{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# How to pay for a war: part 3\n", "\n", "### Another application of Markov jump linear quadratic dynamic programming\n", "\n", "#### By [Sebastian Graves](https://github.com/sebgraves) and [Thomas J. Sargent](http://www.tomsargent.com/) \n", "\n", "This notebook is another [sequel to an earlier notebook](https://github.com/QuantEcon/TaxSmoothing/blob/master/Tax_Smoothing_1.ipynb).\n", "\n", "As earlier, we use Markov jump linear quadratic (LQ) dynamic programming problems to implement some suggestions by Barro (1999, 2003) for extending his classic 1979 model of tax smoothing.\n", "\n", "Barro's 1979 model is about a government that borrows and lends in order to help it minimize an intertemporal measure of distortions caused by taxes. Technically, Barro's 1979 model looks a lot like a consumption smoothing model. Our generalizations of his 1979 model will also look like a souped up consumption smoothing model.\n", "\n", "In this notebook, we try to capture the tax-smoothing problem of a government that faces\n", "**roll-over risk**\n", "\n", "### Roll-over risk\n", "\n", "Let $T_t$ denote tax collections, $\\beta$ a discount factor, $b_{t,t+1}$ time $t+1$ goods that the government promises to pay at $t$, $G_t$ government purchases, $p^t_{t+1}$ the number of time $t$ goods received per time $t+1$ goods promised. The stochastic process of government expenditures is exogenous. The government's problem is to choose a plan for borrowing and tax collections $\\{b_{t+1}, T_t\\}_{t=0}^\\infty$ to minimize\n", "\n", "$$E_0 \\sum_{t=0}^\\infty \\beta^t T_t^2$$\n", "subject to the constraints\n", "$$T_t + p^t_{t+1} b_{t,t+1} = G_t + b_{t-1,t}$$\n", " $$G_t = U_{g,t} z_t$$\n", " $$z_{t+1} = A_{22,t} z_t + C_{2,t} w_{t+1}$$\n", "\n", "where $w_{t+1} \\sim {\\cal N}(0,I)$. The variables $T_t, b_{t, t+1}$ are *control* variables chosen at $t$,\n", "while $b_{t-1,t}$ is an endogenous state variable inherited from the past at time $t$ and $p^t_{t+1}$ is an exogenous state variable at time $t$. This is the same set-up as used [in this notebook](http://nbviewer.jupyter.org/github/QuantEcon/TaxSmoothing/blob/master/Tax_Smoothing_1.ipynb). We will consider a situation in which the government faces \"roll-over risk\". Specifically, we shut down the government's ability to borrow in one of the Markov states. \n", "\n", "##### A dead end\n", "\n", "A first thought for how to implement this might be to allow $p^t_{t+1}$ to vary over time with:\n", "\n", "$$p^t_{t+1} = \\beta$$\n", "\n", "in Markov state 1 and\n", "\n", "$$p^t_{t+1} = 0$$ in Markov state 2. Consequently, in the second Markov state the government is unable to borrow, and the budget constraint becomes $T_t = G_t + b_{t-1,t}$. \n", "\n", "However, if this is the only adjustment we make in our linear-quadratic model, the government will not set $b_{t,t+1} = 0$, which is the outcome we want to express roll-over'' risk in period $t$. \n", "\n", "Instead, the government would have an incentive to set $b_{t,t+1}$ to a large negative number in state 2 -- it would accumulate large amounts of *assets* to bring into period $t+1$ because that is cheap. (Our Riccati equations will discover this for us!)\n", " \n", "Thus, we must represent \"roll-over risk\" some other way.\n", "\n", "##### A better representation of roll-over risk\n", "\n", "To force the government to set $b_{t,t+1} = 0$, we can instead extend the model to have four Markov states:\n", "\n", "1. Good today, good yesterday\n", "2. Good today, bad yesterday\n", "3. Bad today, good yesterday\n", "4. Bad today, bad yesterday\n", "\n", "where good is a state in which effectively the government can issue debt and bad is a state in which effectively the government can't issue debt.\n", "\n", "We'll explain what effectively'' means shortly\n", "\n", "We now set\n", "\n", "$$p^t_{t+1} = \\beta$$ \n", "\n", "in all states. \n", "\n", "In addition -- and this is important because it defines what we mean by effectively'' -- we put a large penalty on the $b_{t-1,t}$ element of the state vector in states 2 and 4. This will prevent the government from wishing to issue any debt in states 3 or 4 because it would experience a large penalty from doing so in the next period. \n", "\n", "The transition matrix for this formulation is:\n", "\n", "$$\\Pi = \\begin{bmatrix} 0.95 & 0 & 0.05 & 0 \\\\\n", " 0.95 & 0 & 0.05 & 0 \\\\\n", " 0 & 0.9 & 0 & 0.1 \\\\\n", " 0 & 0.9 & 0 & 0.1 \\\\\n", "\\end{bmatrix}$$\n", "\n", "This transition matrix ensures that the Markov state cannot move, for example, from state 3 to state 1. Because state 3 is \"bad today\", the next period cannot have \"good yesterday\"." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import quantecon as qe\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from lq_markov import *\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Model parameters \n", "beta, Gbar, rho, sigma = 0.95, 5, 0.8, 1\n", "\n", "# Basic model matrices\n", "A22 = np.array([[1,0],[Gbar, rho],])\n", "C2 = np.array([[0], [sigma]])\n", "Ug = np.array([[0,1]])\n", "\n", "# LQ framework matrices\n", "A_t = np.zeros((1,3))\n", "A_b = np.hstack((np.zeros((2,1)),A22))\n", "A = np.vstack((A_t,A_b))\n", "\n", "B = np.zeros((3,1))\n", "B[0,0] = 1\n", "\n", "C = np.vstack((np.zeros((1,1)),C2))\n", "\n", "Sg = np.hstack((np.zeros((1,1)),Ug))\n", "S1 = np.zeros((1,3))\n", "S1[0,0] = 1\n", "S = S1 + Sg\n", "\n", "R = np.dot(S.T,S)\n", "\n", "# Large penalty on debt in R2 to prevent borrowing in bad state\n", "R1 = np.copy(R)\n", "R2 = np.copy(R)\n", "R1[0,0] = R[0,0] + 1e-9\n", "R2[0,0] = R[0,0] + 1e12\n", "\n", "M = np.array([[-beta]])\n", "Q = np.dot(M.T,M)\n", "W = np.dot(M.T,S)\n", "\n", "# Create namedtuple to keep the R,Q,A,B,C,W matrices for each state of the world\n", "world = namedtuple('world', ['A', 'B', 'C', 'R', 'Q', 'W'])\n", "\n", "Pi = np.array([[0.95,0,0.05,0],[0.95,0,0.05,0],[0,0.9,0,0.1],[0,0.9,0,0.1]])\n", "\n", "#Sets up the four states of the world\n", "v1 = world(A=A,B=B,C=C,R=R1,Q=Q,W=W)\n", "v2 = world(A=A,B=B,C=C,R=R2,Q=Q,W=W)\n", "v3 = world(A=A,B=B,C=C,R=R1,Q=Q,W=W)\n", "v4 = world(A=A,B=B,C=C,R=R2,Q=Q,W=W)\n", "\n", "MJLQBarro = LQ_Markov(beta,Pi,v1,v2,v3,v4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This model is simulated below, using the same process for $G_t$ as in the previous notebook. When $p^t_{t+1} = \\beta$ government debt fluctuates around zero. The spikes in the series for taxation show periods when the government is unable to access financial markets: positive spikes occur when debt is positive, and the government must raise taxes in the current period. \n", "\n", "Negative spikes occur when the government has positive asset holdings. An inability to use financial markets in the next period means that the government uses those assets to lower taxation toay." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 0, 'Time')" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAEWCAYAAABxIlqKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXeYXGd1/79net/ZqlVZSVaxLdkYF7mAARcSisGhhBKSkAAJJeGXACGQkNBCQkggkBCHhBAgEOPQggFjig3YGDfkIkuyitWl7X12+p25M/P+/rj3vXOn7szs7BTt+TyPHu1OufPunZn7vuf9nvM9JIQAwzAMwzAMwzAMw7QaS7sHwDAMwzAMwzAMw6xNOCBlGIZhGIZhGIZh2gIHpAzDMAzDMAzDMExb4ICUYRiGYRiGYRiGaQsckDIMwzAMwzAMwzBtgQNShmEYhmEYhmEYpi1wQMowNUJEm4koRkTWBp57IxGN1/H4XxDRH9b4WEFEO+odk+n5Pyai32/0+QzDMAzDFEJEXyGi97d7HAzTDXBAyrQUInoTET1NRAkimiai/yCiYLvHVQtCiFEhhE8IkW33WGpFP98PVXuMEOKlQoivtmpMDMMwDLMa6JvG8l+OiJKm339nFV/3HUT0M/NtQog3CSE+uVqvyTDnExyQMi2DiN4L4B8BvA9AD4DrAGwB8FMicrRzbMtBRLZ2j4FhGIZhmMrom8Y+IYQPwCiAW0233dHu8TEMUx4OSJmWQEQBAH8D4E+EED8RQqhCiLMAXgctKP1d/XEfJaJvEdH/EFGUiA4T0R7TcTYQ0XeIaI6IzhDRn1Z5za16OuvbiGiSiKb0oFjebyGivySiU0S0oL9uX9Fz/4CIRgHcZ7rNZhrLXUS0SEQnieitpmO79XSdEBEdAXD1Mufn14noGSIKE9G/AaCi+99CREf1491DRFuKDnELEZ0monki+pT+t+0C8HkAz9F3h5cqvLaRHkxEO4joAX0c80T0Tf12IqJ/JqJZ/b6DRHRp8fP13wtUWSL6LBGNEVGEiJ4koueb7lvu/R4hojv193tBPze1nhOGYRiGMSCi64lorz6PTerzmpzTb9LnuPX671fr88s2/fcP6+uOKBEdIqKX6bdfAeBfANyoz7XT+u3fIKIPml77nab1xp1EtE6/3aWvLd6q3x8ion9u7ZlhmPbCASnTKp4LwAXgTvONQogYgB8D+HXTzb8B4BsAggDuAvBvgBZAAvgBgAMANgJ4IYB3E9GLl3ntmwDsBPAiAH9JRL+m3/6nAF4J4AYAGwCEAHyu6Lk3ANgFoNxrfB3AuP7c1wD4eyJ6oX7fRwBs1/+9GEDFGk0iGgDwHQAfBDAA4BSA6033vxLAXwF4NYBBAA/qr23mVQD2ALgSwCsAvEUIcRTAOwA8qu8O15Ia/bcA7gXQC2ATgNv0218E4AUALoT2vrwewEINxwOAxwFcDqAPwP8C+DYRuUz3V3q/rQDuBnAOwFZo7/k39PtqOScMwzAMY0YF8P+gzUfPB3ArgD8EACHE/QBuB/BlIvLoP79PCHFaf+4xaGuZHmjZXt8gogEhxFMA3g3gF/pcO1z8okR0C4APQZurNwKYB/C1ooe9FMAV0ObxNxPRjc36oxmm0+GAlGkVAwDmhRCZMvdN6fdLHhJC/Eiv1bwdwLP1268GMCiE+JgQIq1PEv8F4LeWee2/EULEhRBPA/hvAG/Qb387gL8WQowLIVIAPgrgNVSYnvtR/blJ8wGJaATA8wD8hRBCEULsB/BFAG/UH/I6AB8XQiwKIcYA/GuV8d0C4IgQ4v+EECq0ndZp0/1vB/AJIcRR/fz9PYDLixTBf9Rfa1R//hvQGCo0xXqD/nc9ZLrdD+BiAKSPZaqWAwohviaEWBBCZIQQnwbgBHCR6SGV3u9roAX779PfA/N4ajknDMMwDGMghHhMCPG4ECIrhDgFbd6+wfSQv4K2GbsXwDEhxBdNz/2mEGJKCJETQtwOYALAVTW+9O8A+IIQ4qAQQgHwfgAvJCJz8Pr3QoiIEOIMgF9C28hlmDUBB6RMq5gHMEDlazHX6/dLzMFYAoBLf94WABuIaEn+gzZ5yLQXs5nBZtMxxkw/n4MW5EA/3ndNxzoKICuPV+a5ZjYAWBRCRIuOvdF0f/HrVqLgsUIIUfTcLQA+axrnIrSU3o2mx1T6G+vl/fqxH9PTZ9+ij+k+aMrl5wDMENEXSEvDXhYieq+eWhvWx9+Dwg2ISu/3CIBzFTYxajknDMMwDGNARLtJc5afIaIIgA/DNB/pm9P/A+BSAP9U9Nw/0MtV5LyzA4VzWTU2wLQOEEIsAYigcM4qngt9tf9lDNPdcEDKtIpHAaSgpVgaEJEXWprKz2s4xhiAM0KIoOmfXwhxC1BoZqArhZIR08+bAUyajvfSouO5hBATpseLCmOZBNBHRP6iY8vnTpV53UoUPJaIqOi5YwDeXjROtxDikRr+xkrjL4sQYloI8VYhxAZoKuS/k95SRgjxr0KIqwBcAi1193360+IAPKbDGDu+er3oX0BTjHv1tOEwimpkKzAGYHOFTYxazgnDMAzDmPkvAPsAbBdCBAB8DKb5iIi2AvgAgK8CMNeXXgithOVtAPr0ueyk6bnLzbWT0DZS5ev0AAggv2ZgmDUNB6RMSxBChKGZGt1GRC8hIrt+4f82tDrM22s4zGMAIkT0F6SZBlmJ6FIiqmoYBOBDROQhoksAvBnAN/XbPw/g4zLNk4gGiegVNf49YwAeAfAJ3ZDgMgB/AEC6+H0LwAeIqJeINgH4kyqH+yGAS4jo1frk96cwBXX6OD+gjx9E1ENEry06xvv01xoB8C7T3zgDYBPV6GJMRK/VxwtoNbUCQFY3d7iWiOzQAlAFmpoMAPsBvFo/xzv08yDxA8gAmANgI6IPQ5uEa+ExaMH6PxCRVz/Psra2lnPCMAzDMGb8AMJCiJg+f5jNCC3Q1NHbALwFQAyaggpoamUO2lxmIaJ3QFNIJTMARvQ5shxfB/BWfc3iglaDep8QYrrC4xlmTcEBKdMy9H5cfwUtDSYCrUZjDMAL9TSZ5Z6fhWZAcDmAM9DSfL8ILQW0Gg9A28n8OYB/EkLcq9/+WWgmOvcSURTArwBcW8ef9AZoZjuTAL4L4CNCiJ/q9/0NtPScM9BMgioG3EKIeQCvBfAP0IyCdgJ42HT/d5E3UIgAOARNVTbzfQBPQgsOfwjgS/rt9wE4DGCaiOaxPFcD2EtEMWjn5l16PUsA2s5ySP+7FpBPZ/pnAGloE/JXkQ/KAeAeaKZVx/XnKaicBl2A6f3eAc2+fxyamVKt54RhGIZhzLwHwB/qc9znkN+8BbSsHzeAvxVC5KCZEb6TiK4VQuyDthH6BLSN0gv0nyU/AXAWwCwRjRe/qBDibgCfgDavTkLbdH5j8eMYZq1CWrkaw5x/6ArsGQD2CnWIDMMwDMMwDMO0EVZIGYZhGIZhGIZhmLbAASnDMAzDMAzDMAzTFjhll2EYhmEYhmEYhmkLrJAyDMMwDMMwDMMwbaFcf79VZ2BgQGzdurUdL80wDMOchzz55JPzQojBdo+jm+G5mWEYhmkmtc7NbQlIt27diieeeGL5BzIMwzBMDRDRuXaPodvhuZlhGIZpJrXOzZyyyzAMwzAMwzAMw7QFDkgZhmEYhmEYhmGYtsABKcMwDMMwDMMwDNMWOCBlGIZhGIZhGIZh2gIHpAzDMAzDMAzDMExb4ICUYRiGYRiGYRiGaQsckDIMwzAMwzAMwzBtgQNShmE6hlA8jf97crzdw2AYpgN54uwisjnR7mEwTEfzxNlFHJ2KtHsYDFMXHJAyDNMxvOrfH8aff/sApsLJdg+FYboCIhohovuJ6CgRHSaid+m3X05EvyKi/UT0BBFd0+6xroTRhQRe8/lH8Ytjs+0eCsN0NB+56zA+89Pj7R4Gw9QFB6QMw3QEMxEFZxcSAIBQXG3zaBima8gAeK8QYheA6wC8k4h2A/gkgL8RQlwO4MP6713LUjINAIilMm0eCcN0Nkk1C0XNtnsYDFMXtnYPgGEYBgBuf/Sc8bNcfDIMUx0hxBSAKf3nKBEdBbARgAAQ0B/WA2CyPSNsDoqaAwBO2WWYZUhnckhncu0eBsPUBQekDMN0BCdnY8bP4QQrpAxTL0S0FcAVAPYCeDeAe4jon6BlQz23fSNbOVLxyXBAyjBVSWdySGc5IGW6C07ZZRimIwgnVWzqdQMAlpIckDJMPRCRD8B3ALxbCBEB8EcA3iOEGAHwHgBfqvC8t+k1pk/Mzc21bsB1IgNSVkgZpjpqlhVSRc3iyXOhdg+DqQMOSBmG6QgiiorNfR4AwBIrpAxTM0RkhxaM3iGEuFO/+fcByJ+/DaCsqZEQ4gtCiD1CiD2Dg4OrP9gGUTKcssswtcApu8D390/gtZ9/hLOtuggOSBmG6QgiioohvxMOm4VrSBmmRoiIoKmfR4UQnzHdNQngBv3nmwGcaPXYmgkrpAxTG+lsDmoDKbtCCLzxS3vxsyMzqzCq1rKUUJETQEJlE7RugQPSVSSVySKVYaczhqmFSDKDHrcdQbeddzUZpnauB/BGADfrLV72E9EtAN4K4NNEdADA3wN4WzsHuVJSHJAybWA+lsIrPvcwJpe6oxWZEAJqVjSkkKazOTx4Yh5PjnZ/qmtS1pxn+XrRLbCp0SryR1/bB6/ThtvecEW7h8IwHU0uJxBRVC0g9dg5ZZdhakQI8RAAqnD3Va0cy2rCLrtMOzg+E8WBsSU8Mx3BhqC73cNZFmlm1IipkfyOJdPdL6TIv6URpZhpDxyQrhJCCDx+dhG9Hke7h8IwHU8snYEQQMBtR9Dt4JRdhmEKYJddph3Iz1060x2fO1VXBFMNKKQyoy+R7v40V75edB+csrtKzERSiCoZjIcSa764nGGWI6K76gZcdvSwQsowTBGKvljOCV5gMq1DKm3d0kZFrjcbUQZT+t+aOA8UUhlc8/q7e+CAFMCXHzqDvacXmnrM4zNRAEBOAKOLiaYem2HONyJJbUc24LYh6OaAlGGYQmRgwDVhTCvJK6TdEdjIcTYyXvm3yv8lj5yaRyzVXaqpcb1ghbRrWPMBaTyVwcd/dBT/+9hoU497YjZm/Hx2Pt7UYzPM+UZE0RVSWUPKKbsMw5jIu+x2R2DAnB8YCmmXBKRSGc0JIFOnSirTfM0K6Xgogd/+r7341uNjzRtkCzBSdrtE2WY4IMWB8SVkcwJTYaWpxz0xE4XHYQUAnF3ggJRhqhE2pewGPQ4oaq5kl5ZhmLWLYWrEKbtMC0kaCml3zEfm2tF604zlnGsOSB8/uwgAXeMyLJF/i8oZFV3Dmg9InxpdAgBMhZv7ZTs+E8WzNvYg6LHjNCukDFMVWUPa47ajx20HkA9SGYZhZA0pp+AxraTbAhuzkqvWacRUzmX38bNaC5jZaKoJo2sd+ZRdVki7hTUfkO47p33ZZsIp5Jo00QkhcGI2hgvX+bG138spuwyzDBFFryF1aSm7ALiOlGEYA9mHtFnzdDcyG1W6JnX0fEF+7rrF1MhsZpTK1qfqGi67agYnZqK4/dGzeEJXSOe6LSDNyI2E1r9v9x6exoe+d6jlr9vtrOmAVAiBfaMh2K2EdDaHxURz6tYS6SyiSgabet24YMCLMxyQMkxVIkkVRIDfZUPQrbVKWmrS95FhmO5nrZuUZHMCv/bpB3DH3nPtHsqaQqbsNtJGpR2YA+d6Ny/MCult953Eh75/GMdnND+U2Whzy9pWm3wf0tZfL+4/Noc79423/HW7nTUdkI4tJhFKqHjejgEAwHST6khD+kK61+PAxqAbMxFlTe/qMsxyhJMqfE4bLBYyFNIQK6QMw+jkTY0an0vvOTxdkI7YTcRSGUSUDBZivFHXSrrN1Mg8zvoD0nwNqd2aDw92rw90YcquNDVq/do7mc50TYp3J9G0gJSIrET0FBHd3axjrjbjIa0dy7Xb+gGgacZGMtUw6NHSD3MCiCrdZZnNMK0koqgIuLRAdCjgBADMddmOLMMwq4dMwWs0ID05G8Xbb38S33i8uY76rUK23VirCnG76Lq2L9nGTY2kCpxUs4goKrYNevE/b7kGL7tsPaJKpquMBo2AtA01pIl0FulsDoIN2OqimQrpuwAcbeLxVp1JPQC9cnMvgOYZG0mFNOhxoNfjKLiNYZhSIskMArqZ0YDXCZuFmu58zTBM92K47DYYkB2Z0nqD79ONDLuNqN4ai9tYtBZF9vWssx6zXazM1Ej7G4XQTIwGvE684MJBDPm1TeLZSPeopO00o0p2mRFWp9CUgJSINgF4GYAvNuN4rWJKt7G+dGMAdmvzFsAy1bDXY0evV6YfckDKMJXQFFIbAMBiIawLuDggZRjGIK94NLbIOzYdAQDsHws1bUytJKawQtoOZIp3vcFduyhI2a0ziFZMrW1mwgoCbm1OHgq4AHRXHalRc96GDRzZNqcdhkrdTLMU0n8B8H4AFc8+Eb2NiJ4goifm5uaa9LIrYzKsoM/rgMdhw7qAq2k1pEtlFFJ2DGWYykSSqtHuBQDW97ia3oqJYZjuRS4wG/VjODatKaRji0nMx7pH6ZHIsp+V1NC2g/1jS3j+J+9DuEvXQNJ5titddutMM06p+cfPRhUja8lQSLukjlQI0VaXXQ5IG2PFASkRvRzArBDiyWqPE0J8QQixRwixZ3BwcKUv2xSmwkms79F2fpq5AA7F8zWknLLLMMsTSarG5AcAwz3N2yBiGKb7Sa1QIX1mOoqNQTcAYH8Xpu1GZMpul/VVfPzMIsYWkzi32J3dBlpdQxpOqisywVyRqZFJIc0JGL4Og0bKbnfMyVr9pvZzW1J209rmUbfUHXcKzVBIrwfwG0R0FsA3ANxMRF9rwnFXnaklBet7tAlq+6APhyYiTXHgCyXS8DttsFstRkC6GOeAlGEqEVEyxuQHyA0ihU0BGGaNkUhn8K0nxkqUQMPUqIFrQiyVwXgoiVdfuRFWC+GpLkzbNUyNuqwubUIvjYoku9PYsZVtX5YSaTznEz/HD5+eavgYZlWu3mDMrJACMDaJ+zwO2CzUNQqpYvo72mVqBHSPqt4prDggFUJ8QAixSQixFcBvAbhPCPG7Kx5ZC5gMJ7EhqCmkr7h8I2KpDH5yeApPnltcUVrMUiKNoF476nfZYCFO2WWYSmSyOcRSGaNeBQCGe9xIZXL8vWGYNcZPDk3j/f93EN/fP2Hcls0JY3GdbSAgk+m6z94UxKZeN0YXu68coFtTdsdD2rkOJ7vzWm60fWlBcHFkKoJEOotTc7GGj5FagUKayhQKMmZfhwGfs2sC0pTJDbg9Cml3OTN3Cmu2D2kslUFUyRgK6bUX9GGkz433fPMAfvM/HsVjZxYbPnYooRrKqNZX0cEpuwxTAbnzX1xDCjSvFRPDMN3BmB4sfv6BU0bqorndRCMpu2fmtXTRHUM+BD0Ow+ehm5CmRmqXBaRSIe3egFQGF6vvsis3TlbSa7aw7UudpkYVFFIA6PU6umaDuEAhbXFAKoRAgl12G6KpAakQ4hdCiJc385irhXTYlQqpxUL4ras3G/fHU42nlywl0gjqASmg1ZJ2yxeZYVqNXKiYU3aH9YB0OtJ9SgbDMI0j+4Mfn4nhlyc0A0RzQJprIGV3QTcxGgo40euxd+UGsWz7ku2yGtIJ/f3s9oC0FcHF8Rk9II03rkSa3YDrriFVsyDK/26ek/1OG2Kp7ngPkwUKaWu/L+lszshiYFOj+lizCqnsQSoVUgD4oxu244u/twfAyvLOl5Iqej2mnSVWSBmmIrK2yLwbu0H/XrJCyjBri/FQEheu8wEATs5qqYtKxlwT1kBAGk/DbbfC47Bp83G8OxbWZmTKbjfVkEYVFRF93N0bkOopuy1Iv5QK6fyKFNKs6ec6a0gzOQRN87C5jMbrtCKe6o5erOYNLLXFGzhmH5pW1B2fT9iWf8j5iexJtrnPY9xmsRA292u/r6TXVyieNlJ2Aa0f6cQSL6wZphzSPVLWqwCaq5/VQpji7w3DrAn+/NsH0Od1YHwpgctHenFyNmZkFpkXmI0ohPOxFPp92pysZSx13wZxNNV9fUhlui7QzQFpa+oBhRA4PqNtwKykLdGKXHbVLHq9DoQSpVlLXqcN5xYSDY+rlRSk+Ld4AyeRbp862+2s2YD0nsMz2L0+YKQGSmwWLV+h0Q9xJptDRMkgWKSQHp6MND5YhjmPiegLlR7Td8ZqIfR67FjswoUjwzD1c/8zs7BZCQuxNG69zI2A224EMYUBaSMpu2n0e7WAtNfjQDydRTqTg8PWuUliMxEFQY8dhycj+NHBKeM62VUBaSgfkEa6MCBVsznjfK+2qdHEUhKxVAZuu3VFNaRqVsBhsyCdyTUWkHocALSaa7Ovg99lMzZFOp2CjIoWB4UckDbOmgxIZyMKnjwXwp/9+oUl99mt2gTV6AdJTqDBomLwbkjZHV1I4D8eOIXpcBL/8vorCgKEbuBnR2bw3acm8OnXPRsuu7Xdw2FqJK+QFn7eAi57Vy5iGIapj1gqgwVTa7RNvR70FASk+fm4WkCqqFnMx1LY1OspuH0hnsKQX9t8luU0S4k0hgKukmN0Cs//5P1wWC3wu2yYCisY0BXeTqshVdQs7FYLrBYquU8qpCN97q5USM0bIautkJ7Q09P3bO3FgyfmG94wSWVy8DltWMykG3DZzWFdwAUiQIjCMhqvw7Yib5VWUpiy29oNHHPKLrvs1kfnbg+uIvccmQEAvOTS4ZL75EW1UWt1merQ6y00NVLUXMGXpBP52t5z+Ppjo7j/2Byeme4+RfeOvefww6en8LG7j7R7KEwdGKZG7sKA1O+2G/VHDMOcv5xbiBf8vrHXjaDbjiX92iDbODhslqpz87/ffxK3fPZBw51XUqCQ6v+HOthoMKkruLFUxqijl3WFneTcKYTAjZ/6Be7Ye67s/ROhJBxWC7YP+ioGpHcfnFxRm5PVxLwRstr1gCF9Q2b3+oD2e4MiRjqTg8umbRDUK6woahZuuxVuuxVEmpGRxOeyIZHOdkXboYKAtMVBYSKdX7OwQlofazIg3XcuhOGACzuHfCX32axaQNroroqsTQkW1JDKCbCzVVLpbgh0V1qQRAY0/7t3FPvHlto8GqZWIskMrBaC11GoagdcNlZIGWYNMFpUm7aptyhlV2+54XPaqi6I940uIaJkMGeqwRNCaAGpzwmgO+bj2agWhN7yrGF86OW7C+7rpIAgnc1hOqIYvUaLOTUXw5Z+D4Km99KMEAJ/9q0D+ND3Dq32UBtCBjY+p23VgwtpWrWl3wug8TpSNaspq3Yr1Z1mrKg5OO0WeBxW+Jw2WEyqt08PTuPpzt8kTukbCRZq/Vo2obKpUaOsyYB0JqJgQ9AFotIUE7tFOyWN5p0bCmlRDSmwst5SrWA8lDSCgm7c2YkkVWzt98BuJdx9YLLdw2FqJKKoCLhsJd/HgNtupPMyDHP+cm5RC0gv2aCpQxuDbvS48yn7UqnyOKwVF5hCCByeDANAQYAUTWWQzuaMlNegKWW3U5mNasHI66/ejLdcvxVuUwlKuzeL56IpIxU3obuupipkfx2bieKiYX9B+rWZcFJFOpPDI6cWcHI2unqDbhAZkAZctlVPv5T9uLfqxpqNrhdlqq/DamkoZddlt8LtsJaU0HhlQNoFabtyA8vvsrd8LZssqCHtnM2jbmBNBqTTEaXEzEgiFdLGU3a1i4jZZXcooO3Myl3PTmU8lMTWAW13rpus5SURJYNNvR68YOcgfvT0VEnaFtOZRJJqSbouIGtIO3/yYximMWYjCr780Bkcn4mi12PH7163BTdeNAiX3VpUQ7q8QjodUYwNYbO7q1zYS5fdvELauZtdc3pAOuR3gohwgT4vA603aSnmA3c+jT++Yx+AvBpkTm2VxFMZjC0mcdE6LSCNKGrJnGxWAW9/tHzabzuRf1fAbV91U6OokoHDasH6oNbyrNFepOlsDnarBQ6btW6FLqVm4bRZ4LHbSuZkqZDGuqCMRl4v/C5bQ2vZ/374DP7wq4839NpsatQ4azIgnQkrWFfBzMBmkaZGK03ZzX+Zh/XXmg43buW92iTSGSzG08bEt5I+rO0inFQRcNtwy7PWYzKsYP94adru7Y+excEytzPtI5xUS3ZjAa0HGiukDHN+cngyjJd89kF87O4j+N5TE9jc78UbrtmMr7z5GgDaHBpOqkbKLaAFBpUC0sMTed+DyYKAVJt3+71dlLIb0Tavh/zamLcN5gPSdqfsHhhfwpR+fpN6+mYqU6qQSpOeC4f9CLjtEAIlLq1SCfY4rHjsbGg1h90QUmkLuLTP3Wqe+1hKhc9lMzZOGlVIZcqu01a/QqpksnDZrfC5bAXGnIApIG2xQtpIUCc3EnxOW0Nr2cfPLuJnR2cbyqJImlKa2dSoPtZcQBpLZRBPZysHpFbZ9qXxlF2bhYwvL6D1VCTSdnA7FWnPLgPSbkw1iOiBzQt3DQEAHjuzWHB/PJXBR+46jK/9qvN2YtuBombxrSfG2r7jHlEyBQ24JQGXHelM55uBMQxTP9/fP4mYksHlI0HkBLClr9AZt0cPPmOpDB44PocdQz6sC7iQFeXnpiNTWkDqcVgL2o3MFymkbocVTpvF6HHaicxGU7BZyAietw3m/S7ambI7G1UwF00hlEhDCGGoQeWUONnr/aJ1fkNtK/YEkO/N9kFfR/oFyPRLOT+tZoARUzLwOW3wO21wWC3GuVmO4zNRHJvOpzunMjk4rFoNaT3BXDYnoGYFXDYr/uqWXfjLl15ccL/P1fqA9Ox8HLs//BMcnarPZDOpZmGzEJx2a0Nr2UXdYKoRLxJWSBtnzQWk07pj3XBFhVQPSFdgahT0OArq4exWCwZ8TmPXsxORNTeyoL4bFdKIoqV+Bj0OBD12jC0WGmUcnowgJ4CZSOcq1a3kjr2jeP//HcSPD023dRyRpFrQ70xiLGJYJWWYruT2R8/i8bOLZe+bi6YwFHAaC19ZOyeR14SJpST2nlnACy8egpUqK4RHJiO4YMCLrf3ewpTdeKFCCmgqaSjewQppNIUBn9MwldmuK6Reh7WtG4hHp7TAR810wpvCAAAgAElEQVRqGwXxVLWANAaX3YLNfR7jvSyuI5WpydsGvR15nc/XkGrjb2ZAms0J3PCp+/G9pyYAaIGez6l5KfT7HDWbGr3on3+JF//LL43fpULqqFMhlSq3027BVVt68eyRYMH9Xkfra0hPzsagZgXOzseXf7AJRdWUXnsDTsMAEIprn8WnRlcWkK52mvf5xpoLSI1UmICz7P1EBKuFGg7IlhJqgaGRZDjg6miFVDrsXjCgLQq6TSFNZbJQ1BwC+i7epl53ifOfTNWd6eD3oZXcuW8cAPAd/f92oZkalash1d5LriNlmO4jmxP427uP4isPny17/1w0hUG/E9de0IfPvO7Z+J3rthTcL4OYHxyYhJoVeOGudbBaLBVrwg6OL+GSDQFs7HUXKKSLutLUV9SKrZNrSGf1YF2yZ2sfdg75cMnGnrYqpEcm80pVKK4iqVZO2T0+E8WF6/ywWKhiQDofS8FuJWzu8yCWynSc74OSydeQAs0NMOLpDM4tJPD0hGbEFVUyhgq5uc+DM3UGYfLcpnWF1GGz1DVemebqqtD7NJ+y27qMJbmZVJzqvRyKmoPLboHNSg3VkC4m6lNIF+NpvPN/9+G7T40jnsoY/WM5Zbc+1lxAKoPCSgopoKmkjZr6hBLpAkMjybqA01BnO5HxJa1f2PoeraC+20yNpGW6nPhGej0YCxUqpAfHtQs/B6TAM9MRHJ6MYGPQjV8en2ureh9JZsqbGlVYxDAMk4eIRojofiI6SkSHiehdpvv+hIiO6bd/spXjGltMIJ3N4XSFhfVcNIVBn2ba8+orN5WU0cjv//eemkTQY8eVm4OwWQi5Mim7sxEFk2EFl48EsTHoxsRSEkJ/3EI8jYDLZiwSAU0h7WiX3Yhi1I8CmuvwT//sBmzt97S1htScOrmYSOdTdsuYGp2ei2G7nmpcTSHt9zrRU6HGtN0YCukqBKQyHVgqobFUxuj7uWt9AMemo3UF6PtGtRrcRl125aaCy24te7+RsttCJVumLddrpJRMZzSF1GqBWqe4JIQwsif2jy0Z15FqPHZmET88OIX3fPMAvvjQGXgdVtgaVGfXMms2IK1UQwpoKbaNp+yqBYZGknUBV0cHQuOhJDb2uo1Ju9u+SHKikxPHSJ8H46FkwQVd7kSGEmrZHd21xD2HZkAE/OsbLkdOAD84ONWWcaQzOSTVrKGGmpGqaSemcjFMB5EB8F4hxC4A1wF4JxHtJqKbALwCwGVCiEsA/FMrB3VqTjO1ObcQL7uom49pCmklgm5tY3diKYk9W/pgs1pgsVDZuVkqGVds1gLSWCqDiL6InY9p6a9mer12QwXpRLRzU7pGsVosbc1eOjIVMd6zUDwfkCpF82k6k8NURMFIr7bBLYPrEzOxgsfJz0ClGlNJLUHBamBu+wI0V/GSqa/SvCiWyiukFw37EUtlClLPK+HXn/Okbgql6i67dmuDCmmFgNTr1G6Pp1uokOrnpp404dGFBO49MoNLNgS0tXyd35doKoNMTmDHkA/hpIqzRT2SyyEN0uR74XHYtPPPCmldrLmAdDaSgt9pM3oqlcNqoRWYGqXLBqTDARdCCbVjDVqmlpJY3+My+rB2W0AqJzIZxGzqdSOdyRm7j+GkijPzcWzR65Rm13gd6UI8hR63HVdt6cOOIR9+cWy2LeOQwaa/TMpuj1um7HJAyjCVEEJMCSH26T9HARwFsBHAHwH4ByFESr+vpV/yk7rLaiKdNdxUJWo2h8VEumpA2mOaR6/cotWz2SxUViHcP7YEm4VwyYYebNKDoNN6QLwQSxuGRpIBnxPz0c6cAzLZHBbi6QKFVGK3ErJt9HcYDyVwhV5buBhPI6EHCsUK6VQ4CSGATbpRVb/Piet39ONbT4wVbBLPRVMY8Dmqbj4eHF/Crg//pMQTohUk0kUKaRMDjESxQqqbGgHAxcN+AKjNzEc/nbJW21BI66whlWtTZ4WUXafNCofV0lJTI5myW89rfviuQ7AS4SO3XtKQSinV0eftGABQ23sgTZBetHsYgHYOHbb2bh51I2suIJ0OK1hXoQepxG4lqA0opEIIhBJq+ZRd/TU7NRCaiaQwHHDlXYY7rJZjOeRuuHTDG+nVJkKZtiuL4l+wcxBAZzset4KokjF28268cBB7Ty8ikW59upRMWyq3QZRfpHRWGhfDdCpEtBXAFQD2ArgQwPOJaC8RPUBEV1d4ztuI6AkiemJubq5pY5EKKQCcnitM212MpyEEqgekpjT+Kzf3AtA2i8sFpAfGl3Dxej9cdiuu3dYPh9WC7++fBKAtas2GRoCm2EWUTEduEM/HtHNTzufCWkEhbgWKqvk0SMffUCJt9CEtNjUaW9SUPTkPA8AbrtmMiaUkHjw5b9yWV0gr+wU8MxWFoubwVAOOpyvl6Ykw1ve4jDXdaiikMi01alJIL1znBxHwjMk9txxCCMT1efvA+BJSmSzSDbZ9ke9hJYUU0FTSVvYhXTCdm1oQQuCxM4t49ZUbsSHo1lJ26wxIZXB53bY+2CyEw5Phmp7jdVjxggu1IPbsQrxuhZpZiwFpRMG6CoZGEpvFgmwDOxtJNYt0JodgmYDU6EXagYFQLicwG1UwZA5Iu+yLVKyQjvRpu+RyYpTp0tI5rpPTp1tBVMnA59TO1U0XDyGdzeGRkwstH0dSX9C4y0yCy6VxMQyTh4h8AL4D4N1CiAgAG4BeaGm87wPwLTLbv+sIIb4ghNgjhNgzODjYtPGcnI0ZauXZhcKAVLqrDvoqz8VehxVWi2YyeNmmHgDlA1IhBA6OhXG5fm3v8zrwokvW4btPTUBRs2UVUhkIz3WQSjq2mMCBsSUjTbOcz8VK/C1WikxLHOlzw2YhLMbTxoZicQmM3AiW8zCgqUc9bjt+eFDbKMjlBOZjaQz4nFUV0nldJTsxUz04azZCCOw9vYDrtvXnTWqyzdvAkArpYjwFRV87yvPgddqwpc+DZ6arq3OpTA45AezZ0gtFzeHJsyHD1KjegEi+l0575bDA67S11GXXrB7XQjSVQSKdxYag9rmzWevfwJGf8+EeN3YM+XB4MoJ3feMpfH//RMXnLMbT6PU6cO0F/QCAnAAcVuKU3TpZUwGpEAKn52LY3Oet+jirheouhAZguPaVddnt6dyANJRIQ80KrAs4TSm73aaQaude7qpvDGo7s9I9eEZfeMiFTScbTLWCqKIaBgp7tvbC47Dilyeap47UipyU3Y7SS5HLboXDZuEaUoZZBiKyQwtG7xBC3KnfPA7gTqHxGIAcgIFWjEcIgVNzcTx/5yAcVktJ2wYZCA5UUUiJCEG3HbvW++HRW06US9lNqllEUxlsMqlxv33NZoSTKn5yaBqLiTT6fcUKqZ6xtIKANKKo+O5T401xhg3F03j9fz6Kt9/+pKEsbzf1HpXYrJa2mRrJVhj9Xgd6vQ5NIa3Qh3RsMQGbhQyTRABw2Cy4aNhvqOVLSRXZnMCg32nM23Lz8YcHp4w5WrokH1tGLWw2p+ZimI+lcd22Pjis0jW1eedeKps5ASMd2dy//uLhAA6Mhau+3zI4vHnXEGwWwi9PzBsKqZYyWkdAqjsmy+9aOXxOW0uNpxbi+fraasga4xnZ1lFfbzdSQ7qof877PA7sXh/AI6cW8P39k/iL7xys8pw0+r0O43WtFqr7/DNrLCAdDyURUTK4dGOg6uPsDVpFy9zzcgqpNFXoxLoV2ZdzOOCCxbKytjftotjUyO2wYsDnzCukYQVWC2H7oA9Om2VFC5HzgVgqn7LrtFmxc8hXU/F+s5G7sm57+Ukw4LJz2xeGqYKuen4JwFEhxGdMd30PwM36Yy4E4AAwX3qE5rMQTyOcVLFzyIct/Z4Sp91aFFIA+PXd6/CaKzcZv1vKBKTy+mBO8ZVpuw+dnIcQWhBlphkK6V37J/Gebx7APYdX3sf5A3c+jcmwgumIgsfPLMJhtRjqshlbG+dmqRwFPQ70eRxaDak0NVKLFdIkNgTdsFoKBfktfR6c04MvY1OiQCHNIKKoeOf/7sN/P3IGQD4oOTFbaIi02vzqtFaTWaiQNr+GFIAx95oD0lufvQETS0n84MDksscY8rtw1ZZe/PL4XL7tS52mOvJYHkfllF1fCxXSXE4Y6bPVAtLP3X8St/zrQwBKu2jYrY3XkPZ67di9IWCcQ6l+lkMqpADwsz+7AQ+878aG0oXXOmsqID2ku6xeuqGn6uMa3YVcqqKQysV/K9MdamUmKnuzal/idqYFNUokmYHDaikoyB/pcxupQzMRBYM+J6wWwnCPixVSU88zQDOdWKixEXczkQsZd4VJMOC2sULKMNW5HsAbAdxMRPv1f7cA+DKAbUR0CMA3APy+aJFdqby+bux1Y+uAF+eKU3b1a021GlIA+IffvAxvuv4C4/dyAVm4qFwD0BSKTb1uw323OGV3yAhIG58HZGrtZ39+YkUq6cnZGH5yeBrP2aYteO85PI2tAx7YrKXLM6uFkBNoS79OGZD2ehzo9doRiquG70Aqkytwwh1bTBSk60q29HswF00hkc4Y2Usbgm5jLookVUNBlf/LgPTsQnzVa37DSRUvv+1BHJuO4vGzixgOuLC5z2OsK5pqamRaC8oMAvOc/NJLh3HxsB//8rPjFdejUmXV6hcHcWQqgpzQlMF6TY2MbKUqNaQ+lw2TS0l8f//Eqjsfh3UFHaiesntwfAlHpyJIprPGdUcqlTZL/R0zFhNp2K0En9OG3Rvy4pXdWlLtkH9OPG30Od4x5MOmXk/d559ZawHpZBhWC+Ei3cGsErU6c0UUFb//5cfwx3c8if1jS/kLtrdUIbVbLXDZLR3XZwvIpznI2lptZ6fLAlJFRcBtg7lEalOv1voF0FJ25d+3zu/qyNTpVmJWSAFgwOcwDARaSbUaUkAqpByQMkwlhBAPCSFICHGZEOJy/d+PhBBpIcTvCiEuFUJcKYS4r1VjkkFEv9eBjUE3ppYKr7dz0RT8LltVA5VyWEgLyMyLYblhJY1xJJv6PIbTb7GpUb/PCQutTCGVi99npqN4+FTjwvMde8/BbiV87BWXANBUwnLpuoA2NwPtMR00lyT1eR0FfUiFKCzzGQ8lCgyNJJv7tXKp0cWEMTeP9GlKqt9l093wtfcs75KcgtVCECLv3LxanJyN4tBEBE+eC2E8lMQFA14QkXHem2pqVKCQagGp36SQWiyEN1+/FWcXEiU12MYxUrqq6bTh1ss2GAqr026BV0+vrTVwTNagkOaEpua+6xv7caZCf+FmIR127VaqqpDK7+HoYsLwBpFtHW1WglrnexaKp9HrcYCIcMVIL172rPXocduNtYpEUbNGwLwYT6OvKDNSq+Fd+fdUUbNta3vUatZUQHp4MoKdQ75lJ8FaC6Hv2j+JB47P4WdHZvHfD58xGm2Xa/sCAD6nHdEOdAyVKbuyrkb7+7trZyeSVAt2yAFgpNeNyaUksjmBmbBiKMAjfZ6Smqa1hBACUUU1TI0AXSGNp1p+4VsuTcjvsrHLLsN0GYv6YrLP68D6HheiqQyipkyHuWV6kFbCpqeAmhUjuWFlTtkFgM0mhW6gSCG1Wgh9XueKSjcml5LYNqgFWKcaDJQUNYvvPDmOl1y6HjvX+Q3ltlJAai3z97eKJVNJUq/HgZDJ1AjIGxstJdKYj6Ux0lcakG7Rbzu3kMDYYgIuu8VI2w647IgoKs7oyujoYgKZbA6L8bTh/fCxHxzBo6dWz3xP1g/Ox1JYiKWMGufVMTUyKaQLpQopkPfCqFTqlTAppJv7PXj4L27GR2/djVddsRG9HofR57u28ci5uHINqfl7tNqGYNJ9eKTPUz0gjeQD0umIgqDHbqzx7VZL3X4wZrXT7bDic79zJZ61safgsw4AL/z0A/jig6eRTGeRVLPoK7rGaCnTK/u8xFIZXPPxn+F7VQyVzifWTEAqhMChiTAuWSZdF9Bk/loU0jv3jePCdT5cu60Pp+ZimAorsFmobNsXQFtct7KHU63MRBX0ex3GRdfW5ubbjRBRMvAXLUhG+jzI5ASmwknMRPPuyhcN+zAbTRkbCGuNVCYHNSsKFNJ+rwNqVrS8XlNOlhWbcTtsBalNDMN0PjLbot/rzBv6mcok5qKpZetHy2Et05asXMouAGw2BUTFpkaAlra7IoU0omDX+gCsFjJSkOtlJqIgomTwgp2a19TF67UUwe1D5Y0XZUDeiOniSgklVHgdmtFcn25qZF7PSGMjWVMr+ziakX3ARxcSGAslsKnXY2Q1BdyaX8ApfbNYzQqMhZJYiKVx9dY+vPG6LTg2E8U/3Xts1f5GuZEyF03pDsDaWk6ujdRmmhqlsvA7bbBaCGfnS2tIAWDAr73+fIXsJUMh1YPIHo8db7r+AqwLuIzSMalsL0cynQER4KrisvvBl+3GZ3/rcgD5LIjVQl5DtvR5Kqbsqtmcsal0biGO6XCqwJ26kfKzUCJdsoZ32a1ImnrtKmoWE0tJ7D2ziEV9HVmskDajD+mJmSgiSgZPnA2t6DjdwpoJSJcSKuZjaexaXz1dF6jcfNvMmfk49o0u4dVXbsKOIR9OzcZxeDKCHUM+I72jGJ/ThlgH1sPNRvLqISBNnbpLIQ0n1ZIdcmkKcWoujqWEalyodq7TPgPHZ1prktApyEVEYcqubroVb20dqZKuXkPqcVgLzB8Yhul8FuNp2CyEgNtmtGCYNAWk89HGFFKrHrzkRKlCGihRSLXgx0JA0F2atTTob1whFUJgKqxgU9CNAZ+j4cBWBhTyWizXJ5UUUkMhbsOG8VIibRg2DvicyIm8iz2QD0jvOjCJLf0eQ9U0E/Q40OO249xiHOOhZIFxU8BlMxRSGUwdHF9COpvDgM+Bv33lpXjjdVuwf2xp1XwFZJA1HkoglsoY86J02U011dQoA6/Thn6vw6hHLlZIjXm5woaHoZA6S+dP+V6FagwcE+ks3HYrynSGMujzOvCc7Vqt82p7TsiU3S39XqSzuZLWQoC2cSAvBTJld13BWlarIa018yubExhdTJS4f7sd1oL6ZekX88xUxHCB7vMWp+zWb6hUjExRN/d0Pp9ZMwGpNO4x25BXwlaDy65MG3nppcPYPuhDUs1i75kFXFylPtXn7FCFNJIq6M3aSO+mdhOKp9HnKU7Z1RYkT57Tdpdk0H2REZC21ka+U5Bp4+bdWGn60eo60uWMFNwOa80pRwzDdAbSdZKIjI3AKX3RDegKaSMBqaWcQqpdzwJFi3nZBqbP64TFUrrIXolCuhBPI53JYbjHhcEVHEcGFFLhetHuYVxzQR8uXFd+HWHVA6P2KKRp9Hq1OVYGkvOxNOSpVdQsZqMKHj21gN949oaKgc2Wfo+RsmuuMw247QgnVJyZj+Omi4cAAI+f1ZxuZQ3w83YOIJsT2Ks74Dab4hYzUsV3rIapUToLj9Na8D3wOwvXML0eByxUOSCNV0mzlUH9Uo0KaULNVq0flUglsJJq2ywOjIUR9NgNVV1u3pgxe4HIlN3hInEFqL3m+oHjs5iJpPCSS4YLbnfbLQUpu0tJ7W+fDCs4rdc8lwakKzc1OjknA9K1UWK2ZgLSvPvW8pNgLXnn0sBoXcCFHUPabqai5rBrfeWWMn6XrSNrSKcjCtb5TV/iGlOWO4mQyXZbsiHoBhHw5Dlt8pI7Z+t7XPA7bTg+E8VUOFlyrPMdmf7iN6W4yQm/1U67STULh81S0h5A4nXaCmptGIbpfBb0vnyA5nhJBEzpc3AyrfUNHWgkZVe/TphdZiOKlkpa7Eq7WV/IFtePSgb9TszHUoYRSj3I9cT6HjeG/K6GU3blBrVX3xy8aksvvvX251QsYbC3sYY0lFCNVEZzfahU4lJqDo+fCSEntHY9ldg24MWBsSVElEyBE2/AZceJ2SiSahZXbu5Fr8dupCrK+rwrNgfhtlvx0Cr1zJZtRqSaL1NmV8VlN52F12HDW5+/zbitOF1W1jpXVEhTlRVSuR5arLE0KZnOVsxUMmOzWtDrsRsK5moghMCDJ+Zw/Y4BIxW/XNqu/B5eMODF6bk45mMprOsxpezKDZwa17Nf+9UoBv1OvOiSws+v2164MW4O8qU4VRyQOmyWFbcJkrXpc9GUUZpwPrNmAtLZIuOealhrSNkNxdNw261w2a0F6TXVAlJfBwakQmi9nuSFF9CdybooIE1ncoimMmVz+IcDLuw7p1n/SxWYiLBznQ937pvAcz5xn7ELu1aQ5iJmhTRfq9LilF01W9Vm3m23QlFzbWsGzzBM/ZiNQexWzbhGbv7N19jypRy2MgppJKmWpOsCWoAT9NhLWr5INuseA9f+/c/rngMmdbV3Q9CFQd9KFFJtkVsuoCiHoRC3OWXXnGorlbhUJotzi5qSs61CyjEAvPKKjYZR3SaTQup32SDf1ouH/bhwnR/H9CymAX3D1Gmz4tptfXh4lYyNiusi5abJqrjspjLwOKx45RUb8ZFbd+PWCqqylhKext7TCwUp0oCmkBIBLlu5lF2pkNaaspuBp0I/8GK0NnGrp5Aem4liNprCDTsHjc2aaKo0IJMB6TVb+zC6mIAQhZ9No+a6hu9LOKni/mOzeO1Vm0rK7lyOygHpI5UC0ib0IT05GzPWaWshbXfFASkRjRDR/UR0lIgOE9G7mjGwZiN3QYcCy0+CtZj6aLuF2hd+wOcw0oWqKqQdmLIbS2WQzYmC+ku71dJVfUgNd+My7XZGej1IqlkMB1zY2p83irhwnd94L1bTta8TiZapIW1VGk4xiXSmapqQvI/Tdgs5NRfDwycbbzXBMKuJOSAFtKwUqZDKus3GUna1JUu2yNSo2D9A8uLdw3ju9lJzHQB4zVWb8G+/fQUAVG1h8dVHzuLltz1YoMpOmfodakpruqHeoLIvubeKs6kZW50piM1k0VQW43HYDOVZqqapTA7n5hMY8DlKzHnMvGDnILbr7sTmlF2ZFvsHz7sAV23pxW9eucmoDzQ7mO5eH8DZ+fiqbFIuVghIrRaCy24x+n42g0Q6awRbb77+Atz2hivKPk6rdVbw5q88jv984HThMVIZeOzWsinpQbesIa0xZbdGhRRY/TZxDx7X5rbnXzhgrFPKKqQRBU6bBc8eCQIAnru9H7detsG432iTVENgOBFKQgjg0o2ltc9uuxXpTH5jXNatW0hLFe73OkpM1Vbah1RRsxhdTBjp6406eXcTzVBIMwDeK4TYBeA6AO8kot1NOG5TmYkq6PXY4Syzk1RMLaY+5t1CIsL2IR8GfM6qk6xPd9ntpJ5C4TKW+TarBWoXKVLSRa5YIQWAnet88Dtt+O83X12QBnXTxUPYvT6AkT439o2uDQczSVQpDUhbkYZTjqSaq6qQyoCU03YLeeGnH8DvfHFvu4fBMGVZiKWMlF1AS22VQZxUExty2dVXLNmilN3ixaDkH19zGd55046y99msFrzgwkEAQLhKnd339k/g0EQER6Yixm1TYQV2K2HAq8352ZyoOTXSTLwoZXc5bEZA3toMpkw2h4iSMdY8QF7dDJoD0sV4gbtxOSwWwjtv2oEetx0XDOY3id/03K345GsuwwdftgtEhFufvcFYl5g/S2b3/GazGM/XxAIoUNeDbkdTnfnjy2zGSgZ9ThyZjCCRzpaYOcXTWXgqfHYcNgv8TptRXrYcyXRtNaSAppCupgHi3jOL2Dboxfoet7G5UW4zYCqsYLjHhZdeOoy/vmUXvvymqwuC6nr69k5HtM/TcE9pFqVcoxitjfQa0ut3DGBdwIn/+YNrSjYF7NbGXHY/etdhfObeYzi7EEdOADddNAiH1bIm6khXHJAKIaaEEPv0n6MAjgLYuNLjNpvpcKrAfasaNaXsmgr8AeDtL9iO9734wqrP8TntyOYEFLVz0mHLBaR2S3e57MpdTfP7Ifnrl+3CfX9+Y4ly/eJLhvGjdz0f128fwFOjSw3tbncr0unZX7SIW+00nHIk09mqfYGlWUNxD7BOYGIpib/+7tNNSW//6ZEZnKvQ/LyYZ6Yjyz+IYdqEqgcvfd58wLk+6MLUUhJCCCNld6hJCmkkmUHAXVtAV4xsu1Fp0R5VVBwcDwMAHjier1ucjSoY8rtgsZCxCd1I2m58mT7MxZRLWW4Fcp3QazIOlHWk8jZFzWJ0IYEt/eVb1ph59ZWb8NSHfr1ASd0QdON1e0aMtFW3w4o3PXcrNvd5CuYImZI5triygHQ6rOD3vvwYDowtGbctxFPYOqCN3++yFQgYQY+9ZoOgWkikagsAB/xO4/0uNvZJpDPwVjlG0GuvI2W39oB0wOuo2BvVTFRR8ZHvH6p7Q3l0MW6UwknnYbmRHk9lcNvPT0BRs5gJayZGvV4H3vqCbSVrCZlRUMscPR3W/p7hMnGCDHLlOmQpocJqIXzhjXvw4PtvLttO0m61QK1TIX345Dy+8shZfG3vKJ7WrzuXbOjB5n4PzsyzQloXRLQVwBUASrbuiehtRPQEET0xN7c6BenVmI0qNQektZkaqQW9il5y6TBef/Xmqs/xG1+szilODpexzK/FZbiTkIuJ4hx+QAtoqqnWV27uRTip4vR8HF9/bBQ3fup+fOXhMwUW3+cbsQpGCP1eR8trSJNqbSm75Rz22s09h6Zxx95RjC4mln9wFT597zG89X+ewGd+erymx3997+iKXo9hVhPZZsKcZrm+x4V4OouIksFcNAWi8tfr5SinkIYr1JDWAhEh6LZjqYJhyONnF5HNCbjsloKANKpkjPl8RQFpKgObhQzTnOVoVw2pbJFmbocxogeG8n2MJFVMRRTDFXU5yqWZFvPuX9uJ+957Q8FtMs13LNT4dTeqqPi9L+/FL4/P4edHZwBowZ2i5gwX/mIFv+kBaTpT1h23GLMpV7yo5CueysJd5Ri9HkftfUjV6scy0+9zIqJklk1JfezMIr766Dmj00EtCCEKWgLJTQu5bvnFsTl8+hhDZEoAACAASURBVKfHcdeBSRyeDBumouUwXHaLvi+HJsIlmYrT4SQsVL6UQAa6snRoKaki6LbDrfflLYfDZqm7TdDf3n0ERJrI8pVHzmLA58DOIR/W97gwE2nt2qwdNC0gJSIfgO8AeLcQomQLXwjxBSHEHiHEnsHBwWa9bM1o/Ylq25GtpZluuea5y2EEpB1URxopp5DWEJB3ElIhLZeyuxxXbtFqD/aNhnD/M7MYXUzgoz84ghs+df95q0RFlQwcNktJ+vqAz9nyGtLlnP2MnUm1c74zEhmIrmTz4vRcDLfddxIAYKnS/83Mz5+Z1R+Pjkr/ZxggbwxTnLILaKrUnJ7OW+yKWwtSIc3UmLJbC1qgUf669/DJBThtFvz2NVuw71zI2EyOKmo+IPU1HpBKVapa70cz9aQgNpPb7juBAZ8DN+v1bIBJIdXf55NzMQiBmgPSWiCiks+JdM8fDzWukD50Yh7HZ2KwWsgItmV2kGy5U+wCHXQ7jFTNlSKE0GtIa1BITeMoVhqXVUg9tacZa6ZGtabs6g6+y/Q4lcFwPWaeoYSKRDprbDwYAal+DGns9M8/PY54OlvwmSxGpribFdKD40t4+W0PlZRqTUcUDPicJYZGQD5lV8714YSKHk/1a45DNwetdY7OZHN4ZjqKV12uJZgenozgeTsGjCyMRo3TuommBKREZIcWjN4hhLizGcdsJtmcwFy09pTd5fpwZnMC4aRakL5SC8VfrE6gbA1pDQF5JyF35IMNBKTbBrQa06fHwzg5G8OLdg/j62+9DlElgzt+dX4qUdFUpqRnHwBsHfBgdDFRk4Kfyeaa0iImqeZqStlNdGDKbj4gbXzz5rSpLqQWi/hMNmfU4uVEe8xNGKYaxgahKSDdENTm3slwEnPRVEMtX4B8yqpUSHM5gVgqU9HUqBa0RXv5a96T50K4fCSIGy4aRCYn8PSElkYXS2WMkgdDIW3gehhPZWquHwXyCmkra0j3nl7AI6cW8Mc37ihQ9LboAanceDihB3ab+5ZP2V0JDpsF6wMujK8gM0Vea7cPenFiNorFeBpP6O3hjIDUX7ieaKZCms7mkMmJGhXS/HclXjQPVqshBbR06lprmxOp2k2NZJu45TKqZDAcqaNlyZj+vkqF1OOwwkL5oFZuREyFFbjsFly/o7xpGZBXSM21nHLMxZlNU2EF68vUjwL5gDSZ1j43S8k0gstccxw2C0Qdc7Siq80Xr/cbacPP26mJd0N+F2ajynm/Ad0Ml10C8CUAR4UQn1n5kJrPQiyFnEDtAanFUrWGMpJUIUT9AVBx6kEnEJFNxYtNjbqphjSRht9pq5g6UQ2LhbB7QwBPjYVwbjGBnet8eM72fly/YwD3PTN7Xl4AokqmrAvi9TtqazouhMDNn34AV/3dz1Y8lmSNLrudGJDKms/UChRSOSkOB1w1HWcmmkI2J7BNr3M6n1PLme6knEI6rCukU0sK5qKphhx2gXwWgQxIo0oGQqDhlF1AW7RXSmucDisY6fNgp54WKI1FzNdQr9MGj8OKiQYUu3i6voC0njYWzeL+Y3OwWwlvuKawJOnabf345G9eZihUx/UWLc1USCuxqc+zopRdueF+8XAAZxcSePc39+M93zwAIO+cbG5JAwA9Hi21uxlrgoReglJN3ZTI74qFSlN2E6nqCmmvx4GlGlx2hRBIqLUptkA+jbi4TU4xspyqHoVUBpzy/BMRgh6HcazxUMIwnrp++0DVDW2bkVGRX8/KoLJYcdSyKCsEpEVu/+Gkuuz6315nD1RZn+q2a62NAOB5erA95HdCzYqa06+7lWYopNcDeCOAm4lov/7vliYct25+fnQGL/3sgyWLtGm95UtdCmmVC778YpQz0alGcXF2JxBOqrAQ4DPt1NmXUYg7jaWEaqQNNcKlG3twaCKCbE4Y9Qg3XTSEiaUkTp6HVtsxRS0xNAK0elqX3YKHlmkn8qWHzhiB1Eon5+QyfUg71WU3lxMY0ydOJbOygNTrsGJD0FWT0ir7H27T3SlTTeyLxzDNYMDnwIsvWVcQdK7zO2EhrU5rLppqyGEXKFVIpetouYyPWgl6HAiXUZFyOc2AacjvxPoeF7wOq9F6IWaqIQW0zbwfHJys+zoVT2VrCkokMn21lX2ZnxoNYff6QIl6ZrUQXnf1iBFQj4eS8DltBRsRq8VIr2dFpkby/O1aH0A2J/BLU31wv9eBb7/9Ofh/Nxe6M/d6HEhnck1pQSYdY6upm5KL1vnxwZftwiuv2FgakKazVVXWoMeOaCqzbFCUzmotTWpRbAGthhTAsllSMoAqdgeuhkzJ3dSX7yfa53UYmRcTS0lcv2MAF63z47V7Rqoey26TQWH++yK/o8XlSdUU0pIa0oS6rEJqBKSZGhVS/dhOuxXvuGE7PnLrbsPxV8Yus1GlpmN1K81w2X1ICEFCiMuEEJfr/37UjMHVy1ceOYujUxE8Mx0tuF3uhNTq6mezVA/I5JesXoVU1rl0mqlRwG0vMBhYTiHuNBbj6RUGpHkHXunsdtPFWqrEfXq93vlEJYXUZbfi6q19VftbKmoW/3b/SeP3lQZEtbrsdppCOhtNGYYOqRWk7I6HEhjRXSRrUTulCiMbz7NCynQaz90+gP98456C+dFmtWDI78J4SA9Ia/RzKMYw9dEVj3IlJ/USdJdXSEOJNDI5gSG/02jtJjcoNVOj/Gu+44ZtWEqo+NbjY3W9dqJOhdTaYpfdTDaHpyfCuGJzb8XHmA2ZNvd5aq6HXQkjfW7MRBWjDUe9yPN38Xq/cdvHX3Up3nHDdmzu82DrgLekLlkGIM1I25XzWS39Zy0Wwh8+fxvW97iQSGcLNoE1hb26QgosP2azOlcLtZ6LhlJ2Qwn0uO0F57/PowWk0vBo55Af97znBXjJpcNVj2U3TMBMCqk+Z5oV0ngqg6iSwbplU3brqCHVvxepbG2fUflZdtmt2LU+gDdff4Fx35B+vTzfjY2a6rLbThZiKTxyagEAcGSy0IymXE1LNWxWS4HEX4z8ktVratSJKbvlmorbrNTSlKBqzEQUY8esEprBVOMLkkt1y26ifEC6vseNCwa82G+yhD9f0Oqfyk+Ez9sxgBOzsYo7n/cemcFSQsWv7dLStFbajiWpVrea9zgLJ4JOwdyiZaUKqWxrUEtwPyEV0gFWSJnuYrjHhQdPziOdzWHXcGD5J5RBBmQ5fVE+rddTDzSYAgxopjxJNQtFzeLug5N47ecfQS4nMCv7pfq1ReqOQS0gVdQs0tlcwTX0qi19uHwkiP/bN17Xa8dS1RWuYmxlFtiryfGZGBLpLK7YHKz4GKK8S3Ar0nUBbZ4WAtg/2tj8LGtwdw75YNEdn3/r6s34y5deXNH9N+hpfkBaa5sV7bE2ZHKiwGtgubrPEV1l/Mhdh6rOofWOR6bIh5cJNENxqZDWl7I7YlJHgbxCKg2PZH3pctis5RTS0oBUZlFWrCF15E2N1GwO0Rrq1h1lXrsaMkPKVab0TIppsxFWSLuCnxyeRjYnYLUQjkyFC+7Lp9jWFkDaLVpAVikdUe6m1hsEeTvU1Kj4i+VYJiBvFX939xE85xM/x+v/81dVH7cYTzfksCvZNuiDy27Bpl53wcV9pM9jpEiuNv/4k2fwlYfPtOS1okrGSB8vZkNQu9BXcs/7xmOjGOlz4+aL1wFYWTCmZnNQs6J6yq69M2tIzYYIjZoaCSFMAamlNoV0KYlejz3fjL6DehozTDU2BF3GIvCyTaV9+2rBVtT25Ky+MXRBDb0vKyHnv1AijU/fexyPnw1hNpoyAlKpTmwf8mE6omBGXxQWb+rtHPJhPlqfC2tiGYWrGNlXcbUV0oii4k++/hT+8s6DAIArRiorpEBeJd3cooD0hbuG4HfZcEeDLbBkyq7XYcNVW3rxqis2GpsdlehxS7Vx5U67ciMlWMca0lvUAi2rB6fV5s8bLxzC+158EX709DS+t3+i4uPk/FqrqZHVQgi4bMsHpEYNaT0pu0lsChZ+jnq9Wg2pzBDaWHNAqtdcF9SQlgakcp03HCh/XLcpZVeqvcum7Nr01y6zaXx6LoZc0XdYKrfl3oMhv0zZZYW0K3jk5AI29bpx1ZZeHC5RSFXYrVRzrYbcVal0zZeurvWmiWqtNiyskNbIjw9NIye0RXioSvF8aIUpu1YL4bpt/dizpa/g9o1BFyaWWrMj9d19E7j/WGv680YVFf4KaWLVVHxFzeLR0wt4xbM3GjupK1EulSoXYInNaoHDaunwgLSxsc3FUlDUHDb3e+CyWWsK7idCSWzsdcNp165RK9kQYJhWIlu/+F02bG0wgJTqVVbfLD4zH0eP276i67/MdLpz3wTOzGsB7lgoYagRUp2Q/gIya6Y4IO1x25ddoBcTT2XrNDVa/RpSNZvD6//zV/jx01M4OhXBoN9ZolgV49QX7I2+r/Xicdjwm1duwo8PTTXUO1sG9FYr4Vtvfw4++LJdyz5HeoZU6llbD786vQC33YpLNtS+MSPrTWUdqSwZKW7fZsZiIbzjhu2wWqhqplnSUEhr/yz2VGmXJJFqsjTPrIX5WKnpWb9X66c6WuTAuxx2/fti3rg1UnZNn5vbHz0Hr8OKXaYUbjMyII0kVWOdtlzJnnxOvKiu/NRcDC/8zAN44EThek+uI8qVMLkdVvhdNlZIu4W5aAqbet24ZEMAz0xFCy7YS3rP0FprG6yGk1159SGUSMNmoYqL+mr4XbaO60Na7FBos3SGy24kqRqpiSfnypsLKWoW8XS2oSbrZv7r9/bgU6+5rOC2DT1uzMdSq16np2ZzmIkqLTHuEUIUtCwoxmtMeqV/83goASG0hVlxkX8jJGvclXU7rB1najQeShrmHY0qpNLefqTPA6fdWrOp0cag21AkWCFlugWZDvesjT0V0yKXo9jU6OxCHFsHVhYESZXqvx48bWy0jS0mjAXrYFFA+pSeJupz2kuOk1SzddU1xpdxSS1mubVJM5gOKzg6FcEHbtmF+957I77+1muXXTsZKbt9rVFIAeB1e0agZgUeaGAjV35+bBYCEdW0Ngy6a6vHrIWHT87j6gv66uoMIDeL5eas/Jw5lzmG1UIY8jsxHa4cuMv5tZ4U4qDbUbNCWo+pUTYrDGVT0ut1IJsTODqliU3FCmolNva64XFY8fEfHTHmW/m3LsbTULM5PHZmEfcemcEf37SjYpDpcmjn+MsPn8Gff1tzY14uG2BIGhEV1X0emghDCC399ux83Oh3n0/ZLf8eDPmdrJB2CwvxFPq9TlyyoQdJNWuk8gB6SmcdAYt9mbSYUEJF0GNvqHg/4LIj3EHWzeUUUvsyLsOtIJsTiKYyuHKLlioke5wVI23HpQ15o9itlrINuIF8es1qMR1WIERr0lIT6SxyAhVTdmX6WDmFdOz/s/fmYY6c9bXweWvRrpZ636Zn3z22x/bY4wXjjcVmM0mAEALhCcklIXAhYSfLzU3y5ctCApcv5EL4QvbcJITFhAQwYGPAxgabGY/t8ez7TO/qRa1dVfXeP6reVyWpJFWVSmp1j87zzIPpbqlLrVLVe95zfufwOPZg2UyFW3CLSoMghbBP7DiFdHIpyxfCboM1WErkRK89yy6lFFeWshiLB/mGQFch7WKtgCmk122oPY/YCEJFqM+5uTTftHQL82zgG2/aAED/bM4m84j4Ja4aMVWGLYqtFFKg8Vwdg6pRY4be/sY2W5u0UiFlxz/RG8REXwjbh6xVIzPabdkF9N5sAJhxkTzKFVIHGyPsPFls0rI7m8zh1GwKt2/rd/Q4RhbZvZnlBzC3TD0M9wS41dwKGRtupUrEgnJdtThbUPkxOmmWUCmFWLG2Zpu/hy4uoicgoSdo7zPTF/bhX/7brZhN5vH5x88Zx1XazEmkCnjo2SuIBiS8wxQiVAmfKEAgeqhQNCDhx795H26sE/QFgHeJTlf83U8YoavpvIo//PoxvN+oGyoppNbvZ6P3cD1g3RBSPWlVxs5hfRfTTGCWDAJpF9wWU4OULWUKjhN2GQaj/qr+o9UCpbSGZXf1Z0jZnO3ukShCPpF3nFWChe+womYvwQjplRbPkbL5hXYE97CbWa1Qo0iFLciMyyZFj5FIt+ogYJ+QBn1ix4UaTS3nMB4PwicKrv8GbGHTH/bBL4kN1c5kVkGmoHYV0i7WJFjgzY11AnIagSmkmkaRK6qYXM41bRM138sfuHYUwz1+XF7MYG4lX5bM75dEDET8OGUk7VYmlTOnkd1EUabUWCWe10I7UnbZ8Tvpdg3IImSR8E2HdiDkkxD2iY7ndoESoa8kPvUQkEX4JQHLRhfpqRprkkZg4Zt3bBtw9LgwV0gNQlpsbNllGOkJVBEjM7IuQpZiofoW9aWs/r4EZdFRyq5GaZWDglnyD19cwrahiCMx6PqJOLYORrhCmi2W1jZzK3mcnklh13C0LhknhPB1yub+MFc/62Ew6gch+lrBDLaWzRQULGUKmFw21n91LLtAcwrpPz51AV94xlkC+GpgXRBSVaNYyhbRF/bz4V/zXMFCxplCajUIbUYzqa5DPQFXO3qtQLaoQtFoVbx5o1CndoBd6OIhH7ab4vYrkTC6pPqbVEitMN4mQsqev3LWoBVg4QK1FkHcsmtxLJcXs/BJAgYj/qoYdDdgqmegwU0w5JM6yrKraRTTyzmMxgPw2wwjsgKbq4kGJARkgXfB1cJ8umQhZDctt+psF120G/vGY3jo3Xfg5XuHXT+HmZBdSOgLTKaUuQW7l8eCMg5s6sWG3pA+Q7qSq5plG4sHeOBb5X3TqULKk00dhBqxbsNWOpjY8Ve+vnrwSwIm+kKOFEcvMBj1l80C2oUbhRTQ542XMgX8wX8ew8s/+X2uljvB8ekVyCLB3jFnSdOsIoaN09i17AJ6wvVMHacXPxdl+5sj8WB9tx9L2N3YF8JKXrGt6msaIFQQThZamS2q2G40ITjBeDzI11mZggr2ts+lcjgzl+J2/HpghNWuC0AWBQxE/FV/95OGWJYuqEjlVSxlisgrKvINCGlf2F83S6UefuehF/DhLz7n6rHtxLogpIuZAijVlQZGTMyEdDHtTNFkCmmti76uuLojQMNRP2aT+VUlewy1OtxWo3y7EubC8+1DEZyatd6NZO/zgMui9XoYjuk7XK1O2p00XShbDWadqbXYqBdqdGkxgw3xIASBcFtJMzOkOX4TbKyQpjtIIU2kCyioGsZiQaOuxd2xreSKCPtESKJgi2CyhXBvyNdVSLtYk9g/EW+qp1I0zZCyAKItTVp2g7KIkE/EPbsGIYkCJnqDumV3JV+lhIyY/n+ly4StCewSUuZCcaOQqi10MLF7b6OeRTPu3jWE110/1qpDqgndceZ8g18zGhmcnovxkIznLi/jb4xE/HqqYy3MJHMYigYck2E2TpOutOzaIKTDPQGs5BVL5xMAZI0NXzeW3VprWRZ4xAic3TBPlVJUTE+hzyQ4bLNBHiuhB1SW1llMyT85k0IiXbBFSNk92smc9GisXJnOFBQezJQ2vR9zK/nSDGkNy24sKCNdUJuaH59abk9rhFusC0Jq7hmVRQG9IZkTFY2pp04IKZ8h9V4hHe4JIFtUOyLYqDYhbW/5thWSpmPbMRTFTDJveaNnM6StUEj9kojBiL/lhJQl+bbTsltrhtQvCRAFYm3ZNRJeAXgTamRzbiXcYZZddlEfjQWM2U93N4hkrhQoxrrH6j2X+TrHbFpdhbSLqwnmUCOWGrqprzlCSgjBX//CAXzsVXrS6kRfCFPLWUwv5zAYqVRIS5bUymsou4/aDb1hSperHtKWWnbZpqX943rvfTvw6y/b2apDqomBiLsRKMUgpE6xeySK49OlzXEnVtT3/ethfOP5Kcwkcxip0XdZD+w84ZZdppA22NAFSoFiZnL043MLXHRIu7DsxkMyVI3W3Cxm9YiMwNn9W6la9Qypef2+zY1C2hvESk5BMldErqhiU38IhACPHpu1/ZyckDqYkx7uCZRlkJhHCdN5la/HZpL5uim7APjcrJN53Er86OyC68e2A+uCkHLbpmHLNV+kVnK6VcDZDGl515kZlFIsZoo8Kt4pWKdZJ8Q3s/SvSlsSi8pezaTdZdMcy1hcv5ha3XjmV/LGDrfzxGM7GO8NYrLF1S+M8Coa5VHurQK7mNXalSdEr0eyStm9tJDBhHFz8SLUiF2MG713nWbZZefDWDyIgOReIU1mFa5UO1FI+8I+vovazAxvF12sNTArn6pR7ihx0uNZC7dvH8CwoX5u6A1Co7oCdf1EeS0HW9gHZIHbZxmcWnbZWISTlF2pTZZdgZQsop2Mwagf88b67ycXFvBLf/c0FBvrFlXT+DrPCT7xpv146mP34eFffykA+5sPqkbx1Wcn8a0XZzCdzGG4x7mjiyukLGW36EwhBcDto987OYc3/dWT+IcnzwPQg3YGo35nM6R8A8baRrpYoZDaSdpl3ZyVM6RBn8jHhLYNOt+AYhtJk0tZZAoq4iEZt23tx4/P6wTNlmXX+P0TDhTSytldNnrmlwRkCgpfA82t5JBTVEgCqbquMDi9vpixw3h9T51NOH5sO7EuCClfqEVKhJRdpBYypUWcXfCLvoVCmimoKCia694zNuM6k1z9YCP2Qam8OPKU4VVM2uWW3aDMrVFW5cqJdKEl6ijDWDzYNssugJYTLxYWVSvUCNDJaqW9JpVXsJgp8qTJUqiRe0Jasg/XX/h0WqiRWSH1N62Q6q89YCMkqquQdnG1w9zDWVA0CARV6ejNYuewnir77nu2VdlQmbJVWfkClK5j9mdIDULqqIe0DQqp4dxwW83TTgxG/FjO6jN43z85j0eOz9qy0bpVSAWBYCQW4KTILiFl6uCFRBqzyTwniE4QlEUQAmRcWHZHKhTSvzUsx//w5AVoGsWhi4u4caMzO30sWN+izogqI3B2lD3WL2wVNqU7IIkjQsjA80AWs8gWVARlCT99o56oHZAF/v16CHKF1D4hHokFsJwt8vUL24Qa6vFjKVPkAsTsSh7ZglZTHQWaI6QMPzyT6IhxwVpYJ4RUJ3eMdA5E/dyyy3ZpnBBImXd9Vb9x/PlcW3Z18tcJ8c2znJCWXxzZDb5WqFM7wGxDsaDMOzOtLmjzqXxL5kcZ2DB8qz7ElFJMLmX5Lnmr50gZ0Y9aLKgYwn6pyrLL7HETvfrNgFt2C+7PkRVOjut/lkIdNkM6tZyDXxJ0pVIS3Yca5Yr8tZcUz/oKacgn8kRLgZQWJV10cTVANNWeFFWtpprQDPZPxPHER+/FB1+xq2qBzpQWq000SRQQ9Uu2F4zs+ueEkLZjhnQ5W3QUaLSaYO6u+VSBr/mYY64eVJeElEESBUQDku0KGFaPcnImhVRecUVIdfeShFRVqJG9lF1Av3edmUvhsRNz2Dfeg3PzaTz07BVcSGQa1phUgrkOawUbJXMK/EYIImDPsqvWUEgBfX2/qT/s6jM/blJIs0UVQZ+A+/eNICiL2DoQsbX5EvCJ8IlC2Rx5I1RWvzCRJxaUMWuafZ5J6gpprflR9hjAHSHVjPXrxYUMvnti1vHj24V1QUgTprAPQN81mzfsnYsV37MDc3BCJdiOmNtQI16W2wHVL9PJHOIhuWpXplMUUt02JPKboxUhTaQKTXeQ1sNYLIC8ovFzzGssZ4tIF1RsN3blW01IG82QAvoCqVIhZdH6bAEgCgQ+UWhqhjSZK0IWSd2LMKBbdjtJIZ1cymI0FgAhBAG5CUKaVfjCli0q6j3XoqlPmRACfxNkuIsu1iKYcqJoFHlFg8+GOuQUhBCMx4OWahGz7NZymPQ0SB41g42gVI7M1INUZ7PcKyQtquA6FWwzem4lz/+e8zVSdymleOHKMmaTOSgadWXZNSPeoPbEDKYWsvuqE1JjRsgnmmZI7feQBn0iegISJpey+PsfnodPFPC5tx3AcI8fv/vVowDAO9/tohFBWskpiAZkvn5L2lBIGXGy2iz4+YMb8Usvqd0VWg8DET98ooDLS1lkCgpCPgkRv4TffPUe/PKd9p6zP+zD1sGwo40MrkwbVmnmuowFZT4yB+jjc7miWndzIeawVsoMjQIP7BvBRF8Qn/rOKVBK8c0XpvH85WXHz9VKdP6QgA0spAuIBWW+czIQ9SFdUJEpKHyw2kmoEXseqxnKkkLqjgRF/Hp3VicopNPLecsLY6OU4XZgOavbhgghDSy7eVw7Hqv6ulcwzx60Qoll1QW7h6M4cmmp5ZbdlZyCkE+se1GNWCik7G9vXqgEmqg8Yc8ZDcgNbUIhn4iCqkFRNc/teW5wZSnLU/oCsoCFdPOhRn4bM6GJdHl9lV8WugppF1cV+GYx1RVSX5uvB8M9ARBSe0PPCUmZSeYQkAVH4UGEEIgCaWkCfjKn8FGCTgdXSFfynIhaEdIzcym8718P44UrSbz6ulFEfFLTFTXxoK/m/CTDd16cwR994xg+9MpdZV8fcjFDCuibxU+dTeAjX3wONxh9vnYsuwBwcGs/vvrsJDRK8ZrrRzEWD+KjD+zGb/zbEUgCcbyOYgrpUk1CWkRPQOLnkhOF1Mqy++ZbNjo6PjMEgWAsHsDlxSxyRY3bb9926ybbz/Gbr9rjeL3DlHCW8Fs0KaTmYNPZlTwifqluwGNPkwqpXxLwnnu24yNfeh7v/8IRPPTsFYzHg/juB+9uidPEDTrjKJrEQrrAA42A0q7Z/EqBK6TxsINQozops4zgurXsAvpJOtsBM6QzyZyldYS9/sIqhholTbYhRkgrh+I1jSKRav0MKdC66hcWAb57tE0KaU6pOz8K6OEJlaFG5plehqCvOYVuxcaxAKXkv0wHqIE/ODWHwxeXcMuWPgB6wqGbOU5KKVZy1aFGuTrPtVjRp9yMXbgSmYKyqiFmXbgHIWSCEPJdQsgxQshRQsj7Kr7/QUIIJYQMrNYxegWesqtqY37z/AAAIABJREFUKLRIIa0HWdQtiLVGHmJBJ4Q0bxBcZ8RIFEhLZ0jXomV3LpXnfaTzFZbdE9MreP1fPoHJJb1XdiWnQKWUb7y7RTwk1yRjDH/9+FmcmUvjxcnyvlK3CmnYL+J8IoN/e+YSzyGxY9kFgI89sBt5RUWmoOIXb9dVwdfvH8dtW/tx8+a+uvOLVmiUKs3u79GAjJBP5DVN9cCc6K2YXx6LB3HGCBVyUm/DMBj1O55f3dQfwmgsgH966gIopWWWXQa/JGAmmUO22DrLrqpRCITgjTdN4NXXjuIrh68gHpRxeTGLrxy64vj5WoV1Q0jNCzXmWWcXKZ8x22EXYp2UXbYj5tayC+i7Yx2hkCZzlhdGuU6oU7uQzCn8Axj2SSCk2rKbzBWhaBT9LZ4hBUrVLF6DEdJdIzohbbU1NZVXGvbeWVl22UyvmUAGZbEpy65dQspuHhmL5N92Ym4lj49+6XlsHQjjXXdvA6DfTNyEGmUKKlSNlkKNWEhRnb9nIlUoc3p4pZBSSvGKT34fL/mTR/Hw0emmn6+LtkMB8AFK6R4AtwJ4NyFkL6CTVQAvB3BxFY/PMwimUJ9WzZA2wm+/Zi/eUcM66ISQTidzGI46JyayQGwlybrFWrLsss3ouZU8Hysxp/FrGsVHv/wcZFHAV999Bzb1haCoWtMzpIDxXtexZ19ezOApo2bjxEx5j7qbGVKg/LUxt16jkReGrYMRfOiVu/DGmzbg2g26GkoIwd+942b87S/e7PhYgrI+U7mcLeKpswm86a+eLNsgXckVEQnoSvTBLX144vR8w+cshRo5PpyGGI8HcdYgxU7ShJuBLAp433078OylJXz7xRk++23OzdgyEDZ6SFW+DrBCQBbhkwRXll1K9WunIBD8+Zuux3+/dzu++K7bce14DJ9//JzzF9YirEtCyhXSVB5n59JG55D9M7weIVtMsxnS5hTSqeXVJaRFVcN8Ko9hiz6serU37YJu2dUX64JAEPFLVYSU7YS2coY0HpIRlEVcWWyRQprIYCDi5+dsO0KNIg12vyN+iafBmR9HCBAxVQEE5ObSb5M2d+LDFf1rq4FUXsFb//pHWEgX8Imf3c93kwMuFVKuOFeFGtVeaC5mCmXhbAFJ5NH/zSCRLuDyYhYzyTz+7OETTT9fF+0FpXSKUnrI+O8VAMcAjBvf/iSADwPo3GhFB2D3Jo1SFNT2K6QA8Lrrx7hDohKxYGPVjGE2mbO8/zZCWxTSNUJI/ZKIeEjGufk03xw15z185fAVHL64hN95zR5M9IUgiQSKSl2n7JrRG/LVfa8fOlxSnlj/ZMQvIeqXHAVZmWFuZ2Cv065CCgDvfOk2fPyN15d9zS+JjtVRQCez8ZCMhXQe3z85hx+fW8ALV0oziam8wp0Ed2wfwNn5NLeu1gKbIW2VQspSbYMuXq9bvOGmDegP+/DNo9MoahSySMoqlbYOhpFIF5DKKw3fh1hQtlWfUwldIdX/OyCL+MArdmHbYAS3bevH+US6Y5J31wUhna+wbZaS1/I4O59yXKRbj5AtZgqI+qWmdmZ3DkdxZSlrO/ygFZhbyYPS6soXoP4MbbtQSVZ6AtUfRJZS1sqUXUKI0UXqLSFdzhRx6OIiLi5ksKk/xC+QlUTQa6TySsOZJauU3ZWcgqhfKrtRBAyF9PFT867IomOFdBWDjR4/NY8TMyv45M9ej/0Tcf513Tbr/HPCy+eD9npIc0XdalU5Q1rP4msXzEq1ZSCMyRYmSnfRehBCNgO4AcCPCCGvA3CFUnqkwWPeSQh5hhDyzNzcXBuO0j1Ek0JaUGjbZ0gbIWZzhpRSqlt2HQQaMUii4GiG9FtHp/GqT/3A1sZZrqgir2hrRiEFgG2DEfzwTEl9mzepiEcuLyEakPD6/fr+jCwKKGoaVE1rfoY0JGMpU+DdmZX4yYVF7rA6n0gjGpCweSDken4UAD771htx185BAHrIHSGlEMrVwHhvEJcXs5xoHr64xL9nvr/fuUM/5idO1VdJeQ+pQxu73WNlaFVvvRUkUUAsKKOgGDkYglDWnbxlQK+RubSQsUVIl7NFx/dojVpvwAxEfMgrWpUjbrXQWVdzF1BUDYl0HoMm6wsjp1NLOVxMZLDVYZEuD/WxnCEtuO4gZdhnDI8fnbKfcFVUNXzgC0dwfDrZ+IdtgFmGLUON6szQtgvJXLltKBqoVkgvGoFAG130UjnBWDyIyWVvCenfPHEOb/jMD/HC5DI29oX4jmmrLbsrucaW3YhfQlGlZQuYpMWueVAWcXkxi7d+/kf4ux+ed3EsxYaVL0DJXtOMPbhZsM2PyiRCt8FO1Qpp/R5Scwcpg18SPFFIGSG9Y3s/0gXVVhpiF50HQkgEwJcA/Dp0G+9vAfgfjR5HKf0cpfQApfTA4OBgi4+yObBFlabpCqm8CgppPcSDPhRsLPBW8gqyRdWVdVMSiO1xGkXV8P9+/RhenEracvnY7YbuJOwZjXLlMOwTy0KNppdzPBEdMP52qj7L12zKbiwoQ6MoC6cxY2o5hz2jPfBLAjSqE9hfuG0z3n77Zte/8/59o3jPvdsB6PcEvyQ4nkH2Epv6Qri4kMFl49x69lIlIdXvbzuHIxiM+vHEmWpC+oWnL+F3HnoBgMmy2wKFdIOpazToa//suaJSFI3zzkyItw7ogtliptjQfh0Lyjg7l8Z1//Nb+P5J+5uHGqWW5wmfwe6A1g9gHRDS+VShSumTRQHbhyL42nOTUDSKrU4VUl57YpWyW2wq0AgArhnrAQAcvWKfXF5IpPGlQ5fx6UdPN/W7GWZqdJACJUK+mgpppW1IJ6TlO88XFjKQRcKj+FuF8XjAc4X00mJGv5nlFGzsC5WCezog1IgdiznYKJmrttcGfSIuJHQy85Pzi46PJekw1KhStfUClFJ86SeXLROczZhN5iEQoD9cvrsdkEUoGnU808XmQNjrb9RDakVIA7LomUIqiwQ3b9ZtiK0K8OqidSCEyNDJ6D9TSr8MYBuALQCOEELOA9gA4BAhZGT1jrJ5mGtfiooGf4cppNdP6JvN3ztRf7HIOsDdqGWMVNnBV5+dxHlj43a6IrdiIV3AL/7tj/HNF6b415i6u1YsuwCwZ7SH//fu0Z4yQjqTzGEkViIikiig6NEMKcsRqeV0m1zKYiwe4GuseNCHNx2YwC/ctrmp38vuh4uZgiO7biuwsS+EyaUszhubmocv6usAVaO6Zde4vxFCcN14DCemV6qe42vPTeKrz17hjwOsU3abxZiZkMrt3XCRRMLPO0kk5QqpSTBrpJD2BCQcn17BSl7BTy7YX3Np1PpvOhjRz80uIfUITLkYqggHeMn2AV6p4VQhZRaIomUPaaGpQCNAt5iOxgJ4YdK+QspCdb51dIYvTpvBpPF8VmTOJ63uDGleUZEramW7tNGAXKWQXkiksaE31PIqkLFYEPOpgqedj+ZQq419IWOns/Vzkiu5IiI1EiIZmFprJoBW5DEg6zu/AHD40pIjGwm7YdmZIWW7ia1Qj0/NpvCBfz9SNu9jhdmVHAYi/qpFDIvcdxouVJlaXOohtX6eRCsV0rk0JvpCPEFwymM3QBetBdG3vj8P4Bil9BMAQCl9nlI6RCndTCndDOAygBsppWs6tUoQCAjRrx+6Qrp66pAVDm7px0DEj/96frLuz00v6wtAVwqpA8vuN16Y5ptdlUGKRyeX8d0Tc/jVfzrEr39WaeqdDjMh3TUSxWKmyDfTp5ZzGDGRfsmYv9VTdputfWG1J9XrsXReQTKnYCQWwJChQjWTO2IGmz9MGArpamKiLwSNlirJJpdzmEnmuEPAvGbYMhDG+US6yuJ8aSGDZE5BQdFamrI7Gi991toVasQgiQKKGoWi6dV17D30SQK3dQONA6rMrsHzicapxQzmGVIzBqJGKFiN7t52Y80TUmbVqJyFfMn2UsL9tgFnCqloKISqVahRptC0QgoA14zFygbAG2HKUC0KqoavNFg828HpuRTiIblsgctQsiyvjkLKbUMNLLsXEpmW23WB0qLBy12k6eUcryraPRoFIQQhWWypQrqUKSBdUBsWsTNLr9l2ZmXZNe/mLaQLfCfeDqxuWLXQSvX4pJF+eKHBsc+u5C0XjyWrrbNjq7TGiQKBLJKaiucz5xcgEGC7ye3htnKmEucTaWwdCLc8UbqLluEOAG8DcC8h5Fnj36tW+6BaBcno4Swo7e8hbQRRIHjVtSN49PhsXUdHvZGZRpAEYrlZboW5lRyuGYsZv7P8/mV+iifPJACYFNI1UvsCALtHoiAEEAiwc8iwP6YLKKoa5lLlXeuSKHiWsst7OC0UUhZaORYLchXcq7nckKGuFRSN91evFszrrwf26eaLI5eWrAnpYBi5ooajk0n88TeOI51XoKgat/suZgomy673x+qXRL72aTchZcnYRZVCFgh/DyN+Cf1hHyeLjcKWygmp/fWWRqklyR+MlHp8OwGddTV3gVrW04Nb+yAKBAMRH2IOCSTbOSta1b6ki00rpACwb7wHZ+fTtm2Ik8s5EKJffM0WG7c4PZPCjqGIpa+cWZatXn87wOyM5g9fT0Aus1VSSnExkcHm/tYT0mYKiWthJpnHa68fwxMfvZcvGEJ+qaWElAUOmEN5rGClkJo7MxkqL56HHFhIkg4WPsEW9pCy9MNLiw0IaTLPd7rN4FZbpwopt+yWXn+9XtFvHZ3BLVv6yubX3VbOmKFpFOfm09gyEMZgxA9ZJF3L7hoDpfRxSimhlF5HKd1v/Pt6xc9sppQ27l1YAxCITkhXq/alER7YN4pcUeMkzwozK+4tu6JALDfLzTg6uQxVo5hdyWNzfxhRv4TpimR/plQFZAGnZvWNuZOGpdKs2nQ6Qj4JW/rD6Av7SpvHqTwPbjRbdmVDIVVU7yy7Vkm7zGUyGgtw957XCingLGG3FdjUX3If3rNrCIAudrC1WmW9CQD8+bdP4LPfO4M//eZxTC3neFZJIlXgyn8rQo2A0nntJlW4GbAZUlWjEE0puxG/BEkUeHWhnVAjhvM2el0ZNKOHtBK9IR9EgXQVUq8wu5IHIeBqE0M0IOPWrX18se8EvPalgpAVVQ0reQW9HhDSrYMRUGp/XmtqKYvhaAAv2zOMQxeXXEU/M1BKcXJ2BduHopbfr/X62wWrXdpoQEIyp3Bb6EK6gJW8go39zuzYbsBuJF4R0lReQSqv23nMN/6QT8TFhTT+5JvHW9Iz95MLixAFwuecaiFi7N5VK6TlaiYjpOPxIKJ+Cc84IKRMIbSnkBq1Ly2YIT1tFGVfWqj/OZxdyVkuHt0qpMmcove4mSxXftk6sff8fBonZlbwymvKx//8kth0D+mVpSzyioYtAxEIAsFwj/fz0l104SXKFNIOCzUCgL1GRsSZuVTNn5lN5hENSK7SPiVjcVsLk0tZvOYvHsfXjkxibiWPoR6/Zfc5W/zvGunBqdkUKKV4+Og09o33YKTFuQxe4/bt/dg90oMBU0gLm5kdiZksu0bti5cKqZVzaspwmYzFg1yViwe9qacLyiIYt1hty+5Q1M8/g7tHoxju8ePMbNry/s7Ce75nhPH8/ZMX+OwoACTSeV770opQI6BESNtv2SUoqJq+iSYIfNOf/S9zeDacITUI6ZaBMJazRSxl7I3vadT6byoIBP1hX3eG1CvMJvXZLqs5ws+89Sb8xVtucPyc7I2r3IVk1ozecPM7XSzuvdJGUwuTy1mMxgN46c5BqBrFD22UDNfCfKqApUwRO4asrcy89maVLLtJbtktnyFVNcqTVi8s6IrWpjZYdmNNKqRHLi3hvf9ymHdgsZ3qSrtWUBbxxOkEPvPYGbw45U2ashmHLi5iz2i04SKopJDqf2tNo0gVlKpEXKZcjsUDuHlLH546W1sRqMSKg1klRnxboR5zQlpHIdWTvAtlSd4MpdlPZ8e2lClUEfyALCBv8TzfelEf+3v53mFbP28HiqpH0LMFwcGteqDRWDzIF1NddNGJYD2cq9VD2gixoIyBiA9n52orGDPJnKv5UaA0B1kLV5ayoBR4+vwCFI1iKOrHSCxQFWrE7JG7h6NYySl44UoShy8t4RV7117u1e+9bh/+/h23YJPhmDo7lzbdZ8tDjRRN02f5hObOnf6wD9sGw/jyoctV+QnMsjvU4/d8hlQQ9PEeYPUJqSAQTPQGIQoEIz0BbBuM4EwNhXS4x4+gLIJSvcs34pfw2e+d5d9fSBdaGmoElKpf2ln7AhgKqabp6c6mUCO2+c9U9EbvJxuxe+11owBKCfmNoFKKWn/Swagf86lyYju1nMUz5xdaIozUQ+ddzR1iJpmztNIBusLmZhZCrmFZZbsRXiikQ8bNiIUy1cL3Ts7hD//rRUwt5TAWC+KGjXFE/RLfZXIDZs/ZMWxNSEs9pJ1j2WU7bWznjVW+bB5oPSGtNytiB3/0jWP4jyOT+PG5BQC1bebmsmw7Ef1OoKgajlxawk0bexv+LNvJZQR8Ja+A0uoqALabNxIL4iXbB3BuPo3LDayvDEkHCqkoEARkwfPaF0XVcHY+haAsYiWn1ExLtEryZmAzPE6VyqnlHEZj5ba4Wqm53z0+h90jUWzoLT/Xm1FI/5//OoY7/uRR/P2TF3DnjgHe1TweDzYsL++ii9UEm53uxBlShq0DEZydr62Q6oTUXR+l2ICQsnkwlsI5FNWTXmcqLLuMRO0c0Z1Sn/neaVCKKifGWoAoEIgCwWDEj96QjJMzKyVCalJ7ZYGg6JFCSgjBf7tzK45OJvHE6fLN2KnlLAYifvglka/1vOx2DRlrhdW27ALA5v4wxuIBSKKgE9LZFF+nmSvmCCHctnvP7kHcvWsQqbzCidK82bLbIoX0wf1jeNfd2xqGB3kNXjekaRAFgRNituZjHCbYQLm9f98IPvXm/Xjd/jEAjbMvGCilNUn+YNRfpZD+55EpvOGzTzoeRWoWnXk1d4BaYSPNgKmtlQohS7f1hJDaVEg//egp/P8/OIfziTRGYwHIooCDW/vxI4PcuAFThXbUsOyWZkhXRyGtZdkFSsrahUQGhKBqkd4KNKOQHrq4iKfO6u/Vo8dnAcDyRgmU20i8JgWnZlNIF9SqHk0rMAdAwpgrSNaoAuCEtMePO3foIWKPNyi+ZrDaQa2HkE/yPIH4wkIGRZXiDiMArZZKWivJG9DnPgHnCumVxWzVnJaueJZ/5lJ5Bc9cWMDdxnxO5c8XVK1mMXstqBrFfxyZxExSn7N6u6mGYNRQUuymeHbRRbsRlEVkCyqKHaqQAnqyf32FNI9hi+uJHYR8Yt3sCVZ7csIIbBvq8WOkJ4DZlXzZtYLd3ncbhPTrz09j90gUO2tsVK8FEEKwcziKEzMrmE7m4JOEshBKHmrkQcouALz+hnEMRPz4Pz++UPb1yeUcxoxU1x1DEfglATuHrddbbhA21gqrHWoEAB++fzf+7A3XAwC2DYaxkldwxjj3KzexWcXJwS39fONjy0AYokCwkNZnfoHWKaTXjMXwkft3t727VTbqhhSNQhYJf/84ITU4TKDBBkPIJ+HB/eOY6AuBEAcKaY0ZUkAPNqokpEWD+3jxGXECT85mQsj9hJAThJDThJCPevGcdjFTI2ykGZQsq+WLskVDQfHCehH2S4j4paq5DjNmkzk+l6dRYNRYwI7HA0ik3Fe/nJpJIeqXau7Q8pTdVSKkVtHzjJwyZe1CIo2RnkBbhtODsgifKFjGuzfC//fIKfQEJNy8uRePnTAIaY2ExaSJ8F72WCFlA/Dba9i0zfBLIqIBiVeNlBJhrUONRmJBbB+KYLjHj8dtWsmdzJCy35XJe6uQnjIWbPfu1snexYUMt1WbwTaN6oUaVRLJ5WwR9/7ZY/jC05eqHkMpxZWlLLcP8eeSqhXSJ07Po6hS3L1rsOp52O64U5X02UtLWEgX8MFX7MTvve4a3LO7RHb7wj6oGkW6xfVDXXThFkFZRLaoK6SdGGoE6IQ0kS5Yui40jWJ2JYdhl3OaQ1F/XWfVnLE2YIt7ZtlVNMqv6UDJsjvc4+ebrr/96r1tX6x7jd0jUZyaSRmVL4Gy1yOJekKxF6FGgL4pe+eOATx9frHMtju9nOX397F4EMf/4H5c3yBM0AmYwrball1Ar9o5uLUfAHguybOX9ADFyg3n11w7ip+5cQPG4kHcvWsQPlHAZiOQKpEqpew26abuOMiirswrqr4RIokC/JKAaIVCanc965dEbO4P43mLpo7nLi/hJxfKBSuN1ladB6J+zKfKN6vYjPqaI6SEEBHAXwJ4AMBeAD9HCNnb7PPagT7blee7C16BE9Jall2LqhQ3GOqp3pkw4+Gj03pKnPH6xuMl60cyV3SsjDBMJ3MY7w3WvPHUsiy3C8msAp8klH04Ky27FxYyfF6k1SCEoCcolxFGO/jeyTk8dmIO77l3O1597SjOzqfxhs/8EF8+dBmxoFxlzzhuJBzKIvFcIb1ozNxO2Jy57Q/7+OKFbxBUkMegT798sJv+rVv7bSftllJm7RHSsN/7SpxnLy1DFgletlcnZL/2z4fw1s//qOrn2OLPSe3Ln3/rBM7Opy2dDPOpAvKKVqWQ+uXq1NzHTswh4pdwk4WyXepAdfZ3efT4DESB4G23bsbbb99ctjCzSljuootOQsAnIlvUKxQ6ViE1AlzOWNh2FzMFFFXKcyScYqgngNlkvmbv83xFYuZg1M/dHeYNcM2UaHr3rkH89A3jeMmOAax17ByJIpVX8INTc1VrBFnwrvaF4caNccyt5Ms2kaeWchgzXd+9JvlsBrETLLtmbBvSFdBnLy5CMkZtzHjg2lH8+Zt0NTUakPH7D16DX37JFvSHfeWW3TW+KVIJpswXVY07MF++d5hnN5QIqf3r2V07B/HE6fmqfvY//sZx/I+vHuX/v/Q5t36ewYgfikbx9r/9MU8GZ2JUq8KlasGLq/ktAE5TSs9SSgsA/hXAgx48b1189dkr2Pnb36g529UMRE5INTx0+Are+NkfglLKFVIvekgBYDgaKLtBLGeL+NiXn8dtf/QITs+m8M2j09g6GMYv3rEZAPgFricog1JU9XLaxbJFp6QZcg3Lshv86TeP444/ftTRY5azxSo1rrJ65UIig019rU/YZYiHZMczpJ/89kls7Avh7bdvxv37RrG5P4SFTAFn5tKW/XPsNR7c0u/5DOmlxQziIfsz1f0RPxKpPD7+8HG8+XNPlR0fA9ulZYXT4/FglS2sFpK5IvySYPuGGvRJntW+vPdfDuM9/+cQDl1cxN6xGIaiAa4Q/NiCQE4uZSEQoD9SvRHFVGJzIvGlhQz+6SndwmVlA2abDZWElFkRzXjhyjJu2Bi3VILYhob5OvDtF2fw2r94nN9QPvTvR7DtN79e9u8vv3sGN23qtazD4h20Dq8td/7po/jUd07Z/vnPPHYG7//Cs45+RxddAEBQFpAtKCh0aO0LULImnp1L44Ury/j0o6XPRqk73b1Cmlc07haqhLlTMOLXk3zZeIi5+oUlmgqE4FNvvgGf+Nn9ro6n07DLsMYuZYp4262byr4niQQa1ceRPCOkxmbhoYv6ZuxKroiVvILRFiYVh/2do5CaMdITQG9IRjKnIBKQGhLxN9+yEbdvH0B/xIeFNqTsrhZkQ5lXtZJV/NNvuRE/dcMGAMC1G2LYNhh2ZOu+b88Q8oqGJypcaQvpAmZN1wD+N63xXrx05yDu3DGAM7MpvPXzP8LDR6e5tbjdbgkvoqbGAZh9aZcBHKz8IULIOwG8EwA2btzY9C/dMRTFr929HbIo4FX7Rpt+PjMIIfqcRkHF4YuLePr8IhbSBSxlCvBJQsPyWrsY6vHzbkgA+JvHz+Ffn74ISoH/fG4ST59fxNtu3YS33bYJ0YCMa8f1uo5S/1XBcccqoKtT9ZSygIeppv/7sTOOH5PMVVeMMDJ+MZFGKq9gPpXHpjYEGjHEgrLjGdLJpSzu2zMEvyRiJCbisQ/dA02j+Mz3zlSpjQDwhV+5Defn03jk+AxemKy2YjSDiwtZTDiYt+0P+3BxIVM2E1pJZu/aOYg//ulrsX+DbkUaiuo7bYuZAu/VqoXJ5ZyjaoGQLCLrkY30P45MAtB3I3/uFv1a9PE3XIcvH7qCbx6dRq6olqnzT55J4NoN1qRwvDeInoCEp88v4I0HJgDoarRGgYm+IC4tVBNSVqsyVkFIe0M+vHClPF15PpXHrhHrm9T1xt/9B6fm8ZaD+ut4/vISnr+yjKnlHCb6QnjybAI7h6O4b3f5DOr9+6yDSyLMieBQIb20kMUnv3MS73vZDls//9zlJTx32dtzvIurA0FZ5CmmnbYgZ9jYF4JPFHD44iIeOnwFj5+exy/cvhk9AdnUQeqOsAzyapOcZVDOfCqPsLF+YcoLe4xZPeWJputs8b/DWNTvGo7iZXvKk8nZNTxX1DyzI+4ajiLkE3HowiIe3D/OSf9oC7tcWY9lJ8yQmkEIwZtv2YjPPHbG0QZ+f9iPI4tLLU/ZXS1IhjJf1ChCFuuI0VgQj3zgbkfPeXBLP8I+Ef9xZBIv2THA1yyLmQISqTx3AZRs0NZ/0+1DEfzjLx3ESq6IO/74UTx2Yg7RgLQq1wUvCKnVUVdJJJTSzwH4HAAcOHCgaS/o3rEe3vfVCkQDElI5hQ/3nk9ksJgpoDcke7ZrMNyjK6SUUhBCcHw6ia0DYQiE4B+evICCouG2rf0I+SS+4ASaryFZzhaxr45CKgo6IXeqktSDk864pIVCGvFLGIsFcHo2xRN226mQxoJyVbF4I1jt4AsCwbvv2W7581sGwtgyEMbx6RUsZYpI55Wy5N1mcHkhgz2j9j8v/REfDl1cKrOFVdeUiHjzLaXzktWizKXyDQnp5YWMI4Ic8omYWvamB5YhV9Rwo5E6/IprRpDMKfjm0WnMJHO88Hs5U8Szl5bwnhrvmSwKuGvXEB54oglHAAAgAElEQVQ9PqeXTwuE25GvGY3h4RenkVfUMiWYqd+VM6TDPQHMmW4klFIkUgVLZRYA9oxGsXUgjP98bpJfH9LGJtKlhQzG4kFML+fw4P4xfPCVu2z9TaIuFVKnKKqUB1t10YUTBH0iv/d1asquLAp47fVj+OJPLvMZ7wvzGVy7IcbTbt06u5j9djaZt+wSn0vlcd2GOJ48m+BElPW0mwmp1mChulYRC8p47307cOeOgarXxhbZeUWF6NGgoiQKuH5DHD8xFNJJRkhbqJCyAMROs+wCwNtv24zPOBQi+sI+LKQKJXvpOjsn9VAjCkXVIHv02nySgAeuHcUXf3IZj5+ex+MfuQdBWcRipgiN6krpYNTPZ8kb2aCjARlhv8StxfIqDPJ68RsvA5gw/f8NACY9eN5VRcQvIZVX+MLsQiKNxUzRk4RdBm69yeq/49RsCjuGorh1az8W0gUIBLh5S1/V41ioUjOEtFEEecQveRps4uRYkznF8vi2D0dxajaFiwt6QE+7ZkgBIO5CIS26DN1g6XxezZFqGsXlxSw29Nnfse0P+7GQziORLuBle4bxc7dMNDxnhowF1qyNbt1Li1nb86yAHnPvVe3LhOnvYE4dZgtE88bDE2fmoVHd1lIL9+0ewnwqzwMG2MztNWM9oLS6wufKUhZRv1T19xyOBaBqlKcbr+R1W+JA2HrhSgjBa64bxVNnE3wWnSURX17MYm4lD0WjVUpsPTCFNOVyhtRuUbeqaUjllZpzcF10UQsBuURIWd5BJ+KdL91aFjh2LqHft0ohaS4tu+w6W5E/kSuqSKTymF8pYM9oD/ySUErvlEVE/VJZ3yDLLFxvahQAvP/lO3Hz5uq1k8QJqXcKKaAH+1yY1zfKp4z79tVo2QX09oBfuWsr3nuv9SauFQYiPqzkFX6PX2+qvR5qVOoh9Qp/+FP78P6X78RCuoDz8xke9gaArwnUBjOkZkiiXinl9XHahRdn89MAdhBCthBCfADeDOA/PHjeVUU0oAcHsfms84kMljIFbwmpqYs0r6i4kMhgx3AEt23TE8uuGYtZkgD2NTe9mEVVQ6agNiakAcn1jKoZ7EOw7CChNlljxnXHkF66fNZIjN3YRkLqJtTIbejGBkM582qOdGYlh4KqOVIk+8I+sFHQ114/ij/66esaOgOYPaxyoVSJdF7BQrpQRgwbISSLntW+MA50zVgPxkyLBjbXO2M6/keOzSIakLC/TkLiXTsHIRDgEaPWh20w7TMs9hcrbLuXF6sTdgHwkBO2YGVJ2gPR2tecV1wzAo0CPzyjW6vTRhLxpcUM39BwQkiZFcwJITWTymNTK7Yeo2gUGoXn3bJdrH8E5FLAma8DFSKGXSNRvH7/GO436i0uGPetmZUc+sM+14FMpcq4csfOxx8+gVf+r+8jW1QxGPXjQ6/chTffXNIKWJomQ2mG1NVhrEmULLsqRA8X3LGgjJW8AlWjmFzOgRD3M8J20MkKKQB87IE9eP8r7LlygNIYGrvnrb9QI4PoaRpvsfACfknEXcZm+aXFTBknmDM+607mcmWhVE/jlYPACZr+jZRSBcB7ADwM4BiAL1BKj9Z/VOcjGjAU0nxJIV1IF3hHoxcwL0DPzaehahTbhyI4uKUPAgFu395v+bhmLLvsMXYUUrcqiRks9tuRQpotWs5Ybh+KIFfU8OSZBPrCPtsBPV4gHtJvOHarcCilrkM3mHJ4IWGvY6oRmMV5owNF0mwTtdv1OsgJaX1rMwv6cUKQgz7vUnYVleJNBzbgv957ZxnJZhtEzFL3zRem8aVDl/Hg/jGejGeF3rAPN23qxaPHZwDoCqlAgN2jup2uco70ylJ1BylQWsCwhSZTSvtrKKQAsNkoGmePMSukkzXCk+qBpR47seyaO0tfnErW+ckSWIJ5q63BXaw/mDMcOlkhBYD/9eYb8Nm33YSRngDOG9fh2WSuqWaAiF9CUBYxu5JHrqjip/73E3ji9DxOzaa4AjoQ8eGX79zKO5bZ164Gy249MNVHo94qw8y1lswWMb2cxWDE39LALa6QdtgMqVuwzRlWe7beFFJJEKBqFMUWKI9svXhpQR8rZJg11gQsm9TOqKEkEijMWrxGFVJQSr9OKd1JKd1GKf1DL55ztRHx6zOkjJTpCmmR7+R4gdGYoYQtZXBqRo+H3zEURX/Ejy/8ym34tbutLQ/tIqReVD+w1E67ai6lFMmctaV4h9Gh+fjpeR7w1C6w46mVbFgJVpnjc/GhHozovXAnZ6srA9zgkqG0OrHImknQhIWaZ4WQT+/WrVdlBJQIsiPLrkFIvbB41tr96wnoC72ZZA6qRvHhLx7B9RNx/ParG7dY3bt7GC9cSWJ6OYdktohoQMZwNACfJPC/P8OVxYylaskJqUHo2eKx1gwpoH++wj6Rq6pcIV3IcELqxDrGFjpONqNU03vy4qRNQmrcJZ2GJ3XRhZmQdmrtSyU29YdwPpEGpRRn59IYaaIZgBCCoR4/ZlfyOD69gsMXl/CDU/PcKgroamglBiL+Csvu+gyQqQfzXJyXpIe71rJFTC3nWhpoBJgV0rVx/jcCs08zu+l6OyfZdSpbVD1VSAG99SPsE3F5MVtfIbVj2RUEKJqukK5Vy+66RNSwrLLgjXNzKSxli55VvgB6qIlfEnB6NoVTsykIRC/UBoADm/tqksaALMIvCS0lpGG/N5ZdprjYPdZsUUVRpZaW3e0GIQWAD9kMafEKbAfU7oxc0VBS3SyYCCHYNRzFyWl79sdGYATRSYgGI0E+ScBAg4AiM/TS9vqElBNkm0QX0M9HVdNV52ahata7f4QQDPf4MZ3M4UIijWROwVsPbrRVVn3fHj3F9rsnZpHMKegJShAEgoneICfggF4JkMwplpbdgYgPhJQsu2zxONjg78/C0YCSQnppUSekPQGpqpy8HmRRQEAWHBFSczvUiRm7hLSrkHbhDub+5rWyIN8yEMaFRBpPnE7g7Hy6Zsq1XQxF/ZhN5nDMcCSYN6AA62uGTkirU3avRoUUgKczpOZcj8mlbNkoSCtQmiHtTMuuUzAHEpu5XgW3aEvBzrVcQfX0vAP0dctEX6hKIeUzpA6cEPqsK121UCNvIjzXISJ+Gam8gqKqp8MyZazR4tAJRIFg62AEp2ZTCEgiNvaFbC1+Af0CuOxihpQRw3o9pICetulFqJFThZTN31nZceMhH3YOR3D7tgE+n9cuOFWl2U6fW9vOjuEIvnZkkicwNwNWlxJwcPNihHRDPOhowTIQ9WOuQajRpYUMwj4RfWH7bgOmimQLatM3YaVOKfqwUTrPZiHtJhPvGIpgQ28QjxybAaWl83djX6hshnRySSeOVjZaSdTJP7MMs3ma3gZ/p6EePw+SYim7M8k8ziWsldhGcGrXNyuk5+czts5ZbtntKqRdOESgzLK7Nlaum/rDmE8V8Ilvn8BAxI8H94839XxDPQEcm0xyQvriVBLpgooH949hNpnnG9tmDET8WMoU9cWmKJjSN5s6lDUF8+iF1zOkgL5hPbWcw107hxo8ojnw2pc1siHTCIyksY38dWfZFUuW5FYojxt6Q7i4oAevAihzqpn7hu0cp6JpPOm/3VgfZ3MLEDFmSPOKhgNGEucr9g7jZ27a4Onv2T4UwenZFA5dXMT1dYJTKuGmFxMAD+aJBevvRYQNy3KzCPmdKaQsobSyYoThG+97KX73tY0tlF4jFmTdr/ZeB7uwul0w7RyOIplTGqqNdpAtqgjKoiNiycK7rJS8ehiK+rlVpBYuL2Yw0RdyRLSZRcmLOVJzOXUlhnsCmE7mcHw6CYGUq/L1QAjBzZv7cGxqRe/RNQgp27lkVuMrSzo5rfV3HekJcMtuIp1HPCQ3PIfYMQNAJq9wVf6Z8wuO5kcZIg4/+0xpmegLGh3BjV0ETCH1woXRxdWFtWjZ3WJ0Zh+6uIRfvWur7Y3nWhiOBjC1nMOzl/Qe83NGYNLL9w7jX955K0K+6vsnC0djG12qg7CT9QJz5YaXShVbH1xazCJTUFuasAsAIb9h2V0nM6RihWV3vYUaMUdWUaUt2UTTO8+zWErrn+3tQxHMreSRzBW5g8kWIRWYQkrr5ma0CuvjbG4BzKE6r9g7jB98+B781dtucmR/s4PtgxFcXsxidiWPWywqXmohFpSx5CC5lsGuQsoIuVewTUgbWIpFgXjWA+sEfIbUrkLahGUX0AkpAJzwwLabKahlNjc7kEUBo7GAbULGMBQN8GH6WphJ5jHi8IYd9JCQKmrtBLmRmG5/PTaVxNbBiKOF46jx2OVskW+obOwLYSWv8POfJSdvqEEUh3v8ZSm7/TZUZHOfcbqg8kTgTEF1p5A6/Oyz7rjtg/q5whbH9cDCwboKaRdOEfSVPrtrRSG9Z/cQfu911+BL77oNv/SSLU0/3317hpAtqnju8nIZsar3eWe5AB/89yP45LdPmuog1tfivx7KFFIPXzdbHxw3FOvReIstu751Ztld54TUPDfqtWUX0AMis0UVZ+ZSCPtEjMeD+NG5BVz3P7+FY9P6OWnnUumTBCiqBqXGWFOrsTau5qsAZjUF9KRYp4qOXZgX/LdY9GbVQizow3LW+WKO2XzthBoVVYq80hwBYItVu4R00ebxtRulGVJnll23xe07h/Xz4uRM84SUKaRO8W/vvA2/8fKdjh4zGPUjXVDrBmKl8krZ58sO2A3Yi+qXehfb8XgQeUXDU2cXsHukunS+HkZiASgaxflEpkwhBYBLCzoRvbyUhU+sPZc71FMi9HOpvK35XXOfcaag4MCmXnz2rTdiPB50tMnF4FghNZSWbQYhPW+DkKp8htRdl3IXVy/WokLql0S8/fbNuGlTnyfriNu39fNxAlYTBwBjsdqEdNBQSB8/PY9PPXKK35uvJoXUbJf0staCE1JjA3m0zvvgBfaN9+BNBzZw995aB1dI16ll17ze8NIqzsDWGc9dWUY85OM2XaDUGmArZVcw9ZB2Lbudg4hJIY1YVJB4BUZI+8I+R2pULChj2WbAjhnL2SICstBwZ40RhmZtu2zhaTcMiFVkuLEathJOZ0hZyq7bHfz+iB8DET+OXF529Xgzsi4UUkDveXVarcOCk6brqKRpN4TUo/NRM/ova93wfurGcYz0BJDKK7bnRxlYj2lB0bgDgVXtsDnSyaUcRuOBmvbpkZ4AEukCnj6/gIRNQsrSeS8tZlBUKcJ+CffvG8UTH70Xr71+zNFrAErz83bBFrYb+0OQBIJzNuqKilpXIe3CHfxmQrpGFFKvQQjBr961FQD4Z1wSCK/eskLltUR1MFu2XmBeZHs5y+eTBIR9YkkhbbVl1yfhT99wfcN8gbUCpiCu15Rd8zqwFWFBjDucnUujNyzjnl2lGWZuzbc5Q1pQNM/7Uu3i6rya24DZmht1uHh2gs0DIYgCwc2bex3tnLqeIa1RqVKJiIv6ByuwD4PdY72QSCPqlxwF3rQDsqjfcOwqpM2k7DK8bM8QHjk2g2yTNtVsUeUzmK0G2xmeWqpPSMMOP1N2iK4dsPOx1u5fT0DGH/7UPhAC3OBgphtAmQ25UiFlhPTKYqbuZsvP3LQBWwbC+LnPPYULiUzdyhcGRkiZVbbZ9zriF12FGsmigI19IXsKqbFh06196cIp1qJC2go8uH8cP/jwPXjF3mEA+nWgnrJkJqS7R6LQrsZQoxbVvgD6mixdUCEQ3bXShX1UzZCus491WbpzCxTSLQNh7qqLB314080T+OKv3gYAKDr4m8qiSSHtWnY7B5WW3VbBL4n4/Qevwbvvse4crYV4SL/4FR3WYCxn7RFSN32EVuAKqV1CupDBxv7W2KObhZNNgDxP2XX/Ol63fwyZgopHjs+4fg5AnyVsNkTDLhjZmlzOWn5f0/Q5R6eElJG9qeUmCSm3qdW+9N23ZxjP/NbLyqxwdlBGSI0Z0oixuXJp0SCkS9m6hHQ8HsRD774Dbzm4EYJAsHuksUrLyDojpGGLQBMncDpDau4z3DIQtjVDWuzWvnThEsGuQsox0RdCLCgjGpAw1mBuMeyXyupINI1CIPasfOsFcotqXwAgZgQBDvcEViUQZi2DkR+2blpvlt1Wz5ACwKuv1Z0SbLyMqbLMrWcv1EifIS1q3VCjjkK0TZZdAPj5g5tw3QZnaoxTCymDXULKXr9Xll27YUAXExls6g819TtbhZ6gjGWbQVJcIW3iQ31wSz+Ge/z46rOTrp8DAHJtVEiHYzo5qqWQZoq62ht2eDwhn4RYUMZ0k4SUvS+Nbgr9Eb/jhdpA2M+f12x1Zkm7qbyemtwoaCgWlPH7D+7D8d+/H285uLHh7x2KViik/mYVUtnR556n+AkEmwfCOJ9IcxtvLfAZ0q5C2oVDmMcP5KtYIWUghOCunYO4bdtAw5/9zgfuwiuvGYaqUah0daodVhNloUaeK6T6mqnVdt31CPZe5NepZdcnmRXS1lyzXn3dKIBSQ0LlXK692hc9ZVdRtbJE6nahezWvATMhjbaYkLoBmx2wO5vJsJxVHCmkzXaRsuHqpUyRV1/UgqpRXFrMYGNfdYdaJyAesq+QemHZFQWC27b28645t8gU2kdI/ZKIwai/rKTdDBZ25FQhBfQbvVcKaSvsKIJAuH3WnGI90RvE2bk0fvsrz4MAuGvXoO3ns4OgT0RPQMKZuRSA5hXSaEBCQdVsB5qV6iOAzQNh5Ioar66pBfb56CqkXThFVyGtxqffciPebyOALuSTIIsCVEqhac13XK81mDcivSakcaP6pdWBRusRUiV5WmcbJe1QSLcPRfDe+3bgwf26UsrOb9b5bed8l4VuD2lHwmzZdRrA0g70GbsgC2lnCmkyW7QVVMNec7M9gYwAKBptWNkxuZRFUaXY3KEKaSwoO07ZbbaWoDfss/07ayHbRssuAIzFAjUtu4yQuvlMjcYCmE5aP69dsP7LVt0UmH3WXBu1aziKK0tZPPTsJP77vTtw40bvkxHH4kGcntUJabObD0y9TudtElJTfcSWfn0zqZFtlz2mO0PahVMEuoS0KYgCgapRaJSuOyWqEeSWKqT6uqqrkDpHaYZUv+est/PSvAHeyqqq9798Jw4YbR1sjVPkCmnjx0sigaJSFFVtVSq1Oo9pdQjCPgmE6G+qvwNtQb1h/eK3kM47elwqr9iyIHPLrkczpACwmCnUVcZY8MvGDiWk8aAPy9klWz/LLgJNE9KQD6m8goKiuVZb2xlqBOjkqFZdDSM5bhTSkVgQz19pLnXYzgxpM9B3x5fKFNJ33b0NBzb3YT6Vx6uuHW3J7x2PB3nlgJu/rRkRY8MqlVNshYtptLQDu2VQJ6Tn5zO4fVvtx7Bd265C2oVTmC27V3OokVswQqpq629WrxGkFs6Qstm90Q5rCFgLYAoin3dcZ+dlKzdCakGoIqQ2FFJRQFHVoGjdUKOOgiAQRHwSogG5I20tbKHoRCGllNpOOOWW3SYJqUYpDxJYSNe3F19I6IR0U39nWnZjDiy7BePC2uyCqZf1n9qcXbVCpqC46iF1i9FYEFPLOUuLNtvgcDpDqj9vAPOpQlPduK1XSKstu5Io4LZt/Xjt9WMtuxmN95YWQc2n7BruiLy9c90cajTaE4BfEnBuPlX3MYoxeNrsSEAXVx8CpmvqapS3r3WIhBj1V/SqStgFyis3vN6U7OkqpK7ByE9hnYYaldW+tOmaxVRmRzOkZT2k3VCjjkIkIHWkXRcoDS4vOpghzSv6zoed1xSSRRDSvIKhaJQv0udT9dXcC4k0fJKA0Z7OvKDHgjLyioZcsTEhYhfWZi1l8RCbFXZn29U0ilxRQ7DJuUInGIsHkCmoSGarz51mZkhZiu3MsjNXgBlKi4u3tw2FEZAFvpHQLpiDkppVSJk7wur9swK37AoEgkCwqT+Ec/OZmj/PumCBrkLahXNIogBZJBBI6wJC1jNEY9GpanTdKVGN0BaFtEtIHYPPkCr27aVrCWX9t20iemKFQmpnzSOJAhSVGj2kXYW0oxANSB0ZaAToczRhn9hQdTQj7UCdEgSCsE9CyuYcWS1oJkI6t9KIkGYw0Rvs2Jukk2RjbtmVmnstfOPBwftsRs5QE9upkDJydMUi2IgpYm5DjQBgqsZ8qh0oLQw1AoA3HZjAd95/F0Jt3AAAyglpswop69CbbRBMxKBVFG9v7teTdmtBMdn4uzOkXbhBQBa7dl2XEAQCjV6dM6Tm677Xm5IHt/Thzh0D2DUS9fR5rwa4SYRdSzArpO2ywnJCquj3Wzt/Up9IUNS0bg9pJyIe8nFC0InoDfscERUWKmSXDET8ElI2bXu1oFKKEbuEdCHTsXZdoLQDaket9KL2xfw7F10qpFnjPW/nDCkjjpaE1NjgcBdqpJOu6aT7pF2estuiXUpZFLCht/0z0ONlhLQ5MsxmoOxW7JTmcvUb2JaBMC4mMmXz42Ywu240IKGg2E/z7aILhqAsrkroxnqAZAo16tTN31ZBElo3y7d9KIp//KWDbd+MXA9g78t6teyWK/OdrZBSqr8Pq3F97V7R6+APHtyH333t3tU+jJroC/uw4MCym3Jolwz7xaZDjTRN382OBiTMp2ofK6UUFxNpbOzrzEAjwJlCylN2m50hNWaF7fafVoJtQgTbSEh3DEchEOD5y9UBUCXLrrsZUgCYrNFxagdOItDXEhghDcpi068t4pcQ9Uu2K3aYQiqYCGlB1WpW/zCFlG222E3z7cIahJAJQsh3CSHHCCFHCSHvM77+cULIcULIc4SQrxBCnJVddzCCPrEjwwbXAgRSsux2FdIuOgHrvod0FRVSpz2kgB6E2bXsdhh2jUSxY7hz7Re9IWcKqdP5vYhfanqxqGoUkkAwGPXXVUjnUwWkC2rHVr4ApZ4xO92vBa8U0mBzCimbd22nZTfil7BvPIYfnVuo+h7b4HCzixz2Swj7RNtWUiswdW41LratxGDUD0kgroi+FUZiAdvWaONU54uIrYMRAMDpOetgI7Yp8MabJvD4R+6x1YvcRV0oAD5AKd0D4FYA7yaE7AXwbQD7KKXXATgJ4GOreIyeoquQuoco6KFGqrb+ZvUaQW5DH2QXziFxQqqvV9abcl9e+9LeUCNHKbvG50PRKMSuZbcLJ3CrkEZsLlpDPgmZJlMwFSM4YTBSn5BeXNBnzjrZsutohtTw7Te7aAr5RPhEwVF4lRmZVbDsAsAtm/tw+NJSlR0znVeaUvGGegKYbWD9rgemzq3GxbaVEAWC0XjAM7vYaDxoWyEthRrp/3+XsYl3Ytq6+odtCvSFfdjQG+oqFU2CUjpFKT1k/PcKgGMAximl36KUsgv4UwA2rNYxeo3uDKl7SAKBSino1WjZ7SqkHQnRlLK7Ht8XqYXpzrXA/qa8SsdmDymD3E3Z7cIJdIXUvnLmtAMy7BebVkg1SiEKwEDUXzdll1W+dGoHKaDXvgA2LbuqClEgTV9cCSGIh2QsOXifzciugkIKALds6UNB0fDc5fLe0HRBbSoFdijqx1zSPSFl5Gk1Lratxlgs6NnGw2hPwLFll+3IxkIyRmMBHJ9KWv48U0i7CoX3IIRsBnADgB9VfOsdAL5R4zHvJIQ8Qwh5Zm5urrUH6BG6Cql7CKyHlNJ1ufivh9VIO+2iMSSTvXS92XWBclVUbtNnrkohtTlDWvrvrkLahQP0hWWk8ortUBCecGpTRfFCIWVzKo0U0guJDAgBNvR2bql01C+BEHtVO0WVembN6A35XCuk2VWYIQWAmzf3AQC+8+JM2dfTecW2Qm+FoZ4AZpqx7K7TGVIA+I2X78SHXrnLk+cajQcwn8rzWeh6qAw1AoDdI1Ecr6GQ8mCpLqHwFISQCIAvAfh1SmnS9PXfgm7r/Werx1FKP0cpPUApPTA4ONieg20SsaDcsZVsnQ6RGIT0KpwhJYRw8rMe7wFrFey9oLTktFlPKCd6qxNqZM+ya7YWdxXSLhyABd7YVUmdzpCG/SLSheZrXwRjhnQlr9Ts8LyQSGMsFoRfai9xcgJBILhmrAf/+uNLmGmQ9FpQtKbnRxniIdl1DylXSNtMSHvDPrzmulH81ffP4qHDV/jX03mlKVvpUNSP2WQelFonuDaC2uLal9XErVv7cd+eYU+eazQWAKVoeJ4DepI2UL4Du3u0B2fmUpaElt0guwqpdyCEyNDJ6D9TSr9s+vrbAbwGwM9Ttx+aDsRvvXoPPv6G61b7MNYkRIFAo7qz4SrjowBK1/4uIe0clFla1+FJaRYn2l774siy27oUajvoEtI1jD6jksZuF6nThNOgLHGFzS1UWlJIgdrVL+fm09g80Ll2XYZPvmk/MgUVv/e1o3V/rqBqns04NaOQ8hlSuf1qwp+98Xoc2NSL3//PFzkxSeWVppSNoagf2aLqOv25qK3PWHmvMeKgYkfTyi27gK6QFlWKs/PVwUbreVNgNUAIIQA+D+AYpfQTpq/fD+AjAF5HKc2s1vG1AhN9oY4OHOxk8PRN5eqz7AKlcY2r8bV3KsxvxXqca16NMK1Ky66d872MOHcJaRdOwBVSm2QllVchi8S2CqkrpIprNQowLLuirpACwJzFHKmqUZyYWcGu4R7Xv6dd2DEcxcv2DuPopPV8HEPRwx6neEh230O6SgopoAePvOvubVhIF/DYiVkAOkFuJgl2qEc/j9wGG6nd+UVbGDMqduzMkVpbdvXP8vGpattusfseeI07ALwNwL2EkGeNf68C8GkAUQDfNr722VU9yi46AmYrnx0b33oD2wjrXn86B4QQTobW40aBIBBOuts1uywIBISUKght1b6Yjq1r2e3CEfrCzhVSJ4EyIZ8ESoFcsfEcWS2wOZWBOgrpufk0ckUNe8c6n5AC9myjRQ8V0njIh+VswdXGQNaYAV4NQgoAL905iIGIH186dBmA83OwEkNRnSjNugw2Yim73UCL+hhhhLRGl6gZvJOz5OUAACAASURBVIfUdMPbOhhGNCDhB6fmq35e7b4HnoJS+jillFBKr6OU7jf+fZ1Sup1SOmH62q+u9rF2sfpgC35FW5+Jpo3AbIlX42vvZLD3Yz1adoHSedeu2hdA/1s6mSGVVsFabEZ3RbCGEXdQQwLooUZ2A42AkrU33USwEUvyG4jq5NkqafeYkca5Z3RtWLDs2EYLqncKaW9IRlGlrmyqzLLb7pRdBlkU8Pr9Y3j0+CyWM0VPLLsAXHeRdu2i9hDxSwjIAhI2Nrt4D2lFIMID+0bw8NHpKts/t01334Muumg72IK/oFydCikLbuneAzoLbIOSrNNz0rcKGyGCQEozpDaWo+bckzVn2SWEfJwQcpwQ8hwh5CuEkLhXB9ZFY/Q4JaQOyQALn8m4rH6hlOqpaYSg15h3tQrnOTaVhCQQbB+KuPo97YYd22hBoZ4R0n5DXbarhJuRLarwScKq7gY/cO0oiirFYydnPQg10pW7eonN9aB0Z0htgRCC/nD9qiYGFmpUebq/fv84UnkF3zlWnrS8nqt3uuii08Fm9Arq1ddDCpQ2wtarErdWwRXSdXpbYBsg7bTCSkJJIbVzvpcppGuwh/TbAPZRSq8DcBLAx5o/pC7sIiCLCMoilmzOkKbzKkIO5vfCvuYUUvNsWUAWEfaJlqTq2FQS24ciHZ2wa4Yd26iXlt3+CFOXXRDSgupZN6Vb7J+IYyDiw0OHryBTVJuqfekJSvBJgq30Vyt0OzDtYyDiQ8LGOcdCjSrVloNb+zHc48fXjkyWfd1JyEIXXXThLdi1r6houBpFwm6oUWdCWu+WXeO8a6cyr1t29fuzHeXZTELXnGWXUvotSiljK08B2ND8IXXhBE4qQZzaJUPGz7rtIi0pJ/qJ3Rv2WRLSF6eS2DO6NuZHAXu2Ub32xZsP9EBY/30JG2pVJbIFddXsugyiQHDf7mF898QcBELwsr3uq0kIIRju8Vep00+fX8CFRLrh47sdmPbRH/EjkbahkFqEGrH/f+/uYfzwTIKTUPPPt3OWposuutDBVNGierXOkLJQo+49oJPAzsX1qtrLq3DeCWaF1HHK7tpTSM14B4Bv1PomIeSdhJBnCCHPzM3Nefhrr27EgjKWHFh2Hc2QMoXUpWW3cqHaZ0FI03kFM8n8mrHrAvZso0UPZ0hL87fOFdJMUV21QCMzXrlPJ6Hvu28HrtvQnLN/IFJtJX3jZ5/EXR9/rGHwUynUaH3e9LxEf9ieQqpahBox3LVzAKm8gsMXl/jXmEp9NS6Gu+hitWGug1iv83r1wBba3Rn2zgJXSNfpfYGtB9u59jBbdp32kHakQkoI+Q4h5AWLfw+afua3ACgA/rnW81BKP0cpPUApPTA4OOjN0XeBWFC2PUOqV27YJ6SMyGRcdpGqFf2EVn2aU8t6iueG3qCr37EasGMb9dKyy9KU3SikiVSe99WuJu7ZNYQv/MpteM8925t+rnpE6ScXFus+Vu3OkNpGf8SPRKpxurNWQyEFgNu2DUAUCH5wqrQJqXCFtKtQdNFFu8Etuypdt/bIepC7tS8difU+28uV+TYSPUFwmLJbFkzYgYSUUvoySuk+i39fBQBCyNsBvAbAz9NmCiu7cIV4SMayI8uukxnS5iy7xtqfWzD6LRTSy4s6IR2Lrx1CWss2akbewx5SvyQiGpBsJZ5WYno5xys8VhOEENyypc8TO06l0s56tgDgr39wru5juwqpfQxEfCioGlYapDtXWvPNiAVl7J+I4/snTYS0O0PaRRerhlKo0dVq2e3OkHYimHK9bi27Aqt9aXeoEUvZtWPZNafsrjHLLiHkfgAfAfA6SmnGm0PqwgniQR+Wso2JCqVUTzh1NEPKQo1cKqRsoWp8DqxmSCeXdJVxfA0RUkC37TYMNfLwwjNoYVNtBEopppZza4rs20Ff2I/FTEm5W8mVNmS+d3KOEx4rdO2i9sHCtBrZdmuFGjHcMBHH8ekV/n4p3RnSLrpYNbDbUlHV1u3ivx7We3jOWsX67yFtvyXZfE92nrLbgQppA3waQBTAtwkhzxJCPuvBMXXhAHZDjfKKBkWjjkKNuELqov8SsJ4hzRRU5Iolgjv5f9u78yBH7us+4N+HewDMCczszM7eXHJ5nytKoixKlEjxSCmUSrJLdmwzqViKLkd0SUnRUSqWUpUqWZblsiuuuKhICh2rbJ2JlIqs05IYOyUeUpZaUvQul+Qul7uzO9fOPRgM0L/80b9uYLC40UCju7+fqqmdAbAzv0YD6H793u/9ljYRDondKMgrJgbjdZsabReVYyW7gBkctBqQLq7nsVUwMNUHGVInjaXMdVmtzN1Kzvz3TVeNY3O7iJMX12r+X5aLNi/TZDOtWk2NLOODcWwVDPvCVmnpHe4Dol6z3nfbBaOpeWV+Y332cw5pf7ECIL9eJIm4MIe0/JjczJ+N7uiy67EMqVLqsFJqr1LqZv31fqcGRs0ZTkaxVTB2BHnVrOuT91QLDW6s7qztZkgNu5TPfJlZcyHL55GeW9rE5FDCc11PzYC03jqkhqMZoEwq3lSDmXIzy2bA7L+AVK/Lqp+PFT2H+s6rzLnpx84uVf+P4BzSVjS73JBOOte8Amuto2sFtlx6h8g9paZGwZxDGuEc0r5UyiC6PJAuiYUFkZD0tJFY+Wu8mUB/R4a0H+eQUn8bGTBPGhtlSa3GRMkWuuyGQoJkLNx2hrRgZ07Mn0d1c53yst1zS5ueK9cFgImhBFZzhZoXApzssguYnXZbnUNaCki99/zWk9EXNhb1hY0VXbJ7w/QwRpNRHDtbu7FRoaLRFtWWtQLJBku/2CW7NV7uWTuw1QGpvfQO9wFRr1mHpXxgS3Y5h7QfWYkLvx6bI6FQz495oR0Z0tYC0qjX5pCS+4YHogDQcB6pFTi1ugRIMhZpP0NaMbfMypCWB6Tnlzaxe8R7GTy7822NIDHvYJddwMyQXtrI150fWcnqYDzlwee3Hvt1ZGdIzQsmVgOd+hlShZD4tyzISdYFpEaZ+XpNjYBSYGtlWkuNpXj4Ieq18lJ5v57812Nljfj501+s/eLXpYgiYen5a648Q9rMe72874kbF2z4jvS4kaQZkDbqtLtpBaTRVgPScNtddi+fQ2qO1QpIi4bCheUcpj205IslUxEUVcoXnG1qlE3HoFQpK9iM80s5RMOCbMpb83MbqbywYWVIhwYiuHnvKF6YXcNajaz+dlHxRKRJsUgIwwPRpueQ1roCW9kcybqowpI5ot4rPywF8aPQygLx46e/2E2NfLpjomEXMqRlx2Rp4r1ePnWuL5d9of5WypA2CEjz7WZIw+2vQ6oqA1IzMLqkA4nZ1RwKhvJkF1j7JLtGOaPjJbv2PLzmA9ILy5vYNZTwXTZwrLJkV7/2hxJRHBpPQSngnF5OqFLRMFgq2oJMOob5BqXi9dYhBUrNkayS3SJLdolcU36S2kwZn99EwyGEezyXjxrze/fjqAsZ0nCLGdLyi8Sea2pE7ms1Q5poMUOaikc6WId0Z+ZkeCAKEWBRj9Va8mW3B+c4ljqQXn6yXjQUDAWHu+zuPKlvxvnlnCef20aSsTDikdCODGlYz3e2yr/PL1cPSAuG8u0V2G7IpuKNM6Sq/rzcWCSEoUTE/j3bRZbsErml/H0XxM/CSEgCud39ztonfj0sRMKhnmcdwy3OId25DikzpNSiET3Pq+k5pG2U7K5vtZchLc0VK5VijCZLy5fM6S614x5b8gUAxtKXz4e15AtmSaKTGdJm14QsN7O86bv5o4A5x2QsFbOfi5XNAoYSEYiI3cBpZqn6kjxFQ7FUtAWZdKz5dUjrPK/ZwbidabU6HTNDStR75Sf8fs1G1RMJh3gM6EMRn5fspmLhlisUO7UjIG3idNSsHDC/d+P43HzLVepLqVgYkZDgUrNzSFt8Q6RiEVxcqb3eZj3FKieq0yMDdjmlFZh6MSAdjEcQC4cwX6VkN1+0AlLn3tDZVGsZUsNQuLi8hUmfLfliGUvFsKif+5XcNoZ06frEYBwhKTV0qrRdVFz/sgWZdAxPvNy4qVGjk4hsKo751coMqT9PPIj6WXkQGsSy1ViYGdJ+ZB2X/VpG/pG7r7Knq/VKqxlSwOyumy8arlQwMSD1OBHBSDKGpQbNbjbzZpDUcoY03n6G1KhSyrdvLIlfzqwAKGVIrTmBXmJl6ao1NdrWAWncwZLdoYEIomFpuCakZWE9j3zR8GXJLqADUn0RZmVz255LHQmHsGsogXNLdeaQ8mSkaeXdnWvNKSkajTMtmXQML8yu6ccrzuEickl55sOvaz7W86tH9+LI5JDbw6AKfs+QTo8M9HyJw/LjcrPVEJGwIF9kUyNqUzYdaxiotNtlNxWLYN2hLrsAsC+TxKuXNlA0FObXtjCWijla2tpLmXSsasnuBb3+ZytrvjYiIsg0MZ/PYi/54tMMaWZHhrSAoUTUvm/3yEDNkt2CoVgq2gKru3O9CgxDKTQ61mXTcTu7v20Yvj3pIOp35ZmSIL4Pr58exm+8dp/bw6AK4bC/mxq5ofz93ezTai+LxKZG1A6zfLG5OaSJWGu7fDARwWquAKWzna2wMqTlJbv7xpLYLirMLG9ifm0L2bT3sqOWsVT1DqRf+9mriIVDuOvqCUf/XiYdq7nuaSW7YZQHOxg3YywVL5tDuo2hgVLwPzWcqFmyyzmkrbGaadXqJg2UMp71f08MSxvb2C4aKBYVotwHRK5op4yPqNus47LfVgVwk90oSpovz7cSRGxqRG3JpBtnzjbzRYQELa+NOZiIomgoO8PaCl25uuOFvW8sCQB4ZXEDc6tb9nImXpRNx+0snWUjX8DXf/4q7r9h0vFS5PIsUyMXdEDm1zmk44NxbOSLWN8qmHNIKzOky7mqF1HYZbc11nq79RobFQ3VRMluackn7gMi9zAgpX5kr0PK16RjSgFp88+pVUHGgJTakkk1zpxtbhcxEA23PG9rMGFmnlZzrZftFnQ3zZBcHpCeXdzA/Frekw2NLOWdXi3fefYCVnMF/MbtzpcENdPx1DKznEMsErIDCr+xXjfza1tml92BUkA6NZzAVsGoWjVQcGmyvlc1s9yQUqrhVe1den/NLOdQMJxdo5eImrdjbUJeGKI+EdXHZb4mnWOde7eSdY64uB94VuADmVQMq7kCtgq1s5ib28W2Wk6XAtL6XXyr0fHojhf21HACkZDgzMKGLtn1bkCaScewkS9iM1963r99/AKmhhN4zYExx/+elSFtpnz6/HIOU8MJ3zaOmdABzrmlTWxuFzGUKC/Z1Uu/LF8+j7SZ8lIqyTax3FAzXXb3jJoXos4tbaJQ5D4gckt5BooZUuoX1hxSviSdEykr2W1WLGKul+rGuSMDUh+wshj15pHm8kUkWmxoBMAuhVxpI0NatLrslr3KIuEQ9owO4B8vrGIjX/R2QGqVM+qy3bWtAh5/YQ73XT/ZlXkQ2XQMWwUD6/nG5dMXljcxOeTPcl2glCF9UXduHSwr2d0zagakp/R95QqGcqV7nFcNJaKIhKTBHNLGJ7bTep+8emlD7wMeeojcsDND6uJAiMr4vcuuG9opg46E3FsWiR9HPjDWxDwvq2S3VZ2U7BrWOqQVb4a9Y0n87MwlAN5cg9SS0WuDWs/73/3jLPIFAw/cMNXVv2et51jP+aWcbxsaAaXXzbGzywB2zpW9ZmoIu4bi+N/HZy77f8yQtiYUkqql6eUMQzU8sR0eiGIoEcGrlzZRKLLLLpFbOIeU+hHnkDqvvTmkIbt8utcYkPqAXVZXJ0PafsmumXlqp2S32rIvAPDGK7NY3jR/n5e77FpB0Hm95uV3n7uAbDqO2/aNduXvZdI7M7K1FA2Fiys53y75AgBjyRjCIcGTpxcAAAezKfu+cEjw9ht348cnZrFcsVxJoag4h7RFmXS87rJSRdW4qRFglu2eu7TJpXeIXFR+csqOptQv2GXXeeE2ntNoWFw7PvPMzAdKJbu1A5XNNkt2O8mQlkp2d76433nLHvvDx8slu1YQ9NL8OraLBh4/OYe7jox37QM1azeYqd/Y6Pi5ZRQMhSkfZ0hDIUE2HcPZxU2IlJplWd5xyzS2iwrffnZnlrTANTBblk3H6l4EMYzGTY0As2zXzJBy6R0it+wo2WU2ivpE2Gqmw9ekY+ymRi08pZGQuLIGKcCA1BeaKdnNdVyy61yGdHwwjrfoNTonPFyym4pHMDmUwEtz6/jZmUtYzRXw1mucXXu0XLaJjqevLGzgn3/xSUwNJ3DPNbu6NpZ+YJXt7h4euOxiy3W7h3Agk8R3nr2w43Zm51qXaVCy20xTI8Cc22vOIWWnYyK3lF8MYjaK+gUzpM5rZ15uJBxy7YJxpPFDqN8NJSKIhqVuyW5u22grIE3FIhBpM0NqBaRVrng9fPdVmB4d8HSGFDCzpC/Nr+FHJ2YRDQt+5crxrv0t68LD/Grt/fyTk7NY2tjGlx9+vW/XILVMDCYArOwo17WICO65dhce+79nsLZVQDpuftQVDWbnWpVNxzG7aq7rWq3zXjPrkAJmye56voi5tTwvChC5JLRjDqmLAyEqY88h5bVKx1jv9VY65rJklzoiYjUeqVOy2+Yc0lBIMBiPtNfUSJfsVrvide3uIfzB26/z/NWwQ+MpvDS3jh/88iJuPzhmBz7dEIuEkIqFsVInWz27uoWQAIcn0l0bR78Y1xczDmSTVe+/59pJ5IsGfnJizr7NXHKEH3utmB4dQG67+rqugPk+b+Z9bHU/PrOwzosCDhKRvSLyIxF5XkSeE5GP6NvHROT7IvKC/rc7k9vJU8ovHrE8kvqFnc3ja9Ix7TynkRCbGlGHMql43WVfNrfbm0MKmI2N6gVBtdTLkPrFwWwKy5vbeHFuHfdd353uuuVS8QjWt2pfHLi4kkM2HQ/EPEmrZPdgtnrwfdv+UYwmo/j+L0tlu8yQtm56xFqyZbPq/c1nSM3fs7SxzZJdZxUAfFQpdQ2A1wH4kIhcC+ARAD9USl0J4If6Zwq4cFn2w+sXhMk/rNclX5POKXXZbf7/MENKHcsOxnFxpXaGNJdvbw4pYM4j7ahk18cfMIfGzXLRkAD3XTfZ9b+XikfqrkM6u7qFXT5ef7TcxJAVkFbPkIZDZgn1U6cv2bdtG8aOEzJqbM+o+fyeW6oVkDZ3ErE/UyqtZsmuc5RSM0qpn+vvVwE8D2AawIMAHtMPewzAO9wZIfWTHRlSHx+byVuYIXWe3dSohff522/ajV+9bW+3hlQXA1KfOJhJ4uX5dShdJlvJLNltb3cPJaKONjXyk0M6O/fag5merKmaiofrZkhnV7Y83SiqFdftHkIqFsZ1u4drPuamPcM4t7RpN4IqGgpRH78eu2F61MqQblS931CN1yEFgLRuAgb4+zPBTSJyAMAtAJ4AsEspNQOYQSuAqh3XROR9IvK0iDw9NzdX7SHkI2HOIaU+ZFXN8NjgHOvCbyvrkD548zTee+ehbg2pLgakPnF4Io21rQIurOQuu2+7aKBgqN5nSGss++Ine0YHcNv+UTx0x4Ge/L1ULIK1egHpag4TAcmQ3rZ/DM/9x/vqZoRvmDaD1W8eO493/Pk/YGYpxzmkLRoeiGIwEem4ZBcozW2OsnOF40QkDeDrAB5WSq00+/+UUo8qpY4qpY6Oj3evKRv1h50BqX+PzeQtVvDUSgMeqs96f3vlHJxnBT5xeGIQAHBqdu2y+za3zRLP9ueQttnUSGdI/XzQi4RD+PoH7sB913e/XBcwS3Y38tX3xXbRwMJ6PjAZ0mZcPz0MEeAz3z2BY2eXkC8anEPahj2jSZyrEZA229QIAK6wS9y5D5wkIlGYweiXlFLf0DdfFJEpff8UgFm3xkf9gyW71I/YZdd51nPplcMtd71PWJmHagFpTs85bKfLLuBAUyMe9BxjNjWqPod0fm0LSpXmVpL5fB0eT9sXZQBwDmkbzDVEncuQLq7Xnu9OrREzpfB5AM8rpT5bdte3ADykv38IwDd7PTbqP+UXj3hspn7BOaTOs6rBvPKcMiD1iWw6huGBKF6okyHttGS31vzUWor64V55M3hBOh6uWbI7q5ta7RoMRslus27cM7LjZ2ZIW2cGpBtVPwOKRgsZUh2QnlmoPh+V2vIGAL8F4C0ickx/PQDgUwDuEZEXANyjfyayPwNZHkn9wgqe2GXXOda5t1cqkhxZNFFEPgbgjwCMK6Xmnfid1BoRweGJdN2S3fYD0iiKhsLmdhHJWPMvGatklxkp5yRjEWxUCUg/+KWf4eRFc98zQ7rTu26bBgAcP7eEkxfXuORIG6ZHBrCeL2J5cxsjydiO+wylmn5OrQzpQp0lqqg1Sqm/B1DrQ/atvRwLeUMoJEALlQ1E3cYMqfMiHltKp+MzMxHZC/Pq6yudD4c6cXg8jRerBaS6ZDfRZsnu0IAZhLY6j7QQgHVIe81a9sUK9i1PvLRoX4yYYIZ0hzuuyOKPf+0m7Bsz5y9yyZHWWWuRVlv6pWiopkv/xtPmxZJ03JFroUTUhrBwvh71F3vNTI8ET15gL/vikafUibOCPwHwb8H5Ka47kE1hYT2Pta3CjhO+TjOkIwNmRmRxPd/SGpeGLu9jQso56bi5Dze2i/Y+zm0X7YyTiFm+TZfbo5cv8Ur5Sj/J6EBysUpms6iaP4kQEXzlX73eXv6FiHrPykbxs5D6hZ0h9Ur05AHWBSevPKcdhQoi8k8BnFNKPdPEY7nWWZft0qWasxVLv+Q6DEj3jpkn8q8stjbvq8gMqeOskunyst2Len+PJKPYP5ZEhJe9q7IC0rWt1ht0Bd1YqnRRqpJhKLSSdL794Bj2ZZJODY2IWhRiQEp9JsySXcdZ83K9Mle8YYZURH4AoNqaFh8H8O8AvK2ZP6SUehTAowBw9OjR1rrjUFOsUs3Z1S0cGk/bt2902GV335h58ni23YDUI1dnvMDKiq5tFexV7meWzYD0s792E27eO+rSyPqfFZBeWL58rV6qL6MD0oW1KhnSFkp2ich9YWajqM94bb6jF1gXir3ylDYMSJVSd1e7XURuAHAQwDM6+t4D4OcicrtS6oKjo6SmWM1sZld3LqlwacPMCI0MRNv6vSPJGIYSkYYZ0tmVHJ6bWcFdR8xQyVAKIt65OuMFKR2Qli/9MrNszuvbn0nZmSy63OSwDkhXGJC2angginBIsFBluRZDKWZaiDyE8/Wo35SWKHF5ID4SDgdk2Rel1HGl1IRS6oBS6gCAVwHcymDUPdZyH5Ulu4s6qzHaQbCyL5NsGJB+7v+8hH/xxafsDFTBUFxiw2EpneVez5dKdq0MKefl1Wdl+g9kUi6PxHtCIcFoMlZ9DikzpESeYjc18siJKvlflFl7x3lt2RdONvORoYEIYpHQZRnSxfUtDCUiiHYwt3DfWBKvNFg78OX5dQDAd56dAWDOLfPKG8ErShnSUkB6YTmHoUTEvo+qG0vF8K0PvwF/+K4b3R6KJ2VSseolu6r5dUiJyH12hpRvW+oT1muSFXXOsU75vdJY1LFh6kwp1yB1kYhgYjB+WYZ0YT1vd8ls196xJF69tGnPC63mtA5Yv33cTJIzc+K8VNkcUsvMcg679bIcVN+Ne0YYuLdpLFU9Q2pwPUMiT2HJLvUbaw4pzxmdY5VBeyUx5JG4mZo1MRivMoc03/Hcwn1jSeSLht3RtZJhKLyyuIFENISnzixidjWHouKJqtNS1rIv+Z1zSCeHWa5L3TWWjtnLC5UrKl54IvISdjSlflOaQ8rXpFMCtewL9Z+JwcRlQePCWh6jyc4C0v1j5ry7MzXKdi+s5JAvGLjn2kkoBZy6uGaW7HrkjeAVtUp2pxiQUpeZJbtVmhoZ3rkCS0SlUl2vnKiS/0WYtXecdVz2Shk0A1Kf2TV0eYZ0cT1vL9vQLmst0rOXqgekpxfM+aNH95vLjsytbaGo2NTIaanYzpLdrUIR82t5TA6xZJe6K5OKYyVXwHbR2HG7WZrv0qCIqGURe31ClwdCpJWWInJ5ID4S8VjnYu56n5kYSmA1V0Bu2yzpVEqZJbvpzgLS8UFzDmq1piZAKXN6mw5I59fyKDJD6rhwSJCIhuyS3dkV8+LD1AgzpNRd1mfIpYqyXZbsEnlLiB1Nqc9YTTcjXunA4wF2UyOPXHninvcZK3C0AhUzo6E6zpAmYxEMRMNVS/YAMyCNhUO4enIQkZBgYW3LzJx45I3gJel4xM6Qnl8y1yBlyS51m/UZUjmPlN20ibzFnlvG9y31iSvGU/j3/+QavPnIuNtD8Q27qZFHLjwxIPWZXXotygt6HqnVFbPTpkYAkB2MYb5mQLqOPWMDiIRDyKTNxxUNXoHthlQ8Ys8htfYzA1LqNuszpLJKghlSIm/x2okq+Z+I4HfeeAiDiajbQ/GNUobU3XE0iwGpz+wbSwIwA0TAXIMUcCYgzaTiVbtsAuaSLwcyZuOjbDqO+bU8DKU8s/6RlyRjEaxvmSW7M8tmQDo5zDmk1F2lDOnOi1JFZkiJPMWaU8b3LZF/We9vr1wwZrjgM3tGBxAOid1kyMpmZFKdrUMKANl0DPNV5pAqpXBmYR37M2YwnEnHWbLbRel4GGtb2wDMDruDiQjSXFuTusxay7jyM8DgesNEnsIGMkT+V2pe5o3jMz+OfCYaDmHv6ABOz5tNhuyS3Q6bGgE6Q1qlZHdubQsb+WJZhjRmNzXiiarzJocHcE7PHT2/tMlyXeqJkYEoIiG5rGyfJbtE3mK9X5khJfKvkMfmijMg9aGD2RRemtcZUisg7XAdUgDIpGNYXM/DMNSO21/RHXb36QzpeDpuLvvCgLQrDmZTOHdpE/mCgQsrOUyxXJd6IBQSc354xbJSXIeUyFsYkBL5n5Uh9cppOANSHzqQTeHMwjqUUlhYy2MgGsZALNzx782k4ygYCiu57R23n9YBqZUhzaRjyBcM3Svv7QAADi5JREFULG9u84DXBQezSRgKeGVxAzPLOWZIqWfGB82LTeXMDKlLAyKilnltbhkRtc5uauSR9zlPI3zoYDaFjXwRs6tbeGl+DQeyKUd+b1aX/VaW7J1ZWEc4JJgeGdCP00vPrOZ4wOsCK/B/4eIq5te2MMmAlHrEbFh2eVMjr5QEEREQYYaUyPes97dX3ucMSH3ooA5AX55fx4kLqziyK+3I781WNDXZzBfxyf/1HJ58eRHTIwOIRcyXk9X8ZHZliwFpF1j794mXF6EUl3yh3hlPxzFXVrJrle975QosEZU3NeL7lsivrJJdr1wwZmtOH7IyaM+cXcLMcg5HJocc+b2Z9M51CJ86vYgv/sNpAMAbr8zaj7MyqatbBR7wumAkGcNoMoq/PzUPAJxDSj2THYxjYc2cRx4KCYrKDEi9csAjovLMicsDIaKuCYV2/tvvPDJMasX0yABGk1H81RNnAABXTw468nutpWOsdQitpWWA0vqngJlFsfBEtTsOZFM4NbuGZCyM63Y7c8GBqJFxPY98adOcR15khpTIcyJ6IVK+b4n8y2vNyxiQ+lAoJLj3ukmcXTSXBjniUEA6moxCpFSy+/L8OpKxMB65/2r85uv224/LpONIREP2WMh5B3UW/L1vPGSXSBN1W3bQfK09fnIOPz4xC8PKkPJ9TuQZdlMjj5yoElHrvDZXnAGpTz1wwxQAYDARcWyOYSQcQiYVw09fXEBuu4gzCxvYn0nh/W+6AtdMlbJ04ZDgql1mEMwDXnfccTiLqycH8b47D7k9FAoQq/rhkW/8Ah/76jN2hpTvcyLv4BxSIv/zWjdtBqQ+9forMhhJRnFk1yDEwZPFj77tCJ48vYiPfvUZnJ5fx8FssurjrDJhr7wRvObdt+3Bdx6+E6k4p4FT74wPmvPDc9sG5tfyWNTrHLMSgsg7rOMyryMR+ZfV1Mgr73OezfpUNBzCn73nFqQTzu7iX799H04vrONzj78EEcG9109WfdzVupGSdcJKRN43nt5ZbXHy4hoAIOyRAx4RlSoaeMGYyL+sZkZeqWBihtTH7rxqHLfuG3X8977zlmkYymxoYs1lrGRlSE/Nrjn+94nIHUMDEcTCIXtuysmLqwB4YkvkJXbJrkdOVImodXZTI48cnxmQUsuO7Bq018I8kK0ekFqNlPJFo2fjIqLuEhHsHRvA/TdMIR4J2QGpVw54RFR6v/J9S+Rf7LJLvicieOCGSYjADkwrsfMrkT/91e+8Fv/pndfjYDaFExd0htQjBzw/EpEviMisiDxbdtvNIvJTETkmIk+LyO1ujpH6i9e6bxJR68IeW2+Yc0ipLR9882G84YosxgdrB56f++2jGEvFejgqIuq2qeEBAMDhiTS+fXwGADMtLvtvAP4zgL8su+3TAD6plPpbEXlA//zm3g+N+hGXfSHyP6upkVem1DAgpbak4hHccThb9zH3XLurR6Mhol47PJGGXvWFJ7YuUko9LiIHKm8GYK3FNQzgfC/HRP2tNLfM5YEQUddY728nV9roJgakRETUsvKGaV65AhsgDwP4roh8BubUnDtcHg/1kQjXISXyPa81L+P1MSIiatlrD43Z37Nkt+98AMDvKaX2Avg9AJ+v9UAReZ+eZ/r03NxczwZI7glxDimR75WaGrk8kCYxICUiopbFI2FctSsNAPDI8S5IHgLwDf39VwHUbGqklHpUKXVUKXV0fHy8J4Mjd5WanfCdS+RX8UgY/+beI7j/hkm3h9KUjgNSEfldETkhIs+JyKedGBQREfW/e68zD3QXV3Iuj4QqnAfwJv39WwC84OJYqM+EWbJLFAgfuuswDk8Muj2MpnQ0h1RE7gLwIIAblVJbIjLhzLCIiKjfffDNh5EvGHjXrXvcHkpgichfw+ygmxWRVwH8AYD3AvhTEYkAyAF4n3sjpH7z9pumkIqHGZASUd/otKnRBwB8Sim1BQBKqdnOh0RERF4wEAvj9x+4xu1hBJpS6tdr3HVbTwdCnnF4YtAzWRMiCoZOS3avAvBGEXlCRH4iIq+p9UA2TiAiIiIiIqJyDTOkIvIDANVmxH5c//9RAK8D8BoAXxGRQ0opVflgpdSjAB4FgKNHj152PxEREREREQVLw4BUKXV3rftE5AMAvqED0CdFxACQBcAUKBEREREREdXVacnu/4TZwQ8ichWAGID5TgdFRERERERE/tdpU6MvAPiCiDwLIA/goWrlukRERERERESVOgpIlVJ5AL/p0FiIiIiIiIgoQDot2SUiIiIiIiJqCwNSIiIiIiIicoW4MeVTROYAnHHgV2URzCZKQdzuIG4zEMztDuI2A8Hcbie3eb9Satyh3xVIPDZ3jNsdHEHcZoDbHTRObHdTx2ZXAlKniMjTSqmjbo+j14K43UHcZiCY2x3EbQaCud1B3OYgCOp+5XYHRxC3GeB2uz2OXuvldrNkl4iIiIiIiFzBgJSIiIiIiIhc4fWA9FG3B+CSIG53ELcZCOZ2B3GbgWBudxC3OQiCul+53cERxG0GuN1B07Pt9vQcUiIiIiIiIvIur2dIiYiIiIiIyKMYkBIREREREZErPBuQish9InJCRE6JyCNuj6dbROS0iBwXkWMi8rS+bUxEvi8iL+h/R90eZ6dE5AsiMisiz5bdVnU7xfRnet//QkRudW/k7auxzZ8QkXN6fx8TkQfK7vt9vc0nRORed0bdORHZKyI/EpHnReQ5EfmIvt23+7vONvt6f4tIQkSeFJFn9HZ/Ut9+UESe0Pv6yyIS07fH9c+n9P0H3Bw/tS4ox2YgGMfnIB6bgWAen4N4bAZ4fO6b47NSynNfAMIAXgRwCEAMwDMArnV7XF3a1tMAshW3fRrAI/r7RwD8odvjdGA77wRwK4BnG20ngAcA/C0AAfA6AE+4PX4Ht/kTAD5W5bHX6td5HMBB/foPu70NbW73FIBb9feDAE7q7fPt/q6zzb7e33qfpfX3UQBP6H34FQDv0bf/BYAP6O8/COAv9PfvAfBlt7eBXy3t78Acm/X2+v74HMRjc53t9vvndeCOzQ222+/7u6+Oz17NkN4O4JRS6iWlVB7A3wB40OUx9dKDAB7T3z8G4B0ujsURSqnHASxW3FxrOx8E8JfK9FMAIyIy1ZuROqfGNtfyIIC/UUptKaVeBnAK5vvAc5RSM0qpn+vvVwE8D2AaPt7fdba5Fl/sb73P1vSPUf2lALwFwNf07ZX72noNfA3AW0VEejRc6lzQj82Az47PQTw2A8E8Pgfx2Azw+Kx/dP347NWAdBrA2bKfX0X9F4+XKQDfE5Gficj79G27lFIzgPlGAjDh2ui6q9Z2+n3/f1iXv3yhrNzLl9usSz5ugXllLhD7u2KbAZ/vbxEJi8gxALMAvg/zavKSUqqgH1K+bfZ26/uXAWR6O2LqgG9et00K6vE5EJ/VNfj689oSxGMzwOMzXDw+ezUgrRaR+3X9mjcopW4FcD+AD4nInW4PqA/4ef//FwBXALgZwAyAP9a3+26bRSQN4OsAHlZKrdR7aJXbPLntVbbZ9/tbKVVUSt0MYA/Mq8jXVHuY/tc32x1QQdt/PD7v5Pf97/vPayCYx2aAx2e4fHz2akD6KoC9ZT/vAXDepbF0lVLqvP53FsD/gPmCuWiVReh/Z90bYVfV2k7f7n+l1EX9AWEA+BxKZSC+2mYRicL84P+SUuob+mZf7+9q2xyU/Q0ASqklAD+GOUdlREQi+q7ybbO3W98/jObL5sh9vnvd1hPg47OvP6trCcLndRCPzQCPz/1wfPZqQPoUgCt1J6gYzMm133J5TI4TkZSIDFrfA3gbgGdhbutD+mEPAfimOyPsulrb+S0Av607vL0OwLJVTuJ1FfMv3glzfwPmNr9Hdzk7COBKAE/2enxO0HMOPg/geaXUZ8vu8u3+rrXNft/fIjIuIiP6+wEAd8Ocn/MjAO/WD6vc19Zr4N0A/k4p5ckrzwEViGMzEPjjs28/q+sJwOd14I7NAI/P+nv3j8/Ndj/qty+Y3b1Owqx3/rjb4+nSNh6C2cnrGQDPWdsJs2b7hwBe0P+OuT1WB7b1r2GWRGzDvArzL2ttJ8yygT/X+/44gKNuj9/Bbf7vept+od/8U2WP/7je5hMA7nd7/B1s96/ALPP4BYBj+usBP+/vOtvs6/0N4EYA/09v37MA/oO+/RDMA/gpAF8FENe3J/TPp/T9h9zeBn61vM99f2zW2xmI43MQj811ttvvn9eBOzY32G6/7+++Oj6L/iNEREREREREPeXVkl0iIiIiIiLyOAakRERERERE5AoGpEREREREROQKBqRERERERETkCgakRERERERE5IpI44cQkRNExGqdDgCTAIoA5vTPG0qpO1wZGBERUUDx2EzkPi77QuQCEfkEgDWl1GfcHgsRERHx2EzkFpbsEvUBEVnT/75ZRH4iIl8RkZMi8ikR+Wci8qSIHBeRK/TjxkXk6yLylP56g7tbQERE5C88NhP1BgNSov5zE4CPALgBwG8BuEopdTuA/wrgd/Vj/hTAnyilXgPgXfo+IiIi6g4em4m6hHNIifrPU0qpGQAQkRcBfE/ffhzAXfr7uwFcKyLW/xkSkUGl1GpPR0pERBQMPDYTdQkDUqL+s1X2vVH2s4HSezYE4PVKqc1eDoyIiCigeGwm6hKW7BJ50/cAfNj6QURudnEsRERExGMzUVsYkBJ5078GcFREfiEivwTwfrcHREREFHA8NhO1gcu+EBERERERkSuYISUiIiIiIiJXMCAlIiIiIiIiVzAgJSIiIiIiIlcwICUiIiIiIiJXMCAlIiIiIiIiVzAgJSIiIiIiIlcwICUiIiIiIiJX/H+hrC3bup20FAAAAABJRU5ErkJggg==\n", "text/plain": [ "