

Understanding your strategy trades in detail is key to attributing performance, and determining areas to focus for

improvement. This analysis can be done with the QuantConnect API. We enable you to load backtest, optimization,

and live trading results into the Research Environment.

Backtest Analysis

Load your backtest results into the Research Environment to analyze trades and easily compare them against the

raw backtesting data. For more information on loading and manipulating backtest results, see Backtest Analysis .

Optimization Analysis

Load your optimization results into the Research Environment to analyze how different combinations of parameters

affect the algorithm's performance. For more information on loading and manipulating optimizations results, see

Optimization Analysis .

Live Analysis

Load your live trading results into the Research Environment to compare live trading performance against

simulated backtest results, or analyze your trades to improve your slippage and fee models. For more information

on loading and manipulating live trading results, see Live Analysis .

 



Meta Analysis > Backtest Analysis

Meta Analysis

Backtest Analysis

Introduction

Load your backtest results into the Research Environment to analyze trades and easily compare them against the

raw backtesting data. Compare backtests from different projects to find uncorrelated strategies to combine for

better performance.

Loading your backtest trades allows you to plot fills against detailed data, or locate the source of profits. Similarly

you can search for periods of high churn to reduce turnover and trading fees.

Read Backtest Results

To get the results of a backtest, call the ReadBacktest method with the project Id and backtest ID.

To get the project Id, open the project in the Algorithm Lab and check the URL. For example, the project Id of

https://www.quantconnect.com/project/13946911 is 13946911.

To get the backtest Id, open a backtest result in the Algorithm Lab and check the last line of its log file . An

example backtest Id is 97e7717f387cadd070e4b77015aacece.

Note that this method returns a snapshot of the backtest at the current moment. If the backtest is still executing,

the result won't include all of the backtest data.

The ReadBacktest method returns a Backtest object, which have the following attributes:

Plot Order Fills

Follow these steps to plot the daily order fills of a backtest:

1. Get the backtest orders.

To get the project Id, open the project in the Algorithm Lab and check the URL. For example, the project Id of

https://www.quantconnect.com/project/13946911 is 13946911.

To get the backtest Id, open a backtest result in the Algorithm Lab and check the last line of its log file . An

example backtest Id is 97e7717f387cadd070e4b77015aacece.

backtest = api.ReadBacktest(project_id, backtest_id)

orders = api.ReadBacktestOrders(project_id, backtest_id)
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The ReadBacktestOrders method returns a list of Order objects, which have the following properties:

2. Organize the trade times and prices for each security into a dictionary.

3. Get the price history of each security you traded.

4. Create a candlestick plot for each security and annotate each plot with buy and sell markers.

class OrderData:

    def __init__(self):

        self.buy_fill_times = []

        self.buy_fill_prices = []

        self.sell_fill_times = []

        self.sell_fill_prices = []

order_data_by_symbol = {}

for order in orders:

    if order.Symbol not in order_data_by_symbol:

        order_data_by_symbol[order.Symbol] = OrderData()

    order_data = order_data_by_symbol[order.Symbol]

    is_buy = order.Quantity > 0

    (order_data.buy_fill_times if is_buy else 

order_data.sell_fill_times).append(order.LastFillTime.date())

    (order_data.buy_fill_prices if is_buy else order_data.sell_fill_prices).append(order.Price)

qb = QuantBook()

start_date = datetime.max.date()

end_date = datetime.min.date()

for symbol, order_data in order_data_by_symbol.items():

    start_date = min(start_date, min(order_data.buy_fill_times), 

min(order_data.sell_fill_times))

    end_date = max(end_date, max(order_data.buy_fill_times), max(order_data.sell_fill_times))

start_date -= timedelta(days=1)

all_history = qb.History(list(order_data_by_symbol.keys()), start_date, end_date, 

Resolution.Daily)
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import plotly.express as px

import plotly.graph_objects as go

for symbol, order_data in order_data_by_symbol.items():

    history = all_history.loc[symbol]

    # Plot security price candlesticks

    candlestick = go.Candlestick(x=history.index,

                                open=history['open'],

                                high=history['high'],

                                low=history['low'],

                                close=history['close'],

                                name='Price')

    layout = go.Layout(title=go.layout.Title(text=f'{symbol.Value} Trades'),

                    xaxis_title='Date',

                    yaxis_title='Price',

                    xaxis_rangeslider_visible=False,

                    height=600)

    fig = go.Figure(data=[candlestick], layout=layout)

    # Plot buys

    fig.add_trace(go.Scatter(

        x=order_data.buy_fill_times,

        y=order_data.buy_fill_prices,

        marker=go.scatter.Marker(color='aqua', symbol='triangle-up', size=10),

        mode='markers',

        name='Buys',

    ))

    # Plot sells

    fig.add_trace(go.Scatter(

        x=order_data.sell_fill_times,

        y=order_data.sell_fill_prices,

        marker=go.scatter.Marker(color='indigo', symbol='triangle-down', size=10),

        mode='markers',

        name='Sells',

    ))

fig.show()
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Note: The preceding plots only show the last fill of each trade. If your trade has partial fills, the plots only

display the last fill.

Plot Metadata

Follow these steps to plot the equity curve, benchmark, and drawdown of a backtest:

1. Get the backtest instance.

To get the project Id, open the project in the Algorithm Lab and check the URL. For example, the project Id of

https://www.quantconnect.com/project/13946911 is 13946911.

To get the backtest Id, open a backtest result in the Algorithm Lab and check the last line of its log file . An

example backtest Id is 97e7717f387cadd070e4b77015aacece.

backtest = api.ReadBacktest(project_id, backtest_id)
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2. Get the "Strategy Equity", "Drawdown", and "Benchmark" Chart objects.

3. Get the "Equity", "Equity Drawdown", and "Benchmark" Series from the preceding charts.

4. Create a pandas.DataFrame from the series values.

5. Plot the performance chart.

equity_chart = backtest.Charts["Strategy Equity"]
drawdown_chart = backtest.Charts["Drawdown"]
benchmark_chart = backtest.Charts["Benchmark"]

equity = equity_chart.Series["Equity"].Values
drawdown = drawdown_chart.Series["Equity Drawdown"].Values
benchmark = benchmark_chart.Series["Benchmark"].Values

df = pd.DataFrame({
    "Equity": pd.Series({datetime.fromtimestamp(value.x): value.y for value in equity}),
    "Drawdown": pd.Series({datetime.fromtimestamp(value.x): value.y for value in drawdown}),
    "Benchmark": pd.Series({datetime.fromtimestamp(value.x): value.y for value in benchmark})
}).ffill()

# Create subplots to plot series on same/different plots
fig, ax = plt.subplots(2, 1, figsize=(12, 12), sharex=True, gridspec_kw={'height_ratios': [2, 
1]})

# Plot the equity curve
ax[0].plot(df.index, df["Equity"])
ax[0].set_title("Strategy Equity Curve")
ax[0].set_ylabel("Portfolio Value ($)")

# Plot the benchmark on the same plot, scale by using another y-axis
ax2 = ax[0].twinx()
ax2.plot(df.index, df["Benchmark"], color="grey")
ax2.set_ylabel("Benchmark Price ($)", color="grey")

# Plot the drawdown on another plot
ax[1].plot(df.index, df["Drawdown"], color="red")
ax[1].set_title("Drawdown")
ax[1].set_xlabel("Time")
ax[1].set_ylabel("%")
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The following table shows all the chart series you can plot:



Chart Series Description

Strategy Equity
Equity Time series of the equity curve

Daily Performance Time series of daily percentage change

Capacity Strategy Capacity Time series of strategy capacity snapshots

Drawdown Equity Drawdown Time series of equity peak-to-trough value

Benchmark Benchmark Time series of the benchmark closing price (SPY, by default)

Exposure

SecurityType -
Long Ratio

Time series of the overall ratio of SecurityType long positions of
the whole portfolio if any SecurityType is ever in the universe

SecurityType -
Short Ratio

Time series of the overall ratio of SecurityType short position of
the whole portfolio if any SecurityType is ever in the universe

Custom Chart Custom Series Time series of a Series in a custom chart
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Meta Analysis

Optimization Analysis

Introduction

Load your optimization results into the Research Environment to analyze how different combinations of parameters

affect the algorithm's performance.

Read Optimization Results

To get the results of an optimization, call the ReadOptimization method with the optimization Id.

To get the optimization Id, check the individual backtest results table on the optimization results page . An

example optimization Id is O-696d861d6dbbed45a8442659bd24e59f.

The ReadOptimization method returns an Optimization object, which have the following attributes:

 

optimization = api.ReadOptimization(optimization_id)
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Meta Analysis > Live Analysis

Meta Analysis

Live Analysis

Introduction

Load your live trading results into the Research Environment to compare live trading performance against

simulated backtest results.

Read Live Results

To get the results of a live algorithm, call the ReadLiveAlgorithm method with the project Id and deployment ID.

To get the project Id, open the project in the Algorithm Lab and check the URL. For example, the project Id of

https://www.quantconnect.com/project/13946911 is 13946911.

To get the deployment Id, open a live result in the Algorithm Lab and check its log file . An example deployment Id

is L-ac54ffadf4ca52efabcd1ac29e4735cf. If you have deployed the project multiple times, the log file has multiple

deployment Ids. In this case, use the most recent Id.

The ReadLiveAlgorithm method returns a LiveAlgorithmResults object, which have the following attributes:

Reconciliation

Reconciliation is a way to quantify the difference between an algorithm's live performance and its out-of-sample

(OOS) performance (a backtest run over the live deployment period).

Seeing the difference between live performance and OOS performance gives you a way to determine if the

algorithm is making unrealistic assumptions, exploiting data differences, or merely exhibiting behavior that is

impractical or impossible in live trading.

A perfectly reconciled algorithm has an exact overlap between its live equity and OOS backtest curves. Any

deviation means that the performance of the algorithm has differed for some reason. Several factors can

contribute to this, often stemming from the algorithm design.

live_algorithm = api.ReadLiveAlgorithm(project_id, deploy_id)
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Reconciliation is scored using two metrics: returns correlation and dynamic time warping (DTW) distance.

W hat is  DTW  Distance?  

Dynamic Time Warp (DTW) Distance quantifies the difference between two time-series. It is an algorithm that

measures the shortest path between the points of two time-series. It uses Euclidean distance as a measurement of

point-to-point distance and returns an overall measurement of the distance on the scale of the initial time-series

values. We apply DTW to the returns curve of the live and OOS performance, so the DTW distance measurement is

on the scale of percent returns.

DTW(X,Y) = min

L
∑
l=1 xml

− ynl
2 � PN×M

For the reasons outlined in our research notebook on the topic (linked below), QuantConnect annualizes the daily

DTW. An annualized distance provides a user with a measurement of the annual difference in the magnitude of

returns between the two curves. A perfect score is 0, meaning the returns for each day were precisely the same. A

DTW score of 0 is nearly impossible to achieve, and we consider anything below 0.2 to be a decent score. A

distance of 0.2 means the returns between an algorithm's live and OOS performance deviated by 20% over a year.

W hat is  Returns Correlation? 

Returns correlation is the simple Pearson correlation between the live and OOS returns. Correlation gives us a

rudimentary understanding of how the returns move together. Do they trend up and down at the same time? Do

they deviate in direction or timing?

ρXY =

cov(X,Y)
σXσY

An algorithm's returns correlation should be as close to 1 as possible. We consider a good score to be 0.8 or

above, meaning that there is a strong positive correlation. This indicates that the returns move together most of

the time and that for any given return you see from one of the curves, the other curve usually has a similar

{ ( ) }



direction return (positive or negative).

W hy Do W e Need Both DTW  and Returns Correlation?  

Each measurement provides insight into distinct elements of time-series similarity, but neither measurement alone

gives us the whole picture. Returns correlation tells us whether or not the live and OOS returns move together, but

it doesn't account for the possible differences in the magnitude of the returns. DTW distance measures the

difference in magnitude of returns but provides no insight into whether or not the returns move in the same

direction. It is possible for there to be two cases of equity curve similarity where both pairs have the same DTW

distance, but one has perfectly negatively correlated returns, and the other has a perfectly positive correlation.

Similarly, it is possible for two pairs of equity curves to each have perfect correlation but substantially different

DTW distance. Having both measurements provides us with a more comprehensive understanding of the actual

similarity between live and OOS performance. We outline several interesting cases and go into more depth on the

topic of reconciliation in research we have published.

Plot Order Fills

Follow these steps to plot the daily order fills of a live algorithm:

1. Get the live trading orders.

To get the project Id, open the project in the Algorithm Lab and check the URL. For example, the project Id of

https://www.quantconnect.com/project/13946911 is 13946911.

By default, the orders with an ID between 0 and 100. To get orders with an ID greater than 100, pass start

and end arguments to the ReadLiveOrders method. Note that end - start must be less than 100.

The ReadLiveOrders method returns a list of Order objects, which have the following properties:

2. Organize the trade times and prices for each security into a dictionary.

orders = api.ReadLiveOrders(project_id)

orders = api.ReadLiveOrders(project_id, 100, 150)
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3. Get the price history of each security you traded.

4. Create a candlestick plot for each security and annotate each plot with buy and sell markers.

class OrderData:

    def __init__(self):

        self.buy_fill_times = []

        self.buy_fill_prices = []

        self.sell_fill_times = []

        self.sell_fill_prices = []

order_data_by_symbol = {}

for order in orders:

    if order.Symbol not in order_data_by_symbol:

        order_data_by_symbol[order.Symbol] = OrderData()

    order_data = order_data_by_symbol[order.Symbol]

    is_buy = order.Quantity > 0

    (order_data.buy_fill_times if is_buy else 

order_data.sell_fill_times).append(order.LastFillTime.date())

    (order_data.buy_fill_prices if is_buy else order_data.sell_fill_prices).append(order.Price)

qb = QuantBook()

start_date = datetime.max.date()

end_date = datetime.min.date()

for symbol, order_data in order_data_by_symbol.items():

    start_date = min(start_date, min(order_data.buy_fill_times), 

min(order_data.sell_fill_times))

    end_date = max(end_date, max(order_data.buy_fill_times), max(order_data.sell_fill_times))

start_date -= timedelta(days=1)

all_history = qb.History(list(order_data_by_symbol.keys()), start_date, end_date, 

Resolution.Daily)
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import plotly.express as px

import plotly.graph_objects as go

for symbol, order_data in order_data_by_symbol.items():

    history = all_history.loc[symbol]

    # Plot security price candlesticks

    candlestick = go.Candlestick(x=history.index,

                                open=history['open'],

                                high=history['high'],

                                low=history['low'],

                                close=history['close'],

                                name='Price')

    layout = go.Layout(title=go.layout.Title(text=f'{symbol.Value} Trades'),

                    xaxis_title='Date',

                    yaxis_title='Price',

                    xaxis_rangeslider_visible=False,

                    height=600)

    fig = go.Figure(data=[candlestick], layout=layout)

    # Plot buys

    fig.add_trace(go.Scatter(

        x=order_data.buy_fill_times,

        y=order_data.buy_fill_prices,

        marker=go.scatter.Marker(color='aqua', symbol='triangle-up', size=10),

        mode='markers',

        name='Buys',

    ))

    # Plot sells

    fig.add_trace(go.Scatter(

        x=order_data.sell_fill_times,

        y=order_data.sell_fill_prices,

        marker=go.scatter.Marker(color='indigo', symbol='triangle-down', size=10),

        mode='markers',

        name='Sells',

    ))

fig.show()
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Note: The preceding plots only show the last fill of each trade. If your trade has partial fills, the plots only

display the last fill.

Plot Metadata

Follow these steps to plot the equity curve, benchmark, and drawdown of a live algorithm:

1. Get the live algorithm instance.

To get the project Id, open the project in the Algorithm Lab and check the URL. For example, the project Id of

https://www.quantconnect.com/project/13946911 is 13946911.

To get the deployment Id, open a live result in the Algorithm Lab and check its log file . An example

deployment Id is L-ac54ffadf4ca52efabcd1ac29e4735cf. If you have deployed the project multiple times, the

live_algorithm = api.ReadLiveAlgorithm(project_id, deploy_id)
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log file has multiple deployment Ids. In this case, use the most recent Id.

2. Get the results of the live algorithm.

3. Get the "Strategy Equity", "Drawdown", and "Benchmark" Chart objects.

4. Get the "Equity", "Equity Drawdown", and "Benchmark" Series from the preceding charts.

5. Create a pandas.DataFrame from the series values.

6. Plot the performance chart.

results = live_algorithm.LiveResults.Results

equity_chart = results.Charts["Strategy Equity"]
drawdown_chart = results.Charts["Drawdown"]
benchmark_chart = results.Charts["Benchmark"]

equity = equity_chart.Series["Equity"].Values
drawdown = drawdown_chart.Series["Equity Drawdown"].Values
benchmark = benchmark_chart.Series["Benchmark"].Values

df = pd.DataFrame({
    "Equity": pd.Series({datetime.fromtimestamp(value.x): value.y for value in equity}),
    "Drawdown": pd.Series({datetime.fromtimestamp(value.x): value.y for value in drawdown}),
    "Benchmark": pd.Series({datetime.fromtimestamp(value.x): value.y for value in benchmark})
}).ffill()

# Create subplots to plot series on same/different plots
fig, ax = plt.subplots(2, 1, figsize=(12, 12), sharex=True, gridspec_kw={'height_ratios': [2, 
1]})

# Plot the equity curve
ax[0].plot(df.index, df["Equity"])
ax[0].set_title("Strategy Equity Curve")
ax[0].set_ylabel("Portfolio Value ($)")

# Plot the benchmark on the same plot, scale by using another y-axis
ax2 = ax[0].twinx()
ax2.plot(df.index, df["Benchmark"], color="grey")
ax2.set_ylabel("Benchmark Price ($)", color="grey")

# Plot the drawdown on another plot
ax[1].plot(df.index, df["Drawdown"], color="red")
ax[1].set_title("Drawdown")
ax[1].set_xlabel("Time")
ax[1].set_ylabel("%")

PY

PY

PY

PY

PY



The following table shows all the chart series you can plot:



Chart Series Description

Strategy Equity
Equity Time series of the equity curve

Daily Performance Time series of daily percentage change

Capacity Strategy Capacity Time series of strategy capacity snapshots

Drawdown Equity Drawdown Time series of equity peak-to-trough value

Benchmark Benchmark Time series of the benchmark closing price (SPY, by default)

Exposure

SecurityType -
Long Ratio

Time series of the overall ratio of SecurityType long positions of
the whole portfolio if any SecurityType is ever in the universe

SecurityType -
Short Ratio

Time series of the overall ratio of SecurityType short position of
the whole portfolio if any SecurityType is ever in the universe

Custom Chart Custom Series Time series of a Series in a custom chart
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Applying Research

Key Concepts

Introduction

The ultimate goal of research is to produce a strategy that you can backtest and eventually trade live. Once you've

developed a hypothesis that you're confident in, you can start working towards exporting your research into

backtesting. To export the code, you need to replace QuantBook() with self and replace the QuantBook methods

with their QCAlgorithm counterparts.

Workflow

Imagine that you've developed the following hypothesis: stocks that are below 1 standard deviation of their 30-day

mean are due to revert and increase in value. The following Research Environment code picks out such stocks from

a preselected basket of stocks:

import numpy as np
qb = QuantBook()

symbols = {}
assets = ["SHY", "TLT", "SHV", "TLH", "EDV", "BIL",
"SPTL", "TBT", "TMF", "TMV", "TBF", "VGSH", "VGIT",
"VGLT", "SCHO", "SCHR", "SPTS", "GOVT"]

for i in range(len(assets)):
    symbols[assets[i]] = qb.AddEquity(assets[i],Resolution.Minute).Symbol

# Fetch history on our universe
df = qb.History(qb.Securities.Keys, 30, Resolution.Daily)

# Make all of them into a single time index.
df = df.close.unstack(level=0)

# Calculate the truth value of the most recent price being less than 1 std away from the mean
classifier = df.le(df.mean().subtract(df.std())).tail(1)

# Get indexes of the True values
classifier_indexes = np.where(classifier)[1]

# Get the Symbols for the True values
classifier = classifier.transpose().iloc[classifier_indexes].index.values

# Get the std values for the True values (used for magnitude)
magnitude = df.std().transpose()[classifier_indexes].values

# Zip together to iterate over later
selected = zip(classifier, magnitude)
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Once you are confident in your hypothesis, you can export this code into the backtesting environment. The

algorithm will ultimately go long on the stocks that pass the classifier logic. One way to accommodate this model

into a backtest is to create a Scheduled Event that uses the model to pick stocks and place orders.

Now that the Initialize method of the algorithm is set, export the model into the Scheduled Event method. You

just need to switch qb with self and replace QuantBook methods with their QCAlgorithm counterparts. In this

example, you don't need to switch any methods because the model only uses methods that exist in QCAlgorithm .

With the Research Environment model now in the backtesting environment, you can further analyze its performance

def Initialize(self) -> None:
    self.SetStartDate(2014, 1, 1)
    self.SetCash(1000000)
    self.SetBenchmark("SPY")
    
    self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
    self.SetExecution(ImmediateExecutionModel())
    
    self.assets = ["IEF", "SHY", "TLT", "IEI", "SHV", "TLH", "EDV", "BIL",
                   "SPTL", "TBT", "TMF", "TMV", "TBF", "VGSH", "VGIT",
                   "VGLT", "SCHO", "SCHR", "SPTS", "GOVT"]
    
    self.symbols = {}
    
    # Add Equity ------------------------------------------------ 
    for i in range(len(self.assets)):
        self.symbols[self.assets[i]] = self.AddEquity(self.assets[i], Resolution.Minute).Symbol 
        
    # Set the Scheduled Event method
    self.Schedule.On(self.DateRules.Every(DayOfWeek.Monday), self.TimeRules.AfterMarketOpen("IEF", 
1), self.EveryDayAfterMarketOpen)

def EveryDayAfterMarketOpen(self):
    qb = self
    # Fetch history on our universe
    df = qb.History(qb.Securities.Keys, 5, Resolution.Daily)
    
    # Make all of them into a single time index.
    df = df.close.unstack(level=0)
    
    # Calculate the truth value of the most recent price being less than 1 std away from the mean
    classifier = df.le(df.mean().subtract(df.std())).tail(1)
    
    # Get indexes of the True values
    classifier_indexes = np.where(classifier)[1]
    
    # Get the Symbols for the True values
    classifier = classifier.transpose().iloc[classifier_indexes].index.values
    
    # Get the std values for the True values (used for magnitude)
    magnitude = df.std().transpose()[classifier_indexes].values
    
    # Zip together to iterate over later
    selected = zip(classifier, magnitude)
    
    # ==============================
    
    insights = []
    
    for symbol, magnitude in selected:
        insights.append(Insight.Price(symbol, timedelta(days=5), InsightDirection.Up, magnitude))
    
    self.EmitInsights(insights)
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with its backtesting metrics . If you are confident in the backtest, you can eventually live trade this strategy.

To view full examples of this Research to Production workflow, see the examples in the menu.

Contribute Tutorials

If you contribute Research to Production tutorials, you'll get the following benefits:

A QCC reward

You'll learn the Research to Production methodology to improve your own strategy research and

development

Your contribution will be featured in the community forum

To view the topics the community wants Research to Production tutorials for, see the issues with the WishList tag

in the Research GitHub repository . If you find a topic you want to create a tutorial for, make a pull request to the

repository with your tutorial and we will review it.

To request new tutorial topics, contact us .
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Applying Research

Mean Reversion

Introduction

This page explains how to you can use the Research Environment to develop and test a Mean Reversion

hypothesis, then put the hypothesis in production.

Create Hypothesis

Imagine that we've developed the following hypothesis: stocks that are below 1 standard deviation of their 30-day-

mean are due to revert and increase in value, statistically around 85% chance if we assume the return series is

stationary and the price series is a Random Process. We've developed the following code in research to pick out

such stocks from a preselected basket of stocks.

Import Libraries

We'll need to import libraries to help with data processing. Import numpy and scipy libraries by the following:

Get Historical Data

To begin, we retrieve historical data for researching.

1. Instantiate a QuantBook .

2. Select the desired tickers for research.

3. Call the AddEquity method with the tickers, and their corresponding resolution.

import numpy as np
from scipy.stats import norm, zscore

qb = QuantBook()

assets = ["SHY", "TLT", "SHV", "TLH", "EDV", "BIL",
          "SPTL", "TBT", "TMF", "TMV", "TBF", "VGSH", "VGIT",
          "VGLT", "SCHO", "SCHR", "SPTS", "GOVT"]

for i in range(len(assets)):
    qb.AddEquity(assets[i],Resolution.Minute)
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If you do not pass a resolution argument, Resolution.Minute is used by default.

4. Call the History method with qb.Securities.Keys for all tickers, time argument(s), and resolution to request

historical data for the symbol.

Prepare Data

We'll have to process our data to get an extent of the signal on how much the stock is deviated from its norm for

each ticker.

1. Select the close column and then call the unstack method.

2. Calculate the truth value of the most recent price being less than 1 standard deviation away from the mean

price.

3. Get the z-score for the True values, then compute the expected return and probability (used for Insight

magnitude and confidence).

history = qb.History(qb.Securities.Keys, datetime(2021, 1, 1), datetime(2021, 12, 31), 
Resolution.Daily)

df = history['close'].unstack(level=0)

classifier = df.le(df.rolling(30).mean() - df.rolling(30).std())

z_score = df.apply(zscore)[classifier]
magnitude = -z_score * df.rolling(30).std() / df.shift(1)
confidence = (-z_score).apply(norm.cdf)
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4. Call fillna to fill NaNs with 0.

5. Get our trading weight, we'd take a long only portfolio and normalized to total weight = 1.

Test Hypothesis

We would test the performance of this strategy. To do so, we would make use of the calculated weight for

portfolio optimization.

1. Get the total daily return series.

2. Call cumprod to get the cumulative return.

3. Set index for visualization.

4. Display the result.

magnitude.fillna(0, inplace=True)
confidence.fillna(0, inplace=True)

weight = confidence - 1 / (magnitude + 1)
weight = weight[weight > 0].fillna(0)
sum_ = np.sum(weight, axis=1)
for i in range(weight.shape[0]):
    if sum_[i] > 0:
        weight.iloc[i] = weight.iloc[i] / sum_[i]
    else:
        weight.iloc[i] = 0
weight = weight.iloc[:-1]

ret = pd.Series(index=range(df.shape[0] - 1))
for i in range(df.shape[0] - 1):
    ret[i] = weight.iloc[i] @ df.pct_change().iloc[i + 1].T

total_ret = (ret + 1).cumprod()

total_ret.index = weight.index

total_ret.plot(title='Strategy Equity Curve', figsize=(15, 10))
plt.show()

PY

PY

PY

PY

PY

PY



Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accomodate this

model into research is to create a scheduled event which uses our model to pick stocks and goes long.

Now we export our model into the scheduled event method. We will switch qb with self and replace methods with

their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in

def Initialize(self) -> None:

    #1. Required: Five years of backtest history
    self.SetStartDate(2014, 1, 1)

    #2. Required: Alpha Streams Models:
    self.SetBrokerageModel(BrokerageName.AlphaStreams)

    #3. Required: Significant AUM Capacity
    self.SetCash(1000000)

    #4. Required: Benchmark to SPY
    self.SetBenchmark("SPY")
    
    self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel())
    self.SetExecution(ImmediateExecutionModel())

    self.assets = ["SHY", "TLT", "IEI", "SHV", "TLH", "EDV", "BIL",
                    "SPTL", "TBT", "TMF", "TMV", "TBF", "VGSH", "VGIT",
                    "VGLT", "SCHO", "SCHR", "SPTS", "GOVT"]
    
    # Add Equity ------------------------------------------------ 
    for i in range(len(self.assets)):
        self.AddEquity(self.assets[i], Resolution.Minute)
    
    # Set Scheduled Event Method For Our Model
    self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose("SHY", 5), 
self.EveryDayBeforeMarketClose)
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research also exist in QCAlgorithm .

Clone Example Project

def EveryDayBeforeMarketClose(self) -> None:
    qb = self
    # Fetch history on our universe
    df = qb.History(qb.Securities.Keys, 30, Resolution.Daily)
    if df.empty: return

    # Make all of them into a single time index.
    df = df.close.unstack(level=0)

    # Calculate the truth value of the most recent price being less than 1 std away from the mean
    classifier = df.le(df.mean().subtract(df.std())).iloc[-1]
    if not classifier.any(): return

    # Get the z-score for the True values, then compute the expected return and probability
    z_score = df.apply(zscore)[[classifier.index[i] for i in range(classifier.size) if 
classifier.iloc[i]]]

    magnitude = -z_score * df.std() / df
    confidence = (-z_score).apply(norm.cdf)

    # Get the latest values
    magnitude = magnitude.iloc[-1].fillna(0)
    confidence = confidence.iloc[-1].fillna(0)

    # Get the weights, then zip together to iterate over later
    weight = confidence - 1 / (magnitude + 1)
    weight = weight[weight > 0].fillna(0)
    sum_ = np.sum(weight)
    if sum_ > 0:
        weight = (weight) / sum_
        selected = zip(weight.index, magnitude, confidence, weight)
    else:
        return

    # ==============================
    
    insights = []
    
    for symbol, magnitude, confidence, weight in selected:
        insights.append( Insight.Price(symbol, timedelta(days=1), InsightDirection.Up, magnitude, 
confidence, None, weight) )

    self.EmitInsights(insights)
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Applying Research

Random Forest Regression

Introduction

This page explains how to you can use the Research Environment to develop and test a Random Forest Regression

hypothesis, then put the hypothesis in production.

Create Hypothesis

We've assumed the price data is a time series with some auto regressive property (i.e. its expectation is related to

past price information). Therefore, by using past information, we could predict the next price level. One way to do

so is by Random Forest Regression, which is a supervised machine learning algorithm where its weight and bias is

decided in non-linear hyperdimension.

Import Libraries

We'll need to import libraries to help with data processing and machine learning. Import sklearn , numpy and

matplotlib libraries by the following:

Get Historical Data

To begin, we retrieve historical data for researching.

1. Instantiate a QuantBook .

2. Select the desired tickers for research.

3. Call the AddEquity method with the tickers, and their corresponding resolution. Then store their Symbol s.

from sklearn.ensemble import RandomForestRegressor
import numpy as np
from matplotlib import pyplot as plt

qb = QuantBook()

symbols = {}
assets = ["SHY", "TLT", "SHV", "TLH", "EDV", "BIL",
          "SPTL", "TBT", "TMF", "TMV", "TBF", "VGSH", "VGIT",
          "VGLT", "SCHO", "SCHR", "SPTS", "GOVT"]
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If you do not pass a resolution argument, Resolution.Minute is used by default.

4. Call the History method with qb.Securities.Keys for all tickers, time argument(s), and resolution to request

historical data for the symbol.

Prepare Data

We'll have to process our data as well as to build the ML model before testing the hypothesis. Our methodology is

to use fractional differencing close price as the input data in order to (1) provide stationarity, and (2) retain

sufficient extent of variance of the previous price information. We assume d=0.5 is the right balance to do so.

1. Select the close column and then call the unstack method.

2. Feature engineer the data as fractional differencing for input.

3. Shift the data for 1-step backward as training output result.

for i in range(len(assets)):
    symbols[assets[i]] = qb.AddEquity(assets[i],Resolution.Minute).Symbol

history = qb.History(qb.Securities.Keys, datetime(2019, 1, 1), datetime(2021, 12, 31), 
Resolution.Daily)

df = history['close'].unstack(level=0)

input_ = df.diff() * 0.5 + df * 0.5
input_ = input_.iloc[1:]
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4. Split the data into training and testing sets.

5. Initialize a Random Forest Regressor.

6. Fit the regressor.

Test Hypothesis

We would test the performance of this ML model to see if it could predict 1-step forward price precisely. To do so,

we would compare the predicted and actual prices.

1. Predict the testing set.

2. Convert result into DataFrame .

3. Plot the result for comparison.

output = df.shift(-1).iloc[:-1]

splitter = int(input_.shape[0] * 0.8)
X_train = input_.iloc[:splitter]
X_test = input_.iloc[splitter:]
y_train = output.iloc[:splitter]
y_test = output.iloc[splitter:]

regressor = RandomForestRegressor(n_estimators=100, min_samples_split=5, random_state = 1990)

regressor.fit(X_train, y_train)

predictions = regressor.predict(X_test)

predictions = pd.DataFrame(predictions, index=y_test.index, columns=y_test.columns)

for col in y_test.columns:
    plt.figure(figsize=(15, 10))

    y_test[col].plot(label="Actual")
    predictions[col].plot(label="Prediction")

    plt.title(f"{col} Regression Result")
    plt.legend()
    plt.show()
    plt.clf()
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For more plots, please clone the project and run the notebook.

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accomodate this

model into backtest is to create a scheduled event which uses our model to predict the expected return. Since we

could calculate the expected return, we'd use Mean-Variance Optimization for portfolio construction.



We'll also need to create a function to train and update our model from time to time.

Now we export our model into the scheduled event method. We will switch qb with self and replace methods with

their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in

research also exist in QCAlgorithm .

def Initialize(self) -> None:

    #1. Required: Five years of backtest history
    self.SetStartDate(2014, 1, 1)

    #2. Required: Alpha Streams Models:
    self.SetBrokerageModel(BrokerageName.AlphaStreams)

    #3. Required: Significant AUM Capacity
    self.SetCash(1000000)

    #4. Required: Benchmark to SPY
    self.SetBenchmark("SPY")
    
    self.SetPortfolioConstruction(MeanVarianceOptimizationPortfolioConstructionModel(portfolioBias = 
PortfolioBias.Long,
                                                                                    period=252))
    self.SetExecution(ImmediateExecutionModel())

    self.assets = ["SHY", "TLT", "IEI", "SHV", "TLH", "EDV", "BIL",
                    "SPTL", "TBT", "TMF", "TMV", "TBF", "VGSH", "VGIT",
                    "VGLT", "SCHO", "SCHR", "SPTS", "GOVT"]
    
    # Add Equity ------------------------------------------------ 
    for i in range(len(self.assets)):
        self.AddEquity(self.assets[i], Resolution.Minute)
        
    # Initialize the timer to train the Machine Learning model
    self.time = datetime.min
    
    # Set Scheduled Event Method For Our Model
    self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose("SHY", 5), 
self.EveryDayBeforeMarketClose)

def BuildModel(self) -> None:
    # Initialize the Random Forest Regressor
    self.regressor = RandomForestRegressor(n_estimators=100, min_samples_split=5, random_state = 
1990)
    
    # Get historical data
    history = self.History(self.Securities.Keys, 360, Resolution.Daily)
    
    # Select the close column and then call the unstack method.
    df = history['close'].unstack(level=0)
    
    # Feature engineer the data for input.
    input_ = df.diff() * 0.5 + df * 0.5
    input_ = input_.iloc[1:].ffill().fillna(0)
    
    # Shift the data for 1-step backward as training output result.
    output = df.shift(-1).iloc[:-1].ffill().fillna(0)
    
    # Fit the regressor
    self.regressor.fit(input_, output)
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Clone Example Project

 

def EveryDayBeforeMarketClose(self) -> None:
    # Retrain the regressor every month
    if self.time < self.Time:
        self.BuildModel()
        self.time = Expiry.EndOfMonth(self.Time)
    
    qb = self
    # Fetch history on our universe
    df = qb.History(qb.Securities.Keys, 2, Resolution.Daily)
    if df.empty: return

    # Make all of them into a single time index.
    df = df.close.unstack(level=0)

    # Feature engineer the data for input
    input_ = df.diff() * 0.5 + df * 0.5
    input_ = input_.iloc[-1].fillna(0).values.reshape(1, -1)
    
    # Predict the expected price
    predictions = self.regressor.predict(input_)
    
    # Get the expected return
    predictions = (predictions - df.iloc[-1].values) / df.iloc[-1].values
    predictions = predictions.flatten()

    # ==============================
    
    insights = []
    
    for i in range(len(predictions)):
        insights.append( Insight.Price(self.assets[i], timedelta(days=1), InsightDirection.Up, 
predictions[i]) )

    self.EmitInsights(insights)

 Charts  Statistics  Code Clone Algorithm
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Applying Research

Uncorrelated Assets

Introduction

This page explains how to you can use the Research Environment to develop and test a Uncorrelated Assets

hypothesis, then put the hypothesis in production.

Create Hypothesis

According to Modern Portfolio Thoery, asset combinations with negative or very low correlation could have lower

total portfolio variance given the same level of return. Thus, uncorrelated assets allows you to find a portfolio that

will, theoretically, be more diversified and resilient to extreme market events. We're testing this statement in real

life scenario, while hypothesizing a portfolio with uncorrelated assets could be a consistent portfolio. In this

example, we'll compare the performance of 5-least-correlated-asset portfolio (proposed) and 5-most-correlated-

asset portfolio (benchmark), both equal weighting.

Import Libraries

We'll need to import libraries to help with data processing and visualization. Import numpy and matplotlib libraries

by the following:

Get Historical Data

To begin, we retrieve historical data for researching.

1. Instantiate a QuantBook .

2. Select the desired tickers for research.

3. Call the AddEquity method with the tickers, and their corresponding resolution.

import numpy as np
from matplotlib import pyplot as plt

qb = QuantBook()

assets = ["SHY", "TLT", "SHV", "TLH", "EDV", "BIL",
          "SPTL", "TBT", "TMF", "TMV", "TBF", "VGSH", "VGIT",
          "VGLT", "SCHO", "SCHR", "SPTS", "GOVT"]
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If you do not pass a resolution argument, Resolution.Minute is used by default.

4. Call the History method with qb.Securities.Keys for all tickers, time argument(s), and resolution to request

historical data for the symbol.

Prepare Data

We'll have to process our data to get their correlation and select the least and most related ones.

1. Select the close column and then call the unstack method, then call pct_change to compute the daily return.

2. Write a function to obtain the least and most correlated 5 assets.

for i in range(len(assets)):
    qb.AddEquity(assets[i],Resolution.Minute)

history = qb.History(qb.Securities.Keys, datetime(2021, 1, 1), datetime(2021, 12, 31), 
Resolution.Daily)

returns = history['close'].unstack(level=0).pct_change().iloc[1:]
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Test Hypothesis

To test the hypothesis: Our desired outcome would be a consistent and low fluctuation equity curve should be

seen, as compared with benchmark.

1. Construct a equal weighting portfolio for the 5-uncorrelated-asset-portfolio and the 5-correlated-asset-

portfolio (benchmark).

2. Call cumprod to get the cumulative return.

3. Plot the result.

def GetUncorrelatedAssets(returns, num_assets):
    # Get correlation
    correlation = returns.corr()
    
    # Find assets with lowest and highest absolute sum correlation
    selected = []
    for index, row in correlation.iteritems():
        corr_rank = row.abs().sum()
        selected.append((index, corr_rank))

    # Sort and take the top num_assets
    sort_ = sorted(selected, key = lambda x: x[1])
    uncorrelated = sort_[:num_assets]
    correlated = sort_[-num_assets:]
    
    return uncorrelated, correlated

selected, benchmark = GetUncorrelatedAssets(returns, 5)

port_ret = returns[[x[0] for x in selected]] / 5
bench_ret = returns[[x[0] for x in benchmark]] / 5

total_ret = (np.sum(port_ret, axis=1) + 1).cumprod()
total_ret_bench = (np.sum(bench_ret, axis=1) + 1).cumprod()

plt.figure(figsize=(15, 10))
total_ret.plot(label='Proposed')
total_ret_bench.plot(label='Benchmark')
plt.title('Equity Curve')
plt.legend()
plt.show()
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We can clearly see from the results, the proposed uncorrelated-asset-portfolio has a lower variance/fluctuation,

thus more consistent than the benchmark. This proven our hypothesis.

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accomodate this

model into research is to create a scheduled event which uses our model to pick stocks and goes long.



Now we export our model into the scheduled event method. We will switch qb with self and replace methods with

their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in

research also exist in QCAlgorithm .

Clone Example Project

def Initialize(self) -> None:

    #1. Required: Five years of backtest history
    self.SetStartDate(2014, 1, 1)

    #2. Required: Alpha Streams Models:
    self.SetBrokerageModel(BrokerageName.AlphaStreams)

    #3. Required: Significant AUM Capacity
    self.SetCash(1000000)

    #4. Required: Benchmark to SPY
    self.SetBenchmark("SPY")
    
    self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
    self.SetExecution(ImmediateExecutionModel())

    self.assets = ["SHY", "TLT", "IEI", "SHV", "TLH", "EDV", "BIL",
                    "SPTL", "TBT", "TMF", "TMV", "TBF", "VGSH", "VGIT",
                    "VGLT", "SCHO", "SCHR", "SPTS", "GOVT"]
    
    # Add Equity ------------------------------------------------ 
    for i in range(len(self.assets)):
        self.AddEquity(self.assets[i], Resolution.Minute)
    
    # Set Scheduled Event Method For Our Model. In this example, we'll rebalance every month.
    self.Schedule.On(self.DateRules.MonthStart(), 
        self.TimeRules.BeforeMarketClose("SHY", 5), 
        self.EveryDayBeforeMarketClose)

def EveryDayBeforeMarketClose(self) -> None:
    qb = self
    # Fetch history on our universe
    history = qb.History(qb.Securities.Keys, 252*2, Resolution.Daily)
    if history.empty: return

    # Select the close column and then call the unstack method, then call pct_change to compute the 
daily return.
    returns = history['close'].unstack(level=0).pct_change().iloc[1:]

    # Get correlation
    correlation = returns.corr()
    
    # Find 5 assets with lowest absolute sum correlation
    selected = []
    for index, row in correlation.iteritems():
        corr_rank = row.abs().sum()
        selected.append((index, corr_rank))

    sort_ = sorted(selected, key = lambda x: x[1])
    selected = [x[0] for x in sort_[:5]]

    # ==============================
    
    insights = []
    
    for symbol in selected:
        insights.append( Insight.Price(symbol, Expiry.EndOfMonth, InsightDirection.Up) )

    self.EmitInsights(insights)
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Applying Research

Kalman Filters and Stat Arb

Introduction

This page explains how to you can use the Research Environment to develop and test a Kalman Filters and

Statistical Arbitrage hypothesis, then put the hypothesis in production.

Create Hypothesis

In finance, we can often observe that 2 stocks with similar background and fundamentals (e.g. AAPL vs MSFT, SPY

vs QQQ) move in similar manner. They could be correlated, although not necessary, but their price difference/sum

(spread) is stationary. We call this cointegration. Thus, we could hypothesize that extreme spread could provide

chance for arbitrage, just like a mean reversion of spread. This is known as pairs trading. Likewise, this could also

be applied to more than 2 assets, this is known as statistical arbitrage. 

However, although the fluctuation of the spread is stationary, the mean of the spread could be changing by time

due to different reasons. Thus, it is important to update our expectation on the spread in order to go in and out of

the market in time, as the profit margin of this type of short-window trading is tight. Kalman Filter could come in

handy in this situation. We can consider it as an updater of the underlying return Markov Chain's expectation, while

we're assuming the price series is a Random Process. 

In this example, we're making a hypothesis on trading the spread on cointegrated assets is profitable. We'll be

using forex pairs EURUSD, GBPUSD, USDCAD, USDHKD and USDJPY for this example, skipping the normalized

price difference selection.

Import Libraries

We'll need to import libraries to help with data processing, model building, validation and visualization. Import arch

, pykalman , scipy , statsmodels , numpy , matplotlib and pandas libraries by the following:

Get Historical Data

To begin, we retrieve historical data for researching.

from arch.unitroot.cointegration import engle_granger
from pykalman import KalmanFilter
from scipy.optimize import minimize
from statsmodels.tsa.vector_ar.vecm import VECM

import numpy as np
from matplotlib import pyplot as plt
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
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1. Instantiate a QuantBook .

2. Select the desired tickers for research.

3. Call the AddForex method with the tickers, and their corresponding resolution. Then store their Symbol s.

If you do not pass a resolution argument, Resolution.Minute is used by default.

4. Call the History method with qb.Securities.Keys for all tickers, time argument(s), and resolution to request

historical data for the symbol.

Cointegration

We'll have to test if the assets are cointegrated. If so, we'll have to obtain the cointegration vector(s).

Cointegration  Testing

1. Select the close column and then call the unstack method.

qb = QuantBook()

assets = ["EURUSD", "GBPUSD", "USDCAD", "USDHKD", "USDJPY"]

for i in range(len(assets)):
    qb.AddForex(assets[i],Resolution.Minute)

history = qb.History(qb.Securities.Keys, datetime(2021, 1, 1), datetime(2021, 12, 31), 
Resolution.Daily)

df = history['close'].unstack(level=0)
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2. Call np.log to convert the close price into log-price series to eliminate compounding effect.

3. Apply Engle Granger Test to check if the series are cointegrated.

It shows a p-value < 0.05 for the unit test, with lag-level 0. This proven the log price series are cointegrated in

realtime. The spread of the 5 forex pairs are stationary.

Get Cointegration  Vectors

We would use a VECM model to obtain the cointegrated vectors.

1. Initialize a VECM model by following the unit test parameters, then fit to our data.

2. Obtain the Beta attribute. This is the cointegration subspaces' unit vectors.

3. Check the spread of different cointegration subspaces.

4. Plot the results.

log_price = np.log(data)

coint_result = engle_granger(log_price.iloc[:, 0], log_price.iloc[:, 1:], trend='n', 
method='bic')

vecm_result = VECM(log_price, k_ar_diff=0, coint_rank=len(assets)-1, deterministic='n').fit()

beta = vecm_result.beta

spread = log_price @ beta

PY

PY

PY

PY

PY



Optimization  of Cointegration  Subspaces 

Although the 4 cointegratoin subspaces are not looking stationarym, we can optimize for a mean-reverting

portfolio by putting various weights in different subspaces. We use the Portmanteau statistics as a proxy for the

mean reversion. So we formulate:

fig, axs = plt.subplots(beta.shape[1], figsize=(15, 15))
fig.suptitle('Spread for various cointegrating vectors')
for i in range(beta.shape[1]):
    axs[i].plot(spread.iloc[:, i])
    axs[i].set_title(f"The {i+1}th normalized cointegrating subspace")
plt.show()
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minimizew (

wTM1w

wTM0w)2

subject to wTM0w= ν

1Tw= 0
where Mi � Cov(st, st+i) = E[(st − E[st])(st+i − E[st+i])T]

with s is spread, v is predetermined desirable variance level (the larger the higher the profit, but lower the trading

frequency)

1. We set the weight on each vector is between -1 and 1. While overall sum is 0.

2. Optimize the Portmanteau statistics.

3. Normalize the result.

4. Plot the weighted spread.

x0 = np.array([-1**i/beta.shape[1] for i in range(beta.shape[1])])
bounds = tuple((-1, 1) for i in range(beta.shape[1]))
constraints = [{'type':'eq', 'fun':lambda x: np.sum(x)}]

opt = minimize(lambda w: ((w.T @ np.cov(spread.T, spread.shift(1).fillna(0).T)[spread.shape[1]:, 
:spread.shape[1]] @ w)/(w.T @ np.cov(spread.T) @ w))**2,
               x0=x0,
               bounds=bounds,
               constraints=constraints,
               method="SLSQP")

opt.x = opt.x/np.sum(abs(opt.x))
for i in range(len(opt.x)):
    print(f"The weight put on {i+1}th normalized cointegrating subspace: {opt.x[i]}")

new_spread = spread @ opt.x
new_spread.plot(title="Weighted spread", figsize=(15, 10))
plt.ylabel("Spread")
plt.show()
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Kalman Filter

The weighted spread looks more stationary. However, the fluctuation half-life is very long accrossing zero. We aim

to trade as much as we can to maximize the profit of this strategy. Kalman Filter then comes into the play. It could

modify the expectation of the next step based on smoothening the prediction and actual probability distribution of

return.

Image Source: Understanding Kalman Filters, Part 3: An Optimal State Estimator. Melda Ulusoy (2017). MathWorks.

Retreived from: https://www.mathworks.com/videos/understanding-kalman-filters-part-3-optimal-state-estimator--

1490710645421.html



1. Initialize a KalmanFilter .

In this example, we use the first 20 data points to optimize its initial state. We assume the market has no

regime change so that the transitional matrix and observation matrix is [1].

2. Obtain the current Mean and Covariance Matrix expectations.

3. Initialize a mean series for spread normalization using the KalmanFilter 's results.

4. Roll over the Kalman Filter to obtain the mean series.

5. Obtain the normalized spread series.

6. Plot the normalized spread series.

kalmanFilter = KalmanFilter(transition_matrices = [1],
                  observation_matrices = [1],
                  initial_state_mean = new_spread.iloc[:20].mean(),
                  observation_covariance = new_spread.iloc[:20].var(),
                  em_vars=['transition_covariance', 'initial_state_covariance'])
kalmanFilter = kalmanFilter.em(new_spread.iloc[:20], n_iter=5)
(filtered_state_means, filtered_state_covariances) = kalmanFilter.filter(new_spread.iloc[:20])

currentMean = filtered_state_means[-1, :]
currentCov = filtered_state_covariances[-1, :]

mean_series = np.array([None]*(new_spread.shape[0]-100))

for i in range(100, new_spread.shape[0]):
    (currentMean, currentCov) = kalmanFilter.filter_update(filtered_state_mean = currentMean,
                                                           filtered_state_covariance = 
currentCov,
                                                           observation = new_spread.iloc[i])
    mean_series[i-100] = float(currentMean)

normalized_spread = (new_spread.iloc[100:] - mean_series)

plt.figure(figsize=(15, 10))
plt.plot(normalized_spread, label="Processed spread")
plt.title("Normalized spread series")
plt.ylabel("Spread - Expectation")
plt.legend()
plt.show()
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Determine Trading Threshold

Now we need to determine the threshold of entry. We want to maximize profit from each trade (variance of

spread) x frequency of entry. To do so, we formulate:

minimizef ǁ f̄ − fǁ
2
2 + λ ǁDfǁ2

2

where
¯
fj =

∑Tt=11{spreadt > set levelj}

T

D =

1 −1
1 −1

� �
1 −1

� R(j−1)×j

so f� = (I + λDTD)−1f̄

1. Initialize 50 set levels for testing.

2. Calculate the profit levels using the 50 set levels.

[ ]

s0 = np.linspace(0, max(normalized_spread), 50)

f_bar = np.array([None]*50)
for i in range(50):
    f_bar[i] = len(normalized_spread.values[normalized_spread.values > s0[i]]) / 
normalized_spread.shape[0]
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3. Set trading frequency matrix.

4. Set level of lambda.

5. Obtain the normalized profit level.

6. Get the maximum profit level as threshold.

7. Plot the result.

D = np.zeros((49, 50))
for i in range(D.shape[0]):
    D[i, i] = 1
    D[i, i+1] = -1

l = 1.0

f_star = np.linalg.inv(np.eye(50) + l * D.T@D) @ f_bar.reshape(-1, 1)
s_star = [f_star[i]*s0[i] for i in range(50)]

threshold = s0[s_star.index(max(s_star))]
print(f"The optimal threshold is {threshold}")

plt.figure(figsize=(15, 10))
plt.plot(s0, s_star)
plt.title("Profit of mean-revertion trading")
plt.xlabel("Threshold")
plt.ylabel("Profit")
plt.show()
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Test Hypothesis

To test the hypothesis. We wish to obtain a profiting strategy.

1. Set the trading weight. We would like the portfolio absolute total weight is 1 when trading.

2. Set up the trading data.

3. Set the buy and sell preiod when the spread exceeds the threshold.

4. Trade the portfolio.

trading_weight = beta @ opt.x
trading_weight /= np.sum(abs(trading_weight))

testing_ret = data.pct_change().iloc[1:].shift(-1)   # Shift 1 step backward as forward return 
result
equity = pd.DataFrame(np.ones((testing_ret.shape[0], 1)), index=testing_ret.index, columns=
["Daily value"])

buy_period = normalized_spread[normalized_spread < -threshold].index
sell_period = normalized_spread[normalized_spread > threshold].index
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5. Get the total portfolio value.

6. Plot the result.

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accomodate this

model into backtest is to create a scheduled event which uses our model to predict the expected return.

equity.loc[buy_period, "Daily value"] = testing_ret.loc[buy_period] @ trading_weight + 1
equity.loc[sell_period, "Daily value"] = testing_ret.loc[sell_period] @ -trading_weight + 1

value = equity.cumprod()

value.plot(title="Equity Curve", figsize=(15, 10))
plt.ylabel("Portfolio Value")
plt.show()
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We'll also need to create a function to train and update our model from time to time. We will switch qb with self

and replace methods with their QCAlgorithm counterparts as needed. In this example, this is not an issue because

all the methods we used in research also exist in QCAlgorithm .

def Initialize(self) -> None:

    #1. Required: Five years of backtest history
    self.SetStartDate(2014, 1, 1)

    #2. Required: Alpha Streams Models:
    self.SetBrokerageModel(BrokerageName.AlphaStreams)

    #3. Required: Significant AUM Capacity
    self.SetCash(1000000)

    #4. Required: Benchmark to SPY
    self.SetBenchmark("SPY")

    self.assets = ["EURUSD", "GBPUSD", "USDCAD", "USDHKD", "USDJPY"]
    
    # Add Equity ------------------------------------------------ 
    for i in range(len(self.assets)):
        self.AddForex(self.assets[i], Resolution.Minute)
        
    # Instantiate our model
    self.Recalibrate()
    
    # Set a variable to indicate the trading bias of the portfolio
    self.state = 0
    
    # Set Scheduled Event Method For Recalibrate Our Model Every Week.
    self.Schedule.On(self.DateRules.WeekStart(), 
        self.TimeRules.At(0, 0), 
        self.Recalibrate)
    
    # Set Scheduled Event Method For Kalman Filter updating.
    self.Schedule.On(self.DateRules.EveryDay(), 
        self.TimeRules.BeforeMarketClose("EURUSD"), 
        self.EveryDayBeforeMarketClose)

def Recalibrate(self) -> None:
    qb = self
    history = qb.History(self.assets, 252*2, Resolution.Daily)
    if history.empty: return
    
    # Select the close column and then call the unstack method
    data = history['close'].unstack(level=0)
    
    # Convert into log-price series to eliminate compounding effect
    log_price = np.log(data)
    
    ### Get Cointegration Vectors
    # Initialize a VECM model following the unit test parameters, then fit to our data.
    vecm_result = VECM(log_price, k_ar_diff=0, coint_rank=len(self.assets)-1, 
deterministic='n').fit()
    
    # Obtain the Beta attribute. This is the cointegration subspaces' unit vectors.
    beta = vecm_result.beta
    
    # Check the spread of different cointegration subspaces.
    spread = log_price @ beta
    
    ### Optimization of Cointegration Subspaces
    # We set the weight on each vector is between -1 and 1. While overall sum is 0.
    x0 = np.array([-1**i/beta.shape[1] for i in range(beta.shape[1])])
    bounds = tuple((-1, 1) for i in range(beta.shape[1]))
    constraints = [{'type':'eq', 'fun':lambda x: np.sum(x)}]
    
    # Optimize the Portmanteau statistics
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Now we export our model into the scheduled event method for trading. We will switch qb with self and replace

methods with their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the

    # Optimize the Portmanteau statistics
    opt = minimize(lambda w: ((w.T @ np.cov(spread.T, spread.shift(1).fillna(0).T)[spread.shape[1]:, 
:spread.shape[1]] @ w)/(w.T @ np.cov(spread.T) @ w))**2,
                    x0=x0,
                    bounds=bounds,
                    constraints=constraints,
                    method="SLSQP")
    
    # Normalize the result
    opt.x = opt.x/np.sum(abs(opt.x))
    new_spread = spread @ opt.x
    
    ### Kalman Filter
    # Initialize a Kalman Filter. Using the first 20 data points to optimize its initial state. We 
assume the market has no regime change so that the transitional matrix and observation matrix is [1].
    self.kalmanFilter = KalmanFilter(transition_matrices = [1],
                        observation_matrices = [1],
                        initial_state_mean = new_spread.iloc[:20].mean(),
                        observation_covariance = new_spread.iloc[:20].var(),
                        em_vars=['transition_covariance', 'initial_state_covariance'])
    self.kalmanFilter = self.kalmanFilter.em(new_spread.iloc[:20], n_iter=5)
    (filtered_state_means, filtered_state_covariances) = 
self.kalmanFilter.filter(new_spread.iloc[:20])
    
    # Obtain the current Mean and Covariance Matrix expectations.
    self.currentMean = filtered_state_means[-1, :]
    self.currentCov = filtered_state_covariances[-1, :]
    
    # Initialize a mean series for spread normalization using the Kalman Filter's results.
    mean_series = np.array([None]*(new_spread.shape[0]-20))
    
    # Roll over the Kalman Filter to obtain the mean series.
    for i in range(20, new_spread.shape[0]):
        (self.currentMean, self.currentCov) = self.kalmanFilter.filter_update(filtered_state_mean = 
self.currentMean,
                                                                filtered_state_covariance = 
self.currentCov,
                                                                observation = new_spread.iloc[i])
        mean_series[i-20] = float(self.currentMean)
    
    # Obtain the normalized spread series.
    normalized_spread = (new_spread.iloc[20:] - mean_series)
    
    ### Determine Trading Threshold
    # Initialize 50 set levels for testing.
    s0 = np.linspace(0, max(normalized_spread), 50)
    
    # Calculate the profit levels using the 50 set levels.
    f_bar = np.array([None]*50)
    for i in range(50):
        f_bar[i] = len(normalized_spread.values[normalized_spread.values > s0[i]]) \
            / normalized_spread.shape[0]
        
    # Set trading frequency matrix.
    D = np.zeros((49, 50))
    for i in range(D.shape[0]):
        D[i, i] = 1
        D[i, i+1] = -1
        
    # Set level of lambda.
    l = 1.0
    
    # Obtain the normalized profit level.
    f_star = np.linalg.inv(np.eye(50) + l * D.T@D) @ f_bar.reshape(-1, 1)
    s_star = [f_star[i]*s0[i] for i in range(50)]
    self.threshold = s0[s_star.index(max(s_star))]
    
    # Set the trading weight. We would like the portfolio absolute total weight is 1 when trading.
    trading_weight = beta @ opt.x
    self.trading_weight = trading_weight / np.sum(abs(trading_weight))



methods we used in research also exist in QCAlgorithm .

Reference

1. A Signal Processing Perspective on Financial Engineering. Y. Feng, D. P. Palomer (2016). Foundations and

Trends in Signal Processing. 9(1-2). p173-200.

Clone Example Project

def EveryDayBeforeMarketClose(self) -> None:
    qb = self
    
    # Get the real-time log close price for all assets and store in a Series
    series = pd.Series()
    for symbol in qb.Securities.Keys:
        series[symbol] = np.log(qb.Securities[symbol].Close)
        
    # Get the spread
    spread = series @ self.trading_weight
    
    # Update the Kalman Filter with the Series
    (self.currentMean, self.currentCov) = self.kalmanFilter.filter_update(filtered_state_mean = 
self.currentMean,
                                                                        filtered_state_covariance = 
self.currentCov,
                                                                        observation = spread)
        
    # Obtain the normalized spread.
    normalized_spread = spread - self.currentMean

    # ==============================
    
    # Mean-reversion
    if normalized_spread < -self.threshold:
        orders = []
        for i in range(len(self.assets)):
            orders.append(PortfolioTarget(self.assets[i], self.trading_weight[i]))
            self.SetHoldings(orders)
            
        self.state = 1
            
    elif normalized_spread > self.threshold:
        orders = []
        for i in range(len(self.assets)):
            orders.append(PortfolioTarget(self.assets[i], -1 * self.trading_weight[i]))
            self.SetHoldings(orders)
            
        self.state = -1
            
    # Out of position if spread recovered
    elif self.state == 1 and normalized_spread > -self.threshold or self.state == -1 and 
normalized_spread < self.threshold:
        self.Liquidate()
        
        self.state = 0
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Applying Research

PCA and Pairs Trading

Introduction

This page explains how to you can use the Research Environment to develop and test a Principle Component

Analysis hypothesis, then put the hypothesis in production.

Create Hypothesis

Principal Component Analysis (PCA) a way of mapping the existing dataset into a new "space", where the

dimensions of the new data are linearly-independent, orthogonal vectors. PCA eliminates the problem of

multicollinearity. In another way of thought, can we actually make use of the collinearity it implied, to find the

collinear assets to perform pairs trading?

Import Libraries

We'll need to import libraries to help with data processing, validation and visualization. Import sklearn , arch ,

statsmodels , numpy and matplotlib libraries by the following:

Get Historical Data

To begin, we retrieve historical data for researching.

1. Instantiate a QuantBook .

2. Select the desired tickers for research.

3. Call the AddEquity method with the tickers, and their corresponding resolution. Then store their Symbol s.

from sklearn.decomposition import PCA
from arch.unitroot.cointegration import engle_granger
from statsmodels.tsa.stattools import adfuller
import numpy as np
from matplotlib import pyplot as plt

qb = QuantBook()

symbols = {}
assets = ["SHY", "TLT", "SHV", "TLH", "EDV", "BIL",
          "SPTL", "TBT", "TMF", "TMV", "TBF", "VGSH", "VGIT",
          "VGLT", "SCHO", "SCHR", "SPTS", "GOVT"]
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If you do not pass a resolution argument, Resolution.Minute is used by default.

4. Call the History method with qb.Securities.Keys for all tickers, time argument(s), and resolution to request

historical data for the symbol.

Prepare Data

We'll have to process our data to get the principle component unit vector that explains the most variance, then find

the highest- and lowest-absolute-weighing assets as the pair, since the lowest one's variance is mostly explained

by the highest.

1. Select the close column and then call the unstack method.

2. Call pct_change to compute the daily return.

3. Initialize a PCA model, then get the principle components by the maximum likelihood.

for i in range(len(assets)):
    symbols[assets[i]] = qb.AddEquity(assets[i],Resolution.Minute).Symbol

history = qb.History(qb.Securities.Keys, datetime(2021, 1, 1), datetime(2021, 12, 31), 
Resolution.Daily)

close_price = history['close'].unstack(level=0)

returns = close_price.pct_change().iloc[1:]
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4. Get the number of principle component in a list, and their corresponding explained variance ratio.

5. Plot the principle components' explained variance ratio.

We can see over 95% of the variance is explained by the first principle. We could conclude that collinearity

exists and most assets' return are correlated. Now, we can extract the 2 most correlated pairs.

6. Get the weighting of each asset in the first principle component.

pca = PCA()
pca.fit(returns)

components = [str(x + 1) for x in range(pca.n_components_)]
explained_variance_pct = pca.explained_variance_ratio_ * 100

plt.figure(figsize=(15, 10))
plt.bar(components, explained_variance_pct)
plt.title("Ratio of Explained Variance")
plt.xlabel("Principle Component #")
plt.ylabel("%")
plt.show()

first_component = pca.components_[0, :]
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7. Select the highest- and lowest-absolute-weighing asset.

8. Plot their weighings.

Test Hypothesis

We now selected 2 assets as candidate for pair-trading. Hence, we're going to test if they are cointegrated and

their spread is stationary to do so.

1. Call np.log to get the log price of the pair.

highest = assets[abs(first_component).argmax()]
lowest = assets[abs(first_component).argmin()]
print(f'The highest-absolute-weighing asset: {highest}\nThe lowest-absolute-weighing asset: 
{lowest}')

plt.figure(figsize=(15, 10))
plt.bar(assets, first_component)
plt.title("Weightings of each asset in the first component")
plt.xlabel("Assets")
plt.ylabel("Weighting")
plt.xticks(rotation=30)
plt.show()

log_price = np.log(close_price[[highest, lowest]])
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2. Test cointegration by Engle Granger Test.

3. Get their cointegrating vector.

4. Calculate the spread.

5. Use Augmented Dickey Fuller test to test its stationarity.

6. Plot the spread.

coint_result = engle_granger(log_price.iloc[:, 0], log_price.iloc[:, 1], trend="c", lags=0)
display(coint_result)

coint_vector = coint_result.cointegrating_vector[:2]

spread = log_price @ coint_vector

pvalue = adfuller(spread, maxlag=0)[1]
print(f"The ADF test p-value is {pvalue}, so it is {'' if pvalue < 0.05 else 'not 
'}stationary.")

spread.plot(figsize=(15, 10), title=f"Spread of {highest} and {lowest}")
plt.ylabel("Spread")
plt.show()
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Result shown that the pair is cointegrated and their spread is stationary, so they are potential pair for pair-

trading.

Set Up Algorithm

Pairs trading is exactly a 2-asset version of statistical arbitrage. Thus, we can just modify the algorithm from the

Kalman Filter and Statistical Arbitrage tutorial , except we're using only a single cointegrating unit vector so no

optimization of cointegration subspace is needed.

def Initialize(self) -> None:

    #1. Required: Five years of backtest history
    self.SetStartDate(2014, 1, 1)

    #2. Required: Alpha Streams Models:
    self.SetBrokerageModel(BrokerageName.AlphaStreams)

    #3. Required: Significant AUM Capacity
    self.SetCash(1000000)

    #4. Required: Benchmark to SPY
    self.SetBenchmark("SPY")

    self.assets = ["SCHO", "SHY"]
    
    # Add Equity ------------------------------------------------ 
    for i in range(len(self.assets)):
        self.AddEquity(self.assets[i], Resolution.Minute)
        
    # Instantiate our model
    self.Recalibrate()
    
    # Set a variable to indicate the trading bias of the portfolio
    self.state = 0
    
    # Set Scheduled Event Method For Kalman Filter updating.
    self.Schedule.On(self.DateRules.WeekStart(), 
        self.TimeRules.At(0, 0), 
        self.Recalibrate)
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        self.Recalibrate)
    
    # Set Scheduled Event Method For Kalman Filter updating.
    self.Schedule.On(self.DateRules.EveryDay(), 
        self.TimeRules.BeforeMarketClose("SHY"), 
        self.EveryDayBeforeMarketClose)
        
        
def Recalibrate(self) -> None:
    qb = self
    history = qb.History(self.assets, 252*2, Resolution.Daily)
    if history.empty: return
    
    # Select the close column and then call the unstack method
    data = history['close'].unstack(level=0)
    
    # Convert into log-price series to eliminate compounding effect
    log_price = np.log(data)
    
    ### Get Cointegration Vectors
    # Get the cointegration vector
    coint_result = engle_granger(log_price.iloc[:, 0], log_price.iloc[:, 1], trend="c", lags=0)
    coint_vector = coint_result.cointegrating_vector[:2]
    
    # Get the spread
    spread = log_price @ coint_vector
    
    ### Kalman Filter
    # Initialize a Kalman Filter. Using the first 20 data points to optimize its initial state. We 
assume the market has no regime change so that the transitional matrix and observation matrix is [1].
    self.kalmanFilter = KalmanFilter(transition_matrices = [1],
                        observation_matrices = [1],
                        initial_state_mean = spread.iloc[:20].mean(),
                        observation_covariance = spread.iloc[:20].var(),
                        em_vars=['transition_covariance', 'initial_state_covariance'])
    self.kalmanFilter = self.kalmanFilter.em(spread.iloc[:20], n_iter=5)
    (filtered_state_means, filtered_state_covariances) = self.kalmanFilter.filter(spread.iloc[:20])
    
    # Obtain the current Mean and Covariance Matrix expectations.
    self.currentMean = filtered_state_means[-1, :]
    self.currentCov = filtered_state_covariances[-1, :]
    
    # Initialize a mean series for spread normalization using the Kalman Filter's results.
    mean_series = np.array([None]*(spread.shape[0]-20))
    
    # Roll over the Kalman Filter to obtain the mean series.
    for i in range(20, spread.shape[0]):
        (self.currentMean, self.currentCov) = self.kalmanFilter.filter_update(filtered_state_mean = 
self.currentMean,
                                                                filtered_state_covariance = 
self.currentCov,
                                                                observation = spread.iloc[i])
        mean_series[i-20] = float(self.currentMean)
    
    # Obtain the normalized spread series.
    normalized_spread = (spread.iloc[20:] - mean_series)
    
    ### Determine Trading Threshold
    # Initialize 50 set levels for testing.
    s0 = np.linspace(0, max(normalized_spread), 50)
    
    # Calculate the profit levels using the 50 set levels.
    f_bar = np.array([None]*50)
    for i in range(50):
        f_bar[i] = len(normalized_spread.values[normalized_spread.values > s0[i]]) \
            / normalized_spread.shape[0]
        
    # Set trading frequency matrix.
    D = np.zeros((49, 50))
    for i in range(D.shape[0]):
        D[i, i] = 1
        D[i, i+1] = -1
        
    # Set level of lambda.
    l = 1.0
    
    # Obtain the normalized profit level.
    f_star = np.linalg.inv(np.eye(50) + l * D.T@D) @ f_bar.reshape(-1, 1)
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    f_star = np.linalg.inv(np.eye(50) + l * D.T@D) @ f_bar.reshape(-1, 1)
    s_star = [f_star[i]*s0[i] for i in range(50)]
    self.threshold = s0[s_star.index(max(s_star))]
    
    # Set the trading weight. We would like the portfolio absolute total weight is 1 when trading.
    self.trading_weight = coint_vector / np.sum(abs(coint_vector))
    
        
def EveryDayBeforeMarketClose(self) -> None:
    qb = self
    
    # Get the real-time log close price for all assets and store in a Series
    series = pd.Series()
    for symbol in qb.Securities.Keys:
        series[symbol] = np.log(qb.Securities[symbol].Close)
        
    # Get the spread
    spread = np.sum(series * self.trading_weight)
    
    # Update the Kalman Filter with the Series
    (self.currentMean, self.currentCov) = self.kalmanFilter.filter_update(filtered_state_mean = 
self.currentMean,
                                                                        filtered_state_covariance = 
self.currentCov,
                                                                        observation = spread)
        
    # Obtain the normalized spread.
    normalized_spread = spread - self.currentMean

    # ==============================
    
    # Mean-reversion
    if normalized_spread < -self.threshold:
        orders = []
        for i in range(len(self.assets)):
            orders.append(PortfolioTarget(self.assets[i], self.trading_weight[i]))
            self.SetHoldings(orders)
            
        self.state = 1
            
    elif normalized_spread > self.threshold:
        orders = []
        for i in range(len(self.assets)):
            orders.append(PortfolioTarget(self.assets[i], -1 * self.trading_weight[i]))
            self.SetHoldings(orders)
            
        self.state = -1
            
    # Out of position if spread recovered
    elif self.state == 1 and normalized_spread > -self.threshold or self.state == -1 and 
normalized_spread < self.threshold:
        self.Liquidate()
        
        self.state = 0
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Applying Research

Hidden Markov Models

Introduction

This page explains how to you can use the Research Environment to develop and test a Hidden Markov Model

hypothesis, then put the hypothesis in production.

Create Hypothesis

A Markov process is a stochastic process where the possibility of switching to another state depends only on the

current state of the model by the current state's probability distribution (it is usually represented by a state

transition matrix). It is history-independent, or memoryless. While often a Markov process's state is observable, the

states of a Hidden Markov Model (HMM) is not observable. This means the input(s) and output(s) are observable,

but their intermediate, the state, is non-observable/hidden.

A 3-state HMM example,  where S are the h idden states,  O are the observable states  and a are the   

probabilities  of state trans ition .     

Image source: Modeling Strategic Use of Human Computer Interfaces with Novel Hidden Markov Models. L. J.

Mariano, et. al. (2015). Frontiers in Psychology 6:919. DOI:10.3389/fpsyg.2015.00919

In finance, HMM is particularly useful in determining the market regime, usually classified into "Bull" and "Bear"

markets. Another popular classification is "Volatile" vs "Involatile" market, such that we can avoid entering the

market when it is too risky. We hypothesis a HMM could be able to do the later, so we can produce a SPY-out-

performing portfolio (positive alpha).

Import Libraries

We'll need to import libraries to help with data processing, validation and visualization. Import statsmodels , scipy

, numpy , matplotlib and pandas libraries by the following:



Get Historical Data

To begin, we retrieve historical data for researching.

1. Instantiate a QuantBook .

2. Select the desired index for research.

3. Call the AddIndex method with the tickers, and their corresponding resolution.

If you do not pass a resolution argument, Resolution.Minute is used by default.

4. Call the History method with qb.Securities.Keys for all tickers, time argument(s), and resolution to request

historical data for the symbol.

from statsmodels.tsa.regime_switching.markov_regression import MarkovRegression
from scipy.stats import multivariate_normal
import numpy as np

from matplotlib import pyplot as plt
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

qb = QuantBook()

asset = "SPX"

qb.AddIndex(asset, Resolution.Minute)

history = qb.History(qb.Securities.Keys, datetime(2019, 1, 1), datetime(2021, 12, 31), 
Resolution.Daily)
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Prepare Data

We'll have to process our data to get the volatility of the market for classification.

1. Select the close column and then call the unstack method.

2. Call pct_change to compute the daily return.

3. Initialize the HMM, then fit by the daily return data. Note that we're using varinace as switching regime, so

switching_variance argument is set as True .

close_price = history['close'].unstack(level=0)

returns = close_price.pct_change().iloc[1:]

model = MarkovRegression(returns, k_regimes=2, switching_variance=True).fit()
display(model.summary())
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All p-values of the regime self-transition coefficients and the regime transition probability matrix's coefficient

is smaller than 0.05, indicating the model should be able to classify the data into 2 different volatility regimes.

Test Hypothesis

We now verify if the model can detect high and low volatility period effectively.

1. Get the regime as a column, 1 as Low Variance Regime, 2 as High Variance Regime.

2. Get the mean and covariance matrix of the 2 regimes, assume 0 covariance between the two.

3. Fit a 2-dimensional multivariate normal distribution by the 2 means and covriance matrix.

regime = pd.Series(model.smoothed_marginal_probabilities.values.argmax(axis=1)+1, 
                      index=returns.index, name='regime')
df_1 = close.loc[returns.index][regime == 1]
df_2 = close.loc[returns.index][regime == 2]

mean = np.array([returns.loc[df_1.index].mean(), returns.loc[df_2.index].mean()])
cov = np.array([[returns.loc[df_1.index].var(), 0], [0, returns.loc[df_2.index].var()]])
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4. Get the normal distribution of each of the distribution.

5. Plot the probability of data in different regimes.

6. Plot the series into regime-wise.

dist = multivariate_normal(mean=mean.flatten(), cov=cov)
mean_1, mean_2 = mean[0], mean[1]
sigma_1, sigma_2 = cov[0,0], cov[1,1]

x = np.linspace(-0.05, 0.05, num=100)
y = np.linspace(-0.05, 0.05, num=100)
X, Y = np.meshgrid(x,y)
pdf = np.zeros(X.shape)
for i in range(X.shape[0]):
    for j in range(X.shape[1]):
        pdf[i,j] = dist.pdf([X[i,j], Y[i,j]])

fig, axes = plt.subplots(2, figsize=(15, 10))
ax = axes[0]
ax.plot(model.smoothed_marginal_probabilities[0])
ax.set(title='Smoothed probability of Low Variance Regime')
ax = axes[1]
ax.plot(model.smoothed_marginal_probabilities[1])
ax.set(title='Smoothed probability of High Variance Regime')
fig.tight_layout()
plt.show()
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7. Plot the distribution surface.

df_1.index = pd.to_datetime(df_1.index)
df_1 = df_1.sort_index()
df_2.index = pd.to_datetime(df_2.index)
df_2 = df_2.sort_index()
plt.figure(figsize=(15, 10))
plt.scatter(df_1.index, df_1, color='blue', label="Low Variance Regime")
plt.scatter(df_2.index, df_2, color='red', label="High Variance Regime")
plt.title("Price series")
plt.ylabel("Price ($)")
plt.xlabel("Date")
plt.legend()
plt.show()

fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(122, projection = '3d')
ax.plot_surface(X, Y, pdf, cmap = 'viridis')
ax.axes.zaxis.set_ticks([])
plt.xlabel("Low Volatility Regime")
plt.ylabel("High Volatility Regime")
plt.title('Bivariate normal distribution of the Regimes')
plt.tight_layout()
plt.show()
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8. Plot the contour.

plt.figure(figsize=(12, 8))
plt.contourf(X, Y, pdf, cmap = 'viridis')
plt.xlabel("Low Volatility Regime")
plt.ylabel("High Volatility Regime")
plt.title('Bivariate normal distribution of the Regimes')
plt.tight_layout()
plt.show()
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We can clearly seen from the results, the Low Volatility Regime has much lower variance than the High Volatility

Regime, proven the model works.

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accomodate this

model into backtest is to create a scheduled event which uses our model to predict the expected return. Since we

could calculate the expected return, we'd use Mean-Variance Optimization for portfolio construction.

def Initialize(self) -> None:

    #1. Required: Five years of backtest history
    self.SetStartDate(2008, 1, 1)
    self.SetEndDate(2021, 1, 1)

    #2. Required: Alpha Streams Models:
    self.SetBrokerageModel(BrokerageName.AlphaStreams)

    #3. Required: Significant AUM Capacity
    self.SetCash(1000000)

    #4. Required: Benchmark to SPY
    self.SetBenchmark("SPY")

    self.assets = ["SPY", "TLT"]    # "TLT" as fix income in out-of-market period (high volatility)
    
    # Add Equity ------------------------------------------------ 
    for ticker in self.assets:
        self.AddEquity(ticker, Resolution.Minute)
    
    # Set Scheduled Event Method For Kalman Filter updating.
    self.Schedule.On(self.DateRules.EveryDay(), 
        self.TimeRules.BeforeMarketClose("SPY", 5), 
        self.EveryDayBeforeMarketClose)
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Now we export our model into the scheduled event method. We will switch qb with self and replace methods with

their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in

research also exist in QCAlgorithm .

Clone Example Project

 

def EveryDayBeforeMarketClose(self) -> None:
    qb = self
    
    # Get history
    history = qb.History(["SPY"], datetime(2010, 1, 1), datetime.now(), Resolution.Daily)
        
    # Get the close price daily return.
    close = history['close'].unstack(level=0)
    
    # Call pct_change to obtain the daily return
    returns = close.pct_change().iloc[1:]
            
    # Initialize the HMM, then fit by the standard deviation data.
    model = MarkovRegression(returns, k_regimes=2, switching_variance=True).fit()
        
    # Obtain the market regime
    regime = model.smoothed_marginal_probabilities.values.argmax(axis=1)[-1]

    # ==============================
    
    if regime == 0:
        self.SetHoldings([PortfolioTarget("TLT", 0.), PortfolioTarget("SPY", 1.)])
    else:
        self.SetHoldings([PortfolioTarget("TLT", 1.), PortfolioTarget("SPY", 0.)])

 Charts  Statistics  Code Clone Algorithm
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Applying Research

Long Short-Term Memory

Introduction

This page explains how to you can use the Research Environment to develop and test a Long Short Term Memory

hypothesis, then put the hypothesis in production.

Recurrent neural networks (RNN) are a powerful tool in deep learning. These models quite accurately mimic how

humans process sequencial information and learn. Unlike traditional feedforward neural networks, RNNs have

memory. That is, information fed into them persists and the network is able to draw on this to make inferences. 

Long Short-term Memory (LSTM) is a type of RNN. Instead of one layer, LSTM cells generally have four, three of

which are part of "gates" -- ways to optionally let information through. The three gates are commonly referred to

as the forget, input, and output gates. The forget gate layer is where the model decides what information to keep

from prior states. At the input gate layer, the model decides which values to update. Finally, the output gate layer is

where the final output of the cell state is decided. Essentially, LSTM separately decides what to remember and the

rate at which it should update.

An exmaple of a LSTM cell:  x  is  the input data,  c is  the long-term memory,  h  is  the current state and       

serve as  short-term memory,

σ and

tanh is  the non-linear activation  function  of the gates.     

Image source: https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:LSTM_Cell.svg

Create Hypothesis



LSTM models have produced some great results when applied to time-series prediction. One of the central

challenges with conventional time-series models is that, despite trying to account for trends or other non-

stationary elements, it is almost impossible to truly predict an outlier like a recession, flash crash, liquidity crisis,

etc. By having a long memory, LSTM models are better able to capture these difficult trends in the data without

suffering from the level of overfitting a conventional model would need in order to capture the same data. 

For a very basic application, we're hypothesizing LSTM can offer an accurate prediction in future price.

Import Libraries

We'll need to import libraries to help with data processing, validation and visualization. Import keras , sklearn ,

numpy and matplotlib libraries by the following:

Get Historical Data

To begin, we retrieve historical data for researching.

1. Instantiate a QuantBook .

2. Select the desired index for research.

3. Call the AddEquity method with the tickers, and their corresponding resolution.

If you do not pass a resolution argument, Resolution.Minute is used by default.

4. Call the History method with qb.Securities.Keys for all tickers, time argument(s), and resolution to request

historical data for the symbol.

from keras.layers import LSTM, Dense, Dropout
from keras.models import Sequential
from keras.callbacks import EarlyStopping
from sklearn.preprocessing import MinMaxScaler

import numpy as np
from matplotlib import pyplot as plt

qb = QuantBook()

asset = "SPY"

qb.AddEquity(asset, Resolution.Minute)

history = qb.History(qb.Securities.Keys, datetime(2019, 1, 1), datetime(2021, 12, 31), 
Resolution.Daily)
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Prepare Data

We'll have to process our data as well as build the LSTM model before testing the hypothesis. We would scale our

data to for better covergence.

1. Select the close column and then call the unstack method.

2. Initialize MinMaxScaler to scale the data onto [0,1].

3. Transform our data.

4. Select input data

5. Shift the data for 1-step backward as training output result.

6. Split the data into training and testing sets.

close_price = history['close'].unstack(level=0)

scaler = MinMaxScaler(feature_range = (0, 1))

df = pd.DataFrame(scaler.fit_transform(close), index=close.index)

scaler = MinMaxScaler(feature_range = (0, 1))

output = df.shift(-1).iloc[:-1]
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In this example, we use the first 80% data for trianing, and the last 20% for testing.

7. Build feauture and label sets (using number of steps 60, and feature rank 1).

Build Model

We construct the LSTM model.

1. Build a Sequential keras model.

2. Create the model infrastructure.

3. Compile the model.

We use Adam as optimizer for adpative step size and MSE as loss function since it is continuous data.

4. Set early stopping callback method.

splitter = int(input_.shape[0] * 0.8)
X_train = input_.iloc[:splitter]
X_test = input_.iloc[splitter:]
y_train = output.iloc[:splitter]
y_test = output.iloc[splitter:]

features_set = []
labels = []
for i in range(60, X_train.shape[0]):
    features_set.append(X_train.iloc[i-60:i].values.reshape(-1, 1))
    labels.append(y_train.iloc[i])
features_set, labels = np.array(features_set), np.array(labels)
features_set = np.reshape(features_set, (features_set.shape[0], features_set.shape[1], 1))

model = Sequential()

# Add our first LSTM layer - 50 nodes.
model.add(LSTM(units = 50, return_sequences=True, input_shape=(features_set.shape[1], 1)))
# Add Dropout layer to avoid overfitting
model.add(Dropout(0.2))
# Add additional layers
model.add(LSTM(units=50, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=50))
model.add(Dropout(0.2))
model.add(Dense(units = 5))
model.add(Dense(units = 1))

model.compile(optimizer = 'adam', loss = 'mean_squared_error', metrics=['mae', 'acc'])

callback = EarlyStopping(monitor='loss', patience=3, verbose=1, restore_best_weights=True)
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5. Display the model structure.

6. Fit the model to our data, running 20 training epochs.

Note that different training session's results will not be the same since the batch is randomly selected.

model.summary()

model.fit(features_set, labels, epochs = 20, batch_size = 100, callbacks=[callback])
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Test Hypothesis

We would test the performance of this ML model to see if it could predict 1-step forward price precisely. To do so,

we would compare the predicted and actual prices.

1. Get testing set features for input.

2. Make predictions.

3. Transform predictions back to original data-scale.

test_features = []
for i in range(60, X_test.shape[0]):
    test_features.append(X_test.iloc[i-60:i].values.reshape(-1, 1))
test_features = np.array(test_features)
test_features = np.reshape(test_features, (test_features.shape[0], test_features.shape[1], 1))

predictions = model.predict(test_features)
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4. Plot the results.

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accomodate this

model into backtest is to create a scheduled event which uses our model to predict the expected return. If we

predict the price will go up, we long SPY, else, we short it.

predictions = scaler.inverse_transform(predictions)
actual = scaler.inverse_transform(y_test.values)

plt.figure(figsize=(15, 10))
plt.plot(actual[60:], color='blue', label='Actual')
plt.plot(predictions , color='red', label='Prediction')
plt.title('Price vs Predicted Price ')
plt.legend()
plt.show()
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We'll also need to create a function to train and update our model from time to time.

def Initialize(self) -> None:

    #1. Required: Five years of backtest history
    self.SetStartDate(2016, 1, 1)

    #2. Required: Alpha Streams Models:
    self.SetBrokerageModel(BrokerageName.AlphaStreams)

    #3. Required: Significant AUM Capacity
    self.SetCash(1000000)

    #4. Required: Benchmark to SPY
    self.SetBenchmark("SPY")

    self.asset = "SPY"
    
    # Add Equity ------------------------------------------------ 
    self.AddEquity(self.asset, Resolution.Minute)
        
    # Initialize the LSTM model
    self.BuildModel()
    
    # Set Scheduled Event Method For Our Model
    self.Schedule.On(self.DateRules.EveryDay(), 
        self.TimeRules.BeforeMarketClose("SPY", 5), 
        self.EveryDayBeforeMarketClose)
    
    # Set Scheduled Event Method For Our Model Retraining every month
    self.Schedule.On(self.DateRules.MonthStart(), 
        self.TimeRules.At(0, 0), 
        self.BuildModel)
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Now we export our model into the scheduled event method. We will switch qb with self and replace methods with

their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in

research also exist in QCAlgorithm .

def BuildModel(self) -> None:
    qb = self
    
    ### Preparing Data
    # Get historical data
    history = qb.History(qb.Securities.Keys, 252*2, Resolution.Daily)
    
    # Select the close column and then call the unstack method.
    close = history['close'].unstack(level=0)
    
    # Scale data onto [0,1]
    self.scaler = MinMaxScaler(feature_range = (0, 1))
    
    # Transform our data
    df = pd.DataFrame(self.scaler.fit_transform(close), index=close.index)
    
    # Feature engineer the data for input.
    input_ = df.iloc[1:]
    
    # Shift the data for 1-step backward as training output result.
    output = df.shift(-1).iloc[:-1]
    
    # Build feauture and label sets (using number of steps 60, and feature rank 1)
    features_set = []
    labels = []
    for i in range(60, input_.shape[0]):
        features_set.append(input_.iloc[i-60:i].values.reshape(-1, 1))
        labels.append(output.iloc[i])
    features_set, labels = np.array(features_set), np.array(labels)
    features_set = np.reshape(features_set, (features_set.shape[0], features_set.shape[1], 1))
    
    ### Build Model
    # Build a Sequential keras model
    self.model = Sequential()
    
    # Add our first LSTM layer - 50 nodes
    self.model.add(LSTM(units = 50, return_sequences=True, input_shape=(features_set.shape[1], 1)))
    # Add Dropout layer to avoid overfitting
    self.model.add(Dropout(0.2))
    # Add additional layers
    self.model.add(LSTM(units=50, return_sequences=True))
    self.model.add(Dropout(0.2))
    self.model.add(LSTM(units=50))
    self.model.add(Dropout(0.2))
    self.model.add(Dense(units = 5))
    self.model.add(Dense(units = 1))
    
    # Compile the model. We use Adam as optimizer for adpative step size and MSE as loss function 
since it is continuous data.
    self.model.compile(optimizer = 'adam', loss = 'mean_squared_error', metrics=['mae', 'acc'])

    # Set early stopping callback method
    callback = EarlyStopping(monitor='loss', patience=3, restore_best_weights=True)
    
    # Fit the model to our data, running 20 training epochs
    self.model.fit(features_set, labels, epochs = 20, batch_size = 1000, callbacks=[callback])
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Clone Example Project

 

def EveryDayBeforeMarketClose(self) -> None:
    qb = self
    # Fetch history on our universe
    history = qb.History(qb.Securities.Keys, 60, Resolution.Daily)
    if history.empty: return

    # Make all of them into a single time index.
    close = history.close.unstack(level=0)
    
    # Scale our data
    df = pd.DataFrame(self.scaler.transform(close), index=close.index)

    # Feature engineer the data for input
    input_ = []
    input_.append(df.values.reshape(-1, 1))
    input_ = np.array(input_)
    input_ = np.reshape(input_, (input_.shape[0], input_.shape[1], 1))
    
    # Prediction
    prediction = self.model.predict(input_)
    
    # Revert the scaling into price
    prediction = self.scaler.inverse_transform(prediction)

    # ==============================
    
    if prediction > qb.Securities[self.asset].Price:
        self.SetHoldings(self.asset, 1.)
    else:
        self.SetHoldings(self.asset, -1.)
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Applying Research

Airline Buybacks

Introduction

This page explains how to you can use the Research Environment to develop and test a Airline Buybacks

hypothesis, then put the hypothesis in production.

Create Hypothesis

Buyback represents a company buy back its own stocks in the market, as (1) management is confident on its own

future, and (2) wants more control over its development. Since usually buyback is in large scale on a schedule, the

price of repurchasing often causes price fluctuation. 

Airlines is one of the largest buyback sectors. Major US Airlines use over 90% of their free cashflow to buy back

their own stocks in the recent years. [1] Therefore, we can use airline companies to test the hypothesis of buybacks

would cause price action. In this particular exmaple, we're hypothesizing that difference in buyback price and close

price would suggest price change in certain direction. (we don't know forward return would be in momentum or

mean-reversion in this case!)

Import Libraries

We'll need to import libraries to help with data processing, validation and visualization. Import

SmartInsiderTransaction class, statsmodels , sklearn , numpy , pandas and seaborn libraries by the following:

Get Historical Data

To begin, we retrieve historical data for researching.

1. Instantiate a QuantBook .

2. Select the airline tickers for research.

from QuantConnect.DataSource import SmartInsiderTransaction

from statsmodels.discrete.discrete_model import Logit
from sklearn.metrics import confusion_matrix
import numpy as np
import pandas as pd
import seaborn as sns

qb = QuantBook()
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3. Call the AddEquity method with the tickers, and its corresponding resolution. Then call AddData with

SmartInsiderTransaction to subscribe to their buyback transaction data. Save the Symbol s into a

dictionary.

If you do not pass a resolution argument, Resolution.Minute is used by default.

4. Call the History method with a list of Symbol s for all tickers, time argument(s), and resolution to request

historical data for the symbols.

5. Call SPY history as reference.

6. Call the History method with a list of SmartInsiderTransaction Symbol s for all tickers, time argument(s),

and resolution to request historical data for the symbols.

assets = ["LUV",   # Southwest Airlines
          "DAL",   # Delta Airlines
          "UAL",   # United Airlines Holdings
          "AAL",   # American Airlines Group
          "SKYW",  # SkyWest Inc. 
          "ALGT",  # Allegiant Travel Co.
          "ALK"    # Alaska Air Group Inc.
         ]

symbols = {}
for ticker in assets:
    symbol = qb.AddEquity(ticker, Resolution.Minute).Symbol
    symbols[symbol] = qb.AddData(SmartInsiderTransaction, symbol).Symbol

history = qb.History(list(symbols.keys()), datetime(2019, 1, 1), datetime(2021, 12, 31), 
Resolution.Daily)

spy = qb.History(qb.AddEquity("SPY").Symbol, datetime(2019, 1, 1), datetime(2021, 12, 31), 
Resolution.Daily)

history_buybacks = qb.History(list(symbols.values()), datetime(2019, 1, 1), datetime(2021, 12, 
31), Resolution.Daily)
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Prepare Data

We'll have to process our data to get the buyback premium/discount% vs forward return data.

1. Select the close column and then call the unstack method.

2. Call pct_change to get the daily return of close price, then shift 1-step backward as prediction.

3. Get the active forward return.

4. Select the ExecutionPrice column and then call the unstack method to get the buyback dataframe.

5. Convert buyback history into daily mean data.

df = history['close'].unstack(level=0)
spy_close = spy['close'].unstack(level=0)

ret = df.pct_change().shift(-1).iloc[:-1]
ret_spy = spy_close.pct_change().shift(-1).iloc[:-1]

active_ret = ret.sub(ret_spy.values, axis=0)

df_buybacks = history_buybacks['executionprice'].unstack(level=0)
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6. Get the buyback premium/discount %.

7. Create a Dataframe to hold the buyback and 1-day forward return data.

8. Append the data into the Dataframe .

9. Call dropna to drop NaNs.

Test Hypothesis

We would test (1) if buyback has statistically significant effect on return direction, and (2) buyback could be a

return predictor.

1. Get binary return (+/-).

df_buybacks = df_buybacks.groupby(df_buybacks.index.date).mean()
df_buybacks.columns = df.columns

df_close = df.reindex(df_buybacks.index)[~df_buybacks.isna()]
df_buybacks = (df_buybacks - df_close)/df_close

data = pd.DataFrame(columns=["Buybacks", "Return"])

for row, row_buyback in zip(active_ret.reindex(df_buybacks.index).itertuples(), 
df_buybacks.itertuples()):
    index = row[0]
    for i in range(1, df_buybacks.shape[1]+1):
        if row_buyback[i] != 0:
            data = pd.concat([data, pd.DataFrame({"Buybacks": row_buyback[i], "Return":row[i]}, 
index=[index])])

data.dropna(inplace=True)

binary_ret = data["Return"].copy()
binary_ret[binary_ret < 0] = 0
binary_ret[binary_ret > 0] = 1
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2. Construct a logistic regression model.

3. Display logistic regression results.

We can see a p-value of < 0.05 in the logistic regression model, meaning the separation of positive and

negative using buyback premium/discount% is statistically significant.

4. Plot the results.

model = Logit(binary_ret.values, data["Buybacks"].values).fit()

display(model.summary())

plt.figure(figsize=(10, 6))
sns.regplot(x=data["Buybacks"]*100, y=binary_ret, logistic=True, ci=None, line_kws={'label': " 
Logistic Regression Line"})
plt.plot([-50, 50], [0.5, 0.5], "r--", label="Selection Cutoff Line")
plt.title("Buyback premium vs Profit/Loss")
plt.xlabel("Buyback premium %")
plt.xlim([-50, 50])
plt.ylabel("Profit/Loss")
plt.legend()
plt.show()
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Interesting, from the logistic regression line, we observe that when the airlines brought their stock in premium

price, the price tended to go down, while the opposite for buying back in discount.

Let's also study how good is the logistic regression.

5. Get in-sample prediction result.

6. Call confusion_matrix to contrast the results.

7. Display the result.

The logistic regression is having a 55.8% accuracy (55% sensitivity and 56.3% specificity), this can suggest a

> 50% win rate before friction costs, proven our hypothesis.

predictions = model.predict(data["Buybacks"].values)
for i in range(len(predictions)):
    predictions[i] = 1 if predictions[i] > 0.5 else 0

cm = confusion_matrix(binary_ret, predictions)

df_result = pd.DataFrame(cm, 
                        index=pd.MultiIndex.from_tuples([("Prediction", "Positive"), 
("Prediction", "Negative")]),
                        columns=pd.MultiIndex.from_tuples([("Actual", "Positive"), ("Actual", 
"Negative")]))
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Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accomodate this

model into backtest is to create a scheduled event which uses our model to predict the expected return.

We'll also need to create a function to train and update the logistic regression model from time to time.

def Initialize(self) -> None:

    #1. Required: Five years of backtest history
    self.SetStartDate(2017, 1, 1)

    #2. Required: Alpha Streams Models:
    self.SetBrokerageModel(BrokerageName.AlphaStreams)

    #3. Required: Significant AUM Capacity
    self.SetCash(1000000)

    #4. Required: Benchmark to SPY
    self.SetBenchmark("SPY")
    
    self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
    self.SetExecution(ImmediateExecutionModel())
    
    # Set our strategy to be take 5% profit and 5% stop loss.
    self.AddRiskManagement(MaximumUnrealizedProfitPercentPerSecurity(0.05))
    self.AddRiskManagement(MaximumDrawdownPercentPerSecurity(0.05))

    # Select the airline tickers for research.
    self.symbols = {}
    assets = ["LUV",   # Southwest Airlines
                "DAL",   # Delta Airlines
                "UAL",   # United Airlines Holdings
                "AAL",   # American Airlines Group
                "SKYW",  # SkyWest Inc. 
                "ALGT",  # Allegiant Travel Co.
                "ALK"    # Alaska Air Group Inc.
                ]
                
    # Call the AddEquity method with the tickers, and its corresponding resolution. Then call AddData 
with SmartInsiderTransaction to subscribe to their buyback transaction data.
    for ticker in assets:
        symbol = self.AddEquity(ticker, Resolution.Minute).Symbol
        self.symbols[symbol] = self.AddData(SmartInsiderTransaction, symbol).Symbol
        
    self.AddEquity("SPY")
    
    # Initialize the model
    self.BuildModel()
    
    # Set Scheduled Event Method For Our Model Recalibration every month
    self.Schedule.On(self.DateRules.MonthStart(), self.TimeRules.At(0, 0), self.BuildModel)
    
    # Set Scheduled Event Method For Trading
    self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose("SPY", 5), 
self.EveryDayBeforeMarketClose)
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Now we export our model into the scheduled event method. We will switch qb with self and replace methods with

their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in

research also exist in QCAlgorithm .

def BuildModel(self) -> None:
    qb = self
    # Call the History method with list of tickers, time argument(s), and resolution to request 
historical data for the symbol.
    history = qb.History(list(self.symbols.keys()), datetime(2015, 1, 1), datetime.now(), 
Resolution.Daily)
    
    # Call SPY history as reference
    spy = qb.History(["SPY"], datetime(2015, 1, 1), datetime.now(), Resolution.Daily)
    
    # Call the History method with list of buyback tickers, time argument(s), and resolution to 
request buyback data for the symbol.
    history_buybacks = qb.History(list(self.symbols.values()), datetime(2015, 1, 1), datetime.now(), 
Resolution.Daily)
    
    # Select the close column and then call the unstack method to get the close price dataframe.
    df = history['close'].unstack(level=0)
    spy_close = spy['close'].unstack(level=0)
    
    # Call pct_change to get the daily return of close price, then shift 1-step backward as 
prediction.
    ret = df.pct_change().shift(-1).iloc[:-1]
    ret_spy = spy_close.pct_change().shift(-1).iloc[:-1]
    
    # Get the active return
    active_ret = ret.sub(ret_spy.values, axis=0)
    
    # Select the ExecutionPrice column and then call the unstack method to get the dataframe.
    df_buybacks = history_buybacks['executionprice'].unstack(level=0)
    
    # Convert buyback history into daily mean data
    df_buybacks = df_buybacks.groupby(df_buybacks.index.date).mean()
    df_buybacks.columns = df.columns
    
    # Get the buyback premium/discount
    df_close = df.reindex(df_buybacks.index)[~df_buybacks.isna()]
    df_buybacks = (df_buybacks - df_close)/df_close
    
    # Create a dataframe to hold the buyback and 1-day forward return data
    data = pd.DataFrame(columns=["Buybacks", "Return"])
    
    # Append the data into the dataframe
    for row, row_buyback in zip(active_ret.reindex(df_buybacks.index).itertuples(), 
df_buybacks.itertuples()):
        index = row[0]
        for i in range(1, df_buybacks.shape[1]+1):
            if row_buyback[i] != 0:
                data = pd.concat([data, pd.DataFrame({"Buybacks": row_buyback[i], "Return":row[i]}, 
index=[index])])
    
    # Call dropna to drop NaNs
    data.dropna(inplace=True)
    
    # Get binary return (+/-)
    binary_ret = data["Return"].copy()
    binary_ret[binary_ret < 0] = 0
    binary_ret[binary_ret > 0] = 1
    
    # Construct a logistic regression model
    self.model = Logit(binary_ret.values, data["Buybacks"].values).fit()

PY



Reference

US Airlines Spent 96% of Free Cash Flow on Buybacks: Chart. B. Kochkodin (17 March 2020). Bloomberg.

Retrieve from: https://www.bloomberg.com/news/articles/2020-03-16/u-s-airlines-spent-96-of-free-cash-

flow-on-buybacks-chart.

Clone Example Project

def EveryDayBeforeMarketClose(self) -> None:
    qb = self
    # Get any buyback event today
    history_buybacks = qb.History(list(self.symbols.values()), timedelta(days=1), Resolution.Daily)
    if history_buybacks.empty or "executionprice" not in history_buybacks.columns: return

    # Select the ExecutionPrice column and then call the unstack method to get the dataframe.
    df_buybacks = history_buybacks['executionprice'].unstack(level=0)
    
    # Convert buyback history into daily mean data
    df_buybacks = df_buybacks.groupby(df_buybacks.index.date).mean()
    
    # ==============================
    
    insights = []
    
    # Iterate the buyback data, thne pass to the model for prediction
    row = df_buybacks.iloc[-1]
    for i in range(len(row)):
        prediction = self.model.predict(row[i])
        
        # Long if the prediction predict price goes up, short otherwise. Do opposite for SPY (active 
return)
        if prediction > 0.5:
            insights.append( Insight.Price(row.index[i].split(".")[0], timedelta(days=1), 
InsightDirection.Up) )
            insights.append( Insight.Price("SPY", timedelta(days=1), InsightDirection.Down) )
        else:
            insights.append( Insight.Price(row.index[i].split(".")[0], timedelta(days=1), 
InsightDirection.Down) )
            insights.append( Insight.Price("SPY", timedelta(days=1), InsightDirection.Up) )

    self.EmitInsights(insights)

PY
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Applying Research

Sparse Optimization

Introduction

This page explains how to you can use the Research Environment to develop and test a Sparse Optimization Index

Tracking hypothesis, then put the hypothesis in production.

Create Hypothesis

Passive index fund portfolio managers will buy in corresponding weighting of stocks from an index's constituents.

The main idea is allowing market participants to trade an index in a smaller cost. Their performance is measured by

Tracking Error (TE), which is the standard deviation of the active return of the portfolio versus its benchmark index.

The lower the TE means that the portfolio tracks the index very accurately and consistently.

A technique called Sparse Optimization comes into the screen as the portfolio managers want to cut their cost

even lower by trading less frequently and with more liquid stocks. They select a desired group/all constituents from

an index and try to strike a balance between the number of stocks in the portfolio and the TE, like the idea of

L1/L2-normalization.

On the other hand, long-only active fund aimed to beat the benchmark index. Their performance are measured by

the mean-adjusted tracking error, which also take the mean active return into account, so the better fund can be

identified as consisitently beating the index by n%.

We can combine the 2 ideas. In this tutorial, we are about to generate our own active fund and try to use Sparse

Optimization to beat QQQ. However, we need a new measure on active fund for this technique -- Downward Risk

(DR). This is a measure just like the tracking error, but taking out the downward period of the index, i.e. we only

want to model the index's upward return, but not downward loss. We would also, for a more robust regression,

combining Huber function as our loss function. This is known as Huber Downward Risk (HDR). Please refer to

Optimization Methods for Financial Index Tracking: From Theory to Practice. K. Benidis, Y. Feng, D. P. Palomer

(2018) for technical details.

Import Libraries

We'll need to import libraries to help with data processing and visualization. Import numpy , matplotlib and pandas

libraries by the following:

Get Historical Data

import numpy as np
from matplotlib import pyplot as plt
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

PY
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To begin, we retrieve historical data for researching.

1. Create a class to get the index/ETF constituents on a particular date.

2. Instantiate a QuantBook .

class ETFUniverse:
    """
    A class to create a universe of equities from the constituents of an ETF
    """
    def __init__(self, etf_ticker, universe_date):
        """
        Input:
         - etf_ticker
            Ticker of the ETF
         - universe_date
            The date to gather the constituents of the ETF
        """
        self.etf_ticker = etf_ticker
        self.universe_date = universe_date
    
    
    def get_symbols(self, qb):
        """
        Subscribes to the universe constituents and returns a list of symbols and their timezone
        
        Input:
         - qb
            The QuantBook instance inside the DatasetAnalyzer
        
        Returns a list of symbols and their timezone
        """
        etf_symbols = self._get_etf_constituents(qb, self.etf_ticker, self.universe_date)
        security_timezone = None
        security_symbols = []
        
        # Subscribe to the universe price data
        for symbol in etf_symbols:
            security = qb.AddSecurity(symbol, Resolution.Daily)
            security_timezone = security.Exchange.TimeZone
            security_symbols.append(symbol)
        
        return security_symbols, security_timezone
    
    
    def _get_etf_constituents(self, qb, etf_ticker, date):
        """
        A helper method to retreive the ETF constituents on a given date
        
        Input:
         - qb
            The QuantBook instance inside the DatasetAnalyzer
         - etf_ticker
             Ticker of the ETF
         - universe_date
            The date to gather the constituents of the ETF
        
        Returns a list of symbols
        """
        date_str = date.strftime("%Y%m%d")
        filename = f"/data/equity/usa/universes/etf/{etf_ticker.lower()}/{date_str}.csv"
        try:
            df = pd.read_csv(filename)
        except:
            print(f'Error: The ETF universe file does not exist')
            return
        security_ids = df[df.columns[1]].values
        symbols = [qb.Symbol(security_id) for security_id in security_ids]
        return symbols

PY



3. Subscribe to the index/ETF.

In this tutorial, we'll be using QQQ.

4. Select all the constituents for research.

In this tutorial, we select the constituents of QQQ on 2020-12-31.

5. Prepare the historical return data of the constituents and the benchmark index to track.

6. Call the History method with a list of SmartInsiderTransaction Symbol s for all tickers, time argument(s),

and resolution to request historical data for the symbols.

Prepare Data

We'll have to process our data and construct the proposed sparse index tracking portfolio.

1. Get the dimensional sizes.

2. Set up optimization parameters (penalty of exceeding bounds, Huber statistics M-value, penalty weight).

qb = QuantBook()

qqq = qb.AddEquity("QQQ").Symbol

assets, _ = ETFUniverse("QQQ", datetime(2020, 12, 31)).get_symbols(qb)

spy = qb.History(qb.AddEquity("SPY").Symbol, datetime(2019, 1, 1), datetime(2021, 12, 31), 
Resolution.Daily)

history = qb.History(assets, datetime(2020, 1, 1), datetime(2021, 3, 31), Resolution.Daily)
historyPortfolio = history.close.unstack(0).loc[:"2021-01-01"]
pctChangePortfolio = np.log(historyPortfolio/historyPortfolio.shift(1)).dropna()

historyQQQ_ = qb.History(qqq, datetime(2020, 1, 1), datetime(2021, 3, 31), Resolution.Daily)
historyQQQ = historyQQQ_.close.unstack(0).loc[:"2021-01-01"]
pctChangeQQQ = np.log(historyQQQ/historyQQQ.shift(1)).loc[pctChangePortfolio.index]

m = pctChangePortfolio.shape[0]; n = pctChangePortfolio.shape[1]
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3. Set up convergence tolerance, maximum iteration of optimization, iteration counter and HDR as minimization

indicator.

4. Initial weightings and placeholders.

5. Iterate minimization algorithm to minimize the HDR.

p = 0.5
M = 0.0001
l = 0.01

tol = 0.001
maxIter = 20
iters = 1
hdr = 10000

w_ = np.array([1/n] * n).reshape(n, 1)
weights = pd.Series()
a = np.array([None] * m).reshape(m, 1)
c = np.array([None] * m).reshape(m, 1)
d = np.array([None] * n).reshape(n, 1)

PY
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6. Save the final weights.

7. Get the historical return of the proposed portfolio.

while iters < maxIter:
    x_k = (pctChangeQQQ.values - pctChangePortfolio.values @ w_)
    for i in range(n):
        w = w_[i]
        d[i] = d_ = 1/(np.log(1+l/p)*(p+w))
    for i in range(m):
        xk = float(x_k[i])
        if xk < 0:
            a[i] = M / (M - 2*xk)
            c[i] = xk
        else:
            c[i] = 0
            if 0 <= xk <= M:
                a[i] = 1
            else:
                a[i] = M/abs(xk)

    L3 = 1/m * pctChangePortfolio.T.values @ np.diagflat(a.T) @ pctChangePortfolio.values
    eigVal, eigVec = np.linalg.eig(L3.astype(float))
    eigVal = np.real(eigVal); eigVec = np.real(eigVec)
    q3 = 1/max(eigVal) * (2 * (L3 - max(eigVal) * np.eye(n)) @ w_ + eigVec @ d - 2/m * 
pctChangePortfolio.T.values @ np.diagflat(a.T) @ (c - pctChangeQQQ.values))
    
    # We want to keep the upper bound of each asset to be 0.1
    u = 0.1
    mu = float(-(np.sum(q3) + 2)/n); mu_ = 0
    while mu > mu_:
        mu = mu_
        index1 = [i for i, q in enumerate(q3) if mu + q < -u*2]
        index2 = [i for i, q in enumerate(q3) if -u*2 < mu + q < 0]
        mu_ = float(-(np.sum([q3[i] for i in index2]) + 2 - len(index1)*u*2)/len(index2))

    # Obtain the weights and HDR of this iteration.
    w_ = np.amax(np.concatenate((-(mu + q3)/2, u*np.ones((n, 1))), axis=1), axis=1).reshape(-1, 
1)
    w_ = w_/np.sum(abs(w_))
    hdr_ = float(w_.T @ w_ + q3.T @ w_)

    # If the HDR converges, we take the current weights
    if abs(hdr - hdr_) < tol:
        break

    # Else, we would increase the iteration count and use the current weights for the next 
iteration.
    iters += 1
    hdr = hdr_

for i in range(n):
    weights[pctChangePortfolio.columns[i]] = w_[i]

histPort = historyPortfolio.dropna() @ np.array([weights[pctChangePortfolio.columns[i]] for i in 
range(pctChangePortfolio.shape[1])])
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Test Hypothesis

To test the hypothesis. We wish to (1) outcompete the benchmark and (2) the active return is consistent in the in-

and out-of-sample period.

1. Obtain the equity curve of our portfolio and normalized benchmark for comparison.

2. Obtain the active return.

3. Plot the result.

proposed = history.close.unstack(0).dropna() @ np.array([weights[pctChangePortfolio.columns[i]] 
for i in range(pctChangePortfolio.shape[1])])
benchmark = historyQQQ_.close.unstack(0).loc[proposed.index]
normalized_benchmark = benchmark / (float(benchmark.iloc[0])/float(proposed.iloc[0]))

proposed_ret = proposed.pct_change().iloc[1:]
benchmark_ret = benchmark.pct_change().iloc[1:]
active_ret = proposed_ret - benchmark_ret.values

fig = plt.figure(figsize=(15, 10))
plt.plot(proposed, label="Proposed Portfolio")
plt.plot(normalized_benchmark, label="Normalized Benchmark")
min_ = min(min(proposed.values), min(normalized_benchmark.values))
max_ = max(max(proposed.values), max(normalized_benchmark.values))
plt.plot([pd.to_datetime("2021-01-01")]*100, np.linspace(min_, max_, 100), "r--", label="in- and 
out- of sample separation")
plt.title("Equity Curve")
plt.legend()
plt.show()
plt.clf()

fig, ax = plt.subplots(1, 1)
active_ret["Mean"] = float(active_ret.mean())
active_ret.plot(figsize=(15, 5), title="Active Return", ax=ax)
plt.show()
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We can see from the plots, both in- and out-of-sample period the proposed portfolio out preform the benchmark

while remaining a high correlation with it. Although the active return might not be very consistent, but it is a

stationary series above zero. So, in a long run, it does consistently outcompete the QQQ benchmark!

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting.



We'll also need to create a function for getting the ETF constituents.

Now we export our model into the OnData method. We will switch qb with self and replace methods with their

QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in

research also exist in QCAlgorithm .

def Initialize(self) -> None:
    self.SetStartDate(2017, 1, 1)
    self.SetBrokerageModel(BrokerageName.AlphaStreams)
    self.SetCash(1000000)
    
    # Add our ETF constituents of the index that we would like to track.
    self.QQQ = self.AddEquity("QQQ", Resolution.Minute).Symbol
    self.UniverseSettings.Resolution = Resolution.Minute
    self.AddUniverse(self.Universe.ETF(self.QQQ, self.UniverseSettings, self.ETFSelection))
    
    self.SetBenchmark("QQQ")
    
    # Set up varaibles to flag the time to recalibrate and hold the constituents.
    self.time = datetime.min
    self.assets = []

def ETFSelection(self, constituents: ETFConstituentData) -> List[Symbol]:
    # We want all constituents to be considered.
    self.assets = [x.Symbol for x in constituents]
    return self.assets

def OnData(self, slice: Slice) -> None:
    qb = self
    if self.time > self.Time:
        return
    
    # Prepare the historical return data of the constituents and the ETF (as index to track).
    history = qb.History(self.assets, 252, Resolution.Daily)
    if history.empty: return

    historyPortfolio = history.close.unstack(0)
    pctChangePortfolio = np.log(historyPortfolio/historyPortfolio.shift(1)).dropna()
    
    historyQQQ = qb.History(self.AddEquity("QQQ").Symbol, 252, Resolution.Daily)
    historyQQQ = historyQQQ.close.unstack(0)
    pctChangeQQQ = np.log(historyQQQ/historyQQQ.shift(1)).loc[pctChangePortfolio.index]
    
    m = pctChangePortfolio.shape[0]; n = pctChangePortfolio.shape[1]
    
    # Set up optimization parameters.
    p = 0.5; M = 0.0001; l = 0.01
    
    # Set up convergence tolerance, maximum iteration of optimization, iteration counter and Huber 
downward risk as minimization indicator.
    tol = 0.001; maxIter = 20; iters = 1; hdr = 10000
    
    # Initial weightings and placeholders.
    w_ = np.array([1/n] * n).reshape(n, 1)
    self.weights = pd.Series()
    a = np.array([None] * m).reshape(m, 1)
    c = np.array([None] * m).reshape(m, 1)
    d = np.array([None] * n).reshape(n, 1)
    
    # Iterate to minimize the HDR.
    while iters < maxIter:
        x_k = (pctChangeQQQ.values - pctChangePortfolio.values @ w_)
        for i in range(n):
            w = w_[i]
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Reference

Optimization Methods for Financial Index Tracking: From Theory to Practice. K. Benidis, Y. Feng, D. P. Palomer

(2018). Foundations and Trends in Signal Processing. 3-3. p171-279.

Clone Example Project

            w = w_[i]
            d[i] = d_ = 1/(np.log(1+l/p)*(p+w))
        for i in range(m):
            xk = float(x_k[i])
            if xk < 0:
                a[i] = M / (M - 2*xk)
                c[i] = xk
            else:
                c[i] = 0
                if 0 <= xk <= M:
                    a[i] = 1
                else:
                    a[i] = M/abs(xk)
                    
        L3 = 1/m * pctChangePortfolio.T.values @ np.diagflat(a.T) @ pctChangePortfolio.values
        eigVal, eigVec = np.linalg.eig(L3.astype(float))
        eigVal = np.real(eigVal); eigVec = np.real(eigVec)
        q3 = 1/max(eigVal) * (2 * (L3 - max(eigVal) * np.eye(n)) @ w_ + eigVec @ d - 2/m * 
pctChangePortfolio.T.values @ np.diagflat(a.T) @ (c - pctChangeQQQ.values))
        
        # We want to keep the upper bound of each asset to be 0.1
        u = 0.1
        mu = float(-(np.sum(q3) + 2)/n); mu_ = 0
        while mu > mu_:
            mu = mu_
            index1 = [i for i, q in enumerate(q3) if mu + q < -u*2]
            index2 = [i for i, q in enumerate(q3) if -u*2 < mu + q < 0]
            mu_ = float(-(np.sum([q3[i] for i in index2]) + 2 - len(index1)*u*2)/len(index2))
    
        # Obtain the weights and HDR of this iteration.
        w_ = np.amax(np.concatenate((-(mu + q3)/2, u*np.ones((n, 1))), axis=1), axis=1).reshape(-1, 
1)
        w_ = w_/np.sum(abs(w_))
        hdr_ = float(w_.T @ w_ + q3.T @ w_)
        
        # If the HDR converges, we take the current weights
        if abs(hdr - hdr_) < tol:
            break
        
        # Else, we would increase the iteration count and use the current weights for the next 
iteration.
        iters += 1
        hdr = hdr_
    
    # -----------------------------------------------------------------------------------------
    orders = []
    for i in range(n):
        orders.append(PortfolioTarget(pctChangePortfolio.columns[i], float(w_[i])))
    self.SetHoldings(orders)
    
    # Recalibrate on quarter end.
    self.time = Expiry.EndOfQuarter(self.Time)
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