{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# How to pay for a war: part 1\n", "\n", "### An application of Markov jump linear quadratic dynamic programming\n", "\n", "#### By [Sebastian Graves](https://github.com/sebgraves) and [Thomas J. Sargent](http://www.tomsargent.com/)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook constructs generalizations of Barro's classic 1979 model of tax smoothing. Our generalizations are adaptations of extensions of his 1979 model suggested by Barro (1999, 2003).\n", "\n", "Barro's original 1979 model is about a government that borrows and lends in order to help it minimize an intertemporal measure of distortions caused by taxes. \n", "\n", "Technical tractability induced Barro to assume that \n", "\n", " * the government trades only one-period risk-free debt, and \n", " \n", " * the one-period risk-free interest rate is constant. \n", "\n", "By using a secret weapon -- *Markov jump linear quadratic dynamic programming* -- we can allow interest rates to move over time in empirically interesting ways. Also, by expanding the dimension of the state, we can add a maturity composition decision to the government's problem. It is by doing these two things that we extend Barro's 1979 model along lines he suggested in Barro (1999, 2003).\n", "\n", "Barro (1979) assumed \n", "\n", " * that a government faces an **exogenous sequence** of expenditures that it must finance by a tax collection sequence whose expected present value equals the initial debt it owes plus the expected present value of those expenditures \n", "\n", " * that the government wants to minimize the following measure of tax distortions: $E_0 \\sum_{t=0}^\\infty \\beta^t T_t^2$, where $T_t$ are total tax collections and $E_0$ is a mathematical expectation conditioned on time $0$ information \n", "\n", " * that the government trades only one asset, a risk-free one-period bond\n", " \n", " * that the gross interest rate on the one-period bond is constant and equal to $\\beta^{-1}$,\n", " the reciprocal of the factor $\\beta$ at which the government discounts future tax disortions\n", "\n", "Barro's model can be mapped into a discounted linear quadratic dynamic programming problem.\n", "\n", "Our generalizations of Barro's (1979) model, partly inspired by Barro (1999) and Barro (2003), assume \n", "\n", " * that the government borrows or saves in the form of risk-free bonds of maturities $1, 2, \\ldots , H$\n", " \n", " * that interest rates on those bonds are time-varying and in particular governed by a jointly stationary stochastic process.\n", "\n", "Our generalizations are designed to fit within a generalization of an ordinary linear quadratic dynamic programming problem in which matrices defining the quadratic objective function and the state transition function are **time-varying** and **stochastic**. This generalization,known as a **Markov jump linear quadratic dynamic program** combines \n", "\n", " * the computational simplicity of **linear quadratic dynamic programming**, and\n", " \n", " * the ability of **finite state Markov chains** to represent interesting patterns of random variation\n", "\n", "We want the stochastic time variation in the matrices defining the dynamic programming problem to represent variation over time in\n", "\n", " * interest rates\n", " \n", " * default rates\n", " \n", " * roll over risks\n", " \n", " \n", "The idea underlying **Markov jump linear quadratic dynamic programming** is to replace the constant matrices defining a **linear quadratic dynamic programming problem** with \n", "matrices that are fixed functions of an $N$ state Markov chain. \n", "\n", "For infinite horizon problems, this leads to $N$ interrelated matrix Riccati equations that pin down $N$ value functions and $N$ linear decision rules,\n", "applying to the $N$ Markov states.\n", "\n", "\n", "#### Public finance questions\n", "\n", "Barro's 1979 model is designed to answer questions such as\n", "\n", " * Should a government finance an exogenous surge in government expenditures by raising taxes or borrowing?\n", " \n", " * How does the answer to that first question depend on the exogenous stochastic process for government expenditures, for example, on whether the surge in government expenditures can be expected to be temporary or permanent?\n", " \n", "Barro's 1999 and 2003 models are designed to answer more fine-grained questions such as\n", "\n", " * What determines whether a government wants to issue short-term or long-term debt? \n", " \n", " * How do roll-over risks affect that decision? \n", " \n", " * How does the government's long-short *portfolio management* decision depend on features of the exogenous stochastic process for government expenditures?\n", " \n", "Thus, both the simple and the more fine-grained versions of Barro's models are ways of precisely formulating the classic issue of *How to pay for a war*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Organization\n", "\n", "This notebook describes:\n", "\n", " * Markov jump linear quadratic (LQ) dynamic programming\n", " \n", " * An application of Markov jump LQ dynamic programming to a model in which a government faces exogenous time-varying interest rates for issuing one-period risk-free debt\n", " \n", "A [sequel to this notebook](https://github.com/QuantEcon/TaxSmoothing/blob/master/Tax_Smoothing_2.ipynb) describes applies Markov LQ control to settings in which a government issues risk-free debt of different maturities" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Markov jump linear quadratic control\n", "\n", "**Markov jump linear quadratic dynamic programming** combines advantages\n", "of \n", "\n", " * the computational simplicity of **linear quadratic dynamic programming**, and\n", " \n", " * the ability of **finite state Markov chains** to represent interesting patterns of random variation\n", "\n", "The idea underlying **Markov jump linear quadratic dynamic programming** is to replace the constant matrices defining a **linear quadratic dynamic programming problem** with \n", "matrices that are fixed functions of an $N$ state Markov chain. \n", "\n", "For infinite horizon problems, this leads to $N$ interrelated matrix Riccati equations that determine $N$ optimal value functions and $N$ linear decision rules. These value functions and decision rules apply in the $N$ Markov states: i.e., when the Markov\n", "state is in state $j$, the value function and decision rule for state $j$ prevails.\n", "\n", "##### The ordinary discounted linear quadratic dynamic programming problem\n", "It is handy to have the following reminder in mind.\n", "\n", "A **linear quadratic dynamic programming problem** consists of a scalar discount factor $\\beta \\in (0,1)$, an $n\\times 1$ state vector $x_t$, an initial condition for $x_0$, a $k \\times 1$ control vector $u_t$, a $p \\times 1$ random shock vector $w_{t+1}$ and the following two triples of matrices:\n", "\n", " * A triple of matrices $(R, Q, W)$ defining a loss function\n", " \n", " $$r(x_t, u_t) = x_t' R x_t + u_t' Q u_t + 2 u_t' W x_t$$\n", " \n", " \n", " * a triple of matrices $(A, B, C)$ defining a state-transition law\n", " \n", " $$x_{t+1} = A x_t + B u_t + C w_{t+1}$$\n", " \n", "The problem is \n", "\n", "\n", "$$\n", "-x_0' P x_0 - \\rho = \\min_{\\{u_t\\}_{t=0}^\\infty} E \\sum_{t=0}^{\\infty} \\beta^t r(x_t, u_t)$$\n", "\n", "subject to the transition law for the state. \n", "\n", "\n", "The optimal decision rule for this problem have the form\n", "\n", "$$u_t = - F x_t$$\n", "\n", "and the optimal value function is of the form\n", "\n", "$$-\\left( x_t' P x_t + \\rho \\right)$$\n", "\n", "where $P$ solves the algebraic matrix Riccati equation\n", "\n", "\n", "$$\n", "P = R+ \\beta A' P A_i\n", " -(\\beta B' P A + W)' (Q + \\beta B P B )^{-1} (\\beta B P A + W)$$\n", " \n", "and the constant $\\rho$ satisfies\n", "\n", "$$\\rho = \\beta\n", " \\left( \\rho + {\\rm trace}(P C C') \\right)$$\n", " \n", "and the matrix $F$ in the decision rule for $u_t$ satisfies\n", "\n", "$$\n", "F = (Q + \\beta B' P B)^{-1} (\\beta (B' P A )+ W)$$\n", "\n", "\n", "\n", "\n", "### Markov jump coefficients\n", "\n", "The idea is to make the matrices $A, B, C, R, Q, W$ fixed functions of a finite state $s$ that is governed by an $N$ state Markov chain. This makes decision rules depend on the Markov state, and so fluctuate through time restricted ways. \n", "\n", "In particular, we use the following extension of a discrete time linear quadratic dynamic programming problem.\n", "\n", "We let $s(t) \\equiv s_t \\in [1, 2, \\ldots, N]$ be a time t realization of an $N$ state Markov chain with transition\n", "matrix $\\Pi$ having typical element $\\Pi_{ij}$. Here $i$ denotes today and $j$ denotes tomorrow and\n", "\n", "$$\\Pi_{ij} = {\\rm Prob}(s_{t+1} = j |s_t = i)$$\n", "\n", "\n", "We'll switch between labeling today's state as $s(t)$ and $i$ and between labeling tomorrow's state as $s(t+1)$ or $j$.\n", "\n", "\n", "The decision maker solves the minimization problem:\n", "\n", "$$\n", "\\min_{\\{u_t\\}_{t=0}^\\infty} E \\sum_{t=0}^{\\infty} \\beta^t r(x_t, s(t), u_t)$$\n", " with\n", " \n", " $$r(x_t, s(t), u_t) = -( x_t' R(s_t) x_t + u_t' Q(s_t) u_t + 2 u_t' W(s_t) x_t)\n", "$$ \n", " \n", "subject to linear laws of motion with matrices $(A,B,C)$ each possibly dependent on the Markov-state-$s_t$:\n", "\n", "$$\n", " x_{t+1} = A(s_t) x_t + B(s_t) u_t + C(s_t) w_{t+1}$$\n", " \n", "where $\\{w_{t+1}\\}$ is an i.i.d. stochatic process with $w_{t+1} \\sim {\\cal N}(0,I)$.\n", "\n", "\n", "The optimal decision rule for this problem have the form\n", "\n", "$$u_t = - F(s_t) x_t$$\n", "\n", "and the optimal value functions are of the form\n", "\n", "$$-\\left( x_t' P(s_t) x_t + \\rho(s_t) \\right)$$\n", "\n", "or equivalently\n", "\n", "$$-x_t' P_i x_t - \\rho_i$$\n", "\n", "The optimal value functions $- x' P_i x - \\rho_i$ for $i = 1, \\ldots, n$ satisfy the $N$ interrelated Bellman equations \n", "\n", "\\begin{align*}\n", "-x' P_i x - \\rho_i & = \\max_u - \\biggl[ x'R_i x + u' Q_i u + 2 u' W_i x \\cr &\n", " \\beta \\sum_j \\Pi_{ij}E ((A_i x + B_i u + C_i w)' P_j (A_i x + B_i u + C_i w) x + \\rho_j) \\biggr]\n", "\\end{align*}\n", "\n", "The matrices $P(s(t)) = P_i$ and the scalars $\\rho(s_t) = \\rho_i, i = 1, \\ldots, n$\n", "satisfy the following stacked system of **algebraic matrix Riccati** equations:\n", "\n", "$$\n", "P_i = R_i + \\beta \\sum_j A_i' P_j A_i\n", " \\Pi_{ij}\n", " -\\sum_j \\Pi_{ij}[ (\\beta B_i' P_j A_i + W_i)' (Q + \\beta B_i' P_j B_i)^{-1} (\\beta B_i' P_j A_i + W_i)]$$\n", "\n", "$$\\rho_i = \\beta\n", " \\sum_j \\Pi_{ij} ( \\rho_j + {\\rm trace}(P_j C_i C_i') )$$\n", " \n", "and the $F_i$ in the optimal decision rules are\n", "\n", "$$\n", "F_i = (Q_i + \\beta \\sum_j \\Pi_{ij} B_i' P_j B_i)^{-1} (\\beta \\sum_j \\Pi_{ij}(B_i' P_j A_i )+ W_i)$$\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Barro (1979) Model\n", "\n", "We begin by solving a version of the Barro (1979) model by mapping it into the original LQ framework. As mentioned [in this lecture](http://lectures.quantecon.org/py/perm_income_cons.html), the Barro model is mathematically isomorphic with the LQ permanent income model.\n", "\n", "Let $T_t$ denote tax collections, $\\beta$ a discount factor, $b_{t,t+1}$ time $t+1$ goods that the government promises to pay at $t$, $G_t$ government purchases, $p_{t,t+1}$ the number of time $t$ goods received per time $t+1$ goods promised. Evidently, $p_{t, t+1}$ is inversely related to appropriate corresponding gross interest rates on government debt.\n", "\n", "In the spirit of Barro (1979), the stochastic process of government expenditures is exogenous. The government's problem is to choose a plan for taxation and borrowing $\\{b_{t+1}, T_t\\}_{t=0}^\\infty$ to minimize\n", "\n", "$$E_0 \\sum_{t=0}^\\infty \\beta^t T_t^2$$\n", "subject to the constraints\n", " $$T_t + p_{t,t+1} b_{t,t+1} = G_t + b_{t-1,t}$$\n", " $$G_t = U_{g,t} z_t$$\n", " $$z_{t+1} = A_{22,t} z_t + C_{2,t} w_{t+1}$$\n", "\n", "where $w_{t+1} \\sim {\\cal N}(0,I)$. The variables $T_t, b_{t, t+1}$ are *control* variables chosen at $t$,\n", "while $b_{t-1,t}$ is an endogenous state variable inherited from the past at time $t$ and $p_{t,t+1}$ is an exogenous state variable at time $t$. To begin with, we will assume that $p_{t,t+1}$ is constant (and equal to $\\beta$), but we will also extend the model to allow this variable to evolve over time.\n", "\n", "To map into the LQ framework, we will use $x_t = \\begin{bmatrix} b_{t-1,t} \\\\ z_t \\end{bmatrix}$ as the state vector, and $u_t = b_{t,t+1}$ as the control variable. Therefore, the (A,B,C) matrices are defined by the state-transition law:\n", "\n", "$$x_{t+1} = \\begin{bmatrix} 0 & 0 \\\\ 0 & A_{22} \\end{bmatrix} x_t + \\begin{bmatrix} 1 \\\\ 0 \\end{bmatrix} u_t + \\begin{bmatrix} 0 \\\\ C_2 \\end{bmatrix} w_{t+1}$$\n", "\n", "To find the appropriate (R,Q,W) matrices, we note that $G_t$ and $b_{t-1,t}$ can be written as appropriately defined functions of the current state:\n", "$$G_t = S_G x_t \\hspace{2mm}, \\hspace{2mm} b_{t-1,t} = S_1 x_t$$\n", "\n", "If we define $M_t = - p_{t,t+1}$, and let $S = S_G + S_1$, then we can write taxation as a function of the states and control using the government's budget constraint:\n", "\n", "$$T_t = S x_t + M_t u_t$$\n", "\n", "It follows that the (R,Q,W) matrices are implicitly defined by:\n", "\n", "$$T_t^2 = x_t'S'Sx_t + u_t'M_t'M_tu_t + 2 u_t'M_t'S x_t$$\n", "\n", "If we assume that $p_{t,t+1} = \\beta$, then $M_t \\equiv M = - \\beta$. In this case, none of the LQ matrices are time varying, and we can use the original LQ framework. \n", "\n", "We will implement this constant interest-rate version first, assuming that $G_t$ follows an AR(1) process: \n", "$$G_{t+1} = \\bar G + \\rho G_t + \\sigma w_{t+1}$$\n", "To do this, we set $z_t = \\begin{bmatrix} 1 \\\\ G_t \\end{bmatrix}$, and consequently:\n", "$$A_{22} = \\begin{bmatrix} 1 & 0 \\\\ \\bar G & \\rho \\end{bmatrix} \\hspace{2mm} , \\hspace{2mm} C_2 = \\begin{bmatrix} 0 \\\\ \\sigma \\end{bmatrix}$$\n", "\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import quantecon as qe\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Model parameters \n", "β, Gbar, ρ, σ = 0.95, 5, 0.8, 1\n", "\n", "# Basic model matrices\n", "A22 = np.array([[1, 0], \n", " [Gbar, ρ],])\n", "\n", "C2 = np.array([[0], \n", " [σ]])\n", "\n", "Ug = np.array([[0, 1]])\n", "\n", "# LQ framework matrices\n", "A_t = np.zeros((1, 3))\n", "A_b = np.hstack((np.zeros((2, 1)), A22))\n", "A = np.vstack((A_t, A_b))\n", "\n", "B = np.zeros((3, 1))\n", "B[0, 0] = 1\n", "\n", "C = np.vstack((np.zeros((1, 1)), C2))\n", "\n", "Sg = np.hstack((np.zeros((1, 1)), Ug))\n", "S1 = np.zeros((1, 3))\n", "S1[0, 0] = 1\n", "S = S1 + Sg\n", "\n", "M = np.array([[-β]])\n", "\n", "R = S.T @ S\n", "Q = M.T @ M\n", "W = M.T @ S\n", "\n", "# Small penalty on debt required to implement no-ponzi scheme\n", "R[0, 0] = R[0, 0] + 1e-9" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now create an instance of an LQ model:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "LQBarro = qe.LQ(Q, R, A, B, C=C, N=W, beta=β)\n", "P, F, d = LQBarro.stationary_values() \n", "x0 = np.array([[100, 1, 25]])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see the isomorphism by noting that consumption is a martingale in the permanent income model, and that taxation is a martingale in Barro's model. We can check this using the F matrix of the LQ model. As $u_t = -F x_t$, we have:\n", "\n", "$$T_t = S x_t + M u_t = (S - MF) x_t$$\n", "and\n", "\n", "$$T_{t+1} = (S-MF)x_{t+1} = (S-MF)(Ax_t + B u_t + C w_{t+1}) = (S-MF)((A-BF)x_t + C w_{t+1})$$\n", "Therefore, the conditional expectation of $T_{t+1}$ at time $t$ is:\n", "\n", "$$E_t T_{t+1} = (S-MF)(A-BF)x_t$$\n", "Consequently, taxation is a martingale ($E_t T_{t+1} = T_t$) if:\n", "\n", "$$(S-MF)(A-BF) = (S-MF)$$\n", "which holds in this case:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([[ 0.05000002, 19.79166502, 0.2083334 ]]),\n", " array([[ 0.05000002, 19.79166504, 0.2083334 ]]))" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "S - M @ F, (S - M @ F) @ (A - B @ F)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This explains the gradual fanning out of taxation if we simulate the Barro model a large number of times:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXd4HNX1v9/ZXrXqXbKKJVuSey8Y23QbY3rvkARISEIKJSEQapIvkISS0AwJvdoYsMHgXuUmuUmWZPWulbQrrbS9zfz+GFnCsYkN2PhHvO/z6Hlmp9y5M7u6n3vPOfdcQZIkIkSIECHCqYviZFcgQoQIESKcXCJCECFChAinOBEhiBAhQoRTnIgQRIgQIcIpTkQIIkSIEOEUJyIEESJEiHCKExGCCBEiRDjFiQhBhAgRIpziRIQgQoQIEU5xVCe7AsdCfHy8lJWVdbKrESFChAg/KEpLS22SJCUc7bwfhBBkZWVRUlJysqsRIUKECD8oBEFoOpbzIqahCBEiRDjFiQhBhAgRIpziRIQgQoQIEU5xIkIQIUKECKc4ESGIECFChFOciBBEiBAhwilORAgiRIgQ4RQnIgQRIkQ4JSluK6bH1zP42RP0sKR6CZ6g5yTW6uQQEYIIESKccvT4erh99e08vu3xwX2/2/Q7Htr6EEtrl57Emp0cIkIQIUKE/zkWVy/mpi9uQpKkwX2SJLG4ejFWt5UdHTuQkFjVtIp6Rz0A++37AaiwV5yUOp9MfhApJiJEiBDhWJEkiYe3PgxAq6uVDHMGAHWOOh7e+jAJ+gQMagNmtZmQFOLpXU9zx9g76PR0AhEhiBAhQoQfPOW28sHt/fb9ZJgz2NCygRWNKwDo9nZjES08OftJtrZv5fWK11nXsg6AgtgC7F2duN1OjEbzd65LyOFDGaVFUAjfuawTScQ0FCFChP8ZltYs5bHtjw1+3tu1F0/Qw51r7+Sz+s9QCAouHn4xiy9YzMy0mdw06iYKYgsAUAkqLs27lNdrHsP2zN5vdF9JkjjtvdN4uvTpwX2BNhfWv+zE8Unt8Xm4E4jwVRva/69MmjRJimQfjRAhwn+jpb+F+UvnAzAzdSYKQcGmtk0kG5Oxuq0APDzjYS7Ju+Swaz1BD4FwAF/QR+jxGgAs5+dgnpWGGAgjBcIoTZqh8/d0IagUhLM1/HXf31lcvXjwWNmNZQDY3qzAt98OQMrvptC7tBbjlGT0hXFHfxhXF9StAzEEY68GxbfrswuCUCpJ0qSjnRcxDUWIEOEHT1AM8tDWhwB4ZMYjnJN1DiXWEja1bcLqtqJRaHjhrBeYnDz5iNcb1AYMagOhoB/rwD7rykqsRW4sq0MEdtmxXJCDYUwCYVeQnvcOABDQhliZuQJUoJAEREFCEiXC/QH81b1o86Lx1zro/lc5oU4Pvqoe0v8y69Cb+52w602YdAuoddBdDf/8Sj3VOhh16XF+Y4cSEYIIESL84Cm3lbPDuoOrR17NxXkXAzA7YzZ/nf1XfrPhN6SZ05iSMuWo5UieEAC7jJVMcBfwo8V38Fjbz0kmjr5l9bg2taEvknv0wSQFmk4Vd/fdykh/Dvo+FXuMVXS9uo9gXT8A5tPTUZo0eHZ3Dd4j7AocMrpg+0uw9lH48ncQkwWu7qFjc34HhRd9x7dzdCJCECFChB88Ha4OAK4cceUh++dkzGFe1jxuHnXzMZUTdgUB2G4qY4K7gL/23IvFrx867vDj2tKOIkbLwwXPc5pvJOd1zQTAFysysadwUAT02QG0OVGoYnWE2rvQJgdw7tUQaHWhHxk7dNP23UPbvY0ABM76AFWiFkX+nG/yGr41EWdxhAjfETEQJtTnP9nV+F7xhEXur26lzuM72VUBoMMtC0GKMeWQ/RqlhidmP0FBXMExlSO6ZSGIyktEOycJi0MWgXUxJdRqm/kg7ksAmj0t7OrchXFK8uC10hWJ/D3lTSpudJF2ZTux7Zcg7HgRlb+KxL4FmKuuAQECdVY46JsNhwjVr2OF0cBpmWns12hYnziZruUG6jarv9M7+SZERgQRInxH7K/vx1/XR9qfTvv/PkzweLDO3s+f6zvY5/ISrVZyd3bK0S86wXS4O7BoLRjUBgA8u7vw7O0m7oZCBIWAJEkIwn//blxb2+lf1wLAb2ffi9KswanX01nZzIvq9+lXuUmXUrjCfi71mhYyozI5a+r5+FdVAZCZkUOHfgOJpe0IpmEgAF/+HhRyM6sQfKjNPrybd2PufhDFuQ/i8/ejC7hZY4mjT6nkD0WnkduQyF2AvlrEF/KhU+lO2Hs7SEQIIkT4jvjr+gAI2byoEw0nuTYnlrAkcfW++sHPla7/f0YEKcYUQnYvjs8bBqN12n6/GQCFWY1pWirm2ekIqkMNIf7GPlxbO/DuHbLNKwwqJFGivMdP4tQ8hrXnUGYr49+Xv4G2E8ZpY7g0+Q60Si22wm4EpYBWqeX3Djej2jcBm+SCtBbw98nO3v1LifL+Bbv0EJ5aBabGWXRHp5EB7NDLjf0to24hUNYyWI+q5dsZd9HsE/fiBogIQYQIx4muF/aSev/UwxqaHwJ9KxrwlNnQF8VhOS8LQXn4M4QliT/VyyaYM2LN6BQK9ru8PFjTxvY+F48OT2NKtOn7rjogzxoujCvEuaF1UAS+iugM0r+qCYVRjWna0AjG/m4V3r3dKIwqdCNj0Q6PBklCUCoo39jGri+bUaoVvP7M67Q4W0g2JkMOxDBkEoofsRlUGhDzyfN9JWFd5gy4bgl07IWMqdBZga6rBIXSiT/pBkz2L8lwtLEppYh3iv5NuMZJXE8avZ5oDLNS2LR3DUWlw5HODyOolSf0/UWEIMIheL0tqFQW1Oqok12VHwQhx1CPWPKGCLQ60WZZTmKNvjmSKOHc0AqAa1MbglqB5Zwswn1+nFva0I+MRZsTzZvtdv7ZLEe/3JeTwjq7k89tfbzcKvekF+6u5S/56VyXEofqOJjIQnYvAKo4PWFnAKVZc8TzOt2dTGsq4BzXGYT88jWCWkHiz8ejNKmRQiIdf9ohl2mTj4uBMNYndiK6gigtWhJuG4Mq9lATTFOZDYBwUKSv3U9Oes7hN28thRV3y9uZ09GKYe6Pj+W+mY9gTpsEGgMMmy4fN8YjCKBLCeLtjMehPR1LcCNJwl9gaRdKwFFeiwCYJ6fiVWnRrdNQVrydMbNnfIc3eXR+eF2XCCcEr7eNzVtOo3jrHMrKf3rYcbe7nv0Vv8Hntx7h6lMX2yJ58pBlgdxIBK3uk1mdb0W4VxYz49Rk9GPicW1qI9DqxPZWJa6NbfQsrkEURZ5vHgqBzDPomBJtPKys+6pbeam1+7D9X0fI5qV/dROSKCGFRAItzsFj1qdKsD5ZgnNjKx1/2k6g1XnEMlbXrORHXZeQWWnBX9+HrjCO5Hsno040oDCoUUZpB88NNMsRPZ7STkRXEFWCnqRfTzxMBERRor22j6wx8ejNala/VsERJ9/Wrh7abt8DQIVWwyqTERKHHNTuoJv1Grm5NUzLQQqKuFz38G7i/RjqBXQjYoj/8Wh0RXGYzxmGRxCYXXAeu8etImnCsGN+n9+WEy4EgiAoBUHYLQjC8oHP2YIgbBcEoUYQhPcFQTiyzEf43hBFP2XlP8Pvl4f9vb1bsVo/wWr9FEmScLqqKCm9DKv1Yzqtn5zk2v7/g7fCTsjuQ1cYh2l6KoJOSdD6w8tlH+yWe8mG8YnoR8UjBUW6/rGH4ECjHO7xsb3eTrMvwO9zUnhnTA56pYLx5iF/yCPDUwe3/9XaTVAcajT7Vzfh+GzIr/BV+lY20r+6GVdxO10v7aPrn3vo+7KRng+rYaCIvs8bQAL3zqFOiOgPE+hwU9xezPZN6wHQ5FpQJeqxzM8+NE4fSH14Bua5GQRanIR6fLh3WFGnmUj69UQU2sPNLvY2FwFviOETE5lyQQ72VhelKxoPF4Ovhn7Wr0NS6dEmjeaPxX9k0b5FANi8Ni78+EJ+GajnzlGnoZ04iv7R8iWnt0wHlUDs1SPR5UYTf30hmyp7eeuBrWx9cjEXVD1DUvPOI76748n3MSL4JVD5lc//B/xdkqQ8oBe49XuoQ4SvQRT9NDQ8h9NZxuhRzzNt6kq02hT2V/ya/RW/ort7JTU1jyEISnS6NHodO052lU86Pe9VYX+7EvsbcpbK6AU5CEoBTaoJf00vUlhECoknuZbHTrBDHsWoEgyo4vSHHFOnyL3+L629KAW4zmRmWpsf17Z2pKpenhyRzvtjc/lJRiK7ZxTyXEEmbf4gH3f1AnIOnv7Vzbg2teGr6T2kbCkYhgHB6FtePyg8znUteErlTKCGcQkoLVo02VH4ah3ydaKE9a8ldD2zi8+3fcx5rtMQotQk3Dqa5F9PQh1/6DMAKLTKwVBP6xM7CXa4MU5I/NpIovYa+V6pedEMn5iISq1g+6cNVBZ3fOUBJGjfBZqB5HQVnyIkj+IfZ7+IWqFmS8sWAoEA61vW0+npZHzyJDa4m6nurWZR6kesi5PT5qiTjSh0spW+q6mfpjI7xmgt2bodiKhh+Jn/9fs7HpxQIRAEIR04H3hl4LMAnAEcTMzxOnDip81F+FoOHHiIxqYXUCh0JCScg9GYy5TJnxIXNxeAsvKf0tu7lezsXxAXN5fe3u0EAj1HLEsU/YRCru+z+t87UljCs6cb74D9OO7mokGzgum0NEJ2H13P7aHtwWKcm9pOZlWPCUmUcO+0osk0ozSqUcUPmUjibiwkdP0Irpxp4MWgh4lmA/5F5fS8U4Xj4zrs71Rytc7ELKM8MkjRargsKYY8g5bX2uT3ExoYbQD0Lq4m2OlG9ATp+bCatoe24i23I+hVKON0qFONmGanY5w+4MwVIPaqkSTfOxldbjThHh9SMEyg1YnYHwDg9h0XMKZvOMYxiUcN3VXF6FDGyM+nGxGDYVLy157buM+GOVaHOVaHzqjmlqdmEZNsoHr7V0yje94GVyeMv07+HHQjpk1m25ptLGxaSObOTBYtWkSptZQ4XRx/m/M3VIKKl/e9zJzSD5iilH8fCm8blC0GRwsN+2wIAlz1wBRGxpXR6i+iy3ri88Gd6BHB08A9wMHuURzgkCQpNPC5FUg7wXWI8DWIYpAOq7wa04j8hwZ7RxpNLOPGvsKwYXcAEB09lfS060hPvw5R9FFW/jNE0T9QRoja2v+jsur3rFtfSEnp5SfnYb4lohikvuE5XO6aYzr/oANTYdZgWZCDfsTQDFFdgbwdtLpBlOhf1YS/qR/7e1WEXYHjX/njQLDTQ7jHh3Gq3PgqtEPxI/qCOD53e6gzyaaTS7QGwg4/qgQ9xsnJEJawPrET+1sVA2W5Cff5uS41jtJ+D6+2dvPPSrmxs1yQQ7gvQO/HtTg+rZN7/GG5gTNOSCTl7skk/WIC0fOyiblwOFHnZZFwx1gABIWAKtEAEnjL7dj+JaeZdpsD1GqbsZ4jEnV25jE9b8yleWjzY4i9tuCIJiGA9loHrVW9jJoz1DSptUpGJ5WSansDgl654f7kZ/LBWb8FUzIg0J13FSUlJRACBQq6u7spry1nimUKsbpYzsg8g711n3Ohy0WWY6NctmM9LLkVXj2H5v09JGZFoVP50Pka8CdMQHWCI4bgBEYNCYKwAOiSJKlUEIQ5B3cf4dQjyp0gCD8BfgKQmXlsX3KEb4bLVYkkBRlV9AxJSQsOO56WeiU222pG5P8RQRAwGfPIG/47amr/RHXN44CARh1LU/PLg9e43dX4fB3odCd/ktHR2LvvJ9hsawBoaHia/LwHyMi4afB414t7CfcH0BfGYZmfjaAQCHbII574m4vQpB4aKikIArrCOHwVdmKuyKf3g2q6X5DTGWtSjJhnZ3w/D/Zf2NTj5NnmTp4ZmUmdx8+aOiuXqgWSMody78deNQKFSZ7VutLeR24AllRLmKep6AXibyxCGaNFCot4dnXhr3Hgq3PIjnOVgnlnZ/C4APfXyCJwZoaR9JlpSEGR/i8aCSCLpnFiEs4NrdjzLCzYXsm/R2WTZ5R77FFzDn1XIbPcdPS8Lyd70+ZauMF0F/lx+Tw/93kUwrH1aXW50ehyo//rOS2VPQgCjDr9K31UTw+jOh9A0IQJv9WA0roLzClwycvQXQEuK4y+gk6PXM+07DSWO5dTZB/J6S3D8DTrqcqq4q6Jd7G4aQfQjvbK3xPX3IvO7YJywNmOzWpn6sUj6ahdSQoSJcN7uTr1cKf88eZEjghmAgsFQWgE3kM2CT0NRAuCcFCA0oH2I10sSdLLkiRNkiRpUkJCwgms5qlJX/9edpbIybnM5lFHPEevz2Da1C8wmUYM7ktPvwGFQkdb29u0tb1FQ+Ozg8fGjJEFoXTX1Yhi8ATW/tshSRKdncvZWXIJ/f1lgyJwkOqaR5EGbNZhV4BAYz/hHh+uzW0417cg+kIEWlygEr524ljsFfkk/WoChnGJaHMsoBQQNEo8u489kuZE0e4LcFtFI5t6XUzYWsHle+t4MejmqpkG6nRDfTTDuEQ8w8ycvr2KTb0uZgoaQu0uej+qAQGUsToEpYLYK0aQ9ugMlFEaet4ecAOGRBQrmrizciis9u2ReiRJkkcRA8Rckod+VDyJPxvHp7oQtR4/i74m2mjv3r387bV/0J8cRmHWkHz3JMRrkugOdDMrY9Yxi8DRkESJ9hoHHTUO4tJNaHrKYevzsi9gz9sIhGkPFKBsWg+CAm5eAdmnQ6e8xCUBN52dnSgUCm657hZ+fsHPGaFfwd3SmyxgNW1tbWSE4VcN+0BQwoh56OctRLjsRXznvQhAsraOIs2nGJfdRRh4ybYDUTrx/qYTNiKQJOl3wO8ABkYEv5Uk6VpBED4ELkMWhxuBSBjKSaCi4u7Bbb3+2EdcCoWaESMexu2qJj39enbvuRG1OpbRo55Fq00hMWEeXd0rcDh2EBs780RU/VvT3LyI2rr/A2BnieyaiomZTm7u3ZSUXAKSgvY/bSX+uiJcm+XebNwthdjfrqR/ZRP9K5sA0GRFfe2kMYVONej4i791NKI7iLfchuPTOoJWN+rkE9+7+0/2OT38tdGKWhDwhiWG6TQ0+WRT1c11fv6dq2Vpt4PfmYecrE81WKkeyCM0Iz8Bxc5+RGcQVbz+EFu8oFZimplG34qGQ+55TVOQW2Ms3ImL15Jgtq2PeQnRxNxUyHMOB9eq4WCfv9Er1+WNdjs3pMYxymygu7ubNWvWsGDBAtasWQMCfOwp5p577kGlVnGgVY6kGRk78ju/H2t9H9s+rqOtWnYQW5QdXJT+d3hZNhf6gyHWbtlBq+bH6KSFZEolTLzqAkx1a6HNAi0DARQHPsN3wMc1um6UXRdxVtrpBMOyP208+1neuh8U2+Vzz3kUVENhrQ2dSRQAF8f8DjZAm97MQ4nx2JVKDvQcOOZcSd+WkzGh7F7gPUEQHgN2A6+ehDqc0oTDHrzexsHPwjfsUaWmXDa4PW3qFwAoFHK4XmHhk9g2raPbtupbC0Fv7zZq655i/LjXUKmOz0zV+vpnaGh8FpOpkKSkBdTXP41GE8fYMYtQKvWMyH+UA9UP0Fj0R+r3BlDqDSgmaGntCeKb3kF6yW/RueSm61gbc0EpoIzSoB8Tj2N5Pe4dVqIX5h6X5/kmPFbXzsZe2aR1XUocPx+WyCvbGrl4fTdJosCOMRbW2fs5P8FCucuLPRAajPoBmJESTcI9k/E3OVGaDk+EZhiXQN+KBjTZUSh0KoyTkuhf1Yx3j40/C3DdBUaea+5iXkI0pYkanu5w8vTWCnL0WlK1akr6h+ZePNvYyWUdNezatQufz0dVlZzHZ/z48ezevZv2jnYyMzOptMsjkBExQ6PV3t5eoqOjj5pT6D8p39hGV5OTUbPTKN/QRo52GyZ/DURn0u+w88raJvoZDkByfDX7KkbR/bfPuCz2j4eVdQFrwAd8fjfNwx8k0+9kq/M6ppvfYmHDA3BQL6cNzdUpW9/KxhUiYvJVFE42szMmmVurX+OagmuZ3tdASAwddp/jzfciBJIkrQfWD2zXA0dPDB7hhCBJYQ4ceAhJCpM3/H7i48/4TuUdFICDKJV6oqMn43B8+9jnsvKfEwz2YLOtJTl54VHPt9nXy5FNWT8/onD4fO2DJqzcnF8RH38GmRk3IwjqwUZDG5DtwT7LofHugleJpAnTVfAG6nQz8cI5tGo+ICr8JErlsSUDU5o0GMYlDEbn6MckfK/J6fpC4cHtm9PjiV7fzm0b5MlhEhK5Rh2fdjk4p6T6kOteHZXFrBgzUSrZWakbfmTbutKiJfmeySijh9bmDbS5CFrdqJQCC5Kjea65C1cozCdfEZh6r596rxx0cLsmxHaVgdX2Ply1LeQEAqiArKwsTCYTZ511Frt376apqYnMzEyqeqrINGdi0sjfd3FxMStXruS8885j2rRp3+z9dHlIzDIz++oRuOwustu3I0VnEfpZCWs+eIP+mhZu4gPWpNxJS0crQmI7wymV319MNkJvA5uZhCUcYLRyHwBiOETnsn+TaYIW/ziiNA0UabcgooDZ96AY+N1JksS2j+tIyo4m88fPIMVoePCj+RTFj+KuiXehVx0eCnsiiKSYOMXo6lpBh3UJAMnJC9Fo4o/7PSxR42lofI5QyPWNe/RW66cEg/Jwutu26piEYO/eHwMilqjxJCaeN7hf9IUGypFnf06ftgaDIQsA3z4H7tJODGMTMUxMRN005BiME87Fra2gYOTjREdPYXfpDTjYgdcN/ewCwNxSSFbWHcf8XJZzs/DV9NLz3gHiDWp0+THHfO23JSCKvNTSzV6nl4WJ0dyfk0JKT5CugXQSAOo0EzemxuEJi1yeHIOAwE/2NwJwRmwU+iPkHDoS/zkzVzcyFufaFsyz0pkRbebppi7W9PTzWXcf8+MtXJUSy36Xl2i1ilfr2wiuWUFMfAqegkmsLZhIqnosD40bick09PuJiYmho6OD5/c8z+rm1cxJnYMkSXg8HtauXQvAxo0bv7kQdHvJHiv7Ic/LXYrSdgDSLuGTTz6hvEZOAJdFOzf/+Ha2bt1KeXk5qR2duKVo7HPfpfyj+ygNTyHaNglFyqcUiW+haC9hskmeJ9AbTmOL+y62WBbS7rMyS5zCwZkBAV+YgC9M7vhEzLE6Nrdtps3V9r2KAESE4JSjvf1DAGJjZ50QEQCIjp4ESBw48CBFRX/72vNkE1XLIc7oDutHGAzZWKIm0NX9BeGwH6VStqXa7OtpbX2TwoIn0WjkUE3ZKS0707y+oayNojdE+yNbUWcY6Zu9C602Gb1enqofdgfp+eAAiOCvcaCM0uCvcJFpuAdm9ZI3/L5D6pmWeQ3+eiupKVdQV/8UIIvUNxECpUVL0i8m0PH4doKd7hMqBAFRRKNQ8Ea7nccHksRdmRxLhqCk4+VSUEDSXRORQiLKKA1JJg0zY4aihp5s0JJv1B2zCBwJbWYUib8YjzrFyFRJ9kvctl/2sVyVEkui2EBBXBwZ5mQS92xnpxgmr6sVpSiyqmgKaxV6rgoLKPrcTLDIpriUlBQ6Ojp4xfsKSlFJ0r4kFjUsIiUlhVAoNGg+8nq96PXH1oj6vSG8ziCWRD2E/CjL3gEEPNN+S/mr8v/KzOlTYXYTCoWCmTNnMl1zAMVnlRwIj2LNsj10MZ7LF15NxWo765supV0Xz9nRQ4vYJ+UlE5NspHyjitQiHZs2bSIjI4P8/HxcPbIfxhQr/8Y/PPAhsbpYzsw4k7DDgb++AW1uDkrLic1fFck1dIrQ2vo2JaVX0tO7mezsuxg/7rUTdq+YmBnExc2mq3sF/f1luN11hxx3OisoLp7L+g2j2b5jPl7v0MQrt6uaqKixJCUtIBx2U1P7JwDCYT97996K3b6eru4vBs8/mBYDwOttRZLkNWPdpZ2E1P2Uj7yczs5lWCwTBs1AgRYniBB/ixwtZftXOcEWJyn5Cw4TAYDkpAuYMX0dWVl3MG3qKjIzbsXprBycS3GsKM0aFEbVIZOsjieiJHH13jqyN+7jldZulnc5Bo9lvFqFq7gdyR8m7rpC1IkGNKmmw1IxAGyYMpJFRVnfuT6aVBOCIKBVKHg0b2jEdXqMgetXXM/8j+bzRcMX7Ni/g+F5w7ns0kvJtbVzbvk22v1BFuyqYf6uGp5t6mS7w0V6ejq9vb2YAiYuDF9CyBmivb2d0tJS9Ho9+fn5ADzxxBM4HI6vq9YhfLbscxyxe1Do/LD0dvDYKR79Z/762kdo8XNvXi1nJ/aAzgK+PnjlLBSf/QqA7ap8uoIHSIrOoGhyDpaBSLIm/8TB8ptmfcw5PxrFaVfmEZWgR+NOBOCdd94hFArRZe+h29iC3qKk093JhtYNXDT8ItRKNc233ErTNdfg3bfvO38XRyMiBP9jSFIY6QjhZgeqH6SvTx6qpqac2IWwBUEgMXE+ohhgZ8lFbNt+ziHHu7tX4vU1D35ubXsTSZLo69+LP9CJyTiC2NjTSIg/m7a2dwiFXDgc2w+5/iAHRzgAPm8ztjfKqX/yPQ7UP4AjYyghWGrq0BKGgeZ+UMjRP8aBlMS6ETEYJn/9TNODGI05WCwTkKQATmflUc//T1TxBoLd3z4fka+m95DEbF/l0y4H63qcaBUK/lDTxrY+N3kGLRcG1Rh6/PSvakIZqxuc+PZ1KARh0IZ9LEiSRP2ebryuAOGQSMB7uHPz7LgobkiN46WiYRzoqRjc/+DaBxE8Aj2GHopGFTFr1ix+NGEMadohp/Sf6ju4cHctvuw8BIVArjMXoUlJZmYmF1100WAdYmJiBrc///zzo9bb4/Gwr2IXQU0/oe2/h/0fATCj7D5GCzXclNmKvmYZLL8LKj6FDU/AQLRS05RHqCcTrcLEtTddAcDYMzPQGlTkzRrBxv4f8ZnzYYadORdDlAalUsHwCQm4mrTk58oRQOs2rePOfbeyZMxTzCuey1mLz0KURM5NKUT0ePBVVWGYOhXdqCOHdx9PIqah/zFKd12DJAaYPHnp4D6vd8hkkptzNzpd6pEuPa6YjPmHfPZ4GnC6qrBaP8ZmW41Ol0Zy0kK6bWvo7FyOQT+MqgN/AMAcNRpBUJCWdjXdtlVU1zyGz9eKQqEjOflCrNZPEEVjKMZFAAAgAElEQVQ/jr5dNDY9L19jLsLjaaI66tf4Mg51+Kb3/4y42NMIuwIojGoCzU45v4tGSfQFOUSfn4OgPvY+kSV6EgC9vcVYLOOO6ZoSawnP7n6W21WXEdukpaSujfm584/5noA8aetVeVZtzOX5aLMth9jmt/W5iVIpKJ5ayGV7ajk9xsxDw1Oxv1qOH0CSBe+bRtUcjQPbrax5rZKETDOmGC2OTg/XPHSonV4QBJ4YIUddvbT3AwDum3If7655F4D3be+zftl67p18L1OSJrPS5+elj2qotjr5YqJsGvpHzWaSTV0M7x8OyiAFeaPJzZWjsBISEgaFAKC5uRlRFFEovv57rdi/HwUiYylngnstAdRokOe/XBT6BA72VcIB+OB6eTv3TLjkZdJ1MSQFXqZKX0VUtGxWS8qKYu6Dadh6HGzZMpfSzC+ZG/QMrppWMDOV8o3tqLrSgUq2bNhCUlQCBrWOxqhGLJooLjF301H1U9KjXwdRJPbGG1DFnHh/UkQI/ofw+7sGe/2iGBiM6Glv/wAQBpylJz6lLYDBcGiYZHPLa7S1vTX4OTn5YnJzfoXBkENF5d20t3+AUmliwvg3MZvl1IxRUeMB6OgY8GvEnEZ83Bza299nz94f4XTKE3mSkhZiMOTQ0PA0/IcpVSVGY9o1jeAMD53P7EJfGEegqR/DxCQAeQGWbziDX6uJx2wuoqt7JcOG3YYgyAUEAjbqG55lWOZt6PWHZk55p+oddnft5lO3iZ+FrmLP/ieYYtF9o6it/lVNg9u9H1ajzjCT8OPRKDTy/es9PnL0OuI1KtZPkePrJVEi2OFGk2km2OnBMPr4Ts4Mh0W2fyILb3ezk+5mebSy/dN6rPV9zL5mBNH/MfluW8c2CmILuHLElVSvqcatdNOv7qe/t58frfwRd1RMQ+j1YlHcwmQgqN/FuvwidvgCZJn2MtM9k9i+PKKVaZjNZq666irS0tLQarVMnDgRr9dLRUUFH330EX6/n3A4TFFRETk5OUNiEQ6SsPJ27qWJICoUSHzA+agI00k8NxeFidIpkbJPhw9uprfBgHbyOIyX/QtJZyHY18Pzfc9Dn7weQpJR/j1d9Ik8Qjnv7AvZ17eeZXXLuHKkPBrtt3nJGRdP7e4uUsel0t7YTn6/3GF6ZM4j6EwltDf8BYCdjhuJz1KhKyw8rt/X1xERgv8hvmo7d7mqiIoaQ1fXlzQ2vUh8/JnfmwgAqFRGJk1cglodQ/n+Xw6KQGzsLAoK/oJWIzdI8fFnIQhq+p37MBkKiIoaM1iGWh3FqKJncDr309T8MnHxc4iJmY5Ol4HP105szAxyc3+DwZCNw1EiC8EAqalX0d7+HlHqCUiBMI7l9SBKg8niNBlmvgtpaddSVfV7mlv+xbDMHwNQVv4LHI7tKBQa8vP+MHiuK+Bic9tmrsi/gjnK6TiLtzLVVMnefT8mPv5M9LoMRNGPShXF8OH3HPF+/qZ+Ao39mE5Pw1fVgzJah6+6h/YHi7HckI+pIJF6r5+pFhNhdxDJF0IVp8dV3I7oDmK6MBf96PjjPhoo/bwRV6+febePZuWr+wkHZbNkyeeNAFRsamfyxcNQK9SU28q5ccWNBMQAN4+6mYAvgLJHyZlTz+QL69Bvd6+invz+WPxJ3SwvfB6XxoHReTXO6LNw6Hx8nvk599UvYsviWvImJTFy5NCksgsuuAC73U5FRQXl5eWD++vr60lMTOQnP/kJB3ZtJnHlHQwLyUkNlAPNYCsp+JBHWMr5d4PRSPP1N9C3K4V7blFhN3WwWiGw640/8QveGyx7d/duzjOeR6e7c3DfF33yPNm+gLyMqbPHx7Jn5XQjfVobptwQ6/zrWOjNx+lI45Mln5AcY0dvmUZI9OJyxpExv4WYQIDvI8FORAj+R5Akkc7OZSiVBsJhD319uzEYsjlQ/UfMpgIKC5743ut00GySl3f/oPknI+PGwR40gEppxqKegiOwBZXrcNt1UtIC+S/5QkzGPARBycwZ6w87T92RgdqTRIL3IoZfdBtqtYX8vPsJ1HuxU4G/uhfTzFTUqSY8e7vRjfgWw23PgNNQoSQt9Uo6OhbT0bGEzIwf4WjdPejH6GpbRd7w+wcb3cXVi/GGvFySfwn5hgy2t/8ZMaSlMayH/0hzkZJyCUajPHnpgwMfsKppFWennsmMz7JAJaDLj0FfFE9ZeQk/Vd3LTR0LeWHnT7mq/0e0+WaTFafC8XEt3jIbsTcW4ipuR5NtOSEi0FLRw87PGhk5LZnssfHc+OcZiGGJ1+7dAsjJ4j6qWcptb77BmsvX8GH1hwTEAEa1kUvzLqWyshJRFBkzagwXN95IWV8p1qR6ikd2sX2EnbDwGACakJ4bhHN5ShAIavPR+MqYckE2K1/Zj6PLQ3z6oaIeFxfHvHnzWLFiBQBnn302q1atoquri8cee4zZbKOIdtYwg6JQG8mqJogexq+vu43y6g5qm5rwL16Ms7mF/c07ufeeg/6KMM9t+ik7g/tADdfa81ma2MLaDa9TqMvmgd1/QiEouCTvEhZXywmWn9v9HEW7ezF1JrMhZwsmfww7Mz+Heog3ieSn9VNaIo8erb1x0Bs3+Bw2IYO3Vm/k6UtnkWk5sZ24iBD8j9DS+jp9fbvIyfk1ba1vY7Otxe2pIxCwMXbMy6jVJy78TPSHEZ0BVEfIAw8QEz2ZmOjJRzzW9c896MRCGL2FgN/2tfcwmw5PJSCJEn3L69EVxuHZ1ElO0xMk/WoiarVcD6XSgDphyEYcdWYmCoMa44BZ6BtR/SW8cwXkngHXy/6XpNgFVDc8wtp1wwdPS6i6mu6R71JWficxMdNIiD+Hj6uXMj5xPEVxRZSV/wJ/VCPRraezOFDLbcP6SLKPwZco9xZbS5aQf9rdOMMuHt32KCCbUn4Tvp6zQtOxvSL3cpNR87TmHup0LQiSwIbWMahiJEYvacTbJ/fKl2x5l7k9Y4k6I/OYRMAX8qFTHdskOUmU2LKkBkuCntnXjECURPQDEUjzbh+Ntb4PY5qCF6p+AUCFvYJtddtY0L+AWy64BWulla1btxIbE0NzqZek3RNIYgI2Xy37daVUJhWjC5jwaVzoQnBOehJ/7e8kqM2jSAoRkyybmxyd3kOE4OXSV8iwpDOzYMagEJh9TuIdndii5e+9iAPUk8EmpqLx2kk2vwHZpyOIRvS33Mpo4GDf/st58u9ngnY4u/y1vN8mi8BplSIXflyBdYGaNSPL2P/R9bSbgvxhyh843zOcMR9+zIOXy07ze9xvcu1OkcoFh9ogMzUiodDXN8GNcckUZ4+i1N58woUgEjX0P4LDsROtNoWsYT9FbxhGT+9m2treJjXl8kPMLccb55Y22v9YjPWpEkRviGC3h/51zUde1u8/CPX4CLa5MHWPQxDVRNeePbhcYeczu3BuaPmv1wetblzF7dheKcNf34dxSvJhi5J8dZlCheHw9AjHzDo5jJXGzSDKDa2lZQ7mjkOdognh81H6o+ju/oLq6oco3jSPsL+GM0yn4/d309X1OUJIS3z9hVxkP5eH23U0h87hNy16XH4djdaNbNyykpnvyuk5fj7+56QrUxGO8K+aGUhmbv9kbu79JfviYri1LsCoAREICEEa+mTbvTr/6OtPb2rdxOS3J1NuKz/quQC1u7qwt7mZckE2z+57hnFvjmNZ3TIAcsYlMOOS4SwT3xk8f2nNUqLsUWjtWt5+7W1WrFiBw+HAX1ZP6edNhP0VKFUu4tuHc7PlTs6svgGfRk6L4dJ4qduyjGi3B6ViFMNjclFGy8/55aJyPnqylN1fLGPNG//iww0vcs+Wu6mzyf6UaE0yG9/rJNTlZaRtD9PUVcTTSw/yLOlKz7mIY66BOffhr5HDnFvjwHPmFBRzZ1JcpOTCrPnclFzDNGOIyYYQCy0BFnaFkFQSc3cFCagFmo1eftp+BWfXTcS5ciUFLRKPvwVnt8fTbxR4YUAEvvpfkd8+i5oDswAwqOUlNAVJAElism0dHXoLRp+Haf8ReHEiiAjB/wgeTz1mcxGCIAzmAoqPP5Pc3LuPcuW3J9jtoe8rSxC2P76Nzr+W0v9lE779dtw7rV8bKimFRHlSF5D681lMi9+IuWMS3v12uheVEexw49raccRrAfz1Djwlcr9NGMgrr0k5fBazoBCIu76ApF9PPOzYMSGK8OX90LEHotLlCBKnXK+Q1Udyy41EGScAYHAVEm4LkVX8GOkld5NYdQ2BoMidiX7y7bvZvGUGAiqytj2MVpPCRbHnIyLwp/A/CSPQIgawRlVzZ4P8nY1TF3HBl+OZ0TmKbH8aXqWf/swQVVfIDaRoFFCPsNBjGoUgSaR7dxMe0MH90Q2M9uTTrOlgW/9/T/fhDrp5YqdsOrxv0320uf77gjqiKLFzeQMxKQaUeR5er3gdgE9qP0GURMKinNJiR+cORjAGVVjD2pa1pPhSIDwQWiopiOotQsd0IIBS2MpNT5zFLU+dxnk/GUX/tAND91PA1qqP8LMblyGZ94NpnL+3crBRbWnoZu2/X+IfnX14Yn6L2a3inXVLmJpxLqnRu0ko2McNOVpOM/2GCa4zEMUkVKoZxHVOIygZ4KLn8VoNOJaF0Iy/nqqLr+LmybtZfmsBPrXEjGgNoujl10UX8ezodznDHEZzXQj333MZO2zqYD3P7JuKt6yLYFsr6ox0Rpvz+fHrVi7dLFLQLFHkGIstfRFX6tL4ld6C0FGExxtFdk4J0zXLyJWaQRIQRCU74+cypruJ0c21eN0nfh3siBD8DxAM9uJ212AciNRJSbmUM+bWMnbMy4MzcL912Z1u7G9V4K/vO+yYZ083SJB8z4DZJzTU37G/VUnvkhpsr5QfsihLqM+PJEq4trQTaOxHPzoeVaJhMJFbz7tVSAG5IQk7/Fj/VoJnz9Ci6QDhPj/dL5fhKm5HGasj5f6pRJ2XhX7ckSNi9EXxX5s2+qh07Yet/5C3D65E9a/zCNkceHZ1oU9IYfLUDykIPU/qjp+iGxGDZfJIjD1FxDSfw5r6sfQEVXijvgBEUnbfjk6VKaeotgW5qeimwVvFOLPIUGhJCcSTGk7kD+W3ILqCFHpyyfGn817sF1xp/AWbfdt5bNgikn42noQrC9iSqSbO18U/Y17itdiPAfgwdTUjfMOo0TXzUskLhz2WzWtjR4ecNfON/W/Q2N8IQFNfE9ctuY4uj/zOg4Ewmz+swdbqpOTzBlqreti3tpJeq4eQdysv7nsBrVLLZfmXsd26nbFvjGXB0gXc/MXNNPQ1MClxEgnuDBSighhfDNmNTYyoEInvnIHWH4dClQjBDkbPPBNlby9aDaxrWcfOnu3cOe5O3povBxnUnmNA7dmMgB6/8TTqAzqib8kj4YIAb0y4h46ENLZOmktd1kjO3plNwuoSfPX/YJzxU+Yq38QTkmP9A1IBzvDl1HgTUEiyKatnQwttb8opKrTDZnGx7Qxu7bqYt8rfJEVrwuD4lLi42RQU/BnTyHEkJZ0PQL+yimH/+jf3Gh7n0Ya70Ehq/HYPgdY21GlpRC28AGV8PPMMt/Crz3Ow688HhY7lCT9BbJlJQNdLRoyFtKRK4l9VMen9rSR29nAgVp50FuXzcOXKZaRHHX1E912JCMEPnO7uVWzcJMe1G01DQ8jv4hiURIlwfwBvhR3Hp3V4y+04Nw7lp/Hs68b6VAnONc1ohkWhitURc1ke0RcPJ+H2Q81QoidI33J51OBv6sf65x10v7iXvhUNaPOiibu2AEEQZP/CV36NcTcVARDq8tLzQTX2tysJtA+YCnYMLReoGx6NQqMkak7GYBjlcaV9z9D26IHV1/qaUf4jB6XQgTrBgOgNIa41oDHGEnvNSGIW5pL8W/k72adtYa9NXmkrrvZizN0TiZqbgTrRQJc3wOw0ecnu2KCF0T1TeVl9I2W5T+GMfQDj+GGk/nE6c6adC0B1jBzYvqRmCYaCeF52uni8o5sDWgXXjhjN3+f+nc06ORnaqM4sosImYkMW9vWV01xRg/WvJfhbnTyx4wnmfjCXW1feSq+vlzJbGVlRWbw99z1uCN3E7IbZvLHnDQDqd3ezd00L7z+2k+2fNrDsub0UL2lDEt20d5fg3uZmfup8fjn+l6QZ01BKClpdrZR0lhAl6bgwqoDzyudzTclFCAiktnegUCYRG61ANRCzXxQSya5Lo/bMs7A+8ggfHPiANFMat4y+hcK4QlQKFTXOWsa7+rn6k1eIs8kh0tsD/Txqu5top4b6zKHffndcEmYhwMXq5eQ3eIixJwEaTOq3UNCHXyzANFnOtxWnEvB92YQulESnys5VeffwWfRGLu05iwdbbmOyrodw2EV21s8Hyy8o+AuJifIckG7bSuKbYpjky8cVllAi4a+sQlDFEHfTTYSfeJ8S/3jaCudRnz4MQRRpFHJotalQC0ouHpGPYZcC57lhHJeHePiqm1g7diodOtmnd2B0EXXFxcfhh/zfiTiLf+B0dX8JQGHBEyQlnn9cyuxdUjO4ePhBfDW9iH55WN/7UQ2ST+61H1zi0PiV9V+T75uC6A4ihUVcxe34GwZC6NbKDVlgINb84GLiAIJKgSpOT6jbS8zl+ehHxpL020lIvhA97x3AW2bDV9VDzGV5+Gt6ETRKFGY1plkneKXTjj2gMcFvq0FtgLl/QKxci8JajClqO4Y5Fw7O9I25LH9wqUdVvB7VjzNp39zNvM5Z5HXdQtxZ49BeFo0qVoenrJvbJ+tpqGrkhdlLSS9z46jfwUYmIAlK6i3RvK4QuP2dSrzldtRpJt685QNeLXuVp3c9zbzseVxfP2Q6s75dR/6No+nTe+hTu7jGJjdUWcPyAPh82fss6J3Nh/96nTeHvTl43cev/Jt90XtxiW5e+OgVkhxyA7Srfhd/2/EO3jYXOp2JzOR8YlMMVO/oRJKUBNQKvMnDSPRqMNWaiJ4bzdvJ99Hx4zvYP1KP8uzTKXz2S9RpT5Grn0Ht8CygmaT4eGwjJhCdZGTCmRbqnn2VZFspjp31hNTgWbaE7Xkark67GF9xF6bpqTwy4xGUAYH0nnyaSz8jbvUmFl2QxKeCnUt2JpLereeNS0aiCPUhqiyMz3dzk6GNF5P+yI6YZK5v7CcvAJ647ZhtPvpCPyKt/jL8aoFJxqEmsE7XQp/KxdKMdxgTSGOyexSBXXfhSUvAcsZ4ent7UavVmEwmjMobCIVWUVb2U4S0Ivzu6+iw2kg/UAxIBK0qPDYvO5bLeadDp3fh1hv4w6vP8eb5FxPWachorOfLqjJ6FTMYcetmbAzk/hIElHEOCvYdoEk5Drfi6DPevysRIfgBI0kiPT2bSUw8n5TjlDZCEqXDRCD6wlwcn9QRaHIScviQfGFiLstDCksYjmCOUUVrIVp20gaanHj3dOMu7cR3oBfz7HRMp6fjO9CDvujQpHcJPxmDu6QT/Wh5/0HHb/JvJxFoc9H13G563pVtx+a5GVjOzTouz3wYkgTWfbDiPmguhqxZoJFNV+Lku+jcejrxwu2YkqsQorS4d3aCcPjchAq17HwsdGUTc8ZojGOG/qEDyQYabPII5o4GF5iAMbKJ7Re2DewWZ/KOxcW1+92okCOeAC4deSNB81w+cimAoXw6qT0hVry4l0lzJ/N5xyauts8DYMTF0yj6soA345eT48ngLcs6dEEDv7Jew6LkxawSNuMN+Agrw5icQ850d6+bT/QvMdc4lyBw+X3X8M/b1yIhISCgDetRSibcqm5og+Xvruc0jR2lBGMqvVApd1Dc1g6MqW0ENCkoAwFSFz3D1geqSC+MI7HPj9JdT6i3nr9dqqAkX8Hv3wsTQiTnpdU4cs5AaVKzYMwCOh7fhujuxGAq4EDzGoZ19NKcmk56tx5rfCqdiWkYe97EbDyPt1MuYlT3JB4aeToA5SaRpcV2Wo1aJvd+hl1RRLR9/CEi8OvsP5Nh7mG+OANnfCybD2RzNZBnmcK+Bh8tLS28+uqrpCSmEWdJprymFJ3iCibNfBtV0n4ak36HIEbRf3cUBkCVMZ0PHtiKW4Jzbx3Ooh7ZkV5UX82smr2IgoLXz1hIdXo2AFOkqewQZgzWpzfXRG9uH38TzqOg8MTP/4mYhn7AOPpKCQS6SYg/67iVGeyQHVOm09PQ5kVjnJ6CYUISKMDf0Ie33I4yTodhYhKmqSlHNUFpMmQHbu+H1SCAfkwCSqMa44Skw3LyK80aouYe2cSjSTMNLmYOYBh7gpYvLV8CT+XDS6fLIgCyEAxge6OCsCNA0DIXoWkLdFYQaHGiSjAMrkwGsKZpDb9c90v0Kj2FSUX0r24aNG3t6ndTfNAsIqgY1yuPtDRBEYPkJSfuXeY56rBrFay5NpvYawvQFcRS6fIydVslDzX0s3Qgodx10RbmOEIEjDtp0W4koSyNNxKXcfGIX6G8KoM///3/uDrpWvpVbn6T8xSioZffd9xMk66NAtto8rvHML9lPqP7JmEMG8gdVoQkCsT74pnbMXfweXbWlbK84Hmc2h78SjkAQBWI5o7wEsw42V25ge46OwgCecXyPAJlchKasIgv0EpY5aEjysH8pRcS8ocxR2nw7OlCO3YsIlCSLzdF24piiHdoyKq2E+rYQ+/SrfR8eADRHcLma+OTZtlfE9fbjccQz9rp83DOykcphnhh0RoeqHqNKlMOF8+QRWD2gX00GxW05Lopq7mOBreJ/R0fUjtJnvAXVnl4K+lDarWtTI+3sTJ1IR9pruSvcy0cSNVhkIL0eNtYs2ITAB1dbZTXyOY3n6hga/GVdLePJNiXhCT0owk66EibTVBjxi1BVOZ2tjuv5k31deQ56iibMhGTGGRPRh7V6dnMLt0GcIgIANQGC/lSXIBe8jLSfuIXpokIwQ+YjvYPUSh0xMefefSTjxHvfhsIYJ6VTsKto4m5cDgKrRJNuhn3jg78tQ70Rcc+OUkzLIq46wqIuTyfhNvGoEn79iuOaYdFEX1RLlFnDzsxSz6Gg7DsLnB3yWvKpsmRRr5wEf46ef2CQKMc5tdrPQtRoUf84jF8VT1oMsy4d+zAUyLbrx/e+jAAC3MXEn1pIS5JxL3TSk2NjfmlNdxS3gjAkyMzUOywcc4eF79Y3sfIVS2kqPyML1rDDIOeP/f04Ph/7L13dF31lfb/OeX2Ll1JV71ZcpN7rxgMmE4CJJQACYQJJJNMSEhZqZPMhJRJSGESSCCBAAkQiiFgMGCDbYx7kW01yyqWdFWvytXt7ZTfH0dY+CWZyczAO29+i72Wlo/Pvafec777u/d+9vPUuREEgaeHw0QUlYB5euZe+rvTLDl2ENVkDM5CLEt1pIaAtYye1BC6rtP4RiMu0Y1XcXF332dZlpjLDWOXUpoqplTNw6yZqJ8wZp2RuEJhaB0VsSrj2kWDJvmX2/+dQVcntpyTPl8zqpjFnPFQpUc4j72ook7joEBvQQG3bG6n5Kf3oA6PEHLZCNYUoZhjxEwxUiTYOvs3lPssoOgcl/N4Zq0xDAkaVAR9XLa3GEcGMkfuI/b0V0k1jnIsNsSu4T9Raq+n3r2UhlPHsWRSHFmwhueLzqdycJD6RJSrJrfgVAx21xV9L1M58hIAz6ZD5M19kC0DS4gpa2l6pphtM75H47Kv84qljUCsFI9uJsM03HiPGObl2JtEfa30DJ4Cbfq+NygGb5Kqmuk8PZ9k3yrGB8sZX2UibvWxI6YgWaK467dyTFmCJkh8OLKFCa+XdStWUNg/yLcf/AXfbXp3/r+acYLmUvZJa1iv7yQaef9RQx+khv5OLZnsYXjkecpKb0KW35tBUVc1ko0hLLVeJNfZ9MT2xUVMPt8JgHOKsfNvMUEQsDW8d7oHzpXvD2FediCOcPpFTJko+lUPkdYWkOpQcC4aYuwZmSHTDjqtfaQ9GS5MrUXPuohnr8R9+glk4TJSJ04y8i1De2H2yTZUTcWj57Hi9BVcR5DD5zo59OoQD4xPQLVxbwtNMi8dHqBHV7m03UBWzVd9xIQNaMo27ll0D+cdPs1dbV18z7OVA5MXs8zt4F6Tl68ODFNwZBJByxAhdNaLvHhiEXWWZRzZPc3yeV7PBjYqc/ApbvbLp1ip1PPxzAYA+sVxXpWbCRWEKGgxmq4k1YYixkkuTWI9aKV6qAqfWIxJs1AWypCzT+LMGqkwt6KBDKfVIMryJTiPvEH/lkZ0v4/adYPssNQAEDcZEVGvp5XxF45iw8X9ZS8RbDAcwerOTYAhTambHZSt6MMZyNCx7dN01l3GHO8q5nhXAVDSn+HGw9+kRf0Udy2vYmlHDE9FCjVj4ekDHQi5fJ727WTIYux7Ih0hPFTIkvwL+OXaJcRlgbuPRviYfCc4hqnq30TbttsIX5LP0sgop01WtLG9RN8x39kxu4G1na2Y1AwLmzuonL0aExLPWw5hDc3l8KSD/tljzMgfwlP5J2zlBzhy5HLsusSGikNY0yoZWQT119y6sp/KS24hbg9y19D3cYRkfuT/POVKmN8sXc0XXmijucrE+cJWZhbMAar+5w/5f2AfOIK/U+vpuQ9BMFFZecd7ts/k0RBqOIP38nfr6toXFZIbTmCp8bxLjervwbSsSmLfIKZiJ3KVm1xWPdMJCxB99Dn8mc8CMPi4HR2jEJs8IrPPeZx/Kf/Nme+uWXwx7tcyxEcvxSU9jex+lv2nPSwpTeEIZIgMNRPNRVnVeyWnhsY4HDAgvD0OkTeKZJZMKAzYRGYjsG1/kOu8NsbNB5hZtAKaJTp3lTJvdYps3yFWZWO8MVnJrvAWjrGBSwU7L/+piXOAqGWcpxb+nAsHL0ARFPqcfQzaB1k7spaOIaN3ICWl8CouLk0upkj38MPihymcqEJAYIViFJJL1DyKJlbhD02Pekmnypg0eNYIUTo5Gx2NlDeHWYujpgsJZwOY4iks3jSpfCvg5lxrEeLuTg9yqNgAACAASURBVPZesZ7gFHw5JaXot/XyHfk2Th07jl0yIJE/Dt3Gc7k3OBHbS13X6TPH2rnwCj5Teg8A3pJJdGWYSusK1NgworOIQnshQvw7LAW278wwXDoHh7eeaH81BXo16eZn+XTDtwA4mNaIemejNjYTmTOPHUXGzP5ogZ1vdN1MiVDG/cUCj9dWoAsCy15+iqrV7yYD7Msr4sllxTz1yJ/Jak2k1uyi+K1/I19z0SifRtNFotFCwlVHieb82DvXo2sSYy4PM4YHSJrd2JwDYG8mC3REfgYRuKryM2ztHiRTZOGuiR7sE8u57FCCO8fGsC0cIyMmeW+Uu/+6fZAa+jszXdfp6rqHoeFnKSy4CIvlvcuVxw8MIRfZ/yJfvWiR8H1oBvb5/73jqZr6N3Ub/y2ma2fvp/GRnex+eBuvPbedaDR6Zn02rZCdkquc3NxBZGsPYw8189idu/jjt/ej5TKQTaAcfApX2iB768t9HP0dr53oMtOSfxpfzk2BZtyX51Iv4/vcAr6+uoz2kuvxZ7bzoZJnKV8XJq8uyeTOe0GHhppZrL2ljtLwKIt723msqJshK1xZ4OWRExm+8UaYXys2nIkBNClD0t5HYKGMPulH1wWOt3yH+WGDvOzrwk9RBZH87SPoQEqO01i1mZWjRkPTh2+8ikZ/I5evuJytZVvRplTbjucfZ7lSR5Hu4Vnnbqzj1SDAZMDC0WSKppSKKAhc6jFRbZ4eDkbVCPuK9pEank5LmHJucuYIql1GMRnrQ8OlKAeT2LNThWsdijQP2tLLGR2ZQMykEDMpWr2tzOj30P9agjXZq87s06O6+MTYlVxyeh5ek4fzSm5DEmRSmYO0RQqI5iyMuBy4yeCw+jElXkEZPo7gWwAY5yBGgpQPxpG0BGnpPJRkP5aZ0wi6kpROwlPEOYHreLxyOr0zZBNYm1uJKJezY9YseqYcxAVHTlLWNi2mdLysln5vASmzlYTFTN+SS9FWryFnD9Frz1Cq5ZETDBSdIGicHl7M+HgFwck8crYCWourkLMQj/ux2Q0EXbhzAwAFfTVYftHH7x3ryQuH6Hp2C+0vPoNLgJljRagP3U66+f3vI/ggIvg7svHx3YRGtzI4+CcAXO73TrBi8qVucv1xPJdWv+fkZG3jbXzytU9yQeUFfGLuJ6j2VP+n26iJHGo4janUedb5KBNpRu49ivv8SlJNYziWB/jz6Z3Gh72QEpJ4kzNZeEE5ux5vJ9gW5sY7F5I8Nopc6yHXOUm5WaQ9qaD9bBFicgAZSOBkCxfRZMqjXmhllVKPCZlEPMptsQ9xC1dQ9vWVfPrgXTzT+RKvdploLVrPjspN9A49dta5J9qPsMK+grkLZ7Nt/3NcHp4489kKES686jJScpKW3S0sChehM2qcfl8P0ANOCAYbqKhowsMwYPD1BPQB/BEFVRYIFRxgTsSQ+MxnkiW1i9lbvhenyUnTyePsKt7FjEgt1UoRM9US9lqbSYoCi7xmhjI6c8uWcfDoLmRTNXOsIpIgMN8uEc07SX2ijomJenIJM+KUhKIzfAo5swQ114vgTCOHTwLzeEu/kNL5GZZp9RzS+snXXdRqATKFfiwTjZi6dwEqS4c1TKa1yLaVNGWgRdtFLHKY9e4LKXPOo9IxmzxrJfmWfC4uEXl1UKUxXMbOETtmqYhCZxUA7rIoueR+EsICpFw32YQVPZsglk1RFBtHk6oRGQd0wod+R3LBJ7DHEuyvcLP+UiOlufJkisYaC30WhVORw2ytXoSg6wTGQ1QOheipvY6MeRJPNMm/XXYdumA4yBVjCgfzJF6q7+TWoRgPcgc9s9N8Y/MJmGnAbj32JJOJ6YnEvrIS8vIHMHfnyCkWnLqdQ52XY29djzSpUPToQa741l0MFgbYtPMFBMFCevt2lsypI6rqtHvn4Q7GeZ9B0h84gr8XU5QYx45/4qx1Lufsv3l7XdeJbuvF1uDHXHJ2oJkbSRB/awD7okKcq9/7HPzPjvyMWDbG5o7NbO7YTONNjcjiX370ojuDpNsmyA0nDFnFT8zFNms6Qom82oOeVs80qTUH28H8doQgED3xKotSP0ZrncAcux6bsJro71sQgDeOjTPfJlJb5uR0MIKcNKgUBinkIeFaKtRSAnkapyJDdEshKnQ/S5UqbDpIiKixHBbPuaQHdpHmYXxDW5GV6ea2NmYQl6PUK8OUJcuwTE4Qf4cTAFjQ38Xv7/3Fmf93mvvICCkUQUHWp+9JsG8umYyN2EQ16wqOotsV/iFwD/vnL0QfnI1dN6GjYyWDhkZfWxPx8XwiO1r4TuIWhmolnMUCrhYjInrZdZCqWCXBmIu8aDVHevuRzLUouV5eHdjB6sIr8ZoLWZueCxIszFTiHr+KWGoIxaMhTEYQbA50LUap3kU4rqHZxog6atjkNAZYV9aFb0oQwixImOWFZM1jaNkTOJMiZvcCrHqMrOBCVwuQMgp7Rl9mteii1r2Y9NTP6LVcTo3rAdqj+VQ757O8wIDCqlqU49r1+CwO3JpOTitEnWzGXLUOh5YhlvuY8RTYfGRG99JyURHjXQoWJQpMz6qXdWToDph4rspJvDfK0TIby8ayfOGXD7Bn7VoGyvLRpVHcETNffPMBCpUxLOL1zBlLsOnqBra45rPFZTROVuXGGbCuwKuMsFir4jVPHzLjtAUqSZktTLh9fNr8faK5m0mM1/JU6YUcqLMi1Oqc23Q7q5bMYLAwgDeusnBsLWbvWsZ4mIVCjq7TR6BgOXM/tuk/fsHeA/sgNfR3YiNT6Iea6jtpmHsvdnvtGQGXv8WSh0aIvRFk7Pct7/os1TYBOnguqaZ9YIA/PvU0if8Ov0nzs7D7nrNWjaXG2D+0H79tumC8M7jzL26eG0kQfaWHbG8UPWOE2tk+I9WTimUZODBE5PgQaT1Lr5LkIcsOjpgPcwd/4BzTZqyJEi7RtlBhOYFP7uci349pyFcQgH2pBON6hkldwZRW8JdOc9ls0Tdh11yszc3iCn05DcX1KIJKtzjCS6ZjbHceREcn/HwnC1ur0cwGjFVWhilLOXmUq9jDEv7E5YSVGXiIY9azHN5nyCUeqVuJb2wJjvG1+GaeQ9RSOH3vhRS6AKfzp1NaKSmJppkYHppJJp7H3P4+Gk4NkE7aWBDo4m3qMgEBd0ohjI8X/vQSO/5wElMsTIosxV3qGScAsHpoI6JqwR1eiKoahGvoOgKjjNtFtg39kdbJvST6dpPTsjRYBVz2VdgTxZjGQwhZYxunZZSrzPuxOSW0XB+VTDtp3ztUgQRBwCcJ6O6ZtFZFuaJiCFHKI2ABlwRObXrCEdLyEQUB+xScOKlXY4kZ/E0z3NMKcEekINvMJ9hlakWNBBEtPoRsELLDKKJERDNg1Cn3aUIX7SQysIJi6xhf6p9GAv3jU48QGB8hKxvH2nbOlYzbLVwxpHF65goUc4SE25hkqHoRl21u5JyJa1ibLSTPXc1HX5/WTQDoKc7nifNq+OHGczhZVMihgJsnlp3Pm/ULOFg9hw+NvoJPiZMenYktJ3C80qhLiTq8scDO/Vdfgqjp3PZaFLPxyBMVJbqDW1AY5aaCT2MPH+D9tg8igr8TGxx6CoejnqqqzyIIwhm+k7/FssEY4c0dAGjRLMnjIewLjMGoLZYkr3kMucBGQlLZdHIIjyWf6pZWVi//y9TRf9WeudX4d95HwGs0QDWNNqGj87MNP6PAXsANL93Aaz2vcX7ldO9DfO8gWlZFtE71D0gC3stqiO8bIvZGEDWS5eUjIYrTCv2uNiaEOLlkPpqgsYJGAowRyMGwZz/5yiQnMutQtQIW2TZTlXeSeHwRLdb96OjsciYoGNtEzvoWAM+qt7NQXUuJ5uOIqY8loQqen1tGwNyHM5smIWRIKBn2mzpYGaxjEwIPLbyOJW0D7Jw1xu0hO8eo5AL9LQRBZxJD50Cy6UwKxsA4t7yEJRYbx7cHaTkpEMnYcFuhVS1ijjQydclzACO6cJtFclP69soU0gagv3ces2bvxWqNkU4bM9xkWgWbgKJqVJh0ttgP4NXsXJNdharr7IopLHHIuMwZ4tEZgI5mP4YeOknCoZApq2RVeBnDWidN4d20aiquoU42ld5CwAR58mp60n0IHuNa1hafIE+Ics2MN+mJnktZ1kJW00nr4JYE4qrGnrjKOpfMWqfE7kQpre7FDI0bPQmdjj5mJu0MaIUE0gVYS6vZ4PwSenYmurUWq9TIY1zB4KwCLj/lJ89iRBtx0jSbjXs1IkZokxupnFiLre4SsuIwz5g7kXSBa7NryNqHiHv6UdJexnydJJRJfvpwI3WiCef+V1Dt27n62o3s67ueNU4r6fZuNkX97PF7QE9SrxQxljGRNVczdsFtVJtKOeHIMT9h4qJRkRVPf5/uaywEjs7kz67zOVRvgCfumWUmJs/DoSf4EXcyohczz9XFRLKShMNEv9lE2izytWNhqjqCfOPCOYx5ZMrGcjhyBmpMw4TdXENXopsl1eAUQwi+qv/ae/jfsA8igv9Hraf3N3R3G4pbmcwI0ehxigMf/m/l7zPdRiGv4DMLMBU7iL4RZOK1Hh55q4vGB46R649DlZv6A+1kTGZC7jw+EhX5ypGWv73Aq2Sml1/71pnFU+FTANT76il1lnKOfx27+nYyeWqY6PZexh9vY/KFLqKv9DD5vFGgK/3eGpyrSpALjM7i5JERytMKAZPIhBAnIiYpcb7JP+m/Z5nWRlAyinyrdKPp57AlwP1OL2ndhCV2gLFMGIvFQlHpBDen/kTA/G0uYDcpLMxW1lGi+cAk8GCNTNgksC5s4rVFF/LRzGrSUpqklKRFCnJQNuCzFdEYFx+38c19F9FqlZm0BNEyd7NAqWRINhxse02A12ct4UDVbCrGg1TPN6GkDzJnWGWelkHUJB6Xvk6e2Wgsqxk1nEB7SQla1pifmSRjiuh0TuW8w0ameDBw+Mz9zU69wZNSlqDvqLEsJhnOabyVShL0Hqcp2Y+HI9TqAzRYZWpMPnK5IVS7kyLdy1z7fDb6r0I2uVBFiZ3eClRdZ75dYqlDJt9UjjyVWnnBleRrzgJGj66iLGvUqHbEFNrTBhigK2M4hd0xIxqpMMksCl5BU9KFKmYIm8cpNh8grTuYLL6JBtch7NZh2t0THNJayQ40MyiFjYuqXIaGRvTUixzJtaChcbXdEHzZ76/hxYpO3jL386hlgKSQISam6Xa0cHg8RCZWiCqlGLQM0iUNs8AeIFC0EnP9Whwb1nOu5UVu7DxKYNs4VX0edDSGTVFsup2VmVrOGRxCRMNrmcmhPIlb1+bR5haZl7+GWaU3sirZy8D4cr7bPa2KFzFLuHIK1f0niUzOYsOgmaq+jzOj5dNcoIvEvMZzGm77A53jT3HBvtcA8MQmWXrsB1Q0P2Bc9vAg1cMT1Fj30x8vZailj/fbPogI/h+0XC5MV5dBC1xd/Xli8TYA3O6/TSj9nZZqGyd1Mozst2GpcGOb7yf6ai/KSJK329AeqDWzuyADKsxIxZjvtLIZE49Gc8zoH+XW0gJk8T9xQCNTPPZFDdD6PAw2Esmv4ZmOZyh3lWM32VEjGRYfqOC50hTr9l3Aj3rvpCE5A/Gd8xFZRNd09IkhvOd5yc73M/LmALUDcXR04kIaAZ0beR4EQIAD1irIDFOlhFAR0KnjXNHKUZvMkuRRsuJ5/OPHr8H9gEEEh2jg6wezX8KtGykPUyGEnG6aXQorR2K84mxGEhawvWQ7GTnD+uC1NErDzFMqWDLQT+vV/8CnBm5hdVE5MEi1VMZVExs5ne+GkYf52unfctXCn0NOxdbUxu59z1MlN2F1eHGbAhxQ+3ikbyG1aw/gHf8w3alRIoUSO+qW0+cp4ZLuJmbPfIGurhX4bMtQRzKk7AOER2oJyCGsco7U8Bg5/3RPR1icTue9mR0kmm+kv7J5HVwsPs6QcyZhdS55eDgJeMyFrMoZZG1psgSKlrJ7vIvdjmWE0CieEnOusoicSBkopHZLLSfsGkvr1rEso4EuoAKDOZ0nlW4OVOzAkyzBIZ1mfeZaAno+J1Iai+0SxSY7Pbm5NOaKcYoG4ZvI53lauYxT8hBYQQvmYQq4yZmjHJd7cCoirfPt2BJWShMBtuVWsosaljCOPV5Bp+PsQfINdRhkD/HjV5KxTAsdjeS78Kgiljk345Z/T8HBMCz/FaGWG/CezLKrt4vJmbWYPIv4gz/I1dv/gPPWXnyDH+fFYg1H+HEO+85hdtRNYcxHqvMmRK+JmfFBvnDqmzzor+OyiXVc22fhYd8RopmbKJ5CwzoBTLBSFwh0pLnWfQ0HUi/gad1F5Zw61r/yFs7JERyMEEoOU9WzCwQdjzSCllrM2L4TFK9Z+x+/f/9D+8AR/D9ow8MvnFlOpXqJx40X2umc+V/ajxrLMv6IMeg5lgXIaTpthRZKgf35EpMWkcvWV7NfmaQtZuQiLs7t5ktrvsyxbQfptjj4ducg4ZzKV2v+kyayAWM2yod/A789H+31f+V20yRLx3uwLLwJPacRuu8YC6J1vA2B+Grlz3ErTn51+uv4FS+goqvH2fyNXq6xfhqw8KZzK6GxFH5Fx1Mosiq5n/PZc9ah1058Gae0FeQtDMoSK1Lz8KZdDDsWYhH3sZYv0tfzE9zAqCSSN8USqWpreML/MvudJyjUC0mKV9BuDpJ0humU/sA177jd+yoaEZVeguF2qmPVWHr38Qv/tNLZb4s202/u5MrQR7iitIQLEhGa9l1FTpD4OrfyocQB1pT1Mpzxoqj5RPMdmM4dpOqtHyCm8xh2tlFzvIsX6lJ0FZbxlmOMueES3COLScfLsAs50rZhTjVdTNY6RlYzgdeouyzN1XJc7mGtUIAnU87zlkNEHccAG07ifFTcjCDouM19PMAebkytQjVbGbepvKof44bMWv5g3Y3XaqHZshKPEKNIs59RUam2SDhFAYsoUBxaTrFchU8oMBy4AOc4ZU75H6fXEWNG6RFWO3M4JJg8lU9xz3Wc55JxSQI6OjO0AP2uUVbldCyYAJn1yhwkRPI0Fz0z1uOdAFFKM2ofoN9qIKoc8VqyusQuWzUJzwiW0QYcqkTGMs5pfKRQWJXXwkTMkHocyNpwWiZxp3OoJhtvmtpozDZycXYhJd5neObUPER/HO/sxzh9ej2jVbUUj8Wok/P459kS/tuv57LeDWTlGM3KN1mppFhT/ibZ0JeR0z4qh2dxCxDmbkxF92Cb3M7HTl5BsUnm2yGjaJ3ydJHytXO3Q2DjUC2XTNRDWAPZyTL3WrRDO5nz63/HFzauUQBWHjRU6UwOFUHQwLcW3O8/19AHjuB/2VQ1ha6r6LqGyWSE3yOhl898HokcIRZtwmop+Q/lJtsTaQ5HElzk9zB3TzP3zankkvj0LN6+rIhf9o3wo9AwM1fZSfotfKe+jECBlx8c6eeBxj2ELRM86XyWspOlfMlWw2eMSSBPD43/dUfQ9Azsv8+gZ3AUQNFcOP87iK989Yy8t1a4hlTLGGoki7XQxb8I32Jf6E22FuwiKsfZ6vwD60IzKLENUWN6FkvuBgBEMtSPvsRYvJpS/yFsyRGKOHHm0E+5nMyOW/DplSTUC3DKW0jgxqu6GDCFqE2dC+Z9ABzb+20qgJ+aL8eT8uJBwGt5ioIqC3OHWzls7cKR6CaNm8cKwmddYo1WQLd4CiQ46j9KYaqQZ6tfAc7uvn7Fd4JQzsNps8wDZg+3T0Yw6yorCjvwJ4xcv1lsJKkWMGdiCZmDZZjTRl/GDfEG4u4ynkhL3O4YoNtaw8Cefzyzb1E3oQs2subINNWBbGJWtoj5QjldzsNUTa6g3TyIWTORsUKxPMQdypMgwElqmUUXZrKEpCQzKi/lBL3o6DTpOwCYJENOl1npb2akcAu28CzQwTt4Dm53K87sMYaEmci6GWvO0HdI5DUzUbUVu7+F2cA7cWxZfzf0gEsynsP9cgdL1So25N4NclijGFKksz2wPZojoVpxxmqxpP3E3J0IuhGdzFIUrpRDxNQyAMaTNewym/lsxI4cKyHsPkVCkCizDZEDarpPo7trOOWXiTmsbB1/kVeyV5KVoWqwnZFkIaPFxcxqa2N22yk8F12KYA1zyeAKRCSGF/4787OVXO8/QY5RTq/7CmVH7sKcCNC97isEmv+Bjsgk3yxOYx3shqgRYf1iRoKLqr8Hgk5r0IYU+AaXTAHIVCWNw1VBwlVCoGQV6qwihlMx/Mce49WKZexoOI8nLEbKSdFKGPM7eb81yj5wBP+LNhLaSmvrXWiakV+f13Afbvd8IpHDVFffydDQ0/T03k86PUDxlOrYX7MrjnYQUVT+HDIGsbu7BrlQNBAd7gsrMZU5eeKAoSkwr87PL6cYDbec3MLhFw9TDEx4DUTRo62P8vSmZ+CIIffXn1U41huk3GknP39KXFvXYcsX4MjDZ84hkbeUlx54gNo1S/HLMpWKkScWDz1E1nU3gknkudRJRrs6uUbdyNaCXQB8NLebWvc0GqPQNC1xWGO7h5r/Qwr5Pq+X1x1WTP2lFFb/gK+czJLTa0nOuZvh1gx5UoRt3r28hcLtcRNOPccVcYOLx5KqJo3AsNXBz9Pfg7OUGYfYbnPyki+PLw98gh+X/h6XqvFIfyPnVtbiTYiMOVJ0FU5TN4iaiDd7JbPG1tDs/yFHC3ef+exN+aPUCV2cO9GIZjfSX5p8ELvYhpL7MtZoDbtMLWwtNvHP/dWYZC/tTc3cqArUjjt4WydMyTTzzPkriSsn+HDnLDRpWuinjEL6ncdpkCUk1UZXpBCXFkDztnC5/gQI0JWbywlTFbPoYgWNvC5bUEVjup8WcgxUNcGIMThvMPXisQeJluyjp3+MCst6ZCGOM9VAQpvBmGxw42R1Y5YQmvkEwtAY5IM0DiU7b6F11utYSscQ7WcrzA0NdzJcrFKeM9zFi/opzNFqNnnOlhA9322iO61wIhfHlPOQNz6tLleRs5PqX3Jm4KpL+bjS0YuZSvSsk0PpuaRMcQJiDM3iYiQdxZI5iS1hIlVWh253E/MXgQ7W8Woy7WGo06kcbseczRCVHuHbWieS8j1+Wf0rLsg7xfVTx9oXdtET8XPtSBVFtXtA0Bme9wBvv5nheb/Ds/+7ZO3DJCx/5PfjJtK6wMygyDknX4eyj6OMNJM++giOi36EdfHNSD6DfuMnhLi1+Fv83OLhdwSxW4y8UkYtYOnFZ8uhvh/2gSP4X7KhoWdpbfvKWeuamj9zZjlQdBmSaKGz60cAZxxBc3MzIyMjbNx4NtFcRDEKi2+G42f+n5tMIphFflgqYD89TF86y/fqSrm11Egp7BnYw69e/xUrMLpTE6YEm6o28WrPqxyeOIRDLCKXyZA1mfn+K9tZHhvnS1/6knHAzu1nOYFcQuTVSS+t3iH2vPQLxDwv/zwWxatl0bteJ5f/eSJSApInEAQfJ4R+/v3Ux6mz/phSNX1mP3uVm1ktP/oX79leYSar9XZ22q0sbLqKcFUxcyc1xkw6nmyOiaMLmAHcU/woF2nnMFuvpe/iL2LefDszrPtIshQjAIdgUQH0vvsYx2wyZk1mfXQJNr2ZZfoLeDWNbX1dnNZm8DmLTIdlOi9dF51JzHkp84MJcvoFHCp/Apc+n5hwguOWQmoUK/mZI2e+7xZaSQkiSE8QElx0SDa8CTedqTAN5gISITfWdB4DU53BHXNtmNtO0BlYRn7/MezJi7Ak80k5+kk6gxRoHoI1D1DedyUD8hia4sFsHycvkUeJb5g3WMWb8kqKzf2QhY3spUWsZwIfNluGVMrCwMg8xjU7q9Uy2k2nECIehgbqWJwc4Kl0FqvlEFe4HUTGatAFw4FMiHHQIGueINB4O5YdMZpHttIUaCS7x8Hchmq0Nbvob7iPZ0c9DJvH8PldbBfjXDyZoFI1ExInyNerOKpMEJFcpCYV5lgjVNkC1Fhles1W3tEoTtCSpDxjRyRLoTPIYL4FsbeM2rHp1MmMnIg77aCFGo45fGx0BZmTHMcubsQxWkrYfxhR1fCNL2JAM4Mb3JGXUG6IM/rYUvS3clgqRogXNEK4AFOzhHOfgJCF1IwGDsw5Tm/5vVxVFjxrlq4rPrL2ETo23oEOfBgRRdP5Sr+VPz6hYVL3kDjVi5YYRXWmUTP9SD6jsdIsnOQp8zeJW2w0ZL5LkWbARfcnvs4rthY+ujvJnAtv/IvvxHtlHziC/wVTlAQdnT86a93SpZs5fNhova8o/yR2ezUVFf+Aw1GHyeTD4zaw6888Y6AmNmzYgCRJ6LpOOD3NS29OHkJSQpjNm5g8GqfdI/HQ4PiZz1d7nYiCQF/rOHvuD1FdMs0r9CnxW1y+bjlNo008deopTp7/IC+9/BLfTDvZX9NA7YHX+P73v8+6xbNYfvjzZ3gac1k7JkeShXo7bczintSLNGlmHKoHhFEENUtB6CIKgDkmOJG4mJgthMshUJo1nEC3SaYmp3A4MZcn64v42tgYxarh3HbIFQTtYX6Sl6Q+GyCRnsvRK69kn2jlxV1xjuab8GUkloU14haNO279KYF948R2BqlpKKYu8gPWdaX4ZnAnmIzZtNccIaIE8MjDjGfd3DvrRr7bfR+Nlnzq0yo2oYcrM8fpnvVPPDIcZGN0N0dYijPbQUIeIT+dz/qhdfR457H+cIIRPxSoKmu7r+HCRIDf1A/TbuvB3H87EQms0iHSWj0e+c+Ioogs/nEKdf8FvKk4je42cmEfajYPlwgBk4hfFvhTqUS86GrkbA8COofKLKxvN1FR3oKv+zIcNhOn932KMrOPk3Iv4CFdc4iC0DAC0EsZCKDnpTgU8LCkMcJSjvGkfgl6eD4B536wZtk5Po/5tgEEFRKpPDq7VtI5VcNPo7E5OYZiNgR4XJqNcSGGqmc4+UIAWdIJZw/SVeQDPYOIxtLUMOHTf4FeVQAAIABJREFUKo3lh9iq2MiOXkR2fAMAp8iRQaZU93KxqKHn2nhdaWCpYMNvnq67LBM1FPd99C+JkR+fRXFwgqHh29AwU3VeMR7L5znZcy+CYMNpTRLJ2liRMQEmZlNCJpdle8FGasMKFsEgyHNGa3DGMmQtZnRUBCRkn0aiGroaPmW8f8dcTC7dycd+2YGcmaZEXxWJ88IcCHn7qbClGRupY9xeRYPYhKfjKj4eCdBQ1s7h2nPRgZ+Kn+UHGR2TqrF7wVJEb5LZrrmkL3kRy1sSclLge6T4vul3WIQ0sp7hPvlBXIwTzCzgTb0AhD6Ojc9kzt8wrvxP7AP46P+ChcN7yeXGEXSDNbTtyRpykx6qq/6J8vLbKfLeBhhNOX7/uXg8BlpInRoYAcbHjcH9mY5nOOep9Yi5EdAVPGP34px8kvODzZjSKj+YYeJiv4cyqwmPLDHTYWCeD/y5G6tqpTDtxx4vpyp9PgPHUwx1RDk/+hG8b81B1DQuPf9c3kg8wvbGWzlf3k02m8G1/98wKbEz55KOGY9RjRDkhsg2ZHQWZTKYhFEUzUglvROFOt+xlTXiEeZnDxPKq2FZZRnXlgS4obiIo/ld7LBb2CYZ861jFjP/VA4POKsoS1cQGLiNxoZvsqRT4PaONMVpnRNeicP5xpxmTJbZeKCTQ24RNPjD5hZysoDkP4YiG0X4W4QnWdZs4Q9j97O+fitLznuGXqmElCBwyqpR1ZklJ/yA3dIqnm3yMhBayG+5nmGKKFSMiMKuL0HUzCzu8BO3qeSkw9h0lZmpIobj1dhUJ62OU+hATP0o9+f/kMfEmSSwIk/N9gHsJDCpOvPT9QSnMj4lZthS+yiFJpHHD2Z4oinHnR1GzrhvTpyJJS2Ut6iY3KMkNY1s2sfhBMSnqKT3CPOoFPtRdIkBDDGcQKCDqNtEk72SOXSwLTuDTiy4e49xYsBLQjNRXvcyV2SXsTY3C1kXaVDKuTC7gJwgoejTA2JA8zIgTdCd6WJz/SSfXfE7fnZuHzZRYpZczcdrWvCb91DdFyfeacU3vviMEwDIFybREejXvCSlJFGlgqUZw/E5p+oJk2Iau6Qx1/YGq07MprjjWiomUpAzEHT7X7BDrgQlfRQBlXjajvR/QJ1XR0a48+hT5EQrKaY0H7L5qGY3krCXsN8AOPgL4wjKdLd9n3AtfUfuJGqfCaKMfsFGHBf+kEpPAzf3NVBl1rCKMNG7hL39Ph6euIcfjs1kMuPlra4VJHMObnh2C8IjfsqfMO7bHzddweFrZ6FWGu/8uGolK73CddJm8sQ2IrlP8CfleirkJnzyIMezy8lYxtA0D9dft5T32943RyAIglUQhIOCIBwXBKFFEITvTq3/vSAIpwVBODb191/HRP6dWzR6HEGQ6dg8k8kTK1BTbo5ufYGams/TsjnFg5+9lUwy+a7tQqHQu5a3dG0BwJTp4OcV00XOpRMpxswCrlInvyh2c++rm/mVMokkCETHUoR6Y+TMUUNZK+3nI19bhigJ9LWMYz9YQ3VoIS8/vZ/0H39MYftm6pN9bEzv42q2spA2xClIyQP6jQzxMQ5ZjPlttaedHXYbJ0zFZNQaZNFwWIIAqm4k+xVtOhA1TVSQFkWK01UsjF3NYoeLn/R8kcVZo26iA7IqU5+6DnfpVzD7nYDAJ05n+YduA4N/StrBZPwpAI7bu1CVHHfExjnmGuNHfpWlkWZuaH6VzcJFgI5HyaCFazlZsJ8FJxu5s+uPfHLwV1xcVkwaFXfyIxw9fin7stV4w/PwTM5BVI3CcFK8jNLkJ7nk2CXkjS3FpIJmPYFFMH4v3Z5EQ8anJ4iIaQYlo0LYFjhKRh5H1c8mEPsMj7E2maE3MqXKJkDQ00qjtYM+cQoxk/Nx7eBPaEj6eWx4mI8HZ1KZdw31uRJOOtvJOoaJTM8RqEs1U6UFGc44yPN1MGvWLmzxAqKxPISqCbxCgvmebk6h40+tJGIqZLnYhsnfiafwBWappdyc2cAsGrELj1Mwaz++mUe5yOLnwtwshKnfcZd3iEmrH1ETmfCouP3FLKuYR57FiFA1NP6l70cERz/KQrGdh0wGJPqLC+5nuc9Il/VbY0TVAIJuZfZUQ+GIr5Fk/Z8QVSft0h2E9CmxePs5YJouR7c//11ky0L0KZgrujGcVW/6Z6zZU5RkJRakVfI1maPWaSdRXf0Lyk+/gSql0dEQMh5S49ORsSvWiy0Zor3uOqTylbgd1yLa8/DVbWLTxFVcng4QG3ZT/fI+PJPPsSfexT7tbWCGzhXP/Zkrdm5ntvZh8lf+ikz9uUwWOPgz12Czx9E1iTptCzWmX7LB9IRxbeIc1rHozDm0ZJegyilMzlEmJw/xftv7GRFkgPN0XV8ALAQuEgTh7arHl3VdXzj1d+yv7+L/f6brOpHICWzWGuJjKWbMvZFZa9bTvm83yWiE7qPGj95x8N2CFSdPnjyzPDRkiI50xo2Xzquc4neN/4ZFsvDV6i+wPFpDk1dl+ZNDHL1vF9KLO/F/9rMk9h/grVd20J13BMH7BugiM+eWkXryEXw+geat08cw7xvG0ffrs85hHtPUDE9wMSW5POrzf8OyTOTM+t963KR8VxKxO1B1G3HF4IqRhBSa7kB7B4WWkl3PTac/xDeDt3HD2CV8NFTD2twWGjDa/OuyChuGz2F/zRx2Or083rCK0vR0TQFgsVfgK0OX8/zEH3g47+d4og8Rl+BLC/3EzBL5I/fyS79CRsxgQyerebky75/ZOeMJdtb+micsZtpLMozLMmbFiks/h2D5ZfjGF585hisyCy0n0eZfzvmtCxAQkDQLOhqKyYiOopqFSS2CLKQp7zIghK/JRkf3b9q+y13a78jlbiKs1HE8YQxuTlIstxokggGTwCUeE4qqcsHgueyTD/Nn53Tx+bbQSqxtqxGzNhKqzm7LCD8qfRifdfp+lF/8FbzJHMXCKH2ZQtJKHgWFfXQe1dnduJik3Rg076p8kAprP78rL0WUdM5zHQJJR3e9SMzVxEDsMNIzr3Ng0E65GmKur53E8p+RO//n5CkupKlB9/KRlVzVux4JnRGzl5jlBQNHIFfxVde0otzPzPfSldfNMctNzE0GKT8Yo0IMk0uPkNW6mFG4i3xZ5Fcld3Nwxi+Il+4hWnQQZ/IybJoDFY3mvElait4il3wDZ+kRai7+OvbCAez+5xGkdkCnfMMPycYLkcq7STlKaJ1zK6ZcjBb5HQX2R4apGVVYFLdjdo4ycfKSKYSWRq70JeY3/Yba7udJ2QvxrRwmYL4NQTAKSnmWAA3tcPf+u/jmwls5p6meXNCFmmfmDv1ZQGCLdzWd53wR05Sw0eTSS5l7+iA3jr5MKC1gHaskX3qaJn0RLxau4yVXPQ/niQhq3ZlzTOa1g6BTHGhm+FiO99vetxqBbrSkvt0fb5r6e294iP+O7cTrLzOm7sNpWguM4vIXIEoyzTu28fpv7zvzvVfv/zn9p1rZ8LFbsTqcpFIpGhsbqaqqIpfLEQwGORqJEUn2IgBi+CAhEpyXWc2Gl+uIiUl6Q23kx+tpiXvJzlmClm0l+PUf8IsPJRitH2JGpI4LUsXMafsjo69txTLzBnLFawBo8W/mQ+pJBDLktDJMYv9Z1/GmqYrvl7XwYG+Md2Q6AMi4RBIFL+B5y0ROm8mkcgcmsRuL2E5KW05Wq0EWHkYUNERSXJCzMd/0ORLqRdilHcjCGLou8rqwkvP1vXw6s5erO47yaOmHOJA/iyvDY0A1scLDpF0BGk+v4j4hzcXyXKy5Fi5rDdDlP0jt2BAJUeaVyhTL9FN8Qj7AzGzOeBIBWS9HEQSSwqs8pDtBh0C0nnFJxaeKSFPzpGzZYcz9SzmSWYxuM2HLpegrzFARsgACgpIjL5egVy7Hbc6w3PNr3pr8HO50PjsDr/GRzgNERAvd6vmMpFfRlVmLWdCJqCWsdz+ISUijm0I4HAIaedwgPoZV70IUdEYTPyJLBrBQnpp2TBYB1mWKeFa4nAVU8fa0obFjIXdpTyAKOl3uAhYsMrpXf+28mVjaxZuH1nBI/BzF8Qgvi9/CZjEGyEZ7MRO6jjOZY3fRc3RGl7GibhlDldUMd1TifuUQDR/rQjGNUj8zw9xTG/id9Q0AdPK5zquye8YO1kVOIygmfp6fR19yrvGsZL+B2VJAfaYfl6Dzp67LSM0p4Dypk10z5jI6dJRicRlJKcHL7kGuMUlUClla5vyaKn8TomIh0XMO5ZkAD9b8iosKVRyzjYixbO09ND08E+imqPwoyZEGxtsuo6DiBd5ur1t14Du0rLuJ/bqfmzv2Iuoa0ryrWWJaTKjgEDu6CrFqAiBSYjLTuGAZ6egptFyQAuFNEMDuvZPQEwFs5/0Az8tDPMrdADw6axM6ErNTp6k/HuIC/yFOFC/HZaog03+IUE6lrHI5HYnlnH/SSo8Gy4tNwEH+xflxds9ehCUVxnZslEpVoyj8BUbdYwhTQY7fO0REfL+5R9/nGoEgCJIgCMeAELBN1/W32ZPuFgThhCAIPxMEwfJXtv2UIAiHBUE4PDo6+n6e5v8101SV/S/9HMmk0fqqQafgyi+goNJAD5w6sIfO0jhdJcYj3PL6azz8k68CcOTIEaLRKBs3bqS0tISBgQEeOXUcARWTXIkiJdAk+Me+jwLwhvfPBJ0t6FoKNdOKlm0laVb5yYeCKI4BXuof5MJsM2tffpbka1sBKA++TlXPVgpO/4xbgjsotRxCELR3OYHX9Rv4dqHx6IjmQ7SaTcyrKueg3cDEfz2o4OldhZkgcWseQ3MfZiB3ATmtiFH5FsZsl9Kc+BWK5sEubaNcNyMJMdzy08iC0Q06nvsGCYcBf60X2lkbPc4Dbd/l990v86FuYyQPVb+A1rCNk8MxAoVh5ubv5IYuo9hYO2ZAF6OWIABfGY8ZTgBQdGP76lwOVzrA8u5biamAAGWRWo6ZNToKj3La3cUb9W2UrXyaqJTg3JSVDx80UkA11Q8BMOBKcW1RP9LYAJmpprx/ky8k6IiyvO9yQvZh7hXhsbHfsDdyG10ZCRGdVQ4Tae0itk9+DqsY55P5n2Gt7Q4KLXfgEDsYEWaj4aDQ8hWKzJ9HII2dAPmmf6XEcjV55kdJkqGhL8ufTW8yUpdk35wQC+IRnCSJ2k0UrjOiqrRiJpZ1cXG1ja/NXYwAlA+msWnTs+RScQxrRqNoIsuFA62kLTL7ys2gC+i6SMZaiD5wMxZLMaOVv0WWzyYvrMoW0G/J8VTsJt6w5DNiH8M3MYNSYYSA04SS+SkNE9fxXPJGBHEuVaLCIqWaR4eKuM68mGBqjMelZjZ0Xc8iC0wMzeH5iExv0VtMVm5HyMksS8zlx6GbcMyaPu/05HQvh7X4KNm48fvnJgNn1ktqhrWDr1E59hZlg29y/Bwvun8GAJ6JOTzkmo6oxjkXvWAdpYFNmORXz6z3pXIULw2R2n92hHzzyVe5O/sgDx78IcuVZqorJ7k6odKV0XnNNoNj7gb2xFU+mRGYas5Gjg+T1Irp8M+kKKyQsflINVRxOK3SlVlPr1pDQdYKQo4nuy+laaiT99veV0eg67qq6/pCoAxYLghCA/A1YBawDMgDvvpXtn1A1/Wluq4vLSh4n4TK/y/bm4//HnuRkUaIDxpFI1e+n/zyijPfOTg7jLC4jLRJpaskTrK1l1BPN8FgkPw8H659P+b480+gqipvdhvNVZtaDcexMDETq26mO7+Pf0z+kR+qTyCFH+BQyZPsmTdGc/0ky6Qwzw4MU6ao3J4IoaXT+C5eRcFdX8SRHGF2dZxJf5pl1cbgn1OnWUPffv02Co9z/2gQfyqPhozCkMnH3aUpSiZ+S1S5lsWpUUr7kgiCxkBdI70pma3hjTwQuh9tJIstbiZPLqeb+dikY/jN/3rWfQojkdVqmZeb/657WHp6IXkJo5nIHVpCZ6oF39w4V3T+f+y9Z5wc1bnu+6/UOU7OUZrRSBrlLFBCEiIJgclggrGxMcZgG2fjBAeb7WzAwDbG4EgWCIwJCihrNMphFEaaPNMTezqn6qo6H2o8Y67vPXf/9rbPb597eT/1VPesqlpdvdYbnvd5HiVf2sJn7ZvJxayVDFncpL1bqcqoTFGTJFAYkkQ2uRYAUJ9RKTx9H3MGZiIrd2CLz6A6OIOAH3LEBKdLrOyevZSv6t/gcMNrWHSBiuEsGSHLH2mnr3obL4kC+wfj3FX2Po5MhNPZfOrlYRzu4+RnreQkimmtyCCIE82ASd9pfLJAg9VCNLuMkUw+djRcho5tbCMU0l8kmr0WAEXswSKexCKcxC41IQpp3NKrDDHhIInRA0wKnqaAQcKGnccKVyKLZuHg/g8e4c4Tb/HY1Y00vv8Su0fv5VWnm/0VOXw979MMGl7ygyr5AfOZ9BgxZFFHdC4gf+BCfFkPmdJaEq4Z5LquJya0Y8v5FlOnbcXjNYngTp9cwU2Rcl7RVrI9tR6H6iCu5tJIJ7HsWgDi4gaGrbVcqs7hpvSFzM3WICCQkymC429T3lVB3dBC9NFJqK0XM9LfwO/OjYE0c81u8ukji3GMmBxHL48qGK2m65w3PYhnapL4gNmYForMJWf4OITf5mztegZLvorL1UTWnYN3xlwSNo3RnJPsD1n5t6STlhwTpzp70MpaSzFz/PNZLhbQl65jIDMDLSMw2upCD7b9wzN5rbiDyvkjlF0wyqfZjFN3omRiLN73MHMP/YSYZqClrJQo4JN66ctM5/fy3XyqKcVd70UQdQPNrlCvmvfijFaQPL8b66kWag6ep9Ch/8M5/9n2vwU1ZBhGCPgAWGcYRsAwLQ38Fljwv+Ma/jtY98lj5FTasFqL0TLml251OFEsVhbc80leWtnDd1c9zI9ueBrlvpWELyhAEw0e3LyZ57MKuUKUI9t2kNQMdlVYicvmQykHLFzaXM7DXZ8DDNzaFgD8hsqhi1o4UhempzTKfG8f/zY0QiLr5zllNipQdlmawovLyb3jDvK/dB/903wU2c3NapuxiLbUhGfVrSgkx2LWhozKXcMyDkMjJw986TxAIpK9gaxeSJFoRhlD7ZMYOHTz2AgC6e0Pj4/XEb7pQ/NjIDKsVrJp+CfYpYNYIksIqZ/60GcEWzMJMckxIcFgaiWv6DcQKK7BVzJRSL+X51gl7KI4e5zn+gd5s9eMDjZW1rGqooxfOsKowKSEnRMWgZhg8Mkds7j92J1Ysz7USWa3wUC56V0mlGr2V0zn5+t9PFak8rupTzMqpqlt3EmhIPAz7VpuKXyE5rz5NGUrsRsGIjqqdZTqkZn0uzsYtZukcoty/0rA1cGAEEIQBKa62whmsnQnXUT+ThxdMwqIaVcxqt4NgF3cg1t+Bd2wElQ/jyDoCJK5WS9TGwCDmbQgxyvZlVqLo8+MfgzDFFi/rH0P4R/fwoFIIUfSq3jGsogfOuxcMOltvEoYAaj+u76KK+Um3FHTa16QnEWpmkv/B7DtyXoy8Vy2TfGRm9vLzJnvEdFkRE3nY6FWHrc8Ra3mZMbILGKCn1XZPBL6OgBERC5XJ5rDunJ2cFruwMAg6rqIlM10OgYPX09iqJ7LW+5h7bEvkY4UkZn5DmdW34lqHcV+/FZeOrgY6egtHB38BDnTI5QtHWDkzGXoGTch4y9gCLiT3VgrRuktN/n8311QyvM31PMV13ZunfxNNiunCGoGHRmdSZqdXEmgVIG+w78m3vYIbHuXYwcWs9m4mQ+aryExYCYvLH4rhjwh13r+7QIiWfPvv4a+BsC88B+wqlHc8V5sag8WAabY+ihSztCRnofaOwEIvXlzG19/dRQBAVWOoqheYr4yLIZKrjrKaOL/4IhAEIR8QRB8Y6/twGrgtCAIxWPHBGAD/5fezv+vWDhylI6OJwEwdB1D1wn29WDzZ3A4aln32S8w97IN42yi3fkJEnaNOYVzcCgOvjL/Kzxz5fMcnWbhjdoFHCmbxIlwhBa9jOML5jMg/Qlb3Mz/euICl4QakRCxpe9mdupVYmP0B9WqSklWZmNPgAeCITotPp7nOs6MVvNLv48cI0xi1yGyW7+FP/AgS4Z/RaXH9EonCx14nQN0yzJHxSJqVRW7MQFPuTFrsmCm8zJEW9YDcDIpENGuB2AgM5m2s/eOf17Tj7P14ttollsJuM7Sofn4IPzp8ffvU6/mCe0nRLKVxHSzCB7TruRLZb+kL/VbNMNHVGnmQfeLfHGxjS9V23CMKnTuWENuNsILXM7LbvNHv8xoZqb9vfGxzwkNLGz7ErIhMeKK0K4o1CYlVAE2OSdSDUOCQc4pc9EOYUceGkuvuC8iYRNJprJcUtwBgEPqYZ5PZNRw0dqTS1hz8EnxIF/ml3ye3+IQo8yMTEXWFXbWP0eRY4T7qrfwTvk7vG5tosN2G/XWrzLZNUq5PYZHVNEMD/HsasytKMNxYx5N4iR+WNRMQjlIRq8nqpvdqILYhWxIKFkrVfSw3thMc/R2OsK3U8UhkmE/x959iNsjCrrVzwvhrzKaY6JuZvStZM6+B9l88kLOlbtIyw5UqZebi0t5wtNISXKiKziRVamOVaLpLgxkYj1zKG4S4Y8y0V9W8/HXXuKGzS9TmgqwaqSJvMEhbtt0gllaiPnidP5WGjwhddEqmuP2Tb8Xf+AF6lUHPal2RnKmjZ8vHS4HQ0IQdRL2HoJtEpAFQyPQ+DRHR3zMOP8Jpg4uIVedgbfUjKgzkWI0IcTyA1vxxNroLL+UdPjm8XHz4mW8m9eMrFloGFjCcN/EOQs0hahdpeXEO7g7m9GPmd9xad9OwiO15Ay2kMwvofBjBjVr2ym/vJriy8aK4brAy9E1HNRnENZKKFZayAsdAMEADBZ0/JSLvGks/qfIV84DAoIgoaaOYRhZqkZN6nJNTBF3tiMgsct5OWmLHa8zjU36P1uqshh4XhAECXPDeckwjLcEQdgqCEI+5pN+BPjnqa//N7KjRz+Fqo5gFevY8qdvETzrweJTwTLA+abpVJRUs+LWie7gQ4OHKHQUUuKcEOzQsLBl6XfG/3526U0oapopfRMUDKIuIAgKHnctmr6LPK/pJW5PLOAiRxP1KZGGkIdSTeP7uX4aR75AVhzFE1L5Y4OH20fjWJWTKHt2jI853WOmHMrG+PGfEecgDN3AFP/XkNG5tvFRftnyI8q0YTKSzNv2ddQby1FFjXNpg+7MMoqUHHozU8gqVkCn/LJvc7/jUfxqnO9I9xCQnDye/gmCcgPPbO5GVVu5+NBZPv+ABwmZIAp3jgFmik4XYVhCZPQ6fMmzWP1zCbm9bG2+nYZ4l0nOBbRSw5vVS8gfDLCi/xhXxOOEjKmkMp/DZpiLxTUjq3kh711Oa7XM1cz77JV19lhVlqQVwqKBT0qhihLJgIbUa0Wbn8bwj3mDYobK8woFFoGWgIzf+T5yaBkjholDv13cjijo+IjQoHdywO5g3vB89hXu5uGpPyermJ7669Vv8Haqgud6PTSK7cQNK/3pH2HFXOT32VuZrOZwUGllY7HEqMXFjFSG2tAafiEIPGdAWmylggh/rnqe47KHzKHnxr/DwdRSnFtWYc0WYQWaFnwbAF9qiBE3VITNDUHtW8i+qZtxDC9jDzs5ZpPo1h3kxjcAOg4xRI+aJa07qLAcZDhbje1EEb4tMiZvay+i00AbFWl93YweL8IsIt8wuB255OOAQIoM+xQTQRVWY6w604/HmyQS/B8cbJ8GpXdQmewiv+XP9JRNZsh/AZqlAHuqmEBnFdO2hQhHXXzn/jvZoBv8rUMcILD/EwTPrEHPWtHkLP5Eihb7bsCMaOy550iM1DB1YClWzc7izg3j/5suPIV1YArejIgRGqbi/Ov8vclaipU7TKnQP5RdTcnIbHzieVb4nqPUfZJwUSmJfoMl7x7k2KRlUAYzbWmiAy781SEsTo2h4wKxrgcpqugjqZm+t6EnESUPdjFOyvCCoWNPvUbWJaExjXmJMN1zWjGkMLdecjn/avuXRQSGYRwzDGO2YRgzDMOYbhjG98eOrzIMo3Hs2C2GYcT+38b6726RyDFOnLgPbYwqob9/E6pq4udbzt1F8YJBpt1yjsnrOzF0ifjAVNqPTuR3dUPn0MAh5hTO+ZDewEv9H5Y5BFBlmT5LB6LgYPqIwrp9RaTL63E6S9ANM7j69bn5nO4UCCctLB2xs0TrocsoIm/oJqKaBdkQsSQEVrbezE65Cpcx0XlsABLQTSEvcymvcCk9mWVE1BK+qFzNtaVFHBG7mXfBq2wvWszWOcX8u3gnNSmNs7IZLaQNiUNSDot6fkRKibJ56j4eS9pIIlI89Fu+2edg28AaBm35BHWNv0ZL8f8lTk1gmDXHDpKj9PG60Mitk77Jt0ubcMQUzhlH6UpX4RdD7J3eyOqefTiCfoQx0fDD2pXohswzP/kRw/su55zk4ZjiJpH+OnFrmuNkGSTL2vAU6mP5DGdmUCqM4MYs/sbGuHd0i0iBK8mo040YTiMYYN0/jHwmjHJwGJ8eI3Yoj5WH81DdYb438gxfkl7iEnEfNw99QJHUxpnsIkYMNxcJW5lqnKQxbRaRs8oEX4Iz7UMSM7ykXcjyilKeTd8+vgmcDjWxb2QfD1Q8wbNVf2LUYv7/s9a5vCnr1Fg66BTKUGK1DIbXIAbuYFrvetSxzcgiaGQHPkU4W8s0x1+wChM/sQWVEc5WvU5H3mFcSgZfsoARVeQglfwwz4pft3FFy90MpxuZ5NyFPfcN4noBWVzYct4iV+4kmjY31bGaOxWLJ+ie/95m7t9FqPVNEqT5g20CBntcGOYv4mp6+hfQsq+Q3tI7ALAVjuCJdjH11BaW7/keUjaBYIgY+kx2Vi3ngxVrWfGB6VHXW0UK5C5yfea46XA5arwAixpGNKAidpi8FQ9h83cwvaSDvpK95MVLxzeBLZN+zwc1f2ZnYTOunt6eAAAgAElEQVSDBRkC0VFmHfghAHsXfIeuslUEfRP0sx0VaynxzgEEQvokto9FsifnXUPaZoIaJvWeRtBVMgeaEbMqRt46+ibXIDuyeHuDFNjiDCVjFIr7EEQrklKF6G1HIs2czqe5YM9u5uw9icXdQjlFJONreMHj4g9//tj/7fz+M+0jion/ohmGwZGjd6KqQXz+hZQUX8fZVrP4WVP9Bdrafzb+Wbu1jpMbP4+asJIQE7zcM8QCp4MTBw4RjIVYXrb8Q2Nv6x2lLK1z+b5NbJu7kDY5hG/wEQAmcwVrdjYx4vHhKizDmfGSFfuJG3YCpbOxDnQTFAppsJmpjb8IKxk0JAalARZmLAw6a7CFFmBNquD/MQBTlrzJ4b0fw25kaKcSuzDCwX4PFArE/KfIT9VwSIwiZcxk8r/nX8HMrhl8N9FKebKCPSSxuI5hnbWNX2vdzCkZIcf1POccrZCEvJ7PjNP7bFF3I2pXsH7HHq7d8pfxe97Q/zs+8VCa3y+dwwcNowwpzxNrWET27IX43DuoF2Dvrjt5Xb2Gluw8qjhEe/prvGVRqdULGJ7/ZfpTCjcVlTMnPoXHM/dzceprnCfBfVi5NlPLz7u/h000AZcLpHMkBA9tWilgIVTcT30szNb6Objij5B1NZAJrEfuiOGshS+c/S0BHNjTMnt0Fx1WiduEzTiMFO9IlyAJo7Q68jllzGB9Zi/Xie+BBp6u5ewXpuDRRcL+95nT8hUyhpO2nJM8fG4FxWPKZtuVk/QmmtCUCP3WfgqjVdhVNxlRxZf2YUsUkbL38272IrT4BuxAQ2oiimywHWaydT6bwmYnbb1tJ0t9z3As+h3Q5yIJuZzzDFDmeJ/KxExiqshwuJg/OvdSmHFxVXgxqF7eqf81z/hb0NCZ4diII+Plqcog30t0E0o3YrgsTFreRWzAiiV3Il9eOCdMYsRHVFwK7buQT77F65MNLuYg+5iJGKpCTs2gx1nI6dPP0DfJVLUr4ShH7P3jHSZZSSJveDMDReuxGQmCeWaHuitrNrMViNsoK3wCd1Ykz/IUfx7+BXE9D1s2iAG05tYwPeco/lU/wLrjUc5UPE27I8sF55YTdIncpn2KoPEiP3VuZbRK4Z7DIpJuRms2v8HG6YMMW+M8ZGZ36Zxy0QRaAkgZHgwDTiwM0zvyAIWDzUw+v5Gle74JWRO8oeeuo17eT1+pQaLVStuWYpavakMUHmXT8DV0cSkz2EN57u+INMdJSwr+0Qhi91E0XyPzey5BF7spXnjV/2IF+ufYRxQT/0VLpXpQVdNz7+j4FSPB7ahqkBmNT5LnvYGWP9XiiN9Nw5QfIIw8ipqwUjzJy/k8ia8e7+bO947S8arK8p5rmZU/0WSt6gZ7Ywka+yMsVut4uFlicp9J8pa2z+HjPasJKTYmd/axMj2NOClEZZARwYdud5KsqGNvrx/DgDQWTlKHHI9Q2tPD8uTj1Hr6WZvzXdy+LejAC8JloArsd5ndjf3kMRRM4bc5kDMeNCUBkkqusIGM80Lyuj6Ot7+VmzrhkqEKhqwC2agVxCJKilv5SXmSx0tz+Kmj9R/mrEG1YxhxZgz+nvU7t5CdYC+g8t0w7qEUn319D4JuYBiQSIRIOXpot1nZzFLyxAEahV3k2ZrQDQvbRAEdnWmZak6lrPR4z5K0RFmYKiGjhDmPuVB+QBaQ0TE4IJo49CVyC/XyEKsdx2gv3Ed97BwdOYWcLSxHUkaxeA6QL/fwjPJjbm96lkDYgU1SMQSRzww5iKsuHIYZCa4tfhfDkHinaiEnKuoQhQm0x9XaQYqzVvI0jSdHzrE+57soQpKa4DQKdS82FOJCllYhQLqglLPVDqYMLOSqE19g3ZlPctnpu7iw7UbckTrChsQ+xz/6cK9N/ymx4l8hCAIXuCQK5Cx+uRdZhwpZolARSWcc9FqGULIepDEW0xNDZZyz9bDu1D1w7nLSSogu3ymcmoNPnVvNbFlhX+UbeHWNpP8DREFnuHo2FreOY5JMUP0yQrGpzKYiULa4l5r5e9m9ZDEAMwMnWcwh7ue3FGRN9JQjVoo77iDqqcRpbaaq4DVigpNzi9ZgrPgi3RXlVHeYSKG0pZgZR47iH0yRlXOxaCH6i57l2tJivlXgxSomqLebTLZ5vjDGwtuxz8+iIXFy91W0SAHalEFOFZvfk93SzcxQlDtSz3F9JMqItA9VMyOL/3GdyA/mPMLuwtOc8fVjmXED9iX3caH9wxS4Sd3LvtjNlPdYyVjdNE5fR9RbjSUbR/RV4lj5IC5HM1axnZJJJootPSSQCpkJtfV5rzDf9xRzLO/jTXahxmX8jXH2zpzDvJZDJJc9jJg+x30vtZMbi/Cvto82gv+ihcOHAaiq+hzpdIBjx+4CRHJyltN98jiZqIXaxqspLrqWs/uiuHNtBM6FqRnMcu9bIaxhGHb00lz4DuteW8frZ17m5HsneOI7e3jn3QgPnZaYppXj0lNUpPxcH7yBh7o+TdlgL4YgUOCYjEuw0ZPdTIXQjeoeY2IURYbkQh7jdn7BHSRwMPXsSda278TwaOxy+3nFspT5wklOUs9po47Z7U28aL+Ynxh30qsXEhwsQ0rejifUQI97CiNOD8WRIGnnQjK2GawO1mMAd8+3c8kKF31zXmFAq+Dcph+jazIf80+4UPmGj0kZD7n42FP+CMXhEio691Ix0MerKxz8+mKRN9Z8mI54fruVbGguc3psJKxBAp5cdrGAfjWPWcmTzNJPcJ5SupQUVbrCaNrM43fmHcKVdTB9pIFWuRAQuG5wP0fReNdI8aQwxEHZ3AgqhRFGnD5EWUeRdU4VVTLdtpdHjvwEa9bKjNF63pG/w0XiIcqyZdS6Z1LtF3hgynbWi6eYoneMX68o6MT0NeSdGYFuc+FQBZHf6hvwEGMWJ5mumuimQuUcdxXeRLnlMAet7WxXYvy8YgQBGc1WwIgnwPT+FeNjS4aEIiTJl89SGJ5CYbSGkG2Q5lqTqTXX0kLIEeBVZwHblWa6Pa0sdtlptq0zy86GCcM8ZTfpjaVYPgFLPwY6/kQRpZHJ2BPmhhlLvIkualx0pBhXMo8bRq7itbPf5c3uIDen25kr/BFruRkFyEaG83oVbzTUsW3FCno0cwyr2I1YYZByWKlo6iDUbkfTJULZEtziWRBETtabAIOdxR28IV6EkElzJnker89Lf3kljlQMa3qU4oDBW8tWcWf+c8hZJzhCPJZjQl0P2G38yl3NPNeLTPK8SCTvHV6uTtLfvpAdBz9Onp7kvP8XQJbZsgPX3GdZ1LgRp2Aice4IR1h53mBmp0Bs8hyO1n54SfzTBd28WuHEK9jwevsYzj+KgYEihzkUv4bgmXW4bElkAfCZi3ygdC6qvxyb+A6DRjV4yph8VT8IBsPt04hr5ve6UN7P+QPFtL1totN8eXEcXg17Jk20VSAkb8WRiiCc6P5/WH3+efZRaui/aOHwISTJQXXVvVithZw58yC5ORcgSVYGzrciW63kVVQSaAsTD6Wx5FoJOUSOVxgsbDWo7RvglZn/Nj7ec+//hjUnvoIC9NtFqqymu5yf9fNw9+eIinHcusaJVDcYkFeWi1v6PbOSO8hmRE5pFwAagq6TKp9MComyiEHCA8vnniWlXs7LuoscKcTtvIyFLE3MZtgao34s1RsVPCCAkj8VKbwH3TGLLdPqmNmTZVZPK7nRHjKeW3FIDi64yEVaNusaj1ffQqrGzrde1Hkz+EmuzH+KVVIdm9yLmZGycMy7hEt3v8OTP7j3Q3N4sFKno1BEMgxS+joa2vcyvTPGfduKWVnYyEhRD6NyksLefFZHehF0D9byYQwd9sZnglOgY3Qq8ayKT5IJezuZmqyhM+lGj9ZSmuzlGscrrJZ28pR+GYLkoBGFCC6m0cqMqEqBuJ95814k4MjjxR33AzDYcTmpnMk8Rh05Rph1RZei6CJFtjfHr313ZgbLLEc4karAqzQQy94I1iNkM1Z+Jd9EKOsnIyp0UsoadmLIClEtl4BQSp14jEm2PfzCVsUu3ybyBY260U9iUX1Uu3rIS5TQZRtmSBpmXnwyN+fdg1Ma5YXhn+IOTcFV+DSlcQ+debv4mO0p3kpWctKhUiWFUY0h7DYrcnoVIbkJwxRMZJu3GYdmw5fx0yYF8MhFzAjN5OqRNXRhELdtxDk6xG1vV5DnTdLpVyEDBcIOvIZZq6hjG4bDHE8W0rRHg+QEQ/ROmYZSNFHjmkcLUp0BRyDQ5MeBA92uUNrSxNnJlSRdDcSVICfyDlHWs473GubRqIhkgr3IeZNJW/aiqHHC3lrWnziAWOpCzjrp8e+kw6LgzriIWmI8madh1a7i2comIpLGld1DXJ09gCNpY5J4hM9Y8nlweISrYz/lhLWYFBejCGdJjcoMHanhnpEIksOgd/ZlzFKzPNr/Pg9xB7vK3+MlbxP3VR6AvY+xQqikYuHjnNmRTyZSgoGBgEC16CRlDeNuuAYtrfLljy8ln27ePtLGQ5PuY6/7Yj4+8Gvmlh8h0TMIDd8iax/CHj2N2jYxX/ZclQ3GFroUPxte6+NAfRBdEEmPaRb8K+2jiOA/aelEgo2Pfpfe7rfw+RYiijJlpTcxZ/YfKS34PuGhBIHzHeRXTiIV09j6O5M1MTOS5kSFRGvBIO0FClVDCoIhoujgta2gZGgJGTGFIWoMqP/IyOHWnWSHTjMQb6NKyqeu5Nd4lRfJ9Qfo66skFj1PeWCYpbv2UNXewdzuOD22NAIGhu7CInYzT9rGXfwZyxgjY3NBEf2+fA6XTyLg84+fK+hVCQsnSVolklYR/2gxgmBwc+/bxKwF/MndQmP3KfxjBHkpwfSCB70S4eEZqPEcpmtOkp7VHLYt5DPvRrh26/sfup+AX6ArXyVjm05j30XsnLOSH11fgm3yZSgjncw98QxVna/hzzqoHwhQQj3BAxqdrfl078ghZyho6rsiYCDhtgTpsQxQmxQZyLoo0zRWpI/xsvdSeuUKZlijNMpmE9Qu5lPMIAXifgC+cfADfnTsi+PXVpozkQ7IMepxYEMRDWxCN2l9GkH188Stt3NcX8kx5VYM9R4GhAlemCG1EMFwMjVbTo/6aRQji12M0xy/kiP6bcS1pVRYD5NVZUR7F/a0A4tqepUXdJj6E15bPxXuQUp8r+McE3WfYv+ABvtWbhPe4xrexpB1HFlYqg6RltKkxTQWw8pwapjadAXh5M/Gvp8Mu92HWRmZzyXpmWwwjlKInZxEKbGMBasUhnQMQxC4ccoZlEIHdiNKk9CELL1PMuqhJVyMtzCKTw7QFDUlWyptB7G5qymM9zLdOEuXLNNiUYjYujmZdzd9qy5DdOic6TFbhjzRLkojGxENFc/wKySUBIddXXQViLhiI1w38zl+V/Umf52TxRs2I5hBcSrbQ48CAofzTlGgCiwPrOCaAR8FWfh54T4ikgkceKN8By/mDVIrHqFdlnh4KMjVMTNvPz0doLLXQJBOMdjjwzoQI2JzU7Z0hMmOh/lF326SmQLUqolo9vFQln2NZh2tsOUOLG4TTacJKjZRp1qReXS6wMora3jos19Esujc1fsyGUHmLf9KTnmcfGPy/Ty6+lM4EjH6Q6cJpL/J/uNT0SUZqWAatjl3kDEq8Ihx/MUxbGm44FgKzSOiVB3+h3Xgn20fRQT/CTMMnebNDyGWvoUhJsjxThR5fb6F/Orr24BWDOMiFIvKGz87RHjQ9KYCPpEj5e2M+uo4ldKpDzhoDCyjPunmyWWXsCLZzbCzh8ZMBZGxTsNfFb7IZweuHz/H6RyRdnsJU3QrOiZcWRAgnOfjBmkjzdHpOPtClORcgDUrkEieJSr7yBN7gV6cho0Ov5/m0lp+Y/kkN/S8zrfqvkxWkhEMndv2/JWUbEEgzlO3fgVjDMmUG1XwOOKEBwpYIp/nvekLyY2GuL75Xd6evoiuXFPO8ki1hYuPaJw//ih/WG7ywNf36pwuVZgrmSmFodyptJeU8tjFTehigkmjK6hM6SxtdnC57wswBSJVF5LZ+wh1ra3UtZq1hvTYHLxnX8HSgT3M8p/gkLYEJWtirQ8XPoshGKxMNzGk3EE6PYN6XxF/0UtwChPKYqeLyiG9iEtHt40fm6JmCI4q48jEOuMs1UYXpUIQOXsXUZLkCD0Igk5MXU+/uoSStAHivSwTLQSVQXYJp3EaVuanp5CRUkwdk1QEeDb7dcpTGVrT85huSZCW5pKj7GbNYD0zA6uQxmA470/6PbMDy7EKWdDbWJU5wjLbYYYNDycpYZH9Pfp0E6rpIoGDBAEK8XlGADsJOYEtYyNVfhK65yHp5pz/0fM+qphlZaSKBfKDJPVGBhXoT0IcgzmOHvrDZxi12EFfzHrhMG5xMxlBwiJqDLa7sXRrYPLlkSubi3SNtYke613c4niAoCBxWbmZHqobnM+qbB1D1NE+fwFpwWwYc8YDXDHlABqv8XaXCfFszz+Av/8A7401k6cY4cVlAusOvE51ughVmUyb6sBpOU+Ht5u7+mwM61YufTFJ5ooUm6ptVI0q3Jvp4zW3i00uJ8OClxwi/GBoAhUH4NJa0MWzxMIeom4Hb192KZsqVR7qfByAr8i38rHi11iWVBhtV/iNJ8ObYgfFzhSVwakUp9Ns85zh/SlPs6RrHb7MLN7Km4JfDdPhirFn/8eR0NmYv4rrRl/lcYdJK988WSJhtXJq5BWmyT5yu0ZI161Am3EZT+a/wRcCD+L0PYG6+DTWqEx61EJ+bpiYJc2/2j7aCP4T1nruB6RdL+FyQXzARspdAVXme4MdEzz9WUlDz0oEAwkEWWDUBs+sddGYaUfu+REh631ADYs7r0RApHzERm6sgGC+jcl6C3vS03jK9zbbnYehEO4dnISElR5bFlnUGRX7CBte/EKYd2MfZ6nzVQDmTTpBuLCEmHUFOcqPuU7aSUw3F6QXuIIBYya/alhN2CLgTUXYKywmK8ms6G3mg9L59Dn99OaVcOH5I/gSUUad5iJbHo5gpD1gN/DHB4BJjLh9HKmZTHdOEdZMmrRioT/f9MxUCbrHOIn2Npje9eyjufgTVRyZfiMFEZ0rTy4iIyXpKLehK+24cwpANwuPP69TObH0O/z+wfvHUeOtFZMZqS7GWRTH5skQCuaSO2QqrAlCkq357cxKZZmemk3YaWW7NoNVlLPKgOeMM2TH4KbDLh/1wzsIqZ8iq2wijwFKjSTlxgBpYxqKcIoZtDAolFMptJGSX2CvvpgV4j4AdsXi9GTMiCpfFmnwxJF0OyfzT3LryOVMIg/Geu8Mw+BsWkdNzeU8AkLeWSzk06lNJgdY6fkV+2PX05WZS6/nLOfzDxDFTl6wlh/xDhWWAIOah2uy36NB6GS55edUix20a8VUSwEWGodp1cpJhDTINbD6TqIMLsAyKKAIZ9CFFC+KcY7aTmHVRJaqm1GkAIoYYLrdSqEyE5lcrANb2JfwU1YwglM4ils0c9OWMaqKaI8NNSrzdm8+R6b5+AbmXOQrbQxlq9mYupUP3LsQdYP8eDmVoWnElRAoSUiYTkLO0E6GliaYKoCMyvqFp3hYLSepTKRInGk/07My/YKFo3M6qOx7A/oeoDiwm/Ypz+PSrbw65QHub/4NckWUyzfJrFocYXqshpyKGHYdnhroJiyKeHWzYL9fn8NhcQqf5k/YJZPhVw37iHi8CECiZzJ/tlzHobiP1YvfR9J1XjPuYn3byyzLj7K9NMtdkzfx5+MXU2KT2FX7B74WHOQanuSqwttZMRLihRMTbDmbpFtoz4nwpj6LwsE/kNFayNimsWvWAtY27aQz+CJ2QSBbt4w7J30TXdBxaDbuHvoqjxW9ypcWzEDs+ANPLJrJZxd9+z+6NP2n7aON4D9ouq7Rf66VvrMnObx9CxZPIYUFV9O6bRs5GzrZHdiN2i5hHzIfvEM1VnZO9TK9K8NFx5IYWYOuXAt+9TSBgY0IQDb972SlbzOafwBXeDK3bYPa86+zJP0ynvIUp+XPMJJysTZwEcJIB8U5ZnNZgbGam4392IXIuPd6sev3AGiqgKQY+Lx9KNkncEgmGsIl9pAwbJwWapmp51GW0AlbJIqjQxzNr8euprj+xDH2FszhvVlLsKfTTAucpyA6yqjTw51v/AZVqCBmNxA0mYHc6vG52Vc+nbJQiPltR9hT20i3389vrkhwa9e7ZMWPf2gev3HPV7h661aqImbaKydZRL9P4v0ZXhzpGr629xDZVB6nUjrvNpjnaF7/eVZmfsZBzyRed+cyq+NKvKEAAWcUT38HtqoRUvZcCvOfJShL3BDKMqBNxwbMlwrGz706PZ83K1wUxAZ4sM0DapRn5XwkX5obIzJ28QRusZuwehuiNIxdHKCSv3HLhLlOMT1GzXBRa1lNT8ZcIIeyBgs1B5Ig8EDfHVgF6e/7nYjpcDql87eDv6n5d/587gec0WwkmcMSyyGW+n/Jo+JnyZSY9Ye28GL+qtyHZWzj+kT2S4juFPsTEwKJ7RU64lkfFzqa+ZFxB9rBLKztpjdVyGXsZ4VwAKymTsPV6mfIqg3MC3fikpo4oS1mmrgfl3yChG5i4r3lHtYOVDE5949YxA970eFeO7oFFK/MqeI8NnqDNLRVUCWmmO0b5Oa8T/PH4ac5WnmWZW0rmDK2ObflHGV7zQsICMzrzbJnQZanz7iJdCfxlJsonrcDvVh1gz/3FlN2Br796fu4vm8fDcPr8VoewC3u5qGSHC7ceYwTeRbWFtXzh6oKXGu6Ca4B/xvFLPb3Qf4hotmrmRYtBuUJvLrOVrud/NMFTC6dxDFjMllVRLLoZNMiSlQlk9OImLXhtp3iZUs151NVLMrsJHlgBr+Wfky+N8QnMnDvSAk7PU3cW3WKUcsoBhmuGUs33aG+xPoTibFnI5eUrpNKLOe6o8UIjd/n2VQ/halc8kZivL/gAtY27aSyL0DQ5+Hbdb9CF3TWB1eQo3lJY+XuwI3oditaXQMlx58lcDpIybwS/pX2UY3gP2A9p07wsxuv5M8PPsD23/+WSJeD4RM5WGIDyLJC08aXCL/yVzItMSLDKUYdWf4y34luxDhbYlI9RB0GW6fL3PLWboqCpiepiSkSrk7A4CLvE8xMPs3i0lfGfyBltsMIGAhZncuyh8avZ72wGbsQwTBETlHLFm3VxLX2Txp/7ZTfI6mVktBMaul+0WzonqKVUhvTyQmHOZ1fS0deMeWpXo7acimImgtA0mrljVkXMqWvg8rhAIovl5jPfPAzisHJomLmd4+yLvs+awIqP993nsJoiEXtLQgG9Ftz+W3ppdiyaSYNmt3OFf1mbj7tXogzPSaebtF4cbr5OmG1c9yZ5pGi05yyTOgbnKqfg9X2Fd4sGuFQwQHemPZLekUbP1kbR9JVivv3ErOE2Kq4cWQ8SO2/4N3RCwFwjAlqDstQhpO7uww+FiygNmEjrS+hWhfJj32BkFaEWzJJ/JL6fHRMokPdcNKTvgKreH78ehJaIdExZOgkq7m4B7PmPRSKDnx/R6h7JqUxnP0wadjGsz/FpTs4jMx7LGeTsYIcIcKsuIWEnEBLljPf1Tu+CXwhczcnjMnMyj/BxbVb+Lp6J4NJJ1Sp+KwJRMGgUhlCrZyBRZeIWCJUyccBeNhfypn044ja5dwQvIzGhCkptI+LiWmXk9YnIMvh7F14c9ciIrM7OpvmmEnu1vJWCX07/WRzp1C7rpuV6QAGIt+eC3fPtHDIasUnD7Pc8yRfbbuOa2OLx8f0qzYgRUqJs6sqjSWbxf1Glr69fgYOeRgWfeRpOm7DYKFV540VN6LocX5vs5CRBrGM0VPMtW9hxK1SGoSVkQV8csTshPePZiiYaqYNDcAtv0aO8oQ59xaF7n1+Mqd8dKUvoWFAp/X1IoJnnQTPuDCA7eXziegOogkfhwZn8Dnba2w4dporeR9F0zgbMfsXNgxn0JQkQcsAggYV3WvH7/HymLkJHE58lUD6eU6pD7FENCOgRck6ZkRncYfdxcr848Q98J1P3U/T1Jn86bKVfCLSRl2ykrsHruP6kYvptAawjT2zVsnO+op7GD7Swb/aPooI/gPWefzD2jl504IMn8zh5IHjE2pbhk469HMU5xXsmz2DooFuhr0lxJwif1xhZ9Br8LkXnuXipp14Zwq8scagMriUtH2IcgLM5iRUm9S+JyJTqXClWCIeYFH2EGflGhoLumnHS8CYyhJhLwA6Xmp0mQbJbOkPqY14ikYJZr6ITdqLLAyYMD6hF4CDpUko60bYaWd5Vz9b5kzow87UjwAS7mQMKKAwPMKAN5cBby6zu1uJW6y8M30RzlQa2ciSkAVWex9nbrtKVdsiDtkO8yVeZGvkSvo6c2munsqAO5cpgU6m9HWxYZcTm6rw46t0+v1m7SNmA1dKQvC5yY1ojHgkFE8DL9cXs+nvdOuO+SR+6+qn2ZkgP17CkLOXl2f+G4agM+x1UN35V06U7aB1modbDz7E38q1nYSx4SZjl3iuxsKDJ9NkBdjoGeSKsA+XYaNOnUZvLIeEPBucPUS1PEbUMnIUsxs3mt3AwdgVpJ2D1Nqa6MtM4Uzis8R0HQGDaqvA+bTBDqOb1eTjMex0SyO86tiNLzSNnFQlNjmNpGSoELw4JZDHFLXOi5AfnEOXWIDm284txhEqWu/ivCdJWXEXtMO69A85PUaP4QnZyano4ufaxyjXozj6e/ls9k6OiJ/mUv19uqVb8KVyqRVPUZVN8wN/ASeUem43qsbncnWqgLDQT0TLEtY/AekBtHQfgrsQcYxQMKjeT8G2X5BNCBx1V2KJmTNaVOMEBIqy3+fX55286nuXN/J3cntxAd8dDnI1m/Gl7gcZTiV1skDKkeG77zl4bmaUM2UCRWFIOWwcrWlAtop0pgpozO2gIX6WmbndPGH8jPdbKhkY8GOregWr1qWQhyIAACAASURBVD923UmO+dxcIiVQ4zEcoTaS/SJzRiYw9k1z8vDtNJjiHOHo6GQ2KW6uOdUPDCE3v0RKNbv5g2dcqKpEb66P13JdVAtplopBZtLFpZljSKZuGS9xOZFAgCV5TUzVYgiGA0OAhYNz2ZA+hi7CM+I1PDL/YgoGvsfT50shC0VMzLc7Vcg9ajGy1MJvxQ4uPH8OhyBy4Irr2FxSjdT1Pg+3T6Do6lKV/7D+KP6XgH8tzcRHG8F/wIY6O8Zfz97gJFbQy0tVn+OSv/5y/LiWMb1JNf4m04404ymuZOuF5bjVKG2FbkRNY/4p8zMFYZnLepYTIpdBbw73RJ4bl+xRkdjkWUkhw9xKF1ZZHVcF28bF9AkFzDcOowgpRtW7SeszKLHewDBVpLUf4JZeIKqvIqGvwiKcJt/6AFnDzg71a+RwhDPJWg57EiwMeYnbJrjcV9jfYzi1lKLIKC2lMKPnPFvdPvbVTkfSNWqG+hhy+xl16GQlkfzoKEWZYY7pt1EFrGEzdjI0FdYwNdBBW34pGUmmvq+dgKOaxjEElD+mc3CSjaRFIDceYFabQdiZw/LjCbY3OthbNJHKsaX68KZjHMqpo2PWHJThl7n43M28NO1XSEKWRbGZpKym53uD81vc1J7LG0ygdvbrSR5dV4oAXHLOLLglsgbR+Bn6jToK1HxkKUN3RqdEMCF6nek5nEmDJM1hir2D/szlBDUr+6JfwcEwu2KFDGVNMrF8WcQhykhyBDXtY4+eYKpgZcQTZGfRDjaMmpXPVNZK7qyNuAeXUZQshDH93wA6UclCbXIKh7QZzHW8w3R9F2rS4GR7DRoC540SnEqM6yxHKQ4H8Yy6END5neVi+k+adZefRC7nm76NXKltwZnM567IMG2KTF3kczisH6YpiWSvwWocYUP2WZAXYSgFpAO7aMoZYXmmAaNvM5myddhWP0V883ewRIeIul1YkfC63yWhr0JXyvH3HOcz2Rs51rMEl+t3/LDCwwltAZ8Yo/Zf7RF5XTnIrOO7qW0JscSZz5myUdwFedz4ve9TOhJldc92zkgW1Egju2ngJn0zPinOJZZ2hkqC5GtmVDiaseK3pKkrDY9Fy4+R+GkxLkOGGybuLe40aPWX8mZsFXNDB1h3eBhdlLBWXoDavh3nGOghm5QQgF6/nY/3/B7fBRGSg5NYYwtSygCbWcp+ZpHBAvVFpMVmCqQ4l+wrIm2R2TvjII+kexENEJ1RUrbJlIRqyM1W0aN8wIt5nbTauvhez60U9qw0OZkGljNQ9EsKEdlAA64z+XztTIw/5K3BrTvYPvdFKk4spTpt1vKaK15mfpdJQ15iaeRfbR9tBP8L0zUNUZIItJryjbOLBRLyCLbOWTx91slo6Qbe696ELiqIY+3pokWjINiPoarYkwluD2xkR3Yed238EzmRMKMuCYtcRohcCnT43MhR8uQJreFY1k2BxUVAs/GK/gXmZwaZZH8egCAebuU1FCHF6dbVOEsWIEgyW7I/oCpbhYU0UW3il2EVj9FVZicYuoS64bl09s2j2fcCZwpf55cpEw63/FQHa4MJCsrr6Q9dzoLscQp7X2L95veI3HU/KdnGibIaWgvLmTccZcXhgwwUlSFHzpK2LSCatbFLOseu2kv51OBOXqpcxi39m7nm4DYwBHbVNnL9jhSqbKKHagIJAjkeWiqsQBU1qplyuSia4mjMSrt3os3YGn6eqG0KUEfQWUJNfynedAk2rYhv9F/BzEQd/Qu7ELY8iegwQ/jS9AC9VjPSOagoIAgokTCTzrzGaHwJ8bbN6EtKGYjbOJ3SKFUURjSdcqahGwqtqQvpVw0GwjexI/IxBGxkDCh3DCJIvXikorGNAGaPyT6qthHkWBkZDY6gU6DWcFX6TjKGQEqKY9OcxAsP8Wv/LrrjEt85+mU8fguJpIewbI7VH74CJecoypjGcQUBonYFNSVT6Q8z5LmIO89ZaD3+AVWlXbRHqsbnqdl6EZ3pY9RZz1MXaScqONhlKWfKqI1ZiWUcsZ/hA28zSwZTLNA/idW4hNQ7+zDq3sFat46BRDvnUqNsd/+F69rC1LumIvkqsM28kab4Nk41NPCAdgo4T0i92+TGspSyAHhEKee9cw4q5bVclZqgmI5LURzxo0xrMWHTxVoeodhXCZf1EHF5uFf9GUUNgyzy9zM8WkLb2UW8kb4EEZ3PGb8hX5pIDaZ6FLJVmfGUKYC7NEWs/8OaVolhG97CMNuPl3Jp6y7EjIAqSahVs8h27ULWNDRBGBe5v3zaKVoNH0sG+miNtqA7c0iKVs7p5TAyBPkm4YWcmozEERa7ZR4rz+GKbJo84xzviXP51txvYDVS3JYsQ0TkR6VNnLWbRCoH3Vu5NHjH+PVdFryQHrEfmzrBJnrL8GUMWHW+lHsntQ2/xh05Q59liCv9aSqtGvuGC1jl+9fLuv//diMwDIPU8ePYGhs/RPQGMNzdyV8ef5VoqAHRc4BEJIYADFcPk5s7iP/0/yTvvaPrKK/978/MnN6PdNR7t4ptWXKvGGN6N4FACqSRnnBJuxBIbm5IISQBEhIglEAIzWAwYJpp7kWWLVuWJUtWt+qRjnR0epkz8/4xigTvfe/65Y/4rvtb717rrCXNnDPzzMwze+9n7+93by0B6tZVsy7LwEnzfqz5rURNAoVlExx+uxzP0ASv/eBWdKkUy1eaqKz4IuNpJ7m9JIuL9WPYUim+If1hLkuTUg1IQoJojswF4wsZmelltfsn8DFm+2LFT6E4wnSymoDlPGyS9vgWpBZyPOnDI0TJ18971GZpD7utDfTHvspmXZKbVluJS18mpcukyxsDHBRMCVwUKoCOr9BGEouaxed2/gVTUGX16QCWkInriqK8UWZgSecRrlbq6Rwfph0TMyObsCkGRgxT7Dbl8X7dIywa6cOo6jkvWUOB4mFxxzCjOm1MpugkVcfbcShZvFu7AkUUeXpRGaZEHH2siyubaujK1SMyRVv6Vkr90wxa3kGRXMRsG3GZLqdCr8ORKmJxpBIZhWypkK7NP+IfKdTKSD/x8NtMpt2CR9Vi85bQr+jOTCf46gOELEWke1cyioqgQm9C+06alMNwbCtTswsKFQmnZCWpquTp2rlrUwmZcRt37xfomUXzOU3f533350gq3di7ncRVCyDhlVUc/vn+swBPBmOEVZGVQxKd0UxcKSOXiWdoiY+REtcwkqhDVvXIqhGTGKKQEQb0br6z5BEOjWzhw3w3P+gOk29Zy2LPNvoCxZilGBZBJmaf5HS1QKDzfEoDKiHFw6fVV+jTncCYqOGxzK2kgiPUt1gQa7oJxtYiyIcQrRmoiTA9pmFSsoGWxPWULc7gVedJlsf0bM6qo8ifpCJRjNnwFKExJ3dX9TBeUMqgMYsHWqNUhXSsybiS4ZQTNzp0ukcxqKWQ2sAtwkf0zxLZhKI4SwtGOG5ZyKXx7VQYTzFbKR2PewTKmuho34iCSIdQxRqOMpppJMcbJ6f0k3UpI3oR5+YAacF5zsvD/suw9/dQe8jP9zq28o/EvD6Vwtv8GH6Pg8rxabS1gGYI7MYkq8URACrsM8AMx1ILWGp+lad0teRN9VO+PopFGISToHg6KM7+N+5q11A8C5u6uSZniq+NRXEmLmdaN023aRAd4I6kc6Z8P7sCYeSZYdaO/YxNiUWMmg8hptZ94npanSkQBIY9N2BO/RKdrJKlU2jNe5eHJTO1+WtYwLmV/98miwNvvUX/9Tcw88qr/2XfrmeeJBmop9JkRhmPI6gyOlMazspJxKQVazifSb3mneRaylhSYcKcbeIJc5D+uIicbURSRK6671GeueWzNOTakawZ5BaeT+ms0Vn6sRAGwA7/RlRVh310I7qEC5NzvlrjeOIOvPHfskoJEkvVEU7dR256PUpci49O+k5yNPoGz2Vk8nqujj8X6HizfIBtlkzu09/JL2tNbM/TE5cECsIKcfvlPF2ueej1QS/77S38Ku9xcswxlLAb+YpleK9No8znpNLg5hK/wqePtlMRt2BCz+JUMYvkUkTFgCzCh3X5yIl3+HFLD2tPpCiLllKgaJjxHMxkTbSw/OybbJKmuSI9m8+O2fnSvjeoHTqLmEpx0eE9hMJ9XB8MsflElIbuCQq8PhLWLXx97CbsU0+ii3XS7Wkg3aHjV30akL05pBBXVCoFF4GUwpSsYEkvJWt0lISYwJXS8POeoMSCkSt578LLOL3gc4iKAUGZ9yZtooJd0sp5rwv9nTqzSJZOYIE5zvn231OU/yT9ljya3IWMezTjm6tvZ9oW4/b6ddy75GYeXHkX4Zov88jK2/A7ZOL/LxcroAoYBFjfKCLZxjlgi2KabGJNykxUN4WMkTen72L71H/O/eZwYCVr7h9hQ/NupowizYnnMUs6lkrT2IhQ6uqlIqMDb9SDzubHoF7IsHor6bq3eC21mr3xLQSEMGsPjHLfkyka+4JEe7vAWobozEfKXcKk3IRP0LMpfpgv+BP4zAMcj6XznqBBR12WHHLVIJLgZ5tLYXdRN0c9mUyZJT672sVeazvZlhIWJj20IaOkLiIVOQkYwFpCwmPgaOMysnyb+MGRHUQlCxdNvYnenEIvpXjh9NVEEib0pjDH/JlYu09QRS9xvcAp2YN/tqJqwCwxY9Oxs6yCbo8HezSFRTdJIFRIx9YcfLKVSKcFU8e8SgtcJRPJFskMRsibiqDLX47t8j9ivuhepPILOPu2i7EBG8rHcvnZyUGGDTqO1AYo3jRMmnuUREBb+V0bneaJ9nkoZzJm584eifSwA13SQbh8O4qgIgMTFh8VZoWcwma2OhO0SH3okCiIfh1RtfFo5su8496GjExx8+vcl/oW5Wov/qw78ad/myy9ynhSRBVEuuYrxJ8z+acMgSAIywVBuF4QhJv+8TnXAzvXEj2msfWmt74IQCIaYbCtldD4GO92StSaJWrMEktd1YTsBehWFaLTC1R89CesGIib+ghkaS2YLf4qxpsaSDtroyMscSJtIwBZkyP8dcVlxG1PEDy9laSaYp0g41L0rGL+6f4xeRX3iFcwjQedMAEkSbO3zu0fI8XbC3diElsJyJ+d2+4dex+vUeB4zRJC9kxOZkc5YOjjWq/MbnMuPykr4oxb00hbC/XkRhQeb4pQFFHpdJv59ECcV4u3c0/+Y+xxHCOU0cllTjO5kS9hdd5Af/4gY/ZOntd/QJexj3q5GHV2WV1NGjP2PvbVhWiuMIH50zxv2YoxnkG+nEtcUelVghSoaVQZQqSbbegyaygQaqlUCrlGKuCPv/057337c9z23JNc8NbrWN/5HioDuMOFXNt2O9mTNVT6rHxjTzbX9PcQ0xn4Qxl4RDOqquKTVXZYjyKrKr1xhYiionPkkumoIsMiUhk2UTMQ5sbj38Maz0CJZiAp80ss2+zsj5i75rY9UXQEneeXrLTpyNcfx2Q5wF2F35rbvyM/xUNXWji0bJo/F/2jKqTAYvlm3rAWkBLN/PGSTF5YZ+dMzmztJDHJZ4IJbszO4nbLkzyz0IaaLmOsaMSga8SUSiNDepl33AFG1Gy2xW7kqNFIi5zLSOaVFE9YyPDLfPOKW3k/U6Kxd4I205fp8Rax6EQrq/oPoxy5HutUHXus0/QFzQx0wWpVYTw2ztLO+VzQMXpRVQXrxp8gCiKHfdq1tyUduIN/J2f4Ta4b3U796C6mundgM2QzLSkkEHhkgRlL6F1qev7K9578KXec7GNduIa2VD9mRLJJkVCymdivgRN88i8wN7rJyDufCscyPLGvsTq+B0/2FImgDlWBhaf9eA5+hvqWf+e35mpqVusxSgkCDj3H5A38m/gluostHFnmpqnezbaeT/Hj/u/MX0/oalAEarv7KT81z+EBeCt7FTNf15Zv1mQcseJiZBREUY95wZXIMSfTBx3sbyuiKT0d72kbo+M2ugutPNT3HVYf+A35/16E614jk0bDJ46tqgKKawMCIjuFPbzifotwwe5PfOePXs0RWW+BaSH8iX2nLb3YYmd5yribmev3kyuOcod0D+5UFJOlijSdSr9uGTMZP+SM/zHOtfwfDYEgCE8BD6F1GFs3+1l7bod1buXF0SnOa9jIwbolxFpPEh0b5bm7vs/z99zN/d+4g0nPcvJmCS75lkIuMzRSoHyEcXjl3DFS9kFGFz+MP/9DzP4KxkJxGiKbCXdfyZGcVSiCxJb3/8p1ied5a2kZD13j4j+dM6SEGDfwHDFXJyrwB/lq3pxYwYQxjValGLN0iHzTNRSHx3lO3gzAW8JZIj0SKdJIqHUc9CT5um2UnyzKZ5+aZLVXZuuF12NRp/jUUJLsONzTBsZwE4jaZBy1SOSHg9ztuY9fH+7krV0hvn86QaacTl5cC93cm/cku5xa1zGTvxwjBrr0w/ytfBsJywwu1YoSGGb60MOIgsAVhiJS6RrDNSO6kKWjG7nKpafQIOJTZMKT2rHcRedzqMoyd+8EBKynJyARRjK5Maz6FqK7FNGeM9d1zSLC3aMqrZkSS1u8XDZST74vTItbm7LDSQ2VYhUEepQQVlEgWy8SlgM4Ft7AeToz6216bjw8z8rMDFagiAkucIhkWYNIzn5E0xRe6zRTwrOcbXuMlmV38HLRFaRI0eGY4c6Sz3Aws4GbvFozoO35DqbNJp7Jv5j3MzRY7mcGkvz6zApu836fQKZGKhrM1NNZaeL5dTbMmx/jglaVCaESR0IllFnC1qWFvFTeiAo8dqGL363/Au5oFmc8zQwEL+eWnCxmjHpGctfRX7qFr70bYH3vEDH7k1TrNQfkW/GXMIYTlEb7yZlYw5AQwt/+CjuGq/EYc3GIJnwzp9ALmhJTgEFDmM6QBkX2JyYIy376csIEoxZknTx3ryRV5T3pFKdnmrCmcukwGKnr9WBIGEjG9qIoApcMae/IYp0GWfZgxD7zAEJgXiHbzLdTI5SSSMWwSDZuj28jgYFj7Yto/WsVFxuupSC+DkM0C4uqY4HvamxyhD57Jn8q/Ry+xgx6C230UsbeyGbGSeOUWszf0y/lx2Xf5o81ZQAs6B8iZ0ZTtnvWL+HkeYWEQ4WoGSptFQWgN2Nw5HLQsJPA6d8j6ExIFcsQ7TlMWEppPlNMn96F6ajE5tEt5KilSIITfcl5gMBLZ3Pmrmng2CaG42+gK78Reaafl9K2s9W9lz0zFr6V/kkWcO+oBdk4Q4d9ntV+0NJKYcDC+HAMV7wDu2M+of+jY/dwa5em+I8ZryNpruXalZ9s13ou5J/JEawEalRVPfcdlP8HRIlEeHnvIfwZudz5zR/yw789QsX11+LNyeCMtZ73M1bwY8GAiMDB6FlWmQvIdlRhjJyPNFE2dxzRMsZ0twtd2IFLtiBlGlAEHcfK1qBKesaci1iz4nUa9BriJ7dgkDvyV3Nd0y6GqoMEHC7ea7+AV4cuZqPtEB0U867pEs5LHpo7x53yLVwgHeFGw/sUygFGEhpz+KSi52TICizASpxr0fGjk28TGvezAA3fbFD11IXPY9fHrn2E/VRPl9M03U7E08kXhRp+MHITomLhmO0UPy38M7/J+yvvuPZx7+C/sT5ZzQOOlwBIF8woagr/6RcZ0rto8khcNGnkhoEYXhnGXRK1oRpmQ8LszHmXZc17+DDWxdL8m1jPagCOSb0sSuZjUCXGy5aSX6fR741ZGsLm/OQMZ0wT1M5WsbzCV8bGe//A199RyfUH2Z+Rw1ndOO/rjlORXM7aSKPWSUeCBAqnJB/LmU/GZeoEOnWn0SlpGOMZmI0BrKKVAVMHvvgkH67ZxOYzCWrFF7j+Mz+g1VFDXiiJRIxi/6VsX25Dr0TYnPEGe9S1DAkalFMR9PjQDOjGcU2BrphJx6Va8akKqiByIkuHIgj0qmms8FcT7rmO385EaZhOcfl6K535Bu6/1kpYLzGJRFq0EhUFY8rCQl89RRNLUUkhzMJNb2pt52q39jxkRcA0PU0cE3Wutbh0ToLxdgwyLMgIYNLfipxK4Js5TXE0zLTFyNFizWgPhTqpdq7gmKGXlzYO4Q4YKBm1Mim70etSfLv8AB/sq+CEJ5uZhBcRA76xRTQ1alDOhAGON4xwrT8yh3b7h8RG2lAlC7LwR3Tqt1FwozLJqdiLLLF+E/1gPffbamlduZxG10muH5h/VmM1fyW7/QvIhkL+bt9C3GmhiXX8VM2hTygHOxhWxxA+9PGDku+hWnX85O0HP3H+A3VL+OmNP8QWDvKF7X8ksEIgttyHFChHEEQS1R2Mn9+L+cAwLGnEWvkZlgNb+37DPqmISx0CztHLiI/uQcSBWrQc/9AO6odD/Hrzp7jkgSbM9Q38w61JjXcgV0aZMcYY6G1ECBXylZImPjQO0hOX+IMM+A0ImQfZGG+kL3mMNHMPtdMxpmecONNmW3e25pJePIm9JIrH3oovkcaAoVi7prCelZxb+WdCQ6cAzzkex/+YjP/2twzFZdYf07yq3154M7ev/CFPFH2ZJYbzuFI2Uavq8KHS69tJKBVmRgrjnrwQR3TeEOh0KlUpL3tlzZoXp1tJmEVyHWNc1dPDDwo/wFmsJbleTX4KAbhOeIGM6lYCDi1ksLnmfdbWNmFdGMRUZeOvqzZwS+09vGG9kh3Td/KA8QWOSBsxxX5BUJ5HA+n75ptZt5AiiIpufDkZ+iKsGHmo4AC/qDFSOlvuduNZbbItNBxEjxOdWyVD8GEXD2BQregEgeXhOn7ftIalU8UsDmudmeyqmUnLOMVjKueNVzIihrnszrvYvn49P260sCNXR+NEjOUnDxKwiBSZ5qfTMfMI6VMBHL4BdAcfn9veJ4wRH9iDLn8ZtoVa0bIZMUSrRQtRGPTOOSMAYFUETKqdQlnllmkXqiDwYEmYlC7GE8sURkyaEk4ic9Q5Sq9Z00wdFm17o1WH25YkZDhKLPIq+WaZBDJtHif76tfT78nhsVXX8FDhZ9iffRkXT+7lurPzvJGbd73GRYlHQU7yaVljFq8MfDC335BSqZmROenQPMEFAYVtx79D+cjfUQQBWzLBQdZypvZr9NhUvKFm3te38qt9p3nmw17+reUs1bNNZJ4+HyQ1G0FJsebMFzDKNgQkEpLm6Y7FFxFTtPLL+yeKmEmYkAQ9tW5tZVJgqGFjzmWYxLspNbpJHv8760+dwZpI4rOZSegk9i6apMM0yvdzf8PvFvyNsDmFRS3B59CKrMXdAQ4PO8kdDrNCN4goaMzqcvOdVEbnMe4ZpqUY1EJs0ss4dQ8jCd38ZMlpRr3p+Aqd/Fys5NalZoYcRykwfZlleQdJGPvIGb6Gb4/VUj2TIt05nwINEeTYbu3ZxdUS3nZsYv3MTjLVMc0IzEpCb0LJMaNadeT37WPd8SNz+w5XV/EfX7wGq38rIasd4goDo2Zy1/iZumgBSSGJydILAgRyDmAJz58/x1xK0G6md+kaFDlGonkr/tAHGCUrjsobsHQLnPJVYxhPojOVEXX0EHDuIdm3i5IxFUER8IQKAJGpvhUsPKOt5s0xlfN7FVRB5a78PxI7cxZvs4GZQc1jsuVEUGSBicMOwuMmnJl+TOYw3rddbDz2O7Kn3kEfGOJcyz9jCJxAhyAIbwqC8Mo/Pud6YOdCVFWl80gL9z/wc3722AMs7mrHcDZAUjSQk9KUc1VYIENVGbMOoUtOckfoKL/KaGJ8wd8YLnyBqL2XuG2ImcJdWAzgzurEV7yD6WwLG8ta+Zb+Hq5wP4vs0WCRUZ+R4seGGDpVzmr2EXR8chF2U95WLi16l7VFH1E4IfOOZx1fWfo9gupyDDM3UhI7H1nNJZj6FN1yhMj+B7juo/tYUXiKTCHAcu9JJpUJGlEpVrK4rV7PUzUX8WqBgX2FBQiqwrc7ZV7f001Z0MqamB9VFyOLCUxi6yfGUuK+gNv+2k9jSGvqLakCaRNefvOMjkypmJ0lHmSdjjfWNmjXFhrGJJn5cjSPh45Gyddp0+mI0kVX5i1YEwpVA5OkJjoI7vgukX2/xznYjtqzG0EQcalWvAVvc8LayY+KHuDE2NPEu97hN/Y/8XjGK5wWNQjh9l/cS4MUod6fYvl4lAMFJcR1etb07uPXJQEOmdt52rSbXbqTnLTH6UsNkDHWy6SiKZYCJR3FaiFmj5Cu2jhhi/H2wlV0ZRfOXfuvSrTl93L/MRYkHASsmoH/VngVW1JHOB600nGyHnMixqWG+QqqKycCGFSBl3M0RnZZKMXqwEkqY1r4Zf1EjPCIi6+tz6Fm9AxD0hT90gSHDV3sl1qZjLbxyKFpPrVnFxMuN8dKQzQ2/xxdpJvXah9EJsLrC3/HiawdiMkkjw7ezs9mbsUnX4JN5yYrTXsW/oR2PrehglKLieTgAaa9R+fGOea0kTKcpSc/zEuZn+dI4Dzcp69l5WmRLSOfxyVrxuikCwxNFobSHBSVhrgmfyfTidOIgo4H+3/EZv9KUOHmiSsA6DO1Yte9ye8buzhkLOf2r97JbSu/zagti2PpOq5edR4PFN1IdsxPvvp7RCSWzCg8cyjCL1tjTOsFrlhv4rHUbkIhH6qaxKdcyMNNAv8+KLJSPgjJ+WCEEJehygKqym3b3kKnpBifrZi77fzLkOQ+dIl+AN7dcDXhD/KYnnDgUSuI2ftIM8dJJQTODGcgq/OAjXXZ11EcTcej5DCt+hnPVni01kt3qh/JXYJOUbjzt48jWNLRk8eUs5Ozi/+GnPBzdUs2txxZjF3RQmVJSUVKudk8tJlfPWvjay8quIMq338txaLcIQy2BEpSQhEV3BUBwhMW3m3w0ubXdFBg0Ep8zEiXq5VU6Flcs9Drcyn/TGjoV+d8FP9D0rP5QoYtDhrCmqd+/Xs7+XXFFhbMtLPclAPkoxdUzKLIuF/zwqqN+TRPJvGXbwNLCHEojDLLOh23N1DlOcokR6n+2Hl0GW10ZtiQg0Y6py+K9QAAIABJREFUXy5heX87Cb8VNP1K2f4ET/l/x6uX2fk9WiKyOjpA6aEQvTkG3lxmZZ1FBzhQUnYQQFVkcnbfSyqoefcbTvZRb/Fy9YE36bv6h5SQyfv5NvZlzbcN7HLqKQumKEy5OJLsJt5Vz/nCazzNRRxILsQUl1g8OwPOxFJUmLI4tfYHlCbSGNF7yU1m8qWBjZjXL0UQJZrT5jH+1+yfxOA9BJarcJizWOHTyiFcdJ4Vn7GRuu7Tn7j3XbkS5Wc7WRSxokbm4YD32/Zw3KYp/L8sOMSvn0px9YSDpDyA7BqCxd/BYs/CqLMwKE5Qf8JM04U5tOWW0jjYyaK+Ft61hskLW8kI60kTRvnAqhKwW2m06lk9mcSJmaq2FrInZkhrEHiyQP7E2DaOv4dF9xG5sULq0k5i7PkigYqtxEdWYwznI3Sspk3wc72/llv2T/NeZYIfND/Kh/Ub+HK/nUmDk3cKK/naQJjzzwwQMuh5sF9lX16MqGQmqouT6x3DFZzAgYNJUUN72UylhGK99Ejj/JvPjNo9xEhogn0VDoi/TlA/Snv5H5k0+7hnz3HSRt9mb+NSVsgbyE+vIuSYwqZPQ1VkhOA4aFQKUskIia53aC1fR25MRZ05RlQv8MZKHfawwvozJ3izdDWjcoLr+yY5mz+I0ZZJKhLC60xwsFoiZ0aiQNKMm5r6Iz3BWymzL+b20c+zMrgYj+zm/pxn2OmaBAqJ6hsJOdxMOd1QDMOAdWYGs+Dlpczz+erQVmZ0gU+0ewSYMB9l99F7+XrF7XxR2IFB7CeZWsSCoALBFVytfxr74T+RE/ezL28Z8UInLQtXcdHB3TT29NFWVMwj193MN178Pa2Vi9AHn8US6iXsTtBVVseGplyqmr6MSZ9FoOo5JKOKr93NxOgaeqQzVNlr6Jc7KNZVsybrWoyShU7zOHffUMZA6ffI7NXzlZ4EP/7817nj6YfRF69HFVT2TFiJTF7Puox9lAyOUDI4Qm9xiN2rFnMoUcL50gCOhJ1crza3G7tVlvgUZpZGkcd1oKpEa0R0phTesUsYyXyLphEXnufLSMUkDmWV0hgapVaYYIgDwJX/VaH9C+X/aAhUVf1AEAQPsHR2U7Oqqv/f3ar/F4s8McEhq5Mnqi+jylLD2tFWTONTJMtFzh9oJVK5gJH0SXL1KsRyScZ6UAQ9N5T1kDNeDxZNeUU8bch6LRkmW8eIYsZClLyW7+K3jzPZn0la49tE3Wew9CVBhb7MIjZEWzF0BomZJKwnREJLBhgXNtPmW09d2h6WmPfwTEMFzYFViOp8YlUUBFqTHZQfeQ9l1ggAlPT2kTMyQkoU8eljtDLGI6VFZPmncM74mXRpL2X2zDjHo3pOuAYw6uO8EtfqEuUHq+lPuEm3KOQbRNpjCnkGkSxrNk7VyE5bE+WJHBoztQk4oYPjLs0QVA0lUAjic5o5EjvIMmm+tozPqK0Kvn3s7wC8eMFlvLRxDcbgw/zsOR3lg34ADoiniGZ1c5x54tBIro7mxQpLT8yWDZieQV4QwlSnMSxHAqfJklfS6DvDkZJqBFQWDvWQF7bOHeMfZCFzIsSHWZ1smCgjW/Fg7RxEn4zBwEG66lfwza2P0dC/n53VBtwbZrCKKgtdnRgnNFLUGH4OGHZy+fR11Plu5lJdO+WpbJyyhVvbfkafZRClr48F8TW0Jk5T22tiNKLQIJbgT2iQ5E+1D3OysIjx9Az+4y/3M1ZVgk7ycF7qXab6FTIrXudQYgN9Sh+LLOexZbibYx0fUmyrI5DwccmhJHsbSljXWoh7dB8AG8cERDEIVrDp01AiPmYO/x77wptJJEPIhx8hNamF2TLiaynpeRmAkCWO3y6zqTmDm9tfY0v3Lr5z3m28XrSS123fRS/IjFktvORK5+lNZv5jjw9FhpQoEXH4Odr1Ll3ufaxPnc/K0EI6zL3stx9HFfRIySQ5k1HOzIf7MUfDuFqHMcdUzlu1n4WrtrO49wR/mPUBvMYfk63ksjH+HoIg8+zIz8ECM8kWkqkKBgQveaoT66lFrBp8idqRSdzBGdpjZShGJ+tamggbJD5auIBT5Qv45o//AsClA0U4z45j3nc/D3/uh4xXn497XCMYzuRq93CsJQedOMhJ/ztMJFOcNnYQzG3hO94bERFoySigv+I/AOhwyghCknrHcnxXFVIspDMeH0YYOILB6qCrqhLP5CQhu43S/tOU9p/GU7Ka4ysWUqr2z92PC9oUossU4qtT1Ln6SXtcou+qHJIRF5GBFaiuj+iduZVEQEMxVloVvN4r+br+QY7F59/7cyX/DGpoC3AM+BzweaBZEIRz3035XyzRU6fYVbWcPjJ5p3glu4o38ljdFUgGhTeuuhRz1iH0+nZMipcYSab9XbicRiZrn6W8YvvccWTTNEgyyEaS5klSSEynckhN1XJmwEPZh2+R1a6xCXWH03BE40zZzfTWVZM7Hue9qUuY7rIhTc0gKApr/7MF6XHNlbsm70Uma9wogsDMLPJwSoJ39FGS/pPctepLnCqrYtTpoXhgAH+amz3r1zMhBHi8MEHUYGBN7wluf/kv3Pymllg2iH0c0+mwRspYueolShs+AFVFP8tunJAP84GiNY/3ySr5khkRkeLRFQTHNK5EWIIrNtrw+BMsPNPClgMhrtn9LIok0ZQ1H7/8c7mPex7+Lf928AkWnezAbzXy/Nqz+NJKsFg28dIKTcG3lVhoN4xxNJIAFSKDX6Rw6HKWW7YQqtXWVlNWJ49uvIF3M7R4fco/SF8iiCD7+NHjWoKwqaSGF5fOF9zz2l1zf+t1Ap7JEc4YI+hVAWvpJgAi/m6u+HAH1330ITkjcS4/HKQ3KtJgTaF2CUS9pagoHBssYSJaxGHlBAAb5BqcqoU+SatXU6IUsjRZptGWBvfwwP2/YGDgeZKpzrkxfN2bya+PTvHd114lPWe2GqfTzLJUM6V5vcRXzYA5zIQpxagwTVmslDr3Osoy1+MuWkNOPJ0r9g5RNjTKsFsLD8jDR0gc+Qs9gePEO98kvPMOTNYCdJ5K/H0754yAClR2a0YgpoeMYIysiEC+10xrUT5Tbh2fPrOTPLEHgygz1WnFRpz6ZIyoMc7fKnV0vpLDUMslPJxfRFxKYfENUGX8AYWmK5nQ3cWDD8UoCnwVl3wjfoeHoqFuvvfo3dz+yN1cv/0e7M4wQ4qTFbp9NIQOcnSomJd1T5Jt+AoNwglypbcRhE+uzn7iLiWhJmkPNTMeHsRjyKcwoFmPLMXOxrPtPHD/z1lz8hgtpdAqVH/i99GBIBmjYcyKQKE3jpSuUQ2fSr2Foo8wOZBNMqQyGd9PSk0yoXowq2t5N/0AD5ZrUQApNTF3vJAySI9V5PqzSYoF7T2dio0iKCkMwWmCwXG2X3ohOzdtoq+4GIAr+g7w2bdeo69vvpZX6RCk0jQnRaxKIJYncef0MjFejj7hwjm6kThpdFtKOZS2nGfVS0h4I/zl9GrMuddxruWfCQ39BFimquo4gCAIWcBO4L8ysf4XS7StDUE2zbEZ38+pQJUE9MvSWXHYRlQdAn2UYWGKU0I/gpwg7vJwsnUTOW4vHsAXyCLdoVXQZLbnrZ0QH8pZKJvuwPH7LPAPYvCZyHrjDnY7SojYdiAGztDiBcWzhJ/Vf4vCNwY5WVaJKoo8c+m1fHX78/SccnOitm5uvKftEj9daGLSKLCkJ5OxB5IUdvbw0vBmlsfPoBxvpalxBXGTkaSUZNzhIlMZZ13eDrxZDfQUZvGQ8iXcOX6+ctnTXDzZR4Og4nBO4PGcxeGPE4xbKLPvIEdK8J7eSZ9/JQWG2Th/ZowPyhvoH5bYVmUiYzjG55qi9KeVogoJdi1PwwRU2/pgEqKpIX459DWUSuhryyI2aWCsIQtDvB19rJ2YZS3Hyp7h/qtEThWrbB6HtHgalw5cSXfSTK9QT98JK28mlpCs2Uaq0EmiwMnfisp5Qi/x00deoViQsceOkjHi48Z9r/P82isJma1M2JxkhGY468kgI+jHMzbAkbpVfFjVQOYLT1LkvhJj9VVMyzNIw0dZHLNxvC6bSfcIF+wVUU5Z6OtNseZvEv6L8vCZ/SQF7T60uxJM0cFl0QUIgsArac0UzDi5JrGcCiWHYWWMoTQ7ZQo01vbyvGma3rQgP+kyI4gSOwxHsagiTskNeGnKcvDbls1ULurBk5pCHpfBA28atRj/Ik8Rb0nHSAgy9e7F9EzsRXbkcrrEwc++dh2P3vsTRCWFpeU1EtMaXl9KK0eVE5g7tNxFxKAjlJZL5tggz6+3YUoaWdMW5cGHwvhcI/Q7XAx47Ky0n+DaswdIVEo8a8igxajj9idC5C0XqOlWQBEId7dQdljAJBvpieXRr/goEsdZ3ONCjCS56vBx/r6ujglPDsuO70VUVUbsJtzuGe5e+GuGS3KwGMPkDPZTioUnypvJikvc+DEn9xWxgfrEGLn6Ec5/4wWOmt4g4LIwlpFOo6EC65JvI+it1DtyGR7cDrxFU5mDKbObxv4u1JN2ehZWk+0doszXjiwaiBaWUTYxSrWQQ0gHf7rwesZIUTKoA1qxxkcJmmV09gwiJgFJXMO24mxKZ5rpih+G2ZDt0o6TvCaOcPOAD1toGmPtFiLRAOhzITmCmJKxDGjG/1jdAmzOIBknfJQExrjriNZP2lkSoc/kJlabhAhggalvaAZwelTHsHWK63LP8HhPA1NSBi32OtyJaRYFTxEHmodHWPwv0YL/vfwzhkD8hxGYlQn+L2Qkz7y/i5BzGeucQT53+C/sLF/EdE0+iaP5ZAx1EShSqJRz6JcmaDEOosspJmhwg19Cp0vgAYb6FuKs9aHTfdKL6QoMscYdp2LUj6UwjsV6kJR8Kd5UiCXnv8/plyrRy3F6hh3kjvbzq5u/Qk++hkB64aIrue3kU3y57vlPHPPd9GkW7ZY5W5dDpFTzJC6r3MkObz7JojivX9JI1kEZIWnEkJIZSk+nVmglM7OfidJGigxjuAUtDHNl9E0q6EZRRBIJM7n57WyVI/Ta+qnoj5FrEhks0nND553cp7uZvop6mrKKQRB4KANy4hMkehWQdVR6U/h0CSbEalbmHSCvpJPRcDO64LskVIk2oQSlXcGckSC3bJpw73e4JXaAxyprkMxPsNv4kNZSbXZGmVU9C3VjKDNFXBA18p45yjs1a3HnqnxQrUUjMwJ++osdnP+RBq0dT08ne8A7x2bZ1riRnzX/iSVCAqs4Sc14H9vWX03F2X4u3f8RCUMzug3/jqXuU+gTMp76zzISfZxbDSfokTL5/qsRlNnKmzkU4ItMgwkyx8fxZmWxM89M5Z67yT4exHttgjKznnz+Rqf8eXriU0y7MzlVvYTWQAGvLF5G4fQY0cle4lllRIQ4ERMcmC0cOGqzMphbSmN+K9FRM1XyGdqnTcgON6qkp1U3MDcHZHc2QjCLTZnXk50ycny8nafOW83NH+3DNmsE4gYBU3opKX8/qCliOoldCwpZclbzbvsyFerPuGgudVE5M8OMKjHh0EJpAzEbqz19bOurJZl0UncaeuzTXPfR1Oxv4anSL6CXZa7xvckgUZ49sYG2hgUs1A2QXz3GL266hbhJY2nbRyfprjLhtg+QF9OWtHm2WXhkJJO88FFKjuViXB2FUW0luTPVSMXL48RleKs+l+rxABBg0FVGYLbonC59vlxHlr6EATtM2jLQKXDtxEnKd7UROmxBQEUvJ8lunOCsUsxXIj2UT6WxK0NAFQRe5ia26PpwFsSwhAO8ePFnmXb8YxV5K6Ls5UNlJwtGrqXB0YGgF7DGwtz0+gvs3HwJa0/vwTp4iLJklKH196MqAYotr9E5qq0gzGfP0JJWz5qiNgYTJqpHB5AzVcwXhIg6XQhOFX+vDdfHSmaUnuzHv247i4pP8PvCk7TuruaL6/5GZMRM70gBUcGM9dhe4Kv/Raf9K+WfMQQ7BUF4C3hu9v9PA++euyH962XyL49xJKDjK4YYlTl5RGq3kJMfpCSmQxc6RdgwBkIe6QkDZyfbobAS2aUhZh0OL9U1e1EUkcBMFoODi7BZfDjdXozGKDv8ek7HRGY6VVDAmh1nXDZgFQQCBh1/bbmDlSX7WOrbT/NUAZ/d8QxWSw5vbMqiKVebhCu/Pw/CurijmSMLSujNn2ZRTw+bDx7GtEVrpygIkGea4G9lVzMhZPHt4kfgjJUhZxpx0Uge2stlyeojyzFBKqUjmTSyMfUeKb2OkUQB3lguDa6DuKVKwsYUf6jbzFj6Bob0+SwNt5EQAzRlm6jv9nK8XMPJLxwMsL/czbuBOFdEjAyKenYny/h08Z84G8ohXvwGG06O0axU8VjPJfww9jwD5TmcJ7ZSnwoTtpSTGVPwmowoaV/BFYwCWiltwRBBTVioVWKAkWKjga0b61HE+cT0zR+oxGzzzM6bf/I7nr/zO5jdCSwVSe6q+C6HixbyjfYX+Ig1rK1oZdzhZumgFtZRE0Gm254lfcVt0PhFABZYFmG0vMXUJTlwMEq6bwYpsxadOZ0+QcPLZ3q9eLOyqB3uod9UTE6yibtehIBDJnaxn5cNUTCYUVHoWlCEaDRyXcsugqIe+eh2Wi68DIxQJxfQpjtLSBdCikU41LCMm+wvohtQafEX4hJ7iPn0eDar9PUtA7TY/EwqwJXTLkw5mqK9smuY7uAIO5cuZe3xNl5fuRgzOj7nKmJkdC9OYKDwYhBOExejTFpN1J+ZJ0J1OZ2feC/8SQv9eicjyfntPZku+s1FXNTXwojbQFPWAvRqiob4fgA6MtM5kLWEj9ZvmvvNoo5mLOEgTSzh4Q3PIgoqgUHrJ87lGEhw+7v7kVSITKToq65AiaRRIgSQZ/s1VH+s2nvt0AT5uiZwztf97w2eJN9TRnNZ1hx/YaCkhkTkDA29o7yz5GbOOOLctuQPZChvUr7rUYLCKL+snoe9bltdApSwvuv4x4yAJsZIMzfs9WLgVcr8NiJWCz6Ph1M1i5hOd9CyZAn1x3toafghKSlKyHWWo/pybKPzoSR5qp/dLhuiUcF5hQr1Sby4ENCU/8eNgH2HhC3dy5pqbb7pRIWGjVopekdhGHtlhFOBC6nacO6rj/4znv33gaeB5cCK2b9/cC4H9a+Wpue3Mp5WR2Gh5kKeyrEQFGNMSH5GnRKB3DwkVUQna/CvAtMBsrI0rH5llfYCyLIeEBgbqSTvkQSOh8wEO3L5IKgDBH5pt/L2tS721Gfic1lQULjWZqSmsIz22tXo860ogsBSz0XkV3xmzghceGAeinhRd4S7utxsnvBySl/NiowPKdzyIpl4577jKe1kQtBij6EcgSVrX2V0kQkEATk8TSpspKT0GB7PWfzNufg7i7HZpnE6J/CRyUeiFlNfmjVNPO0bWLOy+ILuEVBVHs/fwsGcJdT29HLFUR2X7+3j67u7WHHMzRXtMufn7eCs5zCO5b/knrr/oOvtIgocI5S7B6himH2GBYxb07R7bl+ASUjy1ax3eS7/PLwmkS+PvEKmP8hlbQfnrkdNaIlxq2mEoHWQXcscc0bgiqYQN+wJMmAeRLKbOL6xjPtu/ipxg5EzRcWsPtTMpSP7+NzI6+x1N1DPaW5Tn0C2GdDFk9z51J+1saxcwtvLy3ktw4cS8SHPnCVdXEVcqaTZVs++tRsINm7Bsvq7KBEfodEmVBXSh4cxTE4iAWdz5pWJIyDw24BGgMsdGkJAwDbeMbffriSJ6FROG2dIiAkWpQpxqwZOWvZTe+Y4vrQSdus2Mq6UklJFWioaIalimR5FqB1nZ80yetOzmRBDmGqunjuue7aqamduFt/80d1kJ0VuTv88oiDRviCI/SKRqrzDCKpKe34Gx4o1Q65zbOTjPl9pYL7a7dujCxA/VmwnJulRLGG6M10EDUV8fuh5vjYwzwOxu5PEq9Lm/i8Z7OKi3dtxd46iE1VEQdPQjsIwE21uXn7/Uv7e8SlWtHYRM+jZtVDA3CLxl5mLeMv/Q3aNaUzs0axM9q1dQ0++xiEp8gWQjg4Sb3uGVuEYB7yv4YsPY9DbsEkFgIre5GYk2gcK5PlneNVRQBvlxFQjpqQbUZUIVr3PgrCmXC/omo9HHSirw5hM8MBD985tKx4dZFGXlwVdJ1l98CCNzUcRFIW2RdWoKiSycnj7kssYKWhnKuMICZMPVUoSzS1Bb/xk8Cat3A/1ScLj8yg+X/vHDLEK5r0ijg91WD8UkSZBmdKcnYGPckgEdaQXTrPOMUN86JMw73Mh/wxqSAVenP38XydR7zSdlZez1LKYlBpit/cNZrL/a9u3slQ23VY/UUclufUnMBh6cDi9mM0hPpzRcyJQyCJRxBVMkOH1gRdeGPSg1vgpiq4lqYbYWnE93VkFZEwcY/P0CFvLFyCLAlDHAc8DhFcbeH5/mAOzhct+dyyCtW+GnRrplp/2pjCYMml47xVe+Ew1361/kCvVbdzAc/T3LyYzs4/u9HmF1MYi6sSTHGMpOeowb9u+RNV0gGXsI5WSMO5JIz82SHR2jupiEu32hfRHyynOaOfe1BAutATud7mPB80/xB32c9WBU2BYw6r4o1QFonTVlrLBEcIxOEj36B5KN0YQBXC55puCtOWn0Vi6B8kXBeB09UbWLPgM2VH/3HeOZ+axtEVTmPPlgBVAJGzxMewWGUszsrHjOFUDGWTMmDnhOYLblOBW5QXebFhKmqKFLXrzClne3ortbIDVnqM8k3slR5y1rJpp5dRkLk/95/fnzptX7KePSiYTndyXBXnhOJ9SsjmV+iIzwihlhlxyCzRsb3SkmfSol/7iQp6/8AJyRR0SMhtjHxC80MaEYZycnVZKBwOM68MUDQwykp+PYXYBU0obvdTRUVWJSxHpcWRwS96fufDsYtYM1BGSz7B3xYX8RfgW5Z4OruFZjlcsparzJEuHfGT4D/Lwhq/ijISICcMkkInGpxm3GDBn1HEsZ4YlJw+AIFBr0YzRaKSXicEudk9lUzs0jq7BQjKuR9bpCVhknKFWrAYr4cQMogSjaRkgz4c3FVEkLRRl0aCX1pxcptx6unLSAQWnPP+MA5Kd1uqlmKJhLt79KrZIkAzfOKm4jaaCpVxfPO/UAAwfyGKVZYy3EktZ6n2H1goHL6+eYf1JmYyxVzlQ56OxV1t571/kZndNPxfJTsqGRubH5n6L1sgZ9GErdr2WrM0w5bNbKkJGYkXsKBFTkhPVl8z9xjeej5TUFHDnWAGL4kPUREz0qun8o0ytKZlgU0czh2vnFbg7lM19n84mR15N9uAYm3ua2PL6Nl6++lMIAniNOlDDc21IV544SEfhJhShmsrRffgsOoZzG0kYx7EvmCY6ZeDM9hIMjgSiaGPSs4B0RkgpOsyHZRTzaXLCMzi36Qg0WTnjymC4NIP0fh+urBCumiCu0qdxn17DuZb/1hAIgrBbVdUNgiBM80kiuYBmH9L+m5/+r5L2dzrI1y+ixCjRGehmLNxNEgd5KQ9RbwfRzFyiUopJZZJep57+smJW6RPEMZCd3cOEt4gWPwyZRpAML/HLHam5Y+ek9WNQLYwXXslZ8/wSfCKjgecyIH9qlFpfgncrigjrNGv/o3ozg1aRqkCKdb4IckE9vzlxlFFjLQYVfFIPE8EzlI530ptVxevCFq5St9F3tp6O2CL+Xq15iEUzPRxxriKp6lEFkVG02unqR1aCKzMY6qwg21iFu6+dsQEbek+A1qhIzK3nr+HL+YrvXfLz573Ygm49X8i9n0t+0UlP3ZdJOYeQG/rZPmThklqtQJ5pUqD8M9pU8O2RSF8/fy+8pdrickV5MydLPexuKCMlifTYrXhiSdJ0AzTrVlAtvwPAKw0b+G7v39kl3kDJ9CH6PTnoUzIXtR1m8WCS9epePnRkkKvTXujXTAVcMbqfWncPzylXEfBozMzh/WkUJc9iqYqwNetiqs92Y9wZnRtXqjbCfnsIgmCLR9lY/g768STDvhpKU3XUCgYqxkLggWZdD2nTTeQzzqTgIGvCxnhWLg3RJg4PpOM2RFi8UMFUPMPygWna9aewRLQ2hQFXBaIioy8ewXi2gN5KTeNc5d9Fa1Eubvs7uIZNIMvUq80cp4G6To3w5fXk8urFn+VbPd+gGD/ZwTGmrBqqa1f4OQITk+RZKliVeQW5petQhUNU9rWTX7CRwVAHBydeRweM/T/UvXeUHdWV9v2rqpvzvZ1zDupuhVZsgRKSyEEiY6JINmB7xjmPjf0aG+eEbQzGDDZB5CSCAOWAcmp1q7vVOaebc6iq749qJPjsGTPzmbW+d6/VS63qOnVPnXvO2fvs/exnO82MO8spbJ5gdJ92enDEdKh4ic7g9xUZ4mTQ6xVyJqOMzqCRfDYzPbkuDEKSoukY42478/vHOVilGU2vedZhk4L0F1czr/0A9WMnmb3hNMFxG/nPqsxp6UHv0ZS0qsKpzatAnUAnj/PTQw8Tks1sWhjA64GRFpUL96s8t3w3jbJmJety2knY9UTWTjHYY2cgr4y8iJ2Xi7uY3WvlmGM2nbZazpNjyNlr2CskEVSFRcHDyNg5ZdHcKxWIVHTfQE4iBQL4IgOczopxsuJFhP51rHrCzmXRw3Q0NSGkZGLmCKIcQJFcONVhDlZMA69RX5ri85Xj/MR7luQRwBopxxS14wm9SHHnMPk9LzGW30KD/k2inQYUew2jtjnYXVvwntLcY6mQgVhxKarewPR0OQBdHh276+ax4tBmzu3qZ5t1Gc9UadnI1xleoGX7AONOJ0e6G1l/yUV80vLfnQjOm/n3/2p6ieDOnTTtfZrAZT9myCUhO2vIWNI44xbasyepn5xEzZnDrPfe4sff+gWq00B5+HqKbF1UZo5wvGsxixUT1WKYm196E1GFlF7PnmXnooY8uAuqOfkhJfCBWBNhfvvg/XhUM3et+yFfa1LocznQAogDAAAgAElEQVQYtGob5obnHsFfZSMrvp7V8TwgTUpJsqVPg32ue+0Z0msu5qHKJWzruI4DlbOZdGedeb4qlSCqMseEhYiZKRSdVmN31eFDuN4NY6vqZ3NhDY0d8M6pDP25NnyOHkyRrXhjWzgyUvERRdDv6EQesCIsEImrReRWb8TtTlPtnsH5ZyDRrCJGQHzDRNMOmYgfwuvOKgPjCYFEjcrvP30VEgJrh+NsLjazQLeTAr+fCWs+1lSCyTw7XpuL787RkBlXH7ZRGJjCmtKQWEr2TvLSx9EZqyB6CQAbrUXsc/iZp1uCIkrsmT2f/KEp1h7bQ/i0hXOn9/OWZznnTG+jCS2QOuVW+ewVDsDPUnmUy2YdwmQNomZD5KX94LmClkwtZMMpS4rfVjn5YrdKzrEUS144AmmB8VV2ToW0zFV/ysLpHJGO+ZfDfJjTcQxnwgeKQsxqRYyGGd3sQc2JQbYTkxJhmX4/D5psyE71zEr6/OSjdLTVQH+ApNlEymiit6yOHw3cym2mdxm353NR4k10ugQRjwlSER5Y8jaP9S3kkqE4LxRX0zzux6yz0WlMUj3uozv/rF02ui8Pa36MqSWFZCenyLwjklIkZKuVjKMGa+AE9ZYhig6lKAhEGFlgYtznZihb25SrJvy0mhZQp39P+z5EgT/s+wU7Zy3msG4t1f0dWHI1aLEzP0L834HE2Zoe0kgBSbGObLcXsU8gOm4i1hKhq9hJsV7BsiCDuE/Pkn6Fiw/5iFp0vJpv5DJHjBZrgn231SDtjdJeUUDtoJ1hq4s9nqWU69/k9GQxSz0reVc1cL8Qx2twk5Py80rFWgDuVw1UJmtAgIToR+meZC5mOrNVzit/h3fCX+Ybh58iabPxpq4JY40X1/j9NPsvI6Y7S5Z3Y1+cEaERW/pq9P4pJs1eCsKlHDdHkOP93NHVxbdut7LuWC42eYCuphyKBwLUdBwgnrcQUZcimjmHM6gIyUZS0TOoOCiT/LxhbQadhKlpmqVdAzxTf/6Zz36u6BoG1RrcXQbeSs9iSb+qOeU/QfkvFcGHSOYeU1V1w4f/NsNIuoH/C8R0cheSpxJJNNJv8NLUdBC3Z4yJI1dyceMxdDIYXz3FyEqZG3U/wDNWxSr/QRJ1E2yJ6dife4AV4yvwKHYUg4PBHCetzUVELHmMOLM5WdJ85rOe+N4XSVnMbF+5knlHjuIOh1AJET38cy6U59GbVcY7Tc3UDvQy59RBBiKVZM3AoDPI7IvsREXFYFYhnmHc54VKGKWYPz3wLe789oMErA4kNcOgVa+l3htAn+xhQbfE8TITLp82mYt6ppkvawRln35LwZxW+P6NQeLGxwFIJRcQ7XXjygTx5ziZ6wxzwuwnNStD0dQvseX0fnQgdZD1Kx3xKQOuQAYQsG+W8AcWobttH6oCxk6R5ByZKcNs1o5nWHM4Qa58GLP7z2SO3cHNahspk8DOwo9WXHKkwhhTCioqsiDTrzRwe/4ExaGyM9Vf7Wk7Wx0W2opWADDoLuFXN93FjgUt/PR3P8ZzYprABQ4KOqKkJZGrf/xTbMHthNyVWIIvkSjfhdWqmcWCAeJ5r5JqN9K58GL8BgFFhPbCCkSXdpoQ0jN0ASehdMMoJekwW7Y3MRY4yzd1on4euQXdiIqMIooYpzQFpAt6yVjsOKMnedu9BntikIoTIxzM5JGxO7h+6hB93S4ECZQ4rHvnKV694CYeXXEbz/s06oZ7vC/TW+miu6uFTFUtd7hHMR8eJc++gMqiQsI5UfDDWGaarNIYlxRM87vSG6napTG+Fi8fQ/ZY+BP/xlWep7FOB6lc3Emxd5iCvGEiT5tJzlXJ6YxiykRolZo4Z6SViWITQzl2GtJHaS/N4ly6yVSrTNyYYXt4IdZYhOKxAWyLz9Iqb+F8/KYsrmEjAKt6WznX2MZxQxHquIhkl9k0X/Od5eoV0qXaqfKeV1TSEvzsFoHbiuLUmmW2TdTyZPftzC44ScYvUZLp5YR7EbqsPcwa7eRwcghdQE+D6xyWo+OR4rnc0LuTMu8g5qx8qgQH+/17CMS6MNoGADOeYIzPmhXKs7yMZJ5jQ71IqmcpKasPu7MdSyqCNdZFn2GMxt4ysioNLNHvYUfwegCMyRxKkpqhNVz2Z0ZqgxxZpYCYZNfiFDn6fJapB8hbkaaty0lpUEMApiI1RMvdGLwTGJQS9sezOCmZ2fOBVy4k0+Bbws7ykwBc1b2VedMdfH/5VRxPNzJX1cAfgdERPmn5OKihOR/+jyAIErDok+nOv1bUTIaMTkJylTMgeQEV9wzbX978l0liQCJF4lNJsoBLOIVqOoVOhIDqYns4SYES5YK3N/PORReyc9UKYhbtuBfLxHh9nhZ8vmP3JvLGpiidHOfdkgUUTY4zUVpE/HQnP7wxzexEJYICpd5BZvXZ2PD6C7x++eUgCHgOfw9pVYjuI/X01FRTHlLJunSY7vfKscXSiIqCSczicF0jfYUlSFNxyvrasVj1dMYKEWoEXImD3FD8KOkXbwXAX57G3a9nXr8248wzlCqr25tpKztOyZTKurajlG2McqTWiTq7mII1rbTM1Gr5OyUwI5GVGfqTK8jZaaBK2ssJ/dWcyrXTwj56O65CysumnEf4pvQj7E4XPuF2ik5k85c5Om5JeohZxomJOUw7skBVMUZ3YYoeIW6awJhagizIdLg6aPI3UeZvoThaTFAfQhYy2FOaC2PQf4AK5U0GnZ9GNuZxpKaBP19xPUvajvPsBbB77gL68/oJ24sI228CIGldyr7YXmwM8oq6nsqxewhWy/yfUYV7WrTv88uxZ3hIfR9HaQhm2D5lu0qxP4wvlcZbLVEwLNIVLECvj7Fw7xHeX7SM95xaso/BO4IuHsFgvxFdYhu2iePEU0amMhsYfw++cz40HtvHvEOHeTh5NhNbJyi8n25m7tH3Od68lIDHg07J0DzZS6rMjlCv0NmxDGF4CWrxVggu4PoJE9MGM8dcIr+98EqWx3J5qO9+Lq15AV/Yhs+ZzWFPC0vUvWQEPW8vupyrNj/JguQkFekop6ddiGkBYWWcdNSEc5fIbTP1MYSFJrqGi87275Se2K0x0maJg9b5tPQf4qLWLiY3aJPq13yFg4L2Plepz5FMK3whN5v9opkHdqUpTIq8MN/Oy84UDX126ivDKFkpMjkquimBp1aJuCpTlOlFAkkHRzu17aZVbqJW1JLjfIYsdM7XcXXp8drjPFj9HF+bdlOXqcanzqLHOkRj5BTL8sohk8Vk+DheKYDZp9WeiIVk6hwyqbCOSrGLNhGk+t9iBjKAnLbxft77/PLRDGpOCsfCMWzddnzJ2SgVu8k2jELPEnyZMsZkG6KxBwEVAejwDHNFfjdO1cCbp6v53oIvUmIY4Tu0Ur1vFxNLFpEotmH0u+kzfqjc4Iz82iOi92zAosa5Pfw20aSOdLEDuU9HSNFhQKYwbfq7dv9q+S9RQ4IgfH0mPjBHEATfzI8fLY/gzX/2YEEQTIIgHBAE4bggCG2CIHx/5nqFIAj7BUE4LQjCs4IgGP7Zs/63MnK8E7NRJZFbwR5dBybDWbREG03cITzDI+G5DHu1YRDHBAQRvpl7P5/VPYZ9Us8PnvbiCIUQFOWMEgB4baGW/JUX9GKQMyw9sJegwcqvm6/DJk4Rsdt5bf066lOrEBQHUVWPpKr8Zs9vyY/6NSwoYB4O4PhzjIl8zafbX72Iw21XYnAVISkKedEgwzYzP7r9s5ROjFK34ySj/ny6h7OQfEnE/QmCx6/ia3t+QG1AsyD+uF7/kXEIzcy/siltQn3mTZmyVg0V9eyC6xgcKyUY1BAmk5PlKIrAiFrElu5COrZpzwpO5ZKcDwVLtyJ9YTsly/pwN+7nabOd25M/57uNN/FSQwMAhYxit7bTX7EPfSyXW9s3YEjkokppcn1OrME4ghLB4XsUQ/IwO9yaf1f0DhGU+wlmoCRagoBAQd0OYroY9pmCMsbYXiKJLsrjz2Ltn8L03hj9dVb0aW1jeuSSXDYvOrvRnhkDyzm8pF6NIpqI679H1PMNvnHl5Wf+3mHOxo2fIdHJ5qYKnl69lNHPCIgyZP9Wj/SOnS69RvCWk9NPlmeQWV0nMYk+MpEUFRkN/y9IWSi2T1FitqEqoMrTTNsNjDpzeHfl5cQ+NN1nOcNES4sJGSXGs3fReFALtpZFBzCqGXqmHOTm9uPJ6sPnLWZ4TjdqsVaUJTul8nqRjmq1k12Wc9nRUIFJHyd7SYBX669nC+djSKik0dNbVs/Dd34dr1zOcK6JWK+JdKFCw2SQ/rrij4yTKfXRLSFkNhLY46IzVE9MsJFjP4lSqIIBfMOzzygBgDvk3/GVxG3sk8x88zmZwlGRYxUCG1ckyfUZuXBQz2JjklhIoudOmPxWmr4VKlUmhb+duo4v7/ghbYmzZRzd6QAKAgnJwD22YdxJkYA9zZQ7Rauzj0pVhxkYypMxKGnqk1bCaR+nDC7MqbPwYzmpo/+NItqfriHr7TLE/xehvqqPgACFcgbr8mmKRxO0xdegovKodyGX+DfxqewvICphLGPXsSRt5Ht5Cb5hTfFAURynpJKRRFoNdWREPX2ZcsKTNgom+wFQVGiNB4iK4M4ZYn7hL7mXU8wSpsnFT7kwwY8Nj5FnCeIIpGjs09Zpu1JMoeBlsrSMT1r+uxPBT4FfoJHOfeODi6qqyv9li49KElitqmpEEAQ9sFsQhLeALwG/UlV1oyAIDwN3An/8X/X+n8jrz7/C5LKFiARpLSxj2l2BnlFmK8d5U9Q4dHY4vot89C/ccKiN8EgWtjv6aBc03G4k53tc/yU733/010jIZBDZUr+AnGgEwZyPPTHIFSe1RKG38xfQ5S5FESX6bBaMM5PNkNEcwwOYaBDS/Km6nPwPQRFfX/ePyaSmzLlI0RClPe3sn6ehBj7/3BOsOrKfQ7l1/Mc5d3Nu0U72+Ytw6+N4Aw00ePuYsDg4P3easV9AwZe1TWfTYpELjnlwxvs51ytTOwPKeHZ9C63xWTjNAvJJG1lZQ3i9JZzuamHIaaDf+gJzDkmYegX+UHY7963VoHaCMcHjJQv4Sde1VFlTeE0VABzJLmKLchE+sliffJM5RTsY627BGGkkZh0EwJxyUbQrQN+asxxDKb2TSQVcllzmiCUcLW9kxXAbKVVguSeAcTqCd7KIkOczzFYPkQgfZCJ0EH0qgqK/lGOd9Xgv6MTjO4LP8/fjKagZVEGHPtWFJfgyYcFMzHIfMfED5dLOLnU1DZ3tTI7ZOLzmHE7WL+DlnuX8qvgpBktLGbEUIUkpKiqPsKd9IYJ5CoMwzl2pXbw83EzaCAg2ItaTmFLV9KauBjZyotzHqTIjGokv/O3q+6ga6GDN7jcY0d/F27YEqYZyfOKlJIpfofZkDg3ev/G17CyGvLV8R95PdugEL1PJlL+UrobT1CT+QlRoZm3BU1w4LnJfwR/ZxDpWso2Uoqddmo1bneZGy3MAOFU/QcnNZfN+z2NjG6jsTRG8NMP2skr+6LiLa4fe4KmL1vONJ/6IPJWhcMEk2S/DiZIcevJchHpMZPpFuEtljfMgPVeJOIG9Xh2UwLd7/sgDVfeS1uUTcFzB088/i3kUfna1yMFaTbGsOJZNw6JuItkqrx26kky1j5vdO/gMSWIJI78eWwyA5BBweh7G138PznSQsM6G2xGisSDNyKwAQ+YM+gzM29WH1CBwb/FO9ilT1E0vppgsRlKDbMq7mPWBlygITJMWwahAbOIsf9ctb5ehZsw82lKCMfddfjUaYkQvs79gFpGTIqfSGWKiREDfxr3qHp7tqSecMQGPck1EoLDPQok5zBFXIYZ5XoSMDosjQaTaCDOH6a6RGtZf/i5bpvv5le1anNYwpYlhPjP0Jz7l6iVhOk4Bl3Oz+hIpRYdJyhDymBBU+LcdD3PvyvsAuFF6lzxvEbDqH+4T/yr572IEKtrJ6auCIDiBKsD0QaF3VVX3/ncPnmn/QfaEfuZHBVYDH5S6fAK4n09IESSSIZJ2K/3uQnbWan5pr5LDtVue5tgFC6iN9tFlreDYrOvY3ayhUO5RfwtArj/ERFY2UZOFfY3z2KC+yWbXMiL2Qm6f2sJewywWeePcEmnmPn0/g7PrWGl8E70pxlZTiAd8fWwXzkU3E0PzFrwJ48vxm2RykjoYDEPpWXrZKcVKAB014tkNsqKvj1FBhBlFUN+vUVsvnOxkQ887LNvxHueWqFRJCg6bgGscDhZX0yMF0OtkLItknAclRgpXku6I4fId5d8fmUH9FJuo2j/Nd9QneLlxFbIcZXKyih57D1XhKoj3Me6CIq9Cq9VAV+3v2DhtZKUzxauTHkTdNLbqn1E68inSI4fI+A5RLy8lmqlnjdzM7oo3OC9nGvNF93P0yKVkMkZy1WmQDcyWQ4z09IIDFoYW8W7tFbw+bsOc6CbWNJ+MqEfIyCwXNQvZYkrhVwTO71JZnj/OYbPMRFhEbzqFVDpObOAefM7jCLET1AQvR3Ba6fKsYm78Hbz+fIbzykFykDY1IvifQZ8+jSEtkzKCJfACuvQYoZzPszHveobmV54Z/4Cphj1LzwFJRFBkqo0HSL5vxG/qwKcro+XICfY2VRBSdZAAdE667SkK08MMeuYRFK/h/eaz8ZCSsQmGCvI42tSCJKssHi4h32OkO8uIQiNFA2MMVuYTdp2LMeInmtXJD6bPZfnQ3Yg5B+jrXcTkZAWZOdvQ6XbS0h3hUSWLgvwR3hEu5R0upVgcoETpJhY2gRMEVeEW+TEe0n0FKxGyjsQBicQShacGLqazpILHb76WHMswQ7n5VEwMUnYijjOQob3SQ0jQrFOdnKHYN4TVE4FqSCrwWrmW8RsP+DBGdrIgHmZvzqUkxm2IRQEO1mrbyyO/kYnnpUlVKgSGcnnXfx4cBFe2SGXXEKmgnjW2rcRckxydfSfrX9Fx1P00DSk/I6YCbmvUYg+W2iCTUR0tIzK5ve1MzFe5avgyroIzzKsHCpxkVBN71JVcF3jxjEGmCCopg4xitGEJJdDrI5hcreTHLKyID/PoicUkDHoyqpFy0winw4NYk4Mkowqyqo2BoyxMdMLMuOxA0MtEx630bC0nLzWFyZnEX+fEIYYIKzZCYc0A3GWfDSoEjXYuU/dwk7mXQMqE3gS3Ki+BAE9OnYcxO5ec3EHK6KHM38u1XVuZMrtoKJsG24r/2cb3v5B/GiMQBOEO4MtAEdCKFh/Yx8dQUTPxhMNANfB7oAcIqKr6QbhkeOa5n4gcWFnOHsd8hIyALR5ijnqMvZYVbFx8O7lRL3/45nc4fUk19170/TNtXordjs4k8/kXtrHsyEZufuCXDM0tprGnm/5EHo/vH+fuJaswZ1R+edRODIXudD461wEOuscxWLoJxdzclfoCoHKp4RQZSx/TpmlSQpraYC0yMlKtjYO2gySlJAbFgHW6konkYmoMmiIo6e+lsbObEcPZA9jTF8vEY9V8++Vurm/VSjoW+eEMsBl4sX4OvYF+AKTzVHQrYF33bHR1z6HbqQVLMzbIGk6QheYeWjJ5iheu0xg+PeOjeD0ucqMOfvKXDO6IyHjTlTR7e9knHGVf3AzEz9AJx2ynOa87BeQDfQCo8n5SXWtom/DR2LSNpec8R1frci70H+KwfjbLZJXuyBRjdoGbR5O8NasUXf4Yquk4GakFXaKfzupKLlN9PBW4DfuEGTdRisNe9oTWsl/IYp1lPxvTZZiLn8ZWozGlhx134LWvBEHEHWtD2OdkQ+cLHK1uYvPypWRMJcQc12INbSRltGH3Pkyh9xSiWEooB4aKNCWw4vVNtC+ezXRRGUeTddz82guUDQ1yz1e/x+iiUrbe+ylOlxQipuF0LIfDTUuY3XmE401z2L7kXDwBL0mjiaj5Q0rAO861rz+KL7uBly+4gENzl3JoBsKe5YvitZtpL9OQLxHLVRQcHAbLQeYMrUNAwJDIIiElCYXyGB2pp7SslcDLDoqvqac21Ut1t4c9s0wMi2XadHCCMZngJ/rPkS35eQiIYkO3x8zRnBKKfj7JnkuXkJBM3Dv2DOv9m3ki70oKW6dhDB6/7GpE/Tg5veOYk2niRj0lfX1sslzDatMbDKVtpEyz8QSGeM/sx+F7lItO6jCUerCPRplqsfOgIUC730pHdTaTDXbUQDOJXs34aQqdpLhvnBSa67Eh0smkrYK5L/8NfTTNskgQGRFbaQbFoEdJCbgcKRaGijmnJcNvbJfQWW7l2b0afPdNl4+cmI8n5s1BHo8xEcphyFRESUILtMZMep6+/AoS1jnc8+TPCBgNTFZ/g7ljL3C4LUpC0SOaRWYVRZgneekdugE59h6yKhK2pLjkwg7CuXpi/Sa6NlcwFtaQZPkpLas4GTQy/8Axih3DbCtaiTedw7RsIS2c3WIXG7T19s5YDYZGF+sjuwhhYzi/ERBQoibqs05hcGT4TP9rpGM6LLZvofOcLczzScnHCRZ/EY2C+n1VVZcLgtAIfOfjPHzGjTRPEAQXGkndrH902z9qKwjCp4FPA5SWlv6jW/6p1PoH2eZcCnr4VuzbOB1h9rKCaZeH2157HimtUPb2AMzAdPWyyqTVTtF0hn53M2M14wjxNCdzazgw1cSvy2+k3utjyFLE/a1xkrLCIyQBAYNnD7Jxkoj7cxj1O8gueIJHp09zVer/YMTDPZPZ5Mp5dIlTBI1BthVs+2hnbUMoyVZOhiu4+bV+6iYmSOpg3B3j0jc2cqxiFlPOHHpKe0lZLBhm8OsAqgCqBM/cvZD2uMQHoSVZEsg1Kex2JJDjVVyP5otXEEiLInpFUzLShzJLb35niq3nRkm7CyifAJ9Hy4CuDFfS6jxFRp84c69esVMRyP+7cW+XwphkE5t0g+gTIrUmhdKGXUjHg0wk2ggkF2DR+3GmrNh0Y1xyIMDWeU4SwnIEOYg1+DTBvG/xE74HbmjxtOIe0U5DDjWJJW0kbMglE25EFvKRVO29XKeycOX10eVw4x48ztKETFwv0dBzAjEc5K01F5GxNyGE7gTgnH4nFZHzUICOyjSqqMcW2IJke4vmUTvbsovYX9mI9yoLDz/4bUZnCtlsWlSHlMqAx8z+2cvZ2XIBKVMOR2dpC9bnyvrIeNz19tNYglOISgqXaKR4fJhg9dmlsKA/xLtzTB9ZCLMDnbgDl+NKaLEja6SMjD5MxhBmtHcWYjeMXz/OfGUfdDaQPhVnyBOgv6AAsxolLlhxKT2kowYEG9yvfpPHxz+LNZCicGGAb+Z/hobKHg5SilA4iXVMYZ7uLHPqXy+5mpX7NpPDOEUkGUnCRbvfYIdyBXcvfhJJyiCIkBDeYsw2wdI2hWWvJ1iOdqJ+reUCyvI66c6ZRUX5Jr6/8ytw4oN5k+I87y4AvPZ8XnFdyB1DT5A76QUlxIfl+QU34rNk84PuB/hp9b8TqnDyFsBsWD24nZ8vAm+qDtPwW0QcSTzjUS4eLORlwcDmwiXc1avRt7x93o0EPVpuR2vdfBq7jpHlm8A3WcDeqXLKPD6uyWtDVQUenniWi3L/gDc8yD5vKVWhKOFcTWGV/1FmrDZBOGNiuKyI4oERZEQktDWUG5pmdvYpupRqtvpq6Hdkc21kE0WeMP6xGC/bvspQ4gT0KXSbPLylvwBMM7Wft+wknjJQvMKLnBTpfTOPZLCf3eZzuOnvVtm/Vj6OIkioqhoXBAFBEAyqqrYJglD/z5udFVVVA4IgbEerf+wSBEE3cyooBkb/izaPAI8ALFy48B8qi38mFX1bubtsmnJ6KXf0A2CUYyQlC9dsewuAZLaFte0D5KZsOEYlOosNOGIydsXCXxvOJz2uI1zk4Yrm3wPQ6oYGX4bLRjMsJzKzeFX0STOJ9GLypQLGXeeQTP6J8XE3f8EGKRu5xkl6a57G39nMCVer1r9IDfGpuYxXaHTBotFHp9FHh20+dRMTjFqz8WWLzOk4SZ+jD4vVgqAKBPRxcoHH1wq48nSsm16FNx5mhz6KyNCZ95/fv54L5mzh2+Fa4hkH16PRZRgiKiGjkY68PCYcAhnRTEYGnQS2ZJq6YS/Hckv58tXnkh+towwNKtg4dC2x+qN0ZMapDeRSH2xAr8i8WzzA+cNlpIU0EX0Ed8qN19JP6dAED1uNZOlUvpiX4Pm6LNoSJtqrHiFmCLEw6GE6soIFUzCdpeNAzSwcowGywmPIWcNEdFogs7WkmjkjPegyBmxSiuViD5aUiIiAL+eH5EzehTVt5aJELwxAUSabGp0F1Qqx8lkYp0ao9Y3x7iERtSWFr6AaXSZFWUSLEYiAKPuRxVxUZRR/vp2WST91r/6Z3bXzONbUwvYFZ4Oiv7zjfh74xZdIWefSXqOZ9f0lFUStWaw+uIetiz6aCeoa7YFUkrQzG6sjwHXvx3la30NnWRVlk1EW9Mr0FI/Rk1vMHZue4y+XXUdV+gGyw9rmkmX5K8F0BW7fcsZdrWDy0yfNg37oFNLoZCMeFK4afotnTDbkxEHiBT/DNibyH6e/xdcX/YZadxfnd2nGx9uXLGSebhiyExxSZdzWMfYvcDF10oIHH3+9+EoQBN6fv4oq4ziPVq3ne3/6CaN2kdW7X2HSYeXuTa9QNTLEQ5dnc6RK5TNvK6hAyGKmp6SSjdXXYsykuXnfZvZ6LvvIeMwPHD3ze2tuLTHFwoBHR7kvhKQoVE4P8+tbRUKO7+HQSfgVke/UfPdMm2J1gJv4K7NLzpITjYV1TA59joXpg8xbsZs1io7h/TczqLPhzEToK6nm/O730I+8RlwRMKXsbHj+IURVRXZIGOYmyYyK7AzdQ7VxNxXOnbhtFoYHs8id70UByh6TebLoQqZLXMwbaud3wuVcnf8KRdXjtJ5ooCnUDiLM6jmFaEvzvHARl0xsJjvt4/mWmxAaZK7YvBuDoRl5eg+v0rgi83gAACAASURBVEh4lpaD5Ir6AA3w8FbnchIOhUZ6kY89zUqWo3nmPzn5OIpgbMaifx3YLAiCjzNZEv+1CIKQA6RnlIAZWAv8BNgGXANsBG4DXv3fdv6fSbTuYlYlXmVKcOIbqMJUOsaX1J/heiEbU1rlwYU3sbJwkqWtNkBAVNN4Th7h3dlLmKOK1KYsHJuSsUcihG1aDEEcidLfG+b2VJqS5BSD9jz0xhBh/d0o/TrO2bebjdddiqBIbHQbeMAnkZJl3smMsTESwluwg1m+WXjNPj4VWEntwSd4hfX4jX72eU6RNE3S03QEeuDl6nM55T5JtWTg0rYo7zd6UbNVts8WuG63yr56kWXFScYdb1C++0fcxQ5+ZuzDEC3nurb7eMGiYhzTNvExq+aznFxiJLZQ4cv93yKmN/H5vj+SL4XZIjjoTxbTNKeIpFObkMtyRHTZvfiCxXRZC5gbHWQkNAervZl53hig8lpjAxckkqxLLeCEtYvxtJk4GSRvjNpBD92Ffgb8Gzhse5gWq4xlfBUlgXqOFm7hgsgEvan5iMAFR0LkjHVRHOsjnBLJ5H+fJQ49/zF5FdH8tWyvWsL6QxFC7jYsOu0kk2sYo99UgomLWD0oIQuaV6RGp9VNykRT6KwGEoVaMLs0OIxvRCBZaybPN4EI9FlOUxGroWTkL4zkX4HDG2DR5CLCuhC5vgkWHd/DscbF/PDOz6PLZMid6ma0oJ4/rrfQ5LuI6SzNYh/O01BX1733Bjvmt1Az2EdGkpjTtg0hlSSjkzhSIaGGl9Jigh/9+ed89ivf5+KubnRyPWuOd7DA2Ypi0pbkSJaO7LDmf1s+uZ/Qof30l4yhVl1D3DKKgEjA2YFO1aOIMilDAFtQ4Kajo4zm93Hf4LWUJb3oTTIvJesRonDJ2zsZzCvkP/NvAxXmJA6RZ5zg98IXWWd5AVdjhNO/MPCC6ULcqhe/MYu/zN8AwKNrPs/6Xb8naDFx8fYXkdNhdOkkX39+CK9NwpICf6kO390JNofmsnrPG9hsdvSKjH5ah4SMjEidMIE9TyahuHm0+AZIqFjtxxgzBMiNGlnQG+IXN1+JuUCh3VhB4fDrZCWKmMydT056nF/pPvshRyjs3J3N+U4vxSUZ5j77EJHlMnFAL2bIr9vKU+ENxFNp3vjinViSCSZc8PY8B2BHnClitKX5Ul4z2OlsfYPZkSilE1s59KCThEmi9sQovlUZBjsdGNoM/OdFlwKwqeRcCqzjXHTBdqyjAtdFTnCqp5SERaarIIv66Gng9Jl+Fk4MsWvJBZxq6GRuVy8qoEo6dGqGjKAjYPXwxsUXsuadd8jpG2RPbQmDc6uYMzhF1tE3KF676v/LVvhP5eNwDX0Aw/gPQRDWoMEf3vgYzy4AnpiJE4jAc6qqbhIEoR3YKAjCD4GjwGP/u67/c7npss9x7HdBzE2nGei4B+m4Cb0xTsRoZefyT7EYiIfAKsIym47tIViy/2meqmsE9JwfNxAXU5QcSPP+QplbtoV4XZdgdThFvmCnXW9kkDSJOki7izH3jaM6V/GpzXHeqZ7PiexjXFmZYSjLzaJDAl4F9BmJWYEG5kbqWRZtptWyjfNib7NHXc2y6dkcK9rFvllJ/j1PYixLG+bXF+dx/ftG1vQbCXpivLhM5USdyA2mIupspwGBvXlbsOlkDOIUseBs7DY99woCrw+vBEAypLn2kh8Q05u43f0ksRHNgRQzWChcc4QvlPweFQHxfJXxgQIYgHSgkDTgjLvIj5QwbA1RPBbAOqHBaF2BBhbss9FiLydHcbEmvJiDQpCX6WGXsAG1TGAmyZeToSyW28cxuQbJm67loq47sZj2Ico2judvYdZpPw2nNGSRAzt5pxO45k9gSf0VydvDvP4KDMkFGOM5RI1+dGKGbN0Iddu/Se1kIem8EsRElC5bFCXsYJ+6lCsnXsdeeRYeudo5RtAfYmvQwPLTJxDSSaZ1o1RQgycWIjL+IIWjG5AIsatgN1e323GF05x74EUOzF9HfU8Hc09u48lr6gm6m3m7SlMCyw48wUDxLC7c107lSB/Z7UN86chfqNnXx7MteYCNA/WTdBX2khLsdKpbWLEXvvrXf+OZlY1cPFKPI1TECUcHi2LnYUwpbG420TCUQi9DICAhIlM0doDequuwxLR3EgXIKTxJb9BKyNVOmByKVR83TMcoVs8mfF080EXvaTdCIMI3vvENspgm1CbRNVpI1nKVY4Zmavd348xY2FbXzO6O6zja7OIu9UkyguYSaQod4cWLw3x3Y4AJo4cxt50xtx17PMm84ChKRkVdm8DoUJn7wn6SWfmkcovRJX2kjR5uVPegTwRR3Pmoqo50cRV2e4wWeZCidJrXykNYZRmPPI+2urN1ryoGDlM31MvmFQ4uOrSJ+PkmjgbzeF+d4BxbhldLIsw/JGGbnWHq2xmEsx5TzJ5BqkpP8t7gKtrLCym+tQP7WxLLCuJ0+kGSFWRJZMrvYryqhEIlQdnQu6ioJEwa/NR3b4bEhJnvD/zwjAv5A/mK+hiioDK3N0iHq5RdS8/hmq1vcDonB5/BiYUooiyAAeom22hVFxJp8dC45Bl69jcwntJiSCMpO+f2HaS/rp79zbOxTE9oikKnp60oi5suXvk/3fr+x/JxgsWrVFXdDlrZyplrNwFP/XftVFU9ATT/g+u9aEymn7i4nNlMTe8lW1AwNWwnfeSSM2yXH0ibIcMlJolt4QyndTJ/WP01fFMZBk06ShMCV8QEiKo0v6UFcW/ECIIRWUjTkNYzUmFgX4EW775BSFGc0dwN5VNLGHAfxD82CA4nbXXLKB86zYLhC8n1zyZgHkM2wPtLy3jV3Ysqfjg1Q2AsS7NWMrFy4u5+ZEsFsaiNtbstbFw7TGnGTE15jxYgAAqqtpGUJdLjeuS0m58KGl0Dig4BSMjmM0V5tg2dxWozR0UpVXlFuY6jo29T4p3NkakruNFw8swthpSLprjEK2oVLmsrrhlXkS6RxTwEnjZk80si5CBwWBXQsAEflZHeW6Hop7jzDmKSvPgnljKcaGHK1k9r7pvUnSpCMi5A1JcgJ44yeUwlI1aTrYYIObsxxRsJCyrxSB2WkEo4dz85UoDCkUkURwNiJoNislLnT2MZPskCtP5HE24UkxWzf5S4uxBnIsqVx7SShbrAAGZHDAWFxVOLmasuhYyXpGQkf1yHTta+y3OOHmfJ8ZMIqkJyZsWEPVefnUNFJ9Fl3sM5VcSvLqomOKqnpHgC0Zlh6ekp/nZemp6iKPlpHUFlG5ftlxnJVnlwnR7o4r3qv7K2+1ZW9q/DgMDyU128N7eeTSVefrb7McRu7QRktYRoMTzOuDGLjvgaTLE8YmMSsiIjWEYQURnSlZOjpvi2fhVPhT/Nfdlf5YsTY0j7DMTLdXSVaS4G0+gILiHOwtYhgpwkZ8xPKsfCgt52/iR+nrHhAh7J3cAdhifJSXjxiBnOG19NpHmEggOnGSkpRc14CQOTt6iYs9KkEwI92+pJO7NI5RYjhQOYh3vROQIkCitQzNp4foA8vGnyEImZa9nJbNrLk+w6566PzJtrur2MxjPc+Np/AvDb7XdjqdrPsHGS5/wGEOE7iw3cdFpicWES9aPs11Q4tfyO/5h1H7dGn2Hlje9jSMXxyAHqUiMcP7QAX9iK4ZiPl+esZJn/CBMLProttg/+fYwyR5ygdCzFnB0+jILCcyVreb3ifBynpziRo3LKtogpXTkb2jaRlR4hPRUme2iYQ7ZmzMeuY1bcBzYwTI7g9urxEkGKhvGXVuEvrUKXSpIxGDFODJEUXH/3+f9q+Tg01A8IgvA7QRDMgiDkCILwMnDtJ92xf5XkJ2tpfdVDVulW/nCxk46FNn6+3sWh4qMIdpU3zWk+Jyb4g3mSA8Y0PpMVBPjbIjN/XWsAVbOI3tT76JlxSWQLL5IQH0dRwzSf1kwQfSaBI54mIqiEBIWacIl2PX4KaTSGwgBL+9dT7tdyFFzxAgYySfLTWaji2RBI83Qz5021cI6cg6pCJjAXVIG9JdrGrlNFbn63lDqbHVSBR8c0y14QFQJoYCwl/VE+wB97engHO5ejp8rZi+CTKY5psYSIe6bQ7CnI6b6SfZNXkVLMbAsvxOxvwBwt5AAuMqisj1rJ8y4mmXaTjhcgzBzSC8MuFkV0HJ5JMXlC/yBz3G1c4tRiH6iwfKoCOWXG0bidvJV/Afu7KGo7e0pfwBXVxthIPpK+Er31QiSjASnt5/qpC/haoZ+1K/9IILufw8YMTlXCGc+hNG1Fn3UestXORMbCvONTWMdnKCIUlWlrOcfDbrolPcOyBWtPK8bxAUwjvZiHTtOvXsZCtYGJsDa2RkHGqNdjiflZeUIbw6BVc5NJioyoqvQUBxAiH5Q0VMkffhZ5bDarhyxkMNM0rLJ+7FV29+Swo6KRUq9CzbifRek0l1qixI0Kz6+Q+O4tZzebO19tJ6xEMcyMpzk4hqAoVFYMUeo4jiwIpEwSP1l0E/dZLmCzNYvXnWlAJRPJQ9XpeDXZhCNYT2thDT/03MCrnji2mh/yltHEYJsTRRXYay5k+aFdiBHtfRfrBilIBGkaGyDs0igUHKkE7qGFzNpXwL73b+DuvW/ymbazwIYuYQU71qwmWpxLrGwWKhAdt9J7rJijb61kyrTwjCvO4NOC+PqQD8P0GGdZazRJmM1MmiaRkXGo55Iw+DDGjrFm1+vMOr2bv534GrMcU0jC2XZDaglWcYh3h0ZpTCQxpi3YxlazqOajSuCdoI7pDBSYBs9c2zqowTAlg0LpqjHiF4i8W10zM0VVDqUrObrGSfhybR6nZR0T0RwGp+vOPENAZo75l9xz4lGuv+o3GGf61pFVRXhM4KF515Dnuow8VUvTDxpslPi9WFIprnzzOda99jy13Z2k9E4EIYLknSQPrY9J31mm3oxBa5/MKeTgG4f5pOXjxAiWA19Dc+NIwA9UVf3bJ9qrf6Es/NFvOXDvLegjSYIehVetBlKSQF68lUXSwjP3+Q12/KhkoXL/9l9yylvOjZW7eEP4DRnVRJ9ZpI8UF3uPk4gMIAGKuZ1sYQlLOhOM28exZMwMSwoZNUWOEEVJ25FMoxjGOshS91MYvhe/cYigaZrSYBNjSpqctIcFQxfRNL6QvXm/Jlu24yCH8YyEUDBNieVNguFcugpFHKNNmAlSGx4idVTiD5WfZSJVxtDeLsatQZ5P6yDvZT6XLmAUA/MsvyY+J0qRKGPZ28zXMfNYYgzb4AmSgo5Hy+7k2e6raMo9xaYRjS4jTxrFIhWyLmBGjwWS2fQ5Ynw6vYnB8HwwF2HxzkYRMuwxpimRRWoy2jF6hXGUmF6lO1NLfXqKxcXHqHD6yBxcgcPYzGSwlIIcDZlStvhVTr9STtlQlIhFUwTNs35PW00+Q1u/QfPKMWwFU8BZJEtBzWZebNtAhT5DdTyPhGUMDDbsyUHeMK1gtqsSNfYUkmkJOtMSigUdR10TrK57gj/EN3ClfxK3/2wRkcb0KSLds5HkPmzDbUTqmkGUkBJn/QvHKyRaDtvZXDWbheH3aS9JYjgUYJY+SUtQ5JVZmzHmptkKRMMbWOf7G2nraVJjVl5buZ5zjv+M63YrZFpV2r7pwHz4Fr5w8HE2L0xzpEbk5dYp3jpvLY8kRa6KynTpZU7EaxGHY7xWuhrjZSle2HA++v3TiNEM5aZWMmItqdUyOR2vMtV6NR61A8+cVxjo/ip7q2fT68snfmIEW+lD5HkVEr1mts3R4TcJzB86SEEswkF9GQWShtDJuHNBEIjowJaGmHUQWUohCjJkZPwJO0gpdGkrUYeG3kIVQVCQrVkMv68j6fCQyi85M26S18uYJULQeDH1oUOMmu347OdQ5d+BpDeeuW/SPIkqFZEdtzKks9DUv526UwmuHj+NKtvZEjh7utQJMvXhQe719pEvy2wcmwAmmDIMcYKP0jd0xUUW+UTKKqb48vyH6A5W8mrPJewcXkquZRqXMYjTGOJY9lwkYweZcje05fHdzJe4auRt8pQJHm+/iUkhF0mSyVL8KEUbSZpjfP3Rab72uR+QmBRYXfAQlxoOciJUjjSpIeqm9cMsNAWIR9Psb57DvO2tZ/pVkhhAFUXCBjNjUTc3n97GQJ6DQ1mzOdwYw8UOHJla9OEG2uIeLjZ3s0uy8EkXif84isABzEXD/BcAeYIgCDMJY/+/F7PbTcZuIhmRKHH006evoTimcHX4PAosIj868hxza/bw9KJlPNVxLUUpHZN1d7Lo5JMUF01yTda/c4/9PO57L8qkxUV+SQfxGbSJnDyFzrSE849F8MWfRTLdidN8grDOhz2yEp0URTAPk89bXLv/swCMu8LsqPxPrjzxOQypEurSHhZNaNQM557Mp6uyH4cxh+y4ZqHVDsrsya1Hyt/BoaZcJNcRjCM2yk5k0bc1hzLFTDS+iOfsCcpsD9OjQksyzkgmStzQgqB/mh8ERG5y/4KasZVkRadIAv32edwREvibA356UKMt+C0WdOFqjugE9Jy1wuZXtrGy5z85uWsfe5c+oPV17zcZuWcBO0dW8ZlpDxEM3Jp6D2HVIfbuuZ6SeAfu0hC6EYkRo+Yh/E3rrRS5+rgleyOu0gg5c70smjIR6XCjN6aJLomzad9a8nVxzP8Pd+8dHVd95v+/7r3Tq6TRqHfJkiy5925sY4wLzUCANSkQCGm7aSTfJY0kEEghZEnYEAgQIGBaAGOawQ3cO5YtW8Xqvc2Mprdbfn9cxYLNbr6754Tvb3efc3SOZ8Zz72fu/dynvp/34wmiKaCqAv7m6RgddqqKj2MK/4EdkXo29k4jc2J9OTlN1EbmkURnTJeMFQgT+O3PCT0kmtZxR8iHggeZEKfdc5gbGURJfog1+RE8xsRAHIs8Rlw00Vo2SkfJOF22QtTs53kXSI5cjpCEdT0dmAUP4vAClAIdjaUZI+xaphuuoawE2eFRntx0NdNbXmNRKxT+QuRXsefJTiQpj4nsn6rRvcHO9n2LUQX4syN18ZobWkNoRVZeztcT0+npmVgODdKVmE4XcM/Rh8mY2w37SvCe2Uv1sSTPbjaiCQI+dybGKSbKTt/EDY0dNNXk88yCI+RYRpk3togsLck6qRUZkaOpYpaaujFrGh8IKa6Me4jbdSCfNVpE3DaAYkgQiRcwJmdTZjqDnPDgjZQRyD5JvKQcIZVGMxmRYmEG0xnkSwpZ6WtwE0fCiuasocrfgTFiQpGW0eR5j5DLx5RIFUFTkCISZATSrA9PzBQwnaPTVz35EBtFFri6OOYr5oXcn+DPMLLdX8GVKb3o2lc9SSehxjQMSYF7f6URvgyi5VDnaGXkwlxMhghPn79Jv8eGcWqqBlFlJ2trd3PeNZt+cgmls3jq3ES/60RVWkFio/EYsfxROrpdmNIGOlwFmI+O0k4mv1z9WcztwxeL2HmiTvzoFFy0RzJ4tmY9l4/tpGrIj1FROVc8FUEA69gY3liMu8u+SKe7AJe6k/HsMSxqlPyBWYxZstgZK+fB5f8m3/UJyH/GEBwDHtA07TFBEOzAL4H9XJwY+99f5qy6At/ob5laeJ5OpnBZf5x8WwVjwjCvLv+QvFKNSwoP0D1QT3n/bBLWfM7P/DbmQ1u54DjDN7r3Y0kZMKdllA6BZm8Wvd4MNNWPKbSLlOtSnEoegiBSbyrhWW87JREJZ9LDyo4bKAjp4WejV2TPvPmUtr9HR55EbruZnEQe5ybWOZQ3naK+kxjN7UiRIHnxVZh9RkzWOvJNPpZ2beJgWZIGVyulgDcxSrbkJYnGxt4XaJ3aRdGoxkDnLobc/wSRpfQkI8zWzuG/kEej4UM0RW/2npqIYbLbmBZpx5bqxJWxgt6wbtszUx+38f2jDo6YahlwZGEbPkztwGGsyRhXhPdy+bTdeH9sZd+yBwj1V+HmBOXxZoSiETQNAhf0kYYFix7D3LeO/v58uo4XUbqlnfx5OrpnaF82zikRSENbuJTpGe8hmVL0H8ph9FwWqCmyp3nJKJeZ4b5AadrCoGUmuQkPsjFCqPXHFJniyPHnCBrzyJEmext8Yzo/ogRIzqkQ+SWZigmT80YSwRcRNF3pSeaZHC+ZzrzBJqzmmzC53FTFgtB3GGvagXPsdnI9PVRoGURsPyVk/D4GWyNbTvfxavxSQpW7sFf98uJ524oiaEYNv5Km0FrG2aIIhWMJAiY7CclIwaiPelEgmHRyIVH2V3tWUDS0kAIZEq5IkJDbjey1I/n0tM7+zDqOH9yCw5viB20aFX4Ymyh/pQxGUkUZtNnncNI0n/yAguDPJFD+8bnYGWO1DNqsDBCnRFEJxosxRzUSVh2WKYai2IIRAplx3hZmEjOamB2wkR3t5bhrCqsSfhKWLDSTHtE1qjUcNReyMC6xApD4S01AxGjSPXtJsTJt5Cq65QZO5u9myDrEr4bf5FWuuriuZKYX61APFlcRLy3aRIZzhDUHf4VisnLKk028WqXlaCE/EpewsPYopqwAyoADqSDC2WGY8ngR7uQYIxYVOzA0YiKvdzW3iElOVDRwcmw6CTmD8fEomeYANxa00KCZ+Q36hKh8+yBFjkH+IedNDM1ucoVxbCTodqnMP3QNZ6vOIMT0NKyAgKengSfEx/iR8BmatVJkRMwomEzj5KY1xmylBNRCSn3dmGSZvhqJiAZ1/RcYs7jpdOkQ0tDYWoojUcbLjzCclYAYFMa6qZI/eY7P/4whWKdpWieApmlR4MuCIKz+ZJf195WV197Ic/c9wyZpG4EWJ4vPquBcSNfoaebGi/BPbSJTELnV8jJNytyL3ztTcjUzGjoImwUOV3kxygppg4Q1maatfD6atZakSWJeN5gcVyARpIFjhCx6/n3KcMFFI9BvSPFOWiHhyKC/5MtEkh4Wt4dJyBJW/MRxc3rWRuYd7SXkzKFYnkJOciHVFiPVY8DY7QDM6r+cN+rPoQGXj+1CMg0SsZgpUMPsyFNZeS6LgDYXTfOBZqdkcB1yIhdZ3kMkje7lCBpq6jyJdA9LNd0wGNMqmnntxULec44k+dl2gllG2jrK+DTfh+UgqgqvtegKxTSukpgH4tQ4CkMEpOm4tBfIv1SfFTzak0dkrAbJdYRgVy+F1j7kpAYIPHb6Nr6++HHMUpqihSPIZr1c9b2lv0Y8pXtAYX8mfyi6hSuH38Pcp3ct316QgILj7LY5CZy5nmJZACQKYklSWoxj7kW4jTKnTTKb/WGKDDnYLS0kNTNysozKy0LM+cNpGuuXML3PR/OUS5FMdQiCgQ3HAJagAoaMIbKCeSzo3Ti5kQLTyFn8NEoig/CAheiYngOfOdbN/koQBIX4wHVY3UfQrH1knk7TYlzJJcIFmnPsfGfe55gdPE2/sYRHd/+SwKOl/P4mneq4zNhPV3qyyf4zdc/zVMtnUTNNJHujsMJJvj3CA1t/xsH8GTw6oTjH7Sp2OcFwpofGiirmtnRzqrpEjwwys3j8MvjKrp2sVK10DU2Q2msgKmascjZfCgHobUFfQEX6i1+rqojjO5E8AY4UZBAb1COTjOgocSQ6TXE6WMMWJnsCFkdL6bereNWPlx6frN7KDWdyidhS5Kq6118UmMaYdYg+2xCHp2SxbHwn3Q4fvZ03omTmkGft571SJ6t7T6ABvY25xJZP43jMzjQOsHKglfi8ZuRsfVb4mo4upDa4p7iQvhVfJdPmx1X5Gz6fVnnU7MFZ8zg1o/O4KilQWvUGr7ZdQfdQIXNz9fXPFM4wfUEHp5jLH1u+SEkyQnjcgNeQojU3g9qhcc7u/gF92TEOTbsUQzR58fdd2dnIImMTXzVsY2v4Fmxmva5UZxjlJsMHnFTrMNTns6NiA3NOnmKguIiqC23M625ge/lSEARmhg/R4FxCLLgUY/I0Rp+dzePbKEwM0mJcQQ6frPxfi8WapnUKguAWBGGOIAhLBEFYgs6s8j9GTGYzdUu/iJsQm8df4sLYB7w+8gTt4dOYZBF1wqPRZvnQFn+JRxd9g7dnPkvEYuDEzFtoLPaiopE06JcrYc3FYlrA9EEvFWOThdlBsQF7zzkC5kE0NJZdqL/42R7LRKolLuPLzKPPY0AVoC2pMttpRwXy/TJ/vOFrSJYNOC3LWJL8OIsoQHYiG1UEzarnWZXUOayhU5yogoLoLMpTPyLuqCM5/jSmwKP671In+IsEMEtujLYy/bU2OUg7HW8kFX6OHbk+/sUdZ8CgcnI8TP7x7R87vypKnC3TvTtxUA/JB74KoqmRhCWHxICOsNA0GDj5JURVJDY4hq8pkwWnjlKZbCJodBKXrHz/wHf1gviEEYikbHhtPrKW6MWzud3drBpr4LW8DYTCDrTUJIJ8Vl4DLzvSPOhO0aSdQZP1uc6rZ+xj2azfcWXPHnZNFMIzkscQzDoqy3f8FhrrdUKv3FAfBvOMi2mkv4iz+BhJ78fLYBGnHr0833Q5A1E91ZV1TTNFawJEU5OokmkxL5GBm9EEgaH8Icw5bzPglnm2RO8NXVx3nH+89BEalxYwd6iNzGM+Ktyd3Ft/Py/aJsdrOs7lsMn2Dln9AwiyxvSWJsKFmQSyM1k+dpbnD32fn0R/TZk4ys7lK3hrme6bxTvhi7t3khWehI+mTDFs5jHqFP16eEYW42pvRxb0+x80JDBIGgZE+iWVbWRwKhXgtKcGY7ZA5+CXJ/aPhtmucN5VR7YlShoD3UoGIdVMUzqPiCCxPi6Qo4gME2RQbuYda4qklOTo3BL21J5kT9mrBI1hJE1ibv86ysbrMLdtYDh6KbV9AiezjwPQZplNxQRMWQC6a/VO7EC8DIBwnR25WMN6SCSxqxZp4vESLQI/dT7AjeffoPJMKfcPWgmkgnR4h2go2EP/2AJecn364rUxeoy8m95ARHEzxSeiZNq4dcbvCKmZ5IymeNDwGX4d+yYHXJzjeQAAIABJREFUzTNZZX+U166ezeEZc3CNKpQYxviD/AD3G3UEfEwzY3SOoCLgU/Tns4E6JtQGCauVQ8v0ZsPy5jZSooHtFUtRc5JcmNmHI2c7PrOX+UfmsnloO4WJQVQERiOffGro/2oIJriGDgF70BvC9gD3fcLr+rtLRf1i4n4zjrwYKgoJVxKj4zpiJWE8DoXOiIRfFphaLJNpkOm2nabfcYbMyk6mXOPH6NnCu0vimKyrMLs/R9WIGVXuJzM8aRO98nwkqYjpndkYUUk4dA/sdPafKfTruWNpNEFmNMQlJ3dyrtjIqKyhqmZEYGlnih/tC1Ez+tcEr5qWBk3BKNswKmZ6CispMU8amqygxGWtt6KpceSUHtpHRJkstR1NGQUkDLY14PgHRMNlGO2Tm0uQdDy8poywtOU5HIT5xX598PuRjIWImsLnu5/ioQM/Q1QVfr1YV2qm0yL+szqrZm7lMf2cfv2BTb1YhTldgJw4xXmLBckio6KSGwlTObWLS0sO4E96UAK6sVNUgW+9fy+t56oRJnblQVMZhniKtGhk1Oil9fUySl+Qcf3ZiMfh47vFv6LC3kkq3UU6tgvQqC1pI2EW+HPpCgzaMB9wlGNhmXB3AjnZSCw9SSpnSoUJG3TP7oDDzwFbjCfdYeTanRRUjiB4/kTaEqRs47eRlr1FwjNCxXgOvvZLEE1REnED36j8LYZi3ZOf362xuu91Vgw3IEerMWSewOTZx/tLukhhxGaIUl/TQoFjmLzNbcQMJlb3neKGwtfJuteM40X41smtfL7xDXKGfEyRY/x65ff5vPN5rj66m4DLzR3fvZ8ffPPrKAkLCy6UYSox8ftrb+ZPGzbj6R9DVQaR4qMUBIcu/s5xswNzLBdNAWPcg5bswRNoZ8Wh+3nSGeAxh8Yho57q6DGojCemcIbL2e9azS9Td108TmJVAduu/DR+s4eAs4AScYSj6SI+SORyVClGBTIUEx5V5ILFxrPZpZwzp7nM5+LZsbuIuEZpNKk8bjPwXr4O4Z3fu5Ho4AzGO1aSl/bgMbRePF9SiBJIHSFrzMeY1zuxWQVazxczFDHRszefcGMG8WaRH7uzudPrId+oMu7Tc2Q13SLT23XjZ1BGGXH08mGFGTnbRmpaBolLC+ihimdMn+fo8CaujLzOr5t/xqA5mxXzn+H3nhuIpD3khwLsTK5mHAdvnbmDW09vxzke4n7pCdY6Tl1cb406RokYZFi1USn34Z6YBy5qCje89iKrd+0GwB6J8PUv/oDrN97DQJYBt+duJPMpKpL9FMQGmBLtY9SUxaF6E9WbO0E7+Ff64O8t/xn46F+4hro0TVsOzAUGP9FVfQKSXVBIbNiCPSeBY+kw0y4/gc2rkj1XRtOgd28hT47qVrxCMjBnXGJF7asULHwae84w3oomrmn6PqJlNqo8iJw4SSr6NqnwVlRV96wE0YrJcR3TOkzYP4J2mdU+zI8PP0GmDO7uCAnRgNNgonJQDyGPRHXFL8sayuDkUHG3BIvtEhmSgBZ7gyG3rjQ/f+wXFETm4zMuxejYjGoqJHcsjaaGUQJ/RElOhuvjwi5UuQcECwbzTKT0GPNdu6m/+QTLpteSkcwg4riMXflrGDN5MWoyG33vM93XQdV4H2nJSNV4HzY1zqDHyuzxs/iiNnaWzKHX5qbnUAG+FjcZs/rRtB7G2+egaAIBfwWapiDH36c+dAajXUZERLalyZnmpzZL77oMDOi8PD2dJcgYaD9TgJIW6D2WB6pARewClZFuspNjxP0WLvTn4GiQUEa9VE7t5v/Mf5gpiTZARkPgn/f8gO1HLmeq4wK3ac+zMHCQlGAiLpiJFOzjZ9e4L16bX8y9iSftKo+44hw2WDlsEvAJBn7X+BkcjihvuuqIz3+WiCiSF73AO3UCCVEjV5Ewu/uoGK3hkRefovzDs/z+IZEN+12kY0ZmhM6T7XcjGiYjrkUF+3lo1XcxigqHdiwAAZIzFdYOHGfxUz0Isj774NLeUxy+fA7ekVGm7O3B81sDK0bPsrDxNMIEPLcpt4brfv4IkeHThJyui+f48o7neeTNh7CPdbG44xxXntb5fOyj47jHq8gfmkZGsB4leYrqIT+W5Dj5jh6oEzhuVWgxKpwyT+S+pTBW4d8E/gaBxS0JlGwL8dE4PWoOh0z/xO+c93KT2olnIiUUEBVOmmXsJLk0ZqZy5FoeCv0SRYAVdh9Oa5wmxxi97hbcCS+CpBvjc6YFXB+OMGTVjdgm39usr2wjatJTrYKQBk0j0FTN0Akv/tYMGrVcus0a4QvlvGu3M0+xEB6w48vJw5eZQ81QOQbVgqjqKKcPS314g0kkrxkkgeHMbFxymPvaHuKS4FFuGn6HK88conBklP3SAlKSgR31ukP3mrgCIjL3BX/FH+33kC2EOGis5dy2fHwhO0gmJEHlO9IzfN38LFvkdwFYIpzE6Y3jHRtjwzvvsWrPXmYMt5Cecx5byWQ/bXf5lUyN60Xn9/Nn017UwytjazH8G+6qT0L+n3AN/XcQQRCYVv9pBtWHmTJNx+uWX6YjYLo7ynANWMnqcCDnJVg0LpGbmcBZNAkjzJuzFWvZB+zrrmDt6yfQNCen6i9jyem3yQ39M7vn34RkKEU0FiEaKxgO7CBZ2UwsPRPN6ObUnG9xW8QKETjybpjDpTOoS8O4TSQjpmIUIP2RGu06l4HRtEqOUcQ+fAR70Q3stIBga+C8kqR0dB6yUUaiDIuYSSr1BHLkDRRRf3glVUURRWLjeopAUCLMOXkfx0tsnE1lUh3PRq4+QVVZHx/2FNEUWk5rXgWf63uWXH8XEbuR1b0nacsoYnn/WTJIEDUbWRw4TJY8xrYpi1nvCyJqMHAyF0HSSI7/GdmygL3bP0u6OEnB0GR6JeHT+x3q1vVhcsoUHwpiI8Gu5tXcKL3CQ8NfQNBUsuM+4i/P5olln6Nm6hGmNn3IhtG3cUcTBO1Wmm1eamii/806KDdQcskgnopxAhcyEIB1I7spSgzAEIxjIjs3jz/YriaBgCBqFEUv8IjLiVkT8GXog2Z+vvAuHm//DOZ4koLBAd5kA2fG6zkfqON8oA6jmOL3l95J35CLrY4ks5MG/LWlLIrMYWN+mrfsAQYzNfpiYfJVGwHZx6Z4G89+ZP+ZXecRBY2WsS1E5RiGtpMkr4uj+A2YOnUFqhk0BFkgOxTj3dmLuf31FzEoIjnNOprod9zGoJbPTwQ9IG8uLaezsIR5Z46SM9pDYb/ufBgiYUqaWqnNLmR3TZynNl3L7W91kBfJQlMjqHIfO668igXHjtFXV0ciO5d0bi+vHxbRJANiVMZYvJOS8CpaxixoUyTSTjdTjge4tBOGZ1kYGE3gQKMlegULnS8wmEgRtbZjmbGbNxJ+ZvVvZMXYNHoyzvPnmreZOqJzNf3D+FlM8q0ccp3gmJqiIFZM4cyX6G5Zz0h4OkXOM7Rm9NCYcZZpM5M8HDUTnN5NZciAM6Ob8nMrUexOGNOppUVNwKCo5Pss3NA8FfqTCChYLS4kOYgxHKImUM4FRwtRRxlhRx5y+D1M4THSmZ8mf2CE/Gzdc7+3/Av0k0tuZ5iVIb3OFRBFqpqO82HxFGb1XuBPI/O4ovosL0QnittpqFw0RL0WJSbqwIPCCQYeX3oKMxrTrJp2iOicMi5Yp1JR9yW62g8x98CHNGaPoqgK/t5vYc4KsHS0k+pwM2HJQU5cplNK0iw2gH/9f1nf/Vflb00o+4uR+LdcQ6/wn+Aa+u8oU5bcjiu1AEMs+2Pvp87dQdzqZE6jl9SYhaqaIM6iGP5O3d6NNur0wO6sfi6duZ9XV2iUhwNsOPQS+eMRDKqGnDhMIrkdNAWT4woQHNgD68kPV1KQvpmwUx9GExYUFiWN3Nyqa/3G3F7ezg0yZp6EaxZH3mMo0c1DtTF8JrAX6WiGlcIIxSt+w2jpbnbWPMqR3Ac4k/MmouRGkHJRlCE0oGxknLn+IT4qc7uGMafCyKY8gkqM+GgZiexe5AKNaTN1sixFMpBWrSSNIvsqi7mt9k2+E3+GK9v3s7B9gCUtvVhlmdroBdb6dpPEzGCehSN1LlrP6ykXJXGM7KGj5A+cRvsIzQHA+LzYxaHn5ndMzB84zxHLDF7Zt5lI0s51g69Ruawb67pm1nQcpUgTyAklsKRkZvSNUjIWRBVFXnPU40/F8be4keMSjoIYismAbDLrRmBC8heOEHJsJoFOQqSlBYp7moiI4JP0678mex+ujCjfnPsIlR6B7KAPgHfbVl08Tlo1EUtbWJHcQ1SEA1aZhrSL31Wb2XiJg3UWK+kcKwoy01yLWd7SywoGuC07yVq7gEm1MW7u4AVupj2+iM92QfbTAkICxr4uo9j1tQiygAbc9cyjbDywB4MymSLctmItb8ubqKGFTYmHALjza99DUmQqxoepaztDW14WJ0pzSRkNZKntzNr/OqtO6WmFw1P1aFdN99BSO43xHAPtZfkMZedijrWgmIpJrswjtSyXhXI7XstCGuZNQ56VJFWeg2jQqC1t4GxJL70VVpIrvXxa6qMprj8bGdYuypY8REbpcYq9vTRNeZygZZR3pj7GmKOPk0XvgSZQFTbTX9yKbApT4+6n7uqvIVrHUeNukoFSQhnVzIqWELQEeSZhwqeIyKJMR2YzJ0kwZvWRttq5MNXMC2v6eGtRD6vOdwFg7YyhphQ6yqYiC2Z68koRNJW5R2P8w+5iIt4fsuLCOao7RDLbw9y+fRfWFgdfOdrAuywn3jmDSFiPsBKihBiPUNTyIa3l9STTKQTAn1XHI8mPK+b23HwG1Xp8QiZ2LYaVJKPpCo6Eb2Ywbw2nE5tx2Tpx1ZVwPKrQmL2AoYpPUT5ewYKuKjaNwJqGHurazmLQ0gybvUjZJeSk/5m4bZTRwVf5pOVvpYaOgc41pGnauKZpPwDuRaeWuOpvfO+/rRhNDmYv+COVBx4g+dqNDJ3IxjdcQaP5EC7pUjQBwv16fjHsz2fk+Ddp3TaT/oN9F4+hAW0VMPTLNMF/SfHKd1TaZqqUBQI89JnvYMk9AKJM8ZI0FstkaK2pCZLBx/GHX+C8UcY8gc4oO7ubc0kTpx16eGyKj3Ih3Ujg9O/4+mM/osUpo6GSFFQSLh05U5wopjujhW7vGD5TM0qqg9EsHYKmiiJdORlE4lbiJj0NMnXAT3ZcpWH6V9DUAYy21QyPTnZL5ll7cHt1ZWRNqgiIRC1ptrfUsfLdM5g0hXemLePVmbNJGA2MS05MWpqowU63nEvpqRTx0F/PVXUWiiwPdl58vdMVIJLW/QurX2H+YDMRk40dZYtYNNJAXnIEQ9CF5IlhtCRAEElkV7G6qRtnIkWZZxiEj0JbBaIjVpwFMh+UbuCDktWMZBTx1qpraVoygydmfIk/iiJmTb5Idv7h8Cxy0j7m2jr4h9qXmVV6BtGvf/aV4elIlbpi6wjq3bHqVJ1s8O3OjZzo1ufplru6sQ34L67ifJmTaMRA4ewYlv5T9Lhy+XnmrUyzKmzMirJ8JExHSqBy6wVezAOtbQ+JeRpKLmCE4LUygRsnBktPdJmXjAwhi/oeUYF3L19Pa3s1wi47R0ZOYExcwB6L8vPf/owsTSWRX45BVnBU6NFDx4wixKTA17Y+xcq2gzRWFPLsSgPmeAPH6y/h+forufeGrwFw72MvwUe6fntm5dNeqrPAmNx5aKLIN4Nb+UPzj7hT+gVICprFRNTlIKpmERVtqGveIeHRu7odE7/hhdk/vXjMmCmIM5lJJF3MHPk1AGpdQQQBxhquxypbEA1x4r4KNs7dSZYo0TkxbvLu/Dg/KYhjVkwMZKiIgohXWcmy6EJWhG6irTiPofwaDs1dxZtrrueVy7fQ5/Ty5pL1xAoqiFbPQjWayfcNUTfYxeJgkuT4epqiIqWyhFMY4DDzMNJO5dgAY4oHb1MT9p5Bntn8VXryCxkxvkDIpILVgU0uAKDd0X7xlpUdfJ5RsvAKPkLBDN5v/xRmn+4vn4jdSFDOxSseIc+0jRrLXvJUOyu6rmNKr0xZ4M9UxDoZzZ7CBws3Ua0kuXTQy+YT+VzfcB9Lqz7pdrK/bQiEf/uGpmm7NU17VdO05L/3hf8JYsiyEN5YSrVlOYHWqfRuM1Pe2UYysRfBcx2Fgp4jjffMp6PqOWLDKUCgdVspcb8ZowbT3cpf5puztEzGdodMzeA4lx89zw+XXYWj8EM8006TO/s5ksE/kgxvQ1F3o2kj5KaHGUsd5Kg5TTrdzvMzb0LQVGa0P0N21xOo448hairF/jBOOUTmzH+k9bJb6bz08/gqt4EqkeEvQBYVxp1pJDWKkjpHXArw1uprOTJ7BaogcGTaVB6+9dsMeQvIioTpmLmKImcAo+MaJFMNz7ly+Ck/YnvLP2LXInwuZydLIm9QEziPqMrYkyaCdgsRp4Hhe1J4lzbhkQMM59eScI0TE61kp/1kxyR2ea7BGYswavVwIGs14dxaTM40+UvO8d0bv8fitkESthGiFhnL8a8jPT2TMXMGrpSeQ9cEgSmJJtwpgaL9uoKtqDgJaLyxagU3PPgvdP8LhL4o46nzf+x+5llCmFxRNs3+M99a8yDWinIyqsO8M/0amvxT8csKkbqP5FiNAsosKy3mfLY2X8+vTn4Vy1Ynze3r+VHKxBqtEG2CcEzxmCnIHybTGOGdrpX4E1nUe5r4xtxHWJmxn+/96rd8atf7vFGYwFjRgHdBN2NTT3JuSwm3ztCpuASfxNU7VQRV452ZZ8gcvpPTRVGStZOK1ygVEV+h4f+8TLpEV6KjLnhvgqlLBL7d/yh7+v6RSFYCAcgY+Qm3vvuvhPPc2Ae7kd1ZRAvK6Irpxr+jpILzUyswqAqbAzrVR2eei7vv+AqD3tyPXcO5Lef5zQM/ZsPBPfr/K9Qhz4KqErPqjlHQ6KLRXsmyBc+xpfcslwymqE53U7n2h5yY7UQzqPSGiompUCFKaFnfu3j8uFFvOQpb/HyxcpCXHaOIqki5a4y9vUv5uaAj78zuPiL9s0iGcplmSZMXqsCEQIakoSgG5vYsoj3jDDEpQdQY5tjIJUyN5nDfLd9n+9prsFvsLOzuJG90mLeWrUZSJVR3FkgGEvllFPonExkVoo8Gz1Rq0iIB48fBGb3+GKghjk1by8zDIezhnaQNA5zy7CNqiNLtCnOgOMXp7AYyQlWookZUMDGqeciIjzPwnoXqoaeY2fAw5tRbxAx+OpXFlJhPs8z1FFOMz6BoT9Nq/jWa+pc56jIOIZdjsxbSsPDqi2vxxOwMW7180vK3agReQRC++R99qGnag5/Aev6fSPGMHMbf6saasZks6z4GR5oR5XEQbZxpuQdjz++IDrZidCdhYsxLbNjGwOEcKjf2ck1mmoGUwJ/8Zm7PTpJl0Bj5dYqbfv2v9BdW4q7WaQys2a04rFeTMK/mt1e4yesxcfXes7jkMDutMvusBeCTsVlSWNUofW4oXjJO1fRxhH+yEFmrIBp0T1EQNFKOQUzhIkLm1RjVN0iLMrHMFUimQrz+XZyv1jVH0mxFkfTCcntJLV0XDlKWVUeRvZqhUJpRERorpiKkw1z/9rPEM71UGZrpKM0kVTOPurzjRFoFus4UcOEWI/keUM9oSCYFdaFEkxpizk4jtgRUxTooj3UhoFG6aoD3Oi9l3GTh5roThFyZNGbVMe7K4sqjfeyak0HlkWaesWbw0qVbSEgmTGqSwvgAeakQs9q7sclpxiM2cnK6kESZo9YyFnIEo0n3dD21QXzn/qLYNfK6oTMXqjN172z5/MdYDmTExth9aiGqVWKVZz89sytIdccIBN2UjrVyKjA5Peym6p/qs/OQsZi7qSmEqMVBcd4w7wtr+dm8b9B0opZYSwYrZ+7Eboxxedluvj3tx9zU9h7z6gewWnVveHCpgXlZB+gKFmN396J5FJRvK0w/LnGmWPe7TlUJ5JWJWI9quLZLDM2ZiTC/l8RcFanViqkrjTfEBHxSN5brh/cSCxnZOV3Up4ED58sE6ntNlA2d5Z36hVQCstFAq+00hmgT/ZVLqW3uxCql+IP2aV5kCyeZT0DwcLf2XR7gLpSkEQGY3tHK9I5Wlp0+wbaVa8HdTEHIw7b6ywB4vHAz72RuAODFonruPnKWvEVPIYgqMiDJKsZOjdFakXlqmM+d+QbHLBo/cK5jjeEEu02QI8uMmPUoecPQetwFL5IK2ZAnXM64rxwV6Hn/TqqLD1B3YRNHK18gmNHIez1LWXGkhYPlMqeyT7BseBnrTK00mWBKAKqbe3XP1Qg3HnuHLG+Y0OhaIg5ICRZMdpg1okf2tnCMWY5BFsVtRHM6OCDMxKClye8ZpNudS3YiQly08MHimczeM4h7vJGEKYe20i/Tn7WLaMa1ZI/sBVkjR4RxoKe0gqRg5mwsSabNwomcIkqlMMN5ZtKmZjzJ5YTSb9M4nsdwwkE64qMEcBZFCPfpUac7OYUvvx3EE7EQNyWxpvR0XipxDpjzX1Vz/yX5WxGBBDgA53/w9z9WHG4LvaLGOkMmK+xXUVn+KQCm2DpRLPuIDoigCXjHdSMwXBImlbWe8ICHSMRIShF4IWBiMC1y76CFcFjUr+S3/NxZdhynp4u4vwSDJQ6eQk7UChRrrdxmu4BkUvCkJr3aSqePr557jdqBMTZ7GvFM1wvZA9fbiGxQ/2rtB2yVPDvbzZYxfdjHDeFM3l0wFc3opapfL3qdmbqIQa8OaQxk5fHKMgGrUVeeRbYUT644iyJl4vA/Q3+ORnRYwOrp4JJMC9763Rg8IVzzQ3oaJmxi7IKTQJsbV1mErXmfoiX7S5yqG8A7UYiWUBkUSwmehHJXD52hUu458m1e2X818xoO0JOTh0GFLXvG6R48ztbyK7GrUSpiXaREM19o2M7y5h7sqTQpjNy346u81HoVnuw+/sn+c5YoHwCwd2QTL2ffTNHyv4DWBN6XZtAZ1HH8kaSDZ89dz1jKyxbbc6wteZ+iUgufszzO3d7vckPpqyQVM6eGJ43AR8UpRdkRLaW1tZThRhcreB9BU8lyjrHp1HG+dP41PBbdg8u0BKlwd7O1/HKcL6exePRI0pkRQlZF/uXDL+KLT5BgGGGO1808m0xhXOVYjUCTQcPYZ0QKCOzJC5F55C7QBNQ1+dx59520lJQxJRy+uLahExkcNFdzTpGYPaSSFRYYF/sxDg+iLowxt3AXmZldfFB9noYp45wx9+JzJNl2zdW02uuxEeMKXuNXfIW7tB9TTQsPjn2djeZtXLhE78S+597bMZrPYQs8wC96n+S7g3+4eH5FMNBj1xVWXDLz84VVKIqRLv/tHFMXYetysyV4GmfKRRoDBn+SBVGNHSPb+VCKsigeZ3fvADMSSUpSGpcueIn65jC/8D1PhdjN0dxnOeYI0GHQSCbdmCYI4ua3f4pju+/i3f5L6JnmokwTGLYNk/4IBUrNcC9xo5lpx09xNttFzOFiIF5MxNEMwFTXWSyjOvJIlC1Y4qsQBI2kqw0mSONuELaTCg8RS/spSAwyZM7ltje2oWa+QVo8T8oyHdlcSTj7DjS/ndKJAVCHNX3AVeM0HTb93vQgL24xYnTKdOdkkjaZMJsipMR8Do6u5vBYKR0RDxZHmOg0PxXreqnZ0En1dR3kr3gGSdIdiqLBSaK/iDDl392vf0/5W4ZgUNO0n2ia9uN/7+8TX9knLNVryy7+e45WSqYpj4G+M9ikk6hGPTwP2tO8vbyfd6b5sZT3Iop5tL9YQd/zFcSH9ZBZReDdZonBRglBv4eMp0W691wCgDXzaa46cy8/9N1NUdGHlK/wMXd6kB8kz3G7P8TDf7qfSxpP4khF6Vg02T9oWu5H1eCJ/iwe4C5a0XP6B9X5bHz7CRYGFvHz7q+zPDSHoWInW6++jQXHI9ywL0zaKDGcoxuCnvxSmksEbAadyrbMaEYwlZIVGcGYusDRugDRAQOCqJJRsR9FEfE1rkU0aFgyk4R6bTQfygM08ueP8Bif4RbTDubXlnFoxiTL+GfO7GHl/lGmDTRSlugiPzFAQ7SaFYffY2hi3OXSwVL+vPr/oCGwafht5gZ0mGv7SjvHPqsr81uu+gydriL2ti3nZw3XIqFQYu/mQMTAYH8Y9WwJz9fdgtmkkD9tlNNSBc+evx5Ng4hsZW//ch45dwsAlzn3cfdzP8L7oIF43MoU92St58rZ3fx0+cMXXz9c9V3WVey6+FpWjfxrayX2Pb3EglbUG8YZ/E0a1Q0ZT0mgwLdTOvTvtanLsWbHSKsSkqjRHSpi8UgjCWWSXK22fJybPSmW5qUJOAR+P2pht3camt3LntxBTg97kSJFxHPa+GbufVjv7GH4/jTKrByMDplglw2rYxSfLJAblcgds9Pn8tFUOsYvMlPsTZ+nvfA4I9YR3CkPaUmmqvE4nd4Cnsm/kVvYytf4Pb/k+xxjIeleG47scTbzMvZrexi6P8V1zue5bMYwX4sp5DYbKDGO8N6fPsePHvv1xd9xZ8dDeFN+AgY325XreLPbyW/5BlpENxKzAwMkXSLhfitOIcGTjiL8ksQdXVHaGhZy1egaXh3oJf+CRHZAj3b/2P8gd714GH+si0GDikETUJN60VZEZLYyRCZhjhXV0Z73AHKyiH2eVvrM/ot9IMQNHJg+j4C9mzNZ+kzMXNVPTnc/66P7qYg1Y+9rw+Uv40ThTqSJwQVZBLhVeBLRMEBMEskf68ctjxMvGSBZupOBbL3fIW3+iDJ2GhEnnqdjNf0klUlQRMgU4mx2nPLrOtE0hdrCdormbOOBKQ8ypkym5OZY/PxQOcecc0E2dfZhy0qQWdjIonVfpbjqjzTX2Qi7DnKoro+oycEnLf+lGsH/JslaWYx4YzXKFDeiIFLmqCcqBwn3Wcmt9XP5XSs4sjbBiFNmmkVmxryX0SzZaLJIKGriipPXy4BZAAAgAElEQVTZXN9bzYbRbA7kGfm9wUT+t0ycOWbGe9BKwnecyICN3Llj9KsGUhPFWEeljxkOC4uMx8hJTyqK0xUySqH/YxOctyYWcVZNcEap4WluYzdrKd7bQclgF6c7n8IzKiAhURVKYxMFvFOzuC4V5p8/jFHT1c2Wt18harPjSOVjEUT6xBBGzUBxuoj8oG61RjOT+Lsd+Hv13PJpaS4/LbiBgROfwuwuJj5qw5EwcGqqRrOjHisJFnGY5c4PCawv5P1F6zgyewUXSqvIiCe5vKGRm+f8hk3ud1FEA0OWXHw2mUFnLqlQH/sEqIx1srSzgyuaGhBVhcWrzlA27zy/nH8DAU0n4EsZTHQm7BxJ65Rw5+ISx7KPk9/+C1ItFh7bcidFhUbalUI0RAQB8uyjLMo/TtdoEQcvLMSTM0bx4BCmDpHu1+ZiMYW4fdoz3OEd4qWcJTyW+gkbFJmy4CD2QYW1JXv5fu9jXK3pwE/78BwMWpqWQ/XIRfqNCe8wYjsmYT4vYFwa4muzH+G7Cx9EFDRUTX+cTAGNdWdO8EjDrbzceiXpHgsWQ5L28TJm2ifz0U/OXcJvbr6HT5/6DvGkk4eHv4+j5TP6MSbmTASuFim9bIzI1SX0LNZQEYiGPRSP2FAlOF4bREOgIymxNypilbOY7tO90xeXlFHQupPizl2kBDMIAk3CNHYLlzP+EVRUpD2HAAW4jX4a59vxnEzjO+9AlaHCOMDcpkn2zNnl+3jQeAcebYxXrJs5PGcpIPC+OAdNAUtSRRQ1XHNidBgN/ClDZFETvJH7B54rms1P512LWYO6oZHJjV4qoaGxur6Lz7pfuPj2UoPeGd9pS3CN4Rwzx1Ns3NeEEqxh3HWOowV78VuGSAtpUqZ2mqs+YFTcQ7u7nXcL38Vg28srM8yct9hY6u1GDI+Tjr1KR94OijW9U3wNB/l6vp2riwtIGVR2LBjipTW9HKtsY0dGCKuq8tlgGFWaDooGCQXNauCo9zOkrWuIWhLsqNjFW8VvsbNwJ3ZBZFwRuWfExJg7gdJQwROjVg4II/TLPdhtVmy2FFUTnepZQd0YLjoxjjGlRyf2OYeombofT/UZ6qNnySH+N3XZ30P+liFY84mf/f9HEUSBglm5FF1fS6rIQbZlcpJVRkWY/JKlfHHe15iTM4fL8ut4Wr6FVvtCDJmfxepYg5oykNm1mfqeG7GoKssjcWQRLn9KI7hPT8MMHM1BMmqUzRxGMqs4JgA0kdwTFBrP4wrpQzP8pSKn14MkaBfNb0qxcMiyBVW0kxM8TJdQwc6By6jqbKLAWklSjXNk9A00TeNLp7vZdiDKp7vSlCtOrhtRuPqESNhmomCoh4WjX0IQBHaW6qmK4oSKKxwmK+5GkTSKAn7ahnXaCDsRhj2ZbLWXEx6/gYjTS1eekYMzV/Fz4Yccik4O9tmQeofjs5azf+FlPLP+ahSHRuLLMcqLZGoXtiBoMs1TpmBWU/zp+q/w7IwVREUDNZFW8scjDK/ZQLa9/+LxBqbrxshedT9Z4hncw2UMHBNp6DTQkhCpGtDYMVfDEt3OiCmLm9V7OOebSoGiKxVpGG4pfoE7Ol9l5clGMEKySlfgqw4ew3lsCXJbNSedemls2Crx2roi7j39GI7WNLkPiyw92codr5+m3tfM/cvv4b5l9+KdgBX1vZ7PrpSOGHG/ZEDsFZnhbaLYqaeqfnTo/5BSDEgxjYKIj8FoHmMNJRh36JnU1pE6Qokcvp+vP9hm/1Psz99Bf94Fjs+MctbxOF93JvjXcw9w7+FfoSUy8Ht6uKa2gBdmjzKS1h/XjIiBDGWykezmZAXfiJazOCGgmlfhTuvXsduzn9cWddCT+QYrTh4BwKglyYsNERx+/+L3rxo6z6qupouvB2fbeKN+FWuq/sAXpn4PRyLOll2vcFvfxGxtVL6Q+h3LNT19IWgaV/5+J7/vugyfpu/9uFnkF84sjGmVBX0z2ZWt8Mjmmxg2Z1Oz5E3OOvT91ioXsadoEZ6bJL4xupVLlTfJix5meuOjGHc3oiFjlLNQJf2e2U0Bpvlm4UlcQiq6nnY5m/cL3md36UH6jfo+8MY8pAwRfpMPI1kf8BWvkbNehUWeHsR4jJsHp3M179GWvZvvGSQumPVjny8LMZSdJG7WMCkaCAJJQeCrgXFeP/ZVsvd1YmrwI0XGQDAQydhC3LkKWZRJGBKMOYvoKHqEtG0RcQT2zQwyNHqSYEqgptuBMSHjnt5F/Y0X8Fo+MkoNsMcVik8YEVR9v+bkdFFRcYr6+r0Uej4+TOuTkP/QEGia5v+PPvvfJJLLRPlXZvFUrpeAs4iZ669k/fWHycpayuYpm3l6/dNcs/hFPjBfwYViOwY8qFI1IKCm2wmnpvC5Yw/y6eEiDk0pYthlIymmkVQVVf4mmiogTdULnUcPVZHTmSboVrBYhvEEG1EMEh/OvpEr8lOE4xIjXUswhgqZcvB+pvpdYFlBMvk+WYFRbnzjSRTRxLHMdbzvWY6spRlN9lEl5P/V7/JiZ8jWwJZtjzG3RU95fJhpIiFCRURlxYDGsnb9AfhgVhil34ufLPrPVpHrG+XDugXsmQFPXftVXr76bhIuvWj45ohA1+4a3ox/iiJTJw5Nz2M3l1bQ/E9OZIeAbY9EhiXGRschvrXkUdZf8T57/TZeLtuITY6xsvsMj16zhf1Ffdy//IGLa57maeK23q2IxiCXtA3gs2Rz5Y4BnhKNrD+mcd/TCkvPC6jBFCve2InYpj9M9ccGsO8RyfmJkZLvClzdcAhxWhQ0CHxeZuiXSTSzhuupE1z52hsYo7oiTotgFhNcd99jHDSsxNyiPw7pXI2bFJ2byG0OU7NOn3YWlHMpH7TRme2my1VMxGJEmeimbQuUMxLPodlfTUF9H8YFQX448gTfPvwsJx3zOHjmizh6y2jqqWMsVImaKAAUxOSb/LnyEEftaUzRAcLpdzjVb6Q9IfPE+M3sDRjo1kQOpFKcSToQVQFR8+D2JvAETRQlNJaE+7h15AMeG+xGyVrIzvrVLBhZQH5ikkCxqySHSq2FtGCmwtzKdYKuNDPG0rTaStnqvJaBd2cySD5NS0p56bJNNJVWc2rGdKJuM1cd3skM01F+wP36vTI18EUeZoF26OLs33mNbdxdpHMebc/YxEG3hZG8zSw7cZLHf/rPuMMh6uQzrDNs57I5f2DhvOf5x6m/4q4p36C1OZMXHWt5MbqauuPPYpS7UEUBTQhjjefjGVmMI1hF5lgRM7Ueftp3gm+FhtjQs5pPR3VuqkeGRpg/XEdlz3Wk4vpshJKEBZuq8VvzEortev0tejbKE02z6CbKgqZJRNnpap2Ty6RqpCQBNFAFgXuzMpmjdTPX+Rom7RDuke8hqHFko5GY6woiGTdSFHUwo3cZd26Lcd3xa8mP3UDSLDDqFpjdmsHs1kws+VG80/2kjSJvz8hm0G0mKU7idcrlYbL2TdJvJ1QLDkeAqP3Ev6u7/p7yn6GY+F8vgiBw2aZans2+gv+PvfMOjuO41v1vZjbnXewCi5xBgCBIAARzFCVSOUcrWZZtyTnnIMmWr+3rK1vOlm1JlpVs5UxJlChSzJkEQYIAQeS0CIvF5jgz74+hBatuvu+pXr16PlWoQs3Ozsz2dJ/uPt93vtNbeS56/fuxcJdex50lProWaccF0UxS58VCD6JRAMnA1pm1xExGDlcWMuz14EiksYcniCfzMenTpIJGsjE90XELqijQW1SDL9hOyFdNjbQdpwTDW4vY0z7CO0NlJBMhfn04w6+PNiDmRlhyXFt99Rct4nmTSr+lHEEwoPTtAOBM5CjPD/2Au0p+j4JKnlVi5Ukt9FRsqSGnZBlLH2DQKrJwJsu1uSrW2D4MwP55AgN55Xwj83PajrQzr1dbHR5s8JM8S6WsGg3TeOpFNu6t5i8Vn6TdrIVwqhVNG6ZodhhnwSziSAuhLi1+enNmLhFGL2qT4Uc7X6ZxPMgbS+Yx65hbhU4m8thUup3lNx7gp5MSi4LDXF79GrovpDhnRmZCWMIn138Bz8z5tGc+zQHjfIqTAX61+z4u692F81kd6QYV2aYS2mjiVOYyLKFiVCsoVgHXGg1IN6XT3LT5eVBV4nqRS6N7QVWxxeIoJoHh7xuZujtL4c0DAEhTmoBeNm5AKbQAKl1lHo6fOw9LQRpJVDgQaKHjqSVcOXOYoRGNfx++Uab85nYcqQSWyDjq9Czoo3j2RTm6ZS3GoduI934JOVGGUTmCTr0bDCEEUUY0aVjG3uM1HIpq9UXTssjpRJaCkI1EvgdjY4qb4ib+kJ1gTfTMe+14fnAvo+58Io41LJmoxi5q6qZNw4foFTSc6arwG+QVJlm9N0hzV5hLmn/DvdWf5Fsbv84hlmK1z1JuGEBQZb6duwe9I4lvLIz57QwlaM/2HNfyY76LhyBZvZ6usgo2r9xAKn4MRYWTnkPk9GVkTXNCxS9+7U6+9ruHuOn5F/n4rscYtBYxnKfhYp+/4jv80XkNi18/jsGdY/n5XWw7Zz0xRwBRnkFU4piTRehyVWCUOM5Cwkk/ZeIoH52N8NzIOK0xI4v77iAXr0MIt+FKu6gNrsKc8ZI2jtPjtKD+Xez1q+06gk4NYyicnsuDyQkuUAUkvSYQd9KgjfshVxfmomdZMGXmY0/8iE3vvoAqWkg6LuZow+/wJ5swZdL4ZxUub1/J+t4PcbDRSOOAA1NWpHjxNG/FdByZNmB0QedCG/d73w8E18hzeTefEH7H8+rV7AxG+aDtHxPBWbtggZ+mYidbOv/tpOlvVRdR57LQs07jPPebi5nJRPjhRRb+vNpKNjX3AhVBoXIyQlJ5l37TGuJpC4PvzsOazTAxojnJaNyIXBtl9lId+nMHiAcs5AIuKgJWhMPT/DEUIJB7ixqlGndSR+HYUYaKKnnhkstRCsxc7jxB7yo7yZb1bB19lMPBLWRlPZ22i3mlWM98UaBc8iHmX0C5s4XxZB8XbX2LkBqn6Wy/WpCs4ZsvmZElgc6KUkpDY/zhuo+xY+laBEWLV5rSGe58PcxN78apG7Xy4E13c6KmlNiME1WFT47/jo+ceISvTvwUUa8wdgROzV+JmhKInzPH7GjynuKzvb/nwr5D9JSUo1cPcmFRlLhq4Y5Tv2abeh6STkYwK0iLo5RfeorLqt9Eysty6bwssupnwFXCZnsrzfknuH/Vt/n+5T9E+NIoz69WObFQZeYzOaa/m2Gps5/ihreJJ+ZAvGSrSvHqGabWNlA9PMw3dj+KNavyjOM87njxL6zqOMKgw0v71JwoHYDsgInZAvTWDAtW7KH5zi4ab+vFUjr43jlvDmzg1arV5Jq7qelZRSIwpx+v6lSyahpDdIq61EkktZDGtMTtwXyUTD652Py5fpPWMt4r3HsQdGFE0xhhHdQrZmRBJapA/YCJNqmLH7V/hZ9Evkra+n4G+MaMlgvQU1CKTpFpG9ZW/hFDCkFRyQs+z8FIDzOiiDGr8lLuk0T+tvARBf4q3MoDwudIeUVuU/5IkW6Uw2sgNV/BaEzyUX5PDBsvcQ0dQjNvoLHXPvnNH/G7a24hjpuRrEiVIYOgW8qWL3zifc9X3jmJ8YxIQa+2Ok8IWox8LN9PZ1UdWUnCuyjKiOBnxuslbZ6iYPoJApYxXm3VKNH6tI7d/jamDG5KbNvQA3XZLP2ZZkDghDFHQ8rHuWPn4sq4cKVdTJiifKFUz/Lmw1xQqElxdMa97F0wg6DAmmNzagMXDG+iIfU5Jgs+hoCZfgN8osDHtCHFt6Zn+OaRKK64Qk3/3ELGH8pRN65wpNJIR95rAFTNLEK0WJD9Bso3DdNnkNkcMTC6x08ybEBRBfYrKa6qWMn60mLuz6vGpg/QtedcHhhdRNXg57jjyBsoAx88RiDdc889H/hN/nftD3/4wz133HHHB36fQCTFi0dHeWhXPyurvfid78+WPRZJ8LycYG80RrTUwaKhYyw/uoPC2mLM3Qc1dU81h6ltAyeCOi45uYtZ5tH061McExsoiY0zJLgpaYBUyQSpNgW9X5OCiB9YwbLjSXrtKoaciCs9hN94DS6djtGxLfhCdnpLVPorVqH4zUzzLL3Gkxy1dnGucCnT7nFSsQyLuo8zJE9So68kT3SQZ/bjwMQDpocomFQoz5rxncVDVFVF5+3mdfcMYyW3srivk91F86gf7EevuEkaVTbt3E5NyA+ijm2L7ARdLi7a9Q5L2o/hzx/DUhihKv80+qIMs0ccjHcZ2WZvpkkKY8gL0t1/DlYhwMqKgwhuG9vsq7jvlk+xSreNFYZ+fip8k9H8GoJ6HxeiDSCpV4fckCOas/FY+/UsLmvnYKyNkVQhH1/8KJfVvIHxbF6B3qTyuN1AaZUFnzuFahRI2iT0Upa8cArVKKNIAimTRHUsxq7qRoQzOWrHTzK0tJgLX9rGDW+/xstrzuWtloV4FsfIU4PozzoodPCn6O3YUmHyLZr8hCgqFFinODVTC/s2kJ8s5ZCgY0LM4k/5WOmaJOnRdkrDY3nMqhakeJxEtACD/Wp0+kL8OpHTxhDBZBWLAkHiRauY8N2OPfEWMfMohrxdGNyaouuSnlvp9RzDnJvHyuOw0DzFc9IGFCQaTSewuyKIWR2CIGPXzzKPo5x75k3a/YvpcleTYA/FcQsLhhZhiG3lqHWaQZOeJtXMF6rvImUQ0CW2oqoZFF0+ISGPEaGMMmGAUvkMgdJynMunERuShFQHPxK+R1jQ8KbGniNMeQr4m2TsjHUD3sS7tJmjVLwaw3lDEEGG7spKsldGcOyHSXMrtX3tPHXeJWQMBvzTk8zv72GkoJC+shKW7zzMoxValbCAw026VGWj61GW9xxjSl5LQify1Kpmen3FDNqcDOqKkFWVn0SuZRgBj+M4ZrcFvaJgkLOYZDP9Z7PyU2ot3fr1pBJ9bF08Q9ieo3ZUpChUCraV6IVVvNW8kQFfMaoocsNbBxjxKfSaFQRV5a5giE5nPTMzAoZclsk8PzNuH5fsC2DNwFPrPJysa6OnUEdzX4ry6Vqql+8gnT/DjuPL6C9tZthzgndSsC2qRxcxMGgJkZREOvUyF8fjKBkDT7iH+XpwmtXxKfpKLqC5fun/yKd973vfG7/nnnv+8J+d918Rnfv/xj66upKhYJwXj43x/JERmktd7/u8waDVO3a1ehk3+rCO1xDvP0PeK08CsPbGC5kc2IhhbT4/D3hZnRqg7XVNz//KMzv55+VX05Q8RrTXhWnhNOmInjOvlJONu4jln0dx+gn+fpNWYbOTmzpFuWwnrFPo859EygwjG0oJ5F9D6dgvGTNM8bWanwKwUl5OXf84RaPdTPvKmW9roQB4pHiQPdYh8iYKSWdC711fEAS6R90EzvsjqmSg0z2Nd/QzFIw6uHb0Xjryj2ML9aMJzoIrqnLz6y9w/bSNz11+E479Ayw8T2OUzBwoYeioDSSB9YPb6BvT8WjJL/FmZgjpL+aO0SeprjmCKz/JHhZxkfEUZ6jlpFKBI/gvODItTEx5qEo1Yw6nmK7ew7Njt3EoWMHt8uOU+Eb5uf8l7Plh9g238nbp5dREH+YG+yDfrkgAc+Bb0K3H05VPnjhEdUeKgLuC3nkRojaJPZ5mdJsauPPZx/nm/b9FP5wlozPxp0tuQFXTXMnLDAll1GZ7kPQyj/Ax9hWsp2rXMMfz5vOh+heYjeUTyDh4tvMarp2qwgo02MJ0zrZQ5xrH038pipgjVPk60RoJugBVQZB8qIAiiHh0Io66X/BTZ4p97WZqdxh4+AYHtTMtLAhvpSGT5V6vtvvMm2mi/Ni9rJp4BH1OIZDJR2fIUuoYZV9/G6WmacKL4pSN5HDN5rh25gg6WeWqkXvoOFPGh88RaPecwJ34HiGLtuPdZjJzwJRHwLaHpaeqOOX+MwBp08XE1MvR5wtUK304pRSL6HmvbXuiaRbED3H/L77LrM/FgTKRrgovsqEcXaqbnGkeM6OLMNQHWFLXR6pcZfZWGQ89BMnDY0lTNH6UoNWMKoAk53jyu59nW+syDjQ2s3vBUl4JfAHQdjID/jJeLFzHPHU3nQ21eF+CY1Xari1msrCrpIVdtCAqt2DLKlT0HCFpqaIpNEVOVbD0neDIyvMRTc0oyZ9yRlZZEJ7htTVzEOi3ns5gTR/DbdKKPx2v0xgbnliYEf96rt66jZTBQcogYy8KoHokQCVRWsstLz3CpMuL2/RhOv2nSRm0UNe0tYe/LO3kqiNLCez4FoGCk+xuU7DPPAho2fQZYNaee48gkhYFLigtZv/AERamilgXLeWAMUqBfg7r+aDsH6GhvzOnWc/Pb2hh4/wCNncEiKVz7/tcmkhCVmHWJLLYZeOOH/6Uy778rfc+b9lYz/kfX0CD30FG0vPNDZ9D/jsW7hcOvQjA8NEc8UkT/W+WkI3pMdguw5sp5MGWm6kKzDnqRw1P8mb2RdJJG+3VEWxmM56Z3yLmpskaa5k16lkdacWf8fKFwKfYvvJGRgo1uuV0bC5u/KL3CLIEL64d5+3FmpDeTmkPiqpQ71rOukFtpRuXNL30zrIIsiBTNTrI41ffwbYqLTFndfspzgmZMXuWseTwURiuZf9jm2j/Yz1DR+38PeNYyaqUdp2ho74JMVFCcu8dnD6zHKMjwLdM9+IRQjzGRygNjGFLJlm3cz9Dx6opDN9InnAHvPoA+h4/WcVAf7SMCyu3Yi8L0zdchvq2Qpc6jxPJ9e97P0MZke3dDmSdSBG9+KcTxGwSjP0AVYVuXwG1efu5ZPWfCfwiS/CTcaKrRQ4suYuq0SlMjjQeZqinC0kvc5g23la1ylzFLgNvD53Dz4/cyXcPfIk/7P88jyT/hMeoOZTGlA1UHaW5V5GU0/QcvQpi+VQ3ydQ7nEiCnoy/mR9c7+GfrvPwqY12KoxeXK4Ih6siKOYgJaN9FOpruDsY4rpojKvGPcT7P8NOU45xYRa9kmWvewU7hCZ+tv47fGfZz7jkkleJrIVhQyUnZy7jUPBWpJxKThDIpQVqvWPkRc/KQ5+dBJqmm7T3TRD7zIOccs/1YfWMi/KeTh7mJtrE/e8dDyQ1ttTSbTnuOPJXvJEMNb2ToExijm5nUXYLS8e+D0qasFqMeb9IqkWLx+9lJU+kbuWv6ZvZvFR7Z4JkQNbpWXvkAAKaWu7f7IFVi+gqKMNIiptPa9XwtnARj0k3s73RzO75Zkqms1y/M8q6U50A6OQcy/e9xure42C2kR+bpflUJ0m9mcX732FFex8FcR9Ba5SAb25cG7J6OkvKyerm6nN855kQdz3yG647vI3qyR4QBMwZCXfMwGzSxPrjBykgyiuLzyHs8mHN2REEPR3VrRhjO7DO7kTMjjPqy+fV+VpdD/9EI/lTWu0CRdQYX3cErsEuOalNzBU2AjgoXsvHJ9cxk/0BL1sbKfNk+KDtHxPBv2GfWFdFMJ7m4V397zt+YmiWopMRXm6p4elF1YiiRGXLEgrr6rn0i9947zy/08TyKg/B2Sw3XP+D944bczKmdI54ykzPC5Vs9lQy0bAEUaexfhx6H/c1f46kPk5GJ2PsHiaWFhnKT9BuWsUaZwwyI5RMaLVxE44rmMi/AynvX/j20hWE7W62rbkFQXQynuzj8eIp7in+HenMW0joURHY7XydDnMPf2iIMKZkKbbWcl+PDd/ELxCVGAsHNbbFhK2DqPQmr3/2Q+xpXUpCl8YiNpKQink3lmPeZA0G64Xo7NdiEVci6irRmVahM61CED0IqkjNRICq8Qw3bw+TE1M8oQR4a0ajwp1UFzCSqWX90ZNgvA1vOElByUY4WyrTKehpPPMERjXFC2cuQVZF+pQqZrY4MGfSVA73ErSuw7TlGuQ3bmLyuJuXeu28Y82iyiod8x0Mug1c5fLzk4VfJzRmIVKaYaF0FFXWAFjFBdEbU7hrd3LV8B/53Pgv3/e+I7KH87s1NdOHyq8hO89Bx3QjiZyFKh3sXCqy0pSPU4I8WRtKY+hw6R9kOgdnRv1kPVMMmQL4jMV0VBS9d+2QRSLBp5GyEFH0vL2yjZHiKp72X8iFLb/jhso/Yhj9PEKymBNGGU92Bkd5lHGfl8FyN1b9XNxYb8ihZM0cC95Ce+Iytkc+wenpfIKnbZhcOUwOLbbuTXpZMDuP89wpbnPaEP1fZnFvMX9vctZGsU37zcrfTez1I5omf/4JFfdrc8Xih3yQF9rBv/z4Ib44miE/NkraVorzyTnX8gS3sdl8OUWGEaLXZbn73tt54VxN3O9DW15GBQ42NL13ftRsZXt9K7HiAq5Q38WdjNEfa0QVRHYu0Oogi7oQdaNpbnq1g8v3B8joDZicHhSXl3NPa4mKqgona1uwJWLU9h6hNOgkZohx2HcYgE2h5dzQ3siUTUdwxSff1w6Y6kAVUdw+YvNaiRdXkHF5mTxpY3y/m9aOCaRMjOc3XIEBjXlUGurAHNsO6jDORDey6CJoHeUvzZoPqJg2IgoLCBb/iuJ0PpvdO2mJ1eNU7EiqSF1CUyj+TNk+HNkFtFu62ezqot/QyQdt/5gI/g1bXO5hUYmLHaen3nf8+GiYVo+NpS4bJklrOp1ez4333kfd8tXvO/fuSxu55ZwqpldVsHPlOgAu+9qv6PBp4OCwqYiT8hU8q5TxoD2F4hCpyUncmPYhSzex4cQQSaemy7JjnoCQLeZgQqbRJJOWxyiJjZGyn8uefCvH3HMRvkXTR6jP+xBHWq7lgdoKFnR/iOuGbuDuiYXkDNWk5A7u8f+CU0WX88cCE+05befQEBEQVIGLj5+DNWPnlcZHiFoEdHk5zpt6i1eX2EDQMcmc4xjwhMnqRGT7CsqVBRTqzOjMyxBdVzPut1EyPsVNO2JIqki37wCCPMOaY3cwvu1W3h25k4rJHBvNK7nmNS0ssSarRxCjzJRuYXbdNxGA6+DJU5QAACAASURBVEef5aS/jU/xEK9yOTOtSXYULqNMOUPE5uTgeIjSIwN0zyzncmuOiCLw+/565KyDvdXlhFSBnQmBrTotkSuEm91HvouwZU7Iy738JSo3dlNR2AMqOP8s4nhW4u79f+F34/dTHcoxY5eQykxULpQwFUqsnu0kGyhBEgSWW3XYVDhnegdjQ0aOBbOcaHicxK402YRE3ZUD5KqP0OvQVqKbJg5RN5rhkN2HIeZgSayFsPN8yqNaf+uyV7CzuBa77KIspznd1uwgVReMcNfGn/LplodRFJHudxr5wWvf4NW+TRg9/STOrvi7lRXsMtxLt6cNWYTLfQlaLTnWK2Y+YuunvKKdZsckd4jPcfNbAxQmocmsPZvFvZ8Cn5ZNe2fyYX48XcG9MwtoHN2D9aQHY2rOZajAQIGAO+NDnTLifVJHbf8w7WULeeFb5/JnbuPJqY8REjRHeUReyhAV7PBu5PFN11A8OY5/aoy3G8uZP9D7r8bhYdd8bEKK1v6DnBM6QFynLSIEVWbCZMekDDJcei7zRgzoZIUpo51cMkfQWI1vtJCQ6zIUkzbejNkcd756Gn1ujjX0tclibpjVMLqxTBxUlXmnfo0xGUAVFuOebgVBwhqrxJ7dQNpfyYCqgcqCIvDDB+5lxvgSJsGPPhuj7fhz6DM9WKKv83zv8yyOHieS9wkmXUWkdHHyY2UkDCLVgRwXzl7MiHGCmJjhiLWT82dX8bPBryCeTSTc7OznubwXMMlGUsf+tbLv/2n7B1j879hAMMHL7WOU51loKHQwEUlx35ZurmguZlnVf14xyGc3sqHGR5HFwF2+Ct5YuR5zVTF9RjemyQgn7I2kfd1k4zUUk+EWk42ITSEbB4veja66haeW7OLd3O1EoxtwFb2IbAjyGbee81xxYqGr6LJbEJQ4Czp/TVGsmfM7OvnaVDUFJh2j9e3sdTZQPS7QHCzAEa9lKhchYO9l0+gCuotWkkNgWO3nvKQfMWImb8SNRWhDrzgZyOugv1Bgug6untpHa1LGPn2a2UwKnRonkz5Bqy/HY21GakZSJPVFdPjG8CQLkTCStNow54rQiXmETAH67G+w/pAN5/AwQbmJinE/jcMZijPvMBHVErLOL/wLY/M3M1nZSS6XYup4HiYlQ6i4gBFfBZv6u2go3U1pNMINr+3kWNECtret5JoXHyR/7QDpQi+dU9UcmfddnEo7TaZBFllyBHMiEVWlQnLzR91nmLflVWYizcQ61pClH6tfW10Lsoo3lKF2Ik6hLoHRoDCZvomYsYIDedpk+6HpF9hRt5LF+58k25cgkgthtrqJZGexzb6DKKcZSTrxDMdRFYFMVI+7OoqjLM6704upT/Ri6XkaTAvoKnRR9nKQFeabebbCwhdP7uOayVe5vuB+MoIecaiKhum9mEQbCy1byavVwlD7+9cxfehWhEAt5eED7LYuZH3pHgrr3iET81G29ufk1W9hvO8S5OoApoI4iywyZd4gojvF7GwB+2fX0ebYQ2I9nOPL0GqR6U+LBPWTLHYGydfB3r4lRIQ3SGZDHJu+kLXifl60LqehbwzJp3KgqYyt9TFqI7XEKhbgSIdpWLOPnZb17LCvJqCUcNKuOeJW+SCduiYGhOr3xsgtp/6KeXyGoM2KLjvLrrZzuaFjgHXdB9Bj4Ki/kNtHnmdH/jIeLdMUObfsu53HSq+kaug01X19SPpKdAqM5OmYcDn5xp8eJmHdgCAWIqkWKqd12HIulp/cijWlcPUelVhdEd5YE+mJVugfJSxFSZub0asKyfROcjoJ2VSDqOpRxRzWWCWSYkKfdSKpowj6aQq9afqtN1I6NYlefy7u2dPI6XcZqCghI0X41kyIS4NHmc51c0HaylB2GeWhMjK6EJcdKcEd8aO4kuyx70UV4MKhZvIVL0n9KIpgYafjCFP6OE0RmQvmb6CoYsH/yI/9V8Hif0wE/47l2Qw8sX+Iw4OzuC16rvu9lpl57xWNeKzG/+Tbc1ZuNvLMdISY1cpbbfO4urGCew4JhOweNi4sZdWhh1jmL6Yt5aXKYCCi5hjPKQxhY1t0FTnBTGXeUaKuHfwseCMlE6tIFO1lwCbQITSjywxzxeES5g/DWr2IV7UzuPReSqbrec5bgykbID9goMNhpSZQTmG0ktKpTSzpyXCwzkzUKLJxJEKB3k289xg5eyveRAmXR5fR7j5MlynHWzYj260DZCwW3IM9ZDPdiMoEG2xXcVz3I2ZUA/5YJZ5kIZPWQaxZF/Z0Hjoxj4hximcW/YirdwjYZTsTxhyyPIVkXIQgCJjVt5lOZila0c30MpG4TVsBm7aYGYu4EHXl1PTtY9nRHbjHG7Dr/Czq3Y2lQ8CcSvLmyvU8evHVbLWfi9DbyLhzPiFXHiGpjEW5tynQq7RZZZbZZJ7KXkNftI62U90Y7FeRloOkZwfxNmpURkQB8xmRoSkv1XkznAr7eGE4RWPKxiv1pVQk43wk8BTP+C+gJmvn6IJlvNZQxQFnnLWT7xCMa3TViNGBUdb46aJipadgJaXWLiY6vSzevRPflJ7O2jEm3UtJGAsxCDn8+W+ypuARzP4BABbQwUtyCwsTL9BUdZKy1RpgG3zphzRPLCIzFiZjrcZobKI27CXgGsLvmMBechRB0nY/s6EmdPXHSSSczCLQN1vNgfFWcuNFdCoLcDgG8Osj7/VVt+pkz2Q9l9tTpKQkHb3zSDm1+tdn4qu4M32Yd/IKkPUl1Cu97LKm6KgUaZ5uRsXGYHElrZFDyE4d7caFZEUtBNdy7DB3PPsEry3T8JaLdm1lnf911pa8hWFVnFTISDTjo633BLaJTnI2C9LsECcrGvh1+U10O+covfOOH+Gd2nNYv/cNpl0i5RaF4p79DPvn0VFpxZ9YglExYkz04oqMkjJ7yRnzKZw8SMJcgH5VHiuUTzGUk9HF5zGZ1wqOhag6P+lcDzFxhKRdJuqTsUX16HMaw85a2I4SriBlruR0YT/zCry0G2/AKC5GykWwTz2JKxal2XEdP4ltRo/CC84r+eLMAZbGBtHpMsyGW6kMar8lrcLm1qWk5aOISpgLMVI5c4JreINecTEnLOPoVZXnJ0bwN1yHrniufsh/x/4xEfxvms9uxG0xsLljnLfO5hbcf/0iVtX897TBjaLI7cU+PlLsxWvU4zHoOWiHgQI9P1nVSkfzep5webh5IAMZhWJJ4q/GIeYlXXTqZVIi2J37WSYYuXTkBqSMjZnKzUySz0FhBbrsEOtOeenxHmaTxchM5es86GnmyvZ6Hi9zMiVZGSswsaXFSsGsSs1kHnZR5aTfwP55ZtaeEsmfPEq1qY467wJmFYjLUCvZWDHbhmGygfx4GUPuU4QMcRp6LQgIbCi8HrPOyQP5bzDs6MEgm/DFS3hr3iO4pQnKRQ/JtJUT/l2UTcW4wXAHtuQ0o0SpMY0wHT+NZGwjnE7jEk/TWB8j4VQhLBJ9xUvnRCFFFgNp861IhkbIjoOgR2f2UThykKyix/DxUV4yXQ1ASm+iy59HyOnBFQ4yYSrG/MYIyU6BonotY9SkS9MRKWHYu5/CSCWNPI193TgGmxYW0WVEFvXOsHm0GZc+xrHQQqI5hUQywEczLazo6qE0sZnHqq7meEkRox4PMZuTpKSjvHM3pGUeWHAnYdlBXfwMp2zzeLTiBtL5KivNe3H0z5Cc1mLcOiBsb6KnNA+P2M2N1t8inC26k8voECWFRtNhCpumsBZoYH5q1oZl+ApqTFZecB/CndKciqikeXvMRK9SzsJ8jdueSxlxVR4BQaXjyDn8uOcOqifDPBO8EI+SpiIxS2ykgj+NXsCTXdfSEopQUdHDOjVBXl6QoYzATjmIqIuhyibyjCNE4hdjynmJ2a2UHzzDb64VqJ1WKMjMiQ9ulNvZMH6QiqGTWPpl0iYDH3/hGUZMIqZUgozBxK3PP88DylXMBl0sLO5DTqtMZhqRXV5kmxMhl6XF9zat+YexBXJUpQMsGjqGYyhA6akuPpN4nqfE65ivD7K25ZeYpF6U3iJ2N1VQNCPjiygsP3gfxeO7KQzsZaR4HTFXCQPllzKormAyJ5GWJfS5vyWOagu7bHIvNaV9THgbscaCVPUcw5jO0V/bT0vFg4T6l6CKPkzyEoKCm3RO8wXvVj2BO3aGpgGFxloLbklj0n294bPojuV4zHYxeeIExy3LcccVUlYBXRb6vXqGitayLLaU3YVV3Bh7CFkpZbOphHnZAe4OTlGYVVDyV6Cr/p8xh/6rE8E/MIL/wNbVvd/pX9lS8u+c+R+bXhRw6ufi+E8sq2PwvBbanFYa7WamBBX5s1r1K8lj4vJLtYFVntNeT7ls4KaxG7TPc1YURaQSDcj+iLgdo2yh2h1geNkPmS17m1SshbB9ipqoQjzPwKlSAzpZ5blVdkort7PQspfBYgPGjELTUI4ew1nwT9VRptPueYoxusN2iiN1LAisZW3v9cR0SXwFC9hY9GEEm5P9tmP8bOArXB1az86qZ/jT0m/glTKsEJpYLdromPcnDpe8ydUdEk5rCaXOBhpGp2lVnbj1Myi5AVT9QhKqhz37f8nI23cy82oBQ9FW7M4L6SlQkcghSk4MtotR5VlSIR/2MRmbLYnBkWJ+5iQAv/jpPVTPaiGeNQfeAmCwbAUvLfske2d/wPF4IfXCaUTTXqbto7RXPMChhA69TcsXKDn0FRoPN6LIxViKb0eSfkNb4Wdp8/hIylE8wSAjo28Si+qoiw9QNtrL4natDORVrz+OEEmS1elJFrvos1Tw55IbeXPhRZBRmBrRtH/K1gUw2VMYxSw1E1HWH3+H7/JdbvH9kJDsQ3dKY48Mby9gVnZit8Xe14/OvPQh4mcxgwqlkZyUIOjq4GhBB5Ipwe6J5QCk4iae6ruB6Z5zGd7xWQ7Gy6jJjXG9bg/L3a/Tmf0bziMSj+Xxhy0/oe1JTcbAWqCx1g6GdUimcYjWoYSWEzWPkztbtCmnN/LyxUuZ0ktck43gnJ3FlExS2dfHb9VbeGbiUhY9P8idL/6F87uPcHrpQhJlNdSHg7TuP8r3W27DoSY5b+2VWLP55JuiGAQ9giBjs09jHjqN1RWnkRN85swb/L79Oaq372ftgbdw5IdZpZyiTd/LpabDzDstkVwlsHzNQVBV3lloYXHmJxgz2uR/bF4NlQOvErbNSTdEchLm5L+WZUlW2jlq2URaNVOSCVE5dITGrj+z+uAwth0SFSMPM+M9iKCKRFLzEYUUfts+ThZ2ECzLYswK6KbfeO96g6Zijlrq2LB9K7vEYjqqcyRsKa7UD4EIFZM5EE10egs45mhgu38RL8xfzOWx2/jU9JUsSOf4VeZGjJs++EXwP3YE/4G5LAZuWFLGw7v7+diaStbW/Z+rFCSeZccoKjwxHqQt38Hi8yqxLvEzv7qQkzvHcEhZ8pISS6YamUnY2OXeT9gywVNSD17dNPLMK1yczRHuX0t1SSf6vF70iXyu3H8JT5Tns3gGduTr2DiaYVlQpsOtw+Ts4bbpX/DPDbfQPJPCM6lQLNqZDe/Db6kklJOZyqXJZJ2I5Kgz6gjKKpKi56R/F7ckPkSh4Ofhxa8TjUdZE22lPlnJ9dMXUDYU4rbIKorkJmQVliQXUhtSWTaxDaM7h1ndhq4zgmBeiJB3hvGkDZ2xCVmqRRCtZFNFRDIWdNZNyIKP/OlicpKJsuG3CbsbSclnUNNx8sd6sfhShJcKLJd20zR5nOXP92Cc6mRe73GWdJ5gy5oLGC8oJWTP44DZh35cps15lPNMAxTlLGzRJRmoibApL8PrvWtYMXY+b2fKeVa+kBtFNzrRwDCQVr1MxE7Qkx5Dzc4gCipX6/ah3zNE3cAprph6BwJaSGjn0o3E/BXkxhIkCpxkW7wIKZnMuMCV+W+iGsDhS2AZEUgk9UhtYRqdnTwjfIgNe8exDY/S3l1GdMTKweRyqmx9hAx5RMY9RLuMpENLkUUvXQW72ePbSdXsMoqKBvnVsjWM+qtgOMdJdZzn/N+hI7+VN/KW4Mu2sz3YyOrACQY89WyvNRPQLUQN5yiSohSJEuuObUPICZwRGgkIZRSMZVHGw3RaXEQnrsCpQM7ZSThTw2FHN0UpExP2HKO2UW5PR7CuGaHuYB/Ve0dIms34JqZwhsIMFZcyXqJNOorRjGo04TDDAmc/K9URLk2bCU/tI1ua4cxUM0tsb1Ha2k7bbJRsWQLVBFmvjqKpM2SFEjbrWljibKJBtxNLTkeRcgZTcgNhh5lE4WE6ci1EMWOOppkqdHKkrY1shZ7q3h4mPFrd78rz72K2V1NeteoCZBUbYVcnUUc3qgR/o0Avkhqx9J8EOYNjZgh9QESaN4vQGsOpjjKT8TPr7mTClOGTiW5sLEQK5yANhvxNJOWlPFzSjKKkWNi9ncfX9ZNfWMxrNbXcOuDkhHEWa1RPnucQ7Q4NN4m44EHbdTxbZuCZogpuH3uWtdJRetJ55NX8Y0fwf9X8ThM9/3QR37qo4QO5fpPNjFMn8W4oimQzINkMCIJAVbMPV0RPc0YHCKRVcAeaOF2X4kDfTfzi6B30pGF0Visq8mLUzd7RWoraP4VOhdqQyBWjWR7eF+euzjTLeuIIiRwHlUa2LipjwqRn6ayOebkQuYxAgbmCyeQQDknGYE8BKqttRqpN2sCozBRw/dRFVGS1+8VGZ5iXrADAqBowqQbWmMsxlmkdVhJMWBUzlwon8C+OkGd/jH5LHNFRRG52ikrbJShZbVcjSm5yqcPI2QF05mXvtU3MVoI3eIJO/zBiNozVfBEG8yqONn2dJ8ouZA+rmCKfLRY/J1a2oQgKJRNjtAxP8JNf/vB97by97BJOZ7RVYVNehGZzjq8WaKysM/YDTKAg4qMJjU/eTpafyyGOJ06jAIa0BmgL4goWznZhSWnOf+qs0sSfr/k0HTUyCzp/Tnp1AdmFHvzBWZYOnUZRRB7eci3ptAGDP4PJlSarF2gp7WD3zAr2B7Lss/cyajQyo9ZjTssU9w+y890VfFv+MR2HWpg86sVXXIDNmeA3RX/luP0kM44O7IEWkKyoDguSmKE/upaQ4MOQ1nYTz2bXYBBlvlh+GpPeStSaj1AtISGjqmATxtm1ZhU5SaK8p4epyUpO6mv4PCFeHw7QMp5m9YgmmRzIfw3F0cUuxwQjNk1zSLEYMSf8FLv/GbVqNZIsUzI8Qk9pFZ01FaCqFIWy1MXmePpqysokbnYNZIkKy1HMafLyhjAUaXjFdLEZxQWucRnFNMXLtY0cLa0kmV/C79UFPKlezFapmUfU65iQr8A2pRUaWqHbQcRsY9Ru4cnLLuDX51zHRJtC+sMD7927pvsjVFXtZFPB97nR80VSrqNkjNN8Q/gVH+fJ984bESxYN/4ThnkXa+89q5JeptCYXMTi9AbC7pOMum2owLuZKzkh1PP26vP46+Jr6JOvJCZfA/IAJ6qrqBmHy0xZlkj7ielM/PN8GCyQ8cRUlkzNJevtFOd0mcIGKz8r/zDbWU6/eyUftP1jR/BfMFEQEIQPpjyDKAgcjybZHYpxZ6nvvfsUVjuJhdLU2BUWZSHfOspw0s2tV13C4rFXuED0sdL8cWKD9YgZFWHDSv60r55rMz7MCFQmzta+NQpEXDqcWXjOLRARHRiMUU7oW/js8FHssRKGs3ocOit6NYzP6KOkxIEtpuK0RBiyWsl3ZKm3zrIk3MqULoRVMbM62kpJpgAVFeHsKkoUvOwLChgVGM0qvCP3sMDwJmnZgkHMMGhuwjZZTG7yJLrKW3h7+TL0RiPW+D58LX/FHK4jKb9/yz5oiPL7a1ew5shWZNGOIDlQdDYC1lkerrySI+EVeLpexz2sJd00RQdJfinDcKKQ8945SP1MO2GDjRmnD9/eKjyhdmz+OM0WGbMIwxmB18J6msPNrFU8VCCxlQwvqGnE2UMUR46QEfToUFibfz560cUueYhE1MaVpSdQ7TaWOs4wYtjHhHKIoDPAyp4QOE0kY3cT9BxFCq+mXypjma0LkyHHq7PnUFvUi6s4yoPt15Iyvchhk5WNuUKUmA7H2BQpvci2FRex+Pi7FI2fQVIk6pqned62nzPeVYR9XyBpGuSPrVpIEUFANzmAkMxH1ekpGHgYI1myw07qDSMI7qd4uKCbuOsabBGB84KdCIKWXR51OHCFAuhTMSYX+MnljNQaT+NIZ/EZMnhG0+yunUH9G4ZhniBq0ASrmoZaGJ1cR6lcxukCKyf9ehQEzpTXond4MMsSV+jOo0woIiqkmBHnwl0TYpixuIEi7yhWZwCjPQYSyHlalvj8MxHI6lCLoxQW9VA4XcqiVCU9Uor59OBRiqlRqomnoGD4EorlKV5yV9NZVM+MpDH7Bqhik/1Vgp0X4NdLpEgzlpwhUhjm6aJNfC76O1YLB7EIaSZVL8sETTTvHN1jDIoyLudl9ETaGSgsoUn/PSzheiTFxvML9LxW04ZHnsUTibFcSeMMjzNlcpLzv8N8ZTN95hDteefQ5DpETVEE91gF03IbB916ggYLiwZyPFO9mGnnXNi4IDOJJRwmazSxz7mQKdM6rgC8Nf86lPVfsf/rOwJBEEoFQdgmCMIpQRBOCoLw+bPH7xEEYVQQhGNn/y76oJ7h/xXbkGcnkMlyKp5675jRomfj7Y10X1BOeoGH8jsvBWB6LMnGO+9jdGghk/vSMGmkqCqfHTY93kVebiPOYcfca329SI/db6c4C4pNh2zS8/Ts9ejIIbc8gN/3HACn0hKBs8XkjWM5mqyPYS/YzDGvREnciDGZT0Cc5faau9737DGdQL9V5IlyGRUrQhb2xGVOpRQMySr+Mv0rnpm5D1ktpDT+ZfRV68moKQ6duoe/Vvr4+VIHgQvC5NVF6Sr812ysRwsryJjKeerclXhDIySjf0ZVFXzJBjZt/zG3P/0r1h3T2CnHamaZ/KpAl13HMmc3azsO8onOzbzV9xlu3xqkfszFeO+niHc7mTxexOg7i+g7WgkIRCteQFVVopYkK27UsXjgtyyOtGvtoWo4wtGZVzgUfJPgWAFGo4LbcBF6ZT0vVcjstaewJrUJ8VjJDqLRXyCQQ5DSVFl+hkHJsC/RgN4UJeYy4lsYJDRkZzxShq3jDoy9V/OI2UwuehHjecUgmegpr2eksA5DTkUxGZnN38Vhaydx19WoopXjRRvf11Y5nwslZUR3Msz01NWkx/sRUjLHKhbyo/pfYTCuQ9YVsWYyihTTYuhZVeSlmiWcyHcxhQerEiSZdPJY6hZ+zKfRz+tmcpWTppkKAOb31TE/UU1lrIxlU22EWMmomuRJ4046jRqp4nTtfOz2PGJ6hVJRS6JTVYVSZY52bVEMGBU9OQRGpoqx2UKgB9ejc5X+7AkZhvIRclq/aLFJrMfKArmU1vQVFCmVgMIbYg+GpI/yMxdTmZsTjfzK6RARwcmd6qM8vsnI5650cffiAvY02/nk/Lv4Q8l1PGe+hePZpQwqRVQLQxQzwRr9YSRRxas7xhO2M9z+3fv44pfuYqvHTFRWUYBdDq09OosqWCvspY09LNaV4JydJTzmwJk7zC19pymIBHll1UaKBz5OW8/tLJyVCRt1DOeZUVE4/+BJvrbtD+SdlX55/MTXue+lnyELIvMCw7jGD+BNj/NB2wcZGsoBX1ZVtQFYDnxaEIS/SS3er6pq89m/zR/gM/w/YRs8Wsr5Z08NEs3NVbAKpLN8eXyS9SU5JvK07NB3n+zm6JYhsimZc26pZ/6qQrwbCumKp/jc2mouWVHGXcko8toi4qgcGIuQ0YmYFLBlVTBKyIUW8gMTRHJ++pfuofosYDqQc3Nqdi8AJvEQBdPP8GGriEkFSRXw5pzctv+feUHsfu8Zt/t0vL3iIfZ6rWRVhWK91qUE65xURka1MprVqpu22wt5cEUdCwYS/PaZr/CpMy/gMXUSECvYXFHCW/W9NHU8wOIj/8LT7ijpQhEEAdOYnwMVDSQLEii5QWwpIwvPzHXf4ZpZDM1RfFKK3gQsUMeJ5VkY6csjFzFSPC2w05Th+rx7uGyiF9+pOFM9GVzHDHjCesYOhHh64CecYidTb2wBQFRlIpINMkbS+gwZRcSeTGPNZRgqbKY/dx19qWW8YtUE2Aw5kebTzrNPlEKWvBSECpn2RGjNjdIXrgDg1vlPY9DnGNtZwOrYLq4df4FrevczYhigz/QYqhpFZ1xP+dgA/WV1hG0u/nzZR7lv4nxiZ+tCABiS7bjHvsqV3UfJH3+IbHn5+/pVZmoDon6a+bn9ZI3ljBZ8TNs5DO7CMnyGvZky9ILCOd0HUBWVaZuFquf6yMVUommNUdP/XA2JgAd3ZAm3713APbus/HTwyzhHb6Y4UsG4pFFvVQFS7wn1KQR12qreqVpI5KKIog4zET6cWs91mWpk0wxpMYtOlQhNzZEwvGWN5B+4DG+wASkHAXUFte/8DintIOPQ4nDL5VoizgiyLodJ9xBf55d0WB8AoDClAdo/PN3FrQOnuHA0pfV7yczyqQx9Hg+v5M9VZ/tm2w28G13Jn8Tr6D2bLLnFt5r6Na9w8eJfs720CUXUJvhX7Qf4jfUAly43Ezdb2Ni+k1Gzn0+s/A6CoZ9ZIYBHnmBGyucUtbyhbODyY7sIRNbhCrQBWi0QgJLgOAJhHNkKNkUneXvHR3h67200Rfs4v+ogtbFBEgYjhZEg7wwN80HbBzYRqKo6rqrqkbP/R4FTQPF//K3/P63AqOd7NUV0xlLU7uxgx4y27X5uYs6Zrj/YzYorNVBp/8t9GC066pYWYL20lKtntOzIjV4HSyvzCGdl1u3o4nyijEfS3H9IG0AVXXO65sETAl9651O81r8c/YWfAkDU+ZHFCVRVZTJzP6PpF0icTL/3HZ0osMhhQpypIiZrYYLyhEx5953cf3yKgJrArxfQAU8sLqWjSGqNwgAAIABJREFUXE/0LMYgy3mMk+XbJDjuuY6dy+8mHrqO2hMmGjjJUbWRYX8F5RMBfMEOvnXRMro3lZNr9CPGZulJzrLmvO9TV9WHnOnif7H3nnFylNe677+qOuee3JOzNCNpRqMshCJCBJEEBpENtnEiGOMANsZmO7CdsfE22AZsY5schQhCBAWEchqNpBmNJufQ0zl3V9X9UMMMXPueffb+mXOO79Hzrasrh3e9a61nPUsQLQiSB0+1F39xmOaaANdmax6NZyKJWU2RNVchrbOxa2QtqpqmOrSFU0NO2keyORbwUGjU2jxe8kEhloBWvdl94gh7DzVPXXOWkOLC1pNsONhPb/USymI1yLn38A3LM/TIKRT0mOPaa32+z01+bAXxU/dygdfGN/wpFhgSxMwyszNZ2DK9POUzEE2beL1lLemIniav1vRGUmUaTxWQ4xfoz02iGOsoDRYRdGTRWj8Lb1Y+HbXXEXVfD0BTywdcsfVpXjx6J/f2VPOLI+eBXiS5LA/9nFfZaD/J6ugmLBW/YUT6E1ljL0y/b94hQGV5ZDOZQBCHJBCpbSJoMXG4bgaq0Ty1bu+8JSSMFiqDfs4ac6H3NJBU0hxNSbwYm0VX0kUoOT2MLEpNFoypKqahHvypLbw3/CQAsagfPRJKdJBz656jvGEvc6X9LI0f59ixtVScTFMkNONKXk72obsZTG6mMnEFAiKmUDkJRw+fmq/JLRSGDDSmu8joNTmJoGU7DxbdxY2d73GDdw+rdh8k13AfX20+xtbtSV7cneAzLX/m9yfvZ/OBW1nW1cyGwzvQKRleXqHJV1+w8HHeXfEzvlr7dQACNomTJRYWd4+zLHycvVU1bFqUx+hkKOf7iUe4cWgTIZ2dt7KXUSAtpdRYgCzp2IGmFiqqKt86OsqEUWTi4CMU97VgSKeYPdKDP6sHo3GQ9+O3IPSIZB2I0LctC+8JG7kRL/3ZBez2zKSt8uMG/pPA/5JksSAI5UAT8KGK1W2CIBwTBOGPgjCpZ/v323xeEISDgiAcHB8f/0er/P8KXyjJ49d1Gn1wY3MnK/e38du+UaotxqmH5FnloX655mrXLi6gN53mqmatNF8APEYDSyqzpvZZlm0h126kD20WMseXoUaVkHojCJMDeauvFgRYe0uaFTaJIuNS3hx6jNGElgwU8SEx7W5XCyIzTSI7Ixn2S12U2raxQNhM56o76E0ISILAWU4dRvcQMxf+mlSJFrYJyyqv6uCLITMbhj8gHH+ScUMfw2NtyO9UseyR09z32EPcsukZ+gqLOF00Tfezhp+lPqsDpymE7HChpDpQ1Qwu+xyulE6RWZjGKwjE3BtxOM/nAq82GxVNST6odXFC9pGJ7yEr2sHRUCGb/fVYE2lmHZyYOkbIkqYw2E1OOED5eADXZJhuzZG2qXWWHjhIZ9UGAMajcxmNCVhECFlHaQo1UuYs5Rvup5AVKwW+ehoCfrKHNEpnT047ij7MCV8Ohzb9iu6BZeh02oCbZzfSbqumelRAUuFYnpvnHAGsIc073D9Lm8FK6WGqjdqsu3Sol+JhHW/3P0ZSiVGMg3kdcVSbnqVdxeRV7MBZdBRB0gz5ioPaMzQlYnhM2vdkHk3jGu5AyKRBFFH1epJ5RYipBPZTB3GmpmPX88RGimqvxVS8mIHoSRaNHCeiM7NTreEldT6WnlZ0IT99fW/jCMVwjY+iD3rp75vAUhMjIQTQZazsCGyi86J8zAmZMlM365WdzKCLYMDDX7030Sk4+Sh0SIyaOzlgrCFlH+AK058YKdjJZvFNYronKFC17mSeTIaj1hq+WRQgmhXn7qxijpk8HMk5wURymKTsZa30IrOHx9g1+mmWnBDID/uZ19dOb3YBIWEecwd9/PuYVkDnCWuJ65ReYH1sE4bIIWRDMWlzAx7vGN/f+S4ViUF+cvqX2GNpXnV/EYUqSnUXg6oyTi5iLIWowrDcw9cbjfz6U2exw9nNzbvf4Br/axQbTjBq9aKg58GibzMYKuOVhovo7CnC5dUmNb35HmpdDj5pfOKGQBAEG/AicKeqqiHgEaAKmAsMA7/4R9upqvoHVVUXqKq6IDf3n0fb/D8ZVxVksampGkmAU9EEvrTM54pzeW2+1sXoYDBGzvoScj5dTWp5Lsv2tZFQVL5bVchr87R1sm1G2n5wPi9/+SyeumUJjcVOJlBR9SK3zS7i7fIS5nunw08TySrSikTctJ+cHDNuYz6Vrjq2Dz/LloE/Iitvkm+8HZ3QSdSqeRbZ5btJqzA8UcJg5cuMz3ya8EATEykDw84W3ILAHwLZLPct4ppR7Vi/LtfT6OxByYwjp/oAFTl1DFWZYKjVw4yWbtYc2oOkKHzzy3cj2acVGR8dPsoV1p30Z4q5z/EVds89G1FIEZdmcLf9T+R7S3HH8gmLjYycbMAYnsOTYz/j5f5pppecPEi+GEY/GXqblx5Cr6h4AtoH98qKIR64RuTnG4P0lM4gJ6FjXUsXOkXlRCkkDU704mxUQePxbwvdRkYVOF75MgkxQW2qgHNHVuDK+KmT2vmzfB57EucwohSSFzeyp/wV2vMO4ExmoTh0rA0Xk7FexQnXOYzF17FgYIKYZKHLUk6PspJg4SZGVK1GImk0ofMO4x7+Jg/mJnnS93sWjmoz4YyaZp+wH7skcHvPELe9OsaywWWsP/JNzlGv5IITbua3ucgaTnDVq3/kc08/yFxxOuYsoNIV02Lw0eoGFJMFy8gAKHBJopGmZClL07WU60roDDfTEzlBW2AvF/ce/di7+4L7PMyD3XSKetoCabYVaefnKI1QtOIYIccAOaZi3IqL9udeJym4MMsJBCCbACGzExWRp7kUQRiY2u8uw7v8vmaQQ3qNuTTPOs5QzTP8SL6OuzO3TK3nkQXGpBaukA6wsP1tDhhr+JbuZsqzu3hn6C+80vc4opLhcPB6elwlNFclKe/qYvZgF5ZknPfrPFR2xRjSlSCpMld1bZ7a94rY+2QF30KX1CQ+ouIhKtVNAGz2fY8FvjRH3XZUwIgefUYLTzVNyNTJJfRK4yxu3ULpiBcJIwKwnP1cxWtE7REUIUNpqJLO6g34srN5c/2FFPlCrDmyh6jVCv3v/cPx4p+JT7QfgSAIejQj8KSqqi8BqKo6+pH/HwVe+yTP4V8Ni102elc2UrRdC0+sy3aQY9BhlUTe94f5oS9MbyIFp7SX8pI8F1/6CNsIwKSXaCrVHK2fX9nIwR4/hneHEI778B738UiVG9/Vc2n5SwszIgqD4SJ85uPUXvpF/M+eppbFpF0KJwN7eCexgOtMKjZpK5nol0hahphoeJxSzw76tt1Nwl+GRd/G6KHPAgoTkb8hRz+D51gJQm0PKWchqXgB5fEuFOtu0jEAAbN5GbbUUcblCD6jlwdu/Aa3vfICR2d/BlVyk8oSkQAZuHreIzgyYVKCnnlqKw/yB/bovo43U0VVpx74PFepKh9EdrDe38qbgXvJJJtR1BR680rS8R0AOIbSVIcmGL36fuxndaN/6Beca2nHUZpgZyaPLoOWh3nkiiW4woM8/sAgz61oYtvCw9zw/tdImLRkZ+HQ+wwVLud07kG25W7X7rlsIHT4NSb6PNyw4Q2+xV38XNYkFZqUesbQBsbLRrw4co8RCMxhu9WO1ZXg/K2PcVop4meNtyILAiQkZLUZT+5vEOSlqJJAxUQ7ATOk24fgkJkB422c0h+lONGLMTwCDpgj59GnT1Eii9gkgRrfYixGE7HRCZ41pxANe5kvyGQUEVCxFsSJjliY5T1GzKFp2QjpFEQD5JvLMRpcpMd2MZocpkvNoA+OEbRqIbRoST4bB07wbPEsAMaM+XRZSnk9/wLtflh90NDG1XN9nIiLoBvicv1sGrJWgg/aTlczz7MXOEJvsZmYJ0V6cClZQ3t4KHuIktAQYSFBh/Mw+1M9bEwAkxErsymOWRfnYGYG8xOPcIG0n28JfwZVZfVElN5BjaqqT6lkBgeBQoyimbZoGWPpmWxpchK0ekglFMIWFX1kE/25V/Pn82qQ5Cpq/d3MSR0ErsMkRzkleNkeuImFzkL2JBJkxDhFhpO0J0vpT81lcQC2FYv8olrPhWMyeSMyg1l6Kg0zsAbsOBL72VOshYq6cwswGJMYB9KEJCtPLziHm8K7yR/PRpbq0aUPo0vbMSQh1ztEpklHatHHSQGfBD5J1pAAPA60qqr6y48s/ygPagNw/JM6h39VSIJAoVEblApNBgyiyAq3nWdHfPQmUrh0EvdWeti3pI4/zCr/H1JbXRYDa+vz0Xs+wuPuDFLWHmRFSCVfESgMl6EmD7JvdAW9i+/n9LpbKJytzWp8owc56q9HL3YSyTlKz1n3AWBy9QMqyUAVHusLyCkDF7p+SnpUpi/ahqRaSNh66S54iiXGAPX+NKEBI6o8gt62nJWFZ7Gm9Faq/Zq319T8EvtnX4JsyGJ1SxxFEJFVlfMOR6kYSRPS2UlIJp5vvovS5AilxsNT16PIEyRDj1HUI1GY1uY2Xv0+EGykrZXkBTXOvzua4OjiK1lxx1nMXH4rB378OF9eZuf2wiyWx6cb21zT+wDvdf2azT/M5oV1ZVwxeOOUEdDp/cxof4a61ieYMLw1tU1lp5dM70kEVWDuplH+2vprjJkUVYEB7v/NYWqPNbLqrRWsetFHYeavtLqH6Lf6uW3Gowg+BTVfRBZ1IEisF/uQRy/l3bE7KOj6EzkTveRGjiOlrTy9q49m/wXkYkdnXsJbuWvpD0X4QmoAHwrrRQMNFs1rsUkCMzJzaco+B5wzON70BfoarmB/ogC3Ic7OheP0lYUQ0+mp67B2HCMvIbAw5wJimTCt6V76jQPEMiF6CibVP6V8VHmUvPROPt3/V3KTWqjpQyMAkBi5ilMuDw8M5/PMqIH9lgNT/zVkrWRFdD1S16eR0RLNq43P81JZDkP2bMyRMF4xTFJI029MMFN1osTqiScsPHvkWkRBpdbdQQo9Ezj5m3wug3IhPwiXs3PkQv6Q0bj/Eb+NQN8cqmxVXFZ2B2H5LkYNrQhpLfe2e1YuA5bfoou/P3VusiRi7x1kYbCL6olmTKO/5x7zMmLiAoqdJkpMeixSKXWpNO84Y8Rt/Szya6HXZ6pMfHm+mfnO81nXMobDXoEycpzSXd1Ik17CrpIGtpYs4dejv2CbexFxnQUpNsaoZwBFyOCemIc9VIMxWQPLmxB8SSZ8/z3q6H8Fn6RHsAy4AWgRBOFDP/LbwDWCIMxlUsUW+MIneA7/sti2cAbyR35fmufiTa9G+ds8r4Ya639NmtZ5fjmS3YBo0RF8vZvQVi3M40NBl9S8B0VJETdqOYdQ6TbM+Tbio3DUb2NBznEGmx5CEAVK+SqBoaPYRIHx4xey4/goZjHAsfEQHZFcJKGTjJJC2n0xupifEnc+JWo+L/a8iqKzE1m4FGePdl76/Fx8WY2UeA9SaQjTHnmR8sG1XDpykA8sK1h0Osmi00nePq+fr/X+GWky3+HXaYlvh3qAiWQIlDBG7wE+sG0gYxnANZ5B1FcgC3ocrhAFvVEyZonfLv0Lg4dD/GDZD9jbt4k2o5bDiJv03BkNsTel54DJhD2jsMzWx6yB0wwNfZ6MlODPNX/l4pLj+P0K8dF9HCvV09Sh8NVXFEzp99EVzufI7PnM2fooOaf6+ZH4E2a1as/sh68fmnoWffsLea3Gzd3Cn3A+bEBQoaFYY2ItZ5hvKbNpJMUDiVKikeMYjd/hlMuOa2Q9QrgBQdXmbwYxTEjvZFfOWcxKP88vJYHvSl/GgIHRtEK+XuR0QqbUoPJvYhnvbpfxxV5GTZqYV3CallCaQ9lzKemdJiUMmYootldi1Tl4OLSPJ+s+xdnsZH5LGHd4HBURo+1yMvGdyKkTODIRzo69zyHW0Gd0MR+JQ5NvbqL/FhLAfuP1xKQhdtpfY1UswoRyCTpFj1Gu4HSkkJn9Q7SYFPQtIxzJL6GICcZN4+Qmcjlr/CzepYQDiQIGDO28l6ngcvk57s17nIcDt5LjHORF79n8IfU1lo608Lg8PXsuE0tYnDtr6neJqRRnz8+45Zk32bb6m7RnaeEfUQnhHP13CgOLCdsrqTvdTIfoYNfxO6id8xrFp1sQrq7lzZ4xFnQkWKdoWkKWkS9RlS6jNKbyVlUZD/Y9xxYWc9xtZE3NNQBEk1F0wNIdR7GkJ9j4zLNT5/O9snvJn/BTMzJIq6uGhHkES2yaQVW7zcEjl2ZzybyPN675JPCJGQJVVXfx0ZZV0/i/ni76P4OPahOBZgiOheNUWoz/ZSMAINkMOM8rR1VUJJsBXa6ZgeEwl794hM1Dywg6ummq+THCy510rr6DlL2f2kshtm05p097iaUULPEUY7ZLCJhrCZb+CnvzlUQSmufikkbpiGha7bKaZjB2mjLbLIo+UhpQ5ZhPW8lsbuyZXpZXdQm7mow8uXcM1CVYdQ4Ohtu49GiCGcYWQPsI7mn/G0vi017A4exRhECARECbzRmMDlIphVTiMEG9C7uawO9yk5+2EVzZQDTZwx/1Zgr0vbR7j3HKd4r3+t5jjVTMfHeS3swgZYEG7JGj/CDXzCs2K4d6BTwda8hYR3jQYMeqXMZLwXZe/oinPqtXxaDA6II8Sss3cFYmD/WiOUReu2PKCPy/sejEae6b+BPzhGOIIZFtlxrYXA2r+rdzttcJjhlciIEHSJAauxBR7yflPYdosoBBWxqDmmauMIYhXghkSOoVSvwxDIEitltPIhlVIplZlKRE+pIxen2bWFt4Ax5asQg5rKj4Ei7Dj3lwbDcPhs5G78wnHN+LIeamyryRyEwzPm+aN3PnIAQz5IpViDo/sjyOKBUQtlqwSusYNuspiS6nWtBTK8jsQeE7mLlbaeeIOD2LrUv+jZukLdyv/51WK6A+TWtoJQ7jXRwYX02B5WV+1qox18bDJgbtCm2O46wdWomsiPQntWr2rkQJGVGPLmggkC9T4HyLc23tDLZYuHN4Lci1LCPGXaoeq6oQF/XEUXm7+i1qjldRZ6rBonMQy4RYdvQIo8v6+LByxxaJsnLfHmRpJw7CdKayWZbbxyXHX8Yz0s5bh81cP96LJS1yk+4vjLqsuHyNzLJICIVmGkvd3CjMYstpmYNiD2vQBvQDzhpqHRV0zPgSZX3vYEocwJzQSAqL2ndz/mGZsp5OWmfW0J/np9NZTagjyNVR7cMZ3NTHSauJ2Sv+ezpn/7M4IzHxLwJBEPhudSHXF/7nvRD+h/sRBSxNeRiK7VQuLOSV28+mP51LzZGvMrrVj5SZZigIAlCviZENJxzYwxl0E+9w9KUfkgjoSeVMR/XyxGmbbzCaODLxLiPx6Q5vI/Fu6l3LuVjUQlT3Npi4db6ZgoTK03sGEVSNGeMxl5JJHqPLPw/j2PRMKMcvwdl3wU1vwBc/YN3Vv8D7kfDQNUU70BnrUTK92P3NSIYG3jhrIQDh5htwlsp8q+4U9xQkWCi18/zR71Nr0nFRbi/Rt75KyZEvc+rIV0n0fp+KiJuHXW7cviyeLX2Ov9Q+hs7eQlzpRZCm2wZ+8XWZiw6o/Oim27hnxmc4Mvd3hN0nebT4JQS7NngpBhXvV9L88nMCR4o9/GXtKgDOGjmBaVhi7ByF2PI4faKD7akV+LKm5YbrTVpSNzF4HdZkAcvSIlVpkZQAxy0huk2aofFKpXxgO5eXctZwINnO2/FRqjyP8rSUQpFHmEgO4U+OUmXxUGqrQ0QknL6FcCYbQ6wGQXSQF1yHK63dr3m+DAdNEEim0UkJCsIlSMZGREM9BuuFtJQaaC0xUhpbQ9SQRgQuNBh4AAvbHRGOiB4kPt7m9Qn5XA4YCibfK5kqu/bumPQ53DNxPX0ZD9kmLyRkmks6WFsQZMnS58A6TXnuEM2Agu50MYKY5lxbOwBz81qm1vkJFvIFPTbRSC4iJ5DxHVvFQEI7dlFeFYqg0mPdhJrwM2d4FQt613L5dgV7LM7eukGaPQnGkza6k9mU9GqNmy7Yq51vkb4TUVDoHv8pCywmwmk/bx55mFgwwNmFi5DSg7xemeHlYAsDG7PYWp7h+B33I+vMdFVezO8WfZlhRxFBq431u7ex9NhOYuaZZI0sxZ90czhfYkinEEcmlepERsWdb+GTxhmJif/LkecwYQtnMAxEcSQUWhwiD/RXYfAvIC2Eyc0eYaQlh/6wC9+wnb6WAhITJsKDVmpWyUh9Ji51fYc++ypGx08yYirkZO5Mbra9wYksF0/EslHGXmUo1sEM5wwMKQuhQgsPlsR54fj1WDKQVOfxoXMqiQaq7fXMMJvoTkJu7l7isQKseTmUXncnaXs2/f7NjHR+BakziCgpXLi6mZJIFL+4AH+mBslQj2RaxGuLs1lZ/iPEnrmkwgU4y/ZhCBez9OD9uPI2Mc/lI9i7mDLvEpKRfGIKpBQXYtpNc/5RjlozJPRRZF0MveM4BusxANLBucS6b8Xkfp/GboUnFg0xEa2m03SShvrXyckawh2fj0Q+I9/oJpgP7mzo6Szj+axLOZlXzuo+LXm864paCmwRRnqrqXWoXBcrIyXFMSsmLs7kUDrjWVpD5fxONnK5ZAN5gkPuEyRiVcQFBZ2qQxYEvMYcojoTHbZq+swlXHrFtew+eJjigMZuSevnU23NwW3Mn3zyVobTAn2pWi5xf5dRs5dEYhZGARr1ErGgQtjUz/lhM/a0C0XSoVjzcTS+T0vxUbZVLqFwIkN2VMJtgEq9jttn6HhhKAYIXGBo4bRcQL3QwxJdM6eUCurkUSqFIT6X/jokCygRZ1FiqUIyVnJKHeHGvJfZHZ6PI5THJUWHsBpiCIkMO3yLP/LGCuyJz6Y9WkKWLoY36WKGq5O87ot4lwyVSASVNLcJcUKqyqtCmn2CjEnR4zRAo66GSsdiZiSLyT8ZZGZkFdeK8wnG+nlzThcD+XEi5gyVQ1Y6vPkoaVWj1spBstz5NAqnySaNLnMjADtHniOQGGWiv5fZK9aydbiNfn0t788qYTgRp66/mds+fwWdB8cZSaR43qnD61lOvuSjYKyPjCjSUlqGVw8lQ6/RaplBKi5itO7l+fOX0GYK8+kltVhN+v/W9/2/XWLiDP514J6XT0qAnaT5bihIb7iUx0aq+UnzZ0nq6ihdM0RKlRgLOFBTAnpTmmTASPZggEvd3yCus3MqsQkFgbdLL+Yn936V2vs/oPFz97NVb+LloiJyV+8nR/8TAHrH3mGb1ExByotFmqbGhYs1uQuTZEUvGimxt3Gu+hfy9e0099Xz29t2selPd9LZ9QuSIT2RISuW3AQdWdl4nXr6jLXoTAuRjPW8MsfIXbk6Ss3tJN09REfm8EHzBZw6fh26lJOB0VqeOvgZAodupsooscymQz/p1FT6G7FN5k2qEh//RFLibCKmWwA9e4pr+OxdEinHCNaKhxmVRtnnrcRuiJOYJ2Nt+CzDahabAjoqTDINNx+ltuAUB3Lq+fS6b3PdeffRnS6lwBTj9gWH+LfgHHJlOxMzniXu1Gaiy4aX8Z3alykUNE8qY3BwWcMsUExkVBuX1W5ibUbLmyx17MeT0LyI40NRzs1oMtlJXR5jqpO+pFZTcDIuk1FVwplLyC/Woc9WuM74FJ/J+zRuSasvCWRU5vtKsKVcABw1xglcNkC8bD93OLewLvVLDlQn0cvg8xiJ6uLUBF5AReBO6RXqxhuxqwlOquXEkuWUpgW+n76Buck/sEuZw5Py2ql7ugw9n8v0ILdo93o4WsDrPWs5nJlNpl+ri3ETpIAJCphgVLRwaGwuDxy+lX3D8zDoUmSMPt5WU9wrT/AlxY+SznA4KXMMGZ9O5RVbit+QJImKVdRTYp1Bfc4FLMoqxiIZqXEuo9qp9U2OmmT2LogRNxk4O7ebZeWDSKhclF5LXuLz9ApaLck76S0MWP3kLJrD0Ok2VFXle7PPmbqulqRCfn4+JpOJS7/ahFHVpjsd+gwn3Vrl9uHyfEL6EazR9xAAw2gU2W3g7bWXETdbCZa62Pz2dDL7k8IZQ3AGGErsbFtfxLeJ42W6p+uSKg/FZd8iuyLIzI09FNYr3Fx5kC+UHkBAxd/cht9hYJtZINGZBhEeumEJJVkWREcBMwq0l339wrexlscxSYfJM3yF86UfU7DrXu3YYhdHLrZzsT7KDzJ2Bmy7EWhBUWVmqP04dSOscTwyNUiPHd2IIgu0Pl2NqghUNWygxfACrzsuIBMoRjKEEaQEV4eOM3/8MgxJG/oxTdnE1nERVUGtmYvXfxWqtAqnNB3ScpunmUMXNN9DbuRCXhnu4StdWdR3a9eyZHiAz7hHyLEbyUS1ME461oiASG6okieav8B3d9/DD09p2lAHB+o5ENPzgr+Ex7uqeHh8ORtsz+HNiuEzO+kJauEvKelAn8gmnHcIuXAP4fz9eCtfwRyqounEF/CJCXqQuabCw13Lz586z7oCha9VubhQf5Jr5mzmq7UP40oH2Lm/hYR/giu/9kMCF3yZ1ywpXlHCPBWdoC02QX9KodggUNdUQtr3E0LpK4iri1hsMyCrKkFZRVKn81Qxg4UXt9fwi53fZCiSz/Wm3dzsugsEmWLfBAb9I1RMaMzw3oIiRNVMEi2XtV8ow61oUiHq5JATMkwXiSblBHMyJXSkp+uFOjpK2PreSh5IapXUi4RTvOZ5nYc3GhCNwxjNXgRBIRHUqrqT9gGywyfYIenp05moW5BNferjw9txZP4wM8LZhDgopKi1VOIU9ETkODmWMl7u28D5znNYEDqL3w3/kNLGKzlc+hVqxGrMpRqnRRCykWJrmJD9TAw00+ke443Y+ySjUSK+CZa4rNzqNuHxj+MzmvHPaiKVSuHINtO0uJAFCYlRHYyn0+yYWUJXbQOvLBthtLGWk7kLCEpO7JPyHJZMmpjFRlCn/KPP9p+KM4bgDADB96sLAAAgAElEQVTYuLDkY7//49omHr1xAbPKFvNa92X8vO2L3Bf/ArrSBoySTLYxxkjcxrOWFQwdzgMgf7aXUsO0lIEkCtyxOo9SxxBdwTKe0Z1NMLefmEUbfB/KXMbtqdu4ffMgVpuBvILLcXzmSxQ07CKQGkVBqy526HwsXNqMJa8VVdFjjdw3dYzqxgu585wa0p0b0Fu9VF/8DexFR0n21TK4898ZO/zlqXXNsoFKQWMJXe51UjeUQmfRPoFRY4IKyU5MB/5ZdrJlE3LXKg6pNVyc7qCux47Hr+enyRN8K/Qi315VjSt/Pr6Cf2dh1pX8uekZLjt5K6rexmCkkJMIBFSFzw9cjy2dRZtf4aywJpc8R6rHmKdxJk5N1CAlHRgj2v33l76N1TuHvPZrcXZdTGiSJZWu2IIzWyTTH0bsOMyFFVtZVbyLFe5zGRgYIE+K0tfXgGI1k5cc42TEgL24HvGlMGXHgxQZBMaxYE07qL64ngAykiAQPzKIoEBIvplY+k4AZMbRuT/O6bi6Pp8cmxFZlfhW/w95x/gqK3pn4rInEBJBStUd7NJ5QK/wSvVKAC6Lavc6ZZGxGE+hm5xjmFWZbgq4jShP2kboSYTJMVWR41r8YakAcwy15KExfqxqmuzQ2WR98SnmNV3Nj662oS97EEvRn5k5pt23qLUXOTFdiHZFUwULFji4WZkmVggo1Dj/Qp5ljNfVDLIUp7/pQXbXPI9VkMhHINOdx6yhKwFYM1bMxb464vJtrBdt9KkaG8oomjkgWRmyOOjxxPDatXfI29dDf18f4q53GXFqubyHZBM/3vQuraEYSzdUsSbzLrcOPEF1vJuJonIElwubVMiEWc+7Ni1H41ZSXDbSzZfCPZROjNCweBGfND7RgrIz+NeBzajHbdHjj6VxmHSsn+OZqk+wZN1Ex+k+Lp1biOPqrTz2+G8pHvoTnZFsUDcAzzDz+mUYLY/R2fVz7PbZZGcvB+CaxkFOnpSprr6PP/stzF/dxfHOe8kMOhgxrCaems2vGjxc1OBBJ03OS5Z8ntiefTgNC1EcVUwsvpXtv3uB7JkZVKWUfc+/TH5lDbXLbqD/lJGXf7kDcLH0ShslDQ9T7Mrn3cfHCY/kADkYzBKHGgQ+1awgCQIJRcUkClwkSlhFgX5znJ1RkWtFgVLHIMuv3sBL9+2jUBHZHavidutp1pbZudpQS77cSWb0ELMXWKnr72egZBllPe9SuXY1O3WnqLC5abOnWeiVcQkiYOLaiXO4zD+tNV+cKqDAMM7lUprFplwKdzzEhEvT0PGF3TSe0ipmFcSpgTGeewhjPBsyyxl/fxdXzHmN/JM3YXi1iHFdK0aDkeKiyygqKmLxkVfoEKvYqTRRLRzkZ2ot85C4RzJzAJnuN4YREGgyQkFk2gMEaDWfYqX8CNWhe/hAVOi2jvFtUzOZrnW8NLOQX/oO8Gy/i7uSH5Ab2kpHspEJuYxWpZgPUqvQG9OEjU76ciIIxgjFJdkMtAXYQzU2pw4hqRCelK9qlgL0OV9kv/9mfoDKzeYa3HKAN0Qd9wralX9B9bNY7KdmXh6DP9iJdV0WVy/fiJCGze9spjbLgS6ejc98CmdqWl7FY0wxY305YccOco5PEND7yYQbeWEgl6/Nf4hE1M2gZCDuPo3Lmg1dcKO7h4q6p9Fnt3MalVYVLmn9HAAPk+ApIcUCJBrRsZU03urZGOwnKA7ZAPjrW1tREilaCisp9Y1SPTbAu/ULeTjHw8OH2vnxyZ2Eva2IgCKKRHMLUSWJBl8dW6zTDDO7VSY5uJ1oJJfPFnlYWzjtAX5SOGMIzmAKq2fk8dKRQeoLHR8rUvvauhnMLLCzcaEWxlh17qV0tjxFIqhH2P4c9uxcLlh/N4HACtpOfYe2U/exaOEm9Hon4+NvYzDkcfbslayeIwKLycgJhsQfst78V5YtfffvT6RyFZaGIFKnHt+sp+gIbEZJSYwfkzCYDqPIGcqbPsWB1wJAYGqzhiVzSXeHyGpy01xyiMJqFz3HJzj78irOfqMTuylDRlV5P5LhHLsO+2RY6H21n5JoJYJdgJFWOt+WSQtZLEybSA1DrCGfs82nUAVN3E9NRej4YID5/SUsP7WPwViUvz39FwLZXprCSwksyuVr+2OQUgmT/pgRAKiPV/Jo5/cxqUbQat3ICtTh1QXw9FxKyjZIJOcY2T1aYdSIHmy2RYzV/RUpbcc5sgznyDLSqEyQot/ko6yklPNXno+/J8i1qy7DsPckj+tz2KVqLLAgKm7d9DPN1/09s3unHWaHyxiX1lNtKuDfDBG6RSefVQ/wNi42HlvGk2gz3dP+N8iVwKkbpjW1kOtT39Z2Yj6MLqLwxDmVgIPFrXsZQJu1J007qW30cOKDclAEVNmOb/AmfHqVq4jyODZWCDqswjTn+He4EFQ3TPZvib0RYri0hfnJBtpCbVQVOlAjxcTtPTgmdYqsJHnyiT+h1+tJp9NcBLyX9x5pKZ+O0bMIF++jIqeXOBAN2XE6JpB1URprXyRpiEHx+yjADOCF8Tns9c5h7yQLKqwe46BOT0IpJBOuZ93QebjTFmLmFnojUQJlM+hz51EW8lE9Psg2ZT6KqE1wtgeizBZEwmUzkUSBp5ZeAGqSa/bswOZtIAiUiT4Wj3YiCFqYLKt22rh9kjgTGjqDKaytzyfPbuSSxo+LxGZZDdywtBzDZD/j6tJi5n9PCx2oqsKCiy5DFEWyspZRX/9zkskROjp/Qjh8gomJ7WRnr0AQpl+1uuqbqai4k0S8h0zm4315P0TJugWE0z4S28ZpfUYTftPpjaQSB0Aw09+mVc8KwHnX1HLttxYw8ccTTPytlcxQlI33LmL5xlqu//4SCvQi9nCG1wt1fGGemfY8HbsETaxsu/EUo343oUkRPrvOwv5NL6DPJDFmdBTNuhPLNY9B3I8wdpIx5qAnjvfEKeyuXD73pS9hs9vxejUtnFzhCA8eiWFSVCKo2Jlme/gUhV3iaTJiUjMCH4GAQJZsJz9ZwDbjGHH3tNhdPC3zaP8MVCnFUONDU8v1CGwgwcGEi6XRarw/OYD8bDv2/Uluk7Zzo7QVDz4qhSEGSKETFDx6BYM0zkzzxzXu44rKijBkYUKVz6UbmW5RC0vtk2/kqXQ95zFN5dymaGEulzTEEQMEsGPLfxF91i6kwxbMPaNcoT7DHakXecD8KKCyMusEnzX8irz87R87tiF3CxFgxPouWaKNc9FziEESytjHJiQTNu2ZCb/zY35xgnXJBvKMBgyhYvTuIIbyNBcaTnKxUfOu0uk0fVZtmzWDa1BsO8lkHPz04D0EoxoZQJicCvfM/yNJZw+OoaXowtOc/fK6v5Fbs4Wfn/V9zteNcnFwPotUkXrdKGn0bAqvpDldjEE04RnrZcLqYP3xvQQ6U7Smi1AEgbMOvkfOxAh7Zi9BrFDIuCzsqp5LwmAkYXTwsjCHQcVFvTTCakMncV2CxZcuZkvxFkYcI/yvwBlDcAZTuHCOh/33ruXaxf95JWOO28kV9/6AVTd+jsZ166eWu5zzyc5eydjYm+w/cAmKksDpmPt32zvsWvy3f+CJf7h/d1kRJ4yaLMG6opsorMiiYbmmxW8wN+Ab0hJqDdlGTG92k3iqlfSgZlSCm7uIt2laTIIgkB6JogIP1JtoztPzne8sw5o/zpZQit2+UkoTNpLJ48QyYYqL6qhasITyBi00MTEYZ0ycy/EF24hffoRjmWsBqCiNcsHNdaBCefm0zEdTppzyqMrmOtiSN+1wK0BahgWZanSKZgRkS/xj1yxqTXNZu/EKojnHGa95jgwqFUgsGU3RFSzl+a4beROtliFNCgmZ9kwxuQO/JFv/PUAFRcWaE+C+3J3M0Y+wTDzOGsy8I8j83hrit3Y7dt30pz+YkvFOMo8iqHxdjXHDh64K8Cs1lwQ6jKh4mKCcMAfksxhMPEecz9JskHHIApHRK4h134GQkFFPZagOvsDqwAECih0QEONVOCWVr1R+nAVze812LLoov0kXTi073/AbdoTdvD+2lfdHXmBT33/wuKDVCzgmh61SNRd9axB1WHtfa9d0Mpq9l5TBx7B5GH2RnqN5R6muqQbAI4cpNPRy94KHcFr9yIqIxRImEMgn49Qqv139a9ix5z4eOvIFFFXAbg6z1nUYt83Lspq3EBBw+usoUaMYJr2EI7KHDkcj9lCIG0+NUZEuoVPO4aTsYc0hH41H9jH/2GtErDa2LbuQVxuWc6yyDiZzDpFsJ3XSKAt1/cSUXN4ufotvHvsmBXIlXbsCKPKZZPEZ/B+M8oYm5q+/DEn38Qij3VZHJhOa+u34B4bA7tBaLHZ1/ZJMJvp3/wPM+9SlHPC+CcBybmHJ+qtYNvtKSl3LAFi6oYoZFVroQw5qg6OpLouMP8HEX06SCSZJ9oUIvdOHLsvEI40V7FtSh1UnsXTDpYxkBpmV1qETdDiFAOG0D4cxh8u+8R0uuv0iPnWP1kzkxX8/CFuHmHiyj5qaJlTVwLx6G/ITJwlv62ft2rXccMMNLK1oYqZcRNiVYbDvNJZB7ZwSOhFDrpl8vYhRgL6kTBcwPFfl1NrPTl1vsGAPg42/oby0BJ3ehq/iDcbOeQhVkDk77qE2azYPXP1FLv/aQsyOzegx8HNDC+tRsOm2YJYOMbrgBu63nkLVj6LLraZV9rBfXMK9mLkAA98ki9ewI6pFHBBG+E2shY2GKHtE7Vz/IifZK2gD3HnomT2pBNokdPGU7lVeM36bpeg4ShZxzLwrmghKKouSOlDBpqa5RnqX3Ya7WXz4HmTFw/tpjZa5tXcNb41/kQMjTQgoFFaOsa7sXRRzJbWxU3SkShhVwuiEdlLKEAkVRmU9Q/FOEnKUou4iArLCbpJ8I/vVqfvmGxIp8dyFWfWxpuYkg9Vb2F2wm2cMz1CXU8f1112PZHVQEprJGmmYcqfW6OWt7jW83buSYOZiWvZ+iSdaNvL5YAF/Ismakh2kFW14tLm1e+AoaMW85j8QVBF32sUGYws/moyuv22aRabgStYl6zDKFagIRBDYPZHgvZyVyO69rBLf44D1LMYt2Ti9f8TV9gP0KRm5xIp3Vj0vqEt5oWkhTt2dqEAmpqNHt5ZXdk73x/ikcCZHcAb/dNjsmvyzTmenouIr2Gwz/24doyGH2tr7aW+/n1isE8ekYfgQwVAzuTUWVv/kFiI/0z7E9OkwczdewtBjLdSuKGTmulLGf68VeemLbWRfMxNdtpmML8HIzw7ge7qNVI9mkJRYmqXvj2Nd4gGzkbzySmrkZ/CKxQjEWJ2zkqQSRReWSPWH0RfbsEeS5OeayI+kcE3OoKXWDIO8BB9MzuZ2D+Ip78Y5eBBDq8buyKnyULEzTDqt8IFeJSGrrLTq0AEDaZVDeh9iwAVv6JnxqelrHpnzBxDNvDYW4DHz49wevoqwdASx7gkKTn6GqjevIrLtKGrSS4nhz6SFeSxIrWQBkFFz0QnjeMbjPKD/LtJEinTpUoYUJ1+0STCpKzcDaep4LaqbZy1a1ephKcNsuYenpCwahU7+qH+EeOoRVKGVd8R9bNBtwYhKBBuzyQLi3E6UFGAWBOakJM7fUE3JtmtoQmYs9QilgF+8lsNKDVfWvs7z7et5tzWfn674HUX2EebltdARKOehbV9kbvgIZMPdssCVkQqKsrUaKJ1pMYJgJBN/H0O8je2ZIG8We3B4zTT7tzPbvZzBZIzw6wM458FMU4qZJngvpOPVoIE1pVp+ZhQXOXIIi0XLKT3acgN7hzWWjsMQxGmSWOk6xonxMGrGRrEYRxUmNZMyBh5tuZHbmx6jLQs8pfvJz2+jL30JK3ss3EyCP5Gi1ZTHf5DgGVLYgA+DnhGdg0tKIuh5BlWFYNhPi2kehqHFOLIzTOQZ6XcCeUaQBNpcjVzhW8tRt0Cn3cxVFf+9YrL/Cs54BGfwT0d21grKy77M0iXvUFpy8/+nOmqW+ywAotHOqWWqqhKP93Hw4OXsP3AJodh2BpoeBECJZjBWuzCadRSgIggCmfE41oUF5N/WhC5bC+foskwYiu1TRgDAtqyI6P4Rxh46gqqoyOEUWXoDicAjZKX2IhkkLDo7yCpjvz3KxF9b8f2tjSVpmQqjhNei541gmpDhw4FUwlwcQYlmSG36Hcl3ptXU+4dj6NM2QvYBfrfAQkSB9hEtDNSVVBBDrql1x/dPt+OYNeuXLF74Alu8QfZGJKzRDKaEzK66q1FVldOJMAcmIrzmz2coVYtqap3aNpi5ibhRpGAEzJFzkBSVTWN5yIjMjMRJkSIjajH+1sXf42TRKzyLRt9pTPazV8jwVUm7fyvFo9iFMSJ0klLO5wJ5OS4hilmI0V+4hpI6M+cj04pCJwoLRBM6BKJvDdKgDjKR/sbUeR1XZ3P3Sg+Xr/gO31xXzXlmTeBubu5xDBEPW7rXElUsfJC9DCXLyAVJIxkFesclEBUEQc/WrEZCkg0l00syvpeFESPZXpnW4EGe8x/loHMv3Qfa6Xy9BCm+BAQj860ys1yzub7qRoa8p9jnt6AzxJi/QBOaG4xoWkhZJh82fQybbpDVJR/w9bl/4PKIAWW8ljbvbH69505+s+vrnBZ7iGeMJFQH2fWv4674gEtNb+E1CGQX2cnRiewiwzOTYbubdBnuydrGefnN+PVOLDYRByHWR1/mxJ7lWE85ua32TVLDUZyhNJV9CYRoGnNPGE8iyWb31fTbNmLLDGKemJY1+aRwxiM4g386JMlMVdXX/tP1zOZSBEHP6Y4HQBBwuxZx4uTXCQT2Ta3T2flTlNwUUq4B2Z9AEAUMJXaS3UFGHjyEEk2jyzX/3b6N1S5S/WGM1S6yrplJqn860Sn7EmR8CUqtM+kMH2FO3kLcG2rwv3wa0ahDiaZJnJxAtOlRImmMM9w0XDsTZfsg217uJGeScXPh+LdJ8FPC3nmklDoka4rjeXm0H9GKpUxiFJtthN2zdehOmAnKKmOiH4PsImEao7TKw9gJK5FPlVK9IB+dS+O8H4+0sSTQzJLmAGG9mc+fncM6w/OcDK6DySKtrtRqKtUVU9cUl1ci6DqIpWcSV5bxel4p93TMQieoVKo2Jkxxnl9ZQc7AIeY7e8HRwzdG+6gT+6gxDvJg5gpalApmeWQCozP5jw4dJcY2lubV0pknUTBpU3/vm8uKBKT0AUhnMzOTZmHAhMuVQQ3DMeNvKDLkTJ1XScbKZ3ZMwI4J/lak4xL/PPq9s0gpHiqOXk9Zsosjk3nzCo8dU1cUj1UiT1GxiBJdbj0nInFyLaXURjswKimywmkc8WEEnYf3ysboKeyjNFHD5pxxQn3tfK54FoXWw2yYENjy1I95Ix3AYq1m4dkDkIGoXEI6WACiwvy8o7zdt4b1FVsJJO3kunuYaR4lNHYZf+uS8UvQKIxy16LL2H06xTmlO2FSjkvw7CXkL6No1guY07dSlwkzK6eVzkAFM2pfxWIZpwb4wPcAT7dfgVzgoSau9QSPew2MmEpIj8T5t1GZdO2TFJj3M+bO5ZB6GS8KqxFUmV9J36EtcB1ag8dPDmcMwRn8b4Mo6inIv4Sx8Tc5efJrk8uMlJZ8Fo/nCtpOfYdg8DBmUyn6LCuZgDaDNZY7CL3TN7UfOZH5u307zinFWOHEWONCEARkf2Lqv+DbvUhOI1aDk88/+mdEi+Z6B9/qQQml0OVZsK8oxjTDTXhbP47zyhCNOuadV4bBJLH31S6S0Qxtug0YowNk6bR2lEQf4fTRz1KgFymusjHL+/+0d97hcVRX437v9qZdrXrvki3JtmS5N3ABG9OLAdNrTAgQIJBG8gtfCoEEyAdfIAkJCYQeCMWmNxts425j2ZZkW7bVe6+72ja/P2Yt2eCCi2SQ7vs8++zM3Tuz94xGe+aec+45b3P3djXNw58i7qTDlULXxFD2umyE9tVh8hcRFjeBT/+7F69Oy9jZCbi8XqaXvsw5TSsBCPG6eHnjLdR2DeT6N4kOGgLjScOAVfMu9T47IZpZ9LYM+BtydBpy0TAxxo6jTsEwLZalShV/if+12kEI0mZtYuJ2DdruLn6rfxaAT8dEULZ3Dh2+emr9zfgDPiJrI9ghLmWM9TX2dGpodnWQkpXJ3MpOMnV7COiTOTN5HZ6Kc4AIWnwBVnf7STVoGGcxMy98O+06F1SMAp0Fc3smTrfq4J3fU4VdgedMEaSXudHoYbJeNVT06SCqpY9Mm4690fnk7lFnQN7utwA/3SHj2d45FV0gkh0LNlHW5scUsFKpFBIHRKSsJxDYREFnIpeNegt8YPXMJj/vcQre+oT3QjSYdepM7R87ruPWvOeZGL0RW0IjbSVxnKb3s9TqwZE0mhunT2Paig7yo7cTauhA1xtJwNpAIO8Z7MD/5D/0tXvQ7TJgMnu4M/cl0qJ28MSXN/N802JMOi9GbS+vVM9EB4zKfY6euDUAJNuraWYdMAcdPhx0cm7mhYf5Dzp5SNOQ5JSSk/NHTj9tKzqdai5JS72LzMz7sNlGERerrvAMC5+J1mnC1+JGURQsU2MRB0S9eMo6v3ZeodNgynIS6PLQu62J9nf29X/mKmyie2U1xkxnvxIAcCxIAcDX2Is5JwxtiIHQ89PRGAeel8acnsBNj8zC6jCwoWYmq7qTKXL52dvnZ2n7zWjxM86spWBCJTbdF/3HZcQVo79+Fi/HZbA8xUD1qCzqm5twpquzi5Wv7Kaz2UXlB7/n7uJlTG3bRkBo6J5yO/6ueHa7T6M6qZ2bo64i1/IRja5QKsx6qlOuZHnnVFZ0eelJ6iVc/wAGbQm2pjyeIoTv1alhsTVxFgoYKA7TmbGUgMlG1bS5dE+/9uBrZ92NwRyJPSuHfZ4ijFozVnEVXb75/FJ0cZfJhK2ym99g4RoKONNmxlOlhlz6FYViVwBz5qd4o9XEet+P2M0do94kWq+uQbA2zsTSoPqRIsyJLFqsrkTObPAy2aTFD1RYBEYfRJp1POO18KjiIH1+JRqdhhTbaPxaMynZHzMpZgu+niw2t+wjUHs5vWW3M9mq2vbLmpPQaPxkhJb3y2YrTWHDW3sQHnVhQmufE6NWfUh4fee5AGRPVheIVen86BRYWdHGhrJWmrpD+NXqn/PTlffz/XX39p8z4B/wuzT2htPS5ySgCO5f91M87VGkRamZS8dHqopMidSyeNxb3FXwF+JCquiJW8OH5XO55ZNH+cvWG8kILpooQM382+kZMCUOFnJGIDnlCKHFHpJLa9sXhEfM6W+Pi7sMm200Fksqfd299Kyro+W5YjwVnSi+AM7Fo+j8qOKgp/2v0vrabvpKBxad2ecn4y5tgwDYZx+c4906IRqtw0jz09tp/EshEdfnoov4utlJCEFKXiRFK2uYeVkmq19V/3GzYsvJ9r8GnvvQNa8AQAnP5MvwAs7f/R/u3D4BY+J55NjMbOjoYdPMc9mr8eGbbOP0Dd08/8u1wCxgFtPiP6bg9DCKDbP5omU2XXYtL01IYa33SeKNFi7fHc62olZ07X2ERpkRGsG6aj+x+RPQBywYtkYfNObdIQoLm97FZMlg+pQPEEJQ2DaV2t499CZMwpoSRsnmWLT+Rpwpes64ZQZ79j5Ie2UBaz4vY1b0hXT4fkhm8HzfO8Dp7FAsoOShmIopzFqGti2FpNEf4G4chXfrBGJ3XQ271JxBTT4/kcG6FT36JuJIY/2LZfwh24Fjl49orYZP8VITYeHaSi8hwcjJuIAdd7SZqOkRpFSdS1zPLh52dHJO+DI2NhQwg/F80p1NAEFZZSrV2hiW7T2LR0+/v3+chs5EdpW00NDzJmW2EPQBD+eOzWdi1DM89uWteHqh/INc5jx0I6PHBnjhgeXkRNjY1tTN5X9fhwDO8Ifwud+EB+j1mrDo3fzxs19jCaug22MlMjSNOXND2bvrLZq9kVS5YkkPbQQg17mHa7JfISq6jRxDCQFFMDZCXS/yefU0rgwv5bnGfNrXhzDJuZIlWX+j2x3N6amDv6hMzggk3wpycv9Ebs6fsFkzD2q328eh04VgGq3+M7hLWgn0+rAvSMaaH4Vtehz+9j68jb0EPH5cO1tRFPUpWPEreCpV34Au3ET4NdnY5yYRdUseUbfmYUz7+pPW/pKevmYX9Y9sontt7SHHO+vSTG58ZCZ5cxPJnKT+6M6Z20uCZg1R1h8jCp+H3IsQd2yiYPatADy+6yHeCW/kwij1ewMaLcsxsjJFjy7y4AVmzXFXU516Bctf/xKDT0v0/Fjem5FNd/goPtXF0DgvkkBAwePy45kYxrzrc/C4/Dy/fB7l9qn02arxZ7UQ/aMJ2G8ZR2HdCuKpJiP1h/3O+7CwmbhcldQ3LKU1/3Q8qefi6dTjyChnz94H1esfV0WDp5cOfyvCoMHkXEWk4af0RoBj8ShqEzvojVDj+z22MqwxOwnP/oB1ZRN4pnYG67xtlLgGau1t6glQ2ltNT1gJm8wf0eVXGG3S0rytj1C9hnYlwNtRa3ittoZHdaopsC5GfTK2NU7A6VMT/SVaR3HdnvEs3XY9Jq2bFfvOJBCsg/Xu9st5rvhy3AEdu1tT6fPruW3NdZS8W0B5yx6avcXssmaS2bOX86bOJ8lezfTY9bRrndRX6WnfXk35IxupV/zMy4vDANgR3IOJn2HmPdQEhA9uuJu/b7uOUr8dY9V4GtvSCXU1k1FzLROtb2LSulnfOlBfItTawOzENeQYSli29yyW7VxEi8vJp5Vz8BHOhHmqmWpvRzrby9O5d/mvqSq+is6OdYe8B08mUhFIvhUYDRHExFxw2M+1Vj32M5IQRi3Rdxdgn6PamC35kaAT9Kyro+O9MlqeLaJ7VQ0Azc/sQOnzY1+QQvS9EzHnRhz2/Ad+z4F0vF9OX3kHHR+Vq0omuAJZq9dgtqlJ1WaeFsulZyfjaVUVgsEfjObJCtr1Y/PhvE9oVkUAACAASURBVMcBSH3jaq7pXMfr+emM61IrVSEE70/wEDtxDVdG/IC49BBKNzbw9iMlhHRlEBpjZsm80eTazHwycRR2nYaVHjeOcxL4PNfMfdZeolPszL9ZXaS3c1MLdbP/TM+0teijLNza2UK06xN6sBIZOVBeLTr6HLRaC4riw2YbzfxbfkhUgrp2wmYbTUbGz0DXRObMXD6o/AfV01dRnPcP9NoiMsa9T0h+FEmXBHAlPIZd929041RfTWNhGP7lgm5vMn2OMnb3BXi/w8vqLh8eBba5utlqWUp71cWUuv04tIIMo5ZIhw7FXs2t+c9wy/i/8qmmiaeTl9E59glctkpCKxdgaxxPvXkzb3VuYSxarnAlEWVpwhswMD6qkBC9i0JDHELrRpvyJx798nvcty8JfeJrPGePodA+hi+c00Bo+OPdi7GaHGTnLycx/nwAlsdfQe/LVaxz96EAk/0aPiCE57By9ZnqwjSB4KWEaB6zjuMXxvP4Rb6T09w6bu40UlCnQ1FAIxTSQsspbB1NzLpfEr/lbgD6/AZeLFnEu/vOpK9uHk8UPcxLOy9idFw05427j2euzeDlm8cA4PJZiHc7sFhSj3rfnihSEUi+M9jPSCbu/mnoo639bVqbAVN6KD2b6undok7Bu9fX4e/00LenHW2oEdvU2MOGsB6KkDmJ2E6LJ3LJOBSPn6a/baNreRUtzxbR8WH51/q3PlOEZ00tbWvtuP35+LJvhsm3QLZqc0YImHA9XPJP8Pagf/VqZph8nF1RwnVfvEdaUw3rHE5CelfTG2YhbpRqS/d5A2iMCjMXZfWPP1SvY1F0GJ+3dfFZqp6VY8woGkFpj5vk3HCmXJBGa20PGtJwu2to9/pobFnJDFbRYF2IRmPoH7fBEMGYMX/Gbs8nKnIBJqsNnVE1+SQnLSHUMQGASZdkkb6gm07Nv/EaNHSE6HDteBOA4nX/xezpxq57jcISdU2H36shv2AsDyxeiNGhKmWPAq0oeHVdaHUpdNVcgkbnQTf7flwBhVyzFmOPH0LVqmOZzjL+d/YvmTXqDVbXTuG/vU4Mbidav5matPd5JiSW1/EwFR3dXepDQaytgTFxBu6cl4nOthuNzoU28hP8wUpv9REuVobPotSWwQXRNsZkqKbB7NgwfnWeuuixRmfGg8JbeAhFEL+iBgOCCDToQtRr1ye8bO1+n+hGF8npTjyfuREIMibV4+2KZXVVBvfXmKi0fEGzK4LbPHp+1JzBHzfewb2rf01a8uXcrrFzicXGwlYN42LsXJAXj0ajY07OKHLsJsZEqSlLUvpiMRpjvvG9e7xIRSD5TiE0X/9BNyTZUTwBFI8f24w4/C1uularP0ARN+SiMR+bK8yxIIXQs9PQJ9gOrrotoGdtLQGPH3dpG+3L9tJb2MT+Eg4KFsQNy9Bd/iic/UcwWA8+8dhFsOhf6vYfUrh4UiILE+Fuox8UhfyunbRaUsmfn8ikK8NpiVrLGbcnkTzm4PKkP0iKwqcovNPUQUKwctX7zWr2ysRs1YTWXTuetra1lNSv4BaeQDGmccOE+/kqEeGzmTTxdRwONTwxLfUuoqLOJirqLGy2bEBDZdU/CUmpQqPz0LTDSYvZiLmzlpayXbQ2bsfYoeDTWtmzXotNcxYLrniOc374EyamhHPBzT9l/s2jWfL4adz65znExcUiFC19bSmEpq3E6KxhZddA1FcPERhcA6HHiqLl5Z2X4k5Rk7Dts9Rgii2jS6tn6nlZ6ITgKZMdZ5iZj1jE2gotj39aircjn2RLHgbngFklJFzNQRQQWuahLqRrW7qH6p+toufZYn42NRU38CAuCvHzPaMFnUWP1mkkoFVofUNVUo9kv8BfY1+lNKyaQEJI//mnnaPOaCPX/ZT42lm8ffWjXBzno8blZK/wMao9l7aCFJI8e1jk19Ne58be7ufHsdFcFkwDX1W0jafvuIlZRcv4cWQDkV4DfS0Doc+DhVQEku88hhQ1sNs+PxnrZPXpqfuLGnQR5oNmD8eKxqDtj05yLsok4sYxKN4A7l1ttP23lO41tbS+vLNfEUTcPAZjmuPIJ829GDLVnElJH1zL7LI/cOlZc3l332NEetvYWy948KEH+Gjl2zidTtLS0r52igSTgVsT1RoQv89MINtqYk2buo41KjkEZ4yF2sJ0/B4zvaXfx0kbcak/Rqc7eu1bhyOfsWP+jEZjRKs1Y7Nl0dGh2uh7m0zUb46g3p+ABgj/92Sy/S1Yu/20+WyEhMUyZfaTRCaOQmdQn54ttggyJ8ahN+oQGkHmxAEndodH3TZPHUiklzDzArImnt2/P2vWGkp+dyG/XjIJ5aJ0dOfZ0Gn8/HXh00wYrxC6MJVYt8JD2XEkhZuZkBpGWqSVO+ZmcF6WGo2kERpuHHMjPmMxGmM9Gm07jlo3ldub+fjjKrr9Cp6yDmJq1PxVHwdzCJ3hFrhdPnQZDtZG7EAT/LlcHVCjr8oXumjq9vaPddVru/q3z/NeTRRxpBeHcHOniT+FaPiJYuIsNpNQ6sdv9tHsVW+c8u3NBAIK3a0tvP+kungyMTYF+zY1/1HVGpliQiI5Kqb0UKLuLEAfYwEFhF6D4g1gyjnxaAvnpVn4Wt1YCqIhoKANN9H26i4UbwBh0KJ4VEdo2OWjMGU4j35CIeCq1+DpM6F6g9r2t5lMaCsDoDyYstlqtXLOOeeg1WoPeZr70mJZHBtGhsXEJy2dPFfbwtLGNi6IcjL94gze+1sPzTsvJHrcywBkRs8+LvnH5D5OQ8M7dLc18nEwnceYq/6G8vgcBJDboM5EtrRpScgec9TzxaQ5UPDjttbR3dtF75cLMLunUC/aiVFCee6dF4iMiqTPM4tFl/wI44GL06bEkaBEs37DX+jp2cnWrdczMf9teA9yv2jiOaDonrEsiFSd8ZWdZroKazkzZh7WtBj+teNfmJP+TmJPAoXFt1H4pCrP5l4/p4foSKo6OOfVO+UPs+K0RWy1NpEe8hIzGh5ko7WIWFsc/oCPDXUbyHJP7+9fXTRQU0AvDGx6txyNVjA600lHaTuEwA3FflI74qiy7AFNIjHjX6J+87Xs+LyahtKldLU0ERIeyRW/fYSqLYVQ5iNlZu5x/e2OBakIJMMCQzDaB6FG/ngquzBnhx/5oG+AZdxA+UQ0gvArs2n8sxofH3F9Lgjw1vdgHnOM33XFK7DyYVj/V2grg8hsXJFjuWHB/2A0GjGZTEc8XCMEGRa1z/RQG8/VtnBLUQUXRDlJGRdB8phIyrfNpbRuLqELLczTGo54vsNhtWaQlnYXiqLwMWr5TUfoeNZPiiC6oYfUSjXSJRCTR96ZC490KgAik0MICbPQ43WrZjffaAJViawy1+N1FOHxeqipqSEn52xiYsZ97XghtIzPf4b6+rfYs/ePrN82j3EXvUTXm2p0V3tNF62fN6Kx6klamMri4rlQrBA5LxGBQKdxk9yq/rCaBTh1glqvQqM3QJRewyMBA/dqBlI6ZJRuYmeMlhaDi+9NeIvWrpW0iGnclBzLm3veJLbqc8JFOi59d399Z4Dmqm6aq7oZNSWGM27IobWyk54nt5LWkYdf383uNie2mB040lbhabia4i/qCLjVh4GFt92NEIKkCfkw4bj+bMeMNA1Jhh3GVAdauwFDkv2kn9sQbyPy++OIvGUcxjQHxlQHtmlxCP2hn9wPizUcFj4Elz0H178Lt63DfNk/cDgcR1UCX+X8qFDmhKm26m6fH19AIXpOLLWxBhweLaEf+Y9yhqMjhOD8e3/B+ff+AiEEo2f8B8vkgZxCE295gLis7KOeR6fXctnPJzFuRjoAGaNU05fBFcNF517X32/RokWHPB7AaIwmKWkJISFj8HiaaYv+mJhfTMEnYOzbVWxcVcuXH1ZQfp+a7todUKja0kZuw0yWrP9fxtXPBuDixRmMt2gJsepY2+PnsUgtCZqBqDGhjcZsNhPnL2F2/AzuP+1GerVu3NbTiA3Nw+Vz4W7302Kp5aXxv+H5gvuxZB+8yj1nZjCnUZKdvSYvHX6FLzWV9LhCscbsQAhwpu6gpbobj76F9KmXUh/ex/1r7mdv+16GCjkjkAw77GcmEzI7EaH95pFCx4Ix5Sh+gGMh5/Ahs98UjRBcFxfBitYudvW4+f2+Or5o74bTbPyqXkf35414+/zojceorL5C5qRp/duhoRPBNhb4jdoQ9nVfxuEwhxg4ff40/DoXc+fO5ZkPVIdual4U52vOx2AwoNEc+RlVCMHkSUvZuGkR5RVPEhY+k6IIPSHVbvb0qavQMk2qvEUuP9X/LGYmByuXkm0N6M0aUhdlsu2JIlJL3WzSKMzV6Yn2Cwi9iGrrv2hz1TE19lqmRufyyeIt5K0pok0XynRlLg5XBD5TBwGNn+9Nu57rcueyec2jbHhhEgULkojLVM2FrW1rqTRspKhhMnSpa2VMYZXgD0ET9m+E7gF66q6lpw42rL6DD3q78XZtYUr8bBZm34HhOGd03xQ5I5AMO4ROc8yRQt91sm3qLGJJUbmqBIKkx6mzos5m1yGPOyF0RjA5YPS5qu/jGLBYLJx77rlYLBYu+ckEFv9qMjq9loKCAsaMObqvYT9Zmb9AURT27nmYT3Js7HIPFHHZbRW8MCMM1yHquuyL3EhijZv3wkv4Q+Mb1J4dTlmUDhEQTPAKCvMeRAgN6W0XYO1zMEZMxNvnJ9qoJ9dmouqzFsatuwBHXxT2hg5+P/V3jN5n5akfLqDT83eM9jq+/Gg9OzY/QlHRj9i69UYC3oNXqRsdVaDtQmvsJLrgRbQm1ccwoW00P0jJZp6+GFvjX1he9sYxXdvjQSoCiWQYkGw28uioRMxaDdfHR/Df/HTmhIWQm6gqgoqilsH54p+Uw2XPn9ApYtIchMfZjutYh2M8ycm30Nq2GqW9CY8CZWmqUixGg+/zJlr8CnF6wXy7jgtC9VwQqudu73T8BFhu/jcVVX/hk46r0U98gpDEDSTNfoR7MiooyV9PqCuKa7b8hi8er+X1P24iEFCYE2YnrFgN6Qz4avC7v6ShyMe6l1/EEq0qXFvCehQlmpr6F6lvWApAQloBAF1nFLM8+yk02gEzUmjKOpLnqonr6jdfS8wBC9onhR29YuCJIhWBRDJMuCounNVTsnkoK4GZzhBezksnPEoNGV37xl5qS9tO/pdqNOrrFBIXdykBn4WcTW40kUZ+fpXqZBY1bpzd6nSgxanDrBG8mqinMlSdLW7LbOC2uQ/gMY5iZoiOM2ybiZ/2D9odqm3+wpzNpM0cmEm11PSw4vkSsj74D86eAO1iGyKuCK/RT/3S/4CikD0vC43GhC2uCNDQ25xJ6y4H2oafsGuNl+Sx4RRMzGJ3aHH/ebvrVMX1uTIQ6tzTrPoWJk9aRnjYQGTSYDGy5s8SyQjDZNVTsCCJLR9WsvmDin6b9XDCZIzBrCzG22Nk7mVWwuKsjJ4aw+5NDeTNTSR5UhRbNV7aGvp4pL2BmxMi+VV4OOeGmejrq2Ph+Y/z6aZrwdfJS60GNvToyDf7uD6ihDEz2vDUbKOjvRCN/2Z2rq0H8gCIcuwmbcpOvBM9lL5twWOMwcs+IiLmEhYqqFzup3pVPp5uH01O9brXlrYzx6GmjFi/KZwFUy7mBWsRu2t30OlvYkleI5rCKNytKaSk3I7NljMk11AqAolkGCOEYNpFGfT1+ijd1Mj2z6oxWnVkTRr8tAVDSajlMqCK5u7HEOJZ5l2fw5xrRqPRaujtraCgYwsx4y9kea+TUNeXbNn7A5xt06iufp5AoA8b0GSeQWLieDbs/Bd95rHY7QFq6v5D3DQtTs9uatdvhfYBh3n81K1gbkCPltQzdaytmYrb/QWJCdeTlHQjRVGraa6KQ6NLRVHshEabaG9w01vYhgYNRV16zoicyqbyFwE4P/18LsqbyXZtBRXFqVgsumNKjXIiSEUgkYwAYtIcFK2qZeUrapoEs82Au8dLWKyV8Pjjs89/m+hp1wIKfYE19PTsw2pNQ6PV0NOzlw0bzyUQ8FBT+wo22yh2NSzD5+uiq7sIUHMuZaT/lJiYCxFCw5Lcy3EYHbTW/5fdpWpUlBIQ6K1qLit7yhpad7ZQ+ZmJs5Y8jc7WyC7uIz/sfUBdnQ2QlBNFW72b8PhI2hq8jD3dwKpXYdXLbaQWJLEvrpqbNt4BwPsXv09CiJr7qDUzwL4tfVTte4/YmPOG5PoNmnFPCJEohFghhCgRQhQJIe4MtocJIT4WQpQG34ffXFUi+ZYRP8qJOURPylh14duyx7fy0dNFvPLbDQT8Abpa3Sz7v620N/Se4pEenc5mF2//31Z2rqvrb+tqdmMN1SO0ftZvWEhn5zYURWH37t+g0VgIDZ1MR8cmampexOfrYuKE19Hrw0hPu4dZM9cTG3sxQqg/h3G2OKx6a3/+JYCMxIep36z6W3pqA8y6fA5nXf8wKTlziEu4hD7bLMI0rQDYbOqCtXFzExEaLe2NZpRAE4Ufvobfswsh9KSWptNtUZ3FF2Zc2K8EAGKC6dG3v53LjlWlg3glBxhML48PuEdRlGxgKnCbECIH+BnwqaIomcCnwX2JRDKIhISZuPHhWZxzWx5jv1KQp7K4lX1bm6gqbuW/f9iE+4D8Od821i/bx/O/XEtlcSufPltC/b4OtnxYwa719dgjrKSm3oWi+Ni46SK2Ft5Aa9tqYmMvZkLBy8yauQGjMZbMzF/icOQzc8YakpNvPex32Wyj+7eTs84nIt6L17WG5FFOChaeT0q+uuxXo9ERmXRXf1+tVq0tYY8wc9aSMaTmRRAaUUVj+V50ui/QaP3EdKl/A4vOwm9n/Pag7w1PsBGVasDbE8baN8rxeU98QeDREPuLeAz6FwmxFHgi+JqtKEqdECIW+ExRlFFHOnbixInKpk2bhmKYEsmIoLvNTVNlF5/+u4SUsREEAgqlGxvQ6ARRSSFcdO8ENIfI9Hoqaazo5LUHN6EzaMicGM2udfUEAurvV0yagykXpJEwyklLy0q2Ft7Qf1zeuKeJCFa+U5RA/5P/N6Gi8h9YzKlERp5Bc2U57zz+R8698ydEJKUc1K/D62P1qjw2audjT/4pP0o52Aeze91qtq/4mGmXLGbt0h5aqqtIvNBFev5EspxZh/zu5W/fS8m7ZzP72mhypx9fviEhxGZFUSYerd+Q+AiEECnAeGA9EK0oSh1AUBlEDcUYJBLJADanCZvTRMrYJip2tKDVCdILokgY7eTzl3bRWNFJTOpJXEF9Aqx7ay+xGaFU7GhBZ9Bwwx9mYjDrcPd4KStsJik3jHNvz+t3rIaHn9Z/bFzsZQftH4sSAEhO+l7/dkRSCtc/+pdD9nPoddxv+g/VfT4oq+fO5Gi0Bzh6s6bOJGvqTAAik3bTXB3G/Fmz0OoOP56p8+7E7/8N8dk/OKYxHw+DHgAshLABrwN3KYry9Srjhz9uiRBikxBiU1NT0+ANUCIZwSRkO3H3eOnp8JA8JpyMgigQsOqV3fT1nnoTUUtNN5s/qOCdJwqp29tOdKoDQ3DVeGyGakuPTXd8Lbpm9KjfYbGkM3r07xDixFJrfFPOjhxwdxZ1H34ld+JoJ74+P7V72g/bB8BiSeSMC54i1Dn+iP1OBoOqCIQQelQl8KKiKPvXSTcETUIE3xsPdayiKH9XFGWioigTIyMjD9VFIpGcIImjB1J1p46LwGTTkz4+ksaKLt7+8+DnwT8a2z+r7t9uruomNn1gljLm9HgmnZPCuDmJXzsuPv4Kpk39aMiUAMDP0mL5cdAkdHtxJb7Aoc3uCaPD0Oo0FH5axbYV1XhcvkP2g2OfwRwvgxk1JIB/AiWKovzpgI+WAfvTDF4HLB2sMUgkkiNjDTVyze+mceX/TMFkUzNvnrVkLNMvzqChrJPWup6jnOHk4fcFqC1tY7/fsqejj5K1dUSnDmSRzZo8UNhGb9Ay+by0/hnCqcai1XBPagy/yYhjd6+bdR1qzqddPW7ebGjjiYoGvAEFvVFL7qw4Kra3sOo/uylZU3eUMw8+g3kFZwDXANuFEFuDbfcBDwGvCiFuAiqBSwdxDBKJ5CjYI8xfa8ucFM2aN/awb2sTYbHHX+Xtm9JU2cWKF3bSVNlFRKINq8NIxQ41P9KZN+bQ2eLG1+fHGTP4YzlRrooL58F9dTxb08z69h4eLq/v/2xbt4uncpKZcn4aodEWVr6ym8aKb2wxHzQGTREoirKagyu+Hsi8wfpeiURy4ticRqJT7ez7somQMBPePj8el48tH1awYMmYg0xKJ4O3nyjE1akWhNlf1AWg4KxkHJEWHJFHL7P5bcGq1ZIXYuGdpg7eaQpmFLVbiDboWdbYzr0pMWRZTYydnUBVSStNlYNfk/hoyKRzEonkkKSPj6KpsotPninm85d2seHtMvp6few8yaYMRVFwdalKwB45MDsZPT2WaRemn9TvGiqyrAPFhf6Wk8y7E7L4carqP3i2ppmnqlTXaFRyCG0NvUf0EwwFUhFIJJJDMnZ2PLmnxeOMUZ/G/b4AjigzZYXN32gFcm+n56h9ADqb3aDArMuzOP+HakK3M2/KYfaVR1xe9K3GoVOd1LclRXFhtBpNlGExYdQI/lXTzP17ainpdhGZZAcFmqpO7axAKgKJRHJIdAYts68cxTm3qT/OIWEmzr09DwS8+vuNdLe5+/v2uXxUFrew5cMK/vXjVbzw/9byzE9Ws2vd0WcPDeWq+SQ23YEj0sJtf5tL1qSYI8bYf9s5O1INbb0gaqCOsV4jyLEOzHheqW8lMkktMfrzz0v5a2UjLv9AFZ32hl6e/39rqdk1COnDv8J390pLJJIhwR5hwh5pZszp8YRGWZh/Uy7er8TBr3trL2//XyFr39yLq8tLR5MaR7/h3fL+1b+Ho6GsE51eQ3j8t98R/E0Zb7dQPyefcSEH+zaeyk3mxvgIMi1G1rR1Y7EbcNl1OOv6+PXeWv5c2dDft6Gsg84mV38012AiFYFEIjkiQgiu/s1Uxs9XK2Ul5qiO4o//Wcwbj2ymp72PlhrVuRsabeHGR2ZyzQPTOOuWMXQ2udizueGw5wZVEUQmh6DRDv+foySzkd9nJXBBlJMd3S7q+7wUR+tIbfAyo9jF1vrO/vUHDWWd6I1anEMQtTX8r7xEIjlhhBD9q3e1B/xg1+3pYO1be2mu6mbUlBgW/7/JmG0G7OFm0vIiccZa2fx+BcphZgU+j5+myi5i0r4d6SyGitlhIShA/poitiXp0SuCudtdOFY0kfXhl2xp76F6VxtRKSFDkvNJKgKJRHLMnHXLGE6/chTxo0LZta4eb5+fzEnRB9n1hUZQsCCJ1toe6vd1HPI8DWWdBPwKcRmhh/x8uFJgHzAZ1UToufaxWVjCTYyp9LB4VRd/+2gPbfW9ZE+PG5LxfDuW5Ekkku8U6ePVXJFNVV3U7GonNNpCUu7X1xakjotAaATlO1qwR5qpLmkla0oMQgg2vV/O+qX7EAJi0kfWjEAjBC+MS6PJ42VGqI0Qg46U0U6Kv6gjvtWPZX0bil1P1qToo5/sJCAVgUQiOW5CwtR4+ehU+yHLKhotemLTHZRva+bLDytQFAgJNxOXGcr6pfsAVQmYrIPvEP22cUa4/aD9GZdmojVo2b6iGmdPgMo8K2KIUoFLRSCRSI4bS4gBgOgU+2H7JI8NZ+0be/v3K4paqCxW00fYnEbmXps9uIP8jmAw6Zh6QRpGs46PfC6W2r08EFDQDYEykIpAIpEcN6OnxaAzasiYcHgTRlpe5EGKYMsHFf3bF91TcMhcRyMVg0nHlPPTaG1q58kd5axu7+J0Z8igF7GXzmKJRHLcaLQasibFHDGyJTTawuW/nMRF9xQQmzHgCzjzphypBA7DnDA7Nq2GxYX7WNnWPejfJ2cEEolk0IlIUFfQTrsog53r6hh/RhKh0d+dRHJDjUmr4cmcZLZ29pJgGnz/iVQEEolkyIhNdxxUXEZyeBZEOFgQMTTXSpqGJBKJZIQjFYFEIpGMcKQikEgkkhGOVAQSiUQywpGKQCKRSEY4UhFIJBLJCEcqAolEIhnhSEUgkUgkIxyhKEcuI/dtQAjRBFQcteOhiQCaT+JwvgtImUcGUuaRwYnInKwoSuTROn0nFMGJIITYpCjKxFM9jqFEyjwykDKPDIZCZmkakkgkkhGOVAQSiUQywhkJiuDvp3oApwAp88hAyjwyGHSZh72PQCKRSCRHZiTMCCQSiURyBIa1IhBCnCWE2CWE2COE+NmpHs/JQgjxLyFEoxBixwFtYUKIj4UQpcF3Z7BdCCH+L3gNtgkhCk7dyI8PIUSiEGKFEKJECFEkhLgz2D6cZTYJITYIIQqDMv862J4qhFgflPk/QghDsN0Y3N8T/DzlVI7/RBBCaIUQXwoh3gnuD2uZhRDlQojtQoitQohNwbYhvbeHrSIQQmiBJ4GFQA5whRAi59SO6qTxLHDWV9p+BnyqKEom8GlwH1T5M4OvJcBfh2iMJxMfcI+iKNnAVOC24N9yOMvcB8xVFCUPyAfOEkJMBf4A/G9Q5jbgpmD/m4A2RVEygP8N9vuucidQcsD+SJB5jqIo+QeEiQ7tva0oyrB8AdOADw/Y/znw81M9rpMoXwqw44D9XUBscDsW2BXcfgq44lD9vqsvYClw5kiRGbAAW4ApqAuLdMH2/nsc+BCYFtzWBfuJUz3245A1AfWHby7wDiBGgMzlQMRX2ob03h62MwIgHqg6YL862DZciVYUpQ4g+B4VbB9W1yE4/R8PrGeYyxw0kWwFGoGPgb1Au6IovmCXA+Xqlzn4eQcQPrQjPik8BvwECAT3wxn+MivAR0KIzUKIJcG2Ib23h3PNYnGItpEYIjVsroMQwga8DtylKEqnEIcSTe16iLbvnMyKoviBfCFEKPAmkH2obsH377zMQohzgUZFUTYLIWbvt09OSAAAAutJREFUbz5E12Ejc5AZiqLUCiGigI+FEDuP0HdQZB7OM4JqIPGA/QSg9hSNZShoEELEAgTfG4Ptw+I6CCH0qErgRUVR3gg2D2uZ96MoSjvwGap/JFQIsf8B7kC5+mUOfu4AWod2pCfMDOB8IUQ58AqqeegxhrfMKIpSG3xvRFX4kxnie3s4K4KNQGYw4sAALAaWneIxDSbLgOuC29eh2tH3t18bjDaYCnTsn3J+VxDqo/8/gRJFUf50wEfDWebI4EwAIYQZOAPVgboCWBTs9lWZ91+LRcByJWhE/q6gKMrPFUVJUBQlBfX/dbmiKFcxjGUWQliFECH7t4H5wA6G+t4+1Y6SQXbCnA3sRrWt/uJUj+ckyvUyUAd4UZ8QbkK1jX4KlAbfw4J9BWr01F5gOzDxVI//OOSdiTr93QZsDb7OHuYyjwO+DMq8A/hVsD0N2ADsAV4DjMF2U3B/T/DztFMtwwnKPxt4Z7jLHJStMPgq2v87NdT3tlxZLJFIJCOc4WwakkgkEsk3QCoCiUQiGeFIRSCRSCQjHKkIJBKJZIQjFYFEIpGMcIbzymKJ5JgRQuwP2wOIAfxAU3C/V1GU6adkYBLJICLDRyWSwyCE+B+gW1GUR071WCSSwUSahiSSb4gQojv4PlsI8bkQ4lUhxG4hxENCiKuC9QO2CyHSg/0ihRCvCyE2Bl8zTq0EEsmhkYpAIjk+8lDz5o8FrgGyFEWZDDwN3BHs8zhqHv1JwCXBzySSbx3SRyCRHB8blWCOFyHEXuCjYPt2YE5w+wwg54AsqXYhRIiiKF1DOlKJ5ChIRSCRHB99B2wHDtgPMPB/pUEtnOIayoFJJMeKNA1JJIPHR8Dt+3eEEPmncCwSyWGRikAiGTx+CEwMFhkvBr5/qgckkRwKGT4qkUgkIxw5I5BIJJIRjlQEEolEMsKRikAikUhGOFIRSCQSyQhHKgKJRCIZ4UhFIJFIJCMcqQgkEolkhCMVgUQikYxw/j87ORoqtJ8MKgAAAABJRU5ErkJggg==\n", "text/plain": [ "