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Preface

The development and use of network science has grown exponentially since the begin-
ning of the 21st century. The ideas and techniques found in this field are already core
tools for analyzing a vast range of phenomena, from epidemics and disinformation
campaigns to chemical reactions and brain function.

In economics, network theory is typically taught as a specialized subfield, available
to students as one of many elective courses towards the end of their program. How-
ever, we are rapidly approaching the stage where every aspiring scientist—including
social scientists and economists—wants to know the foundations of this field. It is ar-
guably the case that, just as every well-trained economist learns the basics of convex
optimization, maximum likelihood and linear regression, so too should every gradu-
ate student in economics learn the fundamental ideas of network theory.

This book is an introduction to economic networks, intended for students and re-
searchers in the fields of economics and applied mathematics. The book emphasizes
quantitative modeling, with the main underlying tools being graph theory, linear alge-
bra, fixed point theory and programming. Most mathematical tools are covered from
first principles, with the two main technical results—the Neumann series lemma and
the Perron–Frobenius theorem—playing a central role.

The book is suitable for a one-semester course, taught either to advanced under-
graduate students who are comfortable with linear algebra or to beginning graduate
students. (For example, although we define eigenvalues, an ideal student would al-
ready know what eigenvalues and eigenvectors are, so that concepts like “eigenvector
centrality” or results like the Neumann series lemma are readily absorbed.) The text
will also suit students from mathematics, engineering, computer science and other
related fields who wish to learn about connection between economics and networks.

Several excellent books on network theory in economics and social science already
exist, including Jackson (2010), Easley and Kleinberg (2010), Borgatti et al. (2018),
and Goyal (2023), as well as the handbook by Bramoullé et al. (2016). These texts
have broad scope and treat many useful applications. In contrast, our book is narrower
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PREFACE vii

and more technical. It provides mathematical, computational and graph-theoretic
foundations that are required to understand and apply network theory, along with a
treatment of some of the most important network applications in economics, finance
and operations research. It can be used as a complementary resource, or as a prelimi-
nary course that facilitates understanding of the alternative texts listed above, as well
as research papers in the area.

Our book contains a mix of Python and Julia code. The majority is in Python
because the libraries are more stable at the time of writing, although Julia also has
strong graph manipulation and optimization libraries. Code for figures is available
from the authors. There are many solved exercises, ranging from simple to quite hard.
At the end of each chapter we provide notes, informal comments and references.

We are greatly indebted to Jim Savage and Schmidt Futures for generous financial
support, as well as to Shu Hu and Chien Yeh for their outstanding research assistance.
QuantEcon research fellow Matthew McKay generously lent us his time and exper-
tise in data analysis, networks and visualization. QuantEcon research assistant Mark
Dawkins turned an unstructured collection of code files into an elegant companion
Jupyter book.

Qianbin Dou has prepared a Chinese translation of this book, with assistance from
his colleagues Meilu Sun and Ling Hu. In the process, Qianbin raised many important
points that greatly enhanced the quality of all chapters. We thank Qianbin and his
colleagues for their extremely valuable help.

For many additional fixes, comments and suggestions, we thank Quentin Batista,
Rolf Campos, Fernando Cirelli, Rebekah Dix, Saya Ikegawa, Fazeleh Kazemian, Dawie
van Lill, Simon Mishricky, Pietro Monticone, Flint O’Neil, Zejin Shi, Akshay Shanker,
Arnav Sood, Natasha Watkins, Chao Wei, and Zhuoying Ye. Finally, Chase Coleman,
Alfred Galichon, Spencer Lyon, Daisuke Oyama and Jesse Perla are collaborators at
QuantEcon, and almost everything we write has benefited from their input. This text
is no exception.
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Chapter 1

Introduction

Relations are the fundamental
fabric of reality.

Michele Coscia

1.1 Motivation
Alongside the exponential growth of computer networks over the last few decades, we
have witnessed concurrent and equally rapid growth in a field called network science.
Once computer networks brought network structure into clearer focus, scientists be-
gan to recognize networks almost everywhere, even in phenomena that had already
received centuries of attention using other methods, and to apply network theory to
organize and expand knowledge right throughout the sciences, in every field and dis-
cipline.

The set of possible examples is vast, and sources mentioning or treating hundreds
of different applications of networkmethods and graph theory are listed in the reading
notes at the end of the chapter. In computer science and machine learning alone, we
see computational graphs, graphical networks, neural networks and deep learning. In
operations research, network analysis focuses on minimum cost flow, traveling sales-
man, shortest path, and assignment problems. In biology, networks are a standard
way to represent interactions between bioentities.

In this book, our interest lies in economic and social phenomena. Here, too, net-
works are pervasive. Important examples include financial networks, production net-
works, trade networks, transport networks and social networks. For example, social

1



CHAPTER 1. INTRODUCTION 2

and information networks affect trends in sentiments and opinions, consumer deci-
sions, and a range of peer effects. The topology of financial networks helps to de-
termine relative fragility of the financial system, while the structure of production
networks affects trade, innovation and the propagation of local shocks.

Figures 1.1–1.2 show two examples of trade networks. Figure 1.1 is called a
Sankey diagram, which is a kind of figure used to represent flows. Oil flows from
left to right. The countries on the left and below are the top 10 exporters of crude oil,
while the countries on the right are the top 20 consumers. The figure relates to one of
our core topics: optimal (and equilibrium) flows across networks. We treat optimal
flows at length in Chapter 3.1

Figure 1.2 shows international trade in large commercial aircraft in 2019.2 Node
size is proportional to total exports and link width is proportional to exports to the
target country. The US, France and Germany are revealed as major export hubs.

While some readers viewing Figures 1.1–1.2 might at first suspect that the net-
work perspective adds little more than an attractive technique for visualizing data, it
actually adds muchmore. For example, in Figure 1.2, node colors are based on a rank-
ing of “importance” in the network called eigenvector centrality, which we introduce in
§1.4.3.4. Such rankings and centrality measures are an active area of research among
network scientists. Eigenvector and other forms of centrality feature throughout the
text. For example, we will see that these concepts are closely connected to—and shed
new light on—fundamental ideas first developed many years ago by researchers in
the field of input-output economics.

In addition, in production networks, it turns out that the nature of shock propa-
gation is heavily dependent on the underlying structure of the network. For example,
for a few highly connected nodes, shocks occurring within one firm or sector can have
an outsized influence on aggregate-level fluctuations. Economists are currently racing
to understand these relationships, their interactions with various centrality measures,
and other closely related phenomena.

To understand this line of work, as well as other applications of network methods
to economics and finance, some technical foundations are required. For example,
to define eigenvector centrality, we need to be familiar with eigenvectors, spectral
decompositions and the Perron–Frobenius theorem. To work with Katz centrality,
which also features regularly in network science and economics, we require a sound

1This figure was constructed by QuantEcon research fellow Matthew McKay, using International
Trade Data (SITC, Rev 2) collected by The Growth Lab at Harvard University.

2This figure was also constructed byMatthewMcKay, using data 2019 International Trade Data SITC
Revision 2, code 7924. The data pertains to trade in commercial aircraft weighted at least 15,000kg.
It was sourced from CID Dataverse.
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understanding of the Neumann series lemma. The Perron–Frobenius theorem and the
Neumann series lemma form much of the technical foundation of this textbook. We
review them in detail in §1.2 and develop extensions throughout remaining chapters.

One reason that analysis of networks is challenging is high-dimensionality. To see
why, consider implementing a model with 𝑛 economic agents. This requires 𝑛 times
more data than one representative agent in a setting where agents are atomistic or
coordinated by a fixed number of prices. For example, Carvalho and Grassi (2019)
model the dynamics of 𝑛 = 6 × 106 firms, all of which need to be tracked when run-
ning a simulation. However, if we wish to model interactions between each pair 𝑖, 𝑗
(supply linkages, liabilities, etc.), then, absent sparsity conditions, the data process-
ing requirement grows like 𝑂(𝑛2).3 In the Carvalho and Grassi (2019) example, 𝑛2 is
3.6×1013, which is very large even for modern computers. One lesson is that network
models can be hard to solve, even with powerful computers, unless we think carefully
about algorithms.

In general, to obtain a good grasp on the workings of economic networks, we will
need computational skills plus a firm understanding of linear algebra, probability and
a field of discrete mathematics called graph theory. The rest of this chapter provides
relevant background in these topics. Before tackling this background, we recommend
that readers skim the list of common symbols on page viii, as well the mathematical
topics in the appendix, which start on page 210. (The appendix is not intended for
sequential reading, but rather as a source of definitions and fundamental results to
be drawn on in what follows.)

1.2 Spectral Theory

In this section we review some linear algebra needed for the study of graphs and
networks. Highlights include the spectral decomposition of diagonalizable matrices,
the Neumann series lemma, and the theorem of Perron and Frobenius.

1.2.1 Eigendecompositions

Our first task is to cover spectral decompositions and the spectral theorem. We begin
with a brief review of eigenvalues and their properties. (If you are not familiar with
eigenvalues and eigenvectors, please consult an elementary treatment first. See, for
example, Cohen (2021).)

3See §6.1.3 for a discussion of big O notation.
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1.2.1.1 Eigenvalues

Fix 𝐴 in M𝑛×𝑛. A scalar 𝜆 ∈ C is called an eigenvalue of 𝐴 if there exists a nonzero
complex vector 𝑒 ∈ C𝑛 such that 𝐴𝑒 = 𝜆𝑒. A vector 𝑒 satisfying this equality is called an
eigenvector corresponding to the eigenvalue 𝜆. (Notice that eigenvalues and eigen-
vectors are allowed to be complex, even though we restrict elements of 𝐴 to be real.)
The set of all eigenvalues of 𝐴 is called the spectrum of 𝐴 and written as 𝜎(𝐴). As we
show below, 𝐴 has at most 𝑛 distinct eigenvalues.

In Julia, we can check for the eigenvalues of a given squarematrix 𝐴 via eigvals(A).
Here is one example

using LinearAlgebra
A = [0 -1;

1 0]
eigenvals = eigvals(A)

Running this code in a Jupyter cell (with Julia kernel) or Julia REPL produces

2-element Vector{ComplexF64}:
0.0 - 1.0im
0.0 + 1.0im

Here im stands for 𝑖, the imaginary unit (i.e., 𝑖2 = −1).

EXERCISE 1.2.1. Using pencil and paper, confirm that Julia’s output is correct. In
particular, show that

𝐴 =

(
0 −1
1 0

)
=⇒ 𝜎(𝐴) = {𝑖,−𝑖},

with corresponding eigenvectors (−1, 𝑖)⊤ and (−1,−𝑖)⊤.

If 𝜆 ∈ 𝜎(𝐴) and 𝑒 is an eigenvector for 𝜆, then (𝜆, 𝑒) is called an eigenpair.

EXERCISE 1.2.2. Prove: if (𝜆, 𝑒) is an eigenpair of 𝐴 and 𝛼 is a nonzero scalar, then
(𝜆, 𝛼𝑒) is also an eigenpair of 𝐴.

Lemma 1.2.1. 𝜆 ∈ C is an eigenvalue of 𝐴 if and only if det(𝐴 − 𝜆𝐼) = 0.
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Proof. If 𝜆 ∈ R, then Lemma 1.2.1 follows directly from Theorem 6.1.14 on page 234,
since det(𝐴−𝜆𝐼) = 0 is equivalent to existence of nonzero vector 𝑒 such that (𝐴−𝜆𝐼)𝑒 =
0, which in turn says that 𝜆 is an eigenvalue of 𝐴. The same arguments extend to the
case 𝜆 ∈ C because the statements in Theorem 6.1.14 are also valid for complex-
valued matrices (see, e.g., Jänich (1994)). □

It can be shown that 𝑝(𝜆) := det(𝐴 − 𝜆𝐼) is a polynomial of degree 𝑛.4 This poly-
nomial is called the characteristic polynomial of 𝐴. By the Fundamental Theorem
of Algebra, there are 𝑛 roots (i.e., solutions in C to the equation 𝑝(𝜆) = 0), although
some may be repeated as in the complete factorization of 𝑝(𝜆). By Lemma 1.2.1,

(i) each of these roots is an eigenvalue, and
(ii) no other eigenvalues exist besides these 𝑛 roots.

If 𝜆 ∈ 𝜎(𝐴) appears 𝑘 times in the factorization of the polynomial 𝑝(𝜆), then 𝜆 is
said to have algebraic multiplicity 𝑘. An eigenvalue with algebraic multiplicity one
is called simple. A simple eigenvalue 𝜆 has the property that its eigenvector is unique
up to a scalar multiple, in the sense of Exercise 1.2.2. In other words, the linear span
of {𝑒 ∈ C𝑛 : (𝜆, 𝑒) is an eigenpair} (called the eigenspace of 𝜆) is one-dimensional.

EXERCISE 1.2.3. For 𝐴 ∈ M𝑛×𝑛, show that 𝜆 ∈ 𝜎(𝐴) iff 𝜏𝜆 ∈ 𝜎(𝜏𝐴) for all 𝜏 > 0.

EXERCISE 1.2.4. A useful fact concerning eigenvectors is that if the characteristic
polynomial 𝑝(𝜆) := det(𝐴−𝜆𝐼) has 𝑛 distinct roots, then the 𝑛 corresponding eigenvec-
tors form a basis of C𝑛. Prove this for the case where all eigenvectors are real—that is
show that the 𝑛 (real) eigenvectors form a basis of R𝑛. (Bases are defined in §6.1.4.2.
Proving this for 𝑛 = 2 is also a good effort.)

1.2.1.2 The Eigendecomposition

What are the easiest matrices to work with? An obvious answer to this question is:
the diagonal matrices. For example, when 𝐷 = diag(𝜆 𝑖) with 𝑖 ∈ [𝑛],

• the linear system 𝐷𝑥 = 𝑏 reduces to 𝑛 completely independent scalar equations,
• the 𝑡-th power 𝐷𝑡 is just diag(𝜆𝑡𝑖), and
• the inverse 𝐷−1 is just diag(𝜆−1

𝑖 ), assuming all 𝜆 𝑖’s are nonzero.
4See, for example, Jänich (1994), Chapter 6.
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While most matrices are not diagonal, there is a way that “almost any” matrix can
be viewed as a diagonal matrix, after translation of the usual coordinates inR𝑛 via an
alternative basis. This can be extremely useful. The key ideas are described below.

𝐴 ∈ M𝑛×𝑛 is called diagonalizable if

𝐴 = 𝑃𝐷𝑃−1 for some 𝐷 = diag(𝜆1, . . . , 𝜆𝑛) and nonsingular matrix 𝑃.

We allow both 𝐷 and 𝑃 to contain complex values. The representation 𝑃𝐷𝑃−1 is called
the eigendecomposition or the spectral decomposition of 𝐴.

One way to think about diagonalization is in terms of maps, as in

R𝑛 R𝑛

C𝑛 C𝑛

𝐴

𝑃−1

𝐷

𝑃

Either we can map directly with 𝐴 or, alternatively, we can shift to C𝑛 via 𝑃−1, apply
the diagonal matrix 𝐷, and then shift back to R𝑛 via 𝑃.

The equality 𝐴 = 𝑃𝐷𝑃−1 can also be written as 𝐴𝑃 = 𝑃𝐷. Decomposed across
column vectors, this equation says that each column of 𝑃 is an eigenvector of 𝐴 and
each element along the principal diagonal of 𝐷 is an eigenvalue.

EXERCISE 1.2.5. Confirm this. Why are column vectors taken from 𝑃 nonzero, as
required by the definition of eigenvalues?

EXERCISE 1.2.6. The trace of a matrix is equal to the sum of its eigenvalues, and
the determinant is their product. Prove this fact in the case where 𝐴 is diagonalizable.

EXERCISE 1.2.7. The asymptotic properties of the map 𝑚 ↦→ 𝐴𝑚 are determined by
the eigenvalues of 𝐴. This is clearest in the diagonalizable case, where 𝐴 = 𝑃 diag(𝜆 𝑖)𝑃−1.
To illustrate, use induction to show that

𝐴 = 𝑃 diag(𝜆 𝑖)𝑃−1 =⇒ 𝐴𝑚 = 𝑃 diag(𝜆𝑚𝑖 )𝑃−1 for all 𝑚 ∈ N. (1.1)

When does diagonalizability hold?
While diagonalizability is not universal, the set of matrices inM𝑛×𝑛 that fail to be

diagonalizable has “Lebesgue measure zero” inM𝑛×𝑛. (Loosely speaking, only special
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or carefully constructed examples will fail to be diagonalizable.) The next results
provide conditions for the property.

Theorem 1.2.2. A matrix 𝐴 ∈ M𝑛×𝑛 is diagonalizable if and only if its eigenvectors form
a basis of C𝑛.

This result is intuitive: for 𝐴 = 𝑃𝐷𝑃−1 to hold we need 𝑃 to be invertible, which
requires that its 𝑛 columns are linearly independent. Since C𝑛 is 𝑛-dimensional, this
means that the columns form a basis of C𝑛.

Corollary 1.2.3. If 𝐴 ∈ M𝑛×𝑛 has 𝑛 distinct eigenvalues, then 𝐴 is diagonalizable.

Proof. See Exercise 1.2.4. □

EXERCISE 1.2.8. Give a counterexample to the statement that the condition in
Corollary 1.2.3 is necessary as well as sufficient.

There is another way that we can establish diagonalizability, based on symmetry.
Symmetry also lends the diagonalization certain properties that turn out to be very
useful in applications. We are referring to the following celebrated theorem.

Theorem 1.2.4 (Spectral theorem). If 𝐴 ∈ M𝑛×𝑛 is symmetric, then there exists a real
orthonormal 𝑛 × 𝑛 matrix 𝑈 such that

𝐴 = 𝑈𝐷𝑈⊤ with 𝜆 𝑖 ∈ R+ for all 𝑖, where 𝐷 = diag(𝜆1, . . . , 𝜆𝑛).

Since, for the orthonormal matrix 𝑈, we have 𝑈⊤ = 𝑈−1 (see Lemma 6.1.15), one
consequence of the spectral theorem is that 𝐴 is diagonalizable. For obvious reasons,
we often say that 𝐴 is orthogonally diagonalizable.

1.2.1.3 Worker Dynamics

Let’s study a small application of the eigendecomposition. Suppose that, each month,
workers are hired at rate 𝛼 and fired at rate 𝛽. Their two states are unemployment
(state 1) and employment (state 2). Figure 1.3 shows the transition probabilities for
a given worker in each of these two states.

We translate these dynamics into the matrix

𝑃𝑤 =

(
1 − 𝛼 𝛼
𝛽 1 − 𝛽

)
where 0 ⩽ 𝛼, 𝛽 ⩽ 1. (1.2)
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unemployed employed
𝛼

𝛽

1 − 𝛽

1 − 𝛼

Figure 1.3: Worker transition dynamics

• Row 1 of 𝑃𝑤 gives probabilities for unemployment and employment respectively
when currently unemployed.

• Row 2 of 𝑃𝑤 gives probabilities for unemployment and employment respectively
when currently employed.

EXERCISE 1.2.9. Using Lemma 1.2.1, show that the two eigenvalues of 𝑃𝑤 are 𝜆1 := 1
and 𝜆2 := 1 − 𝛼 − 𝛽. Show that, when min{𝛼, 𝛽} > 0,

𝑒1 :=
(
1
1

)
and 𝑒2 :=

(
−𝛼
𝛽

)
are two corresponding eigenvectors, and that 𝜆1 and 𝜆2 are simple.

EXERCISE 1.2.10. Show that, when 𝛼 = 𝛽 = 0, the eigenvalue 𝜆1 is not simple.

Below we demonstrate that the 𝑚-th power of 𝑃𝑤 provides 𝑚-step transition prob-
abilities for workers. Anticipating this discussion, we now seek an expression for 𝑃𝑚𝑤
at arbitrary 𝑚 ∈ N. This problem is simplified if we use diagonalization.

EXERCISE 1.2.11. Assume that min{𝛼, 𝛽} > 0. (When 𝛼 = 𝛽 = 0, computing the
powers of 𝑃𝑤 is trivial.) Show that

𝑃𝑤 = 𝐸𝐷𝐸−1 when 𝐷 =

(
1 0
0 𝜆2

)
and 𝐸 =

(
1 −𝛼
1 𝛽

)
.
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Using (1.1), prove that

𝑃𝑚𝑤 =
1

𝛼 + 𝛽

(
𝛽 + 𝛼(1 − 𝛼 − 𝛽)𝑚 𝛼(1 − (1 − 𝛼 − 𝛽)𝑚)
𝛽(1 − (1 − 𝛼 − 𝛽)𝑚) 𝛼 + 𝛽(1 − 𝛼 − 𝛽)𝑚

)
(1.3)

for every 𝑚 ∈ N.

1.2.1.4 Left Eigenvectors

A vector 𝜀 ∈ C𝑛 is called a left eigenvector of 𝐴 ∈ M𝑛×𝑛 if 𝜀 is an eigenvector of
𝐴⊤. In other words, 𝜀 is nonzero and there exists a 𝜆 ∈ C such that 𝐴⊤𝜀 = 𝜆𝜀. We
can alternatively write the expression as 𝜀⊤𝐴 = 𝜆𝜀⊤, which is where the name “left”
eigenvector originates.

Left eigenvectors will play important roles in what follows, including that of stochas-
tic steady states for dynamic models under a Markov assumption. To help distinguish
between ordinary and left eigenvectors, we will at times call (ordinary) eigenvectors
of 𝐴 right eigenvectors of 𝐴.

If 𝐴 is diagonalizable, then so is 𝐴⊤. To show this, let 𝐴 = 𝑃𝐷𝑃−1 with 𝐷 = diag(𝜆 𝑖).
We know from earlier discussion that the columns of 𝑃 are the (right) eigenvectors of
𝐴.

EXERCISE 1.2.12. Let 𝑄 = (𝑃⊤)−1. Prove that 𝑄⊤𝑃 = 𝐼 and 𝐴⊤ = 𝑄𝐷𝑄−1.

The results of the last exercise show that, when 𝐴 = 𝑃𝐷𝑃−1, the columns of (𝑃⊤)−1

coincide with the left eigenvectors of 𝐴. (Why?) Equivalently, 𝐴 = 𝑃𝐷𝑄⊤ where
𝑄 = (𝜀1, . . . , 𝜀𝑛) is the 𝑛 × 𝑛 matrix with 𝑖-th column equal to the 𝑖-th left eigenvector
of 𝐴.

EXERCISE 1.2.13. Let (𝑒𝑖)𝑛𝑖=1 be right eigenvectors of 𝐴 and let (𝜀𝑖)𝑛𝑖=1 be the left
eigenvectors. Prove that 〈

𝜀𝑖, 𝑒 𝑗
〉
= 1{𝑖 = 𝑗} (𝑖, 𝑗 ∈ [𝑛]). (1.4)

(Hint: Use the results of Exercise 1.2.12.)

EXERCISE 1.2.14. Continuing with the notation defined above and continuing to
assume that 𝐴 is diagonalizable, prove that

𝐴 =
𝑛∑
𝑖=1

𝜆 𝑖𝑒𝑖𝜀
⊤
𝑖 and 𝐴𝑚 =

𝑛∑
𝑖=1

𝜆𝑚𝑖 𝑒𝑖𝜀
⊤
𝑖 (1.5)
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for all 𝑚 ∈ N. The expression for 𝐴 on the left hand side of (1.5) is called the spectral
representation of 𝐴.

EXERCISE 1.2.15. Prove that each 𝑛× 𝑛matrix 𝜆 𝑖𝑒𝑖𝜀⊤𝑖 in the sum ∑𝑛
𝑖=1 𝜆 𝑖𝑒𝑖𝜀

⊤
𝑖 is rank

1.

1.2.1.5 Similar Matrices

Diagonalizability is a special case of a more general concept: 𝐴 ∈ M𝑛×𝑛 is called
similar to 𝐵 ∈ M𝑛×𝑛 if there exists an invertible matrix 𝑃 such that 𝐴 = 𝑃𝐵𝑃−1. In this
terminology, 𝐴 is diagonalizable if and only if it is similar to a diagonal matrix.

EXERCISE 1.2.16. Prove that similarity betweenmatrices is an equivalence relation
(see §6.1.1.2) onM𝑛×𝑛.

EXERCISE 1.2.17. The fact that similarity is an equivalence relation on M𝑛×𝑛 im-
plies that this relation partitions M𝑛×𝑛 into disjoint equivalence classes, elements of
which are all similar. Prove that all matrices in each equivalence class share the same
eigenvalues.

EXERCISE 1.2.18. Prove: If 𝐴 is similar to 𝐵, then 𝐴𝑚 is similar to 𝐵𝑚. In particular

𝐴 = 𝑃𝐵𝑃−1 =⇒ 𝐴𝑚 = 𝑃𝐵𝑚𝑃−1 for all 𝑚 ∈ N.

The last result is a generalization of (1.1). When 𝐴 is large, calculating the powers
𝐴𝑘 can be computationally expensive or infeasible. If, however, 𝐴 is similar to some
simpler matrix 𝐵, then we can take powers of 𝐵 instead, and then transition back to
𝐴 using the similarity relation.5

1.2.2 The Neumann Series Lemma

Most high school students learn that, if 𝑎 is a number with |𝑎| < 1, then∑
𝑖⩾0

𝑎𝑖 =
1

1 − 𝑎 . (1.6)

5The only concern with this shift process is that 𝑃 can be ill-conditioned, implying that the inverse
is numerically unstable.
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This geometric series representation extends to matrices: If 𝐴 is a matrix satisfying
a certain condition, then (1.6) holds, in the sense that ∑

𝑖⩾0 𝐴
𝑖 = (𝐼 − 𝐴)−1. (Here 𝐼

is the identity matrix.) But what is the “certain condition” that we need to place on
𝐴, which generalizes the concept |𝑎| < 1 to matrices? The answer to this question
involves the “spectral radius” of a matrix, which we now describe.

1.2.2.1 Spectral Radius

Fix 𝐴 ∈ M𝑛×𝑛. With |𝑧 | indicating the modulus of a complex number 𝑧, the spectral
radius of 𝐴 is defined as

𝑟(𝐴) := max{|𝜆 | : 𝜆 is an eigenvalue of 𝐴}. (1.7)

Within economics, the spectral radius has important applications in dynamics, asset
pricing, and numerous other fields. As we will see, the same concept also plays a key
role in network analysis.

Remark 1.2.1. For any square matrix 𝐴, we have 𝑟(𝐴⊤) = 𝑟(𝐴). This follows from the
fact that 𝐴 and 𝐴⊤ always have the same eigenvalues.

Example 1.2.1. As usual, diagonal matrices supply the simplest example: If 𝐷 =
diag(𝑑𝑖), then the spectrum 𝜎(𝐷) is just {𝑑𝑖}𝑖∈[𝑛] and hence 𝑟(𝐷) = max𝑖 |𝑑𝑖 |.

After executing

import numpy as np

The following Python code computes the spectral radius of a square matrix 𝑀:

def spec_rad(M):
return np.max(np.abs(np.linalg.eigvals(M)))

1.2.2.2 Geometric Series

We can now return to the matrix extension of (1.6) and state a formal result.

Theorem 1.2.5 (Neumann series lemma (NSL)). If 𝐴 is in M𝑛×𝑛 and 𝑟(𝐴) < 1, then
𝐼 − 𝐴 is nonsingular and

(𝐼 − 𝐴)−1 =
∞∑
𝑚=0

𝐴𝑚. (1.8)
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The sum ∑∞
𝑚=0 𝐴

𝑚 is called the power series representation of (𝐼 − 𝐴)−1. Conver-
gence of the matrix series is understood as element-by-element convergence.

A full proof of Theorem 1.2.5 can be found in Cheney (2013) and many other
sources. The core idea is simple: if 𝑆 = 𝐼 + 𝐴 + 𝐴2 + · · · then 𝐼 + 𝐴𝑆 = 𝑆. Reorganizing
gives (𝐼 − 𝐴)𝑆 = 𝐼, which is equivalent to (1.8). The main technical issue is showing
that the power series converges. The full proof shows that this always holds when
𝑟(𝐴) < 1.

EXERCISE 1.2.19. Fix 𝐴 ∈ M𝑛×𝑛. Prove the following: if 𝑟(𝐴) < 1, then, for each
𝑏 ∈ R𝑛 the linear system 𝑥 = 𝐴𝑥 + 𝑏 has the unique solution 𝑥∗ ∈ R𝑛 given by

𝑥∗ =
∞∑
𝑚=0

𝐴𝑚𝑏. (1.9)

1.2.3 The Perron–Frobenius Theorem

In this section we state and discuss a suprisingly far reaching theorem due to Oskar
Perron and Ferdinand Frobenius, which has applications in network theory, machine
learning, asset pricing, Markov dynamics, nonlinear dynamics, input-output analysis
and many other fields. In essence, the theorem provides additional information about
eigenvalues and eigenvectors when the matrix in question is positive in some sense.

1.2.3.1 Order in Matrix Space

We require some definitions. In what follows, for 𝐴 ∈ M𝑛×𝑘, we write

• 𝐴 ⩾ 0 if all elements of 𝐴 are nonnegative and
• 𝐴 ≫ 0 if all elements of 𝐴 are strictly positive.

It’s easy to imagine how nonnegativity and positivity are important notions for
matrices, just as they are for numbers. However, strict positivity of every element
of a matrix is hard to satisfy, especially for a large matrix. As a result, mathemati-
cians routinely use two notions of “predominantly strictly positive,” which sometimes
provide sufficient positivity for the theorems that we need.

Regarding these two notions, for 𝐴 ∈ M𝑛×𝑛, we say that 𝐴 ⩾ 0 is

• irreducible if ∑∞
𝑚=0 𝐴

𝑚 ≫ 0 and
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• primitive if there exists an 𝑚 ∈ N such that 𝐴𝑚 ≫ 0.

Evidently, for 𝐴 ∈ M𝑛×𝑛 we have

𝐴 ≫ 0 =⇒ 𝐴 primitive =⇒ 𝐴 irreducible =⇒ 𝐴 ⩾ 0.

A nonnegative matrix is called reducible if it fails to be irreducible.

EXERCISE 1.2.20. By examining the expression for 𝑃𝑚𝑤 in (1.3), show that 𝑃𝑤 is

(i) irreducible if and only if 0 < 𝛼, 𝛽 ⩽ 1; and
(ii) primitive if and only if 0 < 𝛼, 𝛽 ⩽ 1 and min{𝛼, 𝛽} < 1.

In addition to the above notation, for 𝐴, 𝐵 ∈ M𝑛×𝑘, we also write

• 𝐴 ⩾ 𝐵 if 𝐴 − 𝐵 ⩾ 0 and 𝐴 ≫ 𝐵 if 𝐴 − 𝐵 ≫ 0,
• 𝐴 ⩽ 0 if −𝐴 ⩾ 0, etc.

EXERCISE 1.2.21. Show that ⩽ is a partial order (see §6.1.2.1) onM𝑛×𝑘.

The partial order ⩽ discussed in Exercise 1.2.21 is usually called the pointwise
partial order onM𝑛×𝑘. Analogous notation and terminology are used for vectors.

The following exercise shows that nonnegative matrices are order-preserving maps
(see §6.1.2.3) on vector space under the pointwise partial order—a fact we shall ex-
ploit many times.

EXERCISE 1.2.22. Show that the map 𝑥 ↦→ 𝐴𝑥 is order-preserving (see §6.1.2.3)
whenever 𝐴 ⩾ 0 (i.e., 𝑥 ⩽ 𝑦 implies 𝐴𝑥 ⩽ 𝐴𝑦 for any conformable vectors 𝑥, 𝑦).

1.2.3.2 Statement of the Theorem

Let 𝐴 be inM𝑛×𝑛. In general, 𝑟(𝐴) is not an eigenvalue of 𝐴. For example,

𝐴 = diag(−1, 0) =⇒ 𝜎(𝐴) = {−1, 0} while 𝑟(𝐴) = 1.

But 𝑟(𝐴) is always an eigenvalue when 𝐴 ⩾ 0. This is just one implication of the
following famous theorem.
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Theorem 1.2.6 (Perron–Frobenius). If 𝐴 ⩾ 0, then 𝑟(𝐴) is an eigenvalue of 𝐴 with
nonnegative real right and left eigenvectors:

∃ nonzero 𝑒, 𝜀 ∈ R𝑛
+ such that 𝐴𝑒 = 𝑟(𝐴)𝑒 and 𝜀⊤𝐴 = 𝑟(𝐴)𝜀⊤. (1.10)

If 𝐴 is irreducible, then, in addition,

(i) 𝑟(𝐴) is strictly positive and a simple eigenvalue,
(ii) the eigenvectors 𝑒 and 𝜀 are everywhere positive, and
(iii) eigenvectors of 𝐴 associated with other eigenvalues fail to be nonnegative.

If 𝐴 is primitive, then, in addition,

(i) the inequality |𝜆 | ⩽ 𝑟(𝐴) is strict for all eigenvalues 𝜆 of 𝐴 distinct from 𝑟(𝐴), and
(ii) with 𝑒 and 𝜀 normalized so that ⟨𝜀, 𝑒⟩ = 1, we have

𝑟(𝐴)−𝑚𝐴𝑚 → 𝑒 𝜀⊤ (𝑚→∞). (1.11)

The fact that 𝑟(𝐴) is simple under irreducibility means that its eigenvectors are
unique up to scalar multiples. We will exploit this property in several important
uniqueness proofs.

In the present context, 𝑟(𝐴) is called the dominant eigenvalue or Perron root of 𝐴,
while 𝜀 and 𝑒 are called the dominant left and right eigenvectors of 𝐴, respectively.

Why do we use the word “dominant” here? To help illustrate, let us suppose
that 𝐴 ∈ M𝑛×𝑛 is primitive and fix any 𝑥 ∈ R𝑛. Consider what happens to the point
𝑥𝑚 := 𝐴𝑚𝑥 as 𝑚 grows. By (1.11) we have 𝐴𝑚𝑥 ≈ 𝑟(𝐴)𝑚𝑐𝑒 for large 𝑚, where 𝑐 = 𝜀⊤𝑥.
In other words, asymptotically, the sequence (𝐴𝑚𝑥)𝑚∈N is just scalar multiples of 𝑒,
growing at rate ln 𝑟(𝐴). Thus, 𝑟(𝐴) dominates other eigenvalues in controlling the
growth rate of 𝐴𝑚𝑥, while 𝑒 dominates other eigenvectors in controlling the direction
of growth.

EXERCISE 1.2.23. The 𝑛 × 𝑛 matrix 𝑃 := 𝑒 𝜀⊤ in (1.11) is called the Perron pro-
jection of 𝐴. Prove that 𝑃2 = 𝑃 (a property that is often used to define projection
matrices) and rank 𝑃 = 1. Describe the one-dimensional space that 𝑃 projects all of
R𝑛 into.

Example 1.2.2. Fix 𝐴 ⩾ 0. If 𝑟(𝐴) = 1, then 𝐼− 𝐴 is not invertible. To see this, observe
that, by Theorem 1.2.6, since 𝑟(𝐴) is an eigenvalue of 𝐴, there exists a nonzero vector
𝑒 such that (𝐼 − 𝐴)𝑒 = 0. The claim follows. (Why?)
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1.2.3.3 Worker Dynamics II

We omit the full proof of Theorem 1.2.6, which is quite long and can be found inMeyer
(2000), Seneta (2006b) or Meyer-Nieberg (2012).6 Instead, to build intuition, let us
prove the theorem in a rather simple special case.

The special case we will consider is the class of matrices

𝑃𝑤 =

(
1 − 𝛼 𝛼
𝛽 1 − 𝛽

)
with 0 ⩽ 𝛼, 𝛽 ⩽ 1.

This example is drawn from the study of worker dynamics in §1.2.1.3.
You might recall from §1.2.1.3 that 𝜆1 = 1 and 𝜆2 = 1 − 𝛼 − 𝛽. Clearly 𝑟(𝐴) = 1, so

𝑟(𝐴) is an eigenvalue, as claimed by the first part of the Perron–Frobenius theorem.
From now on we assume that min{𝛼, 𝛽} > 0, which just means that we are exclud-

ing the identity matrix in order to avoid some tedious qualifying remarks.
The two right eigenvectors (𝑒1, 𝑒2) and two left eigenvectors (𝜀1, 𝜀2) are, respec-

tively,
𝑒1 :=

(
1
1

)
, 𝑒2 :=

(
−𝛼
𝛽

)
, 𝜀1 := 1

𝛼 + 𝛽

(
𝛼
𝛽

)
and 𝜀2 :=

(
𝛼
−𝛼

)
.

EXERCISE 1.2.24. Verify these claims. (The right eigenvectors were treated in §1.2.1.3.)

EXERCISE 1.2.25. Recall from Exercise 1.2.20 that 𝑃𝑤 is irreducible if and only if
both 𝛼 and 𝛽 are strictly positive. Show that all the claims about irreducible matrices
in the Perron–Frobenius theorem are valid for 𝑃𝑤 under this irreducibility condition.

EXERCISE 1.2.26. Recall from Exercise 1.2.20 that 𝑃𝑤 is primitive if and only if
0 < 𝛼, 𝛽 ⩽ 1 and min{𝛼, 𝛽} < 1. Verify the claim (1.11) for 𝑃𝑤 under these conditions.
In doing so, you can use the expression for 𝑃𝑚𝑤 in (1.3).

1.2.3.4 Bounding the Spectral Radius

Using the Perron–Frobenius theorem, we can provide useful bounds on the spectral
radius of a nonnegative matrix. In what follows, fix 𝐴 = (𝑎𝑖 𝑗) ∈ M𝑛×𝑛 and set

6See also Glynn and Desai (2018), which provides a new proof of the main results, based on prob-
abilistic arguments, including extensions to infinite state spaces.
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• rowsum𝑖(𝐴) :=
∑

𝑗 𝑎𝑖 𝑗 = the 𝑖-th row sum of 𝐴 and
• colsum 𝑗(𝐴) :=

∑
𝑖 𝑎𝑖 𝑗 = the 𝑗-th column sum of 𝐴.

Lemma 1.2.7. If 𝐴 ⩾ 0, then

(i) min𝑖 rowsum𝑖(𝐴) ⩽ 𝑟(𝐴) ⩽ max𝑖 rowsum𝑖(𝐴) and
(ii) min 𝑗 colsum 𝑗(𝐴) ⩽ 𝑟(𝐴) ⩽ max 𝑗 colsum 𝑗(𝐴).

Proof. Let 𝐴 be as stated and let 𝑒 be the right eigenvector in (1.10). Since 𝑒 is non-
negative and nonzero, we can and do assume that ∑ 𝑗 𝑒 𝑗 = 1. From 𝐴𝑒 = 𝑟(𝐴)𝑒 we have∑

𝑗 𝑎𝑖 𝑗𝑒 𝑗 = 𝑟(𝐴)𝑒𝑖 for all 𝑖. Summing with respect to 𝑖 gives ∑
𝑗 colsum 𝑗(𝐴)𝑒 𝑗 = 𝑟(𝐴).

Since the elements of 𝑒 are nonnegative and sum to one, 𝑟(𝐴) is a weighted average
of the column sums. Hence the second pair of bounds in Lemma 1.2.7 holds. The
remaining proof is similar (use the left eigenvector). □

1.3 Probability

Next we review some elements of probability that will be required for analysis of
networks.

1.3.1 Discrete Probability

We first introduce probability models on finite sets and then consider sampling meth-
ods and stochastic matrices.

1.3.1.1 Probability on Finite Sets

Throughout this text, if 𝑆 is a finite set, then we set

𝒟(𝑆) :=
{
𝜑 ∈ R𝑆

+ :
∑
𝑥∈𝑆

𝜑(𝑥) = 1
}

and call 𝒟(𝑆) the set of distributions on 𝑆. We say that a random variable 𝑋 taking
values in 𝑆 has distribution 𝜑 ∈ 𝒟(𝑆) and write 𝑋 𝑑

= 𝜑 if

P{𝑋 = 𝑥} = 𝜑(𝑥) for all 𝑥 ∈ 𝑆.
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(1, 0, 0)
(0, 1, 0)

(0, 0, 1)

Figure 1.4: If 𝑆 = {1, 2, 3}, then 𝒟(𝑆) is the unit simplex in R3

A distribution𝜑 can also be understood as a vector (𝜑(𝑥𝑖))𝑛𝑖=1 ∈ R𝑛 (see Lemma 6.1.2
in §6.1.1.3). As a result, 𝒟(𝑆) can be viewed as a subset of R𝑛. Figure 1.4 pro-
vides a visualization when 𝑆 = {1, 2, 3}. Each 𝜑 ∈ 𝒟(𝑆) is identified by the point
(𝜑(1), 𝜑(2), 𝜑(3)) in R3.

More generally, if |𝑆| = 𝑛, then 𝒟(𝑆) can be identified with the unit simplex in
R𝑛, which is the set of all 𝑛-vectors that are nonnegative and sum to one.

Throughout, given 𝑥 ∈ 𝑆, we use the symbol 𝛿𝑥 to represent the element of 𝒟(𝑆)
that puts all mass on 𝑥. In other words, 𝛿𝑥 (𝑦) = 1{𝑦 = 𝑥} for all 𝑦 ∈ 𝑆. In Figure 1.4,
each 𝛿𝑥 is a vertex of the unit simplex.

We frequently make use of the law of total probability, which states that, for a
random variable 𝑋 on 𝑆 and arbitrary 𝐴 ⊂ 𝑆,

P{𝑋 ∈ 𝐴} =
∑
𝑖

P{𝑋 ∈ 𝐴 | 𝑋 ∈ 𝐵𝑖}P{𝑋 ∈ 𝐵𝑖} (1.12)

where {𝐵𝑖} is a partition of 𝑆 (i.e., finite collection of disjoint subsets of 𝑆 such that
their union equals 𝑆).

EXERCISE 1.3.1. Prove (1.12) assuming P{𝑋 ∈ 𝐵𝑖} > 0 for all 𝑖.
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1.3.1.2 Inverse Transform Sampling

Let 𝑆 be a finite set. Suppose we have the ability to generate random variables that
are uniformly distributed on (0, 1]. We now want to generate random draws from 𝑆
that are distributed according to arbitrary 𝜑 ∈ 𝒟(𝑆).

Let 𝑊 be uniformly distributed on (0, 1], so that, for any 𝑎 ⩽ 𝑏 ∈ (0, 1], we have
P{𝑎 < 𝑊 ⩽ 𝑏} = 𝑏 − 𝑎, which is the length of the interval (𝑎, 𝑏].7 Our problem will
be solved if we can create a function 𝑧 ↦→ 𝜅(𝑧) from (0, 1] to 𝑆 such that 𝜅(𝑊) has
distribution 𝜑. One technique is as follows. First we divide the unit interval (0, 1] into
disjoint subintervals, one for each 𝑥 ∈ 𝑆. The interval corresponding to 𝑥 is denoted
𝐼(𝑥) and is chosen to have length 𝜑(𝑥). More specifically, when 𝑆 = {𝑥1, . . . , 𝑥𝑁}, we
take

𝐼(𝑥𝑖) := (𝑞𝑖−1, 𝑞𝑖] where 𝑞𝑖 := 𝜑(𝑥1) + · · · + 𝜑(𝑥𝑖) and 𝑞0 := 0.

You can easily confirm that the length of 𝐼(𝑥𝑖) is 𝜑(𝑥𝑖) for all 𝑖.
Now consider the function 𝑧 ↦→ 𝜅(𝑧) defined by

𝜅(𝑧) :=
∑
𝑥∈𝑆

𝑥1{𝑧 ∈ 𝐼(𝑥)} (𝑧 ∈ (0, 1]) (1.13)

where 1{𝑧 ∈ 𝐼(𝑥)} is one when 𝑧 ∈ 𝐼(𝑥) and zero otherwise. It turns out that 𝜅(𝑊) has
the distribution we desire.

EXERCISE 1.3.2. Prove:

(i) For all 𝑥 ∈ 𝑆, we have 𝜅(𝑧) = 𝑥 if and only if 𝑧 ∈ 𝐼(𝑥).
(ii) The random variable 𝜅(𝑊) has distribution 𝜑.

EXERCISE 1.3.3. Let 𝜑, 𝜅 and 𝑊 be as defined above. Prove that E1{𝜅(𝑊) = 𝑗} =
𝜑( 𝑗) holds for all 𝑗 ∈ [𝑛].

EXERCISE 1.3.4. Using Julia or another language of your choice, implement the
inverse transform sampling procedure described above when 𝑆 = {1, 2, 3} and 𝜑 =
(0.2, 0.1, 0.7). Generate 1, 000, 000 (quasi) independent draws (𝑋𝑖) from 𝜑 and confirm
that (1/𝑛)∑𝑛

𝑖=1 1{𝑋𝑖 = 𝑗} ≈ 𝜑( 𝑗) for 𝑗 ∈ {1, 2, 3}.

The last exercise tells us that that the law of large numbers holds in this setting,
7The probability is the same no matter whether inequalities are weak or strict.
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since, under this law, we expect that

1
𝑛

𝑛∑
𝑖=1
1{𝑋𝑖 = 𝑗} → E1{𝑋𝑖 = 𝑗}

with probability one as 𝑛 → ∞. In view of Exercise 1.3.3, the right hand side equals
𝜑( 𝑗).

EXERCISE 1.3.5. Suppose that, on a computer, you can generate only uniform
random variables on (0, 1], and you wish to simulate a flip of a biased coin with heads
probability 𝛿 ∈ (0, 1). Propose a method.

EXERCISE 1.3.6. Suppose that, on a computer, you are able to sample from distri-
butions 𝜑 and 𝜓 defined on some set 𝑆. The set 𝑆 can be discrete or continuous and,
in the latter case, the distributions are understood as densities. Propose a method to
sample on a computer from the convex combination 𝑓 (𝑠) = 𝛿𝜑(𝑠) + (1− 𝛿)𝜓(𝑠), where
𝛿 ∈ (0, 1).

1.3.1.3 Stochastic Matrices

A matrix 𝑃 = (𝑝𝑖 𝑗) ∈ M𝑛×𝑛 is called a stochastic matrix if

𝑃 ⩾ 0 and 𝑃1 = 1, where 1 ∈ R𝑛 is a column vector of ones.

In other words, 𝑃 is nonnegative and has unit row sums.
We will see many applications of stochastic matrices in this text. Often the appli-

cations are probabilistic, where each row of 𝑃 is interpreted as a distribution over a
finite set.

EXERCISE 1.3.7. Let 𝑃, 𝑄 be 𝑛 × 𝑛 stochastic matrices. Prove the following facts.

(i) 𝑃𝑄 is also stochastic.
(ii) 𝑟(𝑃) = 1.
(iii) There exists a row vector 𝜓 ∈ R𝑛

+ such that 𝜓1 = 1 and 𝜓𝑃 = 𝜓.

The vector 𝜓 in part (iii) of Exercise 1.3.7 is called the PageRank vector by some
authors, due to its prominence in Google’s PageRank algorithm. We will call it a
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stationary distribution instead.8 Stationary distributions play a key role in the theory
of Markov chains, to be treated in §4.1. Ranking methods are discussed again in
§1.4.3. PageRank is treated in more detail in §4.2.3.3.

1.3.2 Power Laws

Next we discuss distributions on the (non-discrete) setsR andR+. We are particularly
interested in a certain class of distributions that are apparently non-standard and
yet appear with surprising regularity in economics, social science, and the study of
networks. We refer to the distributions that are said to obey a “power law.”

In what follows, given a real-valued random variable 𝑋 , the function

𝐹(𝑡) := P{𝑋 ⩽ 𝑡} (𝑡 ∈ R)

is called the cumulative distribution function (CDF) of 𝑋 . The counter CDF (CCDF)
of 𝑋 is the function 𝐺(𝑡) := P{𝑋 > 𝑡} = 1 − 𝐹(𝑡).

A useful property that holds for any nonnegative random variable 𝑋 and 𝑝 ∈ R+ is
the identity

E 𝑋 𝑝 =
∫ ∞

0
𝑝𝑡𝑝−1P{𝑋 > 𝑡} d𝑡. (1.14)

See, for example, Çınlar (2011), p. 63.

1.3.2.1 Heavy Tails

Recall that a random variable 𝑋 on R is said to be normally distributed with mean
𝜇 and variance 𝜎2, and we write 𝑋 𝑑

= 𝑁 (𝜇, 𝜎2), if 𝑋 has density

𝜑(𝑡) :=
√

1
2𝜋𝜎2 exp

(
−(𝑡 − 𝜇)2

2𝜎2

)
(𝑡 ∈ R).

One notable feature of the normal density is that the tails of the density approach zero
quickly. For example, 𝜑(𝑡) goes to zero like exp(−𝑡2) as 𝑡 → ∞, which is extremely
fast.

8Stationary distributions of stochastic matrices were intensively studied by many mathematicians
well over a century before Larry Page and Sergey Brin patented the PageRank algorithm, so it seems
unfair to allow them to appropriate the name.
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Figure 1.5: Independent draws from Student’s t- and normal distributions

A random variable 𝑋 on R+ is called exponentially distributed and we write 𝑋 𝑑
=

Exp(𝜆) if, for some 𝜆 > 0, 𝑋 has density

𝑝(𝑡) = 𝜆e−𝜆𝑡 (𝑡 ⩾ 0).

The tails of the exponential density go to zero like exp(−𝑡) as 𝑡 → ∞, which is also
relatively fast.

When a distribution is relatively light-tailed, in the sense that its tails go to zero
quickly, draws rarely deviate more than a few standard deviations from the mean. In
the case of a normal random variable, the probability of observing a draw more than
3 standard deviations above the mean is around 0.0014. For 6 standard deviations,
the probability falls to 10−11.

In contrast, for some distributions, “extreme” outcomes occur relatively frequently.
The left panel of Figure 1.5 helps to illustrate by simulating 1,000 independent draws
from Student’s t-distribution, with 1.5 degrees of freedom. For comparison, the right
subfigure shows an equal number of independent draws from the 𝑁 (0, 4) distribution.
The Student’s t draws reveal tight clustering around zero combined with a few large
deviations.

Formally, a random variable 𝑋 onR is called light-tailed if itsmoment generating
function

𝑚(𝑡) := Ee𝑡𝑋 (𝑡 ⩾ 0) (1.15)
is finite for at least one 𝑡 > 0. Otherwise 𝑋 is called heavy-tailed.9

9Terminology on heavy tails varies across the literature but our choice is increasingly standard. See,
for example, Foss et al. (2011) or Nair et al. (2021).
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Example 1.3.1. If 𝑋 𝑑
= 𝑁 (𝜇, 𝜎2), the the moment generating function of 𝑋 is known

to be
𝑚(𝑡) = exp

(
𝜇𝑡 + 𝑡

2𝜎2

2

)
(𝑡 ⩾ 0).

Hence 𝑋 is light tailed.

Example 1.3.2. A random variable 𝑋 on (0,∞) is said to have the lognormal den-
sity and we write 𝑋

𝑑
= 𝐿𝑁 (𝜇, 𝜎2) if ln 𝑋 𝑑

= 𝑁 (𝜇, 𝜎2). The mean and variance of this
distribution are, respectively,

E 𝑋 = exp(𝜇 + 𝜎2/2) and Var 𝑋 = (exp(𝜎2) − 1) exp(2𝜇 + 𝜎2).

The moment generating function 𝑚(𝑡) is known to be infinite for all 𝑡 > 0, so any
lognormally distributed random variable is heavy-tailed.

For any random variable 𝑋 and any 𝑟 ⩾ 0, the (possibly infinite) expectation E|𝑋 |𝑟
called the 𝑟-th moment of 𝑋 .

Lemma 1.3.1. Let 𝑋 be a random variable on R+. If 𝑋 is light-tailed, then all of its
moments are finite.

Proof. Pick any 𝑟 > 0. We will show that E𝑋 𝑟 < ∞. Since 𝑋 is light-tailed, there exists
a 𝑡 > 0 such that 𝑚(𝑡) = E exp(𝑡𝑋) < ∞. For a sufficiently large constant 𝑥 we have
exp(𝑡𝑥) ⩾ 𝑥𝑟 whenever 𝑥 ⩾ 𝑥. As a consequence, with 𝐹 as the distribution of 𝑋 , we
have

E𝑋 𝑟 =
∫ 𝑥

0
𝑥𝑟𝐹(d𝑥) +

∫ ∞

𝑥
𝑥𝑟𝐹(d𝑥) ⩽ 𝑥𝑟 + 𝑚(𝑡) < ∞. □

EXERCISE 1.3.8. Prove that the lognormal distribution has finite moments of every
order.

Together with Lemma 1.3.1, Exercise 1.3.8 shows that existence of an infinite
moment is a sufficient but not necessary condition for heavy tails.

1.3.2.2 Pareto Tails

Given 𝛼 > 0, a nonnegative random variable 𝑋 is said to have a Pareto tail with tail
index 𝛼 if there exists a 𝑐 > 0 such that

lim
𝑡→∞

𝑡𝛼P{𝑋 > 𝑡} = 𝑐. (1.16)
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In other words, the CCDF 𝐺 of 𝑋 satisfies

𝐺(𝑡) ≈ 𝑐𝑡−𝛼 for large 𝑡. (1.17)

If 𝑋 has a Pareto tail for some 𝛼 > 0, then 𝑋 is also said to obey a power law.
Example 1.3.3. A random variable 𝑋 onR+ is said to have a Pareto distributionwith
parameters 𝑥, 𝛼 > 0 if its CCDF obeys

𝐺(𝑡) =
{

1 if 𝑡 < 𝑥

(𝑥/𝑡)𝛼 if 𝑡 ⩾ 𝑥
(1.18)

It should be clear that such an 𝑋 has a Pareto tail with tail index 𝛼.

Regarding Example 1.3.3, note that the converse is not true: Pareto-tailed random
variables are not necessarily Pareto distributed, since the Pareto tail property only
restricts the far right hand tail.

EXERCISE 1.3.9. Show that, if 𝑋 has a Pareto tail with tail index 𝛼, then E[𝑋 𝑟] = ∞
for all 𝑟 ⩾ 𝛼. [Hint: Use (1.14).]

From Exercise 1.3.9 and Lemma 1.3.1, we see that every Pareto-tailed random
variable is heavy-tailed. The converse is not true, since the Pareto tail property (1.16)
is very specific. Despite this, it turns out that many heavy-tailed distributions encoun-
tered in the study of networks are, in fact, Pareto-tailed.

EXERCISE 1.3.10. Prove: If 𝑋 𝑑
= Exp(𝜆) for some 𝜆 > 0, then 𝑋 does not obey a

power law.

1.3.2.3 Empirical Power Law Plots

When the Pareto tail property holds, the CCDF satisfies ln𝐺(𝑡) ≈ ln 𝑐 − 𝛼 ln 𝑡 for large
𝑡. In other words, 𝐺 is eventually log linear. Figure 1.6 illustrates this using a Pareto
distribution. For comparison, the CCDF of an exponential distribution is also shown.

If we replace the CCDF 𝐺 with its empirical counterpart—which returns, for each
𝑥, the fraction of the sample with values greater than 𝑥—we should also obtain an
approximation to a straight line under the Pareto tail assumption.

For example, consider the cross-sectional distribution of firm sizes. While the pre-
cise nature of this distribution depends on themeasure of firm size, the sample of firms
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Figure 1.6: CCDF plots for the Pareto and exponential distributions

and other factors, the typical picture is one of extreme heavy tails. As an illustration,
Figure 1.7 shows an empirical CCDF log-log plot for market values of the largest 500
firms in the Forbes Global 2000 list, as of March 2021. The slope estimate and data
distribution are consistent with a Pareto tail and infinite population variance.

1.3.2.4 Discrete Power Laws

Let 𝑋 be a random variable with the Pareto distribution, as described in Example 1.3.3.
The density of this random variable on the set [𝑥,∞) is 𝑝(𝑡) = 𝑐𝑡−𝛾 with 𝑐 := 𝛼𝑥𝛼 and
𝛾 := 𝛼 + 1. The next exercise extends this idea.

EXERCISE 1.3.11. Let 𝑋 be a random variable with density 𝑝 on R+. Suppose that,
for some constants 𝑐 > 0, 𝛾 > 1 and 𝑥 ∈ R+, we have

𝑝(𝑡) = 𝑐𝑡−𝛾 whenever 𝑡 ⩾ 𝑥. (1.19)

Prove that 𝑋 is Pareto-tailed with tail index 𝛼 := 𝛾 − 1.

The discrete analog of (1.19) is a distribution on the positive integers with

𝑓 (𝑘) = 𝑐𝑘−𝛾 (1.20)

for large 𝑘. In the special case where this equality holds for all 𝑘 ∈ N, and 𝑐 is chosen
so that ∑

𝑘∈N 𝑓 (𝑘) = 1, we obtain the zeta distribution.10
10Obviously the correct value of 𝑐 depends on 𝛾, so we can write 𝑐 = 𝐻 (𝛾) for some suitable function
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Figure 1.7: Empirical CCDF plots for largest firms (Forbes)

In general, when we see a probability mass function with the specification (1.20)
for large 𝑘, we can identify this with a Pareto tail, with tail index 𝛼 = 𝛾−1. Figure 1.8
illustrates with 𝛾 = 2.

1.4 Graph Theory

Graph theory is a major branch of discrete mathematics. It plays an essential role in
this text because it forms the foundations of network analysis. This section provides
a concise introduction to graph theory suitable for our purposes.11

Graph theory has another closely related use: many economic models are stochas-
tic and dynamic, which means that they specify states of the world and rates of transi-
tion between them. One of the most natural ways to conceptualize these notions is to
view states as vertices in a graph and transition rates as relationships between them.

We begin with definitions and fundamental concepts. We focus on directed graphs,
where there is a natural asymmetry in relationships (bank 𝐴 lends money to bank
𝐵, firm 𝐴 supplies goods to firm 𝐵, etc.). This costs no generality, since undirected
graphs (where relationships are symmetric two-way connections) can be recovered by
𝐻. The correct function for this normalization is called the Riemann zeta function.

11Graph theory is often regarded as originating from work by the brilliant Swiss mathematician
Leonhard Euler (1707–1783), including his famous paper on the “Seven Bridges of Königsberg.”
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insisting on symmetry (i.e., existence of a connection from 𝐴 to 𝐵 implies existence of
a connection from 𝐵 to 𝐴).

1.4.1 Unweighted Directed Graphs
We begin with unweighted directed graphs and examine standard properties, such as
connectedness and aperiodicity.

1.4.1.1 Definition and Examples

A directed graph or digraph is a pair 𝒢 = (𝑉, 𝐸), where
• 𝑉 is a finite nonempty set and
• 𝐸 is a collection of ordered pairs (𝑢, 𝑣) ∈ 𝑉 × 𝑉 called edges.

Elements of 𝑉 are called the vertices or nodes of 𝒢. Intuitively and visually, an edge
(𝑢, 𝑣) is understood as an arrow from vertex 𝑢 to vertex 𝑣.

Two graphs are given in Figures 1.9–1.10. Each graph has three vertices. In these
cases, the arrows (edges) could be thought of as representing positive possibility of
transition over a given unit of time.

For a given edge (𝑢, 𝑣), the vertex 𝑢 is called the tail of the edge, while 𝑣 is called
the head. Also, 𝑢 is called a direct predecessor of 𝑣 and 𝑣 is called a direct successor
of 𝑢. For 𝑣 ∈ 𝑉, we use the following notation:
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poor
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Figure 1.9: A digraph of classes

middle class rich

poor

Figure 1.10: An alternative edge list

• ℐ(𝑣) := the set of all direct predecessors of 𝑣
• 𝒪(𝑣) := the set of all direct successors of 𝑣

Also, the in-degree and out-degree of 𝑣 ∈ 𝑉 are defined by

• the 𝑖𝑑 (𝑣) := |ℐ(𝑣) | and
• the 𝑜𝑑 (𝑣) := |𝒪(𝑣) | respectively.

If 𝑖𝑑 (𝑣) = 0 and 𝑜𝑑 (𝑣) > 0, then 𝑣 is called a source. If either𝒪(𝑣) = ∅ or𝒪(𝑣) = {𝑣},
then 𝑣 is called a sink. For example, in Figure 1.10, “poor” is a sink with an in-degree
of 3.

1.4.1.2 Digraphs in Networkx

Both Python and Julia provide valuable interfaces to numerical computingwith graphs.
Of these libraries, the Python package Networkx is probably the most mature and fully
developed. It provides a convenient data structure for representing digraphs and im-
plements many common routines for analyzing them. To import it into Python we
run

import networkx as nx
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In all of the code snippets shown below, we assume readers have executed this
import statement, as well as

import numpy as np
import matplotlib.pyplot as plt

As an example, let us create the digraph in Figure 1.10, which we denote hence-
forth by 𝒢𝑝. To do so, we first create an empty DiGraph object:

G_p = nx.DiGraph()

Next we populate it with nodes and edges. To do this we write down a list of all
edges, with poor represented by p and so on:

edge_list = [
('p', 'p'),
('m', 'p'), ('m', 'm'), ('m', 'r'),
('r', 'p'), ('r', 'm'), ('r', 'r')

]

Finally, we add the edges to our DiGraph object:

for e in edge_list:
u, v = e
G_p.add_edge(u, v)

Adding the edges automatically adds the nodes, so G_p is now a correct repre-
sentation of 𝒢𝑝. For our small digraph we can verify this by plotting the graph via
Networkx with the following code:

fig, ax = plt.subplots()
nx.draw_spring(G_p, ax=ax, node_size=500, with_labels=True,

font_weight='bold', arrows=True, alpha=0.8,
connectionstyle='arc3,rad=0.25', arrowsize=20)

plt.show()

This code produces Figure 1.11, whichmatches the original digraph in Figure 1.10.
DiGraph objects have methods that calculate in-degree and out-degree of vertices.

For example,

G_p.in_degree('p')

prints 3.
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Figure 1.11: Networkx digraph plot

1.4.1.3 Communication

Next we study communication and connectedness, which have important implications
for production, financial, transportation and other networks, as well as for dynamic
properties of Markov chains.

A directed walk from vertex 𝑢 to vertex 𝑣 of a digraph 𝒢 is a finite sequence
of vertices, starting with 𝑢 and ending with 𝑣, such that any consecutive pair in the
sequence is an edge of 𝒢. A directed path from 𝑢 to 𝑣 is a directed walk from 𝑢 to 𝑣
such that all vertices in the path are distinct. For example, in Figure 1.12, (3, 2, 3, 2, 1)
is a directed walk from 3 to 1 but not a directed path, while (3, 2, 1) is both a directed
path and a directed walk from 3 to 1.

As is standard, the length of a directed walk (or path) counts the number of edges
rather than vertices. For example, the directed path (3, 2, 1) from 3 to 1 in Figure 1.12
is said to have length 2.

Vertex 𝑣 is called accessible (or reachable) from vertex 𝑢, and we write 𝑢→ 𝑣, if
either 𝑢 = 𝑣 or there exists a directed path from 𝑢 to 𝑣. A set 𝑈 ⊂ 𝑉 is called absorbing
for the directed graph (𝑉, 𝐸) if no element of 𝑉 \ 𝑈 is accessible from 𝑈.

Example 1.4.1. Let𝒢 = (𝑉, 𝐸) be a digraph representing a production network, where
elements of 𝑉 are sectors and (𝑖, 𝑗) ∈ 𝐸 means that 𝑖 supplies products or services to 𝑗.
Then sector 𝑚 is an upstream supplier of sector ℓ whenever 𝑚→ ℓ.

Example 1.4.2. The vertex {poor} in the Markov digraph displayed in Figure 1.10 is
absorbing, since {middle, rich} is not accessible from {poor}.
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1 2 3

Figure 1.12: Strongly connected components of a digraph (rectangles)

Two vertices 𝑢 and 𝑣 are said to communicate if 𝑢→ 𝑣 and 𝑣→ 𝑢.

EXERCISE 1.4.1. Let (𝑉, 𝐸) be a directed graph and write 𝑢 ∼ 𝑣 if 𝑢 and 𝑣 commu-
nicate. Show that ∼ is an equivalence relation (see §6.1.1.2).

Since communication is an equivalence relation, it induces a partition of 𝑉 into
a finite collection of equivalence classes. Within each of these classes, all elements
communicate. These classes are called strongly connected components. The graph
itself is called strongly connected if there is only one such component; that is, 𝑣 is
accessible from 𝑢 for any pair (𝑢, 𝑣) ∈ 𝑉 × 𝑉. This corresponds to the idea that any
node can be reached from any other.

Example 1.4.3. Figure 1.12 shows a digraph with strongly connected components
{1} and {2, 3}. The digraph is not strongly connected.

Example 1.4.4. In Figure 1.9, the digraph is strongly connected. In contrast, in Fig-
ure 1.10, rich is not accessible from poor, so the graph is not strongly connected.

Networkx can be used to test for communication and strong connectedness, as well
as to compute strongly connected components. For example, applied to the digraph
in Figure 1.12, the code

G = nx.DiGraph()
G.add_edge(1, 1)
G.add_edge(2, 1)
G.add_edge(2, 3)
G.add_edge(3, 2)

list(nx.strongly_connected_components(G))

prints [{1}, {2, 3}].
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Figure 1.13: A periodic digraph

1.4.1.4 Aperiodicity

A cycle (𝑢, 𝑣, 𝑤, . . . , 𝑢) of a directed graph𝒢 = (𝑉, 𝐸) is a directed walk in𝒢 such that
(i) the first and last vertices are equal and (ii) no other vertex is repeated. The graph
is called a directed acyclic graph if it contains no cycles. The graph is called periodic
if it contains at least one cycle and, moreover, there exists a 𝑘 > 1 such that the length
of every cycle is a multiple of 𝑘. The graph is called aperiodic if it is not periodic.
Example 1.4.5. In Figure 1.13, the cycles are (𝑎, 𝑏, 𝑎), (𝑏, 𝑎, 𝑏), (𝑏, 𝑐, 𝑏), (𝑐, 𝑏, 𝑐), (𝑐, 𝑑, 𝑐)
and (𝑑, 𝑐, 𝑑). Hence the length of every cycle is 2 and the graph is periodic.

EXERCISE 1.4.2. Prove the following: If𝒢 is a directed acyclic graph, then, for any
node 𝑢 in 𝒢, there exists a node 𝑣 such that 𝑢→ 𝑣 and 𝑜𝑑 (𝑣) = 0.

An obvious sufficient condition for aperiodicity is existence of even one self-loop.
The digraphs in Figures 1.9–1.12 are aperiodic for this reason.

The next result provides an easy way to understand aperiodicity for connected
graphs. Proofs can be found in Häggström (2002) and Norris (1998).
Lemma 1.4.1. Let𝒢 = (𝑉, 𝐸) be a digraph. If𝒢 is strongly connected, then𝒢 is aperiodic
if and only if, for all 𝑣 ∈ 𝑉, there exists a 𝑞 ∈ N such that, for all 𝑘 ⩾ 𝑞, there exists a
directed walk of length 𝑘 from 𝑣 to 𝑣.

It is common to call a vertex 𝑣 satisfying the condition in Lemma 1.4.1 aperi-
odic. With this terminology, Lemma 1.4.1 states that a strongly connected digraph is
aperiodic if and only if every vertex is aperiodic.

Networkx can be used to check for aperiodicity of vertices or graphs. For example,
if G is a DiGraph object, then nx.is_aperiodic(G) returns True or False depending
on aperiodicity of G.

1.4.1.5 Adjacency Matrices

There is a simple map between edges of a graphwith fixed vertices and a binary matrix
called an adjacency matrix. The benefit of viewing connections through adjacency
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matrices is that they bring the power of linear algebra to the analysis of digraphs. We
illustrate this briefly here and extensively in §1.4.2.

If 𝒢 = (𝑉, 𝐸) is a digraph with 𝑉 = {𝑣1, . . . , 𝑣𝑛}, then the 𝑛 × 𝑛 adjacency matrix
corresponding to (𝑉, 𝐸) is defined by12

𝐴 = (𝑎𝑖 𝑗)1⩽ 𝑖, 𝑗⩽𝑛 with 𝑎𝑖 𝑗 = 1{(𝑣𝑖, 𝑣 𝑗) ∈ 𝐸}. (1.21)

For example, with {poor, middle, rich} mapped to (1, 2, 3), the adjacency matrix cor-
responding to the digraph in Figure 1.10 is

𝐴 = ©«
1 0 0
1 1 1
1 1 1

ª®¬ . (1.22)

An adjacency matrix provides us with enough information to recover the edges
of a graph. More generally, given a set of vertices 𝑉 = {𝑣1, . . . , 𝑣𝑛}, an 𝑛 × 𝑛 matrix
𝐴 = (𝑎𝑖 𝑗)1⩽ 𝑖, 𝑗⩽𝑛 with binary entries generates a digraph 𝒢 with vertices 𝑉 and edges

𝐸 = {(𝑣𝑖, 𝑣 𝑗) ∈ 𝑉 × 𝑉 : 𝑎𝑖 𝑗 = 1}.

The adjacency matrix of this graph (𝑉, 𝐸) is 𝐴.

EXERCISE 1.4.3. A digraph (𝑉, 𝐸) is called undirected if (𝑢, 𝑣) ∈ 𝐸 implies (𝑣, 𝑢) ∈
𝐸. What property does this imply on the adjacency matrix?

Remark 1.4.1. The idea that a digraph can be undirected, presented in Exercise 1.4.3,
seems contradictory. After all, a digraph is a directed graph. Another way to intro-
duce undirected graphs is to define them as a vertex-edge pair (𝑉, 𝐸), where each
edge {𝑢, 𝑣} ∈ 𝐸 is an unordered pair, rather than an ordered pair (𝑢, 𝑣). However,
the definition in Exercise 1.4.3 is essentially equivalent and more convenient for our
purposes, since we mainly study directed graphs.

Like Networkx, the Python library quantecon provides a graph object that sup-
plies certain graph-theoretic algorithms. In the case of QuantEcon’s DiGraph object,
algorithms are implemented by interfacing with routines in SciPy and an instance
is created by supplying an adjacency matrix. For example, to construct a digraph
corresponding to Figure 1.10 we use the corresponding adjacency matrix (1.22):

12Note that, in some applied fields, the adjacency matrix is transposed: 𝑎𝑖 𝑗 = 1 if there is an edge
from 𝑗 to 𝑖, rather than from 𝑖 to 𝑗. We will avoid this odd and confusing definition (which contradicts
both standard graph theory and standard notational conventions in the study of Markov chains).
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import quantecon as qe
import numpy as np

A = ((1, 0, 0),
(1, 1, 1,),
(1, 1, 1))

A = np.array(A) # Convert to NumPy array
G = qe.DiGraph(A)

Let’s print the set of strongly connected components, as a list of NumPy arrays:

G.strongly_connected_components

The output is [array([0]), array([1, 2])].

1.4.2 Weighted Digraphs

Early quantitative work on networks tended to focus on unweighted digraphs, where
the existence or absence of an edge is treated as sufficient information (e.g., follow-
ing or not following on social media, existence or absence of a road connecting two
towns). However, for some networks, this binary measure is less significant than the
size or strength of the connection.

As one illustration, consider Figure 1.14, which shows flows of funds (i.e., loans)
between private banks, grouped by country of origin. An arrow from Japan to the US,
say, indicates aggregate claims held by Japanese banks on all US-registered banks,
as collected by the Bank of International Settlements (BIS). The size of each node
in the figure is increasing in the total foreign claims of all other nodes on this node.
The widths of the arrows are proportional to the foreign claims they represent.13 The
country codes are given in Table 1.1.

In this network, an edge (𝑢, 𝑣) exists for almost every choice of 𝑢 and 𝑣 (i.e., al-
most every country in the network).14 Hence existence of an edge is not particularly
informative. To understand the network, we need to record not just the existence or

13Data for the figure was obtained from the BIS consolidated banking statistics, for Q4 of 2022. Our
calculations used the immediate counterparty basis for financial claims of domestic and foreign banks,
which calculates the sum of cross-border claims and local claims of foreign affiliates in both foreign
and local currency. The foreign claim of a node to itself is set to zero.

14In fact arrows representing foreign claims less than US$10 million are cut from Figure 1.14, so the
network is even denser than it appears.
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Figure 1.14: International private credit flows by country
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AU Australia DE Germany CL Chile ES Spain
PT Portugal FR France TR Turkey GB United Kingdom
US United States IE Ireland AT Austria IT Italy
BE Belgium JP Japan SW Switzerland SE Sweden

Table 1.1: Codes for the 16-country financial network

absence of a credit flow, but also the size of the flow. The correct data structure for
recording this information is a “weighted directed graph,” or “weighted digraph.” In
this section we define this object and investigate its properties.

1.4.2.1 Definitions

A weighted digraph 𝒢 is a triple (𝑉, 𝐸, 𝑤) such that (𝑉, 𝐸) is a digraph and 𝑤 is a
function from 𝐸 to (0,∞), called the weight function.

Remark 1.4.2. Weights are traditionally regarded as nonnegative. In this text we
insist that weights are also positive, in the sense that 𝑤(𝑢, 𝑣) > 0 for all (𝑢, 𝑣) ∈ 𝐸. The
reason is that the intuitive notion of zero weight is understood, here and below, as
absence of a connection. In other words, if (𝑢, 𝑣) has “zero weight,” then (𝑢, 𝑣) is not
in 𝐸, so 𝑤 is not defined on (𝑢, 𝑣).

Example 1.4.6. As suggested by the discussion above, the graph shown in Figure 1.14
can be viewed as a weighted digraph. Vertices are countries of origin and an edge ex-
ists between country 𝑢 and country 𝑣 when private banks in 𝑢 lend nonzero quantities
to banks in 𝑣. The weight assigned to edge (𝑢, 𝑣) gives total loans from 𝑢 to 𝑣 as
measured according to the discussion of Figure 1.14.

Example 1.4.7. Figure 1.15 shows a weighted digraph, with arrows representing
edges of the induced digraph (compare with the unweighted digraph in Figure 1.9).
The numbers next to the edges are the weights. In this case, you can think of the
numbers on the arrows as transition probabilities for a household over, say, one year.
For example, a rich household has a 10% chance of becoming poor.

The definitions of accessibility, communication, periodicity and connectedness
extend to any weighted digraph𝒢 = (𝑉, 𝐸, 𝑤) by applying them to (𝑉, 𝐸). For example,
(𝑉, 𝐸, 𝑤) is called strongly connected if (𝑉, 𝐸) is strongly connected. The weighted
digraph in Figure 1.15 is strongly connected.



CHAPTER 1. INTRODUCTION 38

poor

middle class

rich

0.1

0.4

0.1

0.2

0.1
0.9

0.4

0.8

Figure 1.15: A weighted digraph

1.4.2.2 Adjacency Matrices of Weighted Digraphs

In §1.4.1.5 we discussed adjacency matrices of unweighted digraphs. The adjacency
matrix of a weighted digraph (𝑉, 𝐸, 𝑤) with vertices {𝑣1, . . . , 𝑣𝑛} is the matrix

𝐴 = (𝑎𝑖 𝑗)1⩽ 𝑖, 𝑗⩽𝑛 with 𝑎𝑖 𝑗 =

{
𝑤(𝑣𝑖, 𝑣 𝑗) if (𝑣𝑖, 𝑣 𝑗) ∈ 𝐸
0 otherwise.

Clearly, once the vertices in 𝑉 are enumerated, the weight function and adjacency
matrix provide the same information. We often work with the latter, since it facilitates
computations.

Example 1.4.8. With {poor, middle, rich} mapped to (1, 2, 3), the adjacency matrix
corresponding to the weighted digraph in Figure 1.15 is

𝐴 = ©«
0.9 0.1 0
0.4 0.4 0.2
0.1 0.1 0.8

ª®¬ . (1.23)

In QuantEcon’s DiGraph implementation, weights are recorded via the keyword
weighted:

A = ((0.9, 0.1, 0.0),
(0.4, 0.4, 0.2),
(0.1, 0.1, 0.8))

A = np.array(A)
G = qe.DiGraph(A, weighted=True) # Store weights
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Remark 1.4.3. Every unweighted digraph can be regarded as a weighted digraph by
introducing a weight function that assigns unit weight to each edge. The resulting
adjacency matrix is binary and agrees with our original definition for unweighted
digraphs in (1.21). In this sense, the set of unweighted digraphs is a subset of the set
of all weighted digraphs.

One of the key points to remember about adjacency matrices is that taking the
transpose “reverses all the arrows” in the associated digraph.

Example 1.4.9. The digraph in Figure 1.16 can be interpreted as a stylized version of
a financial network, with vertices as banks and edges showing flow of funds, similar
to Figure 1.14 on page 36. For example, we see that bank 2 extends a loan of size
200 to bank 3. The corresponding adjacency matrix is

𝐴 =

©«

0 100 0 0 0
50 0 200 0 0
0 0 0 100 0
0 500 0 0 50

150 0 250 300 0

ª®®®®®®¬
. (1.24)

The transposition is

𝐴⊤ =

©«

0 50 0 0 150
100 0 0 500 0
0 200 0 0 250
0 0 100 0 300
0 0 0 50 0

ª®®®®®®¬
. (1.25)

The corresponding network is visualized in Figure 1.17. This figure shows the network
of liabilities after the loans have been granted. Both of these networks (original and
transpose) are useful for analysis of financial markets (see, e.g., Chapter 5).

It is not difficult to see that each nonnegative 𝑛×𝑛matrix 𝐴 = (𝑎𝑖 𝑗) can be viewed as
the adjacency matrix of a weighted digraph with vertices equal to [𝑛]. The weighted
digraph 𝒢 = (𝑉, 𝐸, 𝑤) in question is formed by setting

𝑉 = [𝑛], 𝐸 = {(𝑖, 𝑗) ∈ 𝑉 × 𝑉 : 𝑎𝑖 𝑗 > 0} and 𝑤(𝑖, 𝑗) = 𝑎𝑖 𝑗 for all (𝑖, 𝑗) ∈ 𝐸.

We call 𝒢 the weighted digraph induced by 𝐴.
The next exercise helps to reinforce the point that transposes reverse the edges.
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Figure 1.16: A network of credit flows across institutions
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Figure 1.17: The transpose: a network of liabilities
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EXERCISE 1.4.4. Let 𝐴 = (𝑎𝑖 𝑗) be a nonnegative 𝑛× 𝑛 matrix and let𝒢 = ([𝑛], 𝐸, 𝑤)
and 𝒢′ = ( [𝑛], 𝐸′, 𝑤′) be the weighted digraphs induced by 𝐴 and 𝐴⊤, respectively.
Show that
(i) ( 𝑗, 𝑘) ∈ 𝐸′ if and only if (𝑘, 𝑗) ∈ 𝐸.
(ii) 𝑗→ 𝑘 in 𝒢′ if and only if 𝑘→ 𝑗 in 𝒢.

1.4.2.3 Application: Quadratic Network Games

Acemoglu et al. (2016) and Zenou (2016) consider quadratic games with 𝑛 agents
where agent 𝑘 seeks to maximize

𝑢𝑘(𝑥) := −1
2
𝑥2
𝑘 + 𝛼𝑥⊤𝐴𝑥 + 𝑥𝑘𝜀𝑘. (1.26)

Here 𝑥 = (𝑥𝑖)𝑛𝑖=1, 𝐴 is a symmetric matrix with 𝑎𝑖𝑖 = 0 for all 𝑖, 𝛼 ∈ (0, 1) is a parameter
and 𝜀 = (𝜀𝑖)𝑛𝑖=1 is a random vector. (This is the set up for the quadratic game in §21.2.1
of Acemoglu et al. (2016).) The 𝑘-th agent takes the decisions 𝑥 𝑗 as given for all 𝑗 ≠ 𝑘
when maximizing (1.26).

In this context, 𝐴 is understood as the adjacency matrix of a graph with vertices
𝑉 = [𝑛], where each vertex is one agent. We can reconstruct the weighted digraph
(𝑉, 𝐸, 𝑤) by setting 𝑤(𝑖, 𝑗) = 𝑎𝑖 𝑗 and letting 𝐸 be all (𝑖, 𝑗) pairs in [𝑛] × [𝑛] with 𝑎𝑖 𝑗 > 0.
The weights identify some form of relationship between the agents, such as influence
or friendship.

EXERCISE 1.4.5. A Nash equilibrium for the quadratic network game is a vector
𝑥∗ ∈ R𝑛 such that, for all 𝑖 ∈ [𝑛], the choice 𝑥∗𝑖 of agent 𝑖 maximizes (1.26) taking 𝑥∗𝑗
as given for all 𝑗 ≠ 𝑖. Show that, whenever 𝑟(𝐴) < 1/𝛼, a unique Nash equilibrium 𝑥∗

exists in R𝑛 and, moreover, 𝑥∗ := (𝐼 − 𝛼𝐴)−1𝜀.

The network game described in this section has many interesting applications, in-
cluding social networks, crime networks and peer networks. References are provided
in §1.5.

1.4.2.4 Properties

In this section, we examine some of the fundamental properties of and relationships
among digraphs, weight functions and adjacency matrices. Throughout this section,
without loss of generality, we consider a weighted digraph with 𝑉 = [𝑛].
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As an additional convention, if 𝐴 is an adjacency matrix, and 𝐴𝑘 is the 𝑘-th power
of 𝐴, then we write 𝑎𝑘𝑖 𝑗 for a typical element of 𝐴𝑘. With this notation, we observe that,
since 𝐴(𝑠+𝑡) = 𝐴𝑠𝐴𝑡, the rules of matrix multiplication imply

𝑎𝑠+𝑡𝑖 𝑗 =
𝑛∑
ℓ=1

𝑎𝑠𝑖ℓ 𝑎
𝑡
ℓ 𝑗 (𝑖, 𝑗 ∈ [𝑛], 𝑠, 𝑡 ∈ N). (1.27)

(𝐴0 is the identity.) The next proposition explains the significance of the powers.

Proposition 1.4.2. Let 𝒢 be a weighted digraph with adjacency matrix 𝐴. For distinct
vertices 𝑖, 𝑗 ∈ [𝑛] and 𝑘 ∈ N, we have

𝑎𝑘𝑖 𝑗 > 0 ⇐⇒ there exists a directed walk of length 𝑘 from 𝑖 to 𝑗.

Proof. (⇐ ) The statement is true by definition when 𝑘 = 1. Suppose in addition that
⇐ holds at 𝑘 − 1, and suppose there exists a directed walk (𝑖, ℓ, 𝑚, . . . , 𝑛, 𝑗) of length
𝑘 from 𝑖 to 𝑗. By the induction hypothesis we have 𝑎𝑘−1

𝑖𝑛 > 0. Moreover, (𝑛, 𝑗) is part of
a directed walk, so 𝑎𝑛 𝑗 > 0. Applying (1.27) now gives 𝑎𝑘𝑖 𝑗 > 0.

(⇒) Left as an exercise (just use the same logic). □

Example 1.4.10. In §4.1 we show that if elements of 𝐴 represent one-step transition
probabilities across states, then elements of 𝐴𝑡, the 𝑡-th power of 𝐴, provide 𝑡-step
transition probabilities. In Markov process theory, (1.27) is called the Chapman–
Kolmogorov equation.

In this context, the next result is fundamental.

Theorem 1.4.3. Let𝒢 be a weighted digraph. The following statements are equivalent:

(i) 𝒢 is strongly connected.
(ii) The adjacency matrix generated by 𝒢 is irreducible.

Proof. Let 𝒢 be a weighted digraph with adjacency matrix 𝐴. By Proposition 1.4.2,
strong connectedness of𝒢 is equivalent to the statement that, for each 𝑖, 𝑗 ∈ 𝑉, we can
find a 𝑘 ⩾ 0 such that 𝑎𝑘𝑖 𝑗 > 0. (If 𝑖 = 𝑗 then set 𝑘 = 0.) This, in turn, is equivalent to∑∞
𝑚=0 𝐴

𝑚 ≫ 0, which is irreducibility of 𝐴. □

Example 1.4.11. Strong connectivity fails in the digraph in Figure 1.18, since vertex
4 is a source. By Theorem 1.4.3, the adjacency matrix must be reducible.
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Figure 1.18: Failure of strong connectivity

We will find that the property of being primitive is valuable for analysis. (The
Perron–Frobenius Theorem hints at this.) What do we need to add to strong connect-
edness to obtain primitiveness?

Theorem 1.4.4. For a weighted digraph 𝒢 = (𝑉, 𝐸, 𝑤), the following statements are
equivalent:

(i) 𝒢 is strongly connected and aperiodic.
(ii) The adjacency matrix generated by 𝒢 is primitive.

Proof of Theorem 1.4.4. First we show that, if 𝒢 is aperiodic and strongly connected,
then, for all 𝑖, 𝑗 ∈ 𝑉, there exists a 𝑞 ∈ N such that 𝑎𝑘𝑖 𝑗 > 0 whenever 𝑘 ⩾ 𝑞. To this
end, pick any 𝑖, 𝑗 in 𝑉. Since 𝒢 is strongly connected, there exists an 𝑠 ∈ N such that
𝑎𝑠𝑖 𝑗 > 0. Since 𝒢 is aperiodic, we can find an 𝑚 ∈ N such that ℓ ⩾ 𝑚 implies 𝑎ℓ𝑗 𝑗 > 0.
Picking ℓ ⩾ 𝑚 and applying (1.27), we have

𝑎𝑠+ℓ𝑖 𝑗 =
∑
𝑟∈𝑉

𝑎𝑠𝑖𝑟𝑎
ℓ
𝑟 𝑗 ⩾ 𝑎𝑠𝑖 𝑗𝑎

ℓ
𝑗 𝑗 > 0.

Thus, with 𝑡 = 𝑠 + 𝑚, we have 𝑎𝑘𝑖 𝑗 > 0 whenever 𝑘 ⩾ 𝑡.
((i)⇒ (ii)). By the preceding argument, given any 𝑖, 𝑗 ∈ 𝑉, there exists an 𝑠(𝑖, 𝑗) ∈

N such that 𝑎𝑚𝑖 𝑗 > 0 whenever 𝑚 ⩾ 𝑠(𝑖, 𝑗). Setting 𝑘 := max 𝑠(𝑖, 𝑗) over all (𝑖, 𝑗) yields
𝐴𝑘 ≫ 0.
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((ii) ⇒ (i)). Suppose that 𝐴 is primitive. Then, for some 𝑘 ∈ N, we have 𝐴𝑘 ≫
0. Strong connectedness of the digraph follows directly from Proposition 1.4.2. It
remains to check aperiodicity.

Aperiodicity will hold if we can establish that 𝑎𝑘+111 > 0, since then we have a cycle
of length 𝑘 and another of length 𝑘+1. To show that this holds, we use (1.27) to write

𝑎𝑘+111 =
∑
ℓ∈𝑉

𝑎1ℓ𝑎
𝑘
ℓ1 ⩾ 𝑎

∑
ℓ∈𝑉

𝑎𝑖ℓ.

where 𝑎 := minℓ∈𝑉 𝑎𝑘ℓ1 > 0. The proof will be done if ∑
ℓ∈𝑉 𝑎1ℓ > 0. But this must be

true, since otherwise vertex 1 is a sink, which contradicts strong connectedness. □

Example 1.4.12. In Exercise 1.2.20 we worked hard to show that 𝑃𝑤 is irreducible if
and only if 0 < 𝛼, 𝛽 ⩽ 1, using the approach of calculating and then examining the
powers of 𝑃𝑤 (as shown in (1.3)). However, the result is trivial when we examine the
corresponding digraph in Figure 1.3 and use the fact that irreducibility is equivalent
to strong connectivity. Similarly, the result in Exercise 1.2.20 that 𝑃𝑤 is primitive if
and only if 0 < 𝛼, 𝛽 ⩽ 1 and min{𝛼, 𝛽} < 1 becomes much easier to establish if we
examine the digraph and use Theorem 1.4.4.

1.4.3 Network Centrality

When studying networks of all varieties, a recurring topic is the relative “centrality” or
“importance” of different nodes. One classic application is the ranking of web pages
by search engines. Here are some examples related to economics:

• In which industry will one dollar of additional demand have the most impact
on aggregate production, once we take into account all the backward linkages?
In which sector will a rise in productivity have the largest effect on national
output?

• A negative shock endangers the solvency of the entire banking sector. Which
institutions should the government rescue, if any?

• In the network games considered in §1.4.2.3, the Nash equilibrium is 𝑥∗ =
(𝐼 − 𝛼𝐴)−1𝜀. Players’ actions are dependent on the topology of the network,
as encoded in 𝐴. A common finding is that the level of activity or effort exerted
by an agent (e.g., severity of criminal activity by a participant in a criminal
network) can be predicted from their “centrality” within the network.
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hub authority

Figure 1.19: Hub vs authority

In this section we review essential concepts related to network centrality.15

1.4.3.1 Centrality Measures

Let 𝐺 be the set of weighted digraphs. A centrality measure associates to each 𝒢 =
(𝑉, 𝐸, 𝑤) in 𝐺 a vector 𝑚(𝒢) ∈ R|𝑉 |, where the 𝑖-th element of 𝑚(𝒢) is interpreted
as the centrality (or rank) of vertex 𝑣𝑖. In most cases 𝑚(𝒢) is nonnegative. In what
follows, to simplify notation, we take 𝑉 = [𝑛].

(Unfortunately, the definitions and terminology associated with even the most
common centrality measures vary widely across the applied literature. Our conven-
tion is to follow the mathematicians, rather than the physicists. For example, our
terminology is consistent with Benzi and Klymko (2015).)

1.4.3.2 Authorities vs Hubs

Search engine designers recognize that web pages can be important in two differ-
ent ways. Some pages have high hub centrality, meaning that they link to valuable
sources of information (e.g., news aggregation sites) . Other pages have high author-
ity centrality, meaning that they contain valuable information, as indicated by the
number and significance of incoming links (e.g., websites of respected news organi-
zations). Figure 1.19 helps to visualize the difference.

Similar ideas can and have been applied to economic networks (often using dif-
ferent terminology). For example, in production networks we study below, high hub
centrality is related to upstreamness: such sectors tend to supply intermediate goods

15Centrality measures are sometimes called “influence measures,” particularly in connection with
social networks.
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to many important industries. Conversely, a high authority ranking will coincide with
downstreamness.

In what follows we discuss both hub-based and authority-based centrality mea-
sures, providing definitions and illustrating the relationship between them.

1.4.3.3 Degree Centrality

Two of the most elementary measures of “importance” of a vertex in a given digraph
𝒢 = (𝑉, 𝐸) are its in-degree and out-degree. Both of these provide a centrality mea-
sure. In-degree centrality 𝑖(𝒢) is defined as the vector (𝑖𝑑 (𝑣))𝑣∈𝑉 . Out-degree cen-
trality 𝑜(𝒢) is defined as (𝑜𝑑 (𝑣))𝑣∈𝑉 . If 𝒢 is expressed as a Networkx DiGraph called
G (see, e.g., §1.4.1.2), then 𝑖(𝒢) can be calculated via

iG = [G.in_degree(v) for v in G.nodes()]

This method is relatively slow when 𝒢 is a large digraph. Since vectorized op-
erations are generally faster, let’s look at an alternative method using operations on
arrays.

To illustrate the method, recall the network of financial institutions in Figure 1.16.
We can compute the in-degree and out-degree centrality measures by first converting
the adjacency matrix, which is shown in (1.24), to a binary matrix that corresponds
to the adjacency matrix of the same network viewed as an unweighted graph:

𝑈 =

©«

0 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 1 0 0 1
1 0 1 1 0

ª®®®®®®¬
(1.28)

Now 𝑈 (𝑖, 𝑗) = 1 if and only if 𝑖 points to 𝑗. The out-degree and in-degree centrality
measures can be computed as

𝑜(𝒢) = 𝑈1 and 𝑖(𝒢) = 𝑈⊤1, (1.29)

respectively. That is, summing the rows of 𝑈 gives the out-degree centrality measure,
while summing the columns gives the in-degree measure.

The out-degree centrality measure is a hub-based ranking, while the vector of in-
degrees is an authority-based ranking. For the financial network in Figure 1.16, a
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high out-degree for a given institution means that it lends to many other institutions.
A high in-degree indicates that many institutions lend to it.

Notice that, to switch from a hub-based ranking to an authority-based ranking,
we need only transpose the (binary) adjacency matrix 𝑈. We will see that the same is
true for other centrality measures. This is intuitive, since transposing the adjacency
matrices reverses the direction of the edges (Exercise 1.4.4).

For a weighted digraph 𝒢 = (𝑉, 𝐸, 𝑤) with adjacency matrix 𝐴, the weighted out-
degree centrality and weighted in-degree centrality measures are defined as

𝑜(𝒢) = 𝐴1 and 𝑖(𝒢) = 𝐴⊤1, (1.30)

respectively, by analogy with (1.29). We present some intuition for these measures in
applications below.

Unfortunately, while in- and out-degree measures of centrality are simple to calcu-
late, they are not always informative. As an example, consider again the international
credit network shown in Figure 1.14. There, an edge exists between almost every
node, so the in- or out-degree based centrality ranking fails to effectively separate the
countries. This can be seen in the out-degree ranking of countries corresponding to
that network in the top left panel of Figure 1.20, and in the in-degree ranking in the
top right.

There are other limitations of degree-based centrality rankings. For example, sup-
pose web page A has many inbound links, while page B has fewer. Even though page
A dominates in terms of in-degree, it might be less important than web page B to, say,
a potential advertiser, when the links into B are from more heavily trafficked pages.
Thinking about this point suggests that importance can be recursive: the importance
of a given node depends on the importance of other nodes that link to it. The next set
of centrality measures we turn to has this recursive property.

1.4.3.4 Eigenvector Centrality

Let 𝒢 = (𝑉, 𝐸, 𝑤) be a weighted digraph with adjacency matrix 𝐴. Recalling that 𝑟(𝐴)
is the spectral radius of 𝐴, the hub-based eigenvector centrality of 𝒢 is defined as
the 𝑒 ∈ R𝑛

+ that solves
𝑒 =

1
𝑟(𝐴) 𝐴𝑒. (1.31)

Element-by-element, this is

𝑒𝑖 =
1

𝑟(𝐴)
∑
𝑗∈[𝑛]

𝑎𝑖 𝑗𝑒 𝑗 for all 𝑖 ∈ [𝑛]. (1.32)
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Figure 1.20: Centrality measures for the credit network
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Note the recursive nature of the definition: the centrality obtained by vertex 𝑖 is pro-
portional to a sum of the centrality of all vertices, weighted by the “rates of flow” from
𝑖 into these vertices. A vertex 𝑖 is highly ranked if (a) there are many edges leaving
𝑖, (b) these edges have large weights, and (c) the edges point to other highly ranked
vertices.

When we study demand shocks in §2.1.3, we will provide a more concrete inter-
pretation of eigenvector centrality. We will see that, in production networks, sectors
with high hub-based eigenvector centrality are important suppliers. In particular, they
are activated by a wide array of demand shocks once orders flow backwards through
the network.

EXERCISE 1.4.6. Show that (1.32) has a unique solution, up to a positive scalar
multiple, whenever 𝐴 is strongly connected.

As the name suggests, hub-based eigenvector centrality is a measure of hub cen-
trality: vertices are awarded high rankings when they point to important vertices. The
next two exercises help to reinforce this point.

EXERCISE 1.4.7. Show that nodes with zero out-degree always have zero hub-
based eigenvector centrality.

To compute eigenvector centrality when the adjacency matrix 𝐴 is primitive, we
can employ the Perron–Frobenius Theorem, which tells us that 𝑟(𝐴)−𝑚𝐴𝑚 → 𝑒 𝜀⊤ as
𝑚→∞, where 𝜀 and 𝑒 are the dominant left and right eigenvectors of 𝐴. This implies

𝑟(𝐴)−𝑚𝐴𝑚1→ 𝑐𝑒 where 𝑐 := 𝜀⊤1. (1.33)

Thus, evaluating 𝑟(𝐴)−𝑚𝐴𝑚1 at large 𝑚 returns a scalar multiple of 𝑒. The package
Networkx provides a function for computing eigenvector centrality via (1.33).

One issue with this method is the assumption of primitivity, since the convergence
in (1.33) can fail without it. The following function uses an alternative technique,
based on Arnoldi iteration, which typically works even when primitivity fails. (The
authority option is explained below.)

import numpy as np
from scipy.sparse import linalg

def eigenvector_centrality(A, m=40, authority=False):
"""
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Figure 1.21: A network with a source and a sink

Computes and normalizes the dominant eigenvector of A.
"""
A_temp = A.T if authority else A
r, vec_r = linalg.eigs(A_temp, k=1, which='LR')
e = vec_r.flatten().real
return e / np.sum(e)

EXERCISE 1.4.8. Show that the digraph in Figure 1.21 is not primitive. Using the
code above or another suitable routine, compute the hub-based eigenvector centrality
rankings. You should obtain values close to 𝑒 = (0.3694, 0.2612, 0.3694, 0). Note that
the sink vertex (vertex 4) obtains the lowest rank.

The middle left panel of Figure 1.20 shows the hub-based eigenvector centrality
ranking for the international credit network shown in Figure 1.14. Countries that are
rated highly according to this rank tend to be important players in terms of supply
of credit. Japan takes the highest rank according to this measure, although countries
with large financial sectors such as Great Britain and France are not far behind. (The
color scheme in Figure 1.14 is also matched to hub-based eigenvector centrality.)

The authority-based eigenvector centrality of𝒢 is defined as the 𝑒 ∈ R𝑛
+ solving

𝑒 =
1

𝑟(𝐴) 𝐴
⊤𝑒. (1.34)

The difference between (1.34) and (1.32) is just transposition of 𝐴. (Transposes do
not affect the spectral radius of a matrix.) Element-by-element, this is

𝑒 𝑗 =
1

𝑟(𝐴)
∑
𝑖∈[𝑛]

𝑎𝑖 𝑗𝑒𝑖 for all 𝑗 ∈ [𝑛]. (1.35)

We see 𝑒 𝑗 will be high if many nodes with high authority rankings link to 𝑗.
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The middle right panel of Figure 1.20 shows the authority-based eigenvector cen-
trality ranking for the international credit network shown in Figure 1.14. Highly
ranked countries are those that attract large inflows of credit, or credit inflows from
other major players. The US clearly dominates the rankings as a target of interbank
credit.

EXERCISE 1.4.9. Assume that 𝐴 is strongly connected. Show that authority-based
eigenvector centrality is uniquely defined up to a positive scaling constant and equal
to the dominant left eigenvector of 𝐴.

1.4.3.5 Katz Centrality

Eigenvector centrality can be problematic. Although the definition in (1.32) makes
sense when 𝐴 is strongly connected (so that, by the Perron–Frobenius theorem, 𝑟(𝐴) >
0), strong connectedness fails in many real world networks. We will see examples of
this in §2.1, for production networks defined by input-output matrices.

In addition, while strong connectedness yields strict positivity of the dominant
eigenvector, many vertices can be assigned a zero ranking when it fails (see, e.g., Ex-
ercise 1.4.7). This zero ranking often runs counter to our intuition when we examine
specific networks.

Considerations such as these encourage use of an alternative notion of centrality
for networks called Katz centrality, originally due to Katz (1953), which is positive
under weaker conditions and uniquely defined up to a tuning parameter. Fixing 𝛽
in (0, 1/𝑟(𝐴)), the hub-based Katz centrality of weighted digraph 𝒢 with adjacency
matrix 𝐴, at parameter 𝛽, is defined as the vector 𝜅 := 𝜅(𝛽, 𝐴) ∈ R𝑛

+ that solves

𝜅𝑖 = 𝛽
∑
𝑗∈[𝑛]

𝑎𝑖 𝑗𝜅 𝑗 + 1 for all 𝑖 ∈ [𝑛]. (1.36)

The intuition is very similar to that provided for eigenvector centrality: high centrality
is conferred on 𝑖 when it is linked to by vertices that themselves have high centrality.
The difference between (1.36) and (1.32) is just in the additive constant 1.

EXERCISE 1.4.10. Show that, under the stated condition 0 < 𝛽 < 1/𝑟(𝐴), hub-based
Katz centrality is always finite and uniquely defined by

𝜅 = (𝐼 − 𝛽𝐴)−11 =
∑
ℓ⩾0
(𝛽𝐴)ℓ1, (1.37)

where 1 is a column vector of ones.
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EXERCISE 1.4.11. We know from the Perron–Frobenius theorem that the eigen-
vector centrality measure will be everywhere positive when the digraph is strongly
connected. A condition weaker than strong connectivity is that every vertex has pos-
itive out-degree. Show that the Katz measure of centrality is strictly positive on each
vertex under this condition.

The attenuation parameter 𝛽 is used to ensure that 𝜅 is finite and uniquely defined
under the condition 0 < 𝛽 < 1/𝑟(𝐴). It can be proved that, when the graph is strongly
connected, hub-based (resp., authority-based) Katz centrality converges to the hub-
based (resp., authority-based) eigenvector centrality as 𝛽 ↑ 1/𝑟(𝐴).17 This is why, in
the bottom two panels of Figure 1.20, the hub-based (resp., authority-based) Katz
centrality ranking is seen to be close to its eigenvector-based counterpart.

When 𝑟(𝐴) < 1, we use 𝛽 = 1 as the default for Katz centrality computations.

EXERCISE 1.4.12. Compute the hub-based Katz centrality rankings for the simple
digraph in Figure 1.21 when 𝛽 = 1. You should obtain 𝜅 = (5, 4, 5, 1). Hence, the
source vertex (vertex 1) obtains equal highest rank and the sink vertex (vertex 4)
obtains the lowest rank.

Analogously, the authority-based Katz centrality of 𝒢 is defined as the 𝜅 ∈ R𝑛
+

that solves
𝜅 𝑗 = 𝛽

∑
𝑖∈[𝑛]

𝑎𝑖 𝑗𝜅𝑖 + 1 for all 𝑗 ∈ [𝑛]. (1.38)

EXERCISE 1.4.13. Show that, under the restriction 0 < 𝛽 < 1/𝑟(𝐴), the unique
solution to (1.38) is given by

𝜅 = (𝐼 − 𝛽𝐴⊤)−11 ⇐⇒ 𝜅⊤ = 1⊤(𝐼 − 𝛽𝐴)−1. (1.39)

(Verify the stated equivalence.)

EXERCISE 1.4.14. Compute the authority-based Katz centrality rankings for the
digraph in Figure 1.21 when 𝛽 = 1. You should obtain 𝜅 = (1, 6, 4, 4). Notice that the
source vertex now has the lowest rank. This is due to the fact that hubs are devalued
relative to authorities.

17See, for example, Benzi and Klymko (2015).
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1.4.4 Scale-Free Networks
What kinds of properties do large, complex networks typically possess? One of the
most striking facts about complex networks is that many exhibit the scale-free prop-
erty, which means, loosely speaking, that the number of connections possessed by
each vertex in the network follows a power law. The scale-free property is remark-
able because it holds for a wide variety of networks, from social networks to citation,
sales, financial and production networks, each of which is generated by different un-
derlying mechanisms. Nonetheless, they share this specific statistical structure.

We begin this section by defining the degree distribution and then discuss its prop-
erties, including possible power law behavior.

1.4.4.1 Empirical Degree Distributions

Let𝒢 = (𝑉, 𝐸) be a digraph. Assuming without loss of generality that 𝑉 = [𝑛] for some
𝑛 ∈ N, the in-degree distribution of 𝐺 is the sequence (𝜑𝑖𝑛(𝑘))𝑛𝑘=0 defined by

𝜑𝑖𝑛(𝑘) =
∑
𝑣∈𝑉 1{𝑖𝑑 (𝑣) = 𝑘}

𝑛
(𝑘 = 0, . . . , 𝑛), (1.40)

where 𝑖𝑑 (𝑣) is the in-degree of vertex 𝑣. In other words, the in-degree distribution
evaluated at 𝑘 is the fraction of nodes in the network that have in-degree 𝑘. In Python,
when 𝒢 is expressed as a Networkx DiGraph called G and import numpy as np has
been executed, the in-degree distribution can be calculated via

def in_degree_dist(G):
n = G.number_of_nodes()
iG = np.array([G.in_degree(v) for v in G.nodes()])
phi = [np.mean(iG == k) for k in range(n+1)]
return phi

The out-degree distribution is defined analogously, replacing 𝑖𝑑 with 𝑜𝑑 in (1.40),
and denoted by (𝜑𝑜𝑢𝑡 (𝑘))𝑛𝑘=0.

Recall that a digraph 𝒢 = (𝑉, 𝐸) is called undirected if (𝑢, 𝑣) ∈ 𝐸 implies (𝑣, 𝑢) ∈ 𝐸.
If 𝒢 is undirected, then 𝑖𝑑 (𝑣) = 𝑜𝑑 (𝑣) for all 𝑣 ∈ 𝑉. In this case we usually write 𝜑
instead of 𝜑𝑖𝑛 or 𝜑𝑜𝑢𝑡 and refer simply to the degree-distribution of the digraph.

A scale-free network is a network whose degree distribution obeys a power law,
in the sense that there exist positive constants 𝑐 and 𝛾 with

𝜑(𝑘) ≈ 𝑐𝑘−𝛾 for large 𝑘. (1.41)
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Figure 1.22: Degree distribution for international aircraft trade

Here 𝜑(𝑘) can refer to in-degree or the out-degree (or both), depending on our inter-
est. In view of the discussion in §1.3.2.4, this can be identified with the idea that the
degree distribution is Pareto-tailed with tail index 𝛼 = 𝛾 − 1.

Although we omit formal tests, the degree distribution for the commercial aircraft
international trade network shown in Figure 1.2 on page 4 is approximately scale-free.
Figure 1.22 illustrates this by plotting the degree distribution alongside 𝑓 (𝑥) = 𝑐𝑥−𝛾

with 𝑐 = 0.2 and 𝛾 = 1.1. (In this calculation of the degree distribution, performed by
the Networkx function degree_histogram, directions are ignored and the network is
treated as an undirected graph.)

Attention was drawn to the scale-free nature of many networks by Barabási and
Albert (1999). They found, for example, that the in-degree and out-degree distri-
butions for internet pages connected by hyperlinks both follow power laws. In sub-
sequent years, many networks have been found to have the scale-free property, up
to a first approximation, including networks of followers on Twitter (Pearce, 2017;
Punel and Ermagun, 2018), other social networks (Rybski et al., 2009) and academic
collaboration networks (e.g., papers plus citations).

Within economics and finance, Carvalho (2014) shows that the weighted out-
degree distribution for US input-output data (discussed further in Chapter 2) obeys
a power law, as does the Katz centrality measure. Carvalho et al. (2021) document
power law tails for the in-degree (suppliers) and out-degree (customers) distributions
in a Japanese network of interacting firms. Scale-free degree distributions have also
been observed in a number of financial and inter-bank credit networks (Kim et al.,
2007; Ou et al., 2007; De Masi et al., 2011).
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In many cases, the scale-free property of a given network has significant implica-
tions for economic outcomes and welfare. For example, a power law in input-output
networks often typically indicates dominance by a small number of very large sectors
or firms. This in turn affects both the dynamism of industry and the likelihood of
aggregate instability caused by firm-level shocks. We explore some of these issues in
Chapter 2.

1.4.4.2 Random Graphs

One way to explore the implications of different dynamics for the degree distribution
of graphs is to specify a law for generating graphs randomly and then examine the
degree distribution that results. This methodology leads to insights on the kinds of
mechanisms that can generate scale-free networks.

We begin with one of the most popular and elementary ways of randomly gen-
erating an undirected graph, originally examined by Erdös and Rényi (1960). The
process to generate a graph 𝒢 = (𝑉, 𝐸) is

(i) fix an integer 𝑛 ∈ N and a 𝑝 ∈ (0, 1),
(ii) view 𝑉 := [𝑛] as a collection of vertices,
(iii) let 𝐸 = {∅}, and
(iv) for each (𝑖, 𝑗) ∈ 𝑉×𝑉 with 𝑖 ≠ 𝑗, add the undirected edge {𝑖, 𝑗} to the set of edges

𝐸 with probability 𝑝.

In the last step additions are independent—each time, we flip an unbiased IID coin
with head probability 𝑝 and add the edge if the coin comes up heads.

The Python code below provides a function that can be called to randomly generate
an undirected graph using this procedure. It applies the combinations function from
the itertools library, which, for the call combinations(A, k), returns a list of all
subsets of 𝐴 of size 𝑘. For example,

import itertools
letters = 'a', 'b', 'c'
list(itertools.combinations(letters, 2))

returns [('a', 'b'), ('a', 'c'), ('b', 'c')].
We use combinations to produce the set of all possible edges and then add them

to the graph with probability 𝑝:
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Graph visualization
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Figure 1.23: An instance of an Erdos–Renyi random graph

def erdos_renyi_graph(n=100, p=0.5, seed=1234):
"Returns an Erdos-Renyi random graph."
np.random.seed(seed)
edges = itertools.combinations(range(n), 2)
G = nx.Graph()

for e in edges:
if np.random.rand() < p:

G.add_edge(*e)
return G

(The code presented here is a simplified version of functionality provided by the
library Networkx. It is written for clarity rather than efficiency. More efficient versions
can be found both in Networkx and in Julia’s Graphs.jl library.)

The left hand side of Figure 1.23 shows one instance of a graph that was generated
by the erdos_renyi_graph function, with 𝑛 = 100 and 𝑝 = 0.05. Lighter colors on a
node indicate higher degree (more connections). The right hand side shows the de-
gree distribution, which exhibits a bell-shaped curve typical for Erdos–Renyi random
graphs. In fact one can show (see, e.g., Bollobás (1999) or Durrett (2007)) that the
degree distribution is binomial, with

𝜑(𝑘) =
(
𝑛 − 1
𝑘

)
𝑝𝑘(1 − 𝑝)𝑛−1−𝑘 (𝑘 = 0, . . . , 𝑛 − 1).
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Graph visualization
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Figure 1.24: An instance of a preferential attachment random graph

1.4.4.3 Preferential Attachment

Clearly Erdos–Renyi random graphs fail to replicate the heavy right hand tail of the
degree distribution observed in many networks. In response to this, Barabási and
Albert (1999) proposed a mechanism for randomly generating graphs that feature
the scale-free property.

The stochastic mechanism they proposed is called preferential attachment. In
essence, each time a new vertex is added to an undirected graph, it is attached by
edges to 𝑚 of the existing vertices, where the probability of vertex 𝑣 being selected is
proportional to the degree of 𝑣. Barabási and Albert (1999) showed that the result-
ing degree distribution exhibits a Pareto tail in the limit, as the number of vertices
converges to +∞. A careful proof can be found in Chapter 4 of Durrett (2007).

Although we omit details of the proof, we can see the power law emerge in simula-
tions. For example, Figure 1.24 shows a random graph with 100 nodes generated by
Networkx’s barabasi_albert_graph function. The number of attachments 𝑚 is set
to 5. The simulated degree distribution on the right hand side of Figure 1.24 already
exhibits a long right tail.

The preferential attachment model is popular not just because it replicates the
scale-free property of many real-world networks, but also because its mechanism is
simple and plausible. For example, in citation networks, we can imagine that a well-
cited paper is more likely to attract additional citations than a poorly-cited paper.
Similar intuition can be applied to an individual on a social network, where the num-
ber of links is measured in terms of the number of followers.
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1.5 Chapter Notes

The Perron–Frobenius theorem is due to Oskar Perron (1880–1975) and Ferdinand
Georg Frobenius (1849–1917). The main results were proved by 1912. As early as
1915, Dénes König (1884–1944) saw the connection between the Perron–Frobenius
theorem and graph theory, and provided an alternative proof using bipartite graphs.
Some of the history is discussed in Schrijver (2005).

We have already mentioned the textbooks on economic and social networks by
Jackson (2010), Easley and Kleinberg (2010), Borgatti et al. (2018), and Goyal (2023),
as well as the handbook by Bramoullé et al. (2016). Jackson (2014) gives a survey of
the literature. Within the realm of network science, the high level texts by Newman
(2018), Menczer et al. (2020) and Coscia (2021) are excellent.

One good text on graphs and graph-theoretic algorithms is Kepner and Gilbert
(2011). Ballester et al. (2006) provide an interpretation of Katz centrality (which
they call Bonacich centrality) in terms of Nash equilibria of quadratic games. Sharkey
(2017) presents a new interpretation of Katz centrality using control theory. Polovnikov
et al. (2022) use Katz centrality to uncover hidden ultimate owners in firm ownership
data. Du et al. (2015) show how PageRank can be obtained as a competitive equi-
librium of an economic problem. Calvó-Armengol et al. (2009) develop a model in
which the outcomes for agents embedded in a network are proportional to the Katz
centrality. Elliott and Golub (2019) show that, in a setting where agents can create
nonrival, heterogeneous public goods, an important set of efficient solutions are char-
acterized by contributions being proportional to agents’ eigenvector centralities in the
network.

Kumamoto and Kamihigashi (2018) provide a detailed survey of power laws in
economics and social sciences, including a discussion of the preferential attachment
model of Barabási and Albert (1999). Newman (2005) is also highly readable. The
textbook of Durrett (2007) is rigorous, carefully written and contains interesting mo-
tivational background, as well as an extensive citation list for studies of scale-free
networks.

It should be clear from the symbol ≈ in (1.41) that the definition of scale-free net-
works is not entirely rigorous. Moreover, when connecting the definition to observed
networks, we cannot obtain complete clarity by taking a limit, as we did when we
defined power laws in §1.3.2, since the number of vertices is always finite. This im-
precision in the definition has led to heated debate (see, e.g., Holme (2019)). Given
the preponderance of positive empirical studies, we take the view that, up to a rea-
sonable degree of approximation, the scale-free property is remarkably widespread.
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In §1.4.2.3 we briefly mentioned network games, social networks and key play-
ers. These topics deserve more attention than we are able to provide. An excellent
overview is given in Zenou (2016). Amarasinghe et al. (2020) apply these ideas to
problems in economic development. Valuable related papers include Allouch (2015),
Belhaj et al. (2016), Demange (2017), Belhaj and Deroïan (2019), Galeotti et al.
(2020).

Another topic we reluctantly omit in order to keep the textbook short is endoge-
nous network formation in economic environments. Influential papers in this field
include Bala and Goyal (2000), Watts (2001), Graham (2017), Galeotti and Goyal
(2010), Hojman and Szeidl (2008), and Jackson and Wolinsky (1996).

Finally, Candogan et al. (2012) study the profit maximization problem for a mo-
nopolist who sells items to participants in a social network. The main idea is that, in
certain settings, the monopolist will find it profitable to offer discounts to key players
in the network. Atalay et al. (2011) argue that in-degrees observed in US buyer-
supplier networks have lighter tails than a power law, and supply a model that better
fits their data.



Chapter 2

Production

In this chapter we study production inmultisector environments. The basic framework
is input-output analysis, which was initiated by Wassily Leontief (1905–1999) and
popularized in Leontief (1941). Input-output analysis is routinely used to organize
national accounts and study inter-industry relationships. In 1973, Leontief received
the Nobel Prize in Economic Sciences for his work on input-output systems.

Input-output analysis is currently being incorporated intomodern theories of trade,
growth, shock propagation and aggregate fluctuations in multisector models (§2.4
provides a detailed list of references). One of the reasons for renewed interest is that
the introduction of concepts from network analysis and graph theory has yielded new
insights. This chapter provides an introduction to the main ideas.

2.1 Multisector Models

In this section we introduce the basic input output model, explain the network inter-
pretation of the model, and connect traditional questions, such as the relative impact
of demand shocks across sectors, to network topology and network centrality.

2.1.1 Production Networks

We begin with the foundational concepts of input-output tables and how they relate
to production networks. To simplify the exposition, we ignore imports and exports in
what follows. (References for the general case are discussed in §2.4.)

60
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2.1.1.1 Input-Output Analysis

Agencies taskedwith gathering national and regional production accounts (such as the
US Bureau of Economic Analysis) compile input-output data based on the structure
set out by Leontief (1941). Firms are divided across 𝑛 sectors, each of which produces
a single homogeneous good. These sectors are organized into an input-output table,
a highly simplified example of which is

sector 1 sector 2 sector 3
sector 1 𝑎11 𝑎12 𝑎13
sector 2 𝑎21 𝑎22 𝑎23
sector 3 𝑎31 𝑎32 𝑎33

Entries 𝑎𝑖 𝑗 are called the input-output coefficients;

𝑎𝑖 𝑗 =
value of sector 𝑗’s inputs purchased from sector 𝑖

total sales of sector 𝑗 .

Thus, 𝑎𝑖 𝑗 is large if sector 𝑖 is an important supplier of intermediate goods to sector
𝑗. The sum of the 𝑗-th column of the table gives the value of all inputs to sector 𝑗. The
𝑖-th row shows how intensively each sector uses good 𝑖 as an intermediate good.

The production coefficient matrix 𝐴 = (𝑎𝑖 𝑗) induces a weighted digraph 𝒢 =
(𝑉, 𝐸, 𝑤), where 𝑉 = [𝑛] is the list of sectors and

𝐸 := {(𝑖, 𝑗) ∈ 𝑉 × 𝑉 : 𝑎𝑖 𝑗 > 0}

is the edge set. The values 𝑎𝑖 𝑗 show backward linkages across sectors.
Given 𝑖 ∈ 𝑉, the set 𝒪(𝑖) of direct successors of 𝑖 is all sectors to which 𝑖 supplies a

positive quantity of output. The set ℐ(𝑖) is all sectors that supply a positive quantity
to 𝑖.

Figure 2.1 illustrates the weighted digraph associated with the 15 sector version
of the input-output tables provided by the Bureau of Economic Analysis for the year
2021.1 An arrow from 𝑖 to 𝑗 indicates a positive weight 𝑎𝑖 𝑗. Weights are indicated by
the widths of the arrows, which are proportional to the corresponding input-output
coefficients. The sector codes are provided in Table 2.1. The size of vertices is pro-
portional to their share of total sales across all sectors.

1We obtain input expenditures and total sales for each sector from the Make-Use Tables of the
Input-Output Accounts Data. The figure was created using Python’s Networkx library.
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Table 2.1: Sector codes for the 15 good case

Label Sector
ag Agriculture, forestry, fishing, and hunting
mi Mining
ut Utilities
co Construction
ma Manufacturing
wh Wholesale trade
re Retail trade
tr Transportation and warehousing
in Information
fi Finance, insurance, real estate, rental, and leasing
pr Professional and business services
ed Educational services, health care, and social assistance
ar Arts, entertainment, accommodation, and food services
ot Other services, except government
go Government

A quick look at Figure 2.1 shows that manufacturing (ma) is an important supplier
for many sectors, including construction (co) and agriculture (ag). Similarly, the fi-
nancial sector (fi) and professional services (pr) supply services to a broad range of
sectors. On the other hand, education (ed) is relatively downstream and only a minor
supplier of intermediate goods to other sectors.

The color scheme for the nodes is by hub-based eigenvector centrality, with hotter
colors indicating higher centrality. Later, in §2.1.3 we will give an interpretation of
hub-based eigenvector centrality for this setting that connects to relative impact of
demand shocks.

2.1.1.2 Connectedness

We will gain insights into input-output networks by applying some of the graph-
theoretic notions studied in Chapter 1.4. One elementary property we can investigate
is connectedness. We can imagine that demand and productivity shocks diffuse more
widely through a given production network when the network is relatively connected.
Conversely, the impact of a demand shock occurring within an absorbing set will be
isolated to sectors in that set.

The 15 sector network in Figure 2.1 is strongly connected. Checking this visually
is hard, so instead we use a graph-theoretic algorithm that finds strongly connected
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Figure 2.1: Backward linkages for 15 US sectors in 2021
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components from QuantEcon’s DiGraph class. (This class is convenient for the current
problem because instances are created directly from the adjacency matrix.) Examin-
ing the attributes of this class when the weights are given by the 15 sector input-output
model confirms its strong connectedness. The same class can be used to verify that
the network is also aperiodic. Hence, the input-output matrix 𝐴 is primitive. This fact
will be used in computations below.

2.1.1.3 Disaggregation

Figure 2.2 repeats the graphical representation for the more disaggregated 71 sector
case. Sector codes are provided in Table 2.2. Input-output coefficients below 0.01
were rounded to zero to increase visual clarity. As in the 15 sector case, the size
of vertices and edges is proportional to share of sales and input-output coefficients
respectively. Hotter colors indicate higher hub-based eigenvector centrality (which
we link to propagation of demand shocks in §2.1.3).

Unlike the 15 sector case, the 71 sector 2021 input-output matrix is not strongly
connected. This is because it contains sinks (sectors with zero out-degree). For exam-
ple, according to the data, 441 “motor vehicle and parts dealers” do not supply any
intermediate inputs, although they do of course supply products to final consumers.

2.1.2 Equilibrium

Equilibrium in Leontief models involves tracing the impact of final demand as it flows
backward through different sectors in the economy. To illustrate the challenges this
generates, consider the simplified network shown in Figure 2.3. Suppose sector 3
receives a positive demand shock. Meeting this demand will require greater output
from its immediate suppliers, which are sectors 2 and 4. However, an increase in
production in sector 2 requires more output from sector 1, which then requires more
output from sector 3, where the initial shock occurred. This, in turn, requires more
output from sectors 2 and 4, and so on. Thus, the chain of backward linkages leads
to an infinite loop. Resolving this tail chasing problem requires some analysis.

2.1.2.1 Identities

To start our search for equilibria, we set

• 𝑑𝑖 := final consumer demand for good 𝑖.

https://quantecon.org/
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Figure 2.2: Network for 71 US sectors in 2021
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Table 2.2: Sector codes for the 71 good case
IO Code Sector IO Code Sector

111CA Farms 486 Pipeline transportation
113FF Forestry, fishing 487OS Other transportation
211 Oil and gas extraction 493 Warehousing and storage
212 Mining, except oil, gas 511 Publishing industries
213 Mining support activities 512 Motion picture and sound
22 Utilities 513 Broadcasting, telecommunications
23 Construction 514 Data processing, internet publishing
321 Wood products 521CI Reserve banks, credit intermediation
327 Nonmetallic mineral products 523 Securities and investments
331 Primary metals 524 Insurance carriers
334 Computer & electronic products 525 Funds, trusts, financial vehicles
333 Machinery HS Housing
332 Fabricated metal products ORE Other real estate
335 Electrical equipment 532RL Rental and leasing services
337 Furniture 55 Firm management
3364OT Other transportation equipment 5415 Computer systems design
3361MV Motor vehicles, parts 5412OP Miscellaneous technical services
339 Miscellaneous manufacturing 5411 Legal services
311FT Food, beverage, tobacco 561 Administrative
313TT Textile mills and products 562 Waste management
315AL Apparel and leather 61 Educational services
322 Paper products 621 Ambulatory health care services
323 Printing 622 Hospitals
324 Petroleum and coal 623 Nursing and residential care facilities
325 Chemical products 624 Social assistance
326 Plastics, rubber 711AS Arts, spectator sports, museums
42 Wholesale trade 713 Amusements, gambling, recreation
441 Motor vehicle and parts dealers 721 Accommodation
445 Food and beverage stores 722 Food services and drinking places
452 General merchandise stores 81 Other services, except government
4A0 Other retail GFGD Federal government (defense)
481 Air transportation GSLE State and local government enterprises
482 Rail transportation GFE Federal government enterprises
483 Water transportation GSLG State and local government
484 Truck transportation GFGN Federal government (nondefense)
485 Passenger transportation
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Figure 2.3: A simple production network

• 𝑥𝑖 := total sales of sector 𝑖.
• 𝑧𝑖 𝑗 := inter-industry sales from sector 𝑖 to sector 𝑗.

All numbers are understood to be in units of national currency—dollars, say. For each
sector 𝑖 we have the accounting identity

𝑥𝑖 =
𝑛∑
𝑗=1

𝑧𝑖 𝑗 + 𝑑𝑖, (2.1)

which states that total sales are divided between sales to other industries and sales to
final consumers.

Notice that
𝑧𝑖 𝑗
𝑥 𝑗

= dollar value of inputs from 𝑖 per dollar output from 𝑗 = 𝑎𝑖 𝑗, (2.2)

where the values 𝑎𝑖 𝑗 are the the input-output coefficients discussed in §2.1.1.1. Using
the coefficients, (2.1) can be rewritten as

𝑥𝑖 =
𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑥 𝑗 + 𝑑𝑖, 𝑖 = 1, . . . 𝑛. (2.3)

The first term on the right hand side is the amount of good 𝑖 required as inputs
when the output vector is 𝑥 := (𝑥𝑖)𝑛𝑖=1. We can combine the 𝑛 equations in (2.3) into
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the linear system
𝑥 = 𝐴𝑥 + 𝑑. (2.4)

2.1.2.2 Existence and Uniqueness

So far we have used no more than accounting identities and definitions. However,
we would also like to use (2.4) to determine output vector 𝑥 given demand vector
𝑑, taking 𝐴 as fixed. As a first step, we seek conditions under which nonnegative
solutions to (2.4) exist and are unique.

The value added of sector 𝑗 is defined as sales minus spending on intermediate
goods, or

𝑣 𝑗 := 𝑥 𝑗 −
𝑛∑
𝑖=1

𝑧𝑖 𝑗.

Assumption 2.1.1. The input-output adjacency matrix 𝐴 obeys

𝜂 𝑗 :=
𝑛∑
𝑖=1

𝑎𝑖 𝑗 < 1 for all 𝑗 ∈ [𝑛]. (2.5)

EXERCISE 2.1.1. Prove that Assumption 2.1.1 holds whenever value added is
strictly positive in each sector.

Exercise 2.1.1 shows that Assumption 2.1.1 is very mild. For example, in a com-
petitive equilibrium, where firms make zero profits, positive value added means that
payments to factors of production other than intermediate goods (labor, land, etc.)
are strictly positive.

EXERCISE 2.1.2. Let 𝜂(𝐴) := max 𝑗∈[𝑛] 𝜂 𝑗. Prove that 𝑟(𝐴) ⩽ 𝜂(𝐴) < 1 whenever
Assumption 2.1.1 holds.

Proposition 2.1.1. If Assumption 2.1.1 holds, then, for each 𝑑 ⩾ 0, the production
system (2.4) has the unique nonnegative output solution

𝑥∗ = 𝐿𝑑 where 𝐿 := (𝐼 − 𝐴)−1. (2.6)

Proof. By Exercise 2.1.2 and Assumption 2.1.1 we have 𝑟(𝐴) < 1. Hence the Neumann
series lemma (NSL) implies 𝑥∗ in (2.6) is the unique solution in R𝑛. Regarding non-
negativity, since 𝐴 is nonnegative, so is 𝐴𝑖 for all 𝑖. Hence 𝑥∗ ⩾ 0, by the power series
representation 𝐿 =

∑∞
𝑖=0 𝐴

𝑖 provided by the NSL. □
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The matrix 𝐿 = (ℓ𝑖 𝑗) in (2.6) is called the Leontief inverse associated with the
coefficient matrix 𝐴. We discuss its interpretation in §2.1.3.

EXERCISE 2.1.3. A demand vector is called nontrivial if 𝑑 ≠ 0. Let 𝑑 be nontrivial
and suppose that 𝑟(𝐴) < 1. Show that, in equilibrium, every sector is active (i.e.,
𝑥∗ ≫ 0) when 𝐴 is irreducible.

EXERCISE 2.1.4. A closed input-output system is one where 𝑑 = 0. A nontrivial
solution of a closed system 𝑥 = 𝐴𝑥 is a nonzero 𝑥 ∈ R𝑛

+ such that 𝐴𝑥∗ = 𝑥∗. Let 𝐴
be irreducible. Show that no nontrivial solution exists when 𝑟(𝐴) < 1. Show that a
nontrivial solution exists and is unique up to constant multiples when 𝑟(𝐴) = 1.

EXERCISE 2.1.5. Consider a closed input-output system defined by input matrix 𝐴.
Let 𝐴 be primitive. Show that every nontrivial solution is everywhere positive. Show
that no nontrivial solution exists when 𝑟(𝐴) > 1.

2.1.2.3 Assumptions

It is common to interpret the expression 𝑥∗ = (𝐼 − 𝐴)−1𝑑 from (2.6) as meaning that
supply is driven by demand. While this is not a universal truth, it does have plausibil-
ity in some settings, such as when analyzing demand shifts in the short run. Changes
in demand lead to changes in inventories, which typically cause firms to modify pro-
duction quantities. We investigate these ideas in depth in §2.1.3.

Another assumption concerns the production function in each sector. You might
recall from elementary microeconomics that the Leontief production function takes
the form

𝑥 = 𝑓 (𝑧1, . . . , 𝑧𝑛) = min{𝛾1𝑧1, . . . , 𝛾𝑛𝑧𝑛}. (2.7)
Here 𝑥 is output in a given sector, {𝛾𝑖} is a set of parameters and {𝑧𝑖} is a set of inputs.
To understand why (2.7) is called a Leontief production function, note that by (2.2)
we have

𝑥 𝑗 =
𝑧𝑖 𝑗
𝑎𝑖 𝑗

for all 𝑖 ∈ [𝑛] such that 𝑎𝑖 𝑗 > 0. (2.8)

If we interpret 𝑧/0 = ∞ for all 𝑧 ⩾ 0, then (2.8) implies 𝑥 𝑗 = min𝑖∈[𝑛] 𝑧𝑖 𝑗/𝑎𝑖 𝑗. This is
a version of (2.7) specialized to sector 𝑗. Hence (2.7) arises naturally from Leontief
input-output analysis.

A final comment on assumptions is that, while the Leontief model is too simple for
some purposes, it serves as a useful building block for more sophisticated models. We
discuss one such model in §2.2.1.
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2.1.3 Demand Shocks

In this section we study impacts of changes in demand via a power series represen-
tation ∑

𝑖⩾0 𝐴
𝑖 of the Leontief inverse 𝐿. We assume throughout that 𝑟(𝐴) < 1, so that

the series and 𝐿 are finite and equal.

2.1.3.1 Response to Demand Shocks

Consider the impact of a demand shock of size Δ𝑑, so that demand shifts from 𝑑0
to 𝑑1 = 𝑑0 + Δ𝑑. The equilibrium output vector shifts from 𝑥0 = 𝐿𝑑0 to 𝑥1 = 𝐿𝑑1.
Subtracting the first of these equations from the second and expressing the result in
terms of differences gives Δ𝑥 = 𝐿Δ𝑑. Using the geometric sum version of the Leontief
inverse yields

Δ𝑥 = Δ𝑑 + 𝐴(Δ𝑑) + 𝐴2(Δ𝑑) + · · · (2.9)
The sums in this term show how the shock propagates backward through the produc-
tion network:

(i) Δ𝑑 is the initial response in each sector,
(ii) 𝐴(Δ𝑑) is the response generated by the first round of backward linkages,
(iii) 𝐴2(Δ𝑑) is the response generated by the second round, and so on.

The total response is the sum of responses at all rounds.
We can summarize the above by stating that a typical element ℓ𝑖 𝑗 of 𝐿 =

∑
𝑚⩾0 𝐴

𝑚

shows the total impact on sector 𝑖 of a unit change in demand for good 𝑗, after tak-
ing into account all direct and indirect effects. 𝐿 itself is reminiscent of a Keynesian
multiplier: changes in demand are multiplied by this matrix to generate final output.

Figure 2.4 helps visualize the Leontief inverse computed from the 15 sector net-
work. Hotter colors indicate larger values for ℓ𝑖 𝑗, with 𝑖 on the vertical axis and 𝑗 on
the horizontal axis. We see, for example, that an increase in demand in almost any
sector generates a rise in manufacturing output.

2.1.3.2 Shock Propagation

Figure 2.5 shows the impact of a given vector of demand shocks Δ𝑑 on the 15 sector
input-output model. In this simulation, each element of Δ𝑑 was drawn independently
from a uniform distribution. The vector Δ𝑑 is shown visually in the panel titled “round
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Figure 2.4: The Leontief inverse 𝐿 (hotter colors indicate larger values)

0,” with hotter colors indicating larger values. The shock draw was relatively large in
retail (re) and information (in).

The remaining rounds then show the values 𝐴2(Δ𝑑), 𝐴4(Δ𝑑), etc., with hotter col-
ors indicating higher values. In each round, to make the within-round comparison
between sectors clearer, values of the vector 𝐴𝑖(Δ𝑑) are rescaled into the [0, 1] inter-
val before the color map is applied.

Note that, by round 6, the values of 𝐴𝑖(Δ𝑑) have settled into a fixed pattern. (This
is only up to a scaling constant, since values are rescaled into [0, 1] as just discussed.)
Manufacturing is the most active sector, while finance and professional services are
also quite active. In fact, if we repeat the simulation with a new draw for Δ𝑑, the
pattern of active sectors quickly converges to exactly the same configuration.

We can explain this phenomenon using the Perron–Frobenius theorem. Since 𝐴 is
primitive (in the 15 sector case), we know that 𝑟(𝐴)−𝑚𝐴𝑚 converges to 𝑒𝜀⊤ as 𝑚→∞,
where 𝑒 and 𝜀 are the dominant left and right eigenvectors respectively, normalized
so that ⟨𝜀, 𝑒⟩ = 1. It follows that, for large 𝑚, we have

𝐴𝑚(Δ𝑑) ≈ 𝑟(𝐴)𝑚 ⟨𝜀, Δ𝑑⟩ 𝑒. (2.10)

In other words, up to a scaling constant, the shock response 𝐴𝑚(Δ𝑑) converges to
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Figure 2.5: Propagation of demand shocks via backward linkages
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the dominant right eigenvector, which is also the hub-based eigenvector centrality
measure.

In Figure 2.5, the scaling constant is not visible because the values are rescaled to
a fixed interval before the color map is applied. However, (2.10) shows us its value,
as well as the fact that the scaling constant converges to zero like 𝑟(𝐴)𝑚. Hence, the
dominant eigenpair (𝑟(𝐴), 𝑒) gives us both the configuration of the response to an
arbitrary demand shock and the rate at which the response dies out as we travel back
through the linkages.

At this point, we recall that the sectors in Figure 2.1 were colored according to hub-
based eigenvector centrality. If you compare this figure to Figure 2.5, youwill be above
to confirm that, at least for later rounds, the color schemes line up, as predicted by
the theory. Finance (fi) and manufacturing (ma) rank highly, as does the professional
services sector (pr), which includes consulting, accounting and law.

2.1.3.3 Eigenvector Centrality

Let’s look at hub-based eigenvector centrality more closely. In a production network,
the hub property translates into being an important supplier. Our study of demand
shocks in §2.1.3 highlighted the significance of the eigenvector measure of hub-based
centrality: if sector 𝑖 has high rank under this measure, then it becomes active after
a large variety of different shocks. Figure 2.6 shows hub-based eigenvector centrality
as a bar graph for the 15 sector case. By this measure, manufacturing is by far the
most dominant sector in the US economy.

Reviewing the color scheme in Figure 2.2 based on our current understanding
of eigenvector centrality, we see that technical servies (54120P), insurance (524),
chemical products (325) and primary metals (331) are among the most highly ranked,
and hence a wide range of demand shocks generate high activity in these sectors.

To provide some extra context, we show the analogous figure using Australian
2020 input-output data, collected by the Australian Bureau of Statistics. Node size
is proportional to sales share and arrow width is proportional to the input-output
coefficient. The color map shows hub-based eigenvector centrality.

By this measure, the highest ranked sector is 6901, which is “professional, scien-
tific and technical services.” This includes scientific research, engineering, computer
systems design, law, accountancy, advertising, market research, and management
consultancy. The next highest sectors are construction and electricity generation.
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Figure 2.6: Eigenvector centrality across US industrial sectors

2.1.3.4 Output Multipliers

One way to rank sectors that has a long tradition in input-output analysis is via output
multipliers. The output multiplier of sector 𝑗, denoted below by 𝜇 𝑗, is usually defined
as the “total sector-wide impact of an extra dollar of demand in sector 𝑗,” where total
means taking into account backward linkages. This measure has historically been of
interest to policy makers considering impacts of fiscal stimulus.

Recalling from §2.1.3.1 that ℓ𝑖 𝑗 shows the total impact on sector 𝑖 of a unit change
in demand for good 𝑗, we come to the definition

𝜇 𝑗 =
𝑛∑
𝑖=1

ℓ𝑖 𝑗 ( 𝑗 ∈ [𝑛]).

In vector notation this is 𝜇⊤ = 1⊤𝐿 or,

𝜇⊤ = 1⊤(𝐼 − 𝐴)−1. (2.11)

Comparing this with (1.39), we see that the vector of output multipliers is equal to the
authority-based Katz centrality measure (with the parameter 𝛽 defaulting to unity).

The connection between the two measures makes sense: high authority-based
centrality means that a sector has many inward links, and that those links are from
other important sectors. Loosely speaking, such a sector is an important buyer of
intermediate inputs. A sector highly ranked by this measure that receives a demand
shock will cause a large impact on the whole production network.
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Figure 2.7: Network for 114 Australian industry sectors in 2020
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Figure 2.8: Output multipliers across 15 US industrial sectors

Figure 2.8 shows the size of output multipiers across 15 US industrial sectors,
calculated from the same input-output data as previous 15 sector figures using (2.11).
The highest ranks are assigned to manufacturing, agriculture and construction.

2.1.4 Forward Linkages

Several economic questions connect to relative “upstreamness” of a sector or produc-
tion good. For example, Olabisi (2020) finds that upstreamness is related to sectoral
volatility, while Antràs et al. (2012) examine the relationship between upstreamness
and tendency to export. Tariff changes tend to have different aggregate effects when
applied to upstream rather than downstream industries (Martin and Otto, 2020). Fi-
nally, since WWII, many developing countries have systematically supported and en-
couraged upstream industries (Liu, 2019).

In order to study upstreamness, we first introduce the Ghosh model for forward
linkages, which uses a rearrangement of terms from the original Leontief model.

2.1.4.1 The Ghosh Model

Recall that 𝑎𝑖 𝑗 = 𝑧𝑖 𝑗/𝑥 𝑗 = the dollar value of inputs from 𝑖 per dollar of sales from 𝑗.
Consider now the related quantities

𝑓𝑖 𝑗 :=
𝑧𝑖 𝑗
𝑥𝑖

= value of inputs from 𝑖 to 𝑗 per dollar output from 𝑖. (2.12)
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Let 𝐹 := ( 𝑓𝑖 𝑗)𝑖, 𝑗∈[𝑛] . The matrix 𝐹 is called the direct-output matrix or the Ghosh
matrix. Element 𝑓𝑖 𝑗 can be interpreted as the size of the “forward linkage” from 𝑖 to 𝑗.
Analogous to 𝐴, the matrix 𝐹 can be viewed as a weight function over output sectors
and visualized as in Figure 2.9. This digraph uses the same data source as Figure 2.1.

EXERCISE 2.1.6. Prove that 𝐴 and 𝐹 are similar matrices (see §1.2.1.5) when 𝑥 ≫ 0.

Let 𝑣 𝑗 be value added in sector 𝑗 (i.e., payments to factors of production other than
intermediate goods). We have

𝑥 𝑗 =
𝑛∑
𝑖=1

𝑧𝑖 𝑗 + 𝑣 𝑗 ( 𝑗 ∈ [𝑛]). (2.13)

This states that (under perfect competition), the revenue of sector 𝑗 is divided between
spending on intermediate goods, which is the first term∑𝑛

𝑖=1 𝑧𝑖 𝑗, and payments to other
factors of production (value added).

Using the forward linkages, we can rewrite (2.13) as 𝑥 𝑗 =
∑
𝑖 𝑓𝑖 𝑗𝑥𝑖 + 𝑣 𝑗 for all 𝑗 or,

in matrix form
𝑥⊤ = 𝑥⊤𝐹 + 𝑣⊤. (2.14)

Taking transposes and solving under the assumption 𝑟(𝐹) < 1 gives

𝑥∗ = (𝐼 − 𝐹⊤)−1𝑣. (2.15)

We can think of the solution 𝑥∗ in (2.15) as the amount of output necessary to acquire
a given amount of value added. Since payments of value added are made to underly-
ing factors of production, the Ghosh model is also called a “supply-side input output
model”.

EXERCISE 2.1.7. In §2.1.2.2 we argued that 𝑟(𝐴) < 1 will almost always hold. This
carries over to 𝑟(𝐹), since 𝑟(𝐴) = 𝑟(𝐹) whenever 𝑥 ≫ 0. Provide a proof of the last
statement.

We omit a discussion of the relative merits of supply- and demand-driven input-
output models. Our main interest in forward linkages is due to their connection to
the topic of ranking sectors by relative upstreamness.

2.1.4.2 Upstreamness

Which industries are relatively upstream? One proposed measure of upstreamness
can be found in Antràs et al. (2012). With 𝑓𝑖 𝑗 as defined in (2.12), the upstreamness
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Figure 2.9: Forward linkages and upstreamness over US industrial sectors
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Figure 2.10: Relative upstreamness of US industrial sectors

𝑢𝑖 of sector 𝑖 is defined recursively by

𝑢𝑖 = 1 +
𝑛∑
𝑗=1

𝑓𝑖 𝑗𝑢 𝑗. (2.16)

The recursive definition of the vector 𝑢 in (2.16) stems from the idea that those sec-
tors selling a large share of their output to upstream industries should be upstream
themselves.

We can write (2.16) in vector form as 𝑢 = 1 + 𝐹𝑢 and solve for 𝑢 as

𝑢 = (𝐼 − 𝐹)−11. (2.17)

A unique nonnegativity solution exists provided that 𝑟(𝐹) < 1. We expect this to hold
in general, due to the findings in Exercise 2.1.7.

Maintaining the convention 𝛽 = 1, we see that the upstreamness measure (2.17)
proposed by Antràs et al. (2012) is identical to the hub-based Katz centrality mea-
sure (1.37) for the production network with weights allocated by the forward linkage
matrix 𝐹.

Figure 2.10 shows the result of computing 𝑢 via (2.17), plotted as a bar graph,
for the 15 sector input-output network. Consistent with expectations, the primary
commodity producers (agriculture and mining) are the most upstream, while retail
and education are typical downstream sectors.

The nodes in Figure 2.9 are also colorized by upstreamness.
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2.2 General Equilibrium

One limitation of the Leontief input-output analysis from §2.1 is that demand is fixed
and exogenous. In this section we embed Leontief ’s model in an equilibrium setting
where output and prices are determined by a combination of supply and demand.
One objective is to understand how an input-output structure interacts with firm-level
shocks to shape aggregate volatility.

2.2.1 Supply and Demand

Our first step is to introduce and solve a multisector general equilibrium model based
on Acemoglu et al. (2012) and Carvalho and Tahbaz-Salehi (2019).

2.2.1.1 Production and Prices

As in the Leontief economy, there are 𝑛 sectors, also called industries, each of which
produces one good. Real output in sector 𝑗 is given by

𝑦 𝑗 = 𝑠 𝑗ℓ
𝛼
𝑗

𝑛∏
𝑖=1

𝑞
𝑎𝑖 𝑗
𝑖 𝑗 . (2.18)

Here

• 𝑠 𝑗 is a sector-specific shock (independent across sectors),
• ℓ𝑗 is labor input to sector 𝑗,
• 𝑞𝑖 𝑗 is the amount of good 𝑖 used in the production of good 𝑗, and
• 𝛼 and 𝑎𝑖 𝑗 take values in (0, 1) and satisfy 𝛼 +∑

𝑖 𝑎𝑖 𝑗 = 1 for all 𝑗 ∈ [𝑛].

The last condition implies constant returns to scale (CRS) in each sector.2

EXERCISE 2.2.1. Let 𝐴 = (𝑎𝑖 𝑗) be the 𝑛 × 𝑛 matrix of technical coefficients from
the Cobb–Douglas production function in (2.18). Using the stated assumptions and
the results in §1.2.3.4, show that 𝑟(𝐴) < 1.3

2In order to be consistent with traditional input-output notation (see §2.1), we transpose 𝑖 and 𝑗
relative to sources such as Acemoglu et al. (2012) and Carvalho and Tahbaz-Salehi (2019). This is just
a matter of convention.

3Later, in §2.3, we use additional spectral theory to prove the exact result 𝑟(𝐴) = 1 − 𝛼.
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EXERCISE 2.2.2. Prove that ∑
𝑖
∑

𝑗 𝑎
(𝑚)
𝑖 𝑗 = 𝑛(1 − 𝛼)𝑚 for all 𝑚 ∈ N, where 𝑎(𝑚)𝑖 𝑗 is the

(𝑖, 𝑗)-th element of 𝐴𝑚.

Firms are price takers. With 𝑝 𝑗 being the price of good 𝑗, a firm in sector 𝑗 maxi-
mizes profits

𝜋 𝑗 := 𝑝 𝑗𝑦 𝑗 − 𝑤ℓ𝑗 −
∑
𝑖

𝑝𝑖𝑞𝑖 𝑗 (2.19)

with respect to the 𝑛 + 1 controls ℓ𝑗 and 𝑞1 𝑗, . . . , 𝑞𝑛 𝑗.

EXERCISE 2.2.3. Show that, when prices and wages are taken as given, the unique
global maximizers of (2.19) are

ℓ𝑗 = 𝛼
𝑝 𝑗𝑦 𝑗
𝑤

and 𝑞𝑖 𝑗 = 𝑎𝑖 𝑗
𝑝 𝑗𝑦 𝑗
𝑝𝑖

(𝑖, 𝑗 ∈ [𝑛]). (2.20)

Remark 2.2.1. From (2.20) we have 𝑎𝑖 𝑗 = (𝑝𝑖𝑞𝑖 𝑗)/(𝑝 𝑗𝑦 𝑗), which states that the 𝑖, 𝑗-
th technical coefficient is the dollar value of inputs from 𝑖 per dollar of sales from 𝑗.
This coincides with the definition of 𝑎𝑖 𝑗 from the discussion of input-output tables in
§2.1.1.1. Hence, in the current setting, the (unobservable) technical coefficient matrix
equals the (observable) input-output coefficient matrix defined in §2.1.

Substituting the maximizers (2.20) into the production function gives

𝑦 𝑗 = 𝑐𝑠 𝑗
( 𝑝 𝑗𝑦 𝑗
𝑤

)𝛼 𝑛∏
𝑖=1

(
𝑝 𝑗𝑦 𝑗
𝑝𝑖

)𝑎𝑖 𝑗
, (2.21)

where 𝑐 is a positive constant depending only on parameters.

EXERCISE 2.2.4. Using (2.21), show that

𝜌 𝑗 =
∑
𝑖

𝑎𝑖 𝑗𝜌𝑖 − 𝜀𝑗 where 𝜌 𝑗 := ln
𝑝 𝑗
𝑤

and 𝜀𝑗 := ln(𝑐𝑠 𝑗).

Let 𝜌 and 𝜀 be the column vectors (𝜌𝑖)𝑛𝑖=1 and (𝜀𝑖)𝑛𝑖=1 of normalized prices and
log shocks from Exericse 2.2.4. Collecting the equations stated there leads to 𝜌⊤ =
𝜌⊤𝐴 − 𝜀⊤, or

𝜌 = 𝐴⊤𝜌 − 𝜀. (2.22)
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EXERCISE 2.2.5. Prove that

𝜌 𝑗 = −
∑
𝑖

𝜀𝑖ℓ𝑖 𝑗 where 𝐿 := (ℓ𝑖 𝑗) := (𝐼 − 𝐴)−1. (2.23)

Why is 𝐿 well defined?

As in Chapter 2, the matrix 𝐿 is the Leontief inverse generated by 𝐴.

2.2.1.2 Consumpion

Wages are paid to a representative household who chooses consumption to maximize
utility ∑

𝑖 ln 𝑐𝑖. In equilibrium, profits are zero, so the only income accruing to the
household consists of wage income. The household supplies one unit of labor inelas-
tically. Hence, the budget constraint is ∑

𝑖 𝑝𝑖𝑐𝑖 = 𝑤.

EXERCISE 2.2.6. Show that the unique utility maximizer is the vector (𝑐1, . . . , 𝑐𝑛)
that satisfies 𝑝𝑖𝑐𝑖 = 𝑤/𝑛 for all 𝑖 ∈ [𝑛]. (Equal amounts are spent on each good.)

2.2.1.3 Aggregate Output

In this economy, aggregate value added (defined in §2.1.4) is equal to the wage bill.
This quantity is identified with real aggregate output and referred to as GDP. The
Domar weight of each sector is defined as its sales as a fraction of GDP:

ℎ𝑖 := 𝑝𝑖𝑦𝑖
𝑤

.

From the closed economy market clearing condition 𝑦𝑖 = 𝑐𝑖 +
∑

𝑗 𝑞𝑖 𝑗 and the optimality
conditions we obtain

𝑦𝑖 =
𝑤

𝑛𝑝𝑖
+

∑
𝑗

𝑎𝑖 𝑗
𝑝 𝑗𝑦 𝑗
𝑝𝑖

. (2.24)

EXERCISE 2.2.7. Letting 𝐿 = (ℓ𝑖 𝑗) be the Leontief inverse and using (2.24), show
that Domar weights satisfy

ℎ𝑖 =
1
𝑛

∑
𝑗

ℓ𝑖 𝑗 for all 𝑖 ∈ [𝑛].
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EXERCISE 2.2.8. Prove that ∑𝑛
𝑖=1 ℎ𝑖 = 1/𝛼.

From the results of Exercise 2.2.4 we obtain ln𝑤 = ln 𝑝 𝑗 +
∑
𝑖 𝜀𝑖ℓ𝑖 𝑗. Setting 𝑔 := ln𝑤

and summing yields
𝑛𝑔 =

∑
𝑗

ln 𝑝 𝑗 +
∑
𝑖

𝜀𝑖
∑
𝑗

ℓ𝑖 𝑗.

Normalizing prices so that ∑
𝑖 ln 𝑝𝑖 = 0, this simplifies to

𝑔 =
∑
𝑖

𝜀𝑖ℎ𝑖. (2.25)

Thus, log GDP is the inner product of sectoral shocks and the Domar weights.

2.2.2 The Granular Hypothesis

We have just constructed a multisector model of production and output. We plan to
use this model to study shock propagation and aggregate fluctuations. Before do-
ing so, however, we provide a relatively simple and network-free discussion of shock
propagation. The first step is to connect the propagation of shocks to the firm size
distribution. Later, in §2.2.3, we will see how these ideas relate to the general equi-
librium model and the topology of the production network.

2.2.2.1 Aggregate vs Idiosyncratic Shocks

Some fluctuations in aggregate variables such as GDP growth and the unemployment
rate can be tied directly to large exogenous changes in the aggregate environment.
One obvious example is the jump in the US unemployment rate from 3.5% to 14.8%
between February and April 2020, which was initiated by the onset of the COVID
pandemic and resulting economic shutdown.

Other significant fluctuations lack clearmacro-level causes. For example, researchers
offer mixed explanations for the 1990 US recession, including “technology shocks,”
“consumption shocks” and loss of “confidence” (Cochrane, 1994). However, these ex-
planations are either difficult to verify on the basis of observable outcomes or require
exogenous shifts in variables that should probably be treated as endogenous.

One way to account for at least some of the variability observed in output growth
across most countries is on the basis of firm-level and sector-specific productivity and
supply shocks. Examples of sector-specific shocks include
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(i) the spread of African Swine Fever to China in 2018,
(ii) the Great East Japan Earthquake of 2011 and resulting tsunami, which triggered

meltdowns at three reactors in the Fukushima Daiichi Nuclear Power Plant, and
(iii) the destruction of Asahi Kasei Microdevices’ large scale IC factory in Miyazaki

Prefecture in October 2020.

In the discussion below, we investigate the extent to which firm-level shocks can
drive fluctuations in aggregate productivity.

2.2.2.2 The Case of Many Small Firms

It has been argued that idiosyncratic, firm-level shocks can account only for a very
small fraction of aggregate volatility (see, e.g., Dupor (1999)). The logical heart of
this argument is the dampening effect of averaging over independent random vari-
ables. To illustrate the main idea, we follow a simple model of production without
linkages across firms by Gabaix (2011).

Suppose there are 𝑛 firms, with the size of the 𝑖-th firm, measured by sales, denoted
by 𝑆𝑖. Since all sales fulfill final demand, GDP is given by 𝑌 :=

∑𝑛
𝑖=1 𝑆𝑖. We use primes

for next period values and Δ for first differences (e.g., Δ𝑆𝑖 = 𝑆′𝑖 − 𝑆𝑖). We assume that
firm growth Δ𝑆𝑖/𝑆𝑖 is equal to 𝜎𝐹𝜀𝑖, where {𝜀𝑖} is a collection of IID random variables
corresponding to firm-level idiosyncratic shocks. We also assume that Var(𝜀𝑖) = 1, so
that 𝜎𝐹 represents firm-level growth volatility.

GDP growth is then

𝐺 := Δ𝑌

𝑌
=

∑𝑛
𝑖=1 Δ𝑆𝑖
𝑌

= 𝜎𝐹

𝑛∑
𝑖=1

𝑆𝑖
𝑌
𝜀𝑖.

EXERCISE 2.2.9. Treating the current firm size distribution {𝑆𝑖} and hence GDP as
given, show that, under the stated assumptions, the standard deviation of GDP growth
𝜎𝐺 := (Var𝐺)1/2 is

𝜎𝐺 = 𝜎𝐹𝐻𝑛 where 𝐻𝑛 :=
(

𝑛∑
𝑖=1

(
𝑆𝑖
𝑌

)2
)1/2

. (2.26)

If, say, all firms are equal size, so that 𝑛𝑆𝑖 = 𝑌 , this means that 𝜎𝐺 = 𝜎𝐹/
√
𝑛, so

volatility at the aggregate level is very small when the number of firms is large. For
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example, if the number of firms 𝑛 is 106, which roughly matches US data, then

𝜎𝐺
𝜎𝐹

= 𝐻𝑛 =

(
1

106

)1/2
= 10−3 = 0.001. (2.27)

Hence firm-level volatility accounts for only 0.1% of aggregate volatility.
To be more concrete, Gabaix (2011) calculates 𝜎𝐹 = 12, which means that, by

(2.27), 𝜎𝐺 = 0.012%. But the volatility of GDP growth is actually far higher. Indeed,
Figure 2.11 reports that, for the US, 𝜎𝐺 is approximately 2%, which is two orders of
magnitude greater. The core message is that, under the stated assumptions, firm-level
shocks explain only a tiny part of aggregate volatility.

2.2.2.3 The Effect of Heavy Tails

There are some obvious problems with the line of reasoning used in §2.2.2.2. One
is that firms are assumed to be of identical size. In reality, most firms are small to
medium, while a relative few are enormous. For example, in the US, a small number
of giants dominate technology, electronics and retail.

Gabaix (2011) emphasized that we can get closer to actual GDP volatility by more
thoughtful specification of the firm size distribution. Altering the distribution {𝑆𝑖}𝑛𝑖=1
changes the value 𝐻𝑛 in (2.27), which is called the Herfindahl index. This index is
often applied to a group of firms in a sector to measure industry concentration. For
given aggregate output 𝑌 , the Herfindahl index is minimized when 𝑆𝑖 = 𝑆 𝑗 for all 𝑖, 𝑗.
This is the case we considered above. The index is maximized at 𝐻𝑛 = 1 when a single
firm dominates all sales. By (2.27), a larger Herfindahl index will increase 𝜎𝐺 relative
to 𝜎𝐹, which allows firm-level shocks to account for more of aggregate volatility.

Calculation of 𝐻𝑛 is challenging because the entire firm size distribution {𝑆𝑖}𝑛𝑖=1
is difficult to observe. Nonetheless, we can estimate 𝐻𝑛 by (a) estimating a popula-
tion probability distribution that fits the empirical distribution {𝑆𝑖}𝑛𝑖=1 and (b) using
analysis or Monte Carlo simulations to calculate typical values of 𝐻𝑛.

For step (a), Gabaix (2011) cites the study of Axtell (2001), which finds the firm
size distribution to be Pareto with tail index 1.059. If we repeatedly draw {𝑆𝑖}𝑛𝑖=1 from
a Pareto distribution with 𝛼 = 1.059 and 𝑛 = 106, record the value of 𝐻𝑛 after each draw
and then take the median value as our estimate, we obtain 𝐻𝑛 ≈ 0.88. In other words,
under the Pareto assumption just stated, firm-level volatility accounts for almost 90%
of aggregate volatility. In essence, this means that, to explain aggregate volatility, we
need to look no further than firm-level shocks.
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Figure 2.11: GDP growth rates and std. deviations (in parentheses) for 10 countries
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2.2.2.4 Sensitivity Analysis

The finding in the previous paragraph is quite striking. How seriously should we take
it?

One issue is that the figure 𝐻𝑛 ≈ 0.88 is not robust to small changes in assumptions.
For example, the regression in Figure 1.7 suggests that we take 1.32 as our estimate for
the tail index 𝛼, rather than Axtell’s value of 1.059. If we rerun the same calculation
with 𝛼 = 1.32, the estimated value of 𝐻𝑛 falls to 0.018. In other words, firm-level
shocks account for only 1.8% of aggregate volatility.

Another issue is that the large value for 𝐻𝑛 obtained under Axtell’s parameteri-
zation is very sensitive to the parametric family chosen for the firm size distribution.
The next exercise illustrates.

EXERCISE 2.2.10. Figure 1.7 suggests only that the far right tail of the firm size
distribution obeys a Pareto law. In fact, some authors argue that the lognormal distri-
bution provides a better fit than the Pareto distribution (Kondo et al. (2020) provide a
recent discussion). So suppose now that {𝑆𝑖} is 𝑛 IID draws from the 𝐿𝑁 (𝜇, 𝜎2) distri-
bution (as given in Example 1.3.2), where 𝜇, 𝜎 are parameters.4 Implement and run
Algorithm 1. Set𝑚 = 103 and 𝑛 = 106. Choose 𝜇 and 𝜎 so that the mean and median of
the 𝐿𝑁 (𝜇, 𝜎2) distribution agree with that of the standard Pareto distribution with tail
index 𝛼, which are 𝛼/(𝛼− 1) and 21/𝛼 respectively. As in Gabaix (2011), set 𝛼 = 1.059.
What estimate do you obtain for 𝐻𝑛? How much of aggregate volatility is explained?

1 for 𝑗 in 1, . . . , 𝑚 do
2 generate 𝑛 independent draws {𝑆 𝑗𝑖 } from the 𝐿𝑁 (𝜇, 𝜎2) distribution ;
3 compute the Herfindahl index 𝐻 𝑗

𝑛 corresponding to {𝑆 𝑗𝑖 } ;
4 end
5 set 𝐻𝑛 equal to the median value of {𝐻 𝑗

𝑛}𝑚𝑗=1 ;
6 return 𝐻𝑛

Algorithm 1: Generate an estimate of 𝐻𝑛 under log-normality

2.2.3 Network Structure and Shock Propagation
The sensitivity analysis in §2.2.2.4 suggests we should be skeptical of the claim that
firm-level shocks explain most aggregate-level shocks that we observe. This means

4In other words, each 𝑆𝑖 is an independent copy of the random variable 𝑆 := exp(𝜇 + 𝜎𝑍), where 𝑍
is standard normal.
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that either micro-level shocks account for only a small fraction of aggregate volatility
or, alternatively, that the model is too simple, and micro-level shocks are amplified
through some other mechanism.

An obvious way to explore further is to allow linkages between firms, in the sense
that the inputs for some firms are outputs for others. Such an extension opens up
the possibility that shocks propagate through the network. This seems plausible even
for the sector-specific shocks listed above, such as the Great East Japan Earthquake.
Although the initial impact was focused on electricity generation, the flow-on effects
for other sectors were rapid and substantial (Carvalho et al., 2021).

To investigate more deeply, we connect our discussion of the granular hypothesis
back to the multisector models with linkages studied above, allowing us to study flow-
on and multiplier effects across industries.

2.2.3.1 Industry Concentration and Shocks

From (2.25) and the independence of sectoral shocks, the standard deviation 𝜎𝑔 of
log GDP is given by

𝜎𝑔 = 𝜎𝐻𝑛 where 𝐻𝑛 :=
(

𝑛∑
𝑖=1

ℎ2
𝑖

)1/2

. (2.28)

where 𝜎 is the standard deviation of each 𝜀𝑖.
Note that the expression for aggregate volatility takes the same form as (2.26)

from our discussion of the granular hypothesis in §2.2.2, where 𝐻𝑛 was called the
Herfindahl index. Once again, this index is the critical determinant of how much
firm-level volatility passes through to aggregate volatility. In particular, as discussed
in §2.2.2.3, independent firm-level shocks cannot explain aggregate volatility unless
𝐻𝑛 is large, which in turn requires that the components of the vector ℎ are relatively
concentrated in a single or small number of sectors.

To investigate an extreme case, we recall from Exercise 2.2.8 that ∑𝑛
𝑖=1 ℎ𝑖 = 1/𝛼.

The Herfindahl index is 𝐻𝑛 := ∥ℎ∥, where ∥ · ∥ is the Euclidean norm.

EXERCISE 2.2.11. Show that the minimizer of ∥ℎ∥ given ∑𝑛
𝑖=1 ℎ𝑖 = 1/𝛼 is the con-

stant vector where ℎ𝑖 = 1/(𝛼𝑛) for all 𝑖.

Under this configuration of sector shares,

𝐻𝑛 =
1
𝑛𝛼
∥1∥ = 1

𝑛𝛼

√
𝑛 = 𝑂

(
1
√
𝑛

)
.
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Hence, by (2.28), we have 𝜎𝑔 = 𝑂(𝑛−1/2). This is the classic diversification result. The
standard deviation of log GDP goes to zero like 𝑛−1/2, as in the identical firm size case
in §2.2.2.2.

Now let’s consider the other extreme:

EXERCISE 2.2.12. Show that the maximum of 𝐻𝑛 = ∥ℎ∥ under the constraint∑𝑛
𝑖=1 ℎ𝑖 = 1/𝛼 is 1/𝛼, attained by setting ℎ𝑘 = 1/𝛼 for some 𝑘 and ℎ 𝑗 = 0 for other

indices.

This is the extreme case of zero diversification. By (2.25), log GDP is then

𝑔 =
∑
𝑖

𝜀𝑖ℎ𝑖 =
1
𝛼
𝜀𝑘.

The volatility of log GDP is constant in 𝑛, rather than declining in the number of
sectors. In other words, idiosyncratic and aggregate shocks are identical.

2.2.3.2 The Role of Network Topology

In the previous section we looked at two extreme cases, neither of which is realistic.
Now we look at intermediate cases. In doing so, we note an interesting new fea-
ture: unlike the analysis in §2.2.2, where the sector shares were chosen from some
fixed distribution, the Herfindahl index is now determined by the network structure
of production.

To see this, we can use the results of Exercise 2.2.7 to obtain

ℎ =
1
𝑛
𝐿1 =

1
𝑛

∑
𝑚⩾0

𝐴𝑚1.

Recalling our discussion in §1.4.3.5, we see that the vector of Domar weights is just a
rescaling of the vector of hub-based Katz centrality rankings for the input-output ma-
trix. Thus, the propagation of sector-specific productivity shocks up to the aggregate
level depends on the distribution of Katz centrality across sectors. The more “unequal”
is this distribution, the larger is the pass through.

Figure 2.13 shows some examples of different network configurations, each of
which is associated with a different Katz centrality vector. Not surprisingly, the sym-
metric network has a constant centrality vector, so that all sectors have equal central-
ity. This is the maximum diversification case, as discussed in §2.2.3.1. The other two
cases have nonconstant centrality vectors and hence greater aggregate volatility.5
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Figure 2.13: Symmetric and asymmetric networks

EXERCISE 2.2.13. Let the nonzero input output coefficient 𝑎𝑖 𝑗 shown by arrows in
Figure 2.13 all have equal value 0.2. Show computationally that the hub-based Katz
centrality vectors for the hub and star networks are

𝜅ℎ = (1.8, 1, 1, 1, 1) and 𝜅𝑠 = (1.2, 1.2, 1.2, 1.2, 1)

respectively (for nodes 1, . . . , 5).

The results of Exercise 2.2.13 show that the hub network has the more unequal
Katz centrality vector. Not surprisingly, the source node in the hub has a high hub-
based centrality ranking. Productivity shocks affecting this sector have a large effect
on aggregate GDP.

Figure 2.14 shows hub-based Katz centrality computed from the 15 sector input-
output data for 2021. We can see that productivity shocks in manufacturing will
have a significantly larger impact on aggregate output than shocks in say, retail or
education.

5The captions in Figure 2.13 refer to these two cases as “star networks,” in line with recent usage
in multisector production models. In graph theory, a star network is an undirected graph that (a) is
strongly connected and (b) has only one node with degree greater than one.
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Figure 2.14: Hub-based Katz centrality of across 15 US industrial sectors

2.2.3.3 Supply Shocks vs Demand Shocks

In the previous section we saw that the degree to which a productivity shock propa-
gates through the economy depends on the hub-based centrality ranking of the rel-
evant sector. This is intuitive. Sectors that act like hubs supply many sectors, so
changes in productivity in these sectors will have large flow-on effects.

This is in contrast with what we learned in §2.1.3.4, where a high authority-based
centrality measure lead to high shock propagation. The difference can be explained by
the source of the shocks: in §2.1.3.4, we were concerned with the impact of demand
shocks. Demand shocks to sector 𝑖 have large flow-on effects when many sectors pur-
chase inputs from sector 𝑖. Hence authority-based centrality measures are appropriate
for studying this case.

2.3 More Spectral Theory

This is a relatively technical section, which analyzes aspects of vector dynamics and
spectral theory in more depth. It is aimed at readers who are interested in further
mathematical discussion of the theory treated above. The ideas studied here are
applied to production problems to generate additional insights into existence and
uniqueness of equilibria, as well as later topics such as convergence of distributions
for Markov models on networks.
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2.3.1 Vector Norms
In this section we learn about abstract vector norms on R𝑛 and provide several ex-
amples. Later we will see how the different norms are related and how they can be
useful for some kinds of network analysis.

2.3.1.1 Norms

A function ∥ · ∥ : R𝑛 → R is called a norm on R𝑛 if, for any 𝛼 ∈ R and 𝑢, 𝑣 ∈ R𝑛,

(a) ∥𝑢∥ ⩾ 0

(b) ∥𝑢∥ = 0 ⇐⇒ 𝑢 = 0

(c) ∥𝛼𝑢∥ = |𝛼|∥𝑢∥ and
(d) ∥𝑢 + 𝑣∥ ⩽ ∥𝑢∥ + ∥𝑣∥

(nonnegativity)
(positive definiteness)
(positive homogeneity)
(triangle inequality)

The Euclidean norm is a norm on R𝑛, as suggested by its name.
Example 2.3.1. The ℓ1 norm of a vector 𝑢 ∈ R𝑛 is defined by

𝑢 = (𝑢1, . . . , 𝑢𝑛) ↦→ ∥𝑢∥1 :=
𝑛∑
𝑖=1
|𝑢𝑖 |. (2.29)

In machine learning applications, ∥ ·∥1 is sometimes called the “Manhattan norm,” and
𝑑1(𝑢, 𝑣) := ∥𝑢 − 𝑣∥1 is called the “Manhattan distance” or “taxicab distance” between
vectors 𝑢 and 𝑣. We will refer to it more simply as the ℓ1 distance or ℓ1 deviation.

EXERCISE 2.3.1. Verify that the ℓ1 norm on R𝑛 satisfies (a)–(d) above.

The ℓ1 norm and the Euclidean norm are special cases of the so-called ℓ𝑝 norm,
which is defined for 𝑝 ⩾ 1 by

𝑢 = (𝑢1, . . . , 𝑢𝑛) ↦→ ∥𝑢∥ 𝑝 :=
(

𝑛∑
𝑖=1
|𝑢𝑖 |𝑝

)1/𝑝

. (2.30)

It can be shown that 𝑢 ↦→ ∥𝑢∥ 𝑝 is a norm for all 𝑝 ⩾ 1, as suggested by the name (see,
e.g., Kreyszig (1978)). For this norm, the subadditivity in (d) is called Minkowski’s
inequality.

Since the Euclidean case is obtained by setting 𝑝 = 2, the Euclidean norm is also
called the ℓ2 norm, and we write ∥ · ∥2 rather than ∥ · ∥ when extra clarity is required.
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EXERCISE 2.3.2. Prove that 𝑢 ↦→ ∥𝑢∥∞ := max𝑛𝑖=1 |𝑢𝑖 | is also a norm on R𝑛.

(The symbol ∥𝑢∥∞ is used because, ∀𝑢 ∈ R𝑛, we have ∥𝑢∥ 𝑝 → ∥𝑢∥∞ as 𝑝 → ∞.)
This norm is called the supremum norm.

EXERCISE 2.3.3. The so-called ℓ0 “norm” ∥𝑢∥0 :=
∑𝑛
𝑖=1 1{𝑢𝑖 ≠ 0}, routinely used in

data science applications, is not in fact a norm on R𝑛. Prove this.

2.3.1.2 Equivalence of Vector Norms

When 𝑢 and (𝑢𝑚) := (𝑢𝑚)𝑚∈N are all elements of R𝑛, we say that (𝑢𝑚) converges to 𝑢
and write 𝑢𝑚 → 𝑢 if

∥𝑢𝑚 − 𝑢∥ → 0 as 𝑚→∞ for some norm ∥ · ∥ on R𝑛.

It might seem that this definition is imprecise. Don’t we need to clarify that the
convergence is with respect to a particular norm?

In fact we do not. This is because any two norms ∥ · ∥𝑎 and ∥ · ∥𝑏 on R𝑛 are
equivalent, in the sense that there exist finite constants 𝑀, 𝑁 such that

𝑀∥𝑢∥𝑎 ⩽ ∥𝑢∥𝑏 ⩽ 𝑁 ∥𝑢∥𝑎 for all 𝑢 ∈ R𝑛. (2.31)

EXERCISE 2.3.4. Let us write ∥ · ∥𝑎 ∼ ∥ · ∥𝑏 if there exist finite 𝑀, 𝑁 such that (2.31)
holds. Prove that ∼ is an equivalence relation on the set of norms on R𝑛.

EXERCISE 2.3.5. Let ∥ · ∥𝑎 and ∥ · ∥𝑏 be any two norms on R𝑛. Given a point 𝑢
in R𝑛 and a sequence (𝑢𝑚) in R𝑛, use (2.31) to confirm that ∥𝑢𝑚 − 𝑢∥𝑎 → 0 implies
∥𝑢𝑚 − 𝑢∥𝑏 → 0 as 𝑚→∞.

Another way to understand 𝑢𝑚 → 𝑢 is via pointwise convergence: each element
of the vector sequence 𝑢𝑚 converges to the corresponding element of 𝑢. Pointwise and
norm convergence are equivalent, as the next result makes clear.

Lemma 2.3.1. Fix (𝑢𝑚) ⊂ R𝑛, 𝑢 ∈ R𝑛 and norm ∥ · ∥ on R𝑛. Taking 𝑚 → ∞, the
following statements are equivalent:

(i) ∥𝑢𝑚 − 𝑢∥ → 0,
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(ii) ⟨𝑎, 𝑢𝑚⟩ → ⟨𝑎, 𝑢⟩ for all 𝑎 ∈ R𝑛, and
(iii) (𝑢𝑚) converges pointwise to 𝑢.

EXERCISE 2.3.6. Prove Lemma 2.3.1.

EXERCISE 2.3.7. Using Lemma 2.3.1, provide a simple proof of the fact that con-
vergence in R𝑛 is preserved under addition and scalar multiplication: if 𝑢𝑚 → 𝑥 and
𝑣𝑚 → 𝑦 in R𝑛, while 𝛼𝑚 → 𝛼 in R, then 𝑢𝑚 + 𝑣𝑚 → 𝑥 + 𝑦 and 𝛼𝑚𝑢𝑚 → 𝛼𝑥.

2.3.2 Matrix Norms

In some applications, the number of vertices 𝑛 of a given digraph is measured in mil-
lions or billions. This means that the adjacency matrix 𝐴 is enormous. To control
complexity, 𝐴 must often be replaced by a sparse approximation 𝐴𝑠. It is natural to
require that 𝐴 and 𝐴𝑠 are close. But how should we define this?

More generally, how can we impose a metric on the set of matrices to determine
similarity or distance between them? One option is to follow the example of vectors
on R𝑛 and introduce a norm onM𝑛×𝑘. With such a norm ∥ · ∥ in hand, we can regard
𝐴 and 𝐴𝑠 as close when ∥𝐴 − 𝐴𝑠∥ is small.

For this and other reasons, we now introduce the notion of a matrix norm.

2.3.2.1 Definition

Analogous to vectors on R𝑛, we will call a function ∥ · ∥ from M𝑛×𝑘 to R+ a norm if
for any 𝐴, 𝐵 ∈ M𝑛×𝑘,

(a) ∥𝐴∥ ⩾ 0

(b) ∥𝐴∥ = 0 ⇐⇒ 𝑢 = 0

(c) ∥𝛼𝐴∥ = |𝛼|∥𝐴∥ and
(d) ∥𝐴 + 𝐵∥ ⩽ ∥𝐴∥ + ∥𝐵∥

(nonnegativity)
(positive definiteness)
(positive homogeneity)
(triangle inequality)

The distance between two matrices 𝐴, 𝐵 is then specified as ∥𝐴 − 𝐵∥.
Unlike vectors, matrices have a product operation defined over all conformable

matrix pairs. We want matrix norms to interact with this product in a predictable way.
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For example, it is helpful for analysis when a matrix norm ∥ · ∥ is submultiplicative,
meaning that

∥𝐴𝐵∥ ⩽ ∥𝐴∥ · ∥𝐵∥ for all conformable matrices 𝐴, 𝐵. (2.32)

A useful implication of (2.32) is that ∥𝐴𝑖∥ ⩽ ∥𝐴∥ 𝑖 for any 𝑖 ∈ N and 𝐴 ∈ M𝑛×𝑛, where
𝐴𝑖 is the 𝑖-th power of 𝐴.

2.3.2.2 The Frobenius Norm

One way to construct a norm on matrix spaceM𝑛×𝑘 is to first introduce the Frobenius
inner product of matrices 𝐴 = (𝑎𝑖 𝑗), 𝐵 = (𝑏𝑖 𝑗) as

⟨𝐴, 𝐵⟩𝐹 :=
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑏𝑖 𝑗 = trace(𝐴𝐵⊤) = trace(𝐵𝐴⊤). (2.33)

From this inner product, the Frobenius norm of 𝐴 ∈ M𝑛×𝑘 is defined as

∥𝐴∥𝐹 := ⟨𝐴, 𝐴⟩1/2𝐹 . (2.34)

In essence, the Frobenius norm converts an 𝑛×𝑘matrix into an 𝑛𝑘 vector and computes
the Euclidean norm.

The Frobenius norm is submultiplicative. The next exercise asks you to prove this
in one special case.

EXERCISE 2.3.8. Suppose that 𝐴 is a row vector and 𝐵 is a column vector. Show
that (2.32) holds in this case when ∥ · ∥ is the Frobenius norm.

2.3.2.3 The Operator Norm

Another important matrix norm is the operator norm, defined at 𝐴 ∈ M𝑛×𝑘 by

∥𝐴∥ := sup{∥𝐴𝑢∥ : 𝑢 ∈ R𝑘 and ∥𝑢∥ = 1}, (2.35)

where the norm ∥ · ∥ on the right hand size of (2.35) is the Euclidean norm on R𝑛.

Example 2.3.2. If 𝐴 = diag(𝑎𝑖), then, for any 𝑢 ∈ R𝑛 we have ∥𝐴𝑢∥2 =
∑
𝑖(𝑎𝑖𝑢𝑖)2. To

maximize this value subject to ∑
𝑖 𝑢

2
𝑖 = 1, we pick 𝑗 such that 𝑎2

𝑗 ⩾ 𝑎2
𝑖 for all 𝑖 and set
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𝑢𝑖 = 1{𝑖 = 𝑗}. The maximized value of ∥𝐴𝑢∥ is then

∥𝐴∥ =
√
𝑎2
𝑗 = max

𝑖∈[𝑛]
|𝑎𝑖 |.

EXERCISE 2.3.9. Show that ∥𝐴∥ equals the supremum of ∥𝐴𝑢∥/∥𝑢∥ over all 𝑢 ≠ 0.

EXERCISE 2.3.10. It is immediate from the definition of the operator norm that

∥𝐴𝑢∥ ⩽ ∥𝐴∥ · ∥𝑢∥ ∀𝑢 ∈ R𝑛. (2.36)

Using this fact, prove that the operator norm is submultiplicative.

EXERCISE 2.3.11. Let ∥ · ∥ be the operator norm on M𝑛×𝑛. Show that, for each
𝐴 ∈ M𝑛×𝑛, we have

(i) ∥𝐴∥2 = 𝑟(𝐴⊤𝐴),
(ii) 𝑟(𝐴)𝑘 ⩽ ∥𝐴𝑘∥ for all 𝑘 ∈ N, and
(iii) ∥𝐴⊤∥ = ∥𝐴∥.

2.3.2.4 Other Matrix Norms

Two other useful matrix norms are the ℓ1 and ℓ∞ norms given by

∥𝐴∥1 :=
𝑛∑
𝑖=1

𝑘∑
𝑗=1
|𝑎𝑖 𝑗 | and ∥𝐴∥∞ := max

𝑖∈[𝑛], 𝑗∈[𝑘]
|𝑎𝑖 𝑗 |.

EXERCISE 2.3.12. Prove that both are norms onM𝑛×𝑘.

EXERCISE 2.3.13. Prove that both norms are submultiplicative.

2.3.2.5 Equivalence of Matrix Norms

In §2.3.1.2 we saw that all norms on R𝑛 are equivalent. Exactly the same result holds
true for matrix norms: any two norms ∥ · ∥𝑎 and ∥ · ∥𝑏 onM𝑛×𝑘 are equivalent, in the
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sense that there exist finite constants 𝑀, 𝑁 such that

𝑀∥𝐴∥𝑎 ⩽ ∥𝐴∥𝑏 ⩽ 𝑁 ∥𝐴∥𝑎 for all 𝐴 ∈ M𝑛×𝑘. (2.37)

A proof can be found (for abstract finite-dimensional vector space) in Bollobás (1999).
Analogous to the vector case, given 𝐴 and (𝐴𝑚) := (𝐴𝑚)𝑚∈N in M𝑛×𝑘, we say that

(𝐴𝑚) converges to 𝐴 and write 𝐴𝑚 → 𝐴 if ∥𝐴𝑚 − 𝐴∥ → 0 as 𝑚 → ∞, where ∥ · ∥ is a
matrix norm. Once again, we do not need to clarify the norm due to the equivalence
property. Also, norm convergence is equivalent to pointwise convergence:

EXERCISE 2.3.14. Prove that, given 𝐴 and (𝐴𝑚) in M𝑛×𝑘, we have 𝐴𝑚 → 𝐴 as
𝑚→∞ if and only if every element 𝑎𝑚𝑖 𝑗 of 𝐴𝑚 converges to the corresponding element
𝑎𝑖 𝑗 of 𝐴.

EXERCISE 2.3.15. Prove the following result for matrices 𝐴, 𝐵, 𝐶 and matrix se-
quences (𝐴𝑚), (𝐵𝑚), taking 𝑚→∞ and assuming sizes are conformable:

(i) If 𝐵𝑚 → 𝐴 and 𝐴𝑚 − 𝐵𝑚 → 0, then 𝐴𝑚 → 𝐴.
(ii) If 𝐴𝑚 → 𝐴, then 𝐵𝐴𝑚𝐶 → 𝐵𝐴𝐶.

Example 2.3.3. Convergence of the Perron projection in (1.11) of the Perron–Frobenius
theorem was defined using pointwise convergence. By Exercise 2.3.14, norm conver-
gence also holds. One of the advantages of working with norms is that we can give
rates of convergence for norm deviation. This idea is discussed further in §2.3.3.3.

EXERCISE 2.3.16. Given 𝐴 and (𝐴𝑚) inM𝑛×𝑛, prove that 𝐴𝑚 → 𝐴 as 𝑚→∞ if and
only if 𝑠⊤𝐴𝑚𝑠→ 𝑠⊤𝐴𝑠 for every 𝑠 ∈ R𝑛.

2.3.3 Iteration in Matrix Space

Results such as Proposition 1.4.2 on page 42 already showed us the significance of
powers of adjacency matrices. The Perron-Frobenius theorem revealed connections
between spectral radii, dominant eigenvectors and powers of positive matrices. In
this section we investigate powers of matrices in more depth.
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2.3.3.1 Gelfand’s Formula

One very general connection between matrix powers and spectral radii is Gelfand’s
formula for the spectral radius:

Theorem 2.3.2. For any matrix norm ∥ · ∥ and 𝐴 ∈ M𝑛×𝑛, we have

𝑟(𝐴) = lim
𝑘→∞
∥𝐴𝑘∥1/𝑘. (2.38)

Proofs can be found in Bollobás (1999) or Kreyszig (1978).

EXERCISE 2.3.17. The references above show that the limit (2.38) always exists.
Using this fact, prove that every choice of norm over M𝑛×𝑛 yields the same value for
this limit.

The next exercise shows that 𝑟(𝐴) < 1 implies ∥𝐴𝑘∥ → 0 at a geometric rate.

EXERCISE 2.3.18. Using (2.38), show that 𝑟(𝐴) < 1 implies the existence of a
constant 𝛿 < 1 and an 𝑀 < ∞ such that ∥𝐴𝑘∥ ⩽ 𝛿𝑘𝑀 for all 𝑘 ∈ N.

EXERCISE 2.3.19. Consider the dynamic system 𝑥𝑡 = 𝐴𝑥𝑡−1+𝑑 with 𝑥0 given, where
each 𝑥𝑡 and 𝑑 are vectors in R𝑛 and 𝐴 is 𝑛 × 𝑛. (If you like, you can think of this
process as orders flowing backwards through a production network.) Show that, when
𝑟(𝐴) < 1, the sequence (𝑥𝑡)𝑡⩾0 converges to 𝑥∗ := (𝐼 − 𝐴)−1𝑑, independent of the choice
of 𝑥0.

EXERCISE 2.3.20. In §2.2.1 we studied a production coefficient matrix of the form
𝐴 = (𝑎𝑖 𝑗) in M𝑛×𝑛 where each 𝑎𝑖 𝑗 takes values in (0,∞) and, for each 𝑗, 𝛼 + ∑

𝑖 𝑎𝑖 𝑗 = 1
for some 𝛼 > 0. We can calculate 𝑟(𝐴) using the following strategy. In Exercise 2.2.2
we saw that ∑

𝑖
∑

𝑗 𝑎
(𝑚)
𝑖 𝑗 = 𝑛(1 − 𝛼)𝑚 for all 𝑚 ∈ N, where 𝑎(𝑚)𝑖 𝑗 is the (𝑖, 𝑗)-th element of

𝐴𝑚. Using the fact that ∥𝐵∥1 :=
∑
𝑖
∑

𝑗 |𝑏𝑖 𝑗 | is a matrix norm, apply Gelfand’s formula
to obtain 𝑟(𝐴) = 1 − 𝛼.

2.3.3.2 A Local Spectral Radius Theorem

The next theorem is a “local” version of Gelfand’s formula that relies on positivity. It
replaces matrix norms with vector norms, which are easier to compute.
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Theorem 2.3.3. Fix 𝐴 ∈ M𝑛×𝑛 and let ∥ · ∥ be any norm on R𝑛. If 𝐴 ⩾ 0 and 𝑥 ≫ 0,
then

∥𝐴𝑚𝑥∥1/𝑚 → 𝑟(𝐴) (𝑚→∞). (2.39)

Theorem 2.3.3 tells us that, eventually, for any positive 𝑥, the norm of the vector
𝐴𝑚𝑥 grows at rate 𝑟(𝐴). A proof can be found in Krasnoselskii (1964).6

Example 2.3.4. In §2.1.3 we studied how the impact of a given demand shock Δ𝑑
flows backward through a production network, with 𝐴𝑚(Δ𝑑) giving the impact on
sectors at 𝑚 steps (backward linkages). When Δ𝑑 ≫ 0 and 𝑟(𝐴) < 1, Theorem 2.3.3
tells us that ∥𝐴𝑚Δ𝑑∥ = 𝑂(𝑟(𝐴)𝑚). If we set the norm to ∥ · ∥∞, this tells us that the
maximal impact of demand shocks through backward linkages fades at rate 𝑟(𝐴).

EXERCISE 2.3.21. Prove Theorem 2.3.3 in the case where 𝐴 is primitive.

2.3.3.3 Convergence to the Perron Projection

The local spectral radius theorem assumes 𝐴 ⩾ 0. Now we further strengthen this
assumption by requiring that 𝐴 is primitive. In this case, 𝑟(𝐴)−𝑚𝐴𝑚 converges to the
Perron projection as 𝑚 → ∞ (see (1.11)). We want rates of convergence in high-
dimensional settings.

We fix 𝐴 ∈ M𝑛×𝑛 and label the eigenvalues so that |𝜆 𝑖+1 | ⩽ |𝜆 𝑖 | for all 𝑖. Note that
|𝜆1 | = 𝜆1 = 𝑟(𝐴). Let 𝐸 := 𝑒 𝜀⊤ be the Perron projection.

Proposition 2.3.4. If 𝐴 is diagonalizable and primitive, then 𝛼 := |𝜆2/𝜆1 | < 1 and

∥𝑟(𝐴)−𝑚𝐴𝑚 − 𝐸∥ = 𝑂 (𝛼𝑚) . (2.40)

Thus, an upper bound on the rate of convergence to the Perron projection is de-
termined by the modulus of the ratio of the first two eigenvalues.

Proof. We saw in (1.5) that 𝐴𝑚 =
∑𝑛
𝑖=1 𝜆

𝑚
𝑖 𝑒𝑖𝜀

⊤
𝑖 for all 𝑚 ∈ N. From this spectral repre-

sentation we obtain

𝑟(𝐴)−𝑚𝐴𝑚 − 𝑒1 𝜀⊤1 = 𝑟(𝐴)−𝑚
(
𝐴𝑚 − 𝑟(𝐴)𝑚𝑒1 𝜀⊤1

)
=

𝑛∑
𝑖=2

𝜃𝑚𝑖 𝑒𝑖𝜀
⊤
𝑖

6A direct proof of a generalized version of Theorem 2.3.3 is provided in Theorem B1 of Borovička
and Stachurski (2020).
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when 𝜃𝑖 := 𝜆 𝑖/𝑟(𝐴). Let ∥ · ∥ be the operator norm on M𝑛×𝑛. The triangle inequality
gives

∥𝑟(𝐴)−𝑚𝐴𝑚 − 𝑒1 𝜀⊤1 ∥ ⩽
𝑛∑
𝑖=2
|𝜃𝑖 |𝑚∥𝑒𝑖𝜀⊤𝑖 ∥ ⩽ |𝜃2 |𝑚

𝑛∑
𝑖=2
∥𝑒𝑖𝜀⊤𝑖 ∥.

Since 𝐴 is primitive, the Perron–Frobenius theorem tells us that |𝜆2 | < 𝑟(𝐴). Hence
𝛼 := |𝜃2 | < 1. The proof is now complete. □

2.3.4 Exact Stability Conditions

The Neumann series lemma tells us that the linear system 𝑥 = 𝐴𝑥 + 𝑑 has a unique
solution whenever 𝑟(𝐴) < 1. We also saw that, in the input-output model, where
𝐴 is the adjacency matrix, the condition 𝑟(𝐴) < 1 holds whenever every sector has
positive value added (Assumption 2.1.1 and Exercise 2.1.2). Hence we have sufficient
conditions for stability.

This analysis, while important, leaves open the question of how tight the conditions
are and what happens when they fail. For example, we might ask

(i) To obtain 𝑟(𝐴) < 1, is it necessary that each sector has positive value added? Or
can we obtain the same result under weaker conditions?

(ii) What happens when 𝑟(𝐴) < 1 fails? Do we always lose existence of a solution,
or uniqueness, or both?

In §2.3.4.1 and §2.3.4.2 below we address these two questions.

2.3.4.1 Spectral Radii of Substochastic Matrices

To reiterate, the results in §5.1.3 relied on the assumption that every sector has posi-
tive value added, which in turn gave us the property 𝑟(𝐴) < 1 for the adjacency matrix
of the input-output production network. Positive value added in every sector is not
necessary, however. Here we investigate a weaker condition that is exactly necessary
and sufficient for 𝑟(𝐴) < 1. This weaker condition is very helpful for understanding
other kinds of networks too, including financial networks, as discussed in §5.2.

To begin, recall that a matrix 𝑃 ∈ M𝑛×𝑛 is called stochastic if 𝑃 ⩾ 0 and 𝑃1 = 1.
Similarly, 𝑃 ∈ M𝑛×𝑛 is called substochastic if 𝑃 ⩾ 0 and 𝑃1 ⩽ 1. Thus, a substochastic
matrix is a nonnegative matrix with less than unit row sums. Clearly the transpose 𝑄⊤
of a nonnegative matrix 𝑄 is substochastic if and only if 𝑄 has less than unit column
sums.
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A natural example of a substochastic matrix is the transpose 𝐴⊤ of an adjacency
matrix 𝐴 of an input-output network. Indeed, such an 𝐴 is nonnegative and, for 𝑗-th
column sum we have∑

𝑖

𝑎𝑖 𝑗 =

∑
𝑖 𝑧𝑖 𝑗
𝑥 𝑗

=
spending on inputs by sector 𝑗

total sales of sector 𝑗 .

Hence ∑
𝑖 𝑎𝑖 𝑗 ⩽ 1, which says that spending on intermediate goods and services by a

given industry does not exceed total sales revenue, is a necessary condition for non-
negative profits in sector 𝑗. When this holds for all 𝑗, the adjacency matrix has less
than unit column sums.

From Lemma 1.2.7 on page 18, we see that any substochastic matrix 𝑃 has

𝑟(𝑃) ⩽ max
𝑖

rowsum𝑖(𝑃) ⩽ 1. (2.41)

We wish to know when we can tighten this to 𝑟(𝑃) < 1.
From (2.41), one obvious sufficient condition is that rowsum𝑖(𝑃) < 1 for all 𝑖. This

is, in essence, how we used Assumption 2.1.1 (every sector has positive value added)
in the input-output model. Under that condition we have ∑

𝑖 𝑎𝑖 𝑗 < 1 for all 𝑗, which
says all column sums are strictly less than one. Hence

max
𝑖

colsum𝑖(𝐴) < 1 ⇐⇒ max
𝑖

rowsum𝑖(𝐴⊤) < 1 =⇒ 𝑟(𝐴⊤) < 1 ⇐⇒ 𝑟(𝐴) < 1,

where the middle implication is by (2.41) and the last equivalence is by 𝑟(𝐴) = 𝑟(𝐴⊤).
Nowwe provide aweaker—in fact necessary and sufficient—condition for 𝑟(𝑃) < 1,

based on network structure. To do so, we define an 𝑛×𝑛 substochastic matrix 𝑃 = (𝑝𝑖 𝑗)
to be weakly chained substochastic if, for all 𝑚 ∈ [𝑛], there exists an 𝑖 ∈ [𝑛] such
that 𝑚 → 𝑖 and ∑

𝑗 𝑝𝑖 𝑗 < 1. Here accessibility of 𝑖 from 𝑚 is in terms of the induced
weighted digraph.7

EXERCISE 2.3.22. Let 𝐴 = (𝑎𝑖 𝑗) ∈ M𝑛×𝑛 be nonnegative. Show that 𝐴⊤ is weakly
chained substochastic if and only if 𝐴 has less than unit column sums and, for each
𝑚 ∈ [𝑛], there exists an 𝑖 ∈ [𝑛] such that 𝑖→ 𝑚 under (the digraph induced by) 𝐴 and∑
𝑘 𝑎𝑘𝑖 < 1.

Proposition 2.3.5. For a substochastic matrix 𝑃, we have

𝑟(𝑃) < 1 ⇐⇒ 𝑃 is weakly chained substochastic.
7Induced weighted digraphs are defined in §1.4.2.1. By Proposition 1.4.2, accessibility of 𝑖 from 𝑚

is equivalent to existence of a 𝑘 ⩾ 0 with 𝑝𝑘𝑚𝑖 > 0, where 𝑝𝑘𝑚𝑖 is the 𝑚, 𝑖-th element of 𝑃𝑘 (and 𝑃0 = 𝐼).



CHAPTER 2. PRODUCTION 102

A proof can be found in Corollary 2.6 of Azimzadeh (2019).
Now we return to the input output model. Let’s agree to say that sector 𝑖 is an up-

stream supplier to sector 𝑗 if 𝑖→ 𝑗 in the input-output network. By Proposition 1.4.2
on page 42, an equivalent statement is that there exists a 𝑘 ∈ N such that 𝑎𝑘𝑖 𝑗 > 0.

EXERCISE 2.3.23. Let 𝐴 be the adjacency matrix of an input-output network and
assume that value added is nonnegative in each sector. Using Proposition 2.3.5, show
that 𝑟(𝐴) < 1 if and only if each sector in the network has an upstream supplier with
positive value added.

2.3.4.2 A Converse to the Neumann Series Lemma

Since the Neumann series lemma is a foundational result with many economic appli-
cations, we want to know what happens when the conditions of the lemma fail. Here
is a partial converse:
Theorem 2.3.6. Fix 𝐴 ∈ M𝑛×𝑛 with 𝐴 ⩾ 0. If 𝐴 is irreducible, then the following
statements are equivalent:
(i) 𝑟(𝐴) < 1.
(ii) 𝑥 = 𝐴𝑥 + 𝑏 has a unique everywhere positive solution for all 𝑏 ⩾ 0 with 𝑏 ≠ 0.
(iii) 𝑥 = 𝐴𝑥 + 𝑏 has a nonnegative solution for at least one 𝑏 ⩾ 0 with 𝑏 ≠ 0.
(iv) There exists an 𝑥 ≫ 0 such that 𝐴𝑥 ≪ 𝑥.
Remark 2.3.1. If 𝐴 is irreducible and one of (and hence all of) items (i)–(iv) are true,
then, by the Neumann series lemma, the unique solution is 𝑥∗ :=

∑
𝑚⩾0 𝐴

𝑚𝑏.
Remark 2.3.2. Statement (iii) is obviously weaker than statement (ii). It is important,
however, in the case where 𝑟(𝐴) < 1 fails. In this setting, from the negation of (iii),
we can conclude that there is not even one nontrivial 𝑏 in R𝑛

+ such that a nonnegative
solution to 𝑥 = 𝐴𝑥 + 𝑏 exists.

Proof of Theorem 2.3.6. We show (i) ⇐⇒ (iv) and then (i) ⇐⇒ (ii) ⇐⇒ (iii).
((i) ⇒ (iv)). For 𝑥 in (iv) we can use the Perron–Frobenius theorem to obtain a

real eigenvector 𝑒 satisfying 𝐴𝑒 = 𝑟(𝐴)𝑒 ≪ 𝑒 and 𝑒 ≫ 0.
((iv)⇒ (i)). Fix 𝑥 ≫ 0 such that 𝑥 ≫ 𝐴𝑥. Through positive scaling, we can assume

that ∥𝑥∥ = 1. Choose 𝜆 < 1 such that 𝜆𝑥 ⩾ 𝐴𝑥. Iterating on this inequality gives, for
all 𝑘 ∈ N,

𝜆𝑘𝑥 ⩾ 𝐴𝑘𝑥 =⇒ 𝜆𝑘 = 𝜆𝑘∥𝑥∥ ⩾ ∥𝐴𝑘𝑥∥ ⇐⇒ ∥𝐴𝑘𝑥∥1/𝑘 ⩽ 𝜆
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Hence, by the local spectral radius result in Theorem 2.3.3, 𝑟(𝐴) ⩽ 𝜆 < 1.
((i) ⇒ (ii)). Existence of a unique solution 𝑥∗ =

∑
𝑖⩾0 𝐴

𝑖𝑏 follows from the NSL.
Positivity follows from irreducibility of 𝐴, since 𝑏 ≠ 0 and ∑

𝑖 𝐴
𝑖 ≫ 0.

((ii)⇒ (iii)). Obvious.
((iii)⇒ (i)). Suppose there is a 𝑏 ⩾ 0 with 𝑏 ≠ 0 and an 𝑥 ⩾ 0 such that 𝑥 = 𝐴𝑥 + 𝑏.

By the Perron–Frobenius theorem, we can select a left eigenvector 𝑒 such that 𝑒 ≫ 0
and 𝑒⊤𝐴 = 𝑟(𝐴)𝑒⊤. For this 𝑒 we have

𝑒⊤𝑥 = 𝑒⊤𝐴𝑥 + 𝑒⊤𝑏 = 𝑟(𝐴)𝑒⊤𝑥 + 𝑒⊤𝑏.

Since 𝑒 ≫ 0 and 𝑏 ≠ 0, we must have 𝑒⊤𝑏 > 0. In addition, 𝑥 ≠ 0 because 𝑏 ≠ 0 and
𝑥 = 𝐴𝑥 + 𝑏, so 𝑒⊤𝑥 > 0. Therefore 𝑟(𝐴) satisfies (1 − 𝑟(𝐴))𝛼 = 𝛽 for positive constants
𝛼, 𝛽. Hence 𝑟(𝐴) < 1. □

EXERCISE 2.3.24. For the production system 𝑥 = 𝐴𝑥 + 𝑑, what do we require on
𝐴 for the condition 𝑟(𝐴) < 1 to be necessary for existence of a nonnegative output
solution 𝑥∗, for each nontrivial 𝑑?

EXERCISE 2.3.25. Irreducibility cannot be dropped from Theorem 2.3.6. Provide
an example demonstrating that, without irreducibility, we can have 𝑟(𝐴) ⩾ 1 for some
𝐴 ⩾ 0 and yet find a nonzero 𝑏 ⩾ 0 and an 𝑥 ⩾ 0 such that 𝑥 = 𝐴𝑥 + 𝑏.

2.4 Chapter Notes

High quality foundational textbooks on input-output analysis and multisector produc-
tion networks include Nikaido (1968), Miller and Blair (2009) and Antras (2020).
References on production networks and aggregate shocks include Acemoglu et al.
(2012), Antràs et al. (2012), Di Giovanni et al. (2014), Carvalho (2014), Barrot and
Sauvagnat (2016), Baqaee (2018), Carvalho and Tahbaz-Salehi (2019), Acemoglu
and Azar (2020), Liu and Tsyvinski (2020), Miranda-Pinto (2021) and Carvalho et al.
(2021).

For other network-centric analysis ofmultisectormodels, see, for example, Bernard
et al. (2019), who use buyer-supplier relationship data fromBelgium to investigate the
origins of firm size heterogeneity when firms are interconnected in a production net-
work. Herskovic (2018) analyzes asset pricing implications of production networks.
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Cai and Szeidl (2018) consider the effect of interfirm relationships on business perfor-
mance. La’O and Tahbaz-Salehi (2022) study optimal monetary policy in a production
network. Dew-Becker (2022) analyzes tail risk and aggregate fluctuations in a non-
linear production network. Elliott et al. (2022) show that complex supply networks
can greatly amplify small idiosyncratic shocks. Elliott and Golub (2022) provide a
survey of network fragility that includes discussion of production networks and the
impact of sectoral shocks.



Chapter 3

Optimal Flows

Up until now we have analyzed problems where network structure is either fixed or
generated by some specified random process. In this chapter, we investigate net-
works where connections are determined endogenously via equilibrium or optimality
conditions. In the process, we cover some of the most powerful methods available
for solving optimization problems in networks and beyond, with applications ranging
from traditional graph and network problems, such as trade, matching, and commu-
nication, through to machine learning, econometrics and finance.

3.1 Shortest Paths
As a preliminary step, we study the shortest path problem—a topic that has applica-
tions in production, network design, artificial intelligence, transportation and many
other fields. The solution method we adopt also happens to be one of the clearest
illustrations of Bellman’s principle of optimality, which is one of the cornerstones of
optimization theory and modern economic analysis.

3.1.1 Definition and Examples
We start proceedings by introducing simple examples. (In the next section we will
formalize the problem and consider solution methods.)

3.1.1.1 Set Up

Consider a firm that wishes to ship a container from 𝐴 to 𝐺 at minimum cost, where
𝐴 and 𝐺 are vertices of the weighted digraph 𝒢 shown in Figure 3.1. Arrows (edges)

105
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Figure 3.1: Graph for the shortest path problem
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Figure 3.2: Solution 1

indicate paths that can be used for freight, while weights indicate costs of traversing
them. In this context, the weight function is also called the cost function, and we
denote it by 𝑐. For example, 𝑐(𝐴, 𝐵) is the cost of traveling from vertex 𝐴 to vertex 𝐵.

Since this graph is small, we can find the minimum cost path visually. A quick scan
shows that the minimum attainable cost is 8. Two paths realize this cost: (𝐴, 𝐶, 𝐹, 𝐺)
and (𝐴, 𝐷, 𝐹, 𝐺), as shown in Figure 3.2 and Figure 3.3, respectively.

3.1.1.2 A Recursive View

Let’s now consider a systematic solution that can be applied to larger graphs. Let
𝑞∗(𝑥) denote the minimum cost-to-go from vertex 𝑥. That is, 𝑞∗(𝑥) is the total cost of
traveling from 𝑥 to 𝐺 if we take the best route. Its values are shown at each vertex in
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Figure 3.3: Solution 2
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Figure 3.4: The cost-to-go function, with 𝑞∗(𝑥) indicated by red digits at each 𝑥

Figure 3.4. We can represent 𝑞∗ in vector form via

(𝑞∗(𝐴), 𝑞∗(𝐵), 𝑞∗(𝐶), 𝑞∗(𝐷), 𝑞∗(𝐸), 𝑞∗(𝐹), 𝑞∗(𝐺)) = (8, 10, 3, 5, 4, 1, 0) ∈ R7. (3.1)

As is clear from studying Figure 3.4, once 𝑞∗ is known, the least cost path can be
computed as follows: Start at 𝐴 and, from then on, at arbitrary vertex 𝑥, move to any
𝑦 that solves

min
𝑦∈𝒪(𝑥)

{𝑐(𝑥, 𝑦) + 𝑞∗(𝑦)}. (3.2)

Here𝒪(𝑥) = {𝑦 ∈ 𝑉 : (𝑥, 𝑦) ∈ 𝐸} is the set of direct successors of 𝑥, as defined in §1.4.1,
while 𝑐(𝑥, 𝑦) is the cost of traveling from 𝑥 to 𝑦. In other words, to minimize the cost-
to-go, we choose the next path to minimize current traveling cost plus cost-to-go from
the resulting location.
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Thus, if we know 𝑞∗(𝑥) at each 𝑥, then finding the best path reduces to the simple
two stage optimization problem in (3.2).

But now another problem arises: how to find 𝑞∗ in more complicated cases, where
the graph is large? One approach to this problem is to exploit the fact that

𝑞∗(𝑥) = min
𝑦∈𝒪(𝑥)

{𝑐(𝑥, 𝑦) + 𝑞∗(𝑦)} (3.3)

must hold for every vertex 𝑥 in the graph apart from 𝐺 (where 𝑞∗(𝐺) = 0).
Take the time to convince yourself that, for our example, the function 𝑞∗ satis-

fies (3.3). In particular, check that (3.3) holds at each nonterminal 𝑥 in Figure 3.4.
We can understand (3.3), which is usually called the Bellman equation, as a

restriction on 𝑞∗ that helps us identify this vector. The main difficulty with our plan is
that the Bellman equation is nonlinear in the unknown function 𝑞∗. Our strategy will
be to convert this nonlinear equation into a fixed point problem, so that fixed point
theory can be applied.

We do this in the context of a more general version of the shortest path problem.

3.1.2 Bellman’s Method

We consider a generic shortest path problem on a flow network, which consists of a
weighted digraph 𝒢 = (𝑉, 𝐸, 𝑐) with a sink 𝑑 ∈ 𝑉 called the destination and a weight
function 𝑐 : 𝐸→ (0,∞) that associates a positive cost to each edge (𝑥, 𝑦) ∈ 𝐸. In what
follows we take |𝑉 | = 𝑛.

We consider how to find the shortest (i.e., minimum cost) path from 𝑥 to 𝑑 for
every 𝑥 ∈ 𝑉. In doing so we impose the following assumption.

Assumption 3.1.1. 𝒢 is a directed acyclic graph. Moreover, for each 𝑥 ∈ 𝑉 with 𝑥 ≠ 𝑑,
there exists a directed path from 𝑥 to 𝑑.

To simplify the arguments below, we consider a second digraph𝒢′ = (𝑉, 𝐸′) where
𝑉 is unchanged and 𝐸′ = 𝐸 ∪ {(𝑑, 𝑑)}. In other words, 𝐸′ extends 𝐸 by adding a self-
loop at 𝑑. We also extend 𝑐 to this self-loop by setting 𝑐(𝑑, 𝑑) = 0. This just means that
“terminating at 𝑑” is the same as “staying at 𝑑,” since no more cost accrues after arrival
at the destination. Figure 3.5 illustrates in the context of the previous example.

EXERCISE 3.1.1. Prove that, for the extended digraph 𝒢′, every infinite directed
path 𝑥1, 𝑥2, . . . obeys 𝑥𝑖 = 𝑑 for all 𝑖 ⩾ 𝑛.
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Figure 3.5: Addition of a self loop to the destination

We will use the intuition from the previous section, based around the Bellman
equation, to construct a solution method.

3.1.2.1 Policies

Instead of optimal paths, it turns out to be more convenient to aim for optimal policies.
In general, a policy is a specification of how to act in every state. In the present setting,
a policy is a map 𝜎 : 𝑉 → 𝑉 with 𝜎(𝑥) = 𝑦 understood as meaning “when at vertex 𝑥,
go to 𝑦.” A policy is called feasible if 𝜎(𝑥) ∈ 𝒪(𝑥) for all 𝑥 ∈ 𝑉.

For any feasible policy 𝜎 and 𝑥 ∈ 𝑉, the trajectory of 𝑥 under 𝜎 is the path from 𝑥
to the destination indicated by the feasible policy. In other words, it is the sequence
(𝑝0, 𝑝1, 𝑝2, . . .) defined by 𝑝0 = 𝑥 and 𝑝𝑖 = 𝜎(𝑝𝑖−1) for all 𝑖 ∈ N. It can also be expressed
as (𝜎𝑖(𝑥)) := (𝜎𝑖(𝑥))𝑖⩾0, where 𝜎𝑖 is the 𝑖-th composition of 𝜎 with itself.

Let Σ be the set of all feasible policies. In view of Exercise 3.1.1, policies in Σ have
the property that every trajectory they generate reaches 𝑑 in 𝑛 steps and stays there.
In other words,

𝜎𝑖(𝑥) = 𝑑 for all 𝑖 ⩾ 𝑛 and all 𝑥 ∈ 𝑉. (3.4)

Given 𝑞 ∈ R𝑉
+, we call 𝜎 ∈ Σ 𝑞-greedy if

𝜎(𝑥) ∈ argmin
𝑦∈𝒪(𝑥)

{𝑐(𝑥, 𝑦) + 𝑞(𝑦)} for all 𝑥 ∈ 𝑉.

In essence, a greedy policy treats 𝑞 as the minimum cost-to-go function and picks out
an optimal path under that assumption.
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Using our new terminology, we can rephrase the discussion in §3.1.1.2 as follows:
the shortest path problem can be solved by finding the true minimum cost-to-go func-
tion 𝑞∗ and then following a 𝑞∗-greedy policy. In the remainder of this section, we
prove this claim more carefully.

3.1.2.2 Cost of Policies

We need to be able to assess the cost of any given policy. To this end, for each 𝑥 ∈ 𝑉
and 𝜎 ∈ Σ, let 𝑞𝜎(𝑥) denote the cost of following 𝜎 from 𝑥. That is,

𝑞𝜎(𝑥) =
∞∑
𝑖=0

𝑐(𝜎𝑖(𝑥), 𝜎𝑖+1(𝑥)) =
𝑛−1∑
𝑖=0

𝑐(𝜎𝑖(𝑥), 𝜎𝑖+1(𝑥)). (3.5)

This second equality holds because 𝜎𝑖(𝑥) = 𝑑 for all 𝑖 ⩾ 𝑛 and 𝑐(𝑑, 𝑑) = 0. The function
𝑞𝜎 ∈ R𝑉

+ is called the cost-to-go under 𝜎.
It will be helpful in what follows to design an operator such that 𝑞𝜎 is a fixed point.

For this purpose we let 𝑈 be all 𝑞 ∈ R𝑉
+ with 𝑞(𝑑) = 0 and define 𝑇𝜎 : 𝑈 → 𝑈 by

(𝑇𝜎 𝑞)(𝑥) = 𝑐(𝑥, 𝜎(𝑥)) + 𝑞(𝜎(𝑥)) (𝑥 ∈ 𝑉).

Here and below, with 𝑘 ∈ N, the expression 𝑇𝑘𝜎 indicates the 𝑘-th composition of 𝑇𝜎
with itself (i.e., 𝑇𝜎 is applied 𝑘 times).

EXERCISE 3.1.2. Prove that 𝑇𝜎 is a self-map on 𝑈 for all 𝜎 ∈ Σ.

Proposition 3.1.1. For each 𝜎 ∈ Σ, the function 𝑞𝜎 is the unique fixed point of 𝑇𝜎 in 𝑈
and 𝑇𝑘𝜎 𝑞 = 𝑞𝜎 for all 𝑘 ⩾ 𝑛 and all 𝑞 ∈ 𝑈.

Proof. Fix 𝜎 ∈ Σ and 𝑞 ∈ 𝑈. For each 𝑥 ∈ 𝑉 we have

(𝑇2
𝜎 𝑞) (𝑥) = 𝑐(𝑥, 𝜎(𝑥)) + (𝑇𝜎 𝑞) (𝜎(𝑥)) = 𝑐(𝑥, 𝜎(𝑥)) + 𝑐(𝜎(𝑥), 𝜎2(𝑥)) + 𝑞(𝜎2(𝑥)).

More generally, for 𝑘 ⩾ 𝑛, we have

(𝑇𝑘𝜎 𝑞) (𝑥) =
𝑘−1∑
𝑖=0

𝑐(𝜎𝑖(𝑥), 𝜎𝑖+1(𝑥)) + 𝑞(𝜎𝑘(𝑥)) =
𝑛−1∑
𝑖=0

𝑐(𝜎𝑖(𝑥), 𝜎𝑖+1(𝑥)).

The second equality holds because 𝜎𝑘(𝑥) = 𝑑 for all 𝑘 ⩾ 𝑛 and 𝑞(𝑑) = 0. Hence
(𝑇𝑘𝜎 𝑞) (𝑥) = 𝑞𝜎(𝑥) by (3.5). The fact that 𝑞𝜎 is the unique fixed point of 𝑇𝜎 now follows
from Exercise 6.1.3 in the appendix (page 216). □
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3.1.2.3 Optimality

The minimum cost-to-go function 𝑞∗ is defined by

𝑞∗(𝑥) = min
𝜎∈Σ

𝑞𝜎(𝑥) (𝑥 ∈ 𝑉).

The definition of 𝑞∗ matches our intuitive definition from §3.1.1.2, in the sense that
𝑞∗(𝑥) is, for each 𝑥 ∈ 𝑉, the minimum cost of traveling from 𝑥 to the destination 𝑑.

A policy 𝜎∗ ∈ Σ is called optimal if it attains the minimum in the definition of 𝑞∗,
so that 𝑞∗ = 𝑞𝜎∗ on 𝑉. Our main aims are to

(i) obtain a method for calculating 𝑞∗ and
(ii) prove that a 𝑞∗-greedy policy is optimal, as suggested in our informal discussion

above.

Regarding the first step, we claim that 𝑞∗ satisfies the Bellman equation (3.3). To
prove this claim we introduce the Bellman operator 𝑇 via

(𝑇𝑞)(𝑥) = min
𝑦∈𝒪(𝑥)

{𝑐(𝑥, 𝑦) + 𝑞(𝑦)} (𝑥 ∈ 𝑉). (3.6)

By construction, 𝑞∗ satisfies the Bellman equation (3.3) if and only if 𝑇𝑞∗ = 𝑞∗.

EXERCISE 3.1.3. Show that 𝑇 is a self-map on 𝑈 and, moreover, 𝑇𝑞 ⩽ 𝑇𝜎 𝑞 for all
𝑞 ∈ 𝑈 and 𝜎 ∈ Σ.

EXERCISE 3.1.4. Show that 𝑇 and 𝑇𝜎 are both order-preserving on R𝑉
+ with respect

to the pointwise partial order ⩽. Prove that 𝑇𝑘𝑞 ⩽ 𝑇𝑘𝜎 𝑞 for all 𝑞 ∈ 𝑈, 𝜎 ∈ Σ and 𝑘 ∈ N.

EXERCISE 3.1.5. Fix 𝑞 ∈ 𝑈 and let 𝜎 be a 𝑞-greedy policy. Show that 𝑇𝑞 = 𝑇𝜎 𝑞.

The next result is central. It confirms that the minimum cost-to-go function satis-
fies the Bellman equation and also provides us with a means to compute it: pick any
𝑞 in 𝑈 and then iterate with 𝑇.

Proposition 3.1.2. The function 𝑞∗ is the unique fixed point of 𝑇 in 𝑈 and, in addition,
𝑇𝑘𝑞→ 𝑞∗ as 𝑘→∞ for all 𝑞 ∈ 𝑈.

Proof. In view of Exercise 6.1.3 in the appendix (page 216), it suffices to verify exis-
tence of an 𝑚 ∈ N such that 𝑇𝑘𝑞 = 𝑞∗ for all 𝑘 ⩾ 𝑚 and all 𝑞 ∈ 𝑈. To this end, let 𝛾 be
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the minimum of 𝑐(𝑥, 𝑦) over all (𝑥, 𝑦) ∈ 𝐸. Since 𝑐 is positive on such edges and 𝐸 is
finite, 𝛾 > 0.

Fix 𝑞 ∈ 𝑈. We claim first that 𝑇𝑘𝑞 ⩾ 𝑞∗ for sufficiently large 𝑘. To see this, fix 𝑘 ∈ N
and iterate with 𝑇 to get

(𝑇𝑘𝑞) (𝑥) = 𝑐(𝑥, 𝑝1) + 𝑐(𝑝1, 𝑝2) + · · · + 𝑐(𝑝𝑘−1, 𝑝𝑘) + 𝑞(𝑝𝑘)

for some path (𝑥, 𝑝1, . . . , 𝑝𝑘). By Exercise 3.1.1, this path leads to 𝑑 in 𝑛 steps. This
means that (𝑇𝑘𝑞)(𝑥) ⩾ 𝑞∗(𝑥) when 𝑘 ⩾ 𝑛, since 𝑞∗(𝑥) is the minimum cost of reaching
𝑑 from 𝑥.

For the reverse inequality, fix 𝑘 ⩾ 𝑛 and observe that, by Proposition 3.1.1 and the
inequality from Exercise 3.1.4,

𝑇𝑘𝑞 ⩽ 𝑇𝑘𝜎∗𝑞 = 𝑞𝜎∗ = 𝑞∗.

We have now shown that 𝑇𝑘𝑞 = 𝑞∗ for sufficiently large 𝑘, as required. □

We now have a means to compute the minimum cost-to-go function (by iterating
with 𝑇, starting at any 𝑞 ∈ 𝑈) and, in addition, a way to verify the following key result.

Theorem 3.1.3. A policy 𝜎 ∈ Σ is optimal if and only if 𝜎 is 𝑞∗-greedy.

Proof. By the definition of greedy policies,

𝜎 is 𝑞∗-greedy ⇐⇒ 𝑐(𝑥, 𝜎(𝑥)) + 𝑞∗(𝜎(𝑥)) = min
𝑦∈𝒪(𝑥)

{𝑐(𝑥, 𝑦) + 𝑞∗(𝑦)}, ∀ 𝑥 ∈ 𝑉.

Since 𝑞∗ satisfies the Bellman equation, we then have

𝜎 is 𝑞∗-greedy ⇐⇒ 𝑐(𝑥, 𝜎(𝑥)) + 𝑞∗(𝜎(𝑥)) = 𝑞∗(𝑥), ∀ 𝑥 ∈ 𝑉.

The right-hand side is equivalent to 𝑇𝜎 𝑞∗ = 𝑞∗. At the same time, 𝑇𝜎 has only one fixed
point in 𝑈, which is 𝑞𝜎. Hence 𝑞𝜎 = 𝑞∗. Hence, by this chain of logic and the definition
of optimality,

𝜎 is 𝑞∗-greedy ⇐⇒ 𝑞∗ = 𝑞𝜎 ⇐⇒ 𝜎 is optimal. □

3.1.2.4 An Implementation in Julia

Let’s use the ideas set out above to solve the original shortest path problem, concerning
shipping, which we introduced in §3.1.1.1. We will implement in Julia.
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Our first step is to set up the cost function, which we store as an array called c.
We identify the vertices 𝐴, …, 𝐺, with the integers 1, . . . , 7. We set c[i, j] = Inf
when no edge exists from i to j, so that such a path is never chosen when evaluating
the Bellman operator, as defined in (3.3). When an edge does exist, we enter the cost
shown in Figure 3.1.

c = fill(Inf, (7, 7))

c[1, 2], c[1, 3], c[1, 4] = 1, 5, 3
c[2, 4], c[2, 5] = 9, 6
c[3, 6] = 2
c[4, 6] = 4
c[5, 7] = 4
c[6, 7] = 1
c[7, 7] = 0

Next we define the Bellman operator:

function T(q)
Tq = similar(q)
n = length(q)
for x in 1:n

Tq[x] = minimum(c[x, :] + q[:])
end
return Tq

end

Now we arbitrarily set 𝑞 ≡ 0, generate the sequence of iterations 𝑇𝑞, 𝑇2𝑞, 𝑇3𝑞 and
plot them:

using PyPlot
fig, ax = plt.subplots()

n = 7
q = zeros(n)
ax.plot(1:n, q)

for i in 1:3
new_q = T(q)
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Figure 3.6: Shortest path Bellman iteration

ax.plot(1:n, new_q, "-o", alpha=0.7)
q = new_q

end

After adding some labels, the output looks like the image in Figure 3.6. Notice
that, by 𝑇3𝑞, we have already converged on 𝑞∗. You can confirm this by checking that
the values of 𝑇3𝑞 line up with those we obtained manually in Figure 3.4.

3.1.3 Betweenness Centrality

In §1.4.3 we discussed a range of centrality measures for networks, including degree,
eigenvector and Katz centrality. Aside from these, there is another well-known cen-
trality measure, called betweenness centrality, that builds on the notion of shortest
paths and is particularly popular in analysis of social and peer networks.

Formally, for a given graph 𝒢 = (𝑉, 𝐸), directed or undirected, the betweenness
centrality of vertex 𝑣 ∈ 𝑉 is

𝑏(𝑣) :=
∑

𝑥,𝑦∈𝑉\{𝑣}

|𝑆(𝑥, 𝑣, 𝑦) |
|𝑆(𝑥, 𝑦) | ,

where 𝑆(𝑥, 𝑦) is the set of all shortest paths from 𝑥 to 𝑦 and 𝑆(𝑥, 𝑣, 𝑦) is the set of all
shortest paths from 𝑥 to 𝑦 that pass through 𝑣. (As usual, |𝐴| is the cardinality of 𝐴.)
Thus, 𝑏(𝑣) is proportional to the probability that, for a randomly selected pair of nodes
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𝑥, 𝑦, a randomly selected shortest path from 𝑥 to 𝑦 contains 𝑣. Thus, the measure will
be high for nodes that “lie between” a large number of node pairs.

For example, Networkx stores a graph called florentine_families_graph that
details the marriage relationships between 15 prominent Florentine families during
the 15th Century. The data can be accessed via

import networkx as nx
G = nx.florentine_families_graph()

The network is shown in Figure 3.7, which was created using

nx.draw_networkx(G, [params])

where [params] stands for parameters listing node size, node color and other fea-
tures. For this graph, node size and node color are scaled by betweenness centrality,
which is calculated via

nx.betweenness_centrality(G)

Although this graph is very simple, the output helps to illustrate the prominent role
of the Medici family, consistent with their great wealth and influence in Florence and
beyond.

3.2 Linear Programming and Duality

Our study of shortest paths in §3.1 used a relatively specialized optimization method.
In this section we cover more general results in optimization and duality, which will
then be applied to endogenous networks, optimal transport and optimal flows. Part of
the strategy is to take challenging optimization problems and regularize them, often
by some form of convexification.

Before diving into theory, we use §3.2.1 below to provide motivation via one very
specific application. This application involves what is typically called matching in
economics and linear assignment in mathematics. We illustrate the key ideas in the
context of matching workers to jobs. Later, when we discuss how to solve the problem,
we will see the power of linear programming, convexification and duality.
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Figure 3.7: Betweenness centrality (by color and node size) for Florentine families

3.2.1 Linear Assignment

Behold the town of Springfield. A local employer is shutting down and 40 workers
stand idled. Fortunately for these workers, Springfield lies within a political battle-
ground state and, as a result, the mayor receives backing to attract a new employer.
She succeeds by promising a certain firm that the 40 workers will be retrained for the
new skills they require. For mathematical convenience, let us suppose that there are
exactly 40 new positions, each with distinct skill requirements.

The team set up by the mayor records the individual skills of the 40 workers,
along with the requirements of the new positions, and estimates the cost 𝑐(𝑖, 𝑗) of
retraining individual 𝑖 for position 𝑗. The team’s challenge is to minimize the total
cost of retraining. In particular, they wish to solve

min
𝜎∈𝒫

40∑
𝑖=1

𝑐(𝑖, 𝜎(𝑖)), (3.7)

where𝒫 is the set of all permutations (i.e., bijective self-maps) on the integers 1, . . . , 40.
Figure 3.8 illustrates one possible permutation.

The problem is discrete, so first order conditions are unavailable. Unsure of how
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workers 1 2 3 · · · 40

jobs 1 2 3 · · · 40

Figure 3.8: One possible assignment (i.e., permutation of [40])

to proceed but possessing a powerful computer, the team instructs its workstation to
step through all possible permutations and record the one that leads to the lowest
total retraining cost. The instruction set is given in Algorithm 2.

1 set 𝑚 = +∞ ;
2 for 𝜎 in 𝒫 do
3 set 𝑡(𝜎) = ∑40

𝑖=1 𝑐(𝑖, 𝜎(𝑖)) ;
4 if 𝑡(𝜎) < 𝑚 then
5 set 𝑚 = 𝑡(𝜎) ;
6 set 𝜎∗ = 𝜎 ;
7 end
8 end
9 return 𝜎∗

Algorithm 2: Minimizing total cost by testing all permutations

After five days of constant execution, the workstation is still running and themayor
grows impatient. The team starts to calculate how long execution will take. The
main determinant is the size of the set 𝒫. Elementary combinatorics tells us that
the number of permutations of a set of size 𝑛 is 𝑛!. Quick calculations show that 40!
exceeds 8 × 1047. A helpful team member points out that this is much less than the
number of possible AES-256 password keys (approximately 1077). The mayor is not
appeased and demands a runtime estimate.

Further calculations reveal the following: if, for each 𝜎 in 𝒫, the workstation can
evaluate the cost 𝑡(𝜎) =

∑40
𝑖=1 𝑐(𝑖, 𝜎(𝑖)) in 10−10-th of a second (which is extremely

optimistic), then the total run time would be

10−10 × 8 × 1047 = 8 × 1037 seconds ≈ 2.5 × 1030 years.

Another helpful teammember provides perspective by noting that the sun will expand
into a red giant and vaporize planet Earth in less than 1010 years.
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The great computational cost of solving this problem by direct calculations is an
example of what is often called the curse of dimensionality. This phrase, coined by
Richard Bellman (1920-1984) during his fundamental research into dynamic opti-
mization, refers to the exponential increase in processor cycles needed to solve com-
putational problems to a given level of accuracy as the number of dimensions in-
creases. The matching problem we have just described is high-dimensional because
the choice variable 𝜎, a permutation in 𝒫, is naturally associated with the vector
(𝜎(1), . . . , 𝜎(40)). This, in turn, is a point in 40-dimensional vector space.1

Fortunately, clever algorithms for this matching problem have been found and,
for problems such as this one, useful approximations to the optimal allocation can be
calculated relatively quickly. For example, Dantzig (1951) showed how such problems
can be cast as a linear program, which we discuss below. Further progress has been
made in recent years by adding regularization terms to the optimization problem that
admit derivative-based methods.

In the sections that follow, we place matching problems in a more general setting
and show how they can be solved efficiently. Our first step is to review the basics of
linear programming.

3.2.2 Linear Programming

A linear program is an optimization problem with a linear objective function and lin-
ear constraints. If your prior belief is that all interesting problems are nonlinear, then
let us reassure you that linear programming is applicable to a vast array of interest-
ing applications. One of these is, somewhat surprisingly, the assignment problem in
§3.2.1, as famously demonstrated by the American mathematician George Bernard
Dantzig (1914–2005) in Dantzig (1951). Other applications include optimal flows on
networks and optimal transport problems, which in turn have diverse applications in
economics, finance, engineering and machine learning.

We explain the key ideas below, beginning with an introduction to linear program-
ming.

1Readers familiar with high performance computing techniques might suggest that the curse of
dimensionality is no cause for concern for the matching problem, since the search algorithm be paral-
lelized. Unfortunately, even the best parallelization methods cannot save the workstation from being
vaporized by the sun with the calculation incomplete. The best-case scenario is that adding another
execution thread doubles effective computations per second and hence halves execution time. How-
ever, even with 1010 such threads (an enormous number), the execution time would still be 2.5 × 1020

years.
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3.2.2.1 A Firm Problem

One way to define linear programs is in terms of what open source and commer-
cial solvers for linear programming problems handle. Typically, for these solvers, the
problem takes the form

min
𝑥∈R𝑛

𝑐⊤𝑥 (3.8)

subject to 𝐴1𝑥 = 𝑏1, 𝐴2𝑥 ⩽ 𝑏2, and 𝑑ℓ ⩽ 𝑥 ⩽ 𝑑𝑢. (3.9)

Here each 𝐴𝑖 is a matrix with 𝑛 columns and 𝑐, 𝑏1, 𝑏2, 𝑑ℓ and 𝑑𝑢 are conformable column
vectors.

To illustrate, let’s consider a simple example, which concerns a firm that fabricates
products labeled 1, . . . , 𝑛. To make each product requires machine hours and labor.
Product 𝑖 requires 𝑚𝑖 machine hours and ℓ𝑖 labor hours per unit of output, as shown
in the table below

product machine hours labor hours unit price
1 𝑚1 ℓ1 𝑝1
...

...
...

...
𝑛 𝑚𝑛 ℓ𝑛 𝑝𝑛

A total of 𝑀 machine hours and 𝐿 labor hours are available. Letting 𝑞𝑖 denote output
of product 𝑖, the firm’s problem is

max
𝑞1,...,𝑞𝑛

𝜋(𝑞1, . . . , 𝑞𝑛) :=
𝑛∑
𝑖=1

𝑝𝑖𝑞𝑖 − 𝑤𝐿 − 𝑟𝑀

subject to
𝑛∑
𝑖=1

𝑚𝑖𝑞𝑖 ⩽ 𝑀,
𝑛∑
𝑖=1

ℓ𝑖𝑞𝑖 ⩽ 𝐿 and 𝑞1, . . . , 𝑞𝑛 ⩾ 0. (3.10)

Here 𝜋 is profits and𝑤 and 𝑟 are the wage rate and rental rate of capital. We are taking
these values as fixed, along with 𝐿 and 𝑀, so choosing the 𝑞 ∈ R𝑛

+ that maximizes
profits is the same as choosing the 𝑞 that maximizes revenue ∑𝑛

𝑖=1 𝑝𝑖𝑞𝑖. This will be
our objective in what follows.

(Why are total labor supply and machine hours held fixed here? We might think
of this problem as one of designing a daily or weekly production plan, which optimally
allocates existing resources, given current prices.)
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2q1 + 5q2 ≤ 30

4q1 + 2q2 ≤ 20

q2 ≥ 0

q1 ≥ 0

revenue = 3q1 + 4q2

optimal solution

Figure 3.9: Revenue maximizing quantities

Figure 3.9 shows an illustration of a simple case with two products. Consistent
with Exercise 3.2.3, the feasible set is a polyhedron, shaded in blue. The green lines
are contour lines of the revenue function (𝑞1, 𝑞2) ↦→ 𝑝1𝑞1 + 𝑝2𝑞2, with 𝑝1 = 3 and
𝑝2 = 4. By inspecting this problem visually, and recognizing that the contour lines are
increasing as we move to the northeast, it is clear that the maximum is obtained at
the extreme point indicated in the figure.

Maximizing revenue is equivalent to minimizing ∑
𝑖(−𝑝𝑖)𝑞𝑖, so with 𝑐 = (−𝑝1,−𝑝2)

we have a linear programming problem to which we can apply a solver.

3.2.2.2 A Python Implementation

Let’s look at one option for solving this problem with Python, via SciPy’s open source
solver linprog. For the simple two-product firm problem, we ignore the unnecessary
equality constraint in (3.9) and set

𝐴2 =

(
𝑚1 𝑚2
ℓ1 ℓ2

)
and 𝑏2 =

(
𝑀
𝐿

)
.

The bound 0 ⩽ 𝑞 is imposed by default so we do not need to specify 𝑑ℓ and 𝑑𝑢.
We apply the numbers in Figure 3.9, so the maximization version of the problem
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is

max
𝑞1,𝑞2

3𝑞1 + 4𝑞2 s.t. 𝑞1 ⩾ 0, 𝑞2 ⩾ 0, 2𝑞1 + 5𝑞2 ⩽ 30 and 4𝑞1 + 2𝑞2 ⩽ 20. (3.11)

Now we set up primitives and call linprog as follows:

A = ((2, 5),
(4, 2))

b = (30, 20)
c = (-3, -4) # minus in order to minimize

from scipy.optimize import linprog
result = linprog(c, A_ub=A, b_ub=b)
print(result.x)

The output is [2.5, 5.0], indicating that we should set 𝑞1 = 2.5 and 𝑞2 = 5.0.
The result is obtained via the simplex algorithm, discussed in §3.2.2.8.

EXERCISE 3.2.1. As a way to cross-check the solver’s output, try to derive the
solution 𝑞 = (2.5, 5.0) in a more intuitive way, from examining Figure 3.9.

EXERCISE 3.2.2. Consider the same problem with the same parameters, but sup-
pose now that, in addition to the previous constraints, output of 𝑞2 is bounded above
by 4. Use linprog or another numerical linear solver to obtain the new solution.

3.2.2.3 A Julia Implementation

When solving linear programs, one option is to use a domain specific modeling lan-
guage to set out the objective and constraints in the optimization problem. In Python
this can be accomplished using the open source libraries such as Pyomo and Google’s
OR-Tools. In Julia we can use JuMP.

The following code illustrates the Julia case, using JuMP, applied to the firm prob-
lem (3.11).

using JuMP
using GLPK
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m = Model()
set_optimizer(m, GLPK.Optimizer)

@variable(m, q1 >= 0)
@variable(m, q2 >= 0)
@constraint(m, 2q1 + 5q2 <= 30)
@constraint(m, 4q1 + 2q2 <= 20)
@objective(m, Max, 3q1 + 4q2)

optimize!(m)

Notice how the JuMP modeling language allows us to write objectives and con-
straints as expressions, such as 2q1 + 5q2 <= 30. This brings the code closer to the
mathematics and makes it highly readable.

If we now run value.(q1) and value.(q2), we get 2.5 and 5.0, respectively,
which are the same as our previous solution.

3.2.2.4 Standard Linear Programs

The programming problem in (3.8)–(3.9) is convenient for applications but somewhat
cumbersome for theory. A more canonical version of the linear programming problem
is

𝑃 := min
𝑥∈R𝑛

𝑐⊤𝑥 subject to 𝐴𝑥 = 𝑏 and 𝑥 ⩾ 0. (3.12)

Here 𝑥 is interpreted as a column vector in R𝑛, 𝑐 is also a column vector in R𝑛, 𝐴 is
𝑚× 𝑛, and 𝑏 is 𝑚× 1. A linear program in the form of (3.12) is said to be in standard
equality form. In preparation for our discussion of duality below, we also call (3.12)
the primal problem.

EXERCISE 3.2.3. Prove that the feasible set 𝐹 = {𝑥 ∈ R𝑛 : 𝐴𝑥 = 𝑏 and 𝑥 ⩾ 0} for
the linear program (3.12) is a polyhedron.

Standard equality form is more general than it first appears. In fact the original
formulation (3.8)–(3.9) can be manipulated into standard equality form via a se-
quence of transformations. Hence, when treating theory below, we can specialize to
standard equality form without losing generality.

Although we omit full details on the set of necessary transformations (which can
be found in Bertsimas and Tsitsiklis (1997) and many other sources), let’s gain some
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understanding by converting the firm optimization problem into standard equality
form. To simplify notation, we address this task when 𝑛 = 3, although the general
case is almost identical.

As above, we switch to minimization of a linear constraint by using the fact that
maximizing revenue is equivalent to minimizing ∑

𝑖(−𝑝𝑖)𝑞𝑖. Next, we need to con-
vert the two inequality constraints (3.10) into equality constraints. We do this by
introducing slack variables 𝑠𝑚 and 𝑠ℓ and rewriting the constraints as

3∑
𝑖=1

𝑚𝑖𝑞𝑖 + 𝑠𝑚 = 𝑀,
3∑
𝑖=1

ℓ𝑖𝑞𝑖 + 𝑠ℓ = 𝐿 and 𝑞1, 𝑞2, 𝑞3, 𝑠𝑚, 𝑠ℓ ⩾ 0.

Indeed, we can see that requiring∑3
𝑖=1 𝑚𝑖𝑞𝑖+𝑠𝑚 = 𝑀 and 𝑠𝑚 ⩾ 0 is the same as imposing∑3

𝑖=1 𝑚𝑖𝑞𝑖 ⩽ 𝑀, and the same logic extends to the labor constraint.
Setting 𝑥 := (𝑞1, 𝑞2, 𝑞3, 𝑠𝑚, 𝑠ℓ), we can now express the problem as

min
𝑥

𝑐⊤𝑥 where 𝑐⊤ := (−𝑝1,−𝑝2,−𝑝3, 0, 0)

subject to

(
𝑚1 𝑚2 𝑚3 1 0
ℓ1 ℓ2 ℓ3 0 1

) ©«

𝑞1
𝑞2
𝑞3
𝑠𝑚
𝑠ℓ

ª®®®®®®¬
=

(
𝑀
𝐿

)
and 𝑥 ⩾ 0.

This is a linear program in standard equality form.

3.2.2.5 Duality for Linear Programs

One of the most important facts concerning linear programming is that strong duality
always holds. Let us state the key results. The dual problem corresponding to the
standard equality form linear program (3.12) is

𝐷 = max
𝜃∈R𝑚

𝑏⊤𝜃 subject to 𝐴⊤𝜃 ⩽ 𝑐. (3.13)

Readers who have covered §6.1.7 in the appendix will be able to see the origins
of this expression. In particular, by formula (6.19) in the appendix, the dual problem
corresponding to the standard equality form linear program (3.12) can be expressed
as

𝐷 = max
𝜃∈R𝑚

min
𝑥∈𝐸

𝐿(𝑥, 𝜃) where 𝐿(𝑥, 𝜃) := 𝑐⊤𝑥 + 𝜃⊤(𝑏 − 𝐴𝑥) (3.14)
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and 𝐸 = R𝑛
+. (We can also treat the inequality 𝑥 ⩾ 0 via a multiplier but this turns out

to be unnecessary.) Now observe that

min
𝑥∈𝐸

𝐿(𝑥, 𝜃) = 𝑏⊤𝜃 +min
𝑥⩾0

𝑥⊤(𝑐 − 𝐴⊤𝜃) =
{
𝑏⊤𝜃 if 𝐴⊤𝜃 ⩽ 𝑐

−∞ otherwise
.

Since the dual problem is to maximize this expression over 𝜃 ∈ R𝑛, we see immedi-
ately that a 𝜃 violating 𝐴⊤𝜃 ⩽ 𝑐 will never be chosen. Hence the dual to the primal
problem (3.12) is (3.13).

3.2.2.6 Strong Duality

As shown in §6.1.7.1 of the appendix, the inequality 𝐷 ⩽ 𝑃 always holds, where 𝑃
is the primal value in (3.12). This is called weak duality. If 𝑃 = 𝐷, then strong
duality is said to hold. Unlike weak duality, strong duality requires conditions on the
primitives.

The next theorem states that, for linear programs, strong duality holds whenever
a solution exists. A proof can be obtained either through Dantzig’s simplex method
or via Farkas’ Lemma. See, for example, Ch. 4 of Bertsimas and Tsitsiklis (1997) or
Ch. 6 of Matousek and Gärtner (2007).
Theorem 3.2.1 (Strong duality for linear programs). The primal problem (3.12) has
a finite minimizer 𝑥∗ if and only if the dual problem (3.13) has a finite maximizer 𝜃∗. If
these solutions exist, then 𝑐⊤𝑥∗ = 𝑏⊤𝜃∗.

Strong duality of linear programs has many important roles. Some of these are al-
gorithmic: duality can be used to devise efficient solution methods for linear program-
ming problems. Another way that duality matters for economists is that it provides
deep links between optimality and competitive equilibria, as we show below.

3.2.2.7 Complementary Slackness

We say that 𝑥∗ ⩾ 0 and 𝜃∗ ∈ R𝑚 satisfy the complementary slackness conditions for
the linear program (3.12) when

𝜃∗𝑖

(
𝑏𝑖 −

𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑥
∗
𝑗

)
= 0 for all 𝑖 ∈ [𝑚] (3.15)

𝑥∗𝑗

(
𝑐 𝑗 −

𝑚∑
𝑖=1

𝑎𝑖 𝑗𝜃
∗
𝑖

)
= 0 for all 𝑗 ∈ [𝑛]. (3.16)
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While it is possible to derive these expressions from the complementary slackness in
the KKT conditions in §6.1.7.3, a better approach is to connect them directly to the
saddle point condition.

To see how this works, suppose that 𝑥∗ ⩾ 0 is feasible for the primal problem
and 𝜃∗ ∈ R𝑚 is feasible for the dual problem. If (𝑥∗, 𝜃∗) is a saddle point of 𝐿, then
the complementary slackness conditions (3.15)–(3.16) must hold. Indeed, (3.15) is
trivial when 𝑥∗ is feasible, since 𝐴𝑥∗ = 𝑏. At the same time, (3.16)must be true because
violation implies that

𝑥∗𝑗

(
𝑐 𝑗 −

𝑚∑
𝑖=1

𝑎𝑖 𝑗𝜃
∗
𝑖

)
> 0 for some 𝑗 ∈ [𝑛],

due to dual feasibility (i.e., 𝐴⊤𝜃∗ ⩽ 𝑐) and 𝑥∗ ⩾ 0. But then (𝑥∗, 𝜃∗) is not a saddle
point of 𝐿, since changing the 𝑗-th element of 𝑥∗ to zero strictly reduces the Lagrangian

𝐿(𝑥, 𝜃) = 𝑐⊤𝑥 + 𝜃⊤(𝑏 − 𝐴𝑥) = 𝑥⊤(𝑐 − 𝐴⊤𝜃) + 𝜃⊤𝑏.

By sharpening this argument, it is possible to show that, for linear programs, the
complementary slackness conditions are exact necessary and sufficient conditions for
a saddle point of the Lagrangian. This leads to the next theorem.
Theorem 3.2.2. If 𝑥∗ ⩾ 0 is feasible for the primal problem and 𝜃∗ is feasible for the dual
problem, then the following statements are equivalent:
(i) 𝑥∗ is optimal for the primal problem and 𝜃∗ is optimal for the dual problem.
(ii) The pair (𝑥∗, 𝜃∗) obeys the complementary slackness conditions (3.15)–(3.16).

Chapter 4 of Bertsimas and Tsitsiklis (1997) provides more discussion and a full
proof of Theorem 3.2.2. Below, we illustrate some of the elegant connections between
complementary slackness and equilibria in competitive economic environments.

3.2.2.8 The Simplex Algorithm

Linear programming is challenging in high-dimensional settings, partly because the
linear objective function implies that solutions are not interior. The first efficient solu-
tion methods for linear programs appeared in the 1930s and 1940s, starting with the
simplex method of Kantorovich and Dantzig. As the simplex method began to prove
its worth, linear programming grew into a technique of enormous practical impor-
tance. Operations research, communication and production systems began to make
heavy use of linear programs.
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The simplex algorithm makes use of the following result, which is proved in The-
orem 2.7 of Bertsimas and Tsitsiklis (1997).

Theorem 3.2.3. If the linear program (3.12) has an optimal solution, then it also has
an optimal solution that is an extreme point of the feasible set.

(An extreme point of a polyhedron was defined in §6.1.5.1. The feasible set was
shown to be a polyhedron in Exercise 3.2.3.)

The simplex algorithm makes use of Theorem 3.2.3 by walking along edges of the
polyhedron that forms the feasible set, from one extreme point to another, seeking at
each step a new extreme point (which coincides with a vertex of the polyhedron) that
strictly lowers the value of the objective function. Details can be found in Bertsimas
and Tsitsiklis (1997) and Matousek and Gärtner (2007).

3.3 Optimal Transport

Next we turn to optimal flows across networks. One simple—but computationally
nontrivial—example of a network flow problem is the linear assignment problem we
analyzed in §3.2.1. There, the vertices are either workers or jobs and the edges are
assignments, chosen optimally to minimize aggregate cost. More general network
flow problems extend these ideas, allowing endogenous formation of networks inmore
sophisticated settings. The general structure is that vertices are given, while edges and
weights are chosen to optimize some criterion. There are natural applications of these
ideas in trade, transportation and communication, as well as less obvious applications
within economics, finance, statistics and machine learning.

In our study of network flows, we begin with the optimal transport problem, which
is the most important special case of the general network flow problem. (In fact, as we
show in §3.3.4.3, there exists a technique by which the general network flow problem
can always be reduced to an optimal transport problem.)

3.3.1 The Monge-Kantorovich Problem

Optimal transport is a classic problem dating back to the work of Gaspard Monge
(1746–1818), who studied, among many other things, the transport of earth for con-
struction of forts. This simple-sounding problem—how to transport a pile of given
shape into a new pile of given shape at minimum cost—can, after normalization, be



CHAPTER 3. OPTIMAL FLOWS 127

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

transform

φ

ψ

Figure 3.10: Transforming distribution 𝜑 into distribution 𝜓

identified with the problem of least cost transformation of one distribution into an-
other distribution. Figure 3.10 gives a visualization of transforming one distribution
into another in one dimension (although the cost function is not specified).

It turns out that, by varying the notion of cost, this transportation problem provides
a highly flexible method for comparing the distance between two distributions, with
the essential idea being that distributions are regarded as “close” if one can be trans-
formed into the other at low cost. The resulting distance metric finds wide-ranging
and important applications in statistics, machine learning and various branches of
applied mathematics.2

In economics, optimal transport has important applications in transportation and
trade networks, as well as inmatching problems, econometrics, finance and so on (see,
e.g., Galichon (2018)). As such, it is not surprising that economists have contributed
a great deal to the optimal transport problem, with deep and fundamental work be-
ing accomplished by the great Russian mathematical economist Leonid Kantorovich
(1912–1986), as well as the Dutch economist Tjalling Koopmans (1910–1985), who
shared the Nobel Prize with Kantorovich in 1975 for their work on linear program-
ming and optimal transport.3

We start our discussion with a straightforward presentation of the mathematics.
Then, in §3.3.3, we will connect the mathematics to economic problems, and show

2For example, in image processing, two images might be regarded as close if the cost of transforming
one into the other by altering individual pixels is small. Even now, in image processing and some
branches of machine learning, one of the metrics over the set of probability distributions arising from
optimal transport methods is referred to as “earth mover’s distance” in honor of the work of Monge.

3The optimal transport problem continues to attract the interest of many brilliant mathematicians
and economists, with two recent Fields Medals being awarded for work on optimal transport. The first
was awarded to Cedric Villani in 2010, while the second was to Alessio Figalli in 2018. Note that the
Field Medal is only awarded every four years (unlike the Nobel Prize, which is annual).
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the deep connections between transport, duality, complementary slackness and com-
petitive equilibria.

3.3.1.1 Monge’s Formulation

We start with the classical problem of Monge, which is simple to explain. We take
as given two finite sets X and Y, paired with distributions 𝜑 ∈ 𝒟(X) and 𝜓 ∈ 𝒟(Y).
Elements of X and Y are called locations. To avoid tedious side cases, we assume
throughout that 𝜑 and 𝜓 are strictly positive on their domains. In addition, we are
supplied with a cost function 𝑐 : X × Y → R+. Our goal is to “transport” 𝜑 into 𝜓 at
minimum cost. That is, we seek to solve

min
𝑇

∑
𝑥

𝑐(𝑥, 𝑇 (𝑥)) (3.17)

over the set of all maps 𝑇 from X onto Y satisfying∑
𝑥

𝜑(𝑥)1{𝑇 (𝑥) = 𝑦} = 𝜓(𝑦) for all 𝑦 ∈ Y. (3.18)

The constraint says 𝑇 must be such that, for each target location 𝑦, the sum of all
probability mass sent to 𝑦 is equal to the specified quantity 𝜓(𝑦). The symbol ∑𝑥 is
short for ∑

𝑥∈X. In this context, 𝑇 is often called a Monge map.

EXERCISE 3.3.1. While we required 𝑇 to map X onto Y, meaning that every 𝑦 ∈ Y
has some preimage, this condition is already implied by (3.18). Explain why.

The problem is easily illustrated in the current discrete setting. Figure 3.11 gives a
visualizationwhen locations are enumerated asX = {𝑥1, . . . , 𝑥7} andY = {𝑦1, 𝑦2, 𝑦3, 𝑦4},
with both X and Y being subsets of R2. For simplicity, 𝜑(𝑥𝑖) is written as 𝜑𝑖 and sim-
ilarly for 𝜓(𝑦 𝑗). Vertex size is proportional to probability mass assigned to the vertex.
The edges represent one feasible Monge map.

Discreteness and lack of convexity in the constraint (3.18) imply that the Monge
problem is, in general, hard to solve. Truly fundamental progress had to wait un-
til Kantorovich showed how convexification can greatly simplify the problem. The
convexification process requires shifting the problem to a higher dimensional space,
but the cost of higher dimensions is outweighed by the regularization provided by
convexity and lack of discreteness. We study the Kantorovich formulation in §3.3.1.3.

EXERCISE 3.3.2. Another issue with the Monge formulation of optimal transport is
that existence of a solution can easily fail. Provide an example where no Monge map
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Figure 3.11: A Monge map transporting 𝜑 to 𝜓

exists in the setting where X and Y are finite.

3.3.1.2 Assignment as Optimal Transport

The linear assignment problem studied in §3.2.1, with cost 𝑐(𝑖, 𝑗) of training worker 𝑖
for job 𝑗, is a special case of optimal transport. All we have to do is set X = Y = [𝑛]
and take 𝜑 and 𝜓 to be discrete uniform distributions on [𝑛].

EXERCISE 3.3.3. Show that, in this setting, 𝑇 is a Monge map if and only if 𝑇 is a
bijection from [𝑛] to itself.

Since 𝑇 must be a bijection on [𝑛], which is also a permutation of [𝑛], the objective
of the optimal transport problem under the current configuration is

min
𝑇∈𝒫

𝑛∑
𝑖=1

𝑐(𝑖, 𝑇 (𝑖)), (3.19)

where 𝒫 is the set of all permutations of [𝑛]. This is the same optimization problem
as the linear assignment problem in (3.7).

3.3.1.3 Kantorovich’s Relaxation of the Monge Problem

The basic idea in Kantorovich’s relaxation of the Monge problem is to allow mass
located at arbitrary 𝑥 ∈ X to be mapped to multiple locations in Y, rather than just
one. This means that we are no longer seeking a function 𝑇, since, by definition, a
function can map a given point to only one image. Instead, we seek a “transport plan”
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Figure 3.12: Kantorovich relaxation of the Monge problem

that sends some fraction 𝜋(𝑥, 𝑦) of the mass at 𝑥 to 𝑦. The plan is constrained by the
requirement that, for all 𝑥 and 𝑦,

(i) total probability mass sent to 𝑦 is 𝜓(𝑦) and
(ii) total probability mass sent from 𝑥 is 𝜑(𝑥).

These constraints on this transport plan mean that it takes the form of a “coupling,”
which we define below.

Figure 3.12 illustrates a feasible transport plan in the discrete setting. As with
Figure 3.11, 𝜑(𝑥𝑖) is written as 𝜑𝑖 and similarly for 𝜓(𝑦 𝑗), while vertex size is propor-
tional to probability mass. Unlike the Monge setting of Figure 3.11, the mass at each
vertex 𝜑𝑖 can be shared across multiple 𝜓 𝑗, as long as the constraints are respected.

Let’s write the constraints more carefully. We recall that, in probability theory,
a coupling is a joint distribution with specific marginals. More precisely, given 𝜑 in
𝒟(X) and 𝜓 in𝒟(Y), a coupling of (𝜑, 𝜓) is an element 𝜋 of𝒟(X×Y) with marginals
𝜑 and 𝜓. This restriction on marginals means that∑

𝑦

𝜋(𝑥, 𝑦) = 𝜑(𝑥) for all 𝑥 ∈ X and (3.20)∑
𝑥

𝜋(𝑥, 𝑦) = 𝜓(𝑦) for all 𝑦 ∈ Y (3.21)

The constraints in (3.20)–(3.21) require that

(i) for any 𝑥 ∈ X, the total amount of probability mass flowing out of 𝑥 is 𝜑(𝑥) and
(ii) for any 𝑦 ∈ Y, the total amount of probability mass flowing into 𝑦 is 𝜓(𝑦).

In the present setting, a coupling is also called a transport plan.
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EXERCISE 3.3.4. The constraints (3.20)–(3.21), which define a coupling 𝜋 of 𝜑 and
𝜓, generalize the Monge constraint in (3.18). To see this, let 𝑇 be a map satisfying
(3.18) and set

𝜋(𝑥, 𝑦) = 𝜑(𝑥)1{𝑇 (𝑥) = 𝑦}

on X×Y, so that 𝜋 is the joint distribution that puts all mass on the image of 𝑇. Prove
that (3.20)–(3.21) both hold.

Let Π(𝜑, 𝜓) be the set of all couplings of 𝜓 and 𝜑. Taking 𝜑, 𝜓 and the cost func-
tion 𝑐 as given, the general Monge–Kantorovich problem, also called the optimal
transport problem, is to solve

𝑃 := min
𝜋
⟨𝑐, 𝜋⟩𝐹 subject to 𝜋 ∈ Π(𝜑, 𝜓). (3.22)

where
⟨𝑐, 𝜋⟩𝐹 :=

∑
𝑥

∑
𝑦

𝑐(𝑥, 𝑦)𝜋(𝑥, 𝑦)

is the Frobenius inner product of 𝑐 and 𝜋, treated as |X| × |Y| matrices. The sum
in ⟨𝑐, 𝜋⟩𝐹 measures the total cost of transporting 𝜑 into 𝜓 under the plan 𝜋. There is
linearity embedded in this cost formulation, since doubling the amount sent from 𝑥
to 𝑦 scales the associated cost at rate 𝑐(𝑥, 𝑦).

We call any 𝜋 solving (3.22) an optimal plan. Since we are maximizing over a
finite set, at least one such plan exists.

Remark 3.3.1. The problem (3.22) is sometimes expressed in terms of random vari-
ables, as follows. In this setting, a coupling 𝜋 in Π(𝜑, 𝜓) is identified with a pair of
random elements (𝑋, 𝑌 ) such that 𝑋 𝑑

= 𝜑 and 𝑌 𝑑
= 𝜓. We can then write

𝑃 = min
(𝑋,𝑌 )

E 𝑐(𝑋, 𝑌 ) subject to (𝑋, 𝑌 ) ∈ 𝒟(X × Y) with 𝑋
𝑑
= 𝜑 and 𝑌 𝑑

= 𝜓.

EXERCISE 3.3.5. One of the most important features of the Kantorovich relaxation
is that, for given 𝜑 and 𝜓, the constraint set is convex. To verify this, we let 𝑛 = |X|
and 𝑚 = |Y|, associate each 𝑥 ∈ X with some 𝑖 ∈ [𝑛], associate each 𝑦 ∈ Y with some
𝑗 ∈ [𝑚], and treat 𝑐 and 𝜋 as 𝑛 × 𝑚 matrices, with typical elements 𝑐𝑖 𝑗 and 𝜋𝑖 𝑗. The
constraints are

𝜋1𝑚 = 𝜑 and 𝜋⊤1𝑛 = 𝜓, (3.23)
where 1𝑘 is a 𝑘 × 1 vector of ones. With this notation, prove that the set Π(𝜑, 𝜓) of
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𝜋 ∈ M𝑛×𝑚 satisfying the constraints is convex, in the sense that

𝜋, �̂� ∈ Π(𝜑, 𝜓) and 𝛼 ∈ [0, 1] =⇒ 𝛼𝜋 + (1 − 𝛼)�̂� ∈ Π(𝜑, 𝜓).

3.3.1.4 Optimal Transport as a Linear Program

With some relatively simple manipulations, the general optimal transport problem can
bemapped into a standard equality form linear program. This provides two significant
benefits. First, we can apply duality theory, which yields important insights. Second,
on the computational side, we can use linear program solvers to calculate optimal
plans.

To map the optimal transport problem into a linear program, we need to convert
matrices into vectors. Will use the vec operator, which takes an arbitrary 𝐴 ∈ M𝑛×𝑚

and maps it to a vector in R𝑛𝑚 by stacking its columns vertically. For example,

vec
(
𝑎11 𝑎12
𝑎21 𝑎22

)
=

©«
𝑎11
𝑎21
𝑎12
𝑎22

ª®®®¬ .
In this section we adopt the notational conventions in Exercise 3.3.5. The ob-

jective function ⟨𝑐, 𝜋⟩𝐹 for the optimal transport problem can now be expressed as
vec(𝑐)⊤ vec(𝜋).

To rewrite the constraints in terms of vec(𝜋), we use the Kronecker product, which
is denoted by ⊗ and defined as follows. Suppose 𝐴 is an 𝑚× 𝑠matrix with entries (𝑎𝑖 𝑗)
and that 𝐵 is an 𝑛 × 𝑡 matrix. The Kronecker product 𝐴 ⊗ 𝐵 of 𝐴 and 𝐵 is the 𝑚𝑛 × 𝑠𝑡
matrix defined, in block matrix form, by

𝐴 ⊗ 𝐵 =

©«
𝑎11𝐵 𝑎12𝐵 . . . 𝑎1𝑠𝐵
𝑎21𝐵 𝑎22𝐵 . . . 𝑎2𝑠𝐵

...
𝑎𝑚1𝐵 𝑎𝑚2𝐵 . . . 𝑎𝑚𝑠𝐵

ª®®®®¬
.

It can be shown that Kronecker products and the vec operator are connected by the
following relationship: for conformable matrices 𝐴, 𝐵 and 𝑀, we have

vec(𝐴𝑀𝐵) = (𝐵⊤ ⊗ 𝐴) vec(𝑀). (3.24)
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Using (3.24) and the symbol 𝐼𝑘 for the 𝑘 × 𝑘 identity matrix, we can rewrite the first
constraint in (3.23) as

𝜑 = 𝐼𝑛𝜋1𝑚 = vec(𝐼𝑛𝜋1𝑚) = (1⊤𝑚 ⊗ 𝐼𝑛) vec(𝜋). (3.25)

EXERCISE 3.3.6. Show that the second constraint in (3.23) can be expressed as

𝜓 = (𝐼𝑚 ⊗ 1⊤𝑛 ) vec(𝜋). (3.26)

Now, using block matrix notation and setting

𝐴 :=
(
1⊤𝑚 ⊗ 𝐼𝑛
𝐼𝑚 ⊗ 1⊤𝑛

)
and 𝑏 :=

(
𝜑
𝜓

)
,

the optimal transport problem can be expressed as the standard equality form linear
program

min
𝑥

vec(𝑐)⊤𝑥 over 𝑥 ∈ R𝑛𝑚
+ such that 𝐴𝑥 = 𝑏. (3.27)

Finally, for a given solution 𝑥, the transport plan is recovered by inverting 𝑥 = 𝑣𝑒𝑐(𝜋).

3.3.1.5 Implementation

Listing 1 is a function that implements the above steps, given flat (one-dimensional)
arrays phi and psi representing the distributions over the source and target locations,
plus a two-dimensional array c representing transport costs. (The method argument
highs-ipm tells linprog to use a particular interior point method, details of which
can be found in the linprog documentation. Simplex and other methods give similar
results.)

Notice that in Listing 1, the reshape order is specified to F. This tells NumPy to
reshape with Fortran column-major order, which coincides with the definition of the
vec operator described in §3.3.1.4. (The Python vectorize operation defaults to row-
major order, which concatenates rows rather than stacking columns. In contrast,
Julia uses column-major by default.)

Let’s call this function for the very simple problem

𝜑 =

(
0.5
0.5

)
, 𝜓 =

(
1
0

)
and 𝑐 =

(
1 1
1 1

)
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import numpy as np
from scipy.optimize import linprog

def ot_solver(phi, psi, c, method='highs-ipm'):
"""
Solve the OT problem associated with distributions phi, psi
and cost matrix c.

Parameters
----------
phi : 1-D array

Distribution over the source locations.
psi : 1-D array

Distribution over the target locations.
c : 2-D array

Cost matrix.
"""
n, m = len(phi), len(psi)

# vectorize c
c_vec = c.reshape((m * n, 1), order='F')

# Construct A and b
A1 = np.kron(np.ones((1, m)), np.identity(n))
A2 = np.kron(np.identity(m), np.ones((1, n)))
A = np.vstack((A1, A2))
b = np.hstack((phi, psi))

# Call solver
res = linprog(c_vec, A_eq=A, b_eq=b, method=method)

# Invert the vec operation to get the solution as a matrix
pi = res.x.reshape((n, m), order='F')
return pi

Listing 1: Function to solve a transport problem via linear programming
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With these primitives, all mass from 𝜑1 and 𝜑2 should be sent to 𝜓1. To implement
this problem we set

phi = np.array((0.5, 0.5))
psi = np.array((1, 0))
c = np.ones((2, 2))

and then call ot_solver via

ot_solver(phi, psi, c)

The output is as expected:

array([[0.5, 0. ],
[0.5, 0. ]])

3.3.1.6 Python Optimal Transport

In the case of Python, the steps above have been automated by the Python Optimal
Transport package, due to Flamary et al. (2021). For the simple problem from §3.3.1.5
we run

import ot
ot.emd(phi, psi, c) # Use simplex method via the emd solver

The output is again equal to

array([[0.5, 0. ],
[0.5, 0. ]])

Figure 3.13 shows an example of an optimal transport problem solved using the
Python Optimal Transport package. The interpretation is similar to Figure 3.12, al-
though the number of vertices is larger. In addition, the edges show the optimal
transport configuration, in the sense that 𝜋∗, the optimal transport plan, is treated as
the adjacency matrix for the graph. (The figure shows the unweighted graph, with an
arrow drawn from 𝜑𝑖 to 𝜓 𝑗 whenever 𝜋∗𝑖 𝑗 > 0.) The optimal transport plan is obtained
by converting the transport problem into a linear program, as just described, and ap-
plying the simplex method. Although there are 32 nodes of each type, the problem is
solved by the simplex routine in less than one millisecond.
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Figure 3.13: An optimal transport problem solved by linear programming
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3.3.1.7 Kantorovich Relaxation and Linear Assignment

We showed in §3.3.1.2 that the linear assignment problem studied in §3.2.1 is a special
case of optimal transport, where 𝜑 and 𝜓 become discrete uniform distributions on
[𝑛]. Moreover, as we have just seen, Kantorovich’s relaxation method allows us to
apply linear programming. This leads to fast solutions.

In the discussion in §3.2.1 we used 𝑛 = 40. Let’s start here with 𝑛 = 4, to illustrate
themethod, and then try with 𝑛 = 40. Thematrix 𝑐(𝑖, 𝑗) of costs, which is the only other
primitive, will be generated randomly as an independent array of uniform random
variables: Then we apply the Python Optimal Transport (POT) library, as in §3.3.1.6.

Here is our set up:

import numpy as np
import ot

n = 4
phi = np.ones(n)
psi = np.ones(n)

We have broken the rule that 𝜑 and 𝜓 should sum to one. This could be fixed
easily by using np.ones(n)/n instead of np.ones(n), but the POT library does not
care (as long as np.sum(phi) equals np.sum(psi)) and, moreover, the idea of putting
unit mass everywhere is natural, since each element of 𝜑 represents one worker, and
each element of 𝜓 represents one job.

Now we build the cost matrix:

c = np.random.uniform(size=(n, n))

The output is

array([[0.03841, 0.32896, 0.55989, 0.41682],
[0.91527, 0.24566, 0.26022, 0.64510],
[0.96275, 0.44089, 0.79274, 0.93065],
[0.40454, 0.87307, 0.43555, 0.54903]])

(For example, the cost of retraining worker 1 for job 2 is 0.32896.) Finally, we call
the solver:

ot.emd(phi, psi, c)
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The output is

array([[1., 0., 0., 0.],
[0., 0., 1., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.]])

This is a permutationmatrix, which provides another way to express a permutation
of [𝑛]. The first row tells us that worker 1 is assigned to job 1, the second tells us that
worker 2 is assigned to job 3, and so on.

If we now set 𝑛 = 40 and rerun the code, the line ot.emd(phi, psi, c), which
calls the simplex-based solver, runs in less than 1 millisecond on a mid-range laptop.
This is a remarkable improvement on the 2.5 × 1030 year estimate for the brute force
solver we obtained in §3.2.1.

3.3.1.8 Tight Relaxation

Notice that the solution we obtained for the linear assignment problem using the
simplex method does not split mass, as permitted by the Kantorovich relaxation. For
example, we do not send half of a worker to one job and the other half to another.
This is convenient but why does it hold?

While we omit the details, the basic idea is that a general Kantorovich transport
plan is a bistochastic matrix, and all such matrices can be formed as convex combi-
nations of permutation matrices. (This is called Birkhoff’s Theorem.) In other words,
the permutation matrices are extreme points of the set of bistochastic matrices. More-
over, Theorem 3.2.3 tells us that any optimizer of a linear program will be an extreme
point—in this case, a permutation matrix.

3.3.2 Kantorovich Duality

One of the greatest achievements of Kantorovich was to show that the optimal trans-
port problem can be connected to a dual problem, and how that dual problem can be
used to characterize solutions. This work anticipated much of the later development
of duality theory for arbitrary linear programs.

Throughout this section, in stating the main results, we use the notation

⟨ 𝑓 , 𝜑⟩ =
∑
𝑥

𝑓 (𝑥)𝜑(𝑥) for 𝑓 ∈ RX and 𝜑 ∈ 𝒟(X).
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This is just the usual inner product, when we think of 𝑓 and 𝜑 as vectors inR|X|. Also,
given a cost function 𝑐 on X × Y, let ℱ𝑐 be all pairs (𝑤, 𝑝) in RX ×RY such that

𝑝(𝑦) ⩽ 𝑐(𝑥, 𝑦) + 𝑤(𝑥) on X × Y. (3.28)

One part of Kantorovich’s duality results runs as follows.

Theorem 3.3.1. For all 𝜑 ∈ 𝒟(X) and 𝜓 ∈ 𝒟(Y), we have 𝑃 = 𝐷, where

𝐷 := max
(𝑤,𝑝)
{⟨𝑝, 𝜓⟩ − ⟨𝑤, 𝜑⟩} subject to (𝑤, 𝑝) ∈ ℱ𝑐. (3.29)

Theorem 3.3.1 can now be understood as a special case of the more general result
that strong duality holds for linear programs, which we stated in Theorem 3.2.1. In
that spirit, let us verify Theorem 3.3.1 using Theorem 3.2.1, byworkingwith the linear
programming formulation of the optimal transport problem provided in §3.3.1.4.

To do this, we take that formulation, which is stated in (3.27), and apply the dual
formula in (3.13), which yields

𝐷 = max
𝜃∈R𝑛+𝑚

(
𝜑
𝜓

)⊤
𝜃 subject to

(
1⊤𝑚 ⊗ 𝐼𝑛
𝐼𝑚 ⊗ 1⊤𝑛

)⊤
𝜃 ⩽ vec(𝑐).

If we write the argument 𝜃 ∈ R𝑛+𝑚 as (−𝑤, 𝑝), so that we now maximize over the two
components −𝑤 ∈ R𝑛 and 𝑝 ∈ R𝑚, as well as transposing the constraint, we get

max
𝑤, 𝑝

{
𝑝⊤𝜓 − 𝑤⊤𝜑

}
subject to 𝑝⊤(𝐼𝑚 ⊗ 1⊤𝑛 ) − 𝑤⊤(1⊤𝑚 ⊗ 𝐼𝑛) ⩽ vec(𝑐)⊤

where 𝑤 ∈ R𝑛 and 𝑝 ∈ R𝑚. By using the definition of the Kronecker product and
carefully writing out the individual terms, it can be shown that the constraint in this
expression is equivalent to requiring that 𝑝 𝑗−𝑤𝑖 ⩽ 𝑐𝑖 𝑗 for all (𝑖, 𝑗) ∈ [𝑛]× [𝑚]. Recalling
that X has been mapped to [𝑛] and Y has been mapped to [𝑚], this is exactly the same
restriction as (3.28).

At this point it is clear that (3.29) is nothing but the dual of the linear program
formed from the optimal transport problem. The claims in Theorem 3.3.1 now follow
directly from the strong duality of linear programs (Theorem 3.2.1).

EXERCISE 3.3.7. Show that

⟨𝑐, 𝜋⟩ ⩾ ⟨𝑝, 𝜓⟩ − ⟨𝑤, 𝜑⟩ whenever 𝜋 ∈ Π(𝜑, 𝜓) and (𝑤, 𝑝) ∈ ℱ𝑐. (3.30)

Use this fact to provide a direct proof that weak duality holds for the optimal transport
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problem, in the sense that 𝐷 ⩽ 𝑃. (Here 𝑃 is defined in the primal problem (3.22) and
𝐷 is defined in the dual problem (3.29).)

3.3.3 Optimal Transport and Competitive Equilibria

The other major achievement of Kantorovich in the context of duality theory for opti-
mal transport was to connect optimality of transport plans with the existence of func-
tions 𝑤, 𝑝 from the dual problem such that a version of the complementary slackness
conditions holds. Here we present this result, not in the original direct formulation,
but rather through the lens of a competitive equilibrium problem. In doing so, we
illustrate some of the deep connections between prices, decentralized equilibria and
efficient allocations.

3.3.3.1 The Advisor’s Problem

We imagine the following scenario. Iron is mined at a finite collection of sites, which
we denote by X. We identify an element 𝑥 ∈ X with a point (𝑎, 𝑏) ∈ R2, which can
be understood as the location of the mine in question on a map. At the wish of the
queen, who seeks to defend the empire from greedy rivals, this iron is converted to
swords by blacksmiths. There are a number of talented blacksmiths in this country,
located at sites given by Y. As for X, each 𝑦 ∈ Y indicates a point in R2. Henceforth,
we refer to “mine 𝑥” rather than “the mine at 𝑥” and so on.

Each month, mine 𝑥 produces 𝜑(𝑥) ounces of iron ore, while blacksmith 𝑦 con-
sumes 𝜓(𝑦) ounces. We take these quantities as fixed. We assume that total supply
equals total demand, so that ∑

𝑥 𝜑(𝑥) =
∑

𝑦 𝜓(𝑦). For convenience, we normalize this
sum to unity. As a result, 𝜑 and 𝜓 are elements of 𝒟(X) and 𝒟(Y) respectively.

The cost of transporting from 𝑥 to 𝑦 is known and given by 𝑐(𝑥, 𝑦) per ounce. The
king’s chief advisor is tasked with allocating and transporting iron from the mines
to the blacksmiths, such that each blacksmith 𝑦 receives their desired quantity 𝜓(𝑦),
at minimum cost. A small amount of thought will convince you that the advisor’s
problem is a version of the optimal transport problem (3.22). We call this the primal
problem in what follows.

Operating in the days before Kantorovich, Dantzig and the electronic computer,
the advisor employs a large team of bean counters, instructing them to find the al-
location with least cost by trying different combinations. However, after a few days,
she realizes the futility of the task. (With infinite divisibility, which corresponds to
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our mathematical model, the number of allocations is infinite. If we replace infinite
divisibility with a finite approximation, the scale can easily be as large as that of the
matching problem discussed in §3.2.1, with only a moderate number of mines and
blacksmiths.)

3.3.3.2 The Guild’s Problem

At this point she has another idea. There is a guild of traveling salesmen, who buy
goods in one town and sell them in another. She seeks out the guild master and asks
him to bid for the project along the following lines. The guild will pay the queen’s
treasury𝑤(𝑥) per ounce for iron ore at mine 𝑥. It will then sell the iron at price 𝑝(𝑦) per
ounce to the queen’s representative at blacksmith 𝑦. The difference can be pocketed
by the guild, as long as all blacksmiths are provided with their desired quantities. The
guild master is asked to propose price functions 𝑤 and 𝑝.

The guildmaster sees at once that 𝑝 and𝑤must satisfy 𝑝(𝑦)−𝑤(𝑥) ⩽ 𝑐(𝑥, 𝑦) at each
𝑥, 𝑦, for otherwise the advisor, who is no ones fool, will see immediately that money
could be saved by organizing the transportation herself. Given this constraint, the
guildmaster seeks tomaximize aggregate profits, which is∑𝑦 𝑝(𝑦)𝜓(𝑦)−

∑
𝑥 𝑤(𝑥)𝜑(𝑥).

At this point it will be clear to you that the problem of the guild master is exactly that
of Kantorovich’s dual problem, as given in Theorem 3.3.1.

Since the advisor has given up on her team of bean counters, the guild master
employs them, and asks them to produce the optimal pair of prices. The bean coun-
ters set to work, trying different combinations of prices that satisfy the constraints.
However, without a systematic methodology to follow or fast computers to turn to,
their progress is slow. The advisor begins to fear that the coming war will be over
before the guild master replies.

3.3.3.3 Decentralized Equilibrium

At this point, it occurs to the advisor that yet another approach exists: privatize the
mines, abolish the guild, and let the traveling salesmen, mine owners and blacksmiths
make individual choices in order to maximize their profits. Purchase and sales prices,
as well as quantities transported from each mine to each blacksmith, will be deter-
mined by the free market.

Although the advisor predates Kantorovich, she reasons that competition will pre-
vent each salesman from profiteering, while the desire for profits will encourage high
levels of transportation andminimal waste. It turns out that this idea works amazingly
well, in the sense that we now describe.
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For the record, we define a competitive equilibrium for this market as pair of
price vectors (𝑤, 𝑝) in RX × RY and a set of quantities 𝜋 : X × Y → R+ such that the
following three conditions hold: For all (𝑥, 𝑦) in X × Y,∑

𝑣∈Y
𝜋(𝑥, 𝑣) = 𝜑(𝑥) and

∑
𝑢∈X

𝜋(𝑢, 𝑦) = 𝜓(𝑦) (RE)

𝑝(𝑦) ⩽ 𝑐(𝑥, 𝑦) + 𝑤(𝑥) (NA)
𝑝(𝑦) = 𝑐(𝑥, 𝑦) + 𝑤(𝑥) whenever 𝜋(𝑥, 𝑦) > 0. (IC)

Condition (RE) is a resource constraint that builds in the assumption no ore is
wasted or disposed. Condition (NA) imposes no arbitrage. If it is violated along route
(𝑥, 𝑦), then another salesman, of which we assume there are many, will be able to
gain business without suffering losses by offering a slightly higher purchase prices at
𝑥 or a slightly lower sales prices at 𝑦. Finally, condition (IC) is an incentive constraint,
which says that, whenever a route is active (in the sense that a nonzero quantity is
transported), prices are such that the salesmen do not lose money.

We do not claim that a competitive equilibrium will hold immediately and at every
instant in time. However, we reason, as the advisor does, that competitive equilibrium
has natural stability properties, as described in the previous paragraph. As such, we
predict it as a likely outcome of decentralized trade, provided that private property
rights are enforced (e.g., bandits are eliminated from the routes) and noncompetitive
behaviors are prevented (e.g., collusion by mine owners is met by suitably painful
punishments).

Taking 𝑐, 𝜑 and 𝜓 as given, we can state the following key theorem, which states
that any competitive equilibrium simultaneously solves both the advisor’s quantity
problem and the guild master’s price problem.

Theorem 3.3.2. If prices (𝑤, 𝑝) and 𝜋 ∈ M𝑛×𝑚 form a competitive equilibrium, then

(i) 𝜋 is an optimal transport plan, solving the primal problem (3.22), and
(ii) (𝑤, 𝑝) solves the Kantorovich dual problem (3.29).

To prove the theorem we will use the results from the next exercise.

EXERCISE 3.3.8. Let 𝐴 and 𝐵 be nonempty sets. Let 𝑓 and 𝑔 be real-valued on 𝐴 and
𝐵 such that 𝑓 (𝑎) ⩾ 𝑔(𝑏) for all (𝑎, 𝑏) ∈ 𝐴×𝐵 and, in addition, min𝑎∈𝐴 𝑓 (𝑎) = max𝑏∈𝐵 𝑔(𝑏).
Prove the following statement: If there exist 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑓 (𝑎) = 𝑔(𝑏),
then 𝑎 is a minimizer of 𝑓 on 𝐴 and 𝑏 is a maximizer of 𝑔 on 𝐵.
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We will use Exercise 3.3.8 in the following way. Let 𝐴 = Π(𝜑, 𝜓) and 𝐵 = ℱ𝑐. Let
𝑓 be the value of the primal and 𝑔 be the value of the dual. By (3.30), the ordering
𝑓 (𝜋) ⩾ 𝑔(𝑤, 𝑝) holds over all feasible 𝜋 ∈ 𝐴 and (𝑤, 𝑝) ∈ 𝐵 pairs. By strong duality,
we also have min𝜋∈𝐴 𝑓 (𝜋) = max(𝑤,𝑝)∈𝐵 𝑔(𝑤, 𝑝). Hence we need only show that, when
(𝑤, 𝑝) and 𝜋 form a competitive equilibrium, we have 𝑓 (𝜋) = 𝑔(𝑤, 𝑝).

Proof of Theorem 3.3.2. Suppose that (𝑤, 𝑝) and 𝜋 form a competitive equilibrium.
From (RE) we know that 𝜋 is feasible for the primal problem. From (NA) we know
that (𝑤, 𝑝) is feasible for the dual. Since the equality in the (IC) condition holds when
𝜋(𝑥, 𝑦) > 0, we can multiply both sides of this equality by 𝜋(𝑥, 𝑦) and sum over all 𝑥, 𝑦
to obtain ∑

𝑥,𝑦

𝑐(𝑥, 𝑦)𝜋(𝑥, 𝑦) =
∑
𝑦

𝑝(𝑦)𝜓(𝑦) −
∑
𝑥

𝑤(𝑥)𝜓(𝑥). (3.31)

The result of Exercise 3.3.8 now applies, so 𝜋 attains the minimum in the primal
problem and (𝑤, 𝑝) attains the maximum in the dual. □

We also have the following converse:
Theorem 3.3.3. If 𝜋 is an optimal transport plan, then there exists a pair (𝑤, 𝑝) ∈ RX×
RY such that the quantities determined by 𝜋 and the prices in (𝑤, 𝑝) form a competitive
equilibrium.

Proof. Let 𝜋 be an optimal plan. To be optimal, 𝜋 must be feasible, so 𝜋 ∈ Π(𝜑, 𝜓),
which implies that (RE) holds.

By Kantorovich’s duality theorem (Theorem 3.3.1), we can obtain (𝑤, 𝑝) ∈ ℱ𝑐 such
that (3.31) holds. Since (𝑤, 𝑝) ∈ ℱ𝑐 (NA) holds. From (NA) we have 𝑐(𝑥, 𝑦) + 𝑤(𝑥) −
𝑝(𝑦) ⩾ 0 for all 𝑥, 𝑦. From this and (3.31) we see that (IC) must be valid. We conclude
that 𝜋 and (𝑤, 𝑝) form a competitive equilibrium. □

3.3.4 The General Flow Problem

We now describe a general network flow problem that can be used to analyze a large
range of applications, from international trade to communication and assignment.
This general problem includes optimal transport as a special case.

Once we have introduced the problem, we show two results. First, the problem
can easily be formulated as a linear program and solved using standard linear pro-
gramming methods. Second, even though optimal transport is a strict subset of the
general flow problem, every general flow problem can be solved using a combination
of optimal transport and shortest path methods.
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Figure 3.14: The Silk Road (Source: Wikimedia Commons)

3.3.4.1 Problem Statement

We are interested in flow of a good or service across a network with 𝑛 vertices. This
network can be understood as a weighted directed graph (𝑉, 𝐸, 𝑐). To simplify nota-
tion, we label the nodes from 1 to 𝑛 and let 𝑉 = [𝑛]. Existence of an edge 𝑒 = (𝑖, 𝑗) ∈ 𝐸
with weight 𝑐(𝑖, 𝑗) indicates that the good can be shipped from 𝑖 to 𝑗 at cost 𝑐(𝑖, 𝑗). We
recall from §1.4.1 that ℐ(𝑖) is the set of direct predecessors of vertex 𝑖 (all 𝑢 ∈ 𝑉 such
that (𝑢, 𝑖) ∈ 𝐸) and 𝒪(𝑖) is the set of direct successors (all 𝑗 ∈ 𝑉 such that (𝑖, 𝑗) ∈ 𝐸).

A classic example is the famous Silk Road of antiquity, part of which is illustrated
in Figure 3.14. Silk was produced in eastern cities such as Loyang and Changan,
and then transported westward to satisfy final demand in Rome, Constantinople and
Alexandria. Towns such as Yarkand acted as trade hubs. Rather than covering the
whole route, traders typically traveled backward and forward between one pair of
hubs, where they knew the language and customs.4

Returning to the model, we allow for both initial supply of and final demand for
the good at every node (although one or both could be zero). Let 𝑠(𝑖) and 𝑑(𝑖) be
supply and demand at node 𝑖 respectively. Aggregate supply and demand over the

4Our use of the Silk Road as an example of a network flow problem is not original. Galichon (2018)
provides a highly readable treatment in the context of optimal transport.
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network are assumed to be equal, so that∑
𝑖∈𝑉

𝑠(𝑖) =
∑
𝑖∈𝑉

𝑑(𝑖). (3.32)

This can be understood as an equilibrium condition: prices have adjusted to equalize
initial supply and final demand in aggregate. We assume throughout that the vectors
𝑠 and 𝑑 are nonnegative with at least one positive element.

Let 𝑞(𝑖, 𝑗) be the amount of the good shipped from node 𝑖 to node 𝑗 for all 𝑖, 𝑗 ∈ 𝑉.
The minimum cost network flow problem is to minimize total shipping cost∑

𝑖∈𝑉

∑
𝑗∈𝑉

𝑐(𝑖, 𝑗)𝑞(𝑖, 𝑗), (3.33)

subject to the restriction that 𝑞 ⩾ 0 and

𝑠(𝑖) +
∑

𝑣∈ℐ(𝑖)
𝑞(𝑣, 𝑖) = 𝑑(𝑖) +

∑
𝑗∈𝒪(𝑖)

𝑞(𝑖, 𝑗) for all 𝑖 ∈ 𝑉. (3.34)

The left hand side of (3.34) is total supply to node 𝑖 (initial supply plus inflow from
other nodes), while the right hand side is total demand (final demand plus outflow
to other nodes).

EXERCISE 3.3.9. Although we presented them separately, the node-by-node re-
striction (3.34) implies the aggregate restriction (3.32). Explain why this is the case.

3.3.4.2 Optimality

There are several ways to transform the network flow problem into a linear program.
We follow the presentation in Bertsimas and Tsitsiklis (1997). We take 𝑚 = |𝐸 | to be
the total number of edges and enumerate them (in any convenient way) as 𝑒1, . . . , 𝑒𝑚.
Let’s say that 𝑒𝑘 leaves node 𝑖 if 𝑒𝑘 = (𝑖, 𝑗) for some 𝑗 ∈ [𝑛], and that 𝑒𝑘 enters node 𝑖
if 𝑒𝑘 = (ℓ, 𝑖) for some ℓ ∈ [𝑛]. Then we define the 𝑛 ×𝑚 node-edge incidence matrix
𝐴 by

𝐴 = (𝑎𝑖𝑘) with 𝑎𝑖𝑘 :=


1 if 𝑒𝑘 leaves 𝑖
−1 if 𝑒𝑘 enters 𝑖
0 otherwise.

Example 3.3.1. Consider the very simple minimum cost flow problem in Figure 3.15.
The shipment costs 𝑐(𝑖, 𝑗) are listed next to each existing edge. Initial supply is 10 at
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1
𝑠1 = 10
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4 𝑑4 = 10

41

11

Figure 3.15: A simple network flow problem

node 1 and zero elsewhere. Final demand is 10 at node 4 and zero elsewhere. We
enumerate the edges as

𝐸 = {𝑒1, . . . , 𝑒4} = {(1, 2), (1, 4), (2, 3), (3, 4)}. (3.35)

The node-edge incidence matrix is

𝐴 =
©«

1 1 0 0
−1 0 1 0
0 0 −1 1
0 −1 0 −1

ª®®®¬ .
Now, returning to the general case, we rearrange 𝑞 and 𝑐 into 𝑚 × 1 vectors (𝑞𝑘)

and (𝑐𝑘), where 𝑞𝑘 is the amount shipped along edge 𝑘 and 𝑐𝑘 is the cost. For example,
if 𝑒𝑘 = (𝑖, 𝑗), then 𝑞𝑘 = 𝑞(𝑖, 𝑗) and 𝑐𝑘 = 𝑐(𝑖, 𝑗). In addition, we set 𝑏 to be the vector in
R𝑛 with 𝑖-th element 𝑠(𝑖) − 𝑑(𝑖), which is net exogenous supply at node 𝑖.

EXERCISE 3.3.10. In this set up, show that (3.34) is equivalent to 𝐴𝑞 = 𝑏 in the
special case of Example 3.3.1.

EXERCISE 3.3.11. Let (𝐴𝑞) (𝑖) be the 𝑖-th row of 𝐴𝑞. Show that

(𝐴𝑞) (𝑖) =
∑
𝑗∈𝒪(𝑖)

𝑞(𝑖, 𝑗) −
∑

𝑣∈ℐ(𝑖)
𝑞(𝑣, 𝑖). (3.36)

Equation (3.36) tells us that the 𝑖-th row of 𝐴𝑞 give us the net outflow from node 𝑖
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under the transport plan 𝑞. Now, with ⟨𝑐, 𝑞⟩ :=
∑𝑚
𝑘=1 𝑐𝑘𝑞𝑘, the minimum cost network

flow problem can now be expressed as

min ⟨𝑐, 𝑞⟩ s.t. 𝑞 ⩾ 0 and 𝐴𝑞 = 𝑏. (3.37)

This is a linear program in standard equality form, to which we can apply any linear
programming solver. For Example 3.3.1, we run the following:

A = (( 1, 1, 0, 0),
(-1, 0, 1, 0),
( 0, 0, -1, 1),
( 0, -1, 0, -1))

b = (10, 0, 0, -10)
c = (1, 4, 1, 1)

result = linprog(c, A_eq=A, b_eq=b, method='highs-ipm')
print(result.x)

The output is [10. 0. 10. 10.]. Recalling the order of the paths in (3.35), this
means that the optimal transport plan is 𝑞(1, 4) = 0 and 𝑞(1, 2) = 𝑞(2, 3) = 𝑞(3, 4) = 10,
as our intuition suggests.

EXERCISE 3.3.12. Some network flow problems have capacity constraints, which
can bemodeled as amap 𝑔 : 𝐸→ [0,∞], alongwith the restriction 𝑞(𝑒) ⩽ 𝑔(𝑒) for all 𝑒 ∈
𝐸. (If 𝑔(𝑒) = +∞, there is no capacity constraint over shipping on edge 𝑒.) Formulate
this as a linear program and modify the code above, which solves Example 3.3.1, to
include the capacity constraint 𝑔(1, 2) = 5. Solve for the optimal plan.

EXERCISE 3.3.13. Explain how the generic optimal transport problem treated in
§3.3.1 is a special case of the minimum cost network flow problem.

3.3.4.3 Reduction to Optimal Transport

In Exercise 3.3.13, we saw how every optimal transport problem is a special kind of
minimum cost network flow problem. There is a sense in which the converse is also
true. In particular, we can use optimal transport methods to solve any network flow
problem, provided that we first modify the network flow problem via an application
of shortest paths.
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To explain how this works, we take the abstract network flow problem described
in §3.3.4.1, on the weighted digraph (𝑉, 𝐸, 𝑐), with 𝑉 = [𝑛], initial supply vector 𝑠 ∈ R𝑛

+
and final demand vector 𝑑 ∈ R𝑛

+. For the purposes of this section, we agree to call a
node 𝑖 with 𝑠(𝑖) − 𝑑(𝑖) > 0 a net supplier. A node 𝑖 with 𝑑(𝑖) − 𝑠(𝑖) > 0 will be called
a net consumer. Nodes with 𝑠(𝑖) = 𝑑(𝑖) will be called trading stations.

Example 3.3.2. In the left hand side of Figure 3.16, nodes 1 and 2 are net suppliers,
3 is a trading station and 4 and 5 are net consumers.

Example 3.3.3. In the Silk Road application, Rome would be a net consumer, where
final demand is large and positive, while initial supply is zero. A city such as Yarkand
should probably be modeled as a trading station, with 𝑠(𝑖) = 𝑑(𝑖) = 0.

The idea behind the reduction is to treat the net supplier nodes as source locations
and the net consumer nodes as target locations in an optimal transport problem. The
next step is to compute the shortest path (if there are multiple, pick any one) from
each net supplier 𝑖 to each net consumer 𝑗. Let 𝜌(𝑖, 𝑗) denote this path, represented
as a sequence of edges in 𝐸. The cost of traversing 𝜌(𝑖, 𝑗) is

�̂�(𝑖, 𝑗) :=
𝑚∑
𝑘=1

𝑐𝑘1{𝑒𝑘 ∈ 𝜌(𝑖, 𝑗)}.

Now the trading stations are eliminated and we solve the optimal transport problem
with

• X = the set of net suppliers,
• Y = the set of net consumers,
• 𝜑(𝑖) = 𝑠(𝑖) − 𝑑(𝑖) on X,
• 𝜓( 𝑗) = 𝑑( 𝑗) − 𝑠( 𝑗) on Y, and
• cost function �̂�(𝑖, 𝑗) as defined above.5

After we find the optimal transport plan 𝜋, the network minimum cost flow 𝑞𝑘 along
arbitrary edge 𝑒𝑘 ∈ 𝐸 is recovered by setting

𝑞𝑘 =
∑
𝑖∈X

∑
𝑗∈Y

𝜋(𝑖, 𝑗)1{𝑒𝑘 ∈ the shortest path from 𝑖 to 𝑗}.

5If no path exists from 𝑖 to 𝑗 then we set �̂�(𝑖, 𝑗) = ∞. Such settings can be handled in linear program-
ming solvers by adding capacity constraints. See, for example, Peyré and Cuturi (2019), Section 10.3.
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Figure 3.16: Reducing minimum cost optimal flow to optimal transport

EXERCISE 3.3.14. Recalling our assumptions on 𝑠 and 𝑑, prove that ∑
𝑖∈X 𝜑(𝑖) =∑

𝑗∈Y 𝜓( 𝑗) and that this sum is nonzero.

Remark 3.3.2. We have not imposed ∑
𝑖 𝜑(𝑖) =

∑
𝑗 𝜓( 𝑗) = 1, as required for the stan-

dard formulation of the optimal transport problem. But this normalization is only
used for convenience in exposition and most solvers do not require it.

Figure 3.16 illustrates the method. Trading station 3 is eliminated after the short-
est paths are computed.

3.4 Chapter Notes

Our treatment of shortest paths can be understood as a simplified version of both the
Bellman–Ford algorithm and Dijkstra’s algorithm, which are routinely used to solve
large shortest path planning problems. Our approach is intended to emphasize recur-
sive solution methods, which are valuable for analyzing a vast range of economic prob-
lems, from intertemporal modeling (see, e.g., Lucas and Stokey (1989) or Ljungqvist
and Sargent (2018)) to production chains (Kikuchi et al., 2021).

Betweenness centrality has been used to quantify the notion of “too connected to
fail,” which gained attention after the 2007–2008 global financial crisis. For exam-
ple, Huang et al. (2016) examine how betweenness centrality affects systemic risk.
Betweenness centrality is used to examine liquidity shocks in the interbank markey
by Chiu et al. (2020). Relatedly, Yun et al. (2019) propose a measure of “too central
to fail” based on the PageRank algorithm.

For a more in-depth treatment of linear programming, we recommend the excel-
lent textbooks by Bertsimas and Tsitsiklis (1997) and Matousek and Gärtner (2007).
For bedtime reading, Cook (2011) provides an entertaining introduction to some of
the main ideas and applications to network problems, including a review of compu-
tation.
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While §3.2.1 provided a rather whimsical introduction to matching and assign-
ment problems, such problems have great real world importance. Examples include
assigning kidney donors to recipients, mothers to maternity wards, doctors to hospi-
tals, students to schools, delivery drivers to orders and autonomous vehicles to riders.6
A brief history of assignment, matching problems and combinatorial optimization can
be found in Schrijver (2005). Greinecker and Kah (2021) study existence of stable
matchings in a setting with many agents.

Villani (2008) and Vershik (2013) provide extensive historical background on the
optimal transport problem. Vershik (2013) mentions some of the problems that Kan-
torovich faced, as a Soviet mathematicianworking in the time of Stalin and Khrushchev,
given that his main duality theorem for optimal transport can be seen as a proof that
competitive market equilibria attain the maximal transport plan.

In §3.3.2, we mentioned that Kantorovich’s work anticipated much of the later de-
velopment of duality theory for arbitrary linear programs. In fact, according to Vershik
(2013), Kantorovich anticipated much of the general theory of linear programming
itself, including providing a version of the simplex algorithm later rediscovered and
extended by Dantzig.

Optimal transport has a remarkably wide variety of applications, spread across
economics, econometrics, finance, statistics, artificial intelligence, machine learning
and other fields. Within economics, Galichon (2018) provides an excellent overview.
Charpentier et al. (2019) and Fajgelbaum and Schaal (2020) consider optimal trans-
port in spacial equilibria. Ocampo (2022) applies optimal transport measures to the
study of tasks and occupations. Beiglböck et al. (2022) review some of the major
milestones of modern finance theory and show their connections via optimal trans-
port. Connections to machine learning are surveyed in Kolouri et al. (2017).

The computational theory of optimal transport is now a major field. A high qual-
ity exposition can be found in Peyré and Cuturi (2019). Blanchet et al. (2018) use
computational optimal transport to solve for Cournot–Nash equilibria in mean-field
type games.

6The latter problem occurs in the field of Autonomous Mobility on Demand (AMoD). See, for ex-
ample, Ascenzi and Palanza (2021) or Simonetto et al. (2019).



Chapter 4

Markov Chains and Networks

Markov chains evolving on finite sets are a foundational class of stochastic processes.
These processes have been employed in quantitative economics to study stochastic
systems ranging from labor income to harvest outputs, firm productivity, stock prices,
unemployment dynamics, policy regimes, interest rates, and social mobility. Fortu-
nately, we are now well placed to study Markov chains, since such chains are most
naturally viewed as a special kind of weighted digraph. Moreover, graph-theoretic
properties such as connectedness and periodicity are key determinants of their dy-
namics. In this chapter we investigate these ideas.

4.1 Markov Chains as Digraphs

We begin with fundamental definitions and then investigate dynamics.

4.1.1 Markov Models

A finite Markov model is a weighted directed graph ℳ = (𝑆, 𝐸, 𝑝), where 𝑆 is the
(finite) set of vertices, 𝐸 is the set of edges and 𝑝 is the weight function, with the
additional restriction that ∑

𝑦 ∈𝒪(𝑥)
𝑝(𝑥, 𝑦) = 1 for all 𝑥 ∈ 𝑆. (4.1)

Figure 1.15 on page 38 presented an example of such a digraph.

151
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The set of vertices 𝑆 of a finite Markov model ℳ = (𝑆, 𝐸, 𝑝) is also called the state
space of the model, and vertices are called states. The two standard interpretations
are

(i) 𝑆 is a set of possible states for some random element (the state) and the weight
𝑝(𝑥, 𝑦) represents the probability that the state moves from 𝑥 to 𝑦 in one step.

(ii) 𝑆 is a set of possible values for some measurement over a large population (e.g.,
hours worked per week measured across a large cross-section of households)
and 𝑝(𝑥, 𝑦) is the fraction of agents that transition from state 𝑥 to state 𝑦 in one
unit of time.

These two perspectives are related in ways that we explore below.

4.1.1.1 Transition Matrices

Ifℳ is a finite Markov model, then the restriction (4.1) is equivalent to the statement
that the adjacency matrix associated with ℳ is stochastic (see §1.3.1.3 for the defini-
tion). Identifying 𝑆 = {poor,middle, rich} with {1, 2, 3}, the adjacency matrix for this
weighted digraph is

𝑃𝑎 =
©«
0.9 0.1 0.0
0.4 0.4 0.2
0.1 0.1 0.8

ª®¬ (4.2)

Since 𝑃𝑎 ⩾ 0 and rows sum to unity, 𝑃𝑎 is stochastic as required. In the context of
finite Markov models, the adjacency matrix of ℳ is also called the transition matrix.

Regarding notation, when 𝑆 has typical elements 𝑥, 𝑦, it turns out to be convenient
to write elements of the transition matrix 𝑃 as 𝑃(𝑥, 𝑦) rather than 𝑃𝑖 𝑗 or similar. We
can think of 𝑃 as extending the weight function 𝑝 from 𝐸 to the set of all (𝑥, 𝑦) pairs in
𝑆 × 𝑆, assigning zero whenever (𝑥, 𝑦) ∉ 𝐸. As such, for every possible choice of (𝑥, 𝑦),
the value 𝑃(𝑥, 𝑦) represents the probability of transitioning from 𝑥 to 𝑦 in one step.

The requirement that 𝑃 is stochastic can now be written as 𝑃 ⩾ 0 and∑
𝑦∈𝑆

𝑃(𝑥, 𝑦) = 1 for all 𝑥 ∈ 𝑆. (4.3)

The restriction in (4.3) just says that the state space is “complete:” after arriving at
𝑥 ∈ 𝑆, the state must now move to some 𝑦 ∈ 𝑆.

Using notation from §1.3.1, to say that 𝑃 is stochastic is the same as requiring that
each row of 𝑃 is in 𝒟(𝑆).



CHAPTER 4. MARKOV CHAINS AND NETWORKS 153

1 2 3 4 5
0.03

0.05

0.03

0.04

0.04

0.04

0.02

0.01

0.97 0.92 0.92 0.94 0.99

Figure 4.1: Cross-country GDP dynamics as a digraph

Example 4.1.1. A Markov model is estimated in the international growth dynamics
study of Quah (1993). The state is real GDP per capita in a given country relative to
the world average. Quah discretizes the possible values to 0–1/4, 1/4–1/2, 1/2–1,
1–2 and 2–∞, calling these states 1 to 5 respectively. The transitions are over a one
year period. Estimated one step transition probabilities are represented as a weighted
digraph in Figure 4.1, where

• 𝑆 = {1, . . . , 5} is the state space
• the set of edges 𝐸 is represented by arrows and
• transition probabilities are identified with weights attached to these edges.

The transition matrix for the Markov model in Example 4.1.1 is

𝑃𝑄 =

©«

0.97 0.03 0.00 0.00 0.00
0.05 0.92 0.03 0.00 0.00
0.00 0.04 0.92 0.04 0.00
0.00 0.00 0.04 0.94 0.02
0.00 0.00 0.00 0.01 0.99

ª®®®®®®¬
(4.4)

Note the large values on the principal diagonal of 𝑃𝑄. These indicate strong persis-
tence: the state stays constant from period to period with high probability.

Quah (1993) estimated 𝑃𝑄 by maximum likelihood, pooling transitions over the
years 1960–1984. (In this case maximum likelihood estimation amounts to recording
the relative frequency of transitions between states.) Figure 4.2 shows how the num-
bers change if we repeat the exercise using World Bank GDP data from 1985–2019.
The numbers are quite stable relative to the earlier estimate. Below we will examine
how long run predictions are affected.

As another example, Benhabib et al. (2019) estimate the following transition ma-
trix for intergenerational social mobility:
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Figure 4.2: Cross-country GDP dynamics as a digraph, updated data

𝑃𝐵 :=

©«

0.222 0.222 0.215 0.187 0.081 0.038 0.029 0.006
0.221 0.22 0.215 0.188 0.082 0.039 0.029 0.006
0.207 0.209 0.21 0.194 0.09 0.046 0.036 0.008
0.198 0.201 0.207 0.198 0.095 0.052 0.04 0.009
0.175 0.178 0.197 0.207 0.11 0.067 0.054 0.012
0.182 0.184 0.2 0.205 0.106 0.062 0.05 0.011
0.123 0.125 0.166 0.216 0.141 0.114 0.094 0.021
0.084 0.084 0.142 0.228 0.17 0.143 0.121 0.028

ª®®®®®®®®®®®®¬
(4.5)

Here the states are percentiles of the wealth distribution. In particular, with the
states represented by 1, 2, . . . , 8, the corresponding percentiles are

0–20%, 20–40%, 40–60%, 60–80%, 80–90%, 90–95%, 95–99%, 99–100%

Transition probabilities are estimated from US 2007–2009 Survey of Consumer Fi-
nances data. Relative to the highly persistent matrix 𝑃𝑄, less weight on the principle
diagonal suggests more mixing—the influence of initial conditions is relatively short-
lived.

Additional insight about the dynamics can be obtained from a contour plot of the
matrix 𝑃𝐵, as in Figure 4.3. Here 𝑃𝐵 is plotted as a heat map after rotating it 90
degrees anticlockwise. The rotation is so that the dynamics are comparable to the 45
degree diagrams often used to understand discrete time dynamic systems. A vertical
line from state 𝑥 corresponds to the next period conditional distribution 𝑃(𝑥, ·).

In this case, we see that, for example, lower states are quite persistent, whereas
households in the highest state tend to fall back towards the middle.

EXERCISE 4.1.1. Let ℳ be a finite Markov model with state space 𝑆 and transition
matrix 𝑃. Show that 𝑈 ⊂ 𝑆 is absorbing (see §1.4.1.3) for the digraph ℳ if and only
if ∑

𝑦∈𝑈
𝑃(𝑥, 𝑦) = 1 for all 𝑥 ∈ 𝑈. (4.6)
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Figure 4.3: Contour plot of transition matrix 𝑃𝐵

4.1.1.2 Markov Chains

Consider a finite Markov model ℳ with state space 𝑆 and transition matrix 𝑃. As be-
fore, 𝑃(𝑥, 𝑦) indicates the probability of transitioning from 𝑥 to 𝑦 in one step. Another
way to say this is that, when in state 𝑥, we update to a new state by choosing it from 𝑆
via the distribution 𝑃(𝑥, ·). The resulting stochastic process is called a Markov chain.

We can state this more formally as follows. Let (𝑋𝑡)𝑡∈Z+ be a sequence of random
variables taking values in 𝑆. We say that (𝑋𝑡) is a Markov chain on 𝑆 if there exists a
stochastic matrix 𝑃 on 𝑆 such that

P{𝑋𝑡+1 = 𝑦 | 𝑋0, 𝑋1, . . . , 𝑋𝑡} = 𝑃(𝑋𝑡, 𝑦) for all 𝑡 ⩾ 0, 𝑦 ∈ 𝑆. (4.7)

To simplify terminology, we also call (𝑋𝑡) 𝑃-Markov when it satisfies (4.7) . We call
either 𝑋0 or its distribution 𝜓0 the initial condition of (𝑋𝑡) depending on context.

The definition of a Markov chain says two things:

(i) When updating to 𝑋𝑡+1 from 𝑋𝑡, earlier states are not required.
(ii) The matrix 𝑃 encodes all of the information required to perform the update,

given 𝑋𝑡.
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One way to think about Markov chains is algorithmically: Let 𝑃 be a stochastic
matrix and let 𝜓0 be an element of 𝒟(𝑆). Now generate (𝑋𝑡) via Algorithm 3. The
resulting sequence is 𝑃-Markov with initial condition 𝜓0.

1 set 𝑡 = 0 and draw 𝑋𝑡 from 𝜓0
2 while 𝑡 < ∞ do
3 draw 𝑋𝑡+1 from the distribution 𝑃(𝑋𝑡, ·)
4 let 𝑡 = 𝑡 + 1
5 end

Algorithm 3: Generation of 𝑃-Markov (𝑋𝑡) with initial condition 𝜓0

4.1.1.3 Simulation

For both simulation and theory, it is useful to be able to translate Algorithm 3 into a
stochastic difference equation governing the evolution of (𝑋𝑡)𝑡⩾0. We now outline the
procedure, which uses inverse transform sampling (see §1.3.1.2). For simplicity, we
assume that 𝑆 = [𝑛], with typical elements 𝑖, 𝑗. The basic idea is to apply the inverse
transform method to each row of 𝑃 and then sample by drawing a uniform random
variable at each update.

To this end, we set

𝐹(𝑖, 𝑢) :=
𝑛∑
𝑗=1

𝑗1{𝑞(𝑖, 𝑗 − 1) < 𝑢 ⩽ 𝑞(𝑖, 𝑗)} (𝑖 ∈ 𝑆, 𝑢 ∈ (0, 1)),

where, for each 𝑖, 𝑗 ∈ 𝑆, the value 𝑞(𝑖, 𝑗) is defined recursively by

𝑞(𝑖, 𝑗) := 𝑞(𝑖, 𝑗 − 1) + 𝑃(𝑖, 𝑗) with 𝑞(𝑖, 0) = 0.

Let 𝑈 (0, 1) represent the uniform distribution on (0, 1) and take

𝑋𝑡+1 = 𝐹(𝑋𝑡, 𝑈𝑡+1) where (𝑈𝑡) IID∼ 𝑈 (0, 1). (4.8)

If 𝑋0 is an independently drawn random variable with distribution 𝜓0 on 𝑆, then (𝑋𝑡)
is 𝑃-Markov on 𝑆 with initial condition 𝜓0, as Exercise 4.1.2 asks you to show.

EXERCISE 4.1.2. Conditional on 𝑋𝑡 = 𝑖, show that, for given 𝑗 ∈ 𝑆,

(i) 𝑋𝑡+1 = 𝑗 if and only if 𝑈𝑡+1 lies in the interval (𝑞(𝑖, 𝑗 − 1), 𝑞(𝑖, 𝑗)].
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Figure 4.4: Wealth percentile over time

(ii) This event has probability 𝑃(𝑖, 𝑗).
Conclude that 𝑋𝑡+1 in (4.8) is a draw from 𝑃(𝑖, ·).

Each subfigure in Figure 4.4 shows realizations of two Markov chains, both gener-
ated using the stochastic difference equation (4.8). The sequences are generated each
with its own independent sequence of draws (𝑈𝑡). The underlying transition matrices
are 𝑃𝐵 from (4.5) in the top panel and 𝑃𝑄 from (4.4) in the bottom panel. In both
panels, one chain starts from the lowest state and the other from the highest. Notice
that time series generated by 𝑃𝐵 mix faster than those generated by 𝑃𝑄: the difference
in initial states is not a strong predictor of outcomes after an initial “burn in” period.
We discuss mixing and its connection to stability below.

4.1.1.4 Higher Order Transition Matrices

Given a finite Markov model ℳ with state space 𝑆 and transition matrix 𝑃, define
(𝑃𝑘)𝑘∈N by 𝑃𝑘+1 = 𝑃𝑃𝑘 for all 𝑘, with the understanding that 𝑃0 = 𝐼 = the identity
matrix. In other words, for each 𝑘, the matrix 𝑃𝑘 is the 𝑘-th power of 𝑃. If we spell
out the matrix product 𝑃𝑘+1 = 𝑃𝑃𝑘 element-by-element, we get

𝑃𝑘+1(𝑥, 𝑦) :=
∑
𝑧

𝑃(𝑥, 𝑧)𝑃𝑘(𝑧, 𝑦) (𝑥, 𝑦 ∈ 𝑆, 𝑘 ∈ N). (4.9)
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EXERCISE 4.1.3. Prove that 𝑃𝑘 is a stochastic matrix on 𝑆 for all 𝑘 ∈ N.

In this context, 𝑃𝑘 is called the 𝑘-step transition matrix corresponding to 𝑃. The
𝑘-step transition matrix has the following interpretation: If (𝑋𝑡) is 𝑃-Markov, then, for
any 𝑡, 𝑘 ∈ N and 𝑥, 𝑦 ∈ 𝑆,

𝑃𝑘(𝑥, 𝑦) = P{𝑋𝑡+𝑘 = 𝑦 | 𝑋𝑡 = 𝑥}. (4.10)

In other words, 𝑃𝑘 provides the 𝑘-step transition probabilities for the 𝑃-Markov chain
(𝑋𝑡), as suggested by its name.

This claim can be verified by induction. Fix 𝑡 ∈ N and 𝑥, 𝑦 ∈ 𝑆. The claim is true
by definition when 𝑘 = 1. Suppose the claim is also true at 𝑘 and now consider the
case 𝑘 + 1. By the law of total probability, we have

P{𝑋𝑡+𝑘+1 = 𝑦 | 𝑋𝑡 = 𝑥} =
∑
𝑧

P{𝑋𝑡+𝑘+1 = 𝑦 | 𝑋𝑡+𝑘 = 𝑧}P{𝑋𝑡+𝑘 = 𝑧 | 𝑋𝑡 = 𝑥}.

The induction hypothesis allows us to use (4.10), so the last equation becomes

P{𝑋𝑡+𝑘+1 = 𝑦 | 𝑋𝑡 = 𝑥} =
∑
𝑧

𝑃(𝑧, 𝑦)𝑃𝑘(𝑥, 𝑧) = 𝑃𝑘+1(𝑥, 𝑦).

This completes our proof by induction.
A useful identity for the higher order Markov matrices is

𝑃 𝑗+𝑘(𝑥, 𝑦) =
∑
𝑧

𝑃𝑘(𝑥, 𝑧)𝑃 𝑗(𝑧, 𝑦) ((𝑥, 𝑦) ∈ 𝑆 × 𝑆) (4.11)

which holds for any 𝑗, 𝑘 in N. This is called the Chapman–Kolmogorov equation.
Note that

• (4.9) is a special case of (4.11) and
• (4.11) is a special case of (1.27) on page 42, written with different notation.

To provide probabilistic intuition for the validity of the Chapman–Kolmogorov
equation, let 𝑋0 = 𝑥 and let 𝑦 ∈ 𝑆 be given. Using the law of total probability again,
we have

P{𝑋 𝑗+𝑘 = 𝑦 | 𝑋0 = 𝑥} =
∑
𝑧

P{𝑋 𝑗+𝑘 = 𝑦 | 𝑋0 = 𝑥, 𝑋𝑘 = 𝑧}P{𝑋𝑘 = 𝑧 | 𝑋0 = 𝑥}
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By Markov property (4.7), the future and past are independent given the present, so∑
𝑧

P{𝑋 𝑗+𝑘 = 𝑦 | 𝑋0 = 𝑥, 𝑋𝑘 = 𝑧} =
∑
𝑧

P{𝑋 𝑗+𝑘 = 𝑦 | 𝑋𝑘 = 𝑧}.

As a result of this fact and (4.10), the equation before this one can be rewritten
as (4.11).

4.1.2 Distribution Dynamics

Let ℳ be a finite Markov model with state space 𝑆 and transition matrix 𝑃. Let (𝑋𝑡)
be 𝑃-Markov and, for each 𝑡 ⩾ 0, let 𝜓𝑡 ∈ 𝒟(𝑆) be defined by

𝜓𝑡 := P{𝑋𝑡 = ·} = the distribution of 𝑋𝑡 .

The vector 𝜓𝑡 is called the marginal distribution of 𝑋𝑡. While (𝑋𝑡) is random, the
sequence (𝜓𝑡) is deterministic. In this section we investigate its dynamics.

4.1.2.1 Updating Marginal Distributions

The key idea for this section is that there is a simple link between successive marginal
distributions: by the law of total probability, we have

P{𝑋𝑡+1 = 𝑦} =
∑
𝑥

P{𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥} · P{𝑋𝑡 = 𝑥},

which can be rewritten as

𝜓𝑡+1(𝑦) =
∑
𝑥

𝑃(𝑥, 𝑦)𝜓𝑡 (𝑥) (𝑦 ∈ 𝑆). (4.12)

This fundamental expression tells how to updatemarginal distributions given the tran-
sition matrix 𝑃.

When each 𝜓𝑡 is interpreted as a row vector, we can write (4.12) as

𝜓𝑡+1 = 𝜓𝑡𝑃. (4.13)

(Henceforth, in expressions involving matrix algebra, distributions are row vectors
unless otherwise stated). Some authors refer to (4.13) as the forward equation as-
sociated with 𝑃, while 𝜓 ↦→ 𝜓𝑃 is called the forward operator, by analogy with the
Kolmogorov forward equation from continuous time.
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Figure 4.5: Predicted vs realized cross-country income distributions for 2019

Think of (4.13) as a difference equation in distribution space. Iterating backwards,

𝜓𝑡 = 𝜓𝑡−1𝑃 = (𝜓𝑡−2𝑃)𝑃 = 𝜓𝑡−2𝑃
2 = · · · = 𝜓0𝑃

𝑡 .

Given any 𝜓0 ∈ 𝒟(𝑆) and 𝑡 ∈ N, we have

𝜓0𝑃
𝑡 = the distribution of 𝑋𝑡 given 𝑋0

𝑑
= 𝜓0.

Example 4.1.2. As an illustration, let’s take the matrix 𝑃𝑄 estimated by Quah (1993)
using 1960–1984 data and use 𝑃𝑡𝑄 to update the 1985 distribution 𝑡 = 2019−1985 = 34
times, in order to obtain a prediction for the cross-country income distribution in 2019.
Figure 4.5 shows how this prediction fares compared to the realized 2019 distribution,
calculated from World Bank GDP data.1

1Example 4.1.2 is intended as an illustration of the mechanics of updating distributions. While the
methodology in Quah (1993) is thought provoking, it struggles to make plausible long run predictions
about something as complex as the cross-country income distribution. Indeed, the Kullback–Leibler
deviation between the predicted and realized 2019 distributions is actually larger than the Kullback–
Leibler deviation between the 1985 and 2019 distributions. Evidently, a naive estimate “nothing will
change” model predicts better than Quah’s. Most of the focus in this text is on short term forecasts and
scenarios, where the system is approximately stationary after suitable transformations, rather than
heroic long term predictions where nonstationary change is hard to quantify.
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Figure 4.6: A trajectory from 𝜓0 = (0, 0, 1)

4.1.2.2 Trajectories in the Long Run

One of the main sub-fields of Markov chain analysis is asymptotics of distribution
sequences. This topic turns out to be important for network theory as well. In §4.2.2
we will investigate asymptotics in depth. In this section we build some intuition via
simulations.

Figure 4.6 shows the trajectory (𝜓𝑃𝑡𝑎) when 𝑆 = {1, 2, 3}, 𝜓 = (0, 0, 1), and 𝑃𝑎 is
the transition matrix displayed in (4.2). The blue triangle is the unit simplex in R3

+,
consisting of all row vectors 𝜓 ∈ R3 such that 𝜓 ⩾ 0 and 𝜓1 = 1. The unit simplex
can be identified with𝒟(𝑆) when 𝑆 = {1, 2, 3}. Red dots in the figure are distributions
in the sequence (𝜓𝑃𝑡𝑎) for 𝑡 = 0, . . . , 20. Figure 4.7 shows distribution dynamics for 𝑃𝑎
that start from initial condition 𝜓 = (0, 1/2, 1/2).

It seems that both of the sequences are converging. This turns out to be the case—
the black dot in the figures is the limit of both sequences and, moreover, this point
is a stationary distribution for 𝑃𝑎, as defined in §1.3.1.3. In fact we can—and will—
also show that no other stationary distribution exists, and that 𝜓𝑃𝑡𝑎 converges to the
stationary distribution regardless of the choice of 𝜓 ∈ 𝒟(𝑆). This is due to certain
properties of 𝑃𝑎, related to connectivity and aperiodicity.

Figure 4.8 provides another view of a distribution sequence, this time generated
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(1, 0, 0)
(0, 1, 0)

(0, 0, 1)

Figure 4.7: A trajectory from 𝜓0 = (0, 1/2, 1/2)

from the matrix 𝑃𝐵 in (4.5). The initial condition 𝜓0 was uniform. Each distribution
shown was calculated as 𝜓𝑃𝑡𝑄 for different values of 𝑡. The distribution across wealth
classes converges rapidly to what appears to be a long run limit. Below we confirm
that this is so, and that the limit is independent of the initial condition. The rapid rate
of convergence is due to the high level of mixing in the transition dynamics.

4.1.3 Stationarity

In this section we examine stationary distributions and their properties. As we will
see, stationary distributions can be regarded as steady states for the evolution of the
sequence of marginal distributions. (Later, when we study ergodicity, stationary dis-
tributions will acquire another important interpretation.)

4.1.3.1 Stationary Distributions

Recall from §1.3.1.3 that if 𝑃 is a stochastic matrix and 𝜓 ∈ R𝑛
+ is a row vector such

that 𝜓1 = 1 and 𝜓𝑃 = 𝜓, then 𝜓 is called stationary for 𝑃. So now let ℳ be a finite
Markov model with state space 𝑆 and transition matrix 𝑃. Translating to the notation
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Figure 4.8: Distribution projections from 𝑃𝐵

of Markov chains, a distribution 𝜓∗ ∈ 𝒟(𝑆) is stationary for ℳ if

𝜓∗(𝑦) =
∑
𝑥∈𝑆

𝑃(𝑥, 𝑦)𝜓∗(𝑥) for all 𝑦 ∈ 𝑆.

We also write this expression as 𝜓∗ = 𝜓∗𝑃 and understand 𝜓∗ as a fixed point of the
map 𝜓 ↦→ 𝜓𝑃 that updates distributions (cf., Equation (4.13)).

If 𝑋𝑡 𝑑
= 𝜓∗, then, for any 𝑗 ∈ N, the fixed point property implies that 𝑋𝑡+ 𝑗 𝑑

= 𝜓∗𝑃 𝑗 =
𝜓∗. Hence

𝑋𝑡
𝑑
= 𝜓∗ =⇒ 𝑋𝑡+ 𝑗

𝑑
= 𝜓∗ for all 𝑗 ∈ N.

Example 4.1.3. Suppose workers are hired at rate 𝛼 and fired at rate 𝛽, transitioning
between unemployment and employment according to

𝑃𝑤 =

(
1 − 𝛼 𝛼
𝛽 1 − 𝛽

)
. (4.14)

In §1.2.3.3 we showed 𝛼 + 𝛽 > 0 implies 𝜓 = (𝛽/(𝛼 + 𝛽), 𝛼/(𝛼 + 𝛽)) is a dominant left
eigenvector for 𝑃𝑤. Since 𝑟(𝑃𝑤) = 1, the Perron–Frobenius Theorem tells us that 𝜓 is
stationary for 𝑃𝑤. One implication is that, if the distribution of workers across the two
employment states is given by 𝜓 and updates obey the dynamics encoded in 𝑃𝑤, then
no further change is observed in the unemployment rate.

Example 4.1.4. The black dot in each of Figures 4.6–4.7, indicating the limit of the
marginal sequences, is a stationary distribution for the Markov matrix 𝑃𝑎 displayed
in (4.2), page 152. We discuss its calculation in §4.1.3.4.
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EXERCISE 4.1.4. Let ℳ be a finite Markov model with state space |𝑆| = 𝑛 and
transition matrix 𝑃. Let 𝜓 ≡ 1/𝑛 be the uniform distribution on 𝑆. Prove that 𝜓 is
stationary for 𝑃 if and only if 𝑃 is doubly stochastic (i.e., has unit column sums as
well as unit row sums).

In Figures 4.6–4.7 all trajectories converge towards the stationary distribution.
Not all stationary distributions have this “attractor” property, and in general there can
be many stationary distributions. The next example illustrates.

EXERCISE 4.1.5. Let ℳ = (𝑆, 𝐸, 𝑝) be a finite Markov model with (𝑥, 𝑦) ∈ 𝐸 if
and only if 𝑥 = 𝑦. Describe the implied weight function and corresponding transition
matrix. Show that every distribution in 𝒟(𝑆) is stationary for ℳ.

4.1.3.2 Existence and Uniqueness

From the Perron–Frobenius Theorem we easily obtain the following fundamental re-
sult.

Theorem 4.1.1 (Existence and Uniqueness of Stationary Distributions). Every finite
Markov model ℳ = (𝑆, 𝐸, 𝑝) has at least one stationary distribution 𝜓∗ in 𝒟(𝑆). If the
digraph (𝑆, 𝐸) is strongly connected, then 𝜓∗ is unique and everywhere positive on 𝑆.

Proof. Let ℳ be a finite Markov model. Since the corresponding adjacency matrix 𝑃
is stochastic, existence follows from Exercise 1.3.7 in §1.3.1.3. By Theorem 1.4.3 on
page 42, strong connectedness ofℳ implies irreducibility of 𝑃. When 𝑃 is irreducible,
uniqueness and everywhere positivity of the stationary distribution follows from the
Perron–Frobenius Theorem (page 16). □

The basic idea behind the uniqueness part of Theorem 4.1.1 is as follows: Sup-
pose to the contrary that ℳ is strongly connected and yet two distinct stationary
distributions 𝜓∗ and 𝜓∗∗ exist in 𝒫(𝑆). Since a 𝑃-Markov chain started at 𝜓∗ always
has marginal distribution 𝜓∗ and likewise for 𝜓∗∗, different initial conditions lead to
different long run outcomes. This contradicts strong connectedness in the following
way: strong connectedness implies that both chains traverse the whole state space.
Moreover, being Markov chains, they forget the past once they arrive at any state, so
the starting draws should eventually be irrelevant.

(Actually, the story in the last paragraph is incomplete. Initial conditions can de-
termine long run outcomes under strong connectedness in one sense: a “periodic”
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Markov model can traverse the whole space but only at specific times that depend on
the starting location. If we rule out such periodicity, we get results that are even
stronger than Theorem 4.1.1. This topic is treated in §4.2.2.)

4.1.3.3 Brouwer’s Theorem

Another way to prove the existence claim in Theorem 4.1.1 is via the famous fixed
point theorem of L. E. J. Brouwer (1881–1966).
Theorem 4.1.2 (Brouwer). If 𝐶 is a convex compact subset of R𝑛 and 𝐺 is a continuous
self-map on 𝐶, then 𝐺 has at least one fixed point in 𝐶.

The proof of Theorem 4.1.2 in one dimension is not difficult, while the proof in
higher dimensions is challenging. See, for example, Aliprantis and Border (1999).

EXERCISE 4.1.6. Prove Brouwer’s fixed point theorem for the case 𝐶 = [0, 1] by
applying the intermediate value theorem.

One advantage of Brouwer’s fixed point theorem is that its conditions are quite
weak. One disadvantage is that it provides only existence, without uniqueness or
stability. Figure 6.4 provides an example of how multiple fixed points can coexist
under the conditions of the theorem.2

EXERCISE 4.1.7. Prove the first part of Theorem 4.1.1 (existence of a stationary
distribution) using Brouwer’s fixed point theorem.

4.1.3.4 Computation

Let’s consider how to compute stationary distributions. While 𝜓∗𝑃 = 𝜓∗ is a finite set
of linear equations that we might hope to solve directly for 𝜓∗, there are problems
with this idea. For example, 𝜓∗ = 0 is a solution that fails to lie in 𝒟(𝑆).

To restrict the solution to 𝒟(𝑆) we proceed as follows: Suppose |𝑆| = 𝑛 and note
that row vector 𝜓 ∈ 𝒟(𝑆) is stationary if and only if 𝜓(𝐼 − 𝑃) = 0, where 𝐼 is the 𝑛 × 𝑛
identity matrix. Let 1𝑛 be the 1 × 𝑛 row vector (1, . . . , 1). Let 1𝑛×𝑛 be the 𝑛 × 𝑛 matrix
of ones.

2There are many useful extensions to Brouwer’s theorem, such as one for set-valued functions due
to Kakutani (1941). These results have many applications in economics (see, for example, Nash
(1950)). Another paper, due to Schauder (1930), extends Brouwer’s result to infinite dimensional
spaces.
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EXERCISE 4.1.8. Consider the linear system

1𝑛 = 𝜓(𝐼 − 𝑃 + 1𝑛×𝑛) (4.15)

where 𝜓 is a row vector. Show that
(i) every solution 𝜓 of (4.15) lies in 𝒟(𝑆) and
(ii) 𝜓 is stationary for 𝑃 if and only if (4.15) holds.

Solving the linear system (4.15) produces a stationary distribution in any setting
where the stationary distribution is unique. When this is not the case, problems can
arise.

EXERCISE 4.1.9. Give a counterexample to the claim that (𝐼 − 𝑃 + 1𝑛×𝑛) is always
nonsingular when 𝑃 is a stochastic matrix.

There are also graph-theoretic algorithms for computing all of the stationary distri-
butions of an arbitrary stochasticmatrix. (The Python and Julia libraries QuantEcon.py
and QuantEcon.jl have efficient implementations of this type.)

4.2 Asymptotics
In this section we turn to long run properties of Markov chains, including ergodicity.
With these ideas in hand, we will then investigate the evolution of information over
social networks.

4.2.1 Ergodicity
Let’s begin with the fascinating and important topic of ergodicity. The simplest way
to understand ergodicity is as an extension of the law of large numbers from IID
sequences to more general settings, where the IID property holds only in a limiting
sense.

4.2.1.1 Harmonic Functions

Letℳ be a finite Markov model with state space 𝑆 and transition matrix 𝑃. Fix ℎ ∈ R𝑆

and let
𝑃ℎ(𝑥) :=

∑
𝑦∈𝑆

𝑃(𝑥, 𝑦)ℎ(𝑦) (𝑥 ∈ 𝑆). (4.16)
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If ℎ is understood as a column vector inR|𝑆|, then 𝑃ℎ(𝑥) is just element 𝑥 of the vector
𝑃ℎ. The map ℎ ↦→ 𝑃ℎ is sometimes called the “conditional expectation operator,” since,
given that 𝑃(𝑥, 𝑦) = P{𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥}, we have∑

𝑦∈𝑆
𝑃(𝑥, 𝑦)ℎ(𝑦) = E[ℎ(𝑋𝑡+1) | 𝑋𝑡 = 𝑥]

A function ℎ ∈ R𝑆 is called 𝑃-harmonic if 𝑃ℎ = ℎ pointwise on 𝑆. Thus, 𝑃-harmonic
functions are fixed points of the conditional expectation operator ℎ ↦→ 𝑃ℎ.

If ℎ is 𝑃-harmonic and (𝑋𝑡) is 𝑃-Markov, then

E [ℎ(𝑋𝑡+1) | 𝑋𝑡] = (𝑃ℎ)(𝑋𝑡) = ℎ(𝑋𝑡). (4.17)

(A stochastic process with this property—i.e., that the current value is the best pre-
dictor of next period’s value—is called a martingale. Martingales are one of the foun-
dational concepts in probability, statistics and finance.)

Example 4.2.1. Let ℳ be a finite Markov model with state space 𝑆 and transition
matrix 𝑃. If 𝐴 ⊂ 𝑆 and 𝐴𝑐 := 𝑆 \ 𝐴 are both absorbing for ℳ, then 1𝐴 and 1𝐴𝑐 are both
𝑃-harmonic. To see this, we apply Exercise 4.1.1 to obtain

(𝑃1𝐴) (𝑥) =
∑
𝑦∈𝑆

𝑃(𝑥, 𝑦)1𝐴(𝑦) =
∑
𝑦∈𝐴

𝑃(𝑥, 𝑦) =
{

1 if 𝑥 ∈ 𝐴
0 if 𝑥 ∈ 𝐴𝑐.

In other words, 𝑃1𝐴 = 1𝐴. A similar argument gives 𝑃1𝐴𝑐 = 1𝐴𝑐 .

EXERCISE 4.2.1. Let ℳ be a finite Markov model with state space 𝑆 and transition
matrix 𝑃. Show that every constant function in R𝑆 is 𝑃-harmonic.

4.2.1.2 Definition and Implications

Let ℳ be a finite Markov model with state space 𝑆 and transition matrix 𝑃. We know
that every constant function in R𝑆 is 𝑃-harmonic. We call ℳ ergodic if the only 𝑃-
harmonic functions in R𝑆 are the constant functions.

Example 4.2.2. If 𝑃(𝑥, 𝑦) = 𝜑(𝑦) for all 𝑥, 𝑦 in 𝑆, where 𝜑 is some fixed distribution
on 𝑆, then 𝑃 generates an IID Markov chain, since the next period draw has no de-
pendence on the current state. Any model ℳ with an adjacency matrix of this type is
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Figure 4.9: A poverty trap

ergodic. Indeed, if 𝑃 has this property and ℎ ∈ R𝑆 is 𝑃-harmonic, then, for any 𝑥 ∈ 𝑆,
we have

ℎ(𝑥) = (𝑃ℎ)(𝑥) =
∑
𝑦

𝑃(𝑥, 𝑦)ℎ(𝑦) =
∑
𝑦

𝜑(𝑦)ℎ(𝑦)

Hence, ℎ is constant. This proves that any 𝑃-harmonic function is a constant function.

Example 4.2.3. A laborer is either unemployed (state 1) or employed (state 2). In
state 1 he is hired with probability 𝛼. In state 2 he is fired with probability 𝛽. The
corresponding Markov model ℳ has state and transition matrix given by

𝑆 = {1, 2} and 𝑃𝑤 =

(
1 − 𝛼 𝛼
𝛽 1 − 𝛽

)
.

The statement 𝑃𝑤ℎ = ℎ becomes(
1 − 𝛼 𝛼
𝛽 1 − 𝛽

) (
ℎ(1)
ℎ(2)

)
=

(
ℎ(1)
ℎ(2)

)
The first row is (1 − 𝛼)ℎ(1) + 𝛼ℎ(2) = ℎ(1), or 𝛼ℎ(1) = 𝛼ℎ(2). Thus, ℳ is ergodic
whenever 𝛼 > 0. By a similar argument, ℳ is ergodic whenever 𝛽 > 0.

Example 4.2.4. Let ℳ be any finite Markov model with state space 𝑆 and transition
matrix 𝑃. It is immediate from Example 4.2.1 that if 𝑆 can be partitioned into two
nonempty absorbing sets, then ℳ is not ergodic. Hence, the poverty trap model
in Figure 4.9 is not ergodic. Similarly, if 𝛼 = 𝛽 = 0 in the matrix 𝑃𝑤 discussed in
Example 4.2.3, then 𝑃𝑤 = 𝐼 and each state is a disjoint absorbing set. Ergodicity fails.

The examples discussed above suggest that, for a finite Markov model ℳ, ergod-
icity depends on the connectivity properties of the digraph. The next result confirms
this.

Proposition 4.2.1. If ℳ is strongly connected, then ℳ is ergodic.
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Proof. Letℳ be a strongly connected Markov model with state space 𝑆 and transition
matrix 𝑃. Let ℎ be 𝑃-harmonic and let 𝑥 ∈ 𝑆 be the maximizer of ℎ on 𝑆. Let 𝑚 = ℎ(𝑥).
Suppose there exists a 𝑦 in 𝑆 with ℎ(𝑦) < 𝑚. Since ℳ is strongly connected, we can
choose a 𝑘 ∈ N such that 𝑃𝑘(𝑥, 𝑦) > 0. Since ℎ is 𝑃-harmonic, we have ℎ = 𝑃𝑘ℎ, and
hence

𝑚 = ℎ(𝑥) =
∑
𝑧

𝑃𝑘(𝑥, 𝑧)ℎ(𝑧) = 𝑃𝑘(𝑥, 𝑦)ℎ(𝑦) +
∑
𝑧≠𝑦

𝑃𝑘(𝑥, 𝑧)ℎ(𝑧) < 𝑚.

This contradiction shows that ℎ is constant. Hence ℳ is ergodic. □

The implication in Proposition 4.2.1 is one way, as the next exercise asks you to
confirm.

EXERCISE 4.2.2. Provide an example of a finite Markov model that is ergodic but
not strongly connected.

4.2.1.3 Implications of Ergodicity

One of the most important results in probability theory is the law of large numbers
(LLN). In the finite state setting, the classical version of this theorem states that

P

{
lim
𝑘→∞

1
𝑘

𝑘−1∑
𝑡=0

ℎ(𝑋𝑡) =
∑
𝑥∈𝑆

ℎ(𝑥)𝜑(𝑥)
}
= 1

when (𝑋𝑡)𝑡⩾0 is an IID sequence of random variables with common distribution 𝜑 ∈
𝒟(𝑆) and ℎ is an arbitrary element of R𝑆.

This version of the LLN is classical in the sense that the IID assumption is imposed.
It turns out that the IID assumption can be weakened to allow for a degree of depen-
dence between observations, which leads us to ask whether or not the LLN holds for
Markov chains as well.

The answer to this question is yes, provided that dependence between observations
dies out fast enough. One candidate for this condition is ergodicity. In fact, it turns
out that ergodicity is the exact necessary and sufficient condition required to extend
the law of large numbers to Markov chains. The next theorem gives details.

Theorem 4.2.2. Let ℳ be any finite Markov model with state space 𝑆 and transition
matrix 𝑃. The following statements are equivalent:

(i) ℳ is ergodic.
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(ii) ℳ has a unique stationary distribution 𝜓∗ and, for any 𝑃-Markov chain (𝑋𝑡) and
any ℎ ∈ R𝑆,

P

{
lim
𝑘→∞

1
𝑘

𝑘−1∑
𝑡=0

ℎ(𝑋𝑡) =
∑
𝑥∈𝑆

ℎ(𝑥)𝜓∗(𝑥)
}
= 1. (4.18)

The proof of Theorem 4.2.2 is given in Chapter 17 of Meyn and Tweedie (2009).
We skip the proof but provide intuition through the following examples.
Example 4.2.5. Recall the IID case from Example 4.2.2. We showed thatℳ is ergodic.
By Theorem 4.2.2, the convergence in (4.18) holds with 𝜓∗ = 𝜑. This is consistent
with the LLN for IID sequences.
Example 4.2.6. Letℳ be a finite Markov model with 𝑆 = {1, 2} and 𝑃 = 𝐼, the identity
matrix. Markov chains generated by 𝑃 are constant. Since every ℎ ∈ R2 satisfies
𝑃ℎ = ℎ, we see that ℳ is not ergodic. This means that the LLN result in (4.18)
fails. But this is exactly what we would expect, since a constant chain (𝑋𝑡) implies
1
𝑘

∑𝑘−1
𝑡=0 𝑋𝑡 = 𝑋0 for all 𝑘. In particular, if 𝑋0 is drawn from a nondegenerate distribution,

then the sample mean does not converge to any constant value.
Example 4.2.7. Consider again the poverty trap model in Figure 4.9. Say that ℎ(𝑥)
is earnings in state 𝑥, and that ℎ(poor) = 1, ℎ(middle) = 2 and ℎ(rich) = 3. House-
holds that start with 𝑋0 = poor will always be poor, so 1

𝑘

∑𝑘−1
𝑡=0 ℎ(𝑋𝑡) = 1 for all 𝑘.

Households that start with 𝑋0 in {middle, rich} remain in this absorbing set forever,
so 1

𝑘

∑𝑘−1
𝑡=0 ℎ(𝑋𝑡) ⩾ 2 for all 𝑘. In particular, the limit of the sum depends on the ini-

tial condition. This violates part (ii) of Theorem 4.2.2, which states that the limit is
independent of the distribution of 𝑋0.

4.2.1.4 Reinterpreting the Stationary Distribution

Ergodicity has many useful implications. One is a new interpretation for the stationary
distribution. To illustrate this, let ℳ be an ergodic Markov model with state space 𝑆
and transition matrix 𝑃. Let (𝑋𝑡) be a 𝑃-chain and let

𝜓𝑘(𝑦) := 1
𝑘

𝑘∑
𝑡=1
1{𝑋𝑡 = 𝑦} (𝑦 ∈ 𝑆).

The value 𝜓𝑘(𝑦) measures the fraction of time that the 𝑃-chain spends in state 𝑦 over
the time interval 1, . . . , 𝑘. Under ergodicity, for fixed 𝑦 ∈ 𝑆, we can use (4.18) with
ℎ(𝑥) = 1{𝑥 = 𝑦} to obtain

𝜓𝑘(𝑦) →
∑
𝑥∈𝑆
1{𝑥 = 𝑦}𝜓∗(𝑥) = 𝜓∗(𝑦). (4.19)
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Figure 4.10: Convergence of the empirical distribution to 𝜓∗

Turning (4.19) around, we see that

𝜓∗(𝑦) ≈ the fraction of time that any 𝑃-chain (𝑋𝑡) spends in state 𝑦. (4.20)

Figure 4.10 illustrates this idea for a simulated Markov chain (𝑋𝑡) generated from
the matrix 𝑃𝐵 introduced in (4.5). The figure compares 𝜓𝑘 and 𝜓∗ for different values
of 𝑘. As 𝑘→∞, the convergence claimed in (4.19) occurs.

Of course, we must remember that (4.20) is only valid under ergodicity. For ex-
ample, if 𝑃 = 𝐼, the identity, then every distribution is stationary, every 𝑃-Markov
chain is constant, and (4.20) does not hold.

Notice that, in view of Theorem 4.2.2, the convergence in (4.18) occurs for any
initial condition. This gives us, under ergodicity, a way of computing the stationary
distribution via simulation (and (4.19)). While this method is slower than algebraic
techniques (see, e.g., §4.1.3.4) for small problems, it can be the only feasible option
when |𝑆| is large.
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4.2.2 Aperiodicity and Stability

In §4.2.1 we discussed sample path properties of Markov chains, finding that strong
connectivity is sufficient for stability of time series averages. Next we turn to marginal
distributions of the chain and their long run properties, which we examined informally
in §4.1.2.2. We will see that, to guarantee convergence of these sequences, we also
need a condition that governs periodicity.

4.2.2.1 Convergence of Marginals

Letℳ be a finite Markov model with state space 𝑆 and transition matrix 𝑃. We callℳ
globally stable if there is only one stationary distribution 𝜓∗ in 𝒟(𝑆) and, moreover,

lim
𝑡→∞

𝜓𝑃𝑡 = 𝜓∗ for all 𝜓 ∈ 𝒟(𝑆). (4.21)

In other words, marginal distributions of every 𝑃-Markov chain converge to the unique
stationary distribution of the model.

There is a useful connection between global stability and absorbing sets. Intu-
itively, if ℳ is globally stable and has an absorbing set 𝐴 that can be reached from
any 𝑥 ∈ 𝑆, then any Markov chain generated by these dynamics will eventually arrive
in 𝐴 and never leave. Hence the stationary distribution must put all of its mass on 𝐴.
The next exercise asks you to confirm this.

EXERCISE 4.2.3. Let ℳ be a finite Markov model with state space 𝑆 and transition
matrix 𝑃. Let 𝐴 be a nonempty absorbing subset of 𝑆. Assume that

(a) ℳ is globally stable with unique stationary distribution 𝜓∗ and
(b) for each 𝑥 ∈ 𝐴𝑐 := 𝑆 \ 𝐴, there exists an 𝑎 ∈ 𝐴 such that 𝑎 is accessible from 𝑥,

Show that, under the stated conditions, there exists an 𝜀 > 0 such that∑𝑦∈𝐴𝑐 𝑃
𝑛(𝑥, 𝑦) ⩽

1− 𝜀 for all 𝑥 ∈ 𝑆, where 𝑛 = |𝑆|. Using this fact, show in addition that ∑𝑦∈𝐴 𝜓
∗(𝑦) = 1.

4.2.2.2 A Key Theorem

From Theorem 4.1.1 we saw that strong connectedness is sufficient for uniqueness
of the stationary distribution. One might hope that strong connectedness is enough
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for global stability too, but this is not true. To see why, suppose for example that
𝑆 = {0, 1} and 𝐸 = {(0, 1), (1, 0)}. The transition matrix is

𝑃𝑑 =

(
0 1
1 0

)
. (4.22)

While this model is strongly connected, global stability fails. Indeed, if (𝑋𝑡) is 𝑃𝑑-
Markov and starts at 0, then (𝑋𝑡) will visit state 1 on odd dates and state 0 on even
dates. That is, 𝑃𝑡𝑑 𝛿0 = 𝛿𝑡 mod 2. This sequence does not converge.

The issue with 𝑃𝑑 is that, even though the chain traverses the whole state space,
the distribution of 𝑋𝑡 will affect that of 𝑋𝑡+ 𝑗 for all 𝑗 due to periodicity. This causes
stability to fail. If, however, we rule out periodicity, then we have enough for stability
to hold. This line of reasoning leads to the following famous theorem.

Theorem 4.2.3. Let ℳ be a finite Markov model. If ℳ is strongly connected and ape-
riodic, then ℳ is globally stable.

Proof. Let ℳ be a finite Markov model with state 𝑆 and transition matrix 𝑃. Suppose
ℳ is aperiodic and strongly connected. Let 𝜓∗ be the unique stationary distribution of
ℳ. By Theorem 1.4.4, 𝑃 is primitive. Hence we can apply the last part of the Perron–
Frobenius Theorem (see page 16). Using 𝑟(𝑃) = 1, this result tells us that 𝑃𝑡 → 𝑒𝑟𝑒⊤ℓ as
𝑡 →∞, where 𝑒𝑟 and 𝑒ℓ are the unique right and left eigenvectors of 𝑃 corresponding
to the eigenvalue 𝑟(𝑃) = 1 that also satisfy the normalization ⟨𝑒ℓ, 𝑒𝑟⟩ = 1.

Now observe that 𝜓∗ obeys 𝜓∗ = 𝜓∗𝑃 and, in addition, 𝑃1 = 1. Hence 𝜓∗ and 1 are
left and right eigenvectors corresponding to 𝑟(𝑃) = 1. Moreover, ⟨𝜓∗, 1⟩ = 1. Hence
𝑒𝑟 = 1 and 𝑒⊤ℓ = 𝜓∗.

Combining these facts leads to

lim
𝑡→∞

𝑃𝑡 = 𝑃∗ where 𝑃∗ := 1𝜓∗. (4.23)

If we pick any 𝜓 ∈ 𝒟(𝑆), then, by (4.23), we get 𝜓𝑃𝑡 → ⟨𝜓, 1⟩ 𝜓∗ = 𝜓∗. Hence global
stability holds. □

Example 4.2.8. The Markov models 𝑃𝑄 and 𝑃𝐵 in §4.1.1 are both aperiodic by the
results in §1.4.1.4. Being strongly connected, they are also globally stable.

The aperiodicity condition in Theorem 4.2.3 is, in general, not stringent. On the
other hand, the strong connectedness requirement is arguably quite strict. Weaker
conditions for global stability are available, as we shall see in §4.2.3.
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4.2.2.3 Rates of Convergence: Spectral Gap

While global stability is a very useful property, the implications are qualitative rather
than quantitative. In practice, we usually want to know something about the rate
of convergence. There are several ways of looking at this. We cover the two most
common in this section and the next.

As a first step, fixing a Markov model ℳ with state space 𝑆 and transition matrix
𝑃, we use (1.5) on page 11 to write 𝑃𝑡 as

𝑃𝑡 =
𝑛−1∑
𝑖=1

𝜆𝑡𝑖𝑒𝑖𝜀
⊤
𝑖 + 1𝜓∗, (4.24)

where each 𝜆 𝑖 is an eigenvalue of 𝑃 and 𝑒𝑖 and 𝜀𝑖 are the right and left eigenvectors
corresponding to 𝜆 𝑖. We have also ordered the eigenvalues from smallest to largest,
and used the Perron–Frobenius Theorem to infer that 𝜆𝑛 = 𝑟(𝑃) = 1, as well as the
arguments in the proof of Theorem 4.2.3 that showed 𝑒𝑛 = 1 and 𝜀⊤𝑛 = 𝜓∗.

Premultiplying 𝑃𝑡 by arbitrary 𝜓 ∈ 𝒟(𝑆) and rearranging now gives

𝜓𝑃𝑡 − 𝜓∗ =
𝑛−1∑
𝑖=1

𝜆𝑡𝑖𝜓𝑒𝑖𝜀
⊤
𝑖 (4.25)

Recall that eigenvalues are ordered from smallest to largest and. Moreover, by the
Perron–Frobenius Theorem, 𝜆 𝑖 < 1 for all 𝑖 < 𝑛 when 𝑃 is primitive (i.e., ℳ is strongly
connected and aperiodic). Hence, after taking the Euclidean norm deviation, we ob-
tain

∥𝜓𝑃𝑡 − 𝜓∗∥ = 𝑂(𝜂𝑡) where 𝜂 := |𝜆𝑛−1 | < 1. (4.26)
Thus, the rate of convergence is governed by the modulus of the second largest eigen-
value.

The difference between the largest and second largest eigenvalue of a nonnegative
matrix is often called the spectral gap. For this reason, we can also say that, for
primitive stochastic matrices, the rate of convergence is determined by the (nonzero)
spectral gap.
Example 4.2.9. When studying the worker model with hiring rate 𝛼 and firing rate
𝛽 in §1.2.1.3, we found that the eigenvalues of the transition matrix 𝑃𝑤 are 𝜆1 =
1 − 𝛼 − 𝛽 and 𝜆2 = 1. Hence the spectral gap is 𝛼 + 𝛽 and the rate of convergence
is 𝑂((1 − 𝛼 − 𝛽)𝑡). High hiring and firing rates both produce faster convergence. In
essence, this is because higher hiring and firing rates mean workers do not stay in any
state for long, so initial conditions die out faster.
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4.2.3 The Markov–Dobrushin Coefficient

The rate of convergence of 𝜓𝑃𝑡 to 𝜓∗ given in §4.2.2.3 restricts the Euclidean distance
between these vectors as a function of 𝑡. There are, however, other metrics we could
use in studying rates of convergence, and sometimes these other metrics give more
convenient results. In fact, as we show in this section, a good choice of metric leads
us to a more general stability result than the (better known) aperiodicity-based result
in §4.2.2.

4.2.3.1 An Alternative Metric

For the purposes of this section, For 𝜑, 𝜓 ∈ 𝒟(𝑆), we set

𝜌(𝜑, 𝜓) := ∥𝜑 − 𝜓∥1 :=
∑
𝑥∈𝑆
|𝜑(𝑥) − 𝜓(𝑥) |,

which is just the ℓ1 deviation between 𝜑 and 𝜓 (see §2.3.1.1).

EXERCISE 4.2.4. Show that, for any 𝜑, 𝜓 ∈ 𝒟(𝑆), we have

(i) 𝜌(𝜑, 𝜓) ⩽ 2.
(ii) 𝜌(𝜑𝑃, 𝜓𝑃) ⩽ 𝜌(𝜑, 𝜓) for any stochastic matrix 𝑃

Property (ii) is called the nonexpansiveness property of stochastic matrices un-
der the ℓ1 deviation. As we will see, we can tighten this bound when 𝑃 satisfies certain
properties.

As a first step we note that, for the ℓ1 deviation, given any stochastic matrix 𝑃, we
have

𝜌(𝜑𝑃, 𝜓𝑃) ⩽ (1 − 𝛼(𝑃))𝜌(𝜑, 𝜓), (4.27)
where

𝛼(𝑃) := min
{∑
𝑦∈𝑆
[𝑃(𝑥, 𝑦) ∧ 𝑃(𝑥′, 𝑦)] : (𝑥, 𝑥′) ∈ 𝑆 × 𝑆

}
. (4.28)

Here 𝑎∧𝑏 := min{𝑎, 𝑏}when 𝑎, 𝑏 ∈ R. We call 𝛼(𝑃) theMarkov–Dobrushin coefficient
of 𝑃, although other names are also used in the literature. A proof of the bound in
(4.27) can be found in Stachurski (2022a) or Seneta (2006a).3

3Seneta (2006a) also discusses the history of Andrey Markov’s work, which originated the kinds of
contraction based arguments used in this section.
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EXERCISE 4.2.5. Consider the stochastic matrices

𝑃𝑤 =

(
1 − 𝛼 𝛼
𝛽 1 − 𝛽

)
.

Show that 𝛼(𝑃𝑤) = 0 if and only if 𝛼 = 𝛽 = 0 or 𝛼 = 𝛽 = 1.

How should the Markov–Dobrushin coefficient be understood? The coefficient is
large when the rows of 𝑃 are relatively similar. For example, if rows 𝑃(𝑥, ·) and 𝑃(𝑥′, ·)
are identical, the ∑

𝑦∈𝑆 [𝑃(𝑥, 𝑦) ∧ 𝑃(𝑥′, 𝑦)] = 1. Similarity of rows is related to stability.
The next exercise helps to illustrate.

EXERCISE 4.2.6. Let 𝑃 be such that all rows are identical and equal to 𝜑 ∈ 𝒟(𝑆).
Prove that global stability holds in one step, in the sense that 𝜑 is the unique stationary
distribution and 𝜓𝑃 = 𝜑 for all 𝜓 ∈ 𝒟(𝑆).

EXERCISE 4.2.7. Using (4.27), show that, for any 𝜑, 𝜓 ∈ 𝒟(𝑆), we have

𝜌(𝜑𝑃𝑡, 𝜓𝑃𝑡) ⩽ (1 − 𝛼(𝑃))𝑡𝜌(𝜑, 𝜓) for all 𝑡 ∈ N. (4.29)

Since powers of stochastic matrices are again stochastic, and since (4.27) is valid
for any stochastic matrix, the bound in (4.29) can be generalized by replacing 𝑃 with
𝑃𝑘 for any given 𝑘 ∈ N, which gives (with 𝑡 replaced by 𝜏)

𝜌(𝜑𝑃𝜏𝑘, 𝜓𝑃𝜏𝑘) ⩽ (1 − 𝛼(𝑃𝑘))𝜏𝜌(𝜑, 𝜓) for all 𝜏 ∈ N.

Now observe that, for any 𝑡 ∈ N, we can write 𝑡 = 𝜏𝑘 + 𝑗, where 𝜏 ∈ Z+ and 𝑗 ∈
{0, . . . , 𝑘 − 1}. Fixing 𝑡 and choosing 𝑗 to make this equality hold, we get

𝜌(𝜑𝑃𝑡, 𝜓𝑃𝑡) = 𝜌(𝜑𝑃𝜏𝑘+ 𝑗, 𝜓𝑃𝜏𝑘+ 𝑗) ⩽ 𝜌(𝜑𝑃𝜏𝑘, 𝜓𝑃𝜏𝑘) ⩽ (1 − 𝛼(𝑃𝑘))𝜏𝜌(𝜑, 𝜓)

where the second inequality is due to the nonexpansive property of stochastic matrices
(Exercise 4.2.4). Since 𝜏 is an integer satisfying 𝜏 = ⌊𝑡/𝑘⌋, where ⌊·⌋ is the floor
function, we can now state the following.
Theorem 4.2.4. Letℳ be a finite Markov model with state space 𝑆 and transition matrix
𝑃. For all 𝜑, 𝜓 ∈ 𝒟(𝑆) and all 𝑘, 𝑡 ∈ N, we have

𝜌(𝜑𝑃𝑡, 𝜓𝑃𝑡) ⩽ (1 − 𝛼(𝑃𝑘)) ⌊𝑡/𝑘⌋𝜌(𝜑, 𝜓). (4.30)

In particular, if there exists a 𝑘 ∈ N such that 𝛼(𝑃𝑘) > 0, then ℳ is globally stable.
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To see why the global stability implication stated in Theorem 4.2.4 holds, suppose
there exists a 𝑘 ∈ N such that 𝛼(𝑃𝑘) > 0. Now substitute arbitrary 𝜓 ∈ 𝒟(𝑆) and any
stationary distribution 𝜓∗ for 𝑃 into (4.30) to obtain

𝜌(𝜓𝑃𝑡, 𝜓∗) ⩽ (1 − 𝛼(𝑃𝑘)) ⌊𝑡/𝑘⌋𝜌(𝜓, 𝜓∗) ⩽ 2(1 − 𝛼(𝑃𝑘)) ⌊𝑡/𝑘⌋ (4.31)

for all 𝑡 ∈ N, where the second bound is due to Exercise 4.2.4.
EXERCISE 4.2.8. In the preceding discussion, the distribution 𝜓∗ was taken to be

any stationary distribution of 𝑃. Using (4.31), prove that 𝑃 has only one stationary
distribution when 𝛼(𝑃𝑘) > 0.

One of the major advantages of Theorem 4.2.4 is that strong connectivity of ℳ
is not required. In the next section we will see an example of a finite Markov model
ℳ where (i) strong connectivity fails but (ii) the conditions of Theorem 4.2.4 are
satisfied.4

EXERCISE 4.2.9. Let ℳ be a finite Markov model with state space 𝑆 and transition
matrix 𝑃. Prove the existence of a 𝑘 ∈ N with 𝛼(𝑃𝑘) > 0 whenever ℳ is strongly
connected and aperiodic.

4.2.3.2 Sufficient Conditions

While the Markov–Dobrushin coefficient 𝛼(𝑃𝑘) can be calculated for any given 𝑘 on a
computer by stepping through all pairs of rows in 𝑃𝑘, this calculation is computation-
ally intensive when 𝑆 is large. When applicable, the following lemma simplifies the
problem by providing a sufficient condition for 𝛼(𝑃𝑘) > 0.
Lemma 4.2.5. Let 𝑘 be a natural number and letℳ be a finite Markov model with state
space 𝑆 and transition matrix 𝑃. If there is a state 𝑧 ∈ 𝑆 such that, for every 𝑥 ∈ 𝑆, there
exists a directed walk from 𝑥 to 𝑧 of length 𝑘, then 𝛼(𝑃𝑘) > 0.

Proof. Let 𝑘 ∈ N and 𝑧 ∈ 𝑆 be such that, for every 𝑥 ∈ 𝑆, there exists a directed walk
from 𝑥 to 𝑧 of length 𝑘. By Proposition 1.4.2, we then have 𝑟 := min𝑥∈𝑆 𝑃𝑘(𝑥, 𝑧) > 0.
Since, for any 𝑥, 𝑥′ ∈ 𝑆,∑

𝑦∈𝑆
[𝑃𝑘(𝑥, 𝑦) ∧ 𝑃𝑘(𝑥′, 𝑦)] ⩾ 𝑃𝑘(𝑥, 𝑧) ∧ 𝑃𝑘(𝑥′, 𝑧) ⩾ 𝑟 > 0,

4It can be shown that the condition 𝛼(𝑃𝑘) > 0 for some 𝑘 ∈ N is necessary as well as sufficient for
global stability of a finite Markov model. Hence the conditions of Theorem 4.2.4 are strictly weaker
than strong connectedness plus aperiodicity, as used in Theorem 4.1.1.
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Figure 4.11: A digraph with walk of length 2 from any node to 1

strict positivity of 𝛼(𝑃𝑘) now follows from the definition of the Markov–Dobrushin
coefficient. □

Example 4.2.10. Consider the digraph in Figure 4.11. This digraph is not strongly
connected because 4 is not accessible from anywhere. However, there exists a directed
walk from any vertex to vertex 1 in 𝑘 = 2 steps. For example, from 2 we can choose
2 → 1 and then 1 → 1, from 1 we can choose 1 → 1 and then 1 → 1, etc. Hence,
if Figure 4.11 is the digraph of a finite Markov model with transition matrix 𝑃, then
𝛼(𝑃2) > 0.

Example 4.2.11. Consider theMarkov dynamics suggested in Figure 1.10 on page 29.
Although there are no weights, we can see that poor is accessible from every state in
one step, so ℳ must be globally stable. In addition, poor is, by itself, an absorbing
set. Hence, by Exericse 4.2.3, for any choice of weights compatible with these edges,
the stationary distribution will concentrate all its mass on poor.

Remark 4.2.1. As was pointed out in proof of Lemma 4.2.5, under the conditions of
that lemma we have 𝑃𝑘(𝑥, 𝑧) > 0 for all 𝑥 ∈ 𝑆. This means that 𝛼(𝑃𝑘) > 0 whenever 𝑃𝑘
has a strictly positive column.

4.2.3.3 Application: PageRank

In §1.4.3 we discussed centrality measures for networks. Centrality measures provide
a ranking of vertices in the network according to their “centrality” or “importance.”
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Figure 4.12: A digraph with walk of length 2 from any node to 1

One of the most important applications of ranking of vertices in a network is ranking
the importance of web pages on the internet. Historically, the most prominent exam-
ple of a ranking mechanism for the internet is PageRank, which transformed Google
from a minor start up to a technology behemoth. In this section we provide a simple
introduction to the original form of PageRank and connect it to previously discussed
measures of centrality.

Consider a finite collection of web pages 𝑊 and let 𝐿 be the hyperlinks between
them. We understand (𝑊, 𝐿) as a digraph 𝒢, where 𝑊 is the vertices and 𝐿 is the
edges. Let 𝐴 be the associated adjacency matrix, so that 𝐴(𝑢, 𝑣) = 1 if there is a link
from 𝑢 to 𝑣 and zero otherwise. We set 𝑛 = |𝑊 |, so that 𝐴 is 𝑛 × 𝑛.

To start our analysis, we consider the case where𝒢 is strongly connected, such as
the small network in Figure 4.12. Furthermore, we introduce a second matrix 𝑃 in
which each row of 𝐴 has been normalized so that it sums to one. For the network in
Figure 4.12, this means that

𝐴 =
©«
0 1 1 1
0 0 1 0
0 0 0 1
1 0 0 0

ª®®®¬ and 𝑃 =
©«
0 1/3 1/3 1/3
0 0 1 0
0 0 0 1
1 0 0 0

ª®®®¬ .
Now consider an internet surfer who, once per minute, randomly clicks on one of the
𝑘 outgoing links on a page, each link selected with uniform probability 1/𝑘. The idea
of PageRank is to assign to each page 𝑢 ∈ 𝑊 a value 𝑔(𝑢) equal to the fraction of time
that this surfer spends on page 𝑢 over the long run. Intuitively, a high value for 𝑔(𝑢)
indicates a heavily visited and hence important site.

The vector 𝑔 is easy to compute, given our knowledge of Markov chains. Let ℳ be
the finite Markov model associated with the random surfer, with state space 𝑊 and
adjacency matrix given by 𝑃. Since ℳ is strongly connected, the ergodicity theorem
(page 169) tells us that 𝑃 has a unique stationary distribution 𝜓∗, and that the fraction
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of time the surfer spends at page 𝑢 is equal to the probability assigned to 𝑢 under the
stationary distribution (see, in particular, (4.20)). Hence 𝑔 = 𝜓∗.

As 𝑔 is stationary and 𝑟(𝑃) = 1, we can write 𝑔 = (1/𝑟(𝑃))𝑔𝑃. Taking transposes
gives 𝑔⊤ = (1/𝑟(𝑃))𝑃⊤𝑔⊤. Comparing with (1.34) on page 50, we see that, for this
simple case, the PageRank vector 𝑔 is just the authority-based eigenvector centrality
measure ofℳ. Thus, PageRank gives high ranking to pages with many inbound links,
attaching high value to inbound links from pages that are themselves highly ranked.

There are two problems with the preceding analysis. First, we assumed that the
internet is strongly connected, which is clearly violated in practice (we need only one
page with no outbound links). Second, internet users sometimes select pages without
using hyperlinks, by manually entering the URL.

The PageRank solution to this problem is to replace 𝑃 with the so-called Google
matrix

𝐺 := 𝛿𝑃 + (1 − 𝛿) 1
𝑛
1,

where 1 is the 𝑛× 𝑛 matrix of ones. The value 𝛿 ∈ (0, 1) is called the damping factor.

EXERCISE 4.2.10. Prove that 𝐺 is a stochastic matrix for all 𝛿 ∈ (0, 1).

The Markov dynamics embedded in the stochastic matrix 𝐺 can be understood as
follows: The surfer begins by flipping a coin with heads probability 𝛿. (See Exer-
cise 1.3.6 and its solution for the connection between convex combinations and coin
flips.) If the coin is heads then the surfer randomly selects and follows one of the links
on the current page. If not then the surfer randomly selects and moves to any page
on the internet.

For given 𝛿, the PageRank vector for this setting is adjusted to be the stationary
distribution of the Google matrix 𝐺.

EXERCISE 4.2.11. Verify that the digraph associated with the transition probabili-
ties in 𝐺 is always strongly connected (assuming, as above, that 𝛿 ∈ (0, 1)).

As a result of Exercise 4.2.11, we can always interpret the stationary of 𝐺 as telling
us the fraction of time that the surfer spends on each page in the long run.

EXERCISE 4.2.12. Use (4.31) to obtain a rate of convergence of 𝜓𝐺𝑡 to the adjusted
PageRank vector 𝑔∗ (i.e., the unique stationary distribution 𝑔∗ of 𝐺), where 𝜓 is an
arbitrary initial distribution on𝑊. (Set 𝑘 = 1.)
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Figure 4.13: Two social networks

4.2.4 Information and Social Networks

In recent years, the way that opinions spread across social networks has become a
major topic of concern in many countries around the globe. A well-known mathemat-
ical model of this phenomenon is De Groot learning, which was originally proposed
in DeGroot (1974). This mechanism has linear properties that make it relatively easy
to analyze (although large and complex underlying networks can cause significant
challenges).

In De Groot learning, a group of agents, labeled from 1 to 𝑛, is connected by a
social or information network of some type. Connections are indicated by a trust
matrix 𝑇, where, informally,

𝑇 (𝑖, 𝑗) = amount that 𝑖 trusts the opinion of 𝑗.

In other words, 𝑇 (𝑖, 𝑗) is large if agent 𝑖 puts a large positive weight on the opinion of
agent 𝑗. The matrix 𝑇 is assumed to be stochastic.

We can view the trust matrix as an adjacency matrix for a weighed digraph 𝒮 with
vertex set 𝑉 := [𝑛] and edges

𝐸 = {(𝑖, 𝑗) ∈ 𝑉 × 𝑉 : 𝑇 (𝑖, 𝑗) > 0}.
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Figure 4.13 shows two social networks 𝒮𝑎 and 𝒮𝑏 with trust matrices given by

𝑇𝑎 =
©«

1 0 0 0
0.5 0.1 0.4 0
0.5 0.4 0.1 0
0 0.5 0 0.5

ª®®®¬ and 𝑇𝑏 =
©«
0.8 0 0 0.2
0.5 0.1 0.4 0
0.5 0.4 0.1 0
0 0.5 0 0.5

ª®®®¬
respectively. In network A, agent 1 places no trust in anyone’s opinion but his own.
In network B, he places at least some trust in the opinion of agent 4. Below we show
how these differences matter for the dynamics of beliefs.

4.2.4.1 Learning

At time zero, all agents have an initial subjective belief concerning the validity of a
given statement. Belief takes values in [0, 1], with 1 indicating complete (subjective)
certainty that the statement is true. Let 𝑏0(𝑖) be the belief of agent 𝑖 at time zero.

An agent updates beliefs sequentially based on the beliefs of others, weighted by
the amount of trust placed in their opinion. Specifically, agent 𝑖 updates her belief
after one unit of time to ∑𝑛

𝑗=1 𝑇 (𝑖, 𝑗)𝑏0( 𝑗). More generally, at time 𝑡 + 1, beliefs update
to

𝑏𝑡+1(𝑖) =
𝑛∑
𝑗=1

𝑇 (𝑖, 𝑗)𝑏𝑡 ( 𝑗) (𝑖 ∈ 𝑉). (4.32)

In matrix notation this is 𝑏𝑡+1 = 𝑇𝑏𝑡, where each 𝑏𝑡 is treated as a column vector.
(Notice that this update rule is similar but not identical to the marginal distribu-

tion updating rule for Markov chains (the forward equation) discussed on page 159.
Here we are postmultiplying by a column vector rather than premultiplying be a row
vector.)

EXERCISE 4.2.13. If some subgroup of agents 𝑈 ⊂ 𝑉 is an absorbing set for the
digraph 𝒮, indicating that members of this group place no trust in outsiders, then the
initial beliefs {𝑏0(𝑖)}𝑖∈𝑈𝑐 of the outsiders (members of 𝑈𝑐 = 𝑉 \𝑈) have no influence on
the beliefs of the insiders (members of 𝑈) at any point in time. Prove that this is true.

4.2.4.2 Consensus

A social network 𝒮 is said to lead to consensus if |𝑏𝑡 (𝑖) − 𝑏𝑡 ( 𝑗) | → 0 as 𝑡 → ∞ for
all 𝑖, 𝑗 ∈ 𝑉. Consensus implies that all agents eventually share the same belief. An
important question is, what conditions on the network lead to a consensus outcome?
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Proposition 4.2.6. If there exists a 𝑘 ∈ N such that 𝛼(𝑇𝑘) > 0, then consensus is ob-
tained. In particular,

|𝑏𝑡 (𝑖) − 𝑏𝑡 ( 𝑗) | ⩽ 2(1 − 𝛼(𝑇𝑘)) ⌊𝑡/𝑘⌋ for all 𝑡 ∈ N and 𝑖, 𝑗 ∈ 𝑉. (4.33)

Proof. Fix 𝑖, 𝑗 ∈ 𝑉 and 𝑡 ∈ N. Let 𝑏 = 𝑏0. For any 𝜑, 𝜓 ∈ 𝒟(𝑉), an application of the
triangle inequality gives

|𝜑𝑇 𝑡𝑏 − 𝜓𝑇 𝑡𝑏| =
�����∑

𝑗

(𝜑𝑇 𝑡)( 𝑗)𝑏( 𝑗) −
∑
𝑗

(𝜓𝑇 𝑡) ( 𝑗)𝑏( 𝑗)
����� ⩽ ∑

𝑗

��(𝜑𝑇 𝑡)( 𝑗) − (𝜓𝑇 𝑡)( 𝑗)�� ,
where we have used the fact that |𝑏( 𝑗) | = 𝑏( 𝑗) ⩽ 1. Applying the definition of the ℓ1
deviation and (4.30), we obtain the bound

|𝜑𝑇 𝑡𝑏 − 𝜓𝑇 𝑡𝑏| ⩽ (1 − 𝛼(𝑇𝑘)) ⌊𝑡/𝑘⌋𝜌(𝜑, 𝜓) ⩽ 2(1 − 𝛼(𝑇𝑘)) ⌊𝑡/𝑘⌋ . (4.34)

Since this bound is valid for any choice of 𝜑, 𝜓 ∈ 𝒟(𝑉), we can specialize to 𝜑 = 𝛿𝑖
and 𝜓 = 𝛿 𝑗 and, applying 𝑇 𝑡𝑏 = 𝑏𝑡, get

|𝑏𝑡 (𝑖) − 𝑏𝑡 ( 𝑗) | = |𝛿𝑖𝑇 𝑡𝑏 − 𝛿 𝑗𝑇 𝑡𝑏| ⩽ 2(1 − 𝛼(𝑇𝑘)) ⌊𝑡/𝑘⌋ . □

Proposition 4.2.6 can be applied to the two social networks 𝒮𝑎 and 𝒮𝑏 in Fig-
ure 4.13. For example, in network 𝒮𝑎, for every node 𝑖, there exists a walk of length
2 from 𝑖 to node 1. Hence, by Lemma 4.2.5, we have 𝛼(𝑇2) > 0. In network 𝒮𝑏 the
same is true.

EXERCISE 4.2.14. Let 𝒮 be a social network with trust (and adjacency) matrix
𝑇. Use Proposition 4.2.6 to show that 𝒮 leads to consensus whenever 𝒮 is strongly
connected and aperiodic.

4.2.4.3 Influence of Authorities

Now let’s consider what beliefs converge to when consensus emerges. In particular,
we are interested in discovering whose opinions are most influential under De Groot
learning, for a given trust matrix.

To answer the question, let 𝒮 be a given social network with trust matrix 𝑇. Sup-
pose that 𝛼(𝑇𝑘) > 0 for some 𝑘 ∈ N. By Theorem 4.2.4, the network𝒮 is globally stable
when viewed as a finite Markov model. Let 𝜓∗ be the unique stationary distribution,
so that 𝜓∗ = 𝜓∗𝑇.
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Applying (4.34) with 𝜑 = 𝛿𝑖 and 𝜓 = 𝜓∗ yields

|𝑏𝑡 (𝑖) − 𝑏∗ | ⩽ (1 − 𝛼(𝑇𝑘)) ⌊𝑡/𝑘⌋𝜌(𝜑, 𝜓) ⩽ 2(1 − 𝛼(𝑇𝑘)) ⌊𝑡/𝑘⌋

where
𝑏∗ :=

∑
𝑗∈𝑉

𝜓∗( 𝑗)𝑏0( 𝑗).

We conclude that the belief of every agent converges geometrically to 𝑏∗, which is a
weighted average of the initial beliefs of all agents. In particular, those agents with
high weighting under the stationary distribution have a large influence on these equi-
librium beliefs.

We can interpret this through notions of centrality. Since 𝑟(𝑇) = 1, we have (𝜓∗)⊤ =
(1/𝑟(𝑇))𝑇⊤(𝜓∗)⊤, so 𝜓∗ is the authority-based eigenvector centrality measure on 𝒮.
Thus, the influence of each agent on long run beliefs is proportional to their authority-
based eigenvector centrality. This makes sense because such agents are highly trusted
by many agents who are themselves highly trusted.

EXERCISE 4.2.15. For network 𝒮𝑎 in Figure 4.13, show that 𝑏∗ = 𝑏0(1). That is, all
agents’ beliefs converge to the belief of agent 1.

EXERCISE 4.2.16. Using a computer, show that the stationary distribution for 𝒮𝑏,
rounded to two decimal places, is 𝜓∗ = (0.56, 0.15, 0.07, 0.22). (Notice how the rel-
atively slight change in network structure from 𝒮𝑎 to 𝒮𝑏 substantially reduces the
influence of agent 1.)

4.3 Chapter Notes

High quality treatments of finite-state Markov dynamics include Norris (1998), Pri-
vault (2013) and Häggström (2002). For the general state case seeMeyn and Tweedie
(2009).

A review of De Groot learning is available in Jackson (2010). Some interesting ex-
tensions related to the “wisdom of crowds” phenomenon are provided in Golub and
Jackson (2010). Molavi et al. (2018) provide a theory of social learning that includes
De Groot learning as a special case. Acemoglu et al. (2021a) study misinformation
and echo chambers in information networks. Board and Meyer-ter Vehn (2021) an-
alyze learning dynamics in continuous time on large social networks. Shiller (2020)
provides an interesting discussion of how ideas spread across social networks and
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shape economic outcomes. In a large-scale empirical study, Chetty et al. (2022) an-
alyze how cross-class friendships influence social mobility. Acemoglu et al. (2023)
consider the effect of strong and weak links on Bayesian learning in a social network.
Dasaratha et al. (2022) analyze how Bayesian agents learn about a changing state by
interacting with their neighbors. While the resulting dynamics are similar to those
of the De Groot model, they are generated as an equilibrium outcome rather than
imposed as a behavioral assumption.



Chapter 5

Nonlinear Interactions

Much of what makes network analysis interesting is how ramifications of choices flow
across networks. In general, decisions made at a given node 𝑖 affect responses of
neighboring nodes and, through them, neighbors of neighboring nodes, and so on.
As these consequences flow across the network, they in turn affect choices at 𝑖. This
is a tail-chasing scenario, which can be unraveled through fixed point theory.

In some network settings, such as the input-output model in §2.1, interactions are
linear and fixed point problems reduce a system of linear equations. In other settings,
interactions are inherently nonlinear and, as a result, we need more sophisticated
fixed point theory.

This chapter is dedicated to the study of networks with nonlinear interactions. We
begin with relevant fixed point theory and then apply it to a sequence of problems
that arise in analysis of economic networks, including production models with supply
constraints and financial networks.

5.1 Fixed Point Theory

Let 𝑆 be any set. Recall from §6.1.1.6 that, given a self-map 𝐺 on 𝑆, a point 𝑥 ∈ 𝑆 is
called a fixed point of 𝐺 if 𝐺𝑥 = 𝑥. (A self-map on 𝑆 is a function 𝐺 from 𝑆 to itself.
When working with self-maps it is common to abbreviate 𝐺(𝑥) to 𝐺𝑥.) In this chapter,
we will say that 𝐺 is globally stable on 𝑆 if 𝐺 has a unique fixed point 𝑥∗ ∈ 𝑆 and
𝐺𝑘𝑥 → 𝑥∗ as 𝑘→ ∞ for all 𝑥 ∈ 𝑆. In other words, under this property, the fixed point
is not only unique but also globally attracting under iteration of 𝐺.

We have already discussed fixed points, indirectly or directly, in multiple contexts:

186



CHAPTER 5. NONLINEAR INTERACTIONS 187

• In Chapter 2 we studied the equation 𝑥 = 𝐴𝑥 + 𝑑, where 𝑥 is an output vector, 𝐴
is a matrix of coefficients and 𝑑 is a demand vector. A solution 𝑥 to this equation
can also be thought of as a fixed point of the affine map 𝐹𝑥 = 𝐴𝑥 + 𝑑.

• In Chapter 4 we learned that a stationary distribution of a finite Markov model
with state space 𝑆 and adjacency matrix 𝑃 is a 𝜓 ∈ 𝒟(𝑆) with 𝜓 = 𝜓𝑃. In other
words, 𝜓 is a fixed point of 𝜓 ↦→ 𝜓𝑃 in 𝒟(𝑆).

• In Chapter 3 we studied the Bellman equation 𝑞(𝑥) = min𝑦∈𝒪(𝑥){𝑐(𝑥, 𝑦) + 𝑞(𝑦)}
and introduced an operator the Bellman operator 𝑇, with the property that its
fixed points exactly coincide with solutions to the Bellman equation.

In each case, when we introduced these fixed point problems, we immediately
needed to consider questions of existence and uniqueness of fixed points. Now we
address these same issues more systematically in an abstract setting.

5.1.1 Contraction Mappings

In Chapter 2 we studied solutions of the system 𝑥 = 𝐴𝑥 + 𝑏 that are fixed points of
the affine map 𝐹𝑥 = 𝐴𝑥 + 𝑏 on R𝑛 studied in Example 5.1.1. The Neumann series
lemma on page 13 is, in essence, a statement about existence and uniqueness of fixed
points of this map. Here we investigate another fixed point theorem, due to Stefan
Banach (1892–1945), that can be thought of as extending the Neumann series lemma
to nonlinear systems.

5.1.1.1 Contractions

Let 𝑆 be a nonempty subset of R𝑛. A self-map 𝐹 on 𝑆 is called contracting or a con-
traction of modulus 𝜆 on 𝑆 if there exists a 𝜆 < 1 and a norm ∥ · ∥ on R𝑛 such that

∥𝐹𝑢 − 𝐹𝑣∥ ⩽ 𝜆∥𝑢 − 𝑣∥ for all 𝑢, 𝑣 ∈ 𝑆. (5.1)

EXERCISE 5.1.1. Let 𝐹 be a contraction of modulus 𝜆 on 𝑆. Show that

(i) 𝐹 is continuous on 𝑆 and
(ii) 𝐹 has at most one fixed point on 𝑆.

Example 5.1.1. Let 𝑆 = R𝑛, paired with the Euclidean norm ∥ · ∥. Let 𝐹𝑥 = 𝐴𝑥 + 𝑏,
where 𝐴 ∈ M𝑛×𝑛 and 𝑏 ∈ R𝑛. If ∥𝐴∥ < 1, where ∥ · ∥ is the operator norm on M𝑛×𝑛,
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then 𝐹 is a contraction of modulus ∥𝐴∥, since, for any 𝑥, 𝑦 ∈ 𝑆,

∥𝐴𝑥 + 𝑏 − 𝐴𝑦 − 𝑏∥ = ∥𝐴(𝑥 − 𝑦)∥ ⩽ ∥𝐴∥∥𝑥 − 𝑦∥.

The next example uses a similar idea but is based on a different norm.

Example 5.1.2. In (2.22) we studied the system 𝜌 = 𝐴⊤𝜌 − 𝜀, where 𝐴 = (𝑎𝑖 𝑗) is a
matrix of coefficients satisfying ∑

𝑖 𝑎𝑖 𝑗 = 1 − 𝛼 for some 𝛼 ∈ (0, 1), the vector 𝜀 is given
and 𝜌 is unknown. Solutions can be viewed as a fixed points of the map 𝐹 : R𝑛 → R𝑛

defined by 𝐹𝑝 = 𝐴⊤𝑝 − 𝜀. Under the ∥ · ∥∞ norm, 𝐹 is a contraction of modulus 1 − 𝛼
on R𝑛. Indeed, for any 𝑝, 𝑞 ∈ R𝑛,

∥𝐹𝑝 − 𝐹𝑞∥∞ = max
𝑗

����� 𝑛∑
𝑖=1

𝑎𝑖 𝑗(𝑝𝑖 − 𝑞𝑖)
����� ⩽ max

𝑗

𝑛∑
𝑖=1

𝑎𝑖 𝑗 |𝑝𝑖 − 𝑞𝑖 | .

Since |𝑝𝑖 − 𝑞𝑖 | ⩽ ∥𝑝 − 𝑞∥∞, we obtain

∥𝐹𝑝 − 𝐹𝑞∥∞ ⩽ max
𝑗

𝑛∑
𝑖=1

𝑎𝑖 𝑗∥𝑝 − 𝑞∥∞ = (1 − 𝛼)∥𝑝 − 𝑞∥∞.

Consider again Example 5.1.1. For the affine map 𝐹𝑥 = 𝐴𝑥 + 𝑏, the condition
∥𝐴∥ < 1 used to obtain contraction is stronger than the condition 𝑟(𝐴) < 1 used
to obtain a unique fixed point in the Neumann series lemma (see Exercise 2.3.11
on page 96). Furthermore, the Neumann series lemma provides a geometric series
representation of the fixed point. On the other hand, as we now show, the contraction
property can be used to obtain unique fixed points when the map in question is not
affine.

5.1.1.2 Banach’s Theorem

The fundamental importance of contractions stems from the following theorem.

Theorem 5.1.1 (Banach’s contraction mapping theorem). If 𝑆 is closed in R𝑛 and 𝐹 is
a contraction of modulus 𝜆 on 𝑆, then 𝐹 has a unique fixed point 𝑢∗ in 𝑆 and

∥𝐹𝑛𝑢 − 𝑢∗∥ ⩽ 𝜆𝑛∥𝑢 − 𝑢∗∥ for all 𝑛 ∈ N and 𝑢 ∈ 𝑆. (5.2)

In particular, 𝐹 is globally stable on 𝑆.

We complete a proof of Theorem 5.1.1 in stages.



CHAPTER 5. NONLINEAR INTERACTIONS 189

EXERCISE 5.1.2. Let 𝑆 and 𝐹 have the properties stated in Theorem 5.1.1. Fix
𝑢0 ∈ 𝑆 and let 𝑢𝑚 := 𝐹𝑚𝑢0. Show that

∥𝑢𝑚 − 𝑢𝑘∥ ⩽
𝑘−1∑
𝑖=𝑚

𝜆 𝑖∥𝑢0 − 𝑢1∥

holds for all 𝑚, 𝑘 ∈ N with 𝑚 < 𝑘.

EXERCISE 5.1.3. Using the results in Exercise 5.1.2, prove that (𝑢𝑚) is a Cauchy
sequence in R𝑛 (see §6.1.3.2 for notes on the Cauchy property).

EXERCISE 5.1.4. Using Exercise 5.1.3, argue that (𝑢𝑚) hence has a limit 𝑢∗ ∈ R𝑛.
Prove that 𝑢∗ ∈ 𝑆.

Proof of Theorem 5.1.1. In the exercises we proved existence of a point 𝑢∗ ∈ 𝑆 such
that 𝐹𝑚𝑢 → 𝑢∗. The fact that 𝑢∗ is a fixed point of 𝐹 now follows from Lemma 6.1.6
on page 226 and Exercise 5.1.1. Uniqueness is implied by Exercise 5.1.1. The bound
(5.2) follows from iteration on the contraction inequality (5.1) while setting 𝑣 = 𝑢∗.

□

5.1.1.3 Eventual Contractions

Let 𝑆 be a nonempty subset of R𝑛. A self-map 𝐹 on 𝑆 is called eventually contract-
ing if there exists a 𝑘 ∈ N such that 𝐹𝑘 is a contraction on 𝑆. Significantly, most
of the conclusions of Banach’s theorem carry over to the case where 𝐹 is eventually
contracting.
Theorem 5.1.2. Let 𝐹 be a self-map on 𝑆 ⊂ R𝑛. If 𝑆 is closed and 𝐹 is eventually
contracting, then 𝐹 is globally stable on 𝑆.

EXERCISE 5.1.5. Prove Theorem 5.1.2.1

There is a close connection between Theorem 5.1.2 and the Neumann series lemma
(NSL). If 𝑆 = R𝑛 and 𝐹𝑥 = 𝐴𝑥 + 𝑏 with 𝑟(𝐴) < 1, then the NSL implies a unique fixed
point. We can also obtain this result from Theorem 5.1.2, since, for any 𝑘 ∈ N,

∥𝐹𝑘𝑥 − 𝐹𝑘𝑦∥ = ∥𝐴𝑘𝑥 − 𝐴𝑘𝑦∥ = ∥𝐴𝑘(𝑥 − 𝑦)∥ ⩽ ∥𝐴𝑘∥∥𝑥 − 𝑦∥.
1Hint: Theorem 5.1.1 is self-improving: it implies this seemingly stronger result. The proof is not

trivial but see if you can get it started. You might like to note that 𝐹𝑘 has a unique fixed point 𝑢∗ in 𝑆.
(Why?) Now consider the fact that ∥𝐹𝑢∗ − 𝑢∗∥ = ∥𝐹𝐹𝑛𝑘𝑢∗ − 𝑢∗∥ for all 𝑛 ∈ N.
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As 𝑟(𝐴) < 1, we can choose 𝑘 such that ∥𝐴𝑘∥ < 1 (see §2.3.3). Hence 𝐹 is eventually
contracting and Theorem 5.1.2 applies.

As mentioned above, contractions and eventual contractions have much wider
scope than the NSL, since they can also be applied in nonlinear settings. At the same
time, the NSL is preferred when its conditions hold, since it also gives inverse and
power series representations of the fixed point.

5.1.1.4 A Condition for Eventual Contractions

The result below provides a useful test for the eventual contraction property. (In the
statement, the absolute value of a vector is defined pointwise, as in §6.1.2.2.)

Proposition 5.1.3. Let 𝐹 be a self-map on 𝑆 ⊂ R𝑛 such that, for some 𝑛 × 𝑛 matrix 𝐴,

|𝐹𝑥 − 𝐹𝑦 | ⩽ 𝐴|𝑥 − 𝑦 | for all 𝑥, 𝑦 ∈ 𝑆.

If, in addition, 𝐴 ⩾ 0 and 𝑟(𝐴) < 1, then 𝐹 is eventually contracting on 𝑆 with respect to
the Euclidean norm.

Proof. Our first claim is that, under the conditions of the proposition,

|𝐹𝑘𝑥 − 𝐹𝑘𝑦 | ⩽ 𝐴𝑘 |𝑥 − 𝑦 | for all 𝑘 ∈ N and 𝑥, 𝑦 ∈ 𝑆. (5.3)

This is true at 𝑘 = 1 by assumption. If it is true at 𝑘 − 1, then

|𝐹𝑘𝑥 − 𝐹𝑘𝑦 | ⩽ 𝐴|𝐹𝑘−1𝑥 − 𝐹𝑘−1𝑦 | ⩽ 𝐴𝐴𝑘−1 |𝑥 − 𝑦 |, (5.4)

where the second inequality uses the induction hypothesis and 𝐴 ⩾ 0 (so that 𝑢 ⩽ 𝑣
implies 𝐴𝑢 ⩽ 𝐴𝑣). Hence (5.3) holds.

It follows from the definition of the Euclidean norm that ∥|𝑢|∥ = ∥𝑢∥ for any vector
𝑢. Also, for the same norm, |𝑢| ⩽ |𝑣| implies ∥𝑢∥ ⩽ ∥𝑣∥. Hence, for all 𝑘 ∈ N and
𝑥, 𝑦 ∈ 𝑆,

∥𝐹𝑘𝑥 − 𝐹𝑘𝑦∥ ⩽ ∥𝐴𝑘 |𝑥 − 𝑦 | ∥ ⩽ ∥𝐴𝑘∥𝑜∥𝑥 − 𝑦∥.

In the second inequality, we used ∥ · ∥𝑜 for the operator norm, combined with the fact
that ∥𝐴𝑢∥ ⩽ ∥𝐴∥𝑜∥𝑢∥ always holds, as discussed in §2.3.2.3.

By Gelfand’s lemma (see in particular Exercise 2.3.18 on page 98), we obtain
existence of a 𝜆 ∈ (0, 1) and a 𝑘 ∈ N with ∥𝐴𝑘∥𝑜 ⩽ 𝜆 < 1. Hence, for this 𝑘,

∥𝐹𝑘𝑥 − 𝐹𝑘𝑦∥ ⩽ 𝜆∥𝑥 − 𝑦∥.
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Since 𝜆 does not depend on 𝑥 or 𝑦, we have shown that 𝐹 is an eventual contraction
on 𝑆 with respect to the Euclidean norm. □

5.1.2 Shortest Paths Revisited

Consider again the shortest path problem introduced in §3.1. One modification that
sometimes appears in applications is the addition of discounting during travel between
vertices. For example, if the vertices are international ports and travel takes place by
sea, then port-to-port travel time is measured in weeks or even months. It is natural
to apply time discounting to future costs associated with that travel, to implement the
idea that paying a given dollar amount in the future is preferable to paying it now.

EXERCISE 5.1.6. Suppose it is possible to borrow and lend risk-free at a positive
interest rate 𝑟. Explain why it is always preferable to have $100 now than $100 in a
year’s time in this setting.

Recall that, without discounting, the Bellman equation for the shortest path prob-
lem takes the form 𝑞(𝑥) = min𝑦∈𝒪(𝑥){𝑐(𝑥, 𝑦) + 𝑞(𝑦)} for all 𝑥 ∈ 𝑉, where 𝑐 is the cost
function 𝑉 is the set of vertices and 𝑞 is a candidate for the cost-to-go function. We
showed that the minimum cost-to-go function 𝑞∗ satisfies the Bellman equation and is
the unique fixed point of the Bellman operator.

The Bellman equation neatly divides the problem into current costs, embedded in
the term 𝑐(𝑥, 𝑦), and future costs embedded in 𝑞(𝑦). To add discounting, we need
only discount 𝑞(𝑦). We do this by multiplying it by a discount factor 𝛽 ∈ (0, 1).
The Bellman equation is then 𝑞(𝑥) = min𝑦∈𝒪(𝑥){𝑐(𝑥, 𝑦) + 𝛽𝑞(𝑦)} for all 𝑥 ∈ 𝑉 and the
Bellman operator is

𝑇𝑞(𝑥) = min
𝑦∈𝒪(𝑥)

{𝑐(𝑥, 𝑦) + 𝛽𝑞(𝑦)} (𝑥 ∈ 𝑉). (5.5)

In §3.1.2, without discounting, we had to work hard to show that the Bellman
operator has a unique fixed point in 𝑈, the set of all 𝑞 : 𝑉 → R+ with 𝑞(𝑑) = 0. With
discounting the proof is easier, since we can leverage the Banach contraction mapping
theorem.

In what follows, we identify the vertices in 𝑉 with integers 1, . . . , 𝑛, where 𝑑 is
identified with 𝑛. We then understand 𝑈 as all nonnegative vectors 𝑞 in R𝑛 with
𝑞(𝑛) = 0. (We continue to write 𝑞(𝑥) for the 𝑥-th element of the vector 𝑞, but now 𝑥 is
in [𝑛].)
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EXERCISE 5.1.7. Prove that 𝑈 is a closed subset of R𝑛.

EXERCISE 5.1.8. Prove that 𝑇 is order-preserving on𝑈 with respect to the pointwise
order.

EXERCISE 5.1.9. Prove that, for any 𝑞 ∈ 𝑈 and 𝛼 ∈ R+, we have 𝑇 (𝑞+𝛼1) = 𝑇𝑞+𝛽𝛼1.

Now let ∥ · ∥∞ be the supremum norm on R𝑛 (see §2.3.1). We claim that 𝑇 is a
contraction on 𝑈 of modulus 𝛽. To see that this is so, fix 𝑝, 𝑞 ∈ 𝑈 and observe that,
pointwise,

𝑇𝑞 = 𝑇 (𝑝 + 𝑞 − 𝑝) ⩽ 𝑇 (𝑝 + ∥𝑞 − 𝑝∥∞1) ⩽ 𝑇 𝑝 + 𝛽∥𝑞 − 𝑝∥∞1,

where the first inequality is by the order-preserving of 𝑇 and the second follows from
Exercise 5.1.9. Hence

𝑇𝑞 − 𝑇 𝑝 ⩽ 𝛽∥𝑞 − 𝑝∥∞1.

Reversing the roles of 𝑝 and 𝑞 gives the reverse inequality. Hence

|𝑇𝑞(𝑥) − 𝑇 𝑝(𝑥) | ⩽ 𝛽∥𝑞 − 𝑝∥∞

for all 𝑥 ∈ [𝑛]. Taking the maximum on the left hand side yields ∥𝑇𝑞 − 𝑇 𝑝∥∞ ⩽
𝛽∥𝑞− 𝑝∥∞, which shows that 𝑇 is a contraction of modulus 𝛽. Hence Banach’s theorem
applies and a unique fixed point exists.

5.1.3 Supply Constraints
While the input-output model from §2.1.2 has many useful applications, its linear
structure can be a liability. One natural objection to linearity is supply constraints:
if sector 𝑗 doubles its orders from sector 𝑖, we cannot always expect that sector 𝑖 will
quickly meet this jump in demand.

In this sector we investigate the impact of supply constraints on equilibrium. These
constraints introduce nonlinear relationships between nodes that affect equilibria and
make analysis more challenging.

We recall from §2.1.2 that 𝑑𝑖 is final demand for good 𝑖, 𝑥𝑖 is total sales of sector
𝑖, 𝑧𝑖 𝑗 is inter-industry sales from sector 𝑖 to sector 𝑗, and 𝑎𝑖 𝑗 = 𝑧𝑖 𝑗/𝑥 𝑗 is dollar value of
inputs from 𝑖 per dollar output from 𝑗.

Departing from our previous formulation of equilibrium in the input-output model,
suppose that, in the short run, the total output value of sector 𝑖 is constrained by
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positive constant 𝑥 (𝑖). Holding prices fixed (in the short run), this means that sector
𝑖 has a capacity constraint in terms of unit output. For the purposes of our model, the
vector of capacity constraints 𝑥 := (𝑥 (𝑖))𝑛𝑖=1 can be any vector in R𝑛

+.
For each sector 𝑖, we modify the accounting identity (2.1) from page 67 to

𝑥𝑖 = min
{

𝑛∑
𝑗=1

𝑜𝑖 𝑗 + 𝑑𝑖, 𝑥 (𝑖)
}
, (5.6)

where 𝑜𝑖 𝑗 is the value of orders from sector 𝑖 made by sector 𝑗. Thus, if the capacity
constraint in sector 𝑖 is not binding, then output is the sum of orders from other sectors
and orders from final consumers. If 𝑥 (𝑖) is less than this sum, however, then sector 𝑖
produces to capacity 𝑥 (𝑖).

An equilibrium for this model is one where all orders are met, subject to capacity
constraints. The fact that orders are met means that 𝑜𝑖 𝑗 = 𝑧𝑖 𝑗 = 𝑎𝑖 𝑗𝑥 𝑗. Substituting
this equality into (5.6) and rewriting as a vector equality, (5.6) can equivalently be
formulated as

𝑥 = 𝐺𝑥 where 𝐺𝑥 := (𝐴𝑥 + 𝑑) ∧ 𝑥. (5.7)

The following exercise is key to solving the fixed point problem (5.7).

EXERCISE 5.1.10. Prove that, for any 𝑥, 𝑦 ∈ R𝑛
+ and 𝑘 ∈ N, we have

|𝐺𝑥 − 𝐺𝑦 | ⩽ 𝐴|𝑥 − 𝑦 |. (5.8)

We are now ready to prove existence of a unique fixed point under the assumption
that every sector has positive value added.

Proposition 5.1.4. If Assumption 2.1.1 holds, then 𝐺 is globally stable in R𝑛
+. In par-

ticular, the constrained production model has a unique equilibrium 𝑥∗ ∈ R𝑛
+.

Proof. As shown in Exercise 2.1.2, Assumption 2.1.1 yields 𝑟(𝐴) < 1. Moreover, 𝐴 ⩾ 0.
Hence, by Exercise 5.1.10 and Proposition 5.1.3, 𝐺 is eventually contracting on R+.
In consequence, a unique equilibrium exists. □

Remark 5.1.1. In Proposition 5.1.4, the weaker conditions on production discussed
in §2.3.4.1 can be used in place of Assumption 2.1.1, which requires positive value
added in every sector. As explained in §2.3.4.1, for 𝑟(𝐴) < 1 it is enough that value
added is nonnegative in each sector and, in addition, every sector has an upstream
supplier with positive value added.



CHAPTER 5. NONLINEAR INTERACTIONS 194

5.1.4 Fixed Points and Monotonicity

Banach’s fixed point theorem and its extensions are foundations of many central re-
sults in pure and applied mathematics. For our purposes, however, we need to search
a little further, since not all mappings generated by network models have the con-
traction property. In this section, we investigate two fixed point results that drop
contractivity in favor of monotonicity.

5.1.4.1 Existence

Without contractivity, one needs to work harder to obtain even existence of fixed
points, let alone uniqueness and convergence. This is especially true if the map in
question fails to be continuous. If, however, the map is order preserving, then ex-
istence can often be obtained via some variation on the Knaster–Tarski fixed point
theorem.

Here we present a version of this existence result that is optimized to our setting,
while avoiding unnecessary excursions into order theory. In stating the theorem, we
recall that a closed order interval in R𝑛 is a set of the form

[𝑎, 𝑏] := {𝑥 ∈ R𝑛 : 𝑎 ⩽ 𝑥 ⩽ 𝑏}

where 𝑎 and 𝑏 are vectors in R𝑛. Also, we call (𝑥𝑘) ⊂ R𝑛 increasing (resp., decreas-
ing) if 𝑥𝑘 ⩽ 𝑥𝑘+1 (resp., 𝑥𝑘 ⩾ 𝑥𝑘+1) for all 𝑘.

EXERCISE 5.1.11. Let [𝑎, 𝑏] be a closed order interval in R𝑛 and let 𝐺 be an order-
preserving self-map on [𝑎, 𝑏]. Prove the following:
(i) (𝐺𝑘𝑎) is increasing and (𝐺𝑘𝑏) is decreasing.
(ii) If 𝑥 is a fixed point of 𝐺 in [𝑎, 𝑏], then 𝐺𝑘𝑎 ⩽ 𝑥 ⩽ 𝐺𝑘𝑏 for all 𝑘 ∈ N.

For a self-map 𝐺 on 𝑆 ⊂ R𝑛, we say that 𝑥∗ is a least fixed point (resp., greatest
fixed point) of 𝐺 on 𝑆 if 𝑥∗ is a fixed point of 𝐺 in 𝑆 and 𝑥∗ ⩽ 𝑥 (resp., 𝑥 ⩽ 𝑥∗) for
every fixed point 𝑥 of 𝐺 in 𝑆. Finally, we say that 𝐺 is

• continuous from below if 𝑥𝑘 ↑ 𝑥 in 𝑆 implies 𝐺𝑥𝑘 ↑ 𝐺𝑥 in 𝑆.
• continuous from above if 𝑥𝑘 ↓ 𝑥 in 𝑆 implies 𝐺𝑥𝑘 ↓ 𝐺𝑥 in 𝑆.

Here 𝑥𝑘 ↑ 𝑥 means that (𝑥𝑘) is increasing and 𝑥𝑘 → 𝑥. The definition of 𝑥𝑘 ↓ 𝑥 is
analogous. In the next theorem, 𝑆 := [𝑎, 𝑏] is a closed order interval in R𝑛 and 𝐺 is a
self-map on 𝑆.
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Theorem 5.1.5. If 𝐺 is order-preserving on 𝑆, then 𝐺 has a least fixed point 𝑥∗ and a
greatest fixed point 𝑥∗∗ in 𝑆. Moreover,

(i) if 𝐺 is continuous from below, then 𝐺𝑘𝑎 ↑ 𝑥∗ and
(ii) if 𝐺 is continuous from above, then 𝐺𝑘𝑏 ↓ 𝑥∗∗.

Remark 5.1.2. As alluded to above, fixed point results for order preserving maps
can be obtained in more general settings than the ones used in Theorem 5.1.5 (see,
e.g., Davey and Priestley (2002), Theorem 2.35). Theorem 5.1.5 is sufficient for our
purposes, given our focus on finite networks.

Proof of Theorem 5.1.5. Under the stated conditions, existence of least and greatest
fixed points 𝑥∗ and 𝑥∗∗ follow from the Knaster–Tarski fixed point theorem. (This
holds because [𝑎, 𝑏] is a complete lattice. For a definition of complete lattices and a
proof of the Knaster–Tarski theorem, see, e.g., Davey and Priestley (2002).)

Regarding claim (i), suppose that 𝐺 is continuous from below and consider the se-
quence (𝑥𝑘) := (𝐺𝑘𝑎)𝑘⩾1. Since 𝐺 is order-preserving (and applying Exercise 5.1.11),
this sequence is increasing and bounded above by 𝑥∗. Since bounded monotone se-
quences in R converge, each individual component of the vector sequence 𝑥𝑘 con-
verges in R. Hence, by Lemma 2.3.1, the vector sequence 𝑥𝑘 converges in R𝑛 to some
𝑥 ∈ [𝑎, 𝑥∗]. Finally, by continuity from below, we have

𝑥 = lim
𝑘
𝐺𝑘𝑎 = lim

𝑘
𝐺𝑘+1𝑎 = 𝐺 lim

𝑘
𝐺𝑘𝑎 = 𝐺𝑥,

so that 𝑥 is a fixed point.
We have now shown that (𝐺𝑘𝑎) converges up to a fixed point 𝑥 of 𝐺 satisfying

𝑥 ⩽ 𝑥∗. Since 𝑥∗ is the least fixed point of 𝐺 in 𝑆, we also have 𝑥∗ ⩽ 𝑥. Hence 𝑥 = 𝑥∗.
The proof of claim (ii) is similar to that of claim (i) and hence omitted. □

Remark 5.1.3. In the preceding theorem, 𝑥∗ and 𝑥∗∗ can be equal, in which case 𝐺
has only one fixed point in 𝑆.

EXERCISE 5.1.12. Consider the map 𝐺𝑥 = (𝐴𝑥 + 𝑑) ∧ 𝑥 from the constrained pro-
duction model. In §5.1.3, we showed that 𝐺 has a unique fixed point in R𝑛

+ when
𝑟(𝐴) < 1. Show now that 𝐺 has at least one fixed point in R𝑛

+, even when 𝑟(𝐴) < 1
fails. (Continue to assume that 𝐴 ⩾ 0, 𝑑 ⩾ 0 and 𝑥 ⩾ 0.)
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5.1.4.2 Du’s Theorem

Theorem 5.1.5 is useful because of its relatively weak assumptions. At the same time,
it fails to deliver uniqueness. Hence its conclusions are considerably weaker than the
results we obtained from contractivity assumptions in §5.1.1.

In order to recover uniqueness without imposing contractivity, we now consider
order-preserving maps that have additional shape properties. In doing so, we use the
definition of concave and convex functions in §6.1.5.2.

Theorem 5.1.6 (Du). Let 𝐺 be an order-preserving self-map on order interval 𝑆 =
[𝑎, 𝑏] ⊂ R𝑛. In this setting, if either

(i) 𝐺 is concave and 𝐺𝑎 ≫ 𝑎 or
(ii) 𝐺 is convex and 𝐺𝑏 ≪ 𝑏,

then 𝐺 is globally stable on 𝑆.

A proof of Theorem 5.1.6 was obtained in an more abstract setting in Du (1990).
Interested readers can consult that article for a proof.

To illustrate how these results can be applied, consider the constrained production
model without assuming positive value added, so that 𝑟(𝐴) < 1 is not enforced. In
Exercise 5.1.12 we obtained existence. With Theorem 5.1.6 in hand, we can also
show uniqueness whenever 𝑑 ≫ 0 and 𝑥 ≫ 0.

Indeed, we have already seen that 𝐺 is a self-map on 𝑆 := [0, 𝑥] and, when this last
condition holds, we have 𝐺0 = 𝑑 ∧ 𝑥 ≫ 0. Hence the conclusions of Theorem 5.1.6
will hold if we can establish that 𝐺 is concave.

EXERCISE 5.1.13. Prove that 𝐺 is concave on 𝑆. [Hint: Review §6.1.5.2.]

Here is a small extension of Du’s theorem that will prove useful soon:

Corollary 5.1.7. Let 𝐺 be an order-preserving self-map on 𝑆 = [𝑎, 𝑏]. If 𝐺 is concave and
there exists an ℓ ∈ N such that 𝐺ℓ𝑎 ≫ 𝑎, then 𝐺 is globally stable on 𝑆.

Proof. Assume the conditions of Corollary 5.1.7. Since compositions of increasing con-
cave operators are increasing and concave, Theorem 5.1.6 implies that 𝐺ℓ is globally
stable on [𝑎, 𝑏]. Denote its fixed point by 𝑣. Since {𝐺𝑚𝑎}𝑚∈N is increasing and since
the subsequence {𝐺𝑚ℓ𝑎}𝑚∈N converges up to 𝑣 as 𝑚→ ∞, we must have 𝐺𝑚𝑎→ 𝑣. A
similar argument gives 𝐺𝑚𝑏 → 𝑣. For any 𝑣 ∈ [𝑎, 𝑏] we have 𝐺𝑚𝑎 ⩽ 𝐺𝑚𝑣 ⩽ 𝐺𝑚𝑏, so
𝐺𝑚𝑣→ 𝑣 as 𝑚→∞.
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The last step is to show that 𝑣 is the unique fixed point of 𝐺. From Theorem 5.1.5,
we know that at least one fixed point exists. Now suppose 𝑣 ∈ [𝑎, 𝑏] is such a point.
Then 𝑣 = 𝐺𝑚𝑣 for all 𝑚. At the same time, 𝐺𝑚𝑣 → 𝑣 by the results just established.
Hence 𝑣 = 𝑣. The proof is now complete. □

5.2 Financial Networks
Given the long history of crises in financial markets around the globe, economists and
business analysts have developed many tools for assessing the credit-worthiness of
banks and other financial institutions. After the major financial crises of 2007-2008,
originating in the subprime market in the US and the sudden collapse of Lehmann
Brothers, it became clear that the financial health of individual institutions cannot be
assessed in isolation. Rather, it is essential to analyze solvency and credit-worthiness
in terms of the entire network of claims and liabilities within a highly interconnected
financial system. In this section, we review financial crises and apply network analysis
to study how they evolve.

5.2.1 Contagion

Some financial crises have obvious causes external to the banking sector. A prominent
example is the hyperinflation that occurred in Weimar Germany around 1921–1923,
which was driven by mass printing of bank notes to meet war reparations imposed
under the Treaty of Versailles. Here the monetary authority played the central role,
while the actions of private banks were more passive.

Other crises seem to form within the financial sector itself, driven by interactions
between banks, hedge funds, and asset markets. In many cases, the crisis follows a
boom, where asset prices rise and economic growth is strong. Typically, the seeds of
the crisis are laid during this boom phase, when banks extend loans and firms raise
capital on the basis of progressively more speculative business plans. At some point it
becomes clear to investors that these businesses will fail to meet expectations, leading
to a rush for the exit.

The last phase of this cycle is painful for the financial sector, since rapidly falling
asset values force banks and other financial institutions to generate short-term capital
by liquidating long-term loans, typically with large losses, as well as selling assets in
the face of falling prices, hoarding cash and refusing to roll over or extend short term
loans to other institutions in the financial sector. The financial crisis of 2007–2008
provides a textbook example of these dynamics.
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One key aspect of the financial crisis of 2007–2008, as well as other similar crises,
is contagion, which refers to the way that financial stress spreads across a network
of financial institutions. If one institution becomes stressed, that stress will often
spread to investors or counterparties to which this institution is indebted. The result
of this process is not easy to predict, since, like equilibrium in the production networks
studied in Chapter 2, there is a tail chasing problem: stress spreads from institution
𝐴 to institutions 𝐵, 𝐶 and 𝐷, which may in turn increase stress on 𝐴, and so on.

In this section we study financial contagion, beginning with a now-standard model
of default cascades.

5.2.2 Default Cascades

Default cascades are a form of financial contagion, in which default by a node in a
network leads to default by some of its counterparties, which then spreads across the
network. Below we present a model of default cascades and analyze its equilibria.

5.2.2.1 Network Valuation

Consider a financial network 𝒢 = (𝑉, 𝐸, 𝑤), where 𝑉 = [𝑛] is a list of 𝑛 financial
institutions called banks, with an edge (𝑖, 𝑗) ∈ 𝐸 indicating that 𝑗 has extended credit
to 𝑖. The size of that loan is 𝑤(𝑖, 𝑗). Thus, an edge points in the direction of a liability,
as in Figure 1.17 on page 40: edge (𝑖, 𝑗) indicates a liability for 𝑖 and an asset for 𝑗.
As in §1.4.1, the set of all direct predecessors of 𝑖 ∈ 𝑉 will be written as ℐ(𝑖), while
the set of all direct successors will be denoted 𝒪(𝑖).

Banks in the network have both internal and external liabilities, as well as internal
and external assets. Internal (i.e., interbank) liabilities and assets are given by the
weight function𝑤, in the sense that𝑤(𝑖, 𝑗) is a liability for 𝑖, equal to the size of its loan
from 𝑗, and also an asset for 𝑗. Positive weights indicate the presence of counterparty
risk: when 𝑗 holds an asset of book value 𝑤(𝑖, 𝑗), whether or not the loan is repaid in
full depends on the stress placed on bank 𝑖 and rules that govern repayment in the
event of insolvency.

We use the following notation for the primitives of the model: 𝑥𝑖 :=
∑

𝑗∈𝒪(𝑖) 𝑤(𝑖, 𝑗)
is total interbank liabilities of bank 𝑖,

Π𝑖 𝑗 :=
{
𝑤(𝑖, 𝑗)/𝑥𝑖 if 𝑥𝑖 > 0
0 otherwise

(5.9)
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is the matrix of relative interbank liabilities, 𝑎𝑖 is external assets held by bank 𝑖 and 𝑑𝑖
is external liabilities.

When considering the interbank assets of bank 𝑗, we need to distinguish between
the book value ∑

𝑖∈ℐ( 𝑗) 𝑤(𝑖, 𝑗) of its claims on other banks and the realized value in
the face of partial or complete default by its counterparties ℐ( 𝑗). To this end, we
introduce a clearing vector 𝑝 ∈ R𝑛

+, which is a list of proposed payments by each bank
in the network. In particular, 𝑝𝑖 is total payments made by bank 𝑖 to its counterparties
within the banking sector. Under the choice of a particular clearing vector, the actual
payments received by bank 𝑗 on its internal loan portfolio are ∑

𝑖∈𝑉 𝑝𝑖Π𝑖 𝑗.
The last statement is an assumption about the legal framework for the banking sec-

tor. It means that the actual payment 𝑝𝑖Π𝑖 𝑗 from 𝑖 to 𝑗 is proportional to the amount
that 𝑖 owes 𝑗, relative to its total interbank obligations. The idea is that all counter-
parties in the banking sector have equal seniority, so that residual funds are spread
across claimants according to the relative size of the claims.

Let 𝑝 𝑗 be the amount of funds bank 𝑗 makes available to repay all of its debts, both
interbank and external. This quantity is

𝑝 𝑗 = min
{
𝑎 𝑗 +

∑
𝑖∈𝑉

𝑝𝑖Π𝑖 𝑗, 𝑑 𝑗 + 𝑥 𝑗

}
. (5.10)

The right hand term inside the min operator is total debts of bank 𝑗. The left hand side
is the amount on hand to repay those debts, including external assets and repayments
by other banks. The bank repays up to—but not beyond—its ability to pay.

External liabilities are assumed to be senior to interbank liabilities, which means
that for bank 𝑗 we also have

𝑝 𝑗 = max{𝑝 𝑗 − 𝑑 𝑗, 0}. (5.11)

Thus, interbank payments by 𝑗 are a remainder after external debts are settled. If
these debts exceed the bank’s ability to pay, the bank becomes insolvent and pays
nothing to internal creditors. This is a form of limited liability.

Combining (5.10) and (5.11) and rearranging slightly yields

𝑝 𝑗 = max
{

min
{
𝑎 𝑗 − 𝑑 𝑗 +

∑
𝑖∈𝑉

𝑝𝑖Π𝑖 𝑗, 𝑥 𝑗

}
, 0

}
Now let’s take 𝑝, 𝑎, 𝑑 and 𝑥 as row vectors in R𝑛 and write this collection of equa-
tions, indexed of 𝑗, in vector form. With max and min taken pointwise, and using the
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symbols ∨ and ∧ for max and min, we get

𝑝 = ((𝑎 − 𝑑 + 𝑝Π) ∧ 𝑥) ∨ 0. (5.12)

A solution to this equation is called an equilibrium clearing vector for the banking
system.

Remark 5.2.1. An equilibrium clearing vector captures impacts of contagion within
the specified banking system, in the sense that it traces out the full network effects
of interbank lending within the model. We shall study this equilibrium, while also
recognizing that the model is restrictive in the sense that it assumes a specific form
for seniority and implicitly rules out some kinds of nonlinear phenomena. We return
to this theme in §5.2.3.

5.2.2.2 Existence and Uniqueness of Fixed Points

In order to analyze existence and uniqueness of equilibria, we introduce the operator
𝑇 : R𝑛 → R𝑛 defined by

𝑇 𝑝 = ((𝑒 + 𝑝Π) ∧ 𝑥) ∨ 0, (5.13)
where 𝑒 := 𝑎 − 𝑑 represents net external assets. Evidently 𝑝 ∈ R𝑛

+ is an equilibrium
clearing vector if and only if it is a fixed point of 𝑇.

EXERCISE 5.2.1. Prove that the operator 𝑇 is continuous on R𝑛.

Using this operator, establishing existence of at least one equilibrium clearing vec-
tor is not problematic for this model, regardless of the values of the primitives and
configuration of the network:

EXERCISE 5.2.2. Show that the banking model described above always has at least
one equilibrium clearing vector. What else can you say about equilibria in this general
case?

While existence is automatic in this model, uniqueness is not:

Example 5.2.1. If 𝑛 = 2, 𝑒 = (0, 0) and (1, 1) and Π =

(
0 1
1 0

)
, then 𝑇 𝑝 = 𝑝 is equivalent

to (
𝑝1
𝑝2

)
=

(
𝑝2
𝑝1

)
∧

(
1
1

)
.

Both 𝑝 = (1, 1) and 𝑝 = (0, 0) solve this equation.



CHAPTER 5. NONLINEAR INTERACTIONS 201

There are several approaches to proving uniqueness of fixed points of 𝑇. Here is
one:

EXERCISE 5.2.3. Prove that 𝑇 is globally stable on 𝑆 := [0, 𝑥] whenever 𝑟(Π) < 1.2

This leads us to the following result:

Proposition 5.2.1. Let 𝒢 be a financial network. If, for each bank 𝑖 ∈ 𝑉, there exists a
bank 𝑗 ∈ 𝑉 with 𝑖 → 𝑗 and such that 𝑗 has zero interbank liabilities, then 𝑇 is globally
stable on 𝑆 and 𝒢 has a unique equilibrium clearing vector.

Proof. By construction, the matrix Π is substochastic. Suppose that Π is also weakly
chained substochastic. Then, by Proposition 2.3.5, we have 𝑟(Π) < 1 and, by Exer-
cise 5.2.3, 𝑇 is globally stable on 𝑆. Hence the proof will be complete if we can show
that, under the stated conditions, Π is weakly chained substochastic.

To see that this is so, let 𝒢 be a financial network that satisfies the conditions of
Proposition 5.2.1. Now fix 𝑖 ∈ 𝑉. We know that there exists a bank 𝑗 ∈ 𝑉 with 𝑖 → 𝑗
and 𝑗 has no interbank liabilities. If 𝑤(𝑖, 𝑗) > 0, then Π𝑖 𝑗 > 0, so 𝑖 → 𝑗 under digraph
𝒢 implies 𝑖 → 𝑗 in the digraph induced by the substochastic matrix Π. Also, since 𝑗
has no interbank liabilities, we have 𝑥 𝑗 = 0, and hence row 𝑗 of Π is identically zero.
In particular, ∑𝑘 Π 𝑗𝑘 = 0. Hence Π is weakly chained substochastic, as required. □

Remark 5.2.2. The proof of Proposition 5.2.1 also shows that 𝑇 is eventually con-
tracting, so we can compute the unique fixed point by taking the limit of 𝑇𝑘𝑝 for any
choice of 𝑝 ∈ 𝑆.

There are several possible assumptions about the structure of the bank network
𝒢 that imply the conditions of Proposition 5.2.1. For example, it would be enough
that 𝒢 is strongly connected and has at least one bank with zero interbank liabilities.
Below we investigate another sufficient condition, related to cyclicality.

EXERCISE 5.2.4. Let 𝒢 be a financial network. Show that 𝒢 has a unique equilib-
rium clearing vector whenever 𝒢 is a directed acyclic graph.

5.2.2.3 Nonnegative External Equity

In this section we investigate the special case in which
2Here’s a hint, if you get stuck: show that 𝑟(Π) < 1 implies 𝑇 is an eventual contraction on [0, 𝑥]

using one of the propositions presented in this chapter.
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(E1) each bank has nonzero interbank debt, so that Π is a stochastic matrix, and
(E2) external net assets are nonnegative, in the sense that 𝑒 = 𝑎 − 𝑑 ⩾ 0.
In view of (E1), we cannot hope to use Proposition 5.2.1, since we always have 𝑟(Π) =
1 when Π is stochastic. Nonetheless, we can still obtain global stability under certain
restrictions on 𝑒 and the topology of the network. Here is a relatively straightforward
example, which we will later try to refine:

EXERCISE 5.2.5. Let 𝒢 be a financial network such that (E1)–(E2) hold. Using
Du’s theorem (page 196), prove that 𝑇 has a unique fixed point in 𝑆 := [0, 𝑥] whenever
𝑒 ≫ 0.

The condition 𝑒 ≫ 0 is rather strict. Fortunately, it turns out that we can obtain
global stability under significantly weaker conditions. To this end, we will say that
node 𝑗 in a financial system𝒢, is cash accessible if there exists an 𝑖 ∈ 𝑉 such that 𝑖→ 𝑗
and 𝑒(𝑖) > 0. In other words, 𝑗 is downstream in the liability chain from at least one
bank with positive net assets outside of the banking sector.

EXERCISE 5.2.6. Prove the following result: If (E1)–(E2) hold and every node in
𝒢 is cash-accessible, then 𝑇𝑘0 ≫ 0 for some 𝑘 ∈ N. [This is a relatively challenging
exercise.]

With the result from Exercise 5.2.6 in hand, the next lemma is easy to establish.
Lemma 5.2.2. If (E1)–(E2) hold and every node in𝒢 is cash accessible, then 𝑇 is globally
stable and 𝒢 has a unique clearing vector 𝑝∗ ≫ 0.

Proof. Let𝒢 be as described. By Corollary 5.1.7, it suffices to show that 𝑇 is an order-
preserving concave self-map on [0, 𝑥] with 𝑇𝑘0 ≫ 0 for some 𝑘 ∈ N. The solution to
Exercise 5.2.5 shows that 𝑇 is order-preserving and concave. The existence of a 𝑘 ∈ N
with 𝑇𝑘0 ≫ 0 was verified in Exercise 5.2.6. □

Stronger results are available, with a small amount of effort. In fact, under (E1)–
(E2), there is a strong sense in which uniqueness of the fixed point is obtained without
any further assumptions, provided that we rule out an ambiguity related to what
happens when 𝑒 = 0. That ambiguity is discussed in the next exercise and further
references can be found in §5.3.

EXERCISE 5.2.7. Conditions (E1) and (E2) cannot by themselves pin down out-
comes for the extreme case where every firm in the network has zero net external
assets. Illustrate this with an example.3

3Hint: every stochastic matrix has at least one stationary distribution.
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Although Exercise 5.2.7 suggests ambiguity about outcomes when 𝑒 = 0, it is nat-
ural to adopt the convention that the equilibrium clearing vector 𝑝∗ obeys 𝑝∗ = 0
whenever 𝑒 = 0. If the entire banking sector has no zero net assets, then no positive
payment sequence can be initiated (without outside capital).

In the next exercise, we say that 𝑈 ⊂ 𝑉 is accessible from 𝑖 ∈ 𝑉 if there exists a
𝑗 ∈ 𝑈 such that 𝑗 is accessible from 𝑖.

EXERCISE 5.2.8. Let 𝑃 be the set of all nodes in 𝑉 that are cash accessible. Let 𝐴
be all 𝑖 in 𝑃𝑐 such that 𝑃 is accessible from 𝑖. Let 𝑁 be all 𝑖 in 𝑃𝑐 such that 𝑃 is not
accessible from 𝑖. Note that 𝑉 = 𝑃 ∪ 𝐴 ∪ 𝑁 and that these sets are disjoint. Show that
𝑁 and 𝑃 are both absorbing sets.

5.2.3 Equity-Cross Holdings

In this section we analyze the model of default cascades constructed by (Elliott et al.,
2014). The model differs from the one studied in §5.2.2 in several ways. One is that
financial institutions are linked by share cross-holdings: firm 𝑖 owns a fraction 𝑐𝑖 𝑗 of
firm 𝑗 for 𝑖, 𝑗 ∈ 𝑉 := [𝑛]. This implies that failure of firm 𝑗 reduces the market value of
firm 𝑖, which in turn reduces the market value of other firms, and so on.

The second—and ultimately more significant—difference is the introduction of
failure costs that add significant nonlinearities to themodel. Failure costs reinforce the
impact of each firm failure, leading to greater shock propagation across the network.
This feature ties into the intuitive idea that, when many firms are financially stressed,
a failure by one firm can trigger a wave of bankruptcies.

5.2.3.1 Book and Market Value

We now describe the features of the model. Let 𝐶 = (𝑐𝑖 𝑗)𝑖, 𝑗∈𝑉 be the matrix of fractional
cross-holdings, as mentioned above, with 0 ⩽ 𝑐𝑖 𝑗 ⩽ 1 for all 𝑖, 𝑗.
Assumption 5.2.1. The matrix of cross-holdings satisfies ∑

𝑘 𝑐𝑘𝑖 < 1 for all 𝑖 ∈ 𝑉.

Assumption 5.2.1 implies that firms are not solely owned by other firms in the
network: investors outside the network hold at least some fraction of firm 𝑖 for all 𝑖.

The book value of firm 𝑖 is given by

𝑏𝑖 = 𝑒𝑖 +
∑
𝑗

𝑐𝑖 𝑗𝑏 𝑗 (𝑖 ∈ 𝑉). (5.15)
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Here the first term 𝑒𝑖 ⩾ 0 is external assets of firm 𝑖 and the second represents the
value of firm 𝑖’s cross-holdings. In vector form, the last equation becomes 𝑏 = 𝑒 + 𝐶𝑏.

EXERCISE 5.2.9. Let 𝐼 be the 𝑛 × 𝑛 identity. Prove that, under Assumption 5.2.1,
the matrix 𝐼 − 𝐶 is invertible and the equation 𝑏 = 𝑒 + 𝐶𝑏 has the unique solution

𝑏 = (𝐼 − 𝐶)−1𝑒. (5.16)

Prove also that 𝑏 ⩾ 0.

EXERCISE 5.2.10. Provide a weaker condition on 𝐶 such that 𝐼 − 𝐶 is invertible.

There is a widely used argument that cross-holdings artificially inflate the value
of firms, in the sense that the sum of book values of firms exceeds ∑

𝑖 𝑒𝑖, the sum of
underlying equity values. The next exercise illustrates:

EXERCISE 5.2.11. Show that 𝑒 ≫ 0 and min𝑖, 𝑗 𝑐𝑖 𝑗 > 0 implies ∑
𝑖 𝑏𝑖 >

∑
𝑖 𝑒𝑖.

Due to this artificial inflation, we distinguish between the book value 𝑏𝑖 of a firm
and its market value 𝑣𝑖, which is defined as 𝑟𝑖𝑏𝑖 with 𝑟𝑖 := 1 − ∑

𝑘 𝑐𝑘𝑖. The value 𝑟𝑖,
which gives the share of firm 𝑖 held by outsider investors, is strictly positive for all 𝑖
by Assumption 5.2.1. With 𝑅 := diag(𝑟1, . . . , 𝑟𝑛), we can write the vector of market
values as 𝑣 = 𝑅𝑏. Substituting in (5.16) gives

𝑣 := 𝐴𝑒, where 𝐴 := 𝑅(𝐼 − 𝐶)−1. (5.17)

5.2.3.2 Failure Costs

So far the model is very straightforward, with the market value of firms being linear
in external assets 𝑒. However, since bankruptcy proceedings are expensive, it is rea-
sonable to assume that firm failures are costly. Moreover, when the market value of
a firm falls significantly, the firm will experience difficulty raising short term funds,
and will often need to cease revenue generating activities and sell illiquid assets well
below their potential value.

We now introduce failure costs. As before, 𝑣𝑖 is market value without failure costs,
as determined in (5.17), while 𝑣𝑖 will represent market value in the presence of failure
costs. Failure costs for firm 𝑖 are modeled as a threshold function

𝑓 (𝑣𝑖) = 𝛽1{𝑣𝑖 < 𝜃𝑣𝑖} (𝑖 = 1, . . . , 𝑛),
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where 𝜃 ∈ (0, 1) and 𝛽 > 0 are parameters. Thus, costs are zero when 𝑣𝑖 is large and
−𝛽 when they fall below the threshold 𝜃𝑣𝑖. In particular, a discrete failure cost of −𝛽
is incurred when firm value falls far enough below the no-failure market value 𝑣𝑖. The
larger is 𝜃, more prone firms are to failure.

The book value of firm 𝑖 without failure costs was defined in (5.15). The book
value of firm 𝑖 in the presence of failure costs is defined as

𝑏𝑖 = 𝑒𝑖 +
∑
𝑗

𝑐𝑖 𝑗𝑏 𝑗 − 𝑓 (𝑣𝑖).

Written in vector form, with 𝑓 applied pointwise to the vector 𝑣, we get 𝑏 = 𝑒+𝐶𝑏− 𝑓 (𝑣).
Solving for 𝑏 gives 𝑏 = (𝐼 − 𝐶)−1(𝑒 − 𝑓 (𝑣)). The corresponding market value is

𝑣 = 𝑅𝑏 = 𝐴(𝑒 − 𝑓 (𝑣)). (5.18)

Notice that, when no firms fail, we have 𝑣𝑖 = 𝑣𝑖, as expected.

5.2.3.3 Equilibria

Equation (5.18) is a nonlinear equation in 𝑛 unknowns. A vector 𝑣 ∈ R𝑛 solves (5.18)
if and only if it is a fixed point of the operator 𝑇 : R𝑛 → R𝑛 defined by

𝑇𝑣 = 𝐴(𝑒 − 𝑓 (𝑣)). (5.19)

In what follows we set 𝑑 := 𝐴(𝑒 − 𝛽1) and 𝑆 := [𝑑, 𝑣].

Proposition 5.2.3. 𝑇 is a self-map on 𝑆 with least fixed point 𝑣∗ and greatest fixed point
𝑣∗∗ in 𝑆. Moreover,

(i) the sequence (𝑇𝑘𝑑)𝑘∈N converges up to 𝑣∗ in a finite number of steps and
(ii) the sequence (𝑇𝑘𝑣)𝑘∈N converges down to 𝑣∗∗ in a finite number of steps.

Note that 𝑣∗ = 𝑣∗∗ is a possibility, in which case 𝑇 has a unique fixed point in 𝑆.

EXERCISE 5.2.12. Prove the first claim (first sentence) in Proposition 5.2.3.

Why does (𝑇𝑘𝑑)𝑘∈N converge up to 𝑣∗ in a finite number of steps? First, as you
saw in the solution to Exercise 5.2.12, the map 𝑇 is an order-preserving self-map on
[𝑑, 𝑣], so 𝑇𝑑 ∈ [𝑑, 𝑣]. In particular, 𝑑 ⩽ 𝑇𝑑. Iterating on this inequality and using the
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order-preserving property gives 𝑑 ⩽ 𝑇𝑑 ⩽ 𝑇2𝑑 ⩽ · · · , so (𝑇𝑘𝑑) is indeed increasing.
Moreover, the range of 𝑇 is a finite set, corresponding to all vectors of the form

𝑢 = 𝐴(𝑒 − 𝛽𝑤),

where 𝑤 is an 𝑛-vector containing only zeros and ones. Finiteness holds because there
are only finitely many binary sequences of length 𝑛.

EXERCISE 5.2.13. Given the above facts, prove that (𝑇𝑘𝑑)𝑘∈N converges up to 𝑣∗ in
a finite number of steps.

Similar logic can be applied to prove that (𝑇𝑘𝑣)𝑘∈N converges down to 𝑣∗∗ in a finite
number of steps.

If we set 𝑣0 = 𝑣 and 𝑣𝑘+1 = 𝑇𝑣𝑘, we can consider the sequence of valuations (𝑣𝑘) as
a dynamic process, and the number of currently failing firms 𝑚𝑘 :=

∑
𝑖 1{𝑣𝑘𝑖 < 𝜃} can

be understood as tracking waves of bankruptcies. Failures of firms in the first wave
put stress on otherwise healthy firms that have exposure to the failed firms, which in
turn causes further failures and so on.

EXERCISE 5.2.14. Prove that the sequence (𝑚𝑘) is monotone increasing.

As discussed in Proposition 5.2.3, the sequence (𝑣𝑘), which can also be written
as (𝑇𝑘𝑣), is decreasing pointwise. In other words, the value of each firm is non-
increasing. Hence, if 𝑣𝑘𝑖 < 𝜃 for some 𝑘, then 𝑣𝑘+ 𝑗𝑖 < 𝜃 for all 𝑗 ⩾ 0.

Figure 5.1 illustrates a growing wave of failures that can arise in a financial net-
work. Firms with lighter colors have better balance sheets. Black firms have failed.
The code for generating this figure, along with details on parameters, can be found
in the code book.

5.3 Chapter Notes

Shin (2010) gives an excellent overview of systemic risk and the financial crisis of
2007–2008. Battiston et al. (2012) study connectedness in financial networks and
introduce a measure of systemic impact called DebtRank. Bardoscia et al. (2015) pro-
vide a dynamic theory of instability related to DebtRank. Demange (2018) provides a
threat index for contagion in financial networks related to Katz centrality. Bardoscia
et al. (2019) analyze risks associated with solvency contagion during crises. Jackson
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Figure 5.1: Waves of bankruptcies in a financial network
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and Pernoud (2019) study investment in risky portfolios by banks in financial net-
works with debt and equity interdependencies. Jackson and Pernoud (2020) analyze
optimal bailouts in financial networks. Amini and Minca (2020) offer an introduction
to modeling of clearing systems, analyzing equilibria for network payments and as-
set prices. Jackson and Pernoud (2021) provide a survey of the relationship between
financial networks and systemic risk.

The setting in §5.2.2.3 was investigated by Eisenberg and Noe (2001), one of
the first papers on a network approach to default cascades. Additional details on
stability properties can be found in Stachurski (2022b). As already mentioned, §5.2.3
is based on (Elliott et al., 2014), which also includes an interesting discussion of how
the level of integration across a network affects equilibria. Klages-Mundt and Minca
(2021) discuss optimal intervention in economic networks via influence maximization
methods, using Elliott et al. (2014) as an example. Acemoglu et al. (2021b) study how
anticipation of future defaults can result in “credit freezes.”

A general discussion of contraction maps and related fixed point theory can be
found in Goebel and Kirk (1990) and Cheney (2013). Formore on fixed pointmethods
for order preserving operators, see, for example, Guo et al. (2004), Zhang (2012),
Marinacci and Montrucchio (2019) or Deplano et al. (2020).
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Chapter 6

Appendix

6.1 Math Review

This section provides a brief review of basic analysis and linear algebra. The material
contained here should be covered in intermediate mathematical economics courses
or, if not, in math boot camp at the very start of a graduate program.

(For those who want a slower treatment of the analysis section, we recommend
Bartle and Sherbert (2011), which is carefully constructed and beautifully written.
High quality texts on linear algebra at the right level for this course include Jänich
(1994), Meyer (2000), Aggarwal (2020) and Cohen (2021).)

6.1.1 Sets and Functions

As a first step, let’s clarify elementary terminology and notation.

6.1.1.1 Sets

A set is an arbitrary collection of objects. Individual objects are called elements of the
set. We assume the reader is familiar with basic set operations such as intersections
and unions. If 𝐴 is a finite set, then |𝐴| is the number of elements in 𝐴. Powers applied
to sets indicate Cartesian products, so that

𝐴2 := 𝐴 × 𝐴 := {(𝑎, 𝑎′) : 𝑎 ∈ 𝐴, 𝑎′ ∈ 𝐴}, etc.

210
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Throughout, ℘(𝐴) is the power set of 𝐴, consisting of all subsets of 𝐴. For example,

𝐴 = {1, 2} =⇒ ℘(𝐴) = {∅, {1}, {2}, 𝐴}.

Let N be the natural numbers, Z be the integers, Q be the rational numbers and
R be the reals (i.e., the union of the rational and irrational numbers). For 𝑥, 𝑦 in R,
we let

𝑥 ∨ 𝑦 := max{𝑥, 𝑦} and 𝑥 ∧ 𝑦 := min{𝑥, 𝑦}. (6.1)

Absolute value is |𝑥 | := 𝑥 ∨ (−𝑥). For 𝑛 ∈ N we set [𝑛] := {1, . . . , 𝑛}.
We make use of the following elementary facts: For all 𝑎, 𝑏, 𝑐 ∈ R,
• |𝑎 + 𝑏| ⩽ |𝑎| + |𝑏|.
• (𝑎 ∧ 𝑏) + 𝑐 = (𝑎 + 𝑐) ∧ (𝑏 + 𝑐) and (𝑎 ∨ 𝑏) + 𝑐 = (𝑎 + 𝑐) ∨ (𝑏 + 𝑐).
• (𝑎 ∨ 𝑏) ∧ 𝑐 = (𝑎 ∧ 𝑐) ∨ (𝑏 ∧ 𝑐) and (𝑎 ∧ 𝑏) ∨ 𝑐 = (𝑎 ∨ 𝑐) ∧ (𝑏 ∨ 𝑐).
• |𝑎 ∧ 𝑐 − 𝑏 ∧ 𝑐| ⩽ |𝑎 − 𝑏|.
• |𝑎 ∨ 𝑐 − 𝑏 ∨ 𝑐| ⩽ |𝑎 − 𝑏|.

The first item is called the triangle inequality. Also, if 𝑎, 𝑏, 𝑐 ∈ R+, then

(𝑎 + 𝑏) ∧ 𝑐 ⩽ (𝑎 ∧ 𝑐) + (𝑏 ∧ 𝑐). (6.2)

EXERCISE 6.1.1. Prove: For all 𝑎, 𝑏, 𝑐 ∈ R+, we have |𝑎 ∧ 𝑐 − 𝑏 ∧ 𝑐| ⩽ |𝑎 − 𝑏| ∧ 𝑐.

6.1.1.2 Equivalence Classes

Let 𝑆 be any set. A relation ∼ on 𝑆 is a nonempty subset of 𝑆 × 𝑆. It is customary to
write 𝑥 ∼ 𝑦 rather than (𝑥, 𝑦) ∈ ∼ to indicate that (𝑥, 𝑦) is in ∼. A relation ∼ on 𝑆 is
called an equivalence relation if, for all 𝑥, 𝑦, 𝑧 ∈ 𝑆, we have

(reflexivity) 𝑥 ∼ 𝑥,
(symmetry) 𝑥 ∼ 𝑦 implies 𝑦 ∼ 𝑥 and
(transitivity) 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧 implies 𝑥 ∼ 𝑧.

Any equivalence relation on 𝑆 induces a partition of 𝑆 into a collection of mutually
disjoint subsets such that their union exhausts 𝑆. These subsets are called equivalence
classes. They can be constructed by taking, for each 𝑥 ∈ 𝑆, the set of all elements that
are equivalent to 𝑥.
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Example 6.1.1. Let 𝑆 be the set of all people in the world. If 𝑥 ∼ 𝑦 indicates that 𝑥
and 𝑦 live in the same country, then ∼ is an equivalence relation. (Check the axioms.)
The equivalence classes are the population of each country. The partition induced on
𝑆 is the set of these classes, which we can identify with the set of all countries in the
world.

6.1.1.3 Functions

A function 𝑓 from set 𝐴 to set 𝐵 is a rule, written 𝑓 : 𝐴→ 𝐵 or 𝑎 ↦→ 𝑓 (𝑎), that associates
each element 𝑎 of 𝐴 with one and only one element 𝑓 (𝑎) of 𝐵. The set 𝐴 is called the
domain of 𝑓 and 𝐵 is called the codomain. The range or image of 𝑓 is

range( 𝑓 ) := {𝑏 ∈ 𝐵 : 𝑏 = 𝑓 (𝑎) for some 𝑎 ∈ 𝐴}.

A function 𝑓 : 𝐴→ 𝐵 is called

• one-to-one if 𝑓 (𝑎) = 𝑓 (𝑎′) implies 𝑎 = 𝑎′,
• onto if range( 𝑓 ) = 𝐵, and
• a bijection or one-to-one correspondence if 𝑓 is both onto and one-to-one.

Example 6.1.2. If 𝑆 is a nonempty set, then the identity map on 𝑆 is the map 𝐼 : 𝑆→ 𝑆
such that 𝐼(𝑥) = 𝑥 for all 𝑥 ∈ 𝑆. The identity map is a bijection for any choice of 𝑆.

The left panel of Figure 6.1 shows a one-to-one function on (0, 1). This function is
not onto, however. For example, there exists no 𝑥 ∈ (0, 1) with 𝑓 (𝑥) = 1/4. The right
panel of Figure 6.1 shows an onto function, with range( 𝑓 ) = (0, 1). This function is
not one-to-one, however. For example, 𝑓 (1/4) = 𝑓 (3/4) = 3/4.

The left panel of Figure 6.2 gives an example of a function which is neither one-
to-one nor onto. The right panel of Figure 6.2 gives an example of a bijection.

6.1.1.4 Inverse Functions

One motivation for our interest in the basic properties of functions is that we wish to
solve inverse problems. For an arbitrary nonempty set 𝑆 and a function 𝑓 : 𝑆 → 𝑆, an
abstraction of an inverse problem is solving 𝑦 = 𝑓 (𝑥) for 𝑥 ∈ 𝑆.

Prior to stating the next result, we recall that an inverse function for 𝑓 : 𝑆→ 𝑆 is
a function 𝑔 : 𝑆 → 𝑆 such that 𝑓 ◦ 𝑔 = 𝑔 ◦ 𝑓 = 𝐼, where 𝐼 is the identity map on 𝑆. The
inverse function of 𝑓 is often written as 𝑓−1.
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0 1
0

1
constant

f(x) = 1/2

0 1
0

1
bijection

f(x) = 1− x

Figure 6.2: Some functions are bijections and some are not
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Lemma 6.1.1. For 𝑓 : 𝑆→ 𝑆, the following statements are equivalent:

(i) 𝑓 is a bijection on 𝑆.
(ii) For each 𝑦 ∈ 𝑆, there exists a unique 𝑥 ∈ 𝑆 such that 𝑓 (𝑥) = 𝑦.
(iii) 𝑓 has an inverse on 𝑆.

Proof. ((i) =⇒ (ii)) Fix 𝑦 ∈ 𝑆. Since 𝑓 is onto, there exists an 𝑥 ∈ 𝑆 such that 𝑓 (𝑥) = 𝑦.
Since 𝑓 is one-to-one, there is at most one such 𝑥.

((ii) =⇒ (iii)) Let 𝑔 : 𝑆 → 𝑆 map each 𝑦 ∈ 𝑆 into the unique 𝑥 ∈ 𝑆 such that
𝑓 (𝑥) = 𝑦. By the definition of 𝑔, for fixed 𝑥 ∈ 𝑆, we have 𝑔( 𝑓 (𝑥)) = 𝑥. Moreover, for
each 𝑦 ∈ 𝑆, the point 𝑔(𝑦) is the point that 𝑓 maps to 𝑦, so 𝑓 (𝑔(𝑦)) = 𝑦.

((iii) =⇒ (i)) Let 𝑔 be the inverse of 𝑓 . To see that 𝑓 must be onto, pick any 𝑦 ∈ 𝑆.
Since 𝑓 ◦ 𝑔 is the identity, we have 𝑓 (𝑔(𝑦)) = 𝑦. Hence there exists a point 𝑔(𝑦) in 𝑆
that is mapped into 𝑦 ∈ 𝑆. To see that 𝑓 is one-to-one, fix 𝑥, 𝑦 ∈ 𝑆. If 𝑓 (𝑥) = 𝑓 (𝑦), then
𝑔( 𝑓 (𝑥)) = 𝑔( 𝑓 (𝑦)). But 𝑔 ◦ 𝑓 is the identity, so 𝑥 = 𝑦. □

Here is a nice logical exercise that turns out to be useful when we solve linear
inverse problems.

EXERCISE 6.1.2. Let 𝑆 and 𝑇 be nonempty sets. For 𝑓 : 𝑆→ 𝑇, a function 𝑔 : 𝑇 → 𝑆
is called a left inverse of 𝑓 if 𝑔 ◦ 𝑓 = 𝐼, where 𝐼 is the identity on 𝑆. Prove that 𝑓 is
one-to-one if and only if 𝑓 has a left inverse.

6.1.1.5 Real-Valued Functions

If 𝑆 is any set and 𝑓 : 𝑆 → R, we call 𝑓 a real-valued function. The set of all real-
valued functions on 𝑆 is denoted R𝑆. When 𝑆 has 𝑛 elements, R𝑆 is the same set as
R𝑛 expressed in different notation. The next lemma clarifies.

Lemma 6.1.2. If |𝑆| = 𝑛, then

R𝑆 ∋ ℎ = (ℎ(𝑥1), . . . , ℎ(𝑥𝑛)) ←→
©«
ℎ1
...
ℎ𝑛

ª®®¬ ∈ R𝑛 (6.3)

is a one-to-one correspondence between R𝑛 and the function space R𝑆.
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The lemma just states that a function ℎ can be identified by the set of values that
it takes on 𝑆, which is an 𝑛-tuple of real numbers. We use this identification routinely
in what follows.

The indicator function of logical statement 𝑃 is denoted 1{𝑃} and takes value 1
(resp., 0) if 𝑃 is true (resp., false).

Example 6.1.3. If 𝑥, 𝑦 ∈ R, then

1{𝑥 ⩽ 𝑦} =
{

1 if 𝑥 ⩽ 𝑦

0 otherwise.

If 𝐴 ⊂ 𝑆, where 𝑆 is any set, then 1𝐴(𝑥) := 1{𝑥 ∈ 𝐴} for all 𝑥 ∈ 𝑆.
A nonempty set 𝑆 is called countable if it is finite or can be placed in one-to-one

correspondence with the natural numbers N. In the second case we can enumerate
𝑆 by writing it as {𝑥1, 𝑥2, . . .}. Any nonempty set 𝑆 that fails to be countable is called
uncountable. For example, Z and Q are countable, whereas R and every nontrivial
interval in R are uncountable.

In general, if 𝑓 and 𝑔 are real-valued functions defined on some common set 𝑆 and
𝛼 is a scalar, then 𝑓 + 𝑔, 𝛼 𝑓 , 𝑓 𝑔, etc., are functions on 𝑆 defined by

( 𝑓 + 𝑔) (𝑥) = 𝑓 (𝑥) + 𝑔(𝑥), (𝛼 𝑓 )(𝑥) = 𝛼 𝑓 (𝑥), etc. (6.4)

for each 𝑥 ∈ 𝑆. Similarly, 𝑓 ∨ 𝑔 and 𝑓 ∧ 𝑔 are functions on 𝑆 defined by

( 𝑓 ∨ 𝑔)(𝑥) = 𝑓 (𝑥) ∨ 𝑔(𝑥) and ( 𝑓 ∧ 𝑔)(𝑥) = 𝑓 (𝑥) ∧ 𝑔(𝑥). (6.5)

Figure 6.3 illustrates.
If 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶, then 𝑔 ◦ 𝑓 is called the composition of 𝑓 and 𝑔. It is

the function mapping 𝑎 ∈ 𝐴 to 𝑔( 𝑓 (𝑎)) ∈ 𝐶.

6.1.1.6 Fixed Points

Let 𝑆 be any set. A self-map on 𝑆 is a function 𝐺 from 𝑆 to itself. When working with
self-maps in arbitrary sets it is common to write the image of 𝑥 under 𝐺 as 𝐺𝑥 rather
than 𝐺(𝑥). We often follow this convention.

Given a self-map 𝐺 on 𝑆, a point 𝑥 ∈ 𝑆 is called a fixed point of 𝐺 if 𝐺𝑥 = 𝑥.

Example 6.1.4. Every point of arbitrary 𝑆 is fixed under the identity map 𝐼 : 𝑥 ↦→ 𝑥.
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𝑓

𝑔

𝑓 ∨ 𝑔

𝑓 ∧ 𝑔

Figure 6.3: Functions 𝑓 ∨ 𝑔 and 𝑓 ∧ 𝑔 when defined on a subset of R

Example 6.1.5. If 𝑆 = N and 𝐺𝑥 = 𝑥 + 1, then 𝐺 has no fixed point.

Figure 6.4 shows another example, for a self-map 𝐺 on 𝑆 = [0, 2]. Fixed points are
numbers 𝑥 ∈ [0, 2] where 𝐺 meets the 45 degree line. In this case there are three.

One of the most common techniques for solving systems of nonlinear equations
in applied mathematics—and quantitative economics—is to convert them into fixed
point problems and then apply fixed point theory. We will see many applications of
this technique.

EXERCISE 6.1.3. Let 𝑆 be any set and let 𝐺 be a self-map on 𝑆. Suppose there exists
an 𝑥 ∈ 𝑆 and an 𝑚 ∈ N such that 𝐺𝑘𝑥 = 𝑥 for all 𝑥 ∈ 𝑆 and 𝑘 ⩾ 𝑚. Prove that, under
this condition, 𝑥 is the unique fixed point of 𝐺 in 𝑆.

6.1.1.7 Vectors

An 𝑛-vector 𝑥 is a tuple of 𝑛 numbers 𝑥 = (𝑥1, . . . , 𝑥𝑛) where 𝑥𝑖 ∈ R for each 𝑖 ∈
[𝑛]. In general, 𝑥 is neither a row vector nor a column vector—which coincides with
the perspective of most scientific computing environments, where the basic vector
structure is a flat array. When using matrix algebra, vectors are treated as column
vectors unless otherwise stated.
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Figure 6.4: Graph and fixed points of 𝐺 : 𝑥 ↦→ 2.125/(1 + 𝑥−4)

The two most fundamental vector operations are vector addition and scalar mul-
tiplication. These operations act pointwise, so that, when 𝛼 ∈ R and 𝑥, 𝑦 ∈ R𝑛,

𝑥 + 𝑦 =
©«
𝑥1
𝑥2
...
𝑥𝑛

ª®®®®¬
+

©«
𝑦1
𝑦2
...
𝑦𝑛

ª®®®®¬
:=

©«
𝑥1 + 𝑦1
𝑥2 + 𝑦2

...
𝑥𝑛 + 𝑦𝑛

ª®®®®¬
and 𝛼𝑥 :=

©«
𝛼𝑥1
𝛼𝑥2
...

𝛼𝑥𝑛

ª®®®®¬
.

We let R𝑛 be the set of all 𝑛-vectors andM𝑛×𝑘 be all 𝑛× 𝑘 matrices. If 𝐴 is a matrix
then 𝐴⊤ is its transpose.

• The inner product of 𝑥, 𝑦 ∈ R𝑛 is defined as ⟨𝑥, 𝑦⟩ :=
∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖.

• The Euclidean norm of 𝑥 ∈ R𝑛 is ∥𝑥∥ :=
√
⟨𝑥, 𝑥⟩.

The norm and inner product satisfy the triangle inequality and Cauchy–Schwarz
inequality, which state that, respectively,

∥𝑥 + 𝑦∥ ⩽ ∥𝑥∥ + ∥𝑦∥ and | ⟨𝑥, 𝑦⟩ | ⩽ ∥𝑥∥∥𝑦∥ for all 𝑥, 𝑦 ∈ R𝑛.
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6.1.1.8 Complex Numbers

We recall some elementary facts about C, the set of complex numbers.
Each element of C can be understood as a point (𝑎, 𝑏) ∈ R2. In fact C is just R2

endowed with a special form of multiplication. The point (𝑎, 𝑏) is more often written
as 𝑎 + 𝑖𝑏. We elaborate below.

The first and second projections of (𝑎, 𝑏) are written as Re(𝑎, 𝑏) = 𝑎 and Im(𝑎, 𝑏) =
𝑏 and called the real and nonreal (or imaginary) part respectively. The symbol 𝑖
represents the point (0, 1) ∈ C. As is traditional, in the context of complex numbers,
the complex number (𝑎, 0) ∈ C is often written more simply as 𝑎. With addition and
scalar multiplication defined pointwise, this means that, as expected,

(𝑎, 𝑏) = (𝑎, 0) + (0, 𝑏) = (𝑎, 0) + (0, 1)𝑏 = 𝑎 + 𝑖𝑏.

Let 𝑧 = (𝑎, 𝑏). The modulus of 𝑧 is written |𝑧 | and defined as the Euclidean norm
(𝑎2 + 𝑏2)1/2 of the tuple (𝑎, 𝑏). The two-dimensional Euclidean space is then endowed
with a new operation called multiplication, which is defined by

(𝑎, 𝑏)(𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐). (6.6)

Note that, under this rule and our conventions, 𝑖2 = (0, 1)(0, 1) = (−1, 0) = −1.
As in the real case, the exponential e𝑧 is defined for 𝑧 ∈ C by ∑

𝑘⩾0 𝑧
𝑘/(𝑘!). It can

be shown that, under this extension, the exponential function continues to enjoy the
additive property e𝑧1+𝑧2 = e𝑧1e𝑧2. As a result, e𝑎+𝑖𝑏 = e𝑎e𝑖𝑏.

Rather than providing its coordinates, another way to represent a vector 𝑧 =
(𝑎, 𝑏) ∈ R2, and hence in C, is by providing a pair (𝑟, 𝜑) where 𝑟 > 0 is understood
as the length of the vector and 𝜑 ∈ [0, 2𝜋) is the angle. This translates to Euclidean
coordinates via

𝑎 + 𝑖𝑏 = (𝑎, 𝑏) = (𝑟 cos𝜑, 𝑟 sin𝜑) = 𝑟(cos𝜑 + 𝑖 sin𝜑).

The representation (𝑟, 𝜑) is called the polar form of the complex number. By
Euler’s formula cos(𝜑) + 𝑖 sin(𝜑) = e𝑖𝜑, we can also write

𝑟(cos𝜑 + 𝑖 sin𝜑) = 𝑟e𝑖𝜑.

Figure 6.5 translates C ∋ (1,
√

3) = 1 + 𝑖
√

3 into polar coordinates 2e𝑖(𝜋/3).
The advantage of these representations is clear when we multiply, since the rule

𝑟e𝑖𝜑 𝑠e𝑖𝜓 = 𝑟𝑠 e𝑖(𝜑+𝜓) (6.7)
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Figure 6.5: The complex number (𝑎, 𝑏) = 𝑟e𝑖𝜑

is easier to remember and apply than (6.6). Calculating the modulus is also easy,
since, by the trigonometric formula cos2 𝜑 + sin2 𝜑 = 1,

|𝑟e𝑖𝜑 | = |𝑟(cos(𝜑) + 𝑖 sin(𝜑)) | = 𝑟
(
cos2 𝜑 + sin2 𝜑

)1/2
= 𝑟. (6.8)

EXERCISE 6.1.4. Show that, for any 𝑢, 𝑣 ∈ C we have |𝑢𝑣| = |𝑢| |𝑣|.

6.1.2 Order
Order structure is of great importance in economics—typically more so than other
fields such as physics or chemistry. Here we review the basics.

6.1.2.1 Partial Orders

It was mentioned in the preface that order-theoretic methods form a core part of the
text. In this section we introduce some key concepts.

Let 𝑃 be a nonempty set. A partial order on 𝑃 is a relation ⪯ on 𝑃 × 𝑃 satisfying,
for any 𝑝, 𝑞, 𝑟 in 𝑃,
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𝑝 ⪯ 𝑝,
𝑝 ⪯ 𝑞 and 𝑞 ⪯ 𝑝 implies 𝑝 = 𝑞 and
𝑝 ⪯ 𝑞 and 𝑞 ⪯ 𝑟 implies 𝑝 ⪯ 𝑟

(reflexivity)
(antisymmetry)
(transitivity)

When pairedwith a partial order ⪯, the set 𝑃 (or the pair (𝑃, ⪯)) is called a partially
ordered set.
Example 6.1.6. The usual order ⩽ on R is a partial order on R. Unlike other partial
orders we consider, it has the additional property that either 𝑥 ⩽ 𝑦 or 𝑦 ⩽ 𝑥 for every
𝑥, 𝑦 in R. For this reason, ⩽ is also called a total order on R.

EXERCISE 6.1.5. Let 𝑃 be any set and consider the relation induced by equality, so
that 𝑝 ⪯ 𝑞 if and only if 𝑝 = 𝑞. Show that this relation is a partial order on 𝑃.

EXERCISE 6.1.6. Let 𝑀 be any set. Show that ⊂ is a partial order on ℘(𝑀), the set
of all subsets of 𝑀.

Example 6.1.7 (Pointwise order over functions). Let 𝑆 be any set. For 𝑓 , 𝑔 in R𝑆, we
write

𝑓 ⩽ 𝑔 if 𝑓 (𝑥) ⩽ 𝑔(𝑥) for all 𝑥 ∈ 𝑆.
This relation ⩽ on R𝑆 is a partial order called the pointwise order on R𝑆.

A subset 𝐵 of a partially ordered set (𝑃, ⪯) is called
• increasing if 𝑥 ∈ 𝐵 and 𝑥 ⪯ 𝑦 implies 𝑦 ∈ 𝐵.
• decreasing if 𝑥 ∈ 𝐵 and 𝑦 ⪯ 𝑥 implies 𝑦 ∈ 𝐵.

EXERCISE 6.1.7. Describe the set of increasing sets in (R,⩽).

Example 6.1.8 (Pointwise order over vectors). For vectors 𝑥 = (𝑥1, . . . , 𝑥𝑑) and 𝑦 =
(𝑦1, . . . , 𝑦𝑑), we write

• 𝑥 ⩽ 𝑦 if 𝑥𝑖 ⩽ 𝑦𝑖 for all 𝑖 ∈ [𝑑] and
• 𝑥 ≪ 𝑦 if 𝑥𝑖 < 𝑦𝑖 for all 𝑖 ∈ [𝑑].

The statements 𝑥 ⩾ 𝑦 and 𝑥 ≫ 𝑦 are defined analogously.1 The relation ⩽ is a partial
order onR𝑛, also called the pointwise order. (In fact, the present example is a special

1The notation 𝑥 ⩽ 𝑦 over vectors is standard, while 𝑥 ≪ 𝑦 is less so. In some fields, 𝑛 ≪ 𝑘 is used
as an abbreviation for “𝑛 is much smaller than 𝑘.” Our usage lines up with most of the literature on
partially ordered vector spaces. See, e.g., Zhang (2012).
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case of Example 6.1.7 under the identification in Lemma 6.1.2 (page 214).) On the
other hand, ≪ is not a partial order on R𝑛. (Which axiom fails?)

EXERCISE 6.1.8. Recall from Example 6.1.11 that limits in R preserve weak in-
equalities. Prove that the same is true in R𝑑. In particular, show that, for vectors
𝑎, 𝑏 ∈ R𝑑 and sequence (𝑥𝑛) in R𝑑, we have 𝑎 ⩽ 𝑥𝑛 ⩽ 𝑏 for all 𝑛 ∈ N and 𝑥𝑛 → 𝑥
implies 𝑎 ⩽ 𝑥 ⩽ 𝑏.

6.1.2.2 Pointwise Operations on Vectors

In this text, operations on real numbers such as | · | and ∨ are applied to vectors
pointwise. For example, for vectors 𝑎 = (𝑎𝑖) and 𝑏 = (𝑏𝑖) in R𝑑, we set

|𝑎| = (|𝑎𝑖 |), 𝑎 ∧ 𝑏 = (𝑎𝑖 ∧ 𝑏𝑖) and 𝑎 ∨ 𝑏 = (𝑎𝑖 ∨ 𝑏𝑖)

(The last two are special cases of (6.5).)
A small amount of thought will convince you that, with this convention plus the

pointwise order over vectors, the order-theoretic inequalities and identities listed in
§6.1.1.1 also hold for vectors inR𝑑. (For example, |𝑎+𝑏| ⩽ |𝑎|+ |𝑏| for any 𝑎, 𝑏, 𝑐 ∈ R𝑑.)

EXERCISE 6.1.9. Prove: If 𝐵 is 𝑚× 𝑘 and 𝐵 ⩾ 0, then |𝐵𝑥 | ⩽ 𝐵|𝑥 | for all 𝑘×1 column
vectors 𝑥.

6.1.2.3 Monotonicity

Given two partially ordered sets (𝑃, ⪯) and (𝑄,⊴), a function 𝐺 from 𝑃 to 𝑄 is called
order-preserving if

𝑝, 𝑞 ∈ 𝑃 and 𝑝 ⪯ 𝑞 =⇒ 𝐺𝑝 ⊴ 𝐺𝑞. (6.9)

Example 6.1.9. Let 𝒞 be all continuous functions from 𝑆 = [𝑎, 𝑏] to R and let ⩽ be
the pointwise partial order on 𝒞. Define

𝐼 : 𝒞 ∋ 𝑓 →
∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 ∈ R.

Since 𝑓 ⩽ 𝑔 implies
∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 ⩽

∫ 𝑏

𝑎
𝑔(𝑥)𝑑𝑥, the integral map 𝐼 is order-preserving on

𝒞.
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EXERCISE 6.1.10. Let 𝑋 be a random variable mapping Ω to finite 𝑆. Define
ℓ : R𝑆 → R by ℓℎ = Eℎ(𝑋). Show that ℓ is order-preserving whenR𝑆 has the pointwise
order.

If 𝑃 = 𝑄 = R and ⪯ and ⊴ are both equal to ⩽, the standard order on R, then
the order-preserving property reduces to the usual notion of an increasing function
(i.e., nondecreasing function), and we will use the terms “increasing” and “order-
preserving” interchangeably in this setting.2

In addition, if 𝑆 = 𝑔 maps 𝐴 ⊂ R into R, then we will call 𝑔
• strictly increasing if 𝑥 < 𝑦 implies 𝑔(𝑥) < 𝑔(𝑦), and
• strictly decreasing if 𝑥 < 𝑦 implies 𝑔(𝑥) > 𝑔(𝑦).

6.1.3 Convergence

Let’s now recall the basics of convergence and continuity.
Given any set 𝑆, an 𝑆-valued sequence (𝑥𝑛) := (𝑥𝑛)𝑛∈N is a function 𝑛 ↦→ 𝑥𝑛 from

N to 𝑆. If 𝑆 = R, we call (𝑥𝑛) a real-valued sequence. A subsequence of (𝑥𝑛)𝑛∈N is
a sequence of the form (𝑥𝜎(𝑛))𝑛∈N where 𝜎 is a strictly increasing function from N to
itself. You can think of forming a subsequence from a sequence by deleting some of
its elements—while still retaining infinitely many.

In computer science and statistics, it is common to classify sequences according to
their asymptotic behavior. Often this is done via big O notation, where, for a real-
valued sequence (𝑥𝑛), we write (𝑥𝑛) = 𝑂(𝑔𝑛) if there exists a nonnegative sequence
(𝑔𝑛) and a constant 𝑀 < ∞ such that |𝑥𝑛 | ⩽ 𝑀𝑔𝑛 for all 𝑛 ∈ N.

EXERCISE 6.1.11. Let 𝑥𝑛 = −5𝑛+ 𝑛2 for all 𝑛 ∈ N. Show that (𝑥𝑛) = 𝑂(𝑛2) holds but
(𝑥𝑛) = 𝑂(𝑛) fails.

6.1.3.1 Metric Properties of the Real Line

The following definition is fundamental to what follows: a real-valued sequence (𝑥𝑛)
converges to 𝑥 ∈ R and write 𝑥𝑛 → 𝑥 if

for each 𝜀 > 0, there is an 𝑁 ∈ N such that |𝑥𝑛 − 𝑥 | < 𝜀 whenever 𝑛 ⩾ 𝑁.
2Other common terms for order-preserving in the literature include “monotone increasing,” “mono-

tone” and “isotone.”
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Example 6.1.10. If 𝑥𝑛 = 1 − 1/𝑛, then 𝑥𝑛 → 1. Indeed, for any 𝜀 > 0, the statement
|𝑥𝑛− 1| < 𝜀 is equivalent to 𝑛 > 1/𝜀. This clearly holds whenever 𝑛 is sufficiently large.

EXERCISE 6.1.12. Prove: If 𝑎, 𝑏 ∈ R, 𝑥𝑛 → 𝑎 and 𝑥𝑛 → 𝑏, then 𝑎 = 𝑏.

Let’s state some elementary limit laws that are used without comment throughout.
(You can review the proofs in sources such as Bartle and Sherbert (2011)).

A sequence (𝑥𝑛) is called bounded if there is an 𝑀 ∈ R such that |𝑥𝑛 | ⩽ 𝑀 for all
𝑛 ∈ N. It is called

• monotone increasing if 𝑥𝑛 ⩽ 𝑥𝑛+1 for all 𝑛 ∈ N, and
• monotone decreasing if 𝑥𝑛 ⩾ 𝑥𝑛+1 for all 𝑛.

The sequence is calledmonotone if it is eithermonotone increasing or decreasing. The
next theorem, concerning monotone sequences, is a deep result about the structure
of R.

Theorem 6.1.3. A real-valued monotone sequence converges in R if and only if it is
bounded.

The intuitive meaning of the “if” part of Theorem 6.1.3 is that monotone bounded
sequences always converge to some point in R because R contains no gaps. This
statement is closely related to the “completeness” property of the real line, which is
discussed in Bartle and Sherbert (2011) and many other texts on real analysis.

Next let’s consider series. Given a sequence (𝑥𝑛) in R, we set∑
𝑛⩾1

𝑥𝑛 := lim
𝑁→∞

𝑁∑
𝑛=1

𝑥𝑛 whenever the limit exists in R.

More generally, given arbitrary countable 𝑆 and 𝑔 ∈ R𝑆, wewrite∑
𝑥∈𝑆 𝑔(𝑥) = 𝑀 if there

exists an enumeration (𝑥𝑛)𝑛∈N of 𝑆 such that ∑
𝑛⩾1 |𝑔(𝑥𝑛) | is finite and, in addition,∑

𝑛⩾1 𝑔(𝑥𝑛) = 𝑀.3

EXERCISE 6.1.13. Show that, if 𝑆 is countable, 𝑔 ∈ R𝑆, and there exist 𝑥′, 𝑥′′ ∈ 𝑆
such that 𝑔(𝑥′) > 0 and 𝑔(𝑥′′) < 0, then |∑𝑥∈𝑆 𝑔(𝑥) | <

∑
𝑥∈𝑆 |𝑔(𝑥) |.4

3This definition is not ambiguous because every possible enumeration leads to the same value when
the absolute sum is finite (see, e.g., the rearrangement theorem in Bartle and Sherbert (2011), §9.1).

4Hint: Start with the case |𝑆| = 2. Argue that the case with 𝑛 elements follows from this case and
the ordinary (weak) triangle inequality |∑𝑥∈𝑆 𝑔(𝑥) | ⩽

∑
𝑥∈𝑆 |𝑔(𝑥) |.
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Figure 6.6: Convergence of a sequence to the origin in R3

6.1.3.2 Metric Properties of Euclidean Space

Now we review the metric properties of R𝑑, for some 𝑑 ∈ N, when distance between
vectors 𝑥, 𝑦 ∈ R𝑑 is understood in terms of Euclidean norm deviation ∥𝑥 − 𝑦∥. The
notion of convergence for real-valued sequences extends naturally to this setting: se-
quence (𝑥𝑛) in R𝑑 is said to converge to 𝑥 ∈ R𝑑 if

for each 𝜀 > 0, there is an 𝑁 ∈ N such that ∥𝑥𝑛 − 𝑥∥ < 𝜀 whenever 𝑛 ⩾ 𝑁.

In this case we write 𝑥𝑛 → 𝑥. Figure 6.6 shows a sequence converging to the origin in
R3, with colder colors being later in the sequence.

EXERCISE 6.1.14. Prove that limits in R𝑑 are unique. In other words, show that, if
(𝑥𝑛) is a sequence converging to 𝑥 ∈ R𝑑 and 𝑦 ∈ R𝑑, then 𝑥 = 𝑦.

Given any point 𝑢 ∈ R𝑑 and 𝜀 > 0, the 𝜀-ball around 𝑢 is the set

𝐵𝜀(𝑢) := {𝑣 ∈ R𝑑 : ∥𝑢 − 𝑣∥ < 𝜀}.

With this terminology, we can say that (𝑥𝑛) converges to 𝑥 ∈ R𝑑 if the sequence (𝑥𝑛)
is eventually in any 𝜀-ball around 𝑥.

Proposition 6.1.4. If (𝑥𝑛) and (𝑦𝑛) are sequences in R𝑑 with 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦, then

(i) 𝑥𝑛 + 𝑦𝑛 → 𝑥 + 𝑦 and 𝑥𝑛𝑦𝑛 → 𝑥 𝑦
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(ii) 𝑥𝑛 ⩽ 𝑦𝑛 for all 𝑛 ∈ N implies 𝑥 ⩽ 𝑦

(iii) 𝛼𝑥𝑛 → 𝛼𝑥 for any 𝛼 ∈ R
(iv) 𝑥𝑛 ∨ 𝑦𝑛 → 𝑥 ∨ 𝑦 and 𝑥𝑛 ∧ 𝑦𝑛 → 𝑥 ∧ 𝑦.

A sequence (𝑥𝑛) ⊂ R𝑑 is called Cauchy if, for all 𝜀 > 0, there exists an 𝑁 ∈ N with
|𝑥𝑛 − 𝑥𝑚 | < 𝜀 whenever 𝑛, 𝑚 ⩾ 𝑁.

EXERCISE 6.1.15. Let 𝑑 = 1 and suppose 𝑥𝑛 = 1/𝑛. Prove that (𝑥𝑛) is Cauchy.

EXERCISE 6.1.16. Prove that every convergent sequence in R𝑑 is Cauchy.

It is a fundamental result of analysis, stemming from axiomatic properties of the
reals, that the converse is also true:
Theorem 6.1.5. A sequence in R𝑑 converges to a point in R𝑑 if and only if it is Cauchy.

6.1.3.3 Topology

A point 𝑢 ∈ 𝐴 ⊂ R𝑑 is called interior to 𝐴 if there exists an 𝜀 > 0 such that 𝐵𝜀(𝑢) ⊂ 𝐴.

EXERCISE 6.1.17. Let 𝑑 = 1 so that ∥𝑥 − 𝑦∥ = |𝑥 − 𝑦 |. Show that 0.5 is interior to
𝐴 := [0, 1) but 0 is not. Show that Q, the set of rational numbers in R, contains no
interior points.

A subset 𝐺 of R𝑑 is called open in R𝑑 if every 𝑢 ∈ 𝐺 is interior to 𝐺. A subset 𝐹
of R𝑑 is called closed if, given any sequence (𝑥𝑛) satisfying 𝑥𝑛 ∈ 𝐹 for all 𝑛 ∈ N and
𝑥𝑛 → 𝑥 for some 𝑥 ∈ R𝑑, the point 𝑥 is in 𝐹. In other words, 𝐹 contains the limit points
of all convergent sequences that take values in 𝐹.
Example 6.1.11. Limits in R preserve orders, so 𝑎 ⩽ 𝑥𝑛 ⩽ 𝑏 for all 𝑛 ∈ N and 𝑥𝑛 → 𝑥
implies 𝑎 ⩽ 𝑥 ⩽ 𝑏. Thus, any closed interval [𝑎, 𝑏] in R is closed in the standard (one
dimensional Euclidean) metric.

EXERCISE 6.1.18. Prove that 𝐺 ⊂ R𝑑 is open if and only if 𝐺𝑐 is closed.

A subset 𝐵 of R𝑑 is called bounded if there exists a finite 𝑀 such that ∥𝑏∥ ⩽ 𝑀
for all 𝑏 ∈ 𝐵. A subset 𝐾 of R𝑑 is called compact in R𝑑 if every sequence in 𝐾 has a
subsequence converging to some point in 𝐾. The Bolzano–Weierstrass theorem tells
us that 𝐾 is compact if and only if 𝐾 is closed and bounded.
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6.1.3.4 Continuity in Vector Space

If 𝐴 ⊂ R𝑑, then 𝑓 : 𝐴→ R𝑘 is called continuous at 𝑥 ∈ 𝐴 if, for each sequence (𝑥𝑛) ⊂ 𝐴
with 𝑥𝑛 → 𝑥, we have 𝑓 (𝑥𝑛) → 𝑓 (𝑥) in R𝑘. If 𝑓 is continuous at all 𝑥 ∈ 𝐴 then we call
𝑓 continuous on 𝐴.
Example 6.1.12. If 𝑓 (𝑥) = 𝑥2 on 𝐴 = R, then 𝑓 is continuous at all 𝑥 ∈ R because, by
Proposition 6.1.4, 𝑥𝑛 → 𝑥 implies 𝑥2

𝑛 = 𝑥𝑛 · 𝑥𝑛 → 𝑥 · 𝑥 = 𝑥2.

More generally, every polynomial function is continuous on R. The elementary
functions sin, cos, exp and log are all continuous on their domains.

EXERCISE 6.1.19. Prove: If 𝛼, 𝛽 ∈ R and 𝑓 , 𝑔 are continuous functions from 𝐴 ⊂ R𝑑

to R𝑘, then so is 𝛼 𝑓 + 𝛽𝑔.

EXERCISE 6.1.20. Fix 𝑎 ∈ R𝑑. Prove that 𝑓 , 𝑔 : R𝑑 → R𝑑 defined by 𝑓 (𝑥) = 𝑥 ∧ 𝑎
and 𝑔(𝑥) = 𝑥 ∨ 𝑎 are both continuous functions on R𝑑.

The next lemma is helpful in locating fixed points.
Lemma 6.1.6. Let 𝐹 be a self-map on 𝑆 ⊂ R𝑑. If 𝐹𝑚𝑢 → 𝑢∗ as 𝑚 → ∞ for some pair
𝑢, 𝑢∗ ∈ 𝑆 and, in addition, 𝐹 is continuous at 𝑢∗, then 𝑢∗ is a fixed point of 𝐹.

Proof. Assume the hypotheses of Lemma 6.1.6 and let 𝑢𝑚 := 𝐹𝑚𝑢 for all 𝑚 ∈ N. By
continuity and 𝑢𝑚 → 𝑢∗ we have 𝐹𝑢𝑚 → 𝐹𝑢∗. But the sequence (𝐹𝑢𝑚) is just (𝑢𝑚) with
the first element omitted, so, given that 𝑢𝑚 → 𝑢∗, we must have 𝐹𝑢𝑚 → 𝑢∗. Since
limits are unique, it follows that 𝑢∗ = 𝐹𝑢∗. □

6.1.4 Linear Algebra

Next we review fundamental concepts and definitions from linear algebra.

6.1.4.1 Subspaces and Independence

A subset 𝐸 of R𝑛 is called a linear subspace of R𝑛 if

𝑥, 𝑦 ∈ 𝐸 and 𝛼, 𝛽 ∈ R =⇒ 𝛼𝑥 + 𝛽𝑦 ∈ 𝐸.

In other words, 𝐸 is closed under the operations of addition and scalar multiplication;
that is, (i) 𝛼 ∈ R and 𝑥 ∈ 𝐸 implies 𝛼𝑥 ∈ 𝐸 and (ii) 𝑥, 𝑦 ∈ 𝐸 implies 𝑥 + 𝑦 ∈ 𝐸.
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EXERCISE 6.1.21. Fix 𝑐 ∈ R𝑛 and 𝐶 ∈ M𝑛×𝑘. Show that
• 𝐻 := {𝑥 ∈ R𝑛 : ⟨𝑐, 𝑥⟩ = 0} and
• range𝐶 := {𝑦 ∈ R𝑛 : 𝑦 = 𝐶𝑥 for some 𝑥 ∈ R𝑘}

are linear subspaces of R𝑛. Show that 𝑆 := {𝑥 ∈ R𝑛 : ⟨𝑐, 𝑥⟩ ⩾ 0} is not.

A linear combination of vectors 𝑣1, . . . , 𝑣𝑘 in R𝑛 is a vector of the form

𝛼1𝑣1 + · · · + 𝛼𝑘𝑣𝑘 where (𝛼1, . . . , 𝛼𝑘) ∈ R𝑘.

The set of all linear combinations of elements of 𝐹 ⊂ R𝑛 is called the span of 𝐹 and
written as span 𝐹.
Example 6.1.13. The set range𝐶 in Exercise 6.1.21 is the span of the columns of the
matrix 𝐶, viewed as a set of vectors in R𝑛. The set range𝐶 is also called the column
space of 𝐶.

EXERCISE 6.1.22. Let 𝐹 be a nonempty subset of R𝑛. Prove that
(i) span 𝐹 is a linear subspace of R𝑛 and
(ii) span 𝐹 is the intersection of all linear subspaces 𝑆 ⊂ R𝑛 with 𝑆 ⊃ 𝐹.

Figure 6.7 shows the linear subspace spanned by the three vectors

𝑢 = ©«
3
4
1

ª®¬ , 𝑣 = ©«
3
−4
0.2

ª®¬ , and 𝑤 = ©«
−3.5

3
−0.4

ª®¬ . (6.10)

The subspace 𝐻 in which these vectors lie is, in fact, the set of all 𝑥 ∈ R3 such that
⟨𝑥, 𝑐⟩ = 0, with 𝑐 = (−0.2,−0.1, 1). This plane is a two-dimensional object. While we
make this terminology precise in §6.1.4.2, the key idea is that

• at least two vectors are required to span 𝐻 and
• any additional vectors will not increase the span.
A finite set of vectors 𝐹 := {𝑣1, . . . , 𝑣𝑘} ⊂ R𝑛 is called linearly independent if, for

real scalars 𝛼1, . . . , 𝛼𝑘,

𝛼1𝑣1 + · · · + 𝛼𝑘𝑣𝑘 = 0 =⇒ 𝛼1 = · · · = 𝛼𝑘 = 0.

If 𝐹 is not linearly independent it is called linearly dependent.
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Figure 6.7: The span of vectors 𝑢, 𝑣, 𝑤 in R3

EXERCISE 6.1.23. Show that 𝐹 is linearly dependent if and only if there exists a
vector in 𝐹 that can be written as a linear combination of other vectors in 𝐹.

EXERCISE 6.1.24. Prove the following:
(i) Every subset of a linearly independent set in R𝑛 is linearly independent.5

(ii) Every finite superset of a linearly dependent set in R𝑛 is linearly dependent.

Example 6.1.14. It is easy to check that the set 𝐸 := {𝛿1, . . . , 𝛿𝑛} ⊂ R𝑛 defined by

𝛿1 :=
©«

1
0
...
0

ª®®®®¬
, 𝛿2 :=

©«
0
1
...
0

ª®®®®¬
, · · · , 𝛿𝑛 :=

©«
0
0
...
1

ª®®®®¬
is linearly independent. Its elements are called the canonical basis vectors of R𝑛.

The span of the canonical basis vectors in R𝑛 is equal to all of R𝑛. In particular,
each 𝑥 ∈ R𝑛 can be expressed as

𝑥 =
𝑛∑
𝑖=1

𝛼𝑖𝛿𝑖 where 𝛼𝑖 := ⟨𝑥, 𝛿𝑖⟩ . (6.11)

5By the law of the excluded middle, the empty set must be linearly independent too.
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On the other hand, we cannot omit an element of the basis {𝛿1, . . . , 𝛿𝑛} and still span
R𝑛. The next theorem generalizes this idea.

Theorem 6.1.7. If 𝐸 = {𝑢1, . . . , 𝑢𝑛} is a set of 𝑛 vectors in R𝑛, then span 𝐸 = R𝑛 if and
only if 𝐸 is linearly independent.

See, for example, Jänich (1994). Theorem 6.1.7 captures the notion that linear
independence of a set of vectors means linear diversity, which allows the span to be
large.

EXERCISE 6.1.25. The null space or kernel of a matrix 𝐴 ∈ M𝑛×𝑘 is the set

null 𝐴 := {𝑥 ∈ R𝑘 : 𝐴𝑥 = 0}.

Show that (i) null 𝐴 is a linear subspace of R𝑘 and (ii) null 𝐴 = {0}, where 0 is the
origin in R𝑘, if and only if the columns of 𝐴 form a linearly independent subset of R𝑛.

6.1.4.2 Basis Vectors and Dimension

Let 𝑉 be a linear subspace of R𝑛. A set 𝐵 ⊂ 𝑉 is called a basis for 𝑉 if 𝐵 is linearly
independent and span 𝐵 = 𝑉.

The key idea behind a basis is this: If 𝑆 = {𝑣1, . . . , 𝑣𝑘} spans some linear subspace
𝑉, then each element of 𝑉 can be written as a linear combination of elements of 𝑆. If
𝑆 is, in addition, linearly independent (and hence a basis), then this representation is
unique: for each 𝑢 ∈ 𝑉, there is exactly one (𝛼1, . . . , 𝛼𝑘) ∈ R𝑘 such that

𝑢 = 𝛼1𝑣1 + · · · + 𝛼𝑘𝑣𝑘.

Indeed, if 𝑢 = 𝛽1𝑣1+· · ·+𝛽𝑘𝑣𝑘 is another representation, then, subtracting this equality
from the last, we have

(𝛼1 − 𝛽1)𝑣1 + · · · + (𝛼𝑘 − 𝛽𝑘)𝑣𝑘 = 0.

Because 𝑆 is assumed to be linearly independent, this yields 𝛼𝑖 = 𝛽𝑖 for all 𝑖 ∈ [𝑘].
Not surprisingly, given their name, the canonical basis vectors 𝐸 := {𝛿1, . . . , 𝛿𝑛}

serve as a basis for the whole space R𝑛. The representation (6.11), with coefficients
𝛼𝑖 = ⟨𝑥, 𝛿𝑖⟩, is unique.

Theorem 6.1.8. If 𝑉 is a nonzero linear subspace of R𝑛, then
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(i) 𝑉 has at least one basis and
(ii) every basis of 𝑉 has the same number of elements.

Theorem 6.1.8 is a relatively deep result. See, for example, Jänich (1994). The
common number of bases in (ii) is called the dimension of 𝑉 and written as dim𝑉.

The “nonzero” qualification in Theorem 6.1.8 is included for the case 𝑉 = {0},
which is a linear subspace that lacks any basis. It is sensible, and standard, to agree
that the linear subspace {0} ⊂ R𝑛 has dimension zero.

Dimensionality is one measure of the “size” of a linear subspace. To illustrate,
consider the system 𝐴𝑥 = 𝑏 where 𝐴 ∈ M𝑛×𝑘, 𝑥 ∈ R𝑘 and 𝑏 ∈ R𝑛. Is there an 𝑥
that solves this system? This will be more likely if the column space of 𝐴 is large
(see Example 6.1.13). A large span will be obtained when the columns are linearly
“diverse.” In other words, our hope is that there exists a large subset of the columns
of 𝐴 that is linearly independent, which in turn will be true when the span of 𝐴 is
high-dimensional.

To quantify these ideas, we define the rank of 𝐴 as

rank 𝐴 := dim(range 𝐴) = dimension of the column space of 𝐴.

Theorem 6.1.9. For any matrix 𝐴, the following quantities are equal:

(i) rank 𝐴

(ii) the maximal number of linearly independent columns of 𝐴, and
(iii) the maximal number of linearly independent rows of 𝐴.

See, for example, Chapter 2 of Aggarwal (2020) or Chapter 5 of Jänich (1994).
In view of Exercise 6.1.26, for 𝐴 ∈ M𝑛×𝑘, we have rank 𝐴 ⩽ 𝑘. If rank 𝐴 = 𝑘, then 𝐴 is
said to have full column rank.

In general, a linear subspace 𝑉 contains within itself many other linear subspaces.
(For example, a plane passing through the origin containsmany lines that pass through
the origin, each one of which is a linear subspace.) However, there is no proper sub-
space of 𝑉 (i.e., no linear subspace contained in and distinct from 𝑉) with the same
dimension as 𝑉. The next theorem records this fact.

Theorem 6.1.10. If 𝑈,𝑉 are linear subspaces of R𝑛, then 𝑈 ⊂ 𝑉 implies dim𝑈 ⩽ dim𝑉
with equality if and only if 𝑈 = 𝑉.
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EXERCISE 6.1.26. Let 𝑈 be a linear subspace of R𝑛. Using the results given above,
prove the following statements:
(i) The only 𝑛-dimensional linear subspace of R𝑛 is R𝑛.
(ii) If 𝐴 ⊂ 𝑈 is finite and |𝐴| > dim𝑈, then 𝐴 is linearly dependent.

Part (ii) is related to Figure 6.7. The plane in that figure is 2-dimensional, as we
confirm in §6.1.4.3 below. Any three vectors lying in the plane are linearly dependent.

6.1.4.3 Linear Maps Are Matrices

We will see in the following chapters that many nonlinear dynamic models and esti-
mation problems can be expressed in terms of linear operations in high-dimensional
spaces. We now state the definition of linear maps and their connection to matrices.

A function 𝑢 ↦→ 𝐴𝑢 from R𝑘 to R𝑛 is called linear if

𝐴(𝛼𝑢 + 𝛽𝑣) = 𝛼𝐴𝑢 + 𝛽𝐴𝑣 for all 𝛼, 𝛽 ∈ R and all 𝑢, 𝑣 in R𝑘.

In this context, 𝐴 is sometimes called an operator rather than a function, but the
meaning is the same.

EXERCISE 6.1.27. Fix 𝑠, 𝑡 ∈ R. Show that 𝐴 : R → R defined by 𝐴𝑢 = 𝑠𝑢 + 𝑡 is a
linear function on R if and only if 𝑡 = 0.

EXERCISE 6.1.28. Let 𝐴 : R𝑛 → R𝑛 be a linear bijection. By Lemma 6.1.1, the
operator 𝐴 has an inverse 𝐴−1 mapping R𝑛 to itself. Prove that 𝐴−1 is linear.

One of the most striking and useful properties of linear operators is that the one-
to-one property and the onto property are equivalent when the domain and codomain
agree:
Theorem 6.1.11. Let 𝐴 : R𝑛 → R𝑛 be linear. The operator 𝐴 is a one-to-one function if
and only if it is onto.

The proof can be found in Jänich (1994) or Stachurski (2016). Figure 6.8 illus-
trates in the one-dimensional case. The linear map 𝑓 (𝑥) = 𝛼𝑥 is onto if and only if it
is one-to-one, which occurs if and only if 𝛼 ≠ 0.

A matrix 𝐴 ∈ M𝑛×𝑘 is a linear function from R𝑘 to R𝑛 when identified with the
mapping that sends a (column) vector 𝑢 in R𝑘 into the vector 𝐴𝑢 in R𝑛. In fact it is
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−1 1

−1

1

non-bijection

f(x) = 0x

−1 1

−1

1

bijection

f(x) = 0.5x

Figure 6.8: Equivalence of the onto and one-to-one properties

fundamental that, for every linear map 𝐴 : R𝑘 → R𝑛, there exists a unique 𝑀𝐴 ∈ M𝑛×𝑘

such that
𝐴𝑢 = 𝑀𝐴𝑢 for all 𝑢 ∈ R𝑘 (6.12)

(see, e.g., Kreyszig (1978), §2.9). Thus, the set of linear maps and the set of matrices
are in one-to-one correspondence in the finite dimensional setting.

6.1.4.4 Linear Hyperplanes

In Exercise 6.1.21, you confirmed that, for a given nonzero 𝑐 ∈ R𝑛, the subset of R𝑛

defined by 𝐻 := {𝑥 ∈ R𝑛 : ⟨𝑐, 𝑥⟩ = 0} is a linear subspace of R𝑛. Any set 𝐻 of this form
is called a linear hyperplane in R𝑛. The vector 𝑐 is called the normal vector of the
hyperplane.
Theorem 6.1.12 (Rank-Nullity Theorem). For each 𝐴 ∈ M𝑛×𝑘, we have

rank 𝐴 + dim(null 𝐴) = 𝑘.

Example 6.1.15. If 𝐴 has linearly independent columns, then rank 𝐴 = 𝑘 and 𝐴 is said
to have full column rank. Recall from Exercise 6.1.25 that this is precisely the setting
where null 𝐴 = {0}. Hence dim(null 𝐴) = 0, and Theorem 6.1.12 holds.

In the discussion after Figure 6.7, we claimed that the linear hyperplane has shown
there is a two-dimensional subset of R3. The next example generalizes this idea.
Example 6.1.16. A linear hyperplane 𝐻 = {𝑥 ∈ R𝑛 : ⟨𝑥, 𝑐⟩ = 0} with 𝑐 ≠ 0 has
dimension 𝑛 − 1. To see this, just set 𝐴 in Theorem 6.1.12 to 𝑐, treated as a 1 × 𝑛 row
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vector. Then 𝐻 = null 𝐴, and

dim 𝐻 = dim null 𝐴 = 𝑛 − rank 𝐴 = 𝑛 − 1.

(Here rank 𝐴 = 1 follows from Theorem 6.1.9.)

6.1.4.5 Nonsingular Linear Systems

A crucial task in applied modeling is solving linear systems such as 𝐴𝑥 = 𝑏, where 𝐴
is a matrix and 𝑥 and 𝑏 are conformable column vectors. The system can be underde-
termined, overdetermined or exactly determined (i.e., same number of equations as
unknowns). In this section we consider the last case, where the theory is straightfor-
ward.

Let 𝐴 and 𝐵 be inM𝑛×𝑛 and suppose that 𝐴𝐵 = 𝐵𝐴 = 𝐼. Then 𝐵 is called the inverse
of 𝐴, written as 𝐴−1, while 𝐴 is said to be invertible or nonsingular.

The next theorem states that, for square matrices, the property of having either a
left or a right inverse is equivalent to nonsingularity.

Theorem 6.1.13. Given 𝐴 inM𝑛×𝑛, the following statements are equivalent:

(i) There exists an 𝐿 ∈ M𝑛×𝑛 such that 𝐿𝐴 = 𝐼.
(ii) There exists an 𝑅 ∈ M𝑛×𝑛 such that 𝐴𝑅 = 𝐼.

If one and hence both of these statements hold, then 𝐴 is nonsingular and 𝐿 = 𝑅 = 𝐴−1.

Proof. Fix 𝐴 in M𝑛×𝑛 and suppose first that (i) holds. This implies that 𝐴 has a left
inverse. In view of Exercise 6.1.2, it must be that 𝑥 ↦→ 𝐴𝑥 is one-to-one on R𝑛. By
Theorem 6.1.11, this means that the same function is onto. Hence 𝑥 ↦→ 𝐴𝑥 is a
bijection, and therefore invertible (Lemma 6.1.1). By Exercise 6.1.28, the inverse
function is linear and hence can be represented by a matrix. We denote it 𝐴−1. For
the left inverse 𝐿 we have 𝐿 = 𝐴−1, since 𝐿 = 𝐿(𝐴𝐴−1) = (𝐿𝐴)𝐴−1 = 𝐴−1.

Now suppose there exists an 𝑅 ∈ M𝑛×𝑛 such that 𝐴𝑅 = 𝐼. Then, 𝐴 is the left inverse
of 𝑅 and, by the previous argument, 𝑅 is invertible with 𝐴 = 𝑅−1. Pre-multiplying both
sides by 𝑅 gives 𝑅𝐴 = 𝐼, so 𝑅 is also a left inverse of 𝐴. As we now know, this means
that 𝐴 is nonsingular and 𝑅 = 𝐴−1.

In summary, if either (i) or (ii) holds, then 𝐴 is nonsingular, with left and right
inverses both equal to 𝐴−1. □



CHAPTER 6. APPENDIX 234

Consider the linear system 𝐴𝑥 = 𝑏, where 𝐴 ∈ M𝑛×𝑛 and 𝑏 ∈ R𝑛. We seek a
solution 𝑥 ∈ R𝑛. The next theorem provides conditions under which such an 𝑥 is
always uniquely identified.
Theorem 6.1.14. The following statements are equivalent:
(i) For each 𝑏 ∈ R𝑛, the equation 𝐴𝑥 = 𝑏 has a unique solution.
(ii) The columns of 𝐴 are linearly independent.
(iii) The columns of 𝐴 form a basis of R𝑛.
(iv) null 𝐴 = {0}.
(v) rank 𝐴 = 𝑛.
(vi) det 𝐴 is nonzero.
(vii) 𝐴 is nonsingular.

The symbol det 𝐴 represents the determinant of 𝐴. For the definition, see, for
example, Jänich (1994) or Cohen (2021). We note only that, for 𝑛× 𝑛matrices 𝐴 and
𝐵,

• det(𝐴𝐵) = det(𝐴) det(𝐵),
• det(𝛼𝐴) = 𝛼𝑛 det 𝐴 for all 𝛼 ∈ R, and
• det(𝐴−1) = (det 𝐴)−1 whenever 𝐴 is nonsingular.
Most of the equivalences in Theorem 6.1.14 can be established from the results

presented above. The key idea is that, under these equivalent conditions, the columns
of 𝐴 form a basis of R𝑛, and hence any 𝑏 ∈ R𝑛 can be expressed uniquely as a linear
combination of elements of these columns. In other words, there exists a unique
𝑥 ∈ R𝑛 with 𝐴𝑥 = 𝑏. The remaining points are just equivalent ways of saying that the
columns of 𝐴 form a basis of R𝑛.

EXERCISE 6.1.29. Let 𝐴 and 𝐵 be conformable in the sense that 𝐴𝐵 is well defined.
Show that rank(𝐴𝐵) ⩽ rank 𝐴, with equality if and only if 𝐵 is nonsingular. (Hint: Use
Theorem 6.1.10.)

6.1.4.6 Orthogonality

We recall that vectors 𝑢, 𝑣 inR𝑛 are called orthogonal and we write 𝑢 ⊥ 𝑣 if ⟨𝑢, 𝑣⟩ = 0.
For a linear subspace 𝐿 ofR𝑛, we call 𝑢 ∈ R𝑛 orthogonal to 𝐿 andwrite 𝑢 ⊥ 𝐿whenever
𝑢 ⊥ 𝑣 for all 𝑣 ∈ 𝐿.
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EXERCISE 6.1.30. The orthogonal complement of linear subspace 𝐿 is defined as
𝐿⊥ := {𝑣 ∈ R𝑛 : 𝑣 ⊥ 𝐿}. Show that 𝐿⊥ is a linear subspace of R𝑛.

EXERCISE 6.1.31. Prove: for any linear subspace 𝐿 ⊂ R𝑛, we have 𝐿 ∩ 𝐿⊥ = {0}.

A set of vectors 𝑂 ⊂ R𝑛 is called an orthogonal set if any two distinct elements of
𝑂 are orthogonal. For any orthogonal set 𝑂, the Pythagorean law∑

𝑢∈𝑂
𝑢

2

=
∑
𝑢∈𝑂
∥𝑢∥2

always holds.

EXERCISE 6.1.32. Prove: Orthogonality implies linear independence in the sense
that

𝑂 ⊂ R𝑛 is orthogonal and 0 ∉ 𝑂 =⇒ 𝑂 is linearly independent.

An orthogonal set 𝑂 ⊂ R𝑛 is called an orthonormal set if ∥𝑢∥ = 1 for all 𝑢 ∈ 𝑂.
If 𝐿 is a linear subspace of R𝑛, 𝑂 is orthonormal in 𝐿 and span𝑂 = 𝐿, then 𝑂 is called
an orthonormal basis of 𝐿. For example, the canonical basis {𝑒1, . . . , 𝑒𝑛} forms an
orthonormal basis of R𝑛.

EXERCISE 6.1.33. Explain why an orthonormal basis 𝑂 of a subspace 𝐿 is, in fact,
a basis of 𝐿, in the sense of the definition in §6.1.4.2.

A matrix 𝑀 is called an orthonormal matrix if 𝑀 ∈ M𝑛×𝑛 for some 𝑛 ∈ N and, in
addition, the columns of 𝑀 form an orthonormal set in R𝑛. These kinds of matrices
will be important to us when we analyze singular value decomposition. Notice that,

• by definition, every orthonormal matrix is square, and
• the 𝑛 columns of an orthonormal matrix 𝑀 in R𝑛 form a basis of R𝑛, since they

are nonzero and orthogonal.

The second point tells us that 𝑀 is nonsingular. The next lemma summarizes
important properties of orthonormal matrices.

Lemma 6.1.15. Fix 𝑀 ∈ M𝑛×𝑛 and let 𝐼 be the 𝑛 × 𝑛 identity. The following statements
are equivalent:

(i) 𝑀 is an orthonormal matrix.
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(ii) 𝑀⊤𝑀 = 𝐼.
(iii) 𝑀𝑀⊤ = 𝐼.
(iv) 𝑀⊤ = 𝑀−1.

The equivalence of (ii) and (iii) is quite striking. It tells us that a square matrix
with orthonormal columns automatically has orthonormal rows.

Proof. Clearly (i) and (ii) are equivalent, since they are two ways of writing the same
thing. Equivalence of (ii)–(iv) follows from Theorem 6.1.13 on page 233. □

6.1.5 Convexity and Concavity

Convexity and concavity are structures of enormous significance in economics and
finance, in terms of both computation and theory. In this section we note the key
definitions and provide exercises that help build familiarity.

6.1.5.1 Convexity and Polyhedra

Convexity plays a central role in optimization and fixed point theory. As usual, a
subset 𝐶 of R𝑛 is called convex if

𝑢, 𝑣 ∈ 𝐶 and 𝜆 ∈ [0, 1] =⇒ 𝜆𝑢 + (1 − 𝜆)𝑣 ∈ 𝐶.

EXERCISE 6.1.34. Show that

(i) the unit simplex in R𝑛 is a convex subset of R𝑛.
(ii) For all 𝑎 ∈ R𝑛 and 𝜀 > 0, the sphere 𝐵 = {𝑥 ∈ R𝑛 : ∥𝑥 − 𝑎∥ < 𝜀} is convex.
(iii) The intersection of an arbitrary number of convex sets in R𝑛 is again convex.

In economic optimization problems, the convex sets within which we seek extrema
are usually polyhedra. A polyhedron in R𝑛 is a set of the form

𝑃 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ⩽ 𝑏} for some 𝐴 ∈ M𝑘×𝑛 and 𝑏 ∈ R𝑘. (6.13)

Equivalently, 𝑃 is a polyhedron inR𝑛 if there exist scalars 𝑏1, . . . , 𝑏𝑘 and 𝑛-dimensional
vectors 𝑎1, . . . , 𝑎𝑘 such that 𝑥 ∈ 𝑃 if and only if 𝑎⊤𝑖 𝑥 ⩽ 𝑏𝑖 for 𝑖 = 1, . . . , 𝑘.
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P

Figure 6.9: A polyhedron 𝑃 represented as intersecting halfspaces

Example 6.1.17. A budget set of the form 𝐵 = {𝑥 ∈ R𝑛
+ : 𝑝⊤𝑥 ⩽ 𝑚} where 𝑚 ⩾ 0 and

𝑝 ∈ R𝑛
+ is a polyhedron. Here 𝑝 is a vector of prices and 𝑥 is a consumption bundle.

Indeed, 𝐵 can be expressed as the set of all 𝑥 ∈ R𝑛 such that 𝑝⊤𝑥 ⩽ 𝑚 and, for the
nonnegativity constraints, −𝛿⊤𝑖 𝑥 ⩽ 0 for 𝑖 = 1, . . . , 𝑛, where 𝛿𝑖 is the 𝑖-th canonical
basis vector in R𝑛. This meets the definition of a polyhedron.

Given 𝑏 ∈ R and nonzero 𝑐 ∈ R𝑛,
• 𝐻0 := {𝑥 ∈ R𝑛 : 𝑥⊤𝑐 = 𝑏} is called a hyperplane in R𝑛, while
• 𝐻1 := {𝑥 ∈ R𝑛 : 𝑥⊤𝑐 ⩽ 𝑏} is called a halfspace in R𝑛.
Note our convention. In §6.1.4.4 we defined linear hyperplanes, which correspond

to 𝐻0 when 𝑏 = 0. Thus linear hyperplanes are a special kind of hyperplane. You will
be able to confirm that the hyperplane 𝐻0 is a linear subspace of R𝑛 if and only if
𝑏 = 0.

EXERCISE 6.1.35. Show that 𝐻0 and 𝐻1 are both convex in R𝑛.

It is immediate from the definition that 𝑃 ⊂ R𝑛 is a polyhedron if and only if 𝑃 is
the intersection of 𝑘 halfspaces in R𝑛 for some 𝑘 ∈ N. Figure 6.9 helps illustrate this
idea.

An extreme point of a polyhedron 𝑃 is a point 𝑝 ∈ 𝑃 that cannot be realized as the
convex combination of other points in 𝑃. In other words, we cannot find two points
𝑥, 𝑦 ∈ 𝑃 that are distinct from 𝑝 and satisfy 𝜆𝑥 + (1 − 𝜆)𝑦 = 𝑝 for some 𝜆 ∈ [0, 1]. The
extreme points of 𝑃 in Figure 6.9 are represented as black dots.
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EXERCISE 6.1.36. Show that every polyhedron in R𝑛 is convex.

A cone in R𝑛 is a set 𝐶 ⊂ R𝑛 such that 𝑥 ∈ 𝐶 implies 𝛼𝑥 ∈ 𝐶 for all 𝛼 > 0.

EXERCISE 6.1.37. Show that (i) the intersection of any two cones is again a cone
and (ii) a cone 𝐶 ⊂ R𝑛 is convex (i.e., 𝐶 is a convex cone) if and only if it is closed
under addition (i.e, 𝑥, 𝑦 ∈ 𝐶 implies 𝑥 + 𝑦 ∈ 𝐶).

EXERCISE 6.1.38. The positive cone of R𝑛 is the set

R𝑛
+ := {𝑥 ∈ R𝑛 : 𝑥 ⩾ 0}.

Show that, for the partially ordered set (R𝑛,⩽), the positive cone is an increasing
subset of R𝑛. Show in addition that R𝑛

+ is a convex cone.

6.1.5.2 Convex and Concave Functions

A function 𝑔 from a convex subset 𝐶 of R𝑛 to R𝑘 is called convex if

𝑔(𝜆𝑢 + (1 − 𝜆)𝑣) ⩽ 𝜆𝑔(𝑢) + (1 − 𝜆)𝑔(𝑣) whenever 𝑢, 𝑣 ∈ 𝐶 and 0 ⩽ 𝜆 ⩽ 1,

and concave if −𝑔 is convex. Concavity of 𝑔 is obviously equivalent to

𝑔(𝜆𝑢 + (1 − 𝜆)𝑣) ⩾ 𝜆𝑔(𝑢) + (1 − 𝜆)𝑔(𝑣) whenever 𝑢, 𝑣 ∈ 𝐶 and 0 ⩽ 𝜆 ⩽ 1.

When 𝑘 = 1, the function 𝑔 is called, respectively, strictly convex or strictly
concave if, in addition, the inequalities become strict whenever 𝑢, 𝑣 are distinct and
0 < 𝜆 < 1.

EXERCISE 6.1.39. Given an example of a function 𝑔 from R𝑛 to R𝑛 that is both
convex and concave.

These properties of functions are closely related to convexity of sets. For example,
the same function 𝑔 is convex if and only if its epigraph

epi(𝑔) := {(𝑥, 𝑔(𝑥)) ∈ R𝑛+1 : 𝑥 ∈ 𝐶}

is convex.
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EXERCISE 6.1.40. If 𝐶 is a convex subset of R𝑛 and 𝑔 : R𝑛 → R is convex, then
Jensen’s inequality states that, for any vectors {𝑥1, . . . , 𝑥𝑘} ⊂ 𝐶 andweights {𝜆1, . . . , 𝜆𝑘} ⊂
R with 0 ⩽ 𝜆 𝑖 ⩽ 1 and ∑

𝑖 𝜆 𝑖 = 1, we have

𝑔

(
𝑘∑
𝑖=1

𝑥𝑖𝜆 𝑖

)
⩽

𝑘∑
𝑖=1

𝑔 (𝑥𝑖) 𝜆 𝑖.

If 𝑔 is concave then the reverse inequality holds. Prove Jensen’s inequality for the case
where 𝑔 is convex when 𝑘 = 3.

In the next exercise, if {𝑦𝑖} is a finite collection of vectors in R𝑘, then max𝑖 𝑦𝑖 is
the vector in R𝑘 obtained by taking the maximum pointwise. The minimum min𝑖 𝑦𝑖 is
defined in a similar way.

EXERCISE 6.1.41. Fix 𝑚 ∈ N and let {𝑔𝑖}𝑖∈[𝑚] be a collection ofR𝑘-valued functions
defined on a convex subset 𝐶 of R𝑛. Show that,

(i) if 𝑔𝑖 is convex for every 𝑖 in [𝑚], then 𝑔 defined at each 𝑥 in 𝐶 by 𝑔(𝑥) :=
max𝑖∈[𝑚] 𝑔𝑖(𝑥) is also convex on 𝐶 and

(ii) if 𝑔𝑖 is concave for every 𝑖 in [𝑚], then 𝑔 defined at each 𝑥 in 𝐶 by 𝑔(𝑥) :=
min𝑖∈[𝑚] 𝑔𝑖(𝑥) is also concave on 𝐶.

EXERCISE 6.1.42. Let 𝑓 and 𝑔 map 𝐶 to R, where 𝐶 ⊂ R𝑛 is convex and so are 𝑓
and 𝑔. Show that (i) 𝑓 +𝑔 is convex and (ii) 𝑓 +𝑔 is strictly convex if, in addition, either
𝑓 or 𝑔 is strictly convex.

Important examples of concave and convex scalar-valued functions include certain
kinds of quadratic forms. For the following you should recall that a symmetric 𝑛 × 𝑛
matrix 𝐴 is called

• positive semidefinite if 𝑥⊤𝐴𝑥 ⩾ 0 for any 𝑥 in R𝑛,
• positive definite if 𝑥⊤𝐴𝑥 > 0 for any nonzero 𝑥 in R𝑛,
• negative semidefinite if 𝑥⊤𝐴𝑥 ⩽ 0 for any 𝑥 in R𝑛, and
• negative definite if 𝑥⊤𝐴𝑥 < 0 for any nonzero 𝑥 in R𝑛.

It’s important to remember (but easy to forget) that symmetry is part of the definition
of these properties. You probably remember that



CHAPTER 6. APPENDIX 240

• 𝐴 is positive definite (resp., semidefinite) if and only if all its eigenvalues are
strictly positive (resp., nonnegative) and

• 𝐴 is positive definite (resp., semidefinite) =⇒ its determinant is strictly positive
(resp., nonnegative).

The second statement follows from the first, since the determinant of a matrix equals
the product of its eigenvalues.

The quadratic form 𝑞(𝑥) = 𝑥⊤𝐴𝑥 is

• convex if and only if 𝐴 is positive semidefinite,
• strictly convex if and only if 𝐴 is positive definite,
• concave if and only if 𝐴 is negative semidefinite, and
• strictly concave if and only if 𝐴 is negative definite.

See, for example, Simon (1994).

EXERCISE 6.1.43. Let 𝑋 be 𝑛 × 𝑘. Prove the following:

(i) 𝑋⊤𝑋 is positive semidefinite.
(ii) If, in addition, 𝑋 has full column rank, then 𝑋⊤𝑋 is positive definite.

6.1.6 Optimization

In this section we review some key topics in optimization theory.

6.1.6.1 Definitions and Existence

A number 𝑚 contained in a subset 𝐴 of R is called the maximum of 𝐴 and we write
𝑚 = max 𝐴 if 𝑎 ⩽ 𝑚 for every 𝑎 ∈ 𝐴. It is called the minimum of 𝐴, written as
𝑚 = min 𝐴, if 𝑚 ∈ 𝐴 and 𝑎 ⩾ 𝑚 for every 𝑎 ∈ 𝐴.

Given an arbitrary set 𝐷 and a function 𝑓 : 𝐷→ R, define

max
𝑥∈𝐷

𝑓 (𝑥) := max{ 𝑓 (𝑥) : 𝑥 ∈ 𝐷} and min
𝑥∈𝐷

𝑓 (𝑥) := min{ 𝑓 (𝑥) : 𝑥 ∈ 𝐷}.

A point 𝑥∗ ∈ 𝐷 is called

• a maximizer of 𝑓 on 𝐷 if 𝑥∗ ∈ 𝐷 and 𝑓 (𝑥∗) ⩾ 𝑓 (𝑥) for all 𝑥 ∈ 𝐷, and
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• a minimizer of 𝑓 on 𝐷 if 𝑥∗ ∈ 𝐷 and 𝑓 (𝑥∗) ⩽ 𝑓 (𝑥) for all 𝑥 ∈ 𝐷.
Equivalently, 𝑥∗ ∈ 𝐷 is a maximizer of 𝑓 on 𝐷 if 𝑓 (𝑥∗) = max𝑥∈𝐷 𝑓 (𝑥), and a minimizer
if 𝑓 (𝑥∗) = min𝑥∈𝐷 𝑓 (𝑥). We define

argmax
𝑥∈𝐷

𝑓 (𝑥) := {𝑥∗ ∈ 𝐷 : 𝑓 (𝑥∗) ⩾ 𝑓 (𝑥) for all 𝑥 ∈ 𝐷}.

The set argmin𝑥∈𝐷 𝑓 (𝑥) is defined analogously.
Example 6.1.18. If 𝑓 (𝑥) = 𝑥2 and 𝐷 = [−1, 1], then argmax𝑥∈𝐷 𝑓 (𝑥) = {−1, 1}, while
argmin𝑥∈𝐷 𝑓 (𝑥) = {0}. In the second case, where the solution set is a singleton, that
is, a set with exactly one element, we write argmin𝑥∈𝐷 𝑓 (𝑥) = 0 as well.

EXERCISE 6.1.44. Let 𝑓 : 𝐷→ 𝐴 ⊂ R be any given function. Prove the following:
(i) If 𝑔 : 𝐴→ R is a strictly increasing function, then 𝑥∗ is a maximizer of 𝑓 on 𝐷 if

and only if 𝑥∗ is a maximizer of 𝑔 ◦ 𝑓 on 𝐴.
(ii) If 𝑔 : 𝐴→ R is a strictly decreasing function, then 𝑥∗ is a maximizer of 𝑓 on 𝐷 if

and only if 𝑥∗ is a minimizer of 𝑔 ◦ 𝑓 on 𝐴.

One important special case of part (ii) is that 𝑥∗ ∈ 𝐷 is a maximizer of 𝑓 on 𝐷 if
and only if 𝑥∗ is a minimizer of − 𝑓 on 𝐷. Hence, any maximization problem can be
converted into a minimization problem and vice-versa.

6.1.6.2 Convexity and Extrema

§ 6.1.6.1 discussed existence of optimizers. In this section we consider uniqueness.
The key observation is that, for convex and concave functions, local optimizers are
global optimizers.

If 𝐶 ⊂ R𝑛 and 𝑓 is a real-valued function on 𝐶, then 𝑢∗ ∈ 𝐶 is a local minimizer of
𝑓 on 𝐶 if there exists an open set 𝐺 in 𝐶 such that 𝑢∗ ∈ 𝐺 and 𝑓 (𝑢∗) ⩽ 𝑓 (𝑢) whenever
𝑢 ∈ 𝐺. A local maximizer is defined analogously.

The next exercise highlights one of the most important facts concerning computa-
tion of solutions to optimization problems in real-world applications. It is especially
valuable in high-dimensional settings, where optimization problems can be very chal-
lenging.

EXERCISE 6.1.45. Show that, if 𝐶 ⊂ R𝑛 is convex, 𝑓 is convex and 𝑢∗ is a local
minimizer of 𝑓 on 𝐶, then 𝑢∗ is a minimizer of 𝑓 on 𝐶.

Similarly, if 𝑓 is concave on 𝐶, then any local maximizer is a global maximizer.
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6.1.6.3 Multivariate Quadratic Objectives

§ 1.4.2.3 treated a one-dimensional quadratic optimization problem. Next we treat
𝑛-dimensional problems of the same type.

Lemma 6.1.16. If 𝐻 ∈ M𝑛×𝑛 is positive definite, then, for any 𝑏 ∈ R and 𝑎 ∈ R𝑛,

𝑢∗ := 𝐻−1𝑎 is the unique minimizer of 𝑞(𝑢) := 𝑢⊤𝐻𝑢 − 2𝑢⊤𝑎 + 𝑏 in R𝑛.

EXERCISE 6.1.46. Prove that any local minimizer of 𝑞 in Lemma 6.1.16 is also a
global minimizer. (Hint: Use Exercise 6.1.42.)

EXERCISE 6.1.47. Complete the proof of Lemma 6.1.16 by showing that 𝑢∗ is a
local minimizer. It suffices to show that the derivative of 𝑞 at 𝑢∗ is zero. Use the
following facts from matrix calculus:

𝑎 ∈ R𝑛 and 𝐻 ∈ M𝑛×𝑛 =⇒ d
d𝑢
𝑢⊤𝑎 = 𝑎 and d

d𝑢
𝑢⊤𝐻𝑢 = (𝐻 + 𝐻⊤)𝑢.

6.1.7 Lagrangian Duality

If you have studied undergraduate economics, you will have used Lagrangian meth-
ods to solve constrained optimization problems. The objective of this section is to
supply insight on when and why the method works, as well as to highlight the con-
nection between an original constrained problem and a so-called “dual problem.” This
connection yields deep insights in economics, finance, statistical learning, artificial in-
telligence and many other fields.

6.1.7.1 Theory

Let 𝐸 be a subset of R𝑛 and let 𝑓 map 𝐸 to R. We aim to solve

min
𝑥∈𝐸

𝑓 (𝑥) subject to 𝑔(𝑥) = 0 and ℎ(𝑥) ⩽ 0. (6.14)

Here 𝑔 maps 𝐸 to R𝑚 and ℎ maps 𝐸 to R𝑘. For example, the zero symbol in the
statement 𝑔(𝑥) = 0 is a vector of zeros, and the meaning is that 𝑔𝑖(𝑥) = 0 in R for 𝑖 in
1, . . . , 𝑚. The interpretation of the second constraint is analogous.
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Any 𝑥 ∈ 𝐸 that satisfies the constraints in (6.14) is called feasible. Let 𝐹(𝑔, ℎ) be
the set of all feasible 𝑥 ∈ 𝐸. A feasible point that attains the minimum in (6.14) is
called optimal for—or a solution to—the optimization problem.

Our first claim is that the constrained optimization problem (6.14) is equivalent
to the unconstrained problem

𝑃 = min
𝑥∈𝐸

max
𝜃∈Θ

𝐿(𝑥, 𝜃) (6.15)

where 𝜃 := (𝜆, 𝜇) and

𝐿(𝑥, 𝜃) = 𝐿(𝑥, 𝜆, 𝜇) := 𝑓 (𝑥) +
𝑚∑
𝑖=1

𝜆 𝑖𝑔𝑖(𝑥) +
𝑘∑
𝑖=1

𝜇𝑖ℎ𝑖(𝑥). (6.16)

Here 𝜃 ∈ Θ combines the vectors of Lagrange multipliers 𝜆 ∈ R𝑚 and 𝜇 ∈ R𝑘
+, where

Θ := R𝑚 ×R𝑘
+. By equivalent to, we mean that

(i) 𝑓 (𝑥) := max𝜃∈Θ 𝐿(𝑥, 𝜃) satisfies 𝑓 = 𝑓 on 𝐹(𝑔, ℎ),
(ii) 𝑓 = +∞ on the complement of 𝐹(𝑔, ℎ) and
(iii) together 𝑓 and 𝑓 satisfy

𝑃 := min
𝑥∈𝐸

𝑓 (𝑥) = min
𝑥∈𝐹(𝑔,ℎ)

𝑓 (𝑥) = min
𝑥∈𝐹(𝑔,ℎ)

𝑓 (𝑥). (6.17)

The first equality in (6.17) is by definition. The second two follow from (ii) and
(i) respectively. Hence we need only verify (i)–(ii).

EXERCISE 6.1.48. Show that (i)–(ii) both hold. You can assume that extrema exist.

The function 𝐿 in problem (6.16) is usually called the Lagrangian. The 𝑃 in (6.15)
stands for primal. So far we have shown that the original constrained problem and
the primal problem are the same. The next step is to pair the primal problem with its
dual problem, which is obtained by reversing the order of min and max in the primal:

𝐷 = max
𝜃∈Θ

min
𝑥∈𝐸

𝐿(𝑥, 𝜃). (6.19)

The dual problem has two attractive features. One is that, when minimizing with
respect to 𝑥, we do not need to concern ourselves with the constraints on 𝑥 in the
original formulation (6.14). The second is that, since 𝐿(𝑥, 𝜃) is linear in 𝜃, and since
we are minimizing a family of these functions with respect to 𝑥, the minimizer is a
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concave function (see page 239). Concavity assists maximization, which is the next
step in solving 𝐷.

EXERCISE 6.1.49. Show that 𝐷 ⩽ 𝑃 always holds.

The result 𝐷 ⩽ 𝑃 in Exercise 6.1.49 is called weak duality. If 𝑃 = 𝐷, then strong
duality is said to hold. Unlike weak duality, strong duality requires conditions on the
primitives.

Evidently strong duality holds if and only if it is valid to reverse the order of the
min andmax operators in the definition of the primal (or the dual). Results of this kind
are called min-max theorems. Such theorems hold at “saddle points” of the function
𝐿. The next section explains.

6.1.7.2 Saddle Points and Duality

We seek necessary and sufficient conditions for strong duality, which will lead to a
characterization of minimizers for the original constrained problem. To do so, we
again take 𝜃 := (𝜆, 𝜇) and Θ := R𝑚 ×R𝑘

+, so that

𝑃 = min
𝑥∈𝐸

max
𝜃∈Θ

𝐿(𝑥, 𝜃) and 𝐷 = max
𝜃∈Θ

min
𝑥∈𝐸

𝐿(𝑥, 𝜃). (6.20)

A pair (𝑥∗, 𝜃∗) in 𝐸 × Θ is called a saddle point of 𝐿 if

𝐿(𝑥∗, 𝜃) ⩽ 𝐿(𝑥∗, 𝜃∗) ⩽ 𝐿(𝑥, 𝜃∗) for all (𝑥, 𝜃) ∈ 𝐸 × Θ. (6.21)

A depiction of a saddle point of a given bivariate function (𝑥, 𝜃) ↦→ 𝐿(𝑥, 𝜃) ∈ R is given
in Figure 6.10. The left hand side of the top panel is a 3D visualization, and the right
hand side is a contour plot of the same function. The saddle point is at the center.

When the extrema in (6.20) exist, we have the following result:
Theorem 6.1.17. If 𝐿 has a saddle point (𝑥∗, 𝜃∗) in 𝐸 × Θ, then strong duality holds.
Moreover, 𝑃 = 𝐷 = 𝐿(𝑥∗, 𝜃∗) and 𝑥∗ solves the constrained optimization problem (6.14).

Proof. Let (𝑥∗, 𝜃∗) be a saddle point (𝑥∗, 𝜃∗) of 𝐿 in 𝐸×Θ. We have, for all (𝑥, 𝜃) ∈ 𝐸×Θ,

𝑃 ⩽ max
𝜃

𝐿(𝑥∗, 𝜃) ⩽ 𝐿(𝑥∗, 𝜃∗) ⩽ min
𝑥

𝐿(𝑥, 𝜃∗),

where the first inequality is by definition and the second two are by the saddle point
property. The last term is clearly dominated by 𝐷, so we conclude that 𝑃 ⩽ 𝐿(𝑥∗, 𝜃∗) ⩽
𝐷. But, by weak duality, we also have 𝐷 ⩽ 𝑃, so 𝑃 = 𝐿(𝑥∗, 𝜃∗) = 𝐷.
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x∗
θ∗

L
(x
, θ)

x∗

θ∗

L(x, θ∗)

L(x∗, θ)

θ 7→ L(x∗, θ)

x 7→ L(x, θ∗)

Figure 6.10: A saddle point (𝑥∗, 𝜃∗) of the function 𝐿

Finally, to confirm that 𝑥∗ solves the original constrained problem, suppose to the
contrary that there exists an 𝑥0 ∈ 𝐸 that satisfies the constraints and yields 𝑓 (𝑥0) <
𝑓 (𝑥∗). Since the constraints are satisfied at both 𝑥0 and 𝑥∗, we can apply (6.18) on
page 269 to obtain max𝜃∈Θ 𝐿(𝑥0, 𝜃) = 𝑓 (𝑥0) and max𝜃∈Θ 𝐿(𝑥∗, 𝜃) = 𝑓 (𝑥∗). Hence the
second inequality of the saddle point condition implies

𝑓 (𝑥∗) = max
𝜃∈Θ

𝐿(𝑥∗, 𝜃) ⩽ max
𝜃∈Θ

𝐿(𝑥0, 𝜃) = 𝑓 (𝑥0).

This contradicts the hypothesis that 𝑓 (𝑥0) < 𝑓 (𝑥∗). □

Theorem 6.1.17 tells us that to solve the constrained optimization problem and
establish strong duality, we need only obtain a saddle point of the Lagrangian.

6.1.7.3 Karush, Kuhn and Tucker

For well behaved problems, saddle points can be identified via well known first-order
conditions, called the Karush–Kuhn–Tucker (KKT) conditions. To state them, we re-
turn to the original problem (6.14) and write 𝜃 explicitly as (𝜆, 𝜇), so that (𝑥∗, 𝜆∗, 𝜇∗) ∈



CHAPTER 6. APPENDIX 246

𝐸 ×R𝑚 ×R𝑘
+ satisfies the saddle point condition if

𝐿(𝑥∗, 𝜆, 𝜇) ⩽ 𝐿(𝑥∗, 𝜆∗, 𝜇∗) ⩽ 𝐿(𝑥, 𝜆∗, 𝜇∗) for all 𝑥 ∈ 𝐸, 𝜆 ∈ R𝑚 and 𝜇 ∈ R𝑘
+.

The KKT conditions are met by (𝑥∗, 𝜆∗, 𝜇∗) ∈ 𝐸 ×R𝑚 ×R𝑘
+ if 𝑥∗ ∈ 𝐹(𝑔, ℎ),

∇ 𝑓 (𝑥∗) +
𝑚∑
𝑖=1

𝜆∗𝑖∇𝑔𝑖(𝑥∗) +
𝑘∑
𝑖=1

𝜇∗𝑖∇ℎ𝑖(𝑥∗) = 0 and (6.22)

𝜇∗𝑖 ℎ𝑖(𝑥∗) = 0 for all 𝑖 ∈ [𝑘]. (6.23)

Herewe are requiring that 𝑓 , 𝑔, ℎ are all differentiable at 𝑥∗ and, for a given function
𝑞 : 𝐸 → R, we use ∇ to represent the vector of partial derivatives. Equation (6.22)
requires that the derivative of the Lagrangian with respect to 𝑥 is zero at 𝑥∗. The
second condition is called the complementary slackness condition.

The KKT conditions are nothingmore than saddle point conditions. Condition (6.22)
is the first order condition for an interior minimizer of the Lagrangian with respect
to 𝑥, at the point (𝑥∗, 𝜃∗), which tries to identify the local minimum visualized in
the lower right panel of Figure 6.10. The complementary slackness condition is also
needed because if 𝜇∗𝑖 ℎ𝑖(𝑥∗) = 0 fails at some 𝑖, then 𝜇∗𝑖 ℎ𝑖(𝑥∗) < 0 must hold, in which
case we could strictly increase the Lagrangian by shifting 𝜇∗𝑖 to 0. This violates the
saddle point property.

If enough regularity conditions hold, then the KKT conditions exactly identify ex-
tremal points. Here is one example, which is proved in Chapter 8 of Matousek and
Gärtner (2007).

Theorem 6.1.18 (Karush–Kuhn–Tucker). If 𝐸 is open, 𝑓 is continuously differentiable
and convex, and both 𝑔 and ℎ are affine functions, then 𝑥∗ minimizes 𝑓 on 𝐹(𝑔, ℎ) if and
only if there exists a pair (𝜆∗, 𝜇∗) ∈ R𝑚 ×R𝑘

+ such that the KKT conditions hold.

6.2 Solutions to Selected Exercises

Solution to Exercise 1.2.1. For 𝜆1 = 𝑖, we have

𝐴𝑒1 =

(
0 −1
1 0

) (
−1
𝑖

)
=

(
−𝑖
−1

)
= 𝜆1𝑒1.



CHAPTER 6. APPENDIX 247

Similarly for 𝜆2 = −𝑖, we have

𝐴𝑒2 =

(
0 −1
1 0

) (
−1
−𝑖

)
=

(
𝑖
−1

)
= 𝜆2𝑒2.

Solution to Exercise 1.2.2. Fix an eigenpair (𝜆, 𝑒) of 𝐴 and a nonzero scalar 𝛼.
We have

𝐴(𝛼𝑒) = 𝛼𝐴𝑒 = 𝜆 (𝛼𝑒).

Hence 𝛼𝑒 is an eigenvector and 𝜆 is an eigenvalue, as claimed.

Solution to Exercise 1.2.3. Fix 𝐴 ∈ M𝑛×𝑛 and 𝜏 > 0. If 𝜆 ∈ 𝜎(𝐴), then 𝜏𝑛 det(𝐴 −
𝜆𝐼) = 0, or det(𝜏𝐴 − 𝜏𝜆𝐼) = 0. Hence 𝜏𝜆 ∈ 𝜎(𝜏𝐴). To obtain the converse implication,
multiply by 1/𝜏.

Solution to Exercise 1.2.4. If 𝑝(𝜆) := det(𝐴−𝜆𝐼) has 𝑛 distinct roots, then |𝜎(𝐴) | =
𝑛. For each 𝜆 𝑖 ∈ 𝜎(𝐴), let 𝑒𝑖 be a corresponding eigenvector. It suffices to show
that {𝑒𝑖}𝑛𝑖=1 is linearly independent. To this end, let 𝑘 be the largest number such
that {𝑒1, . . . , 𝑒𝑘} is independent. Seeking a contradiction, suppose that 𝑘 < 𝑛. Then
𝑒𝑘+1 =

∑𝑘
𝑖=1 𝛼𝑖𝑒𝑖 for suitable scalars {𝛼𝑖}. Hence, by 𝐴𝑒𝑘+1 = 𝜆𝑘+1𝑒𝑘+1, we have

𝑘∑
𝑖=1

𝛼𝑖𝜆 𝑖𝑒𝑖 =
𝑘∑
𝑖=1

𝛼𝑖𝜆𝑘+1𝑒𝑖 ⇐⇒
𝑘∑
𝑖=1

𝛼𝑖(𝜆 𝑖 − 𝜆𝑘+1)𝑒𝑖 = 0.

Since {𝑒1, . . . , 𝑒𝑘} is independent, we have 𝛼𝑖(𝜆 𝑖 − 𝜆𝑘+1) = 0 for all 𝑖. At least one 𝛼𝑖 is
nonzero, so 𝜆 𝑖 = 𝜆𝑘+1 for some 𝑖 ⩽ 𝑘. Contradiction.

Solution to Exercise 1.2.5. Suppose to the contrary that there is one zero column
vector in 𝑃. Then 𝑃 is not nonsingular. Contradiction.

Solution to Exercise 1.2.6. Let 𝐴 be as stated, with 𝐴 = 𝑃𝐷𝑃−1. Using elementary
properties of the trace and determinant, we have

trace(𝐴) = trace(𝑃𝐷𝑃−1) = trace(𝐷𝑃𝑃−1) = trace(𝐷) =
∑
𝑖

𝜆 𝑖

and

det(𝐴) = det(𝑃) det(𝐷) det(𝑃−1) = det(𝑃) det(𝐷) det(𝑃)−1 = det(𝐷) =
∏
𝑖

𝜆 𝑖.
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Solution to Exercise 1.2.8. If 𝐼 is the identity and 𝐼𝑒 = 𝜆𝑒 for some nonzero 𝑒,
then 𝑒 = 𝜆𝑒 and hence 𝜆 = 1. Hence 𝜎(𝐴) = {1}. At the same time, 𝐼 is diagonalizable,
since 𝐼 = 𝐼𝐷𝐼−1 when 𝐷 = 𝐼.

Solution to Exercise 1.2.19. Fix 𝐴 ∈ M𝑛×𝑛 and 𝑏 ∈ R𝑛 where 𝑟(𝐴) < 1. We can
write 𝑥 = 𝐴𝑥 + 𝑏 as (𝐼 − 𝐴)𝑥 = 𝑏. Since 𝑟(𝐴) < 1, 𝐼 − 𝐴 is invertible and hence the linear
system (𝐼 − 𝐴)𝑥 = 𝑏 has unique solution 𝑥∗ = (𝐼 − 𝐴)−1𝑏. The expression 𝑥∗ =

∑∞
𝑚=0 𝐴

𝑚𝑏
follows from the Neumann series lemma.

Solution to Exercise 1.2.20. In what follows, 𝑃𝑤 is as defined in (1.2) and, for
any matrix 𝑄, the symbol 𝑄(𝑖, 𝑗) denotes the 𝑖, 𝑗-th element.

((i), (⇒)) Suppose that 𝑃𝑤 is irreducible and yet 𝛼 = 0. Then, by the expression
for 𝑃𝑚𝑤 in (1.3), we have 𝑃𝑚𝑤 (1, 2) = 0 for all 𝑚. This contradicts irreducibility, so 𝛼 > 0
must hold. A similar argument shows that 𝛽 > 0.

((i), (⇐)) If 𝛼, 𝛽 > 0, then the off-diagonal elements of 𝑃𝑤 are strictly positive.
Moreover, the diagonal elements of 𝑃2

𝑤 are strictly positive. Hence 𝑃𝑤 + 𝑃2
𝑤 ≫ 0 and

𝑃𝑤 is irreducible.
((ii), (⇒)) Suppose that 𝑃𝑤 is primitive. Then 𝑃𝑤 is irreducible, so 0 < 𝛼, 𝛽 ⩽ 1

holds. It remains only to show that min{𝛼, 𝛽} < 1. Suppose to the contrary that
𝛼 = 𝛽 = 1. Then 𝑃𝑚𝑤 has zero diagonal elements when 𝑚 is odd and zero off-diagonal
elements when 𝑚 is even. This contradicts the primitive property, so min{𝛼, 𝛽} < 1
must hold.

((ii), (⇐)) Suppose that 0 < 𝛼, 𝛽 ⩽ 1 and 𝛼 < 1. Some algebra shows that 𝑃2
𝑤 ≫ 0.

The same is true when 0 < 𝛼, 𝛽 ⩽ 1 and 𝛽 < 1. Hence 𝑃𝑤 is primitive.

Solution to Exercise 1.2.22. Fix 𝐴 ∈ M𝑛×𝑘 with 𝐴 ⩾ 0, along with 𝑥, 𝑦 ∈ R𝑘.
From 𝑥 ⩽ 𝑦 we have 𝑦 − 𝑥 ⩾ 0, so 𝐴(𝑦 − 𝑥) ⩾ 0. But then 𝐴𝑦 − 𝐴𝑥 ⩾ 0, or 𝐴𝑥 ⩽ 𝐴𝑦.

Solution to Exercise 1.3.2. For the first claim, fix 𝑥 ∈ 𝑆 and 𝑧 ∈ (0, 1]. If 𝜅(𝑧) = 𝑥,
then, since all elements of 𝑆 are distinct, the definition of 𝜅 implies 𝑧 ∈ 𝐼(𝑥). Con-
versely, if 𝑧 ∈ 𝐼(𝑥), then, since all intervals are disjoint, we have 𝜅(𝑧) = 𝑥.

For the second claim, pick any 𝑥 ∈ 𝑆, and observe that, by the first claim, the
𝜅(𝑊) = 𝑥 precisely when 𝑊 ∈ 𝐼(𝑥). The probability of this event is the length of the
interval 𝐼(𝑥), which, by construction, is 𝜑(𝑥). Hence P{𝜅(𝑊) = 𝑥} = 𝜑(𝑥) for all 𝑥 ∈ 𝑆
as claimed.
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Solution to Exercise 1.3.3. Fix 𝑗 ∈ [𝑛]. Observe that 𝑌 := 1{𝜅(𝑊) = 𝑗} is Bernoulli
random variable. The expectation of such a 𝑌 equals P{𝑌 = 1}. As 𝜅(𝑊) 𝑑

= 𝜑, this is
𝜑( 𝑗).

Solution to Exercise 1.3.5. Draw 𝑈 uniformly on (0, 1] and set the coin to heads
if 𝑈 ⩽ 𝛿. The probability of this outcome is P{𝑈 ⩽ 𝛿} = 𝛿.

Solution to Exercise 1.3.6. For the solution we assume that 𝑆 is finite, although
the argument can easily be extended to densities. On the computer, we flip a biased
coin 𝐵 ∈ {0, 1} with P{𝐵 = 0} = 𝛿 and then

(i) draw 𝑌 from 𝜑 if 𝐵 = 0, or
(ii) draw 𝑌 from 𝜓 if 𝐵 = 1.

With this set up, by the law of total probability,

P{𝑌 = 𝑠} = P{𝑌 = 𝑠 | 𝐵 = 0}P{𝐵 = 0} +P{𝑌 = 𝑠 | 𝐵 = 1}P{𝐵 = 1} = 𝛿𝜑(𝑠) + (1 − 𝛿)𝜓(𝑠).

In other words, 𝑌 𝑑
= 𝑓 .

Solution to Exercise 1.3.7. Let 𝑃 and 𝑄 be as stated. Evidently 𝑃𝑄 ⩾ 0. Moreover,
𝑃𝑄1 = 𝑃1 = 1, so 𝑃𝑄 is stochastic. That 𝑟(𝑃) = 1 follows directly from Lemma 1.2.7.
By the Perron–Frobenius theorem, there exists a nonzero, nonnegative row vector 𝜑
satisfying 𝜑𝑃 = 𝜑. Rescaling 𝜑 to 𝜑/(𝜑1) gives the desired vector 𝜓.

Solution to Exercise 1.3.8. Fix 𝑝 > 0 and let 𝑋 be 𝐿𝑁 (𝜇, 𝜎2). We have

E|𝑋 |𝑝 = E𝑋 𝑝 = E exp(𝑝𝜇 + 𝑝𝜎𝑍) for 𝑍 𝑑
= 𝑁 (0, 1).

Since 𝑝𝜇 + 𝑝𝜎𝑍 𝑑
= 𝑁 (𝑝𝜇, 𝑝2𝜎2), we can apply the formula for the mean of a lognormal

distribution to obtain 𝑚𝑝 = exp(𝑝𝜇 + (𝑝𝜎)2/2) < ∞.

Solution to Exercise 1.3.9. Let 𝑋 have a Pareto tail with tail index 𝛼 and let 𝐺 be
its CCDF. Fix 𝑟 ⩾ 𝛼. Under the Pareto tail assumption, we can take positive constants
𝑏 and 𝑥 such that 𝐺(𝑡) ⩾ 𝑏𝑡−𝛼 whenever 𝑡 ⩾ 𝑥. Using (1.14) we have

E𝑋 𝑟 = 𝑟

∫ ∞

0
𝑡𝑟−1𝐺(𝑡) d𝑡 ⩾ 𝑟

∫ 𝑥

0
𝑡𝑟−1𝐺(𝑡) d𝑡 + 𝑟

∫ ∞

𝑥
𝑡𝑟−1𝑏𝑡−𝛼 d𝑡.

But
∫ ∞
𝑥
𝑡𝑟−𝛼−1 d𝑡 = ∞ whenever 𝑟 − 𝛼 − 1 ⩾ −1. Since 𝑟 ⩾ 𝛼, we have E𝑋 𝑟 = ∞.
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Solution to Exercise 1.3.10. Fix 𝜆 > 0 and suppose 𝑋
𝑑
= Exp(𝜆). A simple

integration exercise shows that P{𝑋 > 𝑡} = e−𝜆𝑡. Now fix 𝛼 > 0. Since lim𝑡→∞ 𝑡𝛼e−𝜆𝑡 =
0, the random variable 𝑋 does not obey a power law.

Solution to Exercise 1.3.11. Let 𝑝 and the constants 𝛾, 𝑐 > 0 and 𝑥 ∈ R+ be as
described in the exercise. Pick any 𝑡 ⩾ 𝑥. By the usual rules of integration,

P{𝑋 > 𝑡} = 𝑐

∫ ∞

𝑡
𝑢−𝛾 d𝑢 = − 𝑐

1 − 𝛾 𝑡
1−𝛾 .

With 𝛼 := 𝛾 − 1, we then have 𝑡𝛼P{𝑋 > 𝑡} = 𝑐/𝛼, and 𝑋 is Pareto-tailed with tail index
𝛼.

Solution to Exercise 1.4.1. Let 𝒢 be a directed acyclic graph and fix 𝑢 in 𝒢.
Suppose to the contrary that every node reachable from 𝑢 has positive out-degree. In
this case, we can construct a directed walk from 𝑢 of arbitrary length. But 𝒢 has only
finitely many nodes, so any such walk must eventually cycle. Contradiction.

Solution to Exercise 1.4.3. If (𝑉, 𝐸) is undirected, then the adjacency matrix is
symmetric.

Solution to Exercise 1.4.4. Let 𝐴⊤ = (𝑎′𝑖 𝑗), so that 𝑎′𝑖 𝑗 = 𝑎 𝑗𝑖 for each 𝑖, 𝑗. By
definition, we have

( 𝑗, 𝑘) ∈ 𝐸′ ⇐⇒ 𝑎′𝑗𝑘 > 0 ⇐⇒ 𝑎𝑘 𝑗 > 0 ⇐⇒ (𝑘, 𝑗) ∈ 𝐸,

which proves (i). Regarding (ii), to say that 𝑘 is accessible from 𝑗 in𝒢′ means that we
can find vertices 𝑖1, . . . , 𝑖𝑚 that form a directed path from 𝑗 to 𝑘 under𝒢′, in the sense
that such that 𝑖1 = 𝑗, 𝑖𝑚 = 𝑘, and each successive pair (𝑖ℓ, 𝑖ℓ+1) is in 𝐸′. But then, by (i),
𝑖𝑚, . . . , 𝑖1 provides a directed path from 𝑘 to 𝑗 under𝒢, since and each successive pair
(𝑖ℓ+1, 𝑖ℓ) is in 𝐸.

Solution to Exercise 1.4.5. Recalling that 𝜕/(𝜕𝑥𝑘)𝑥⊤𝐴𝑥 = (𝑥⊤𝐴)𝑘, the first order
condition corresponding to (1.26), taking the actions of other players as given, is

𝑥𝑘 = 𝛼(𝑥⊤𝐴)𝑘 + 𝜀𝑘 (𝑘 ∈ [𝑛]).

Concatenating into a row vector and then taking the transpose yields 𝑥 = 𝛼𝐴𝑥 + 𝜀,
where we used the fact that 𝐴 is symmetric. Since 𝑟(𝛼𝐴) = 𝛼𝑟(𝐴), the condition
𝑟(𝐴) < 1/𝛼 implies that 𝑟(𝛼𝐴) < 1, so, by the Neumann series lemma, the unique
solution is 𝑥∗ = (𝐼 − 𝛼𝐴)−1𝜀.
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Solution to Exercise 1.4.6. When 𝐴 is strongly connected, the Perron–Frobenius
theorem tells us that 𝑟(𝐴) > 0 and 𝐴 has a unique (up to a scalar multiple) dominant
right eigenvector satisfying 𝑟(𝐴)𝑒 = 𝐴𝑒. Rearranging gives (1.32).16

Solution to Exercise 1.4.10. When 𝛽 < 1/𝑟(𝐴) we have 𝑟(𝛽𝐴) < 1. Hence, we
can express (1.36) as 𝜅 = 1 + 𝛽𝐴𝜅 and employ the Theorem 1.2.5 to obtain the stated
result.

Solution to Exercise 2.1.1. Fix 𝑗 ∈ [𝑛]. Since 𝑎𝑖 𝑗 = 𝑧𝑖 𝑗/𝑥 𝑗, we have 𝜂 𝑗 =
∑𝑛
𝑖=1 𝑧𝑖 𝑗
𝑥 𝑗

.
Hence, if 𝑣 𝑗 > 0, then 𝜂 𝑗 < 1.

Solution to Exercise 2.1.2. It follows easily from Assumption 2.1.1 that 𝜂(𝐴) < 1.
Moreover, since 𝐴 ⩾ 0, the results in §1.2.3.4 imply that 𝑟(𝐴) is dominated by the
maximum of the column sums of 𝐴. But this is precisely 𝜂(𝐴). Hence 𝑟(𝐴) ⩽ 𝜂(𝐴) < 1.

Solution to Exercise 2.1.3. Let (𝐴, 𝑑) be as stated. When 𝐴 is irreducible, 𝐿 :=∑∞
𝑖=1 𝐴

𝑖 ≫ 0 and 𝑥∗ = 𝐿𝑑. Since 𝑑 is nontrivial, 𝑥∗ ≫ 0 follows from 𝐿 ≫ 0 and the
definition of matrix multiplication.

Solution to Exercise 2.1.4. If 𝑟(𝐴) < 1, then 𝐼 − 𝐴 is nonsingular. At the same
time, for the nontrivial solution 𝑥, we have (𝐼 − 𝐴)𝑥 = 0. Contradiction. If, on the
other hand, 𝑟(𝐴) = 1, then, since 𝑟(𝐴) is an eigenvalue (by the Perron–Frobenius
theorem), we have 𝐴𝑥 = 𝑥 for some 𝑥 ≫ 0. The uniqueness claim follows from the
Perron–Frobenius theorem.

Solution to Exercise 2.1.7. Let 𝜆 be an eigenvalue of 𝐴 and let 𝑒 be the corre-
sponding eigenvector. Then, for all 𝑖 ∈ [𝑛], we have∑

𝑗

𝑎𝑖 𝑗𝑒 𝑗 = 𝜆𝑒𝑖 ⇐⇒
∑
𝑗

𝑧𝑖 𝑗
𝑥 𝑗
𝑒 𝑗 = 𝜆𝑒𝑖 ⇐⇒

∑
𝑗

𝑓𝑖 𝑗
𝑒 𝑗
𝑥 𝑗

= 𝜆
𝑒𝑖
𝑥𝑖
,

where we have used the fact that 𝑥 ≫ 0. It follows that 𝜆 is an eigenvalue of 𝐹. The
same logic runs in reverse, so 𝐴 and 𝐹 share eigenvalues. Hence 𝑟(𝐴) = 𝑟(𝐹).

Solution to Exercise 2.2.2. We need to show that 1⊤𝐴𝑚1 = 𝑛(1 − 𝛼)𝑚 for any 𝑚.
We prove this by induction, noting that 1⊤𝐴 = (1 − 𝛼)1⊤ by the CRS assumption. It

16While the dominant eigenvector is only defined up to a positive scaling constant, this is no reason
for concern, since positive scaling has no impact on the ranking. In most cases, users of this centrality
ranking choose the dominant eigenvector 𝑒 satisfying ∥𝑒∥ = 1.
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follows immediately that 1⊤𝐴1 = 𝑛(1 − 𝛼). Now suppose also that 1⊤𝐴𝑚1 = 𝑛(1 − 𝛼)𝑚
holds. Then

1⊤𝐴𝑚+11 = 1⊤𝐴𝐴𝑚1 = (1 − 𝛼)1⊤𝐴𝑚1 = 𝑛(1 − 𝛼)𝑚+1,

where the last step is by the induction hypothesis.

Solution to Exercise 2.2.3. Inserting (2.18) into (2.19) and differentiating with
respect to ℓ𝑗 and 𝑞𝑖 𝑗 leads to the first order conditions given in (2.20). It can be shown
that these local maximizers are global maximizers, although we omit the details.

Solution to Exercise 2.2.5. By Exercise 2.2.1 we have 𝑟(𝐴) < 1. Hence 𝐿 =
(𝐼− 𝐴)−1 is well defined and, moreover, we can solve (2.22) using the Neumann series
lemma, yielding 𝜌 = −(𝐼 − 𝐴⊤)−1𝜀. Since the inverse of the transpose is the transpose
of the inverse, we can write this as 𝜌 = −𝐿⊤𝜀. Unpacking gives the equation stated in
the exercise.

Solution to Exercise 2.2.7. Equation (2.24) can be expressed as ℎ𝑖 = 𝑛−1+∑ 𝑗 𝑎𝑖 𝑗ℎ 𝑗.
Letting ℎ = (ℎ𝑖) be a column vector in R𝑛 and letting 1 be a column vector of ones,
these 𝑛 equations become ℎ = 𝑛−11 + 𝐴ℎ. Since 𝑟(𝐴) < 1, the unique solution is
ℎ = 𝑛−1(𝐼 − 𝐴)−11 = 𝑛−1𝐿1. Unpacking the vector equation gives the stated result.

Solution to Exercise 2.2.8. From the result in Exercise 2.2.2, we have

1⊤ℎ =
1
𝑛
1⊤

∑
𝑚⩾0

𝐴𝑚1 =
1
𝑛

∑
𝑚⩾0

1⊤𝐴𝑚1 =
1
𝑛
𝑛
∑
𝑚⩾0
(1 − 𝛼)𝑚.

The last expression evaluates to 1/𝛼, as was to be shown.

Solution to Exercise 2.2.9. This expression follows easily from the definition
of variance and the independence of firm-level shocks, which allows us to pass the
variance through the sum.

Solution to Exercise 2.2.11. Let ℎ∗ := 1/(𝛼𝑛). The claim is that ℎ∗ is the mini-
mizer of ∥ℎ∥ onR𝑛

+ under the constraint
∑𝑛
𝑖=1 ℎ𝑖 = 1/𝛼. Squaring the objective function

and substituting the constraint into the objective by taking ℎ𝑛 = 1/𝛼 − ℎ1 − · · · − ℎ𝑛−1,
we are led to the equivalent problem of finding the minimizer of

𝑓 (ℎ1, . . . , ℎ𝑛−1) := ℎ2
1 + · · · + ℎ2

𝑛−1 +
(
1
𝛼
− ℎ1 − · · · − ℎ𝑛−1

)2
.

Since 𝑓 is convex, any local minimizer is a global minimizer. Moreover, the first order
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conditions give
ℎ𝑖 =

(
1
𝛼
− ℎ1 − · · · − ℎ𝑛−1

)
= ℎ𝑛.

for all 𝑖. Hence, the solution vector is constant over 𝑖. Letting 𝑐 be this constant and
using the constraint gives 𝑛𝑐 = 1/𝛼. The claim follows.

Solution to Exercise 2.2.12. Let ℎ∗ be an 𝑛-vector with ℎ∗𝑘 = 1/𝛼 for some 𝑘 and
ℎ∗𝑗 = 0 for other indices. Clearly ∥ℎ∗∥ = 1/𝛼. Hence it suffices to show that, for any
ℎ ∈ R𝑛

+ with ∑𝑛
𝑖=1 ℎ𝑖 = 1/𝛼, we have ∥ℎ∥ ⩽ 1/𝛼.

Fix ℎ ∈ R𝑛
+ with ∑𝑛

𝑖=1 ℎ𝑖 = 1/𝛼. Since we are splitting 1/𝛼 into 𝑛 parts, we can
express ℎ as (𝑤1/𝛼, . . . , 𝑤𝑛/𝛼), where 0 ⩽ 𝑤𝑖 ⩽ 1 and ∑

𝑖𝑤𝑖 = 1. By Jensen’s inequality
(Exercise 6.1.40), we have

∑
𝑖

(𝑤𝑖

𝛼

)2
⩽

(∑
𝑖

𝑤𝑖

𝛼

)2

=
1
𝛼2 .

Taking the square root gives ∥ℎ∥ ⩽ 1/𝛼, as was to be shown.

Solution to Exercise 2.3.3. For 𝛼 > 0 we always have ∥𝛼𝑢∥0 = ∥𝑢∥0, which violates
positive homogeneity.

Solution to Exercise 2.3.6. Let ∥ · ∥ be a norm on R𝑛, let (𝑢𝑚) be a sequence in
R𝑛 and let 𝑢 be a point in R𝑛. To show that (i) implies (ii) we fix 𝑎 ∈ R𝑛 and observe
that

for all 𝑚 ∈ N, | ⟨𝑎, 𝑢𝑚⟩ − ⟨𝑎, 𝑢⟩ | = | ⟨𝑎, 𝑢𝑚 − 𝑢⟩ | ⩽ ∥𝑢𝑚 − 𝑢∥1 max
𝑖
|𝑎𝑖 |.

Hence convergence in ℓ1 norm implies (ii). In view of Exercise 2.3.5, convergence in
∥ · ∥ implies convergence in ℓ1, so (i) =⇒ (ii) is confirmed.

To show that (ii) implies (iii) at the 𝑗-th component, we just specialize 𝑎 to the
𝑗-th canonical basis vector. Finally, to show that (iii) implies (i), we first note that, by
the equivalence of norms, it is enough to show that pointwise convergence implies ℓ1
convergence; that is,

(iii) =⇒ ∥𝑢𝑚 − 𝑢∥1 =
∑
𝑗∈[𝑛]
|
〈
𝛿 𝑗, 𝑢𝑚 − 𝑢

〉
| → 0,

where 𝛿 𝑗 is the 𝑗-th canonical basis vector. To prove that this sum converges to zero it
suffices to show that every element of the sum converges to zero (see §6.1.3.2), which
is true by (iii).
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Solution to Exercise 2.3.7. Consider the claim that 𝑢𝑚 → 𝑥 and 𝑣𝑚 → 𝑦 in R𝑛

implies 𝑢𝑚 + 𝑣𝑚 → 𝑥 + 𝑦. We know this is true in the scalar case 𝑛 = 1. Moreover,
Lemma 2.3.1 tells us that convergence inR𝑛 holds if and only if it holds componentwise—
which is just the scalar case. The rest of the proof is similar.

Solution to Exercise 2.3.8. The Frobenius norm reduces to the Euclidean norm
for column and row vectors, so (2.32) requires that | ⟨𝐴, 𝐵⟩𝐹 | ⩽ ∥𝐴∥𝐹 ∥𝐵∥𝐹. This bound
certainly holds: it is the Cauchy–Schwarz inequality.

Solution to Exercise 2.3.9. Let

𝑎 := sup
𝑢≠0

𝑓 (𝑢) where 𝑓 (𝑢) := ∥𝐴𝑢∥∥𝑢∥ and let 𝑏 := sup
∥𝑢∥=1

∥𝐴𝑢∥

Evidently 𝑎 ⩾ 𝑏 because the supremum is over a larger domain. To see the reverse
fix 𝜀 > 0 and let 𝑢 be a nonzero vector such that 𝑓 (𝑢) > 𝑎 − 𝜀. Let 𝛼 := 1/∥𝑢∥ and let
𝑢𝑏 := 𝛼𝑢. Then

𝑏 ⩾ ∥𝐴𝑢𝑏∥ =
∥𝐴𝑢𝑏∥
∥𝑢𝑏∥

=
∥𝛼𝐴𝑢∥
∥𝛼𝑢∥ =

𝛼

𝛼

∥𝐴𝑢∥
∥𝑢∥ = 𝑓 (𝑢) > 𝑎 − 𝜀

Since 𝜀 was arbitrary we have 𝑏 ⩾ 𝑎.

Solution to Exercise 2.3.10. Let 𝐴 and 𝐵 be elements of M𝑛×𝑘 and M𝑛× 𝑗 re-
spectively. Fix 𝑣 ∈ R𝑛. Since ∥𝐴𝑢∥ ⩽ ∥𝐴∥ · ∥𝑢∥ for any vector 𝑢, we have ∥𝐴𝐵𝑣∥ ⩽
∥𝐴∥ · ∥𝐵𝑣∥ ⩽ ∥𝐴∥ · ∥𝐵∥ · ∥𝑣∥, from which (2.32) easily follows.

Solution to Exercise 2.3.15. Let (𝐴𝑚) and (𝐵𝑚) have the stated properties. Re-
garding (i), we use the triangle inequality to obtain

∥𝐴𝑚 − 𝐴∥ = ∥𝐴𝑚 − 𝐵𝑚 + 𝐵𝑚 − 𝐴∥ ⩽ ∥𝐴𝑚 − 𝐵𝑚∥ + ∥𝐵𝑚 − 𝐴∥.

Both terms on the right converge to zero, which completes the proof.
Regarding (ii), we use the submultiplicative property to obtain ∥𝐵𝐴𝑚𝐶 − 𝐵𝐴𝐶∥ ⩽

∥𝐵∥∥𝐴𝑚 − 𝐴∥∥𝐶∥ → 0.

Solution to Exercise 2.3.17. Let ∥ · ∥𝑎 and ∥ · ∥𝑏 be two norms on M𝑛×𝑛. By the
results in §2.3.2.5, these norms are equivalent, so there exist constants 𝑀, 𝑁 such that
∥𝐴𝑘∥𝑎 ⩽ 𝑀∥𝐴𝑘∥𝑏 ⩽ 𝑁 ∥𝐴𝑘∥𝑎 for all 𝑘 ∈ N.

∴ ∥𝐴𝑘∥1/𝑘𝑎 ⩽ 𝑀1/𝑘∥𝐴𝑘∥1/𝑘𝑏 ⩽ 𝑁1/𝑘∥𝐴𝑘∥1/𝑘𝑎



CHAPTER 6. APPENDIX 255

for all 𝑘 ∈ N. Taking 𝑘 → ∞, we see that the definition of the spectral radius is
independent of the choice of norm.

Solution to Exercise 2.3.18. Since 𝑟(𝐴) < 1, we can find a constant 𝐾 and an
𝜀 > 0 such that 𝑘 ⩾ 𝐾 implies ∥𝐴𝑘∥ < (1− 𝜀)𝑘. Setting 𝑀 := max𝑘⩽𝐾 ∥𝐴𝑘∥ and 𝛿 := 1− 𝜀
produces the desired constants.

Solution to Exercise 2.3.19. Suppose 𝑟(𝐴) < 1. Iterating backwards on 𝑥𝑡 =
𝐴𝑥𝑡−1 + 𝑑 yields 𝑥𝑡 = 𝑑 + 𝐴𝑑 + · · · + 𝐴𝑡−1𝑑 + 𝐴𝑡𝑥0. By the Neumann series lemma, we have
𝑥∗ =

∑
𝑡⩾0 𝐴

𝑡𝑑, so
𝑥∗ − 𝑥𝑡 =

∑
𝑗>𝑡

𝐴 𝑗𝑑 − 𝐴𝑡𝑥0.

Hence, with ∥ · ∥ as both the Euclidean vector norm and the matrix operator norm,
we have

∥𝑥∗ − 𝑥𝑡∥ =
∑
𝑗>𝑡

𝐴 𝑗𝑑 − 𝐴𝑡𝑥0

 ⩽ ∑
𝑗>𝑡

∥𝐴 𝑗∥∥𝑑∥ − ∥𝐴𝑡∥∥𝑥0∥.

Using 𝑟(𝐴) < 1 again, it now follows from Exercise 2.3.18 that ∥𝑥∗− 𝑥𝑡∥ → 0 as 𝑡 →∞.

Solution to Exercise 2.3.20. We have ∥𝐴𝑚∥1 = 𝑛(1 − 𝛼)𝑚 and so ∥𝐴𝑚∥1/𝑚1 =
𝑛1/𝑚(1 − 𝛼). Taking 𝑚→∞ gives 𝑟(𝐴) = 1 − 𝛼.

Solution to Exercise 2.3.21. Let ∥·∥ be a norm onR𝑛. From the Perron–Frobenius
theorem (Theorem 1.2.6), when 𝐴 is primitive, ∥𝑟(𝐴)−𝑚𝐴𝑚𝑥∥ → 𝑐 as 𝑚 → ∞, where
𝑐 > 0 whenever 𝑥 ≫ 0. Hence lim𝑚→∞ ∥𝐴𝑚𝑥∥1/𝑚 = lim𝑚→∞ 𝑟(𝐴)𝑐1/𝑚 = 𝑟(𝐴).

Solution to Exercise 2.3.22. We prove only that the stated conditions on 𝐴 imply
that 𝐴⊤ is weakly chained substochastic, since the proof of the reverse implication is
very similar. We set 𝑎′𝑖 𝑗 := 𝑎 𝑗𝑖, so that 𝐴⊤ = (𝑎′𝑖 𝑗).

Let 𝐴 have the stated properties. Since 𝐴 has less than unit column sums, 𝐴⊤ has
less than unit rows, so 𝐴⊤ is substochastic.

Now fix 𝑚 ∈ [𝑛] and take 𝑖 ∈ [𝑛] such that 𝑖 → 𝑚 under 𝐴 and ∑
𝑘 𝑎𝑘𝑖 < 1. By

Exercise 1.4.4 on page 41, 𝑖→ 𝑚 under 𝐴 is equivalent to 𝑚→ 𝑖 under 𝐴⊤. Moreover∑
𝑘 𝑎𝑘𝑖 < 1 is equivalent to ∑

𝑘 𝑎
′
𝑖𝑘 < 1. Hence 𝐴⊤ is weakly chained substochastic.

Solution to Exercise 2.3.23. Let 𝐴 be the adjacency matrix of an input-output
network such that value added is nonnegative in each sector. In what follows, we
write 𝑎′𝑖 𝑗 for the 𝑖, 𝑗-th element of 𝐴⊤, so that 𝑎′𝑖 𝑗 = 𝑎 𝑗𝑖.
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Let’s say that 𝐴 has property U if, for each sector in the network, there exists an
upstream supplier with positive value added. Property U is equivalent to the state-
ment that, for all 𝑚 ∈ [𝑛], there is an 𝑖 ∈ [𝑛] with 𝑖 → 𝑚 under 𝐴 and ∑

𝑘 𝑎𝑘𝑖 < 1.
By Exercise 2.3.22, this is equivalent to the statement that 𝐴⊤ is weakly chained sub-
stochastic. Since 𝐴⊤ is substochastic, this is, in turn equivalent to 𝑟(𝐴⊤) < 1. But
𝑟(𝐴) = 𝑟(𝐴⊤), so property U is equivalent to 𝑟(𝐴) < 1.

Solution to Exercise 2.3.25. Let 𝐴 = diag(𝑎, 1) where 0 < 𝑎 < 1. Clearly 𝑟(𝐴) = 1.
Let 𝑏⊤ = (1, 0) and let 𝑥⊤ = (1/(1 − 𝑎), 0). Simple algebra shows that 𝑥 = 𝐴𝑥 + 𝑏.

Solution to Exercise 3.1.1. If the path fails to reach 𝑑 in 𝑛 − 1 steps, then, since
|𝑉 | = 𝑛, there exists a vertex 𝑥 ∈ 𝑉 that appears twice in (𝑥1, . . . , 𝑥𝑛). This means there
exists a cycle from 𝑥, which contradicts our assumption that 𝒢 is a directed acyclic
graph.

Solution to Exercise 3.1.2. Fix 𝑞 ∈ 𝑈 and 𝜎 ∈ Σ. Nonnegativity of 𝑇𝜎 𝑞 is obvious.
Also, (𝑇𝜎𝑞)(𝑑) = 𝑐(𝑑, 𝑑) + 𝑞(𝑑) = 0, where the first equality is by 𝜎(𝑑) = 𝑑 and the
second is by 𝑞(𝑑) = 0 and 𝑐(𝑑, 𝑑) = 0. Hence 𝑇𝜎 𝑞 ∈ 𝑈, as required.

Solution to Exercise 3.2.1. Since prices are positive (more output means more
revenue), we expect that both inequality constraints (see (3.10)) will hold with equal-
ity. Reading from the figure, the equalities are 2𝑞1+5𝑞2 = 30 and 4𝑞1+2𝑞2 = 20. Solving
simultaneously leads to 𝑞 = (2.5, 5.0).

Solution to Exercise 3.2.3. The equality constraint 𝐴𝑥 = 𝑏 can be replaced by
the two inequality constraints 𝐴𝑥 ⩽ 𝑏 and −𝐴𝑥 ⩽ −𝑏. The constraint 𝑥 ⩾ 0 can be
replaced by −𝑥 ⩽ 0. If we unpack these matrix inequalities, row by row, we obtain a
collection of constraints, each of which has the form ℎ⊤𝑥 ⩽ 𝑔 for suitable ℎ ∈ R𝑛 and
𝑔 ∈ R. The claim now follows from the definition of a polyhedron on page 236.

Solution to Exercise 3.3.1. Fix 𝑦 ∈ Y. The distributions 𝜑 and 𝜓 are assumed to
be everywhere positive, so if (3.18) holds for 𝑇, then 𝜑(𝑥)1{𝑇 (𝑥) = 𝑦} > 0 for some
location 𝑥. Hence, there exists an 𝑥 ∈ X such that 𝑇 (𝑥) = 𝑦.

Solution to Exercise 3.3.2. One scenario where no Monge map exists is when
|Y| > |X|. For example, suppose X = {𝑥1} and Y = {𝑦1, 𝑦2}, with 𝜑(𝑥1) = 1 and
𝜓(𝑦𝑖) ∈ (0, 1) for 𝑖 = 1, 2. Either 𝑥1 is mapped to 𝑦1 or it is mapped to 𝑦2. In either
case, the Monge map condition (3.18) fails for both 𝑦1 and 𝑦2.
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Solution to Exercise 3.3.3. Let 𝑇 be a self-map on [𝑛]. If 𝑇 is a Monge map, then,
by the definition in (3.18), we must have ∑

𝑖(1/𝑛)1{𝑇 (𝑖) = 𝑗} = 1/𝑛 for all 𝑗. If 𝑇 is
not a bijection, then there exist indices 𝑖, 𝑘, 𝑗 such that 𝑖 ≠ 𝑘 and 𝑇 (𝑖) = 𝑇 (𝑘) = 𝑗. This
clearly violates the previous equality.

Conversely, if 𝑇 is a bijection on [𝑛], then 𝑇 satisfies ∑
𝑖(1/𝑛)1{𝑇 (𝑖) = 𝑗} = 1/𝑛 for

all 𝑗. Hence 𝑇 is a Monge map.

Solution to Exercise 3.3.6. Applying (3.24) on page 132, we have

𝜓 = vec(𝜓⊤) = vec(1⊤𝑛𝜋𝐼𝑚) = (𝐼𝑚 ⊗ 1⊤𝑛 ) vec(𝜋).

Solution to Exercise 3.3.7. Let 𝜋 be feasible for the primal problem and let (𝑤, 𝑝)
be feasible for the dual. By dual feasibility, we have 𝑐(𝑥, 𝑦) ⩾ 𝑝(𝑦) − 𝑤(𝑥) for all 𝑥, 𝑦,
so

⟨𝜋, 𝑐⟩ ⩾
∑
𝑥

∑
𝑦

𝜋(𝑥, 𝑦) [𝑝(𝑦) − 𝑤(𝑥)] =
∑
𝑥

∑
𝑦

𝜋(𝑥, 𝑦)𝑝(𝑦) −
∑
𝑥

∑
𝑦

𝜋(𝑥, 𝑦)𝑤(𝑥)

Rearranging and using primal feasibility now gives ⟨𝜋, 𝑐⟩ ⩾ ⟨𝑝, 𝜓⟩−⟨𝑤, 𝜑⟩. This proves
the first claim.

To see that 𝐷 ⩽ 𝑃 follows from the last inequality, just fix 𝜋 ∈ Π(𝜑, 𝜓) and maxi-
mize over all feasible dual pairs to obtain ⟨𝜋, 𝑐⟩ ⩾ 𝐷. Now minimize over 𝜋 ∈ Π(𝜑, 𝜓).

Solution to Exercise 3.3.8. From min𝑎∈𝐴 𝑓 (𝑎) = max𝑏∈𝐵 𝑔(𝑏) we have 𝑓 (𝑎) ⩾ 𝑔(𝑏)
for all (𝑎, 𝑏) ∈ 𝐴 × 𝐵. Taking (𝑎, 𝑏) with 𝑓 (𝑎) = 𝑔(𝑏), we have 𝑓 (𝑎) = 𝑔(𝑏) ⩽ 𝑓 (𝑎) for
any given 𝑎 ∈ 𝐴. In particular, 𝑎 minimizes 𝑓 on 𝐴. The argument for 𝑏 is similar.

Solution to Exercise 3.3.9. Since any outflow from some node 𝑖 is matched by
equal inflow into some node 𝑗, summing both sides of (3.34) across all 𝑖 ∈ 𝑉 yields
(3.32).

Solution to Exercise 3.3.11. Verifying the claim is just a matter of working with
the definition of 𝐴. Fixing 𝑖 ∈ [𝑛], we have

(𝐴𝑞)(𝑖) =
𝑚∑
𝑘=1

𝑎𝑖𝑘𝑞𝑘 =
𝑚∑
𝑘=1
1{𝑒𝑘 leaves 𝑖}𝑞𝑘 −

𝑚∑
𝑘=1
1{𝑒𝑘 points to 𝑖}𝑞𝑘,

This is equal to ∑
𝑗∈𝒪(𝑖) 𝑞(𝑖, 𝑗) −

∑
𝑣∈ℐ(𝑖) 𝑞(𝑣, 𝑖), as was to be shown.
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Solution to Exercise 3.3.12. To the code that solves the original version of Ex-
ample 3.3.1, we need to add

bounds = ((0, 5),
(0, None),
(0, None),
(0, None))

and then change the function call to

result = linprog(c, A_eq=A, b_eq=b, method='highs-ipm', bounds=bounds)
print(result.x)

The output is [5. 5. 5. 5.], which also agrees with our intuition.

Solution to Exercise 4.1.2. Point (i) is immediate from the definition of 𝐹. Re-
garding (ii), from 𝑞(𝑖, 𝑗) = 𝑞(𝑖, 𝑗 − 1) + 𝑃(𝑖, 𝑗) we have 𝑃(𝑖, 𝑗) = 𝑞(𝑖, 𝑗) − 𝑞(𝑖, 𝑗 − 1), which
is the length of the interval (𝑞(𝑖, 𝑗 − 1), 𝑞(𝑖, 𝑗)]. The probability that 𝑈𝑡+1 falls in this
interval is its length, which we just agreed is 𝑃(𝑖, 𝑗). The proof is now complete.

Solution to Exercise 4.1.3. 𝑃𝑘 is stochastic for all 𝑘 ∈ N by induction and the fact
that the set of stochastic matrices is closed under multiplication (see §1.3.1.3).

Solution to Exercise 4.1.5. Let ℳ be as described. In this setting, the re-
quirement that the transition matrix 𝑃 is stochastic implies that 𝑝(𝑥, 𝑥) = 1 and
𝑃(𝑥, 𝑦) = 1{𝑥 = 𝑦}. Thus, 𝑃 = 𝐼, the 𝑛 × 𝑛 identity matrix. Every distribution is
stationary because 𝜓𝐼 = 𝜓 for all 𝜓 ∈ 𝒟(𝑆).

Solution to Exercise 4.1.6. Let 𝐺 be a continuous function from [0, 1] to itself
and set 𝑓 (𝑥) := 𝐺𝑥 − 𝑥. Since 𝐺 is a self-map on [0, 1] we have 𝑓 (0) = 𝐺0 ⩾ 0 and
𝑓 (1) = 𝐺1 − 1 ⩽ 0, so 𝑓 is a continuous function on [0, 1] satisfying 𝑓 (0) ⩾ 0 and
𝑓 (1) ⩽ 0. Existence of an 𝑥 satisfying 𝑓 (𝑥) = 0 follows from the intermediate value
theorem. The same 𝑥 is a fixed point of 𝐺.

Solution to Exercise 4.1.7. Let 𝑃 be a Markov matrix on finite set 𝑆. Suppose
in particular that 𝑆 has 𝑑 elements, so we can identify functions in R𝑆 with vectors
in R𝑑 and 𝒟(𝑆) with the unit simplex in R𝑑. The set 𝒟(𝑆) is a closed, bounded and
convex subset of R𝑑 that 𝑃 maps into itself. As a linear matrix operation, the map
𝜓 ↦→ 𝜓𝑃 is continuous. Existence of a fixed point now follows from Brouwer’s fixed
point theorem (p. 165).
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Solution to Exercise 4.2.2. Letℳ be a finite Markov model with states 𝑆 = {1, 2}
and edge set 𝐸 = {(1, 2), (2, 2)}. Thus, the chain immediately moves to state 2 and
stays there forever. The corresponding transition matrix is

𝑃 =

(
0 1
0 1

)
If ℎ is 𝑃-harmonic, then ℎ(𝑥) = 𝑃ℎ(𝑥) = ℎ(2). Hence ℎ is constant. This shows that 𝑃
is ergodic. At the same time (𝑆, 𝐸) is not strongly connected.

Solution to Exercise 4.2.3. Let ℳ and 𝐴 have the stated properties. Fix 𝑥 ∈ 𝑆.
Consider a 𝑃-chain (𝑋𝑡) that starts at 𝑥. By property (b), there exists an 𝑎 ∈ 𝐴 and a
𝑘 ⩽ 𝑛 := |𝑆| such that 𝜀𝑥 := P{𝑋𝑘 = 𝑎} is strictly positive. Once (𝑋𝑡) enters 𝐴 it never
leaves, so 𝑋𝑘 = 𝑎 implies 𝑋𝑛 ∈ 𝐴. Hence P{𝑋𝑛 ∈ 𝐴} ⩾ 𝜀𝑥. With 𝜀 := min𝑥∈𝑆 𝜀𝑥 > 0,
we then have P{𝑋𝑛 ∈ 𝐴} ⩾ 𝜀 for any initial condition 𝑥. Another way to state this is∑

𝑦∈𝐴𝑐 𝑃
𝑛(𝑥, 𝑦) ⩽ 1 − 𝜀 for all 𝑥 ∈ 𝑆, which proves the first claim.

Regarding the second claim, fix 𝜓 ∈ 𝒟(𝑆) and let 𝜓𝑡 = 𝜓𝑃𝑡 for all 𝑡. Observe that,
for fixed 𝑚 ∈ N, we have 𝜓(𝑚+1)𝑛 = 𝑃𝑛𝜓𝑚𝑛. As a result, for 𝑦 ∈ 𝐴𝑐, we have

𝜓(𝑚+1)𝑛(𝑦) =
∑
𝑥∈𝑆

𝑃𝑛(𝑥, 𝑦)𝜓𝑚𝑛(𝑥) =
∑
𝑥∈𝐴𝑐

𝑃𝑛(𝑥, 𝑦)𝜓𝑚𝑛(𝑥).

Summing over 𝑦 gives∑
𝑦∈𝐴𝑐

𝜓(𝑚+1)𝑛(𝑦) =
∑
𝑦∈𝐴𝑐

∑
𝑥∈𝐴𝑐

𝑃𝑛(𝑥, 𝑦)𝜓𝑚𝑛(𝑥) =
∑
𝑥∈𝐴𝑐

[∑
𝑦∈𝐴𝑐

𝑃𝑛(𝑥, 𝑦)
]
𝜓𝑚𝑛(𝑥).

Let 𝜂𝑡 :=
∑
𝑥∈𝐴𝑐 𝜓𝑡 (𝑥) be the amount of probability mass on 𝐴𝑐 at time 𝑡. Using the

first claim and the definition of 𝜂𝑡 now gives 𝜂(𝑚+1)𝑛 ⩽ (1 − 𝜀)𝜂𝑚𝑛. Hence 𝜂𝑚𝑛 → 0 as
𝑚→∞. At the same time, 𝜓𝑚𝑛 → 𝜓∗ as 𝑚→∞, so∑

𝑥∈𝐴𝑐
𝜓∗(𝑥) = lim

𝑚→∞

∑
𝑥∈𝐴𝑐

𝜓𝑚𝑛(𝑥) = lim
𝑚→∞

𝜂𝑚𝑛 = 0.

The second claim is now verified.

Solution to Exercise 4.2.4. Regarding part (i), the triangle inequality, combined
with the assumption that 𝜑, 𝜓 ∈ 𝒟(𝑆), gives the bound∑

𝑥

|𝜑(𝑥) − 𝜓(𝑥) | ⩽
∑
𝑥

|𝜑(𝑥) | +
∑
𝑥

|𝜓(𝑥) | ⩽ 2.
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Regarding part (ii), if 𝑃 is a stochastic matrix, then

𝜌(𝜑𝑃, 𝜓𝑃) =
∑
𝑦

�����∑
𝑥

𝑃(𝑥, 𝑦)𝜑(𝑥) −
∑
𝑥

𝑃(𝑥, 𝑦)𝜓(𝑥)
����� ⩽ ∑

𝑦

∑
𝑥

𝑃(𝑥, 𝑦) |𝜑(𝑥) − 𝜓(𝑥) | .

Swapping the order of summation and using ∑
𝑦 𝑃(𝑥, 𝑦) = 1 proves the claim.

Solution to Exercise 4.2.7. Fix 𝜑, 𝜓 ∈ 𝒟(𝑆). From (4.27) we know that (4.29)
is true when 𝑡 = 1. Now suppose it is true at 𝑡. Then, using the fact that (4.27) holds
for any pair of distributions,

𝜌(𝜑𝑃𝑡+1, 𝜓𝑃𝑡+1) ⩽ (1 − 𝛼(𝑃))𝜌(𝜑𝑃𝑡, 𝜓𝑃𝑡) ⩽ (1 − 𝛼(𝑃))𝑡+1𝜌(𝜑, 𝜓)

where the last step uses the induction hypothesis. Hence (4.29) also holds at 𝑡 + 1,
and, by induction, at all 𝑡 ∈ N.

Solution to Exercise 4.2.9. If ℳ is strongly connected and aperiodic, then 𝑃 is
primitive, in which case there exists a 𝑘 ∈ N with 𝑃𝑘 ≫ 0. Clearly 𝛼(𝑃𝑘) > 0.

Solution to Exercise 4.2.11. All elements of 𝐺 are strictly positive, so a directed
edge exists between every pair of pages 𝑢, 𝑣 ∈ 𝑊. This clearly implies strong connect-
edness.

Solution to Exercise 4.2.12. For any 𝑢, 𝑢′, 𝑣 ∈ 𝑊, we have 𝐺(𝑢, 𝑣)∧𝐺(𝑢′, 𝑣) ⩾ 1−𝛿.
Hence 𝛼(𝐺) ⩾ 1 − 𝛿. Therefore, by (4.31), we have

𝜌(𝜓𝐺𝑡, 𝑔∗) ⩽ 2𝛿𝑡 .

Solution to Exercise 4.2.14. If 𝒮 is strongly connected and aperiodic, then the
adjacency matrix 𝑇 is primitive, so there exists a 𝑘 ∈ N such that 𝑇𝑘 ≫ 0. Hence
𝛼(𝑇𝑘) > 0, and Proposition 4.2.6 applies.

Solution to Exercise 5.1.3. From the bound in Exercise 5.1.2, we obtain

∥𝑢𝑚 − 𝑢𝑘∥ ⩽
𝜆𝑚

1 − 𝜆 𝜆
𝑖∥𝑢0 − 𝑢1∥ (𝑚, 𝑘 ∈ N with 𝑚 < 𝑘).

Hence (𝑢𝑚) is Cauchy, as claimed.
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Solution to Exercise 5.1.5. Let 𝑆 be complete, let 𝐹 be a self-map on 𝑆 and let 𝐹𝑘
be a uniform contraction. Let 𝑢∗ be the unique fixed point of 𝐹𝑘. Fix 𝜀 > 0. We can
choose 𝑛 such that ∥𝐹𝑛𝑘𝐹𝑢∗ − 𝑢∗∥ < 𝜀. But then

∥𝐹𝑢∗ − 𝑢∗∥ = ∥𝐹𝐹𝑛𝑘𝑢∗ − 𝑢∗∥ = ∥𝐹𝑛𝑘𝐹𝑢∗ − 𝑢∗∥ < 𝜀.

Since 𝜀 was arbitrary we have ∥𝐹𝑢∗ − 𝑢∗∥ = 0, implying that 𝑢∗ is a fixed point of 𝐹.
Regarding convergence, fix 𝑢 ∈ 𝑆. Given 𝑛 ∈ N, there exist integers 𝑗(𝑛) and 𝑖(𝑛)

such that 𝑛 = 𝑗(𝑛)𝑘 + 𝑖(𝑛), and 𝑗(𝑛) → ∞ as 𝑛→∞. Hence

∥𝐹𝑛𝑢 − 𝑢∗∥ = ∥𝐹 𝑗(𝑛)𝑘+𝑖(𝑛)𝑢 − 𝑢∗∥ = ∥𝐹 𝑗(𝑛)𝑘𝐹 𝑖(𝑛)𝑢 − 𝑢∗∥ → 0 (𝑛→∞),

by the assumptions on 𝐹𝑘. Convergence implies uniqueness of the fixed point (why?).

Solution to Exercise 5.1.6. If the risk-free real interest rate 𝑟 is positive, then
$100 received now can be converted with probability one into (1+ 𝑟)100 > 100 dollars
in one year.

Solution to Exercise 5.1.7. Take 𝑞𝑘 → 𝑞 where (𝑞𝑘) is a sequence of 𝑛-vectors
contained in 𝑈. By Exercise 6.1.8 on page 221, since 𝑞𝑘 ⩾ 0 for all 𝑘, we must have
𝑞 ⩾ 0. It remains only to show that 𝑞(𝑛) = 0. As 𝑞𝑘 ∈ 𝑈 for all 𝑘, we have 𝑞𝑘(𝑛) = 0 for
all 𝑘. By Lemma 2.3.1, we also have 𝑞𝑘(𝑛) → 𝑞(𝑛). Hence 𝑞(𝑛) = 0.

Solution to Exercise 5.1.8. We need to show that if 𝑝, 𝑞 ∈ 𝑈 and 𝑝 ⩽ 𝑞, then
𝑇 𝑝 ⩽ 𝑇𝑞. This follows easily from the definition of 𝑇 in (5.5).

Solution to Exercise 5.1.9. Fix 𝑞 ∈ 𝑈, 𝛼 ∈ R+ and 𝑥 ∈ 𝑉. By definition,

𝑇 (𝑞 + 𝛼1) (𝑥) = min
𝑦∈𝒪(𝑥)

{𝑐(𝑥, 𝑦) + 𝛽𝑞(𝑦) + 𝛼𝛽} = 𝑇𝑞(𝑥) + 𝛼𝛽.

Hence 𝑇 (𝑞 + 𝛼1) = 𝑇𝑞 + 𝛽𝛼1 as claimed.

Solution to Exercise 5.1.10. Fix 𝑥, 𝑦 ∈ R𝑛
+ and 𝑘 ∈ N. By the inequalities in

§6.1.1.1, applied pointwise to vectors, we have

|𝐺𝑥 − 𝐺𝑦 | = | (𝐴𝑥 + 𝑑) ∧ 𝑥 − (𝐴𝐺𝑦 + 𝑑) ∧ 𝑥 | ⩽ |𝐴𝑥 + 𝑑 − (𝐴𝑦 + 𝑑) |.

This proves the claim because, by Exercise 6.1.9,

|𝐴𝑥 + 𝑑 − (𝐴𝑦 + 𝑑) | = |𝐴(𝑥 − 𝑦) | ⩽ 𝐴|𝑥 − 𝑦 |.
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Solution to Exercise 5.1.11. Since 𝐺 is a self-map on [𝑎, 𝑏], we have 𝐺𝑎 ∈ [𝑎, 𝑏]
and hence 𝑎 ⩽ 𝐺𝑎. As 𝐺 is order preserving, applying 𝐺 to this inequality yields
𝐺𝑎 ⩽ 𝐺2𝑎. Continuing in this way (or using induction) proves that (𝐺𝑘𝑎) is increasing.
The proof for (𝐺𝑘𝑏) is similar.

If 𝐺𝑥 = 𝑥 for some 𝑥 ∈ [𝑎, 𝑏], then, since 𝑎 ⩽ 𝑥, we have 𝐺𝑎 ⩽ 𝐺𝑥 = 𝑥. Iterating on
this inequality gives 𝐺𝑘𝑎 ⩽ 𝑥 for all 𝑘.

Solution to Exercise 5.1.12. Clearly 𝐺 is a self-map on 𝑆 := [0, 𝑥]. Since 𝐴 ⩾ 0,
we have 𝐺𝑥 ⩽ 𝐺𝑦 for all 𝑥, 𝑦 ∈ 𝑆. From this it follows easily that 𝐺 is order-preserving.
Theorem 5.1.5 now guarantees existence of at least one fixed point.

Solution to Exercise 5.1.13. By Exercise 6.1.41, the minimum of two concave
functions is concave. Since 𝐹𝑥 = 𝑥 and 𝐻𝑥 = 𝐴𝑥 + 𝑏 are both concave, the claim holds.

Solution to Exercise 5.2.1. In essence, this holds because compositions of contin-
uous functions are continuous. Nonetheless, here is a more explicit proof: Recalling
the inequalities in §6.1.1.1, applied pointwise to vectors, we have, for any 𝑝, 𝑞 ∈ R𝑛,

|𝑇 𝑝 − 𝑇𝑞| ⩽ | (𝑒 + 𝑝Π) ∧ 𝑥) − (𝑒 + 𝑞Π) ∧ 𝑥) | ⩽ | (𝑝 − 𝑞)Π |.

Since, for the Euclidean norm, ∥|𝑢|∥ = ∥𝑢∥ and 𝑢, 𝑣 ⩾ 0 with 𝑢 ⩽ 𝑣 implies ∥𝑢∥ ⩽ ∥𝑣∥,
we then have ∥𝑇 𝑝−𝑇𝑞∥ ⩽ ∥(𝑝−𝑞)Π∥ ⩽ ∥𝑝−𝑞∥∥Π∥𝑜. It follows easily that if ∥𝑝𝑛−𝑝∥ → 0,
then ∥𝑇 𝑝𝑛 − 𝑇 𝑝∥ → 0 also holds.

Solution to Exercise 5.2.2. Since Π ⩾ 0, we always have 𝑝Π ⩽ 𝑞Π whenever
𝑝 ⩽ 𝑞. As a result, 𝑝 ↦→ 𝑎− 𝑑 + 𝑝Π is order-preserving and hence so is 𝑇. Moreover, for
any 𝑝 ∈ 𝑆 := [0, 𝑥], we have 𝑇 𝑝 ∈ 𝑆. Hence, by Theorem 5.1.5, 𝑇 has a fixed point in
𝑆.

What else can we say about equilibria in this setting? By the same theorem, 𝑇 has a
least fixed point 𝑝∗ and a greatest fixed point 𝑝∗∗ in 𝑆. Moreover, since 𝑇 is continuous,
𝑇𝑘0 ↑ 𝑝∗ and 𝑇𝑘𝑥 ↓ 𝑝∗∗.

Solution to Exercise 5.2.3. Fix 𝑝, 𝑞 ∈ 𝑆. Using the inequalities for min and max
in §6.1.1.1, applied pointwise, we have

|𝑇 𝑝 − 𝑇𝑞| ⩽ |𝑒 + 𝑝Π − (𝑒 + 𝑞Π) | = | (𝑝 − 𝑞)Π | ⩽ |𝑝 − 𝑞|Π

After transposing both sides of this equation, we see that, when 𝑟(Π) < 1, the condi-
tions of of Proposition 5.1.3 hold. The result follows. (If you prefer, instead of taking
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transposes, just use the proof of Proposition 5.1.3 directly, modified slightly to use the
fact that we are operating on row vectors.)

Solution to Exercise 5.2.4. Let𝒢 = (𝑉, 𝐸, 𝑤) be a financial network and a directed
acyclic graph. By Proposition 5.2.1, it suffices to show that, for each bank 𝑖 ∈ 𝑉, there
exists a bank 𝑗 ∈ 𝑉 with 𝑖 → 𝑗 and such that 𝑗 has zero interbank liabilities. To this
end, fix 𝑖 ∈ 𝑉. By the directed acyclic graph property, we know that there exists a
𝑗 ∈ 𝑉 with 𝑖→ 𝑗 and 𝒪( 𝑗) = 0. But if 𝒪( 𝑗) = 0, then 𝑗 has no interbank liabilities. The
claim follows.

Solution to Exercise 5.2.5. Let 𝒢 be a financial network such that (E1)–(E2)
hold. Since 𝑒 ≫ 0, we have

𝑝 ∈ 𝑆 =⇒ 𝑇 𝑝 := ((𝑒 + 𝑝Π) ∧ 𝑥) ∨ 0 = (𝑒 + 𝑝Π) ∧ 𝑥.

By an argument identical to that employed for Exercise 5.1.13 on page 196, 𝑇 is a
concave operator on 𝑆 = [0, 𝑥]. Evidently 𝑇 is order preserving. Finally, by (E1), we
have 𝑥𝑖 > 0 for all 𝑖, so 𝑥 ≫ 0 and hence 𝑇0 = 𝑒 ∧ 𝑥 ≫ 0. It now follows directly from
Du’s theorem that 𝑇 has a unique fixed point in 𝑆.

Solution to Exercise 5.2.6. Let 𝒢 be such that every node is cash-accessible. Set

𝛿 := 1
𝑛2 ·min {{𝑥𝑖 : 𝑖 ∈ 𝑉} ∪ {𝑒𝑖 : 𝑖 ∈ 𝑉 s.t. 𝑒𝑖 > 0}} .

Let 𝑒 be defined by 𝑒𝑖 = 1 if 𝑒𝑖 > 0 and zero otherwise. We claim that, for all 𝑚 ⩽ 𝑛,

𝑇𝑚0 ⩾ 𝛿(𝑒 + 𝑒Π + · · · + 𝑒Π𝑚−1). (5.14)

This holds at 𝑚 = 1 because 𝑇0 = 𝑒 ∧ 𝑥 ⩾ 𝛿𝑒. Now suppose (5.14) holds at some
𝑚 ⩽ 𝑛 − 1. Then, since 𝑇 is order-preserving, we obtain

𝑇𝑚+10 ⩾ (𝛿(𝑒 + 𝑒Π + · · · + 𝑒Π𝑚−1)Π + 𝑒) ∧ 𝑥
⩾ (𝛿(𝑒 + 𝑒Π + · · · + 𝑒Π𝑚)) ∧ 𝑥

Since 𝑒+ 𝑒Π + · · · + 𝑒Π𝑚 ⩽ 𝑛21, where 1 is a vector of ones, and since (𝛿𝑛21) ⩽ 𝑥 by the
definition of 𝛿, we have 𝑇𝑚+10 ⩾ 𝛿(𝑒 + 𝑒Π + · · · + 𝑒Π𝑚). This argument confirms that
(5.14) holds for all 𝑚 ⩽ 𝑛.

We now claim that 𝑇𝑛0 ≫ 0. In view of (5.14), it suffices to show that, for any
𝑗 ∈ 𝑉, there exists a 𝑘 < 𝑛 with (𝑒Π𝑘) ( 𝑗) = ∑

𝑖∈𝑉 𝑒𝑖Π
𝑘
𝑖 𝑗 > 0. Since every node in 𝑆 is cash

accessible, we know there exists an 𝑖 ∈ 𝑉 with 𝑒𝑖 > 0 and 𝑗 is accessible from 𝑖. For
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this 𝑖 we can choose 𝑘 ∈ N with 𝑘 < 𝑛 and Π𝑘
𝑖 𝑗 = 𝑒𝑖Π𝑘

𝑖 𝑗 > 0. We conclude that 𝑇𝑛0 ≫ 0,
as claimed.

Solution to Exercise 5.2.7. Let 𝜓 be a stationary distribution for Π. Suppose 𝜆
is a constant in [0, 1], 𝑝 = 𝜆𝜓 and 𝑥 = 𝜓. Then 𝑒 = 0 implies 𝑇 𝑝 = (𝑒 + 𝜆𝜓Π) ∧ 𝑥 =
(𝜆𝜓) ∧ 𝜓 = 𝜆𝜓 = 𝑝. Since 𝜆 was arbitrary in [0, 1], there is a continuum of equilibria.

Solution to Exercise 5.2.8. The set 𝑁 is an absorbing set, since, by definition, 𝑃
is not accessible from 𝑁, and 𝐴 cannot be accessible because otherwise 𝑃 would also
be accessible. The set 𝑃 is also absorbing because, if 𝑗 ∈ 𝑃𝑐 is accessible from some
𝑖 ∈ 𝑃, then 𝑗 is cash accessible. But then 𝑗 ∈ 𝑃, which is a contradiction.

Solution to Exercise 5.2.9. Since 𝐶 ⩾ 0, Lemma 1.2.7, we have 𝑟(𝐶) ⩽ max 𝑗 colsum 𝑗(𝐶).
In view of Assumption 5.2.1, this maximum is strictly less than one. Hence 𝑟(𝐶) < 1
and, by the Neumann series lemma 𝐼−𝐶 is invertible and (𝐼−𝐶)−1 =

∑
𝑘⩾0 𝐶

𝑘. The last
equality implies 𝑏 ⩾ 0 when 𝑏 = (𝐼 − 𝐶)−1𝑒.

Solution to Exercise 5.2.10. Consider the condition ∑
𝑖∈𝑉 𝑐𝑖 𝑗 ⩽ 1 for all 𝑗 ∈ 𝑉, with

strict inequality for at least one 𝑗. Since 𝐶 ⩾ 0, this implies that 𝐶⊤ is weakly chained
substochastic, by Exercise 2.3.22. Hence 𝑟(𝐶) = 𝑟(𝐶⊤) < 1, by Proposition 2.3.5.
Hence 𝐼 − 𝐶 is invertible, by the Neumann series lemma.

Solution to Exercise 5.2.11. We have∑
𝑖

𝑏𝑖 = 1
′𝑏 = 1′𝑒 + 1′𝐶𝑒 + 1′𝐶2𝑒 + · · · ⩾ 1′𝑒 + 1′𝐶𝑒.

Hence it suffices to show that 1′𝐶𝑒 > 0. This will be true if at least one column of 𝐶𝑒
has a nonzero entry. Since 𝑒 ≫ 0, we require only that 𝑐𝑖 𝑗 > 0 for some 𝑖, 𝑗, which is
true by assumption.

Solution to Exercise 5.2.12. Observe that 𝑣𝑖 ⩽ 𝑣′𝑖 implies 𝑓 (𝑣𝑖) ⩾ 𝑓 (𝑣′𝑖). As
a result, the vector-valued map 𝑣 ↦→ − 𝑓 (𝑣) is order-preserving, and hence so is 𝑇.
Moreover, for 𝑣 ∈ [𝑑, 𝑣], we have

𝑑 = 𝐴(𝑒 − 𝛽1) ⩽ 𝑇𝑣 := 𝐴(𝑒 − 𝑓 (𝑣)) ⩽ 𝐴𝑒 = 𝑣,

so 𝑇 is a self-map on [𝑑, 𝑣]. It follows directly from Theorem 5.1.5 that 𝑇 has a least
and greatest fixed point in 𝑆.



CHAPTER 6. APPENDIX 265

Solution to Exercise 5.2.13. First, 𝑣𝑘 := 𝑇𝑘𝑑 is increasing, as just discussed.
Second, this sequence can take only finitely many values, since 𝑇 has finite range. As
(𝑣𝑘) is increasing, it cannot cycle, so it must converge in finitely many steps. Let 𝑣′
be this limiting value and let 𝐾 be the number of steps required for (𝑣𝑘) to attain 𝑣′.
Since 𝑣𝑘 = 𝑣′ for all 𝑘 ⩾ 𝐾, we have

𝑇𝑣′ = 𝑇𝑇𝐾𝑣′ = 𝑇𝐾+1𝑣′ = 𝑣′,

so 𝑣′ is a fixed point of 𝑇 in 𝑆. Moreover, if 𝑣′′ is any other fixed point of 𝑇 in 𝑆, then
𝑑 ⩽ 𝑣′′ and hence, by the order-preserving property, 𝑣𝑘 = 𝑇𝑘𝑑 ⩽ 𝑇𝑘𝑣′′ = 𝑣′′ for all 𝑘.
Hence 𝑣′ ⩽ 𝑣′′. Thus, 𝑣′ is the least fixed point of 𝑇.

Solution to Exercise 6.1.1. Fix 𝑎, 𝑏 ∈ R+ and 𝑐 ∈ R. By (6.2), we have

𝑎 ∧ 𝑐 = (𝑎 − 𝑏 + 𝑏) ∧ 𝑐 ⩽ ( |𝑎 − 𝑏| + 𝑏) ∧ 𝑐 ⩽ |𝑎 − 𝑏| ∧ 𝑐 + 𝑏 ∧ 𝑐.

Thus, 𝑎∧𝑐−𝑏∧𝑐 ⩽ |𝑎−𝑏|∧𝑐. Reversing the roles of 𝑎 and 𝑏 gives 𝑏∧𝑐−𝑎∧𝑐 ⩽ |𝑎−𝑏|∧𝑐.
This proves the claim in Exercise 6.1.1.

Solution to Exercise 6.1.2. Suppose first that 𝑓 is one-to-one. We construct a left
inverse 𝑔 as follows. For 𝑦 ∈ range( 𝑓 ), let 𝑔(𝑦) be the unique 𝑥 such that 𝑓 (𝑥) = 𝑦.
(Uniqueness is by the one-to-one property.) For 𝑦 ∉ range( 𝑓 ), let 𝑔(𝑦) = 𝑥, where 𝑥 is
any point in 𝑆. The function 𝑔 is a left inverse of 𝑓 because, for any 𝑥 ∈ 𝑆, the point
𝑦 = 𝑓 (𝑥) is in range( 𝑓 ), and 𝑔(𝑦) = 𝑥. Hence 𝑔( 𝑓 (𝑥)) = 𝑥.

Suppose next that 𝑓 has a left inverse 𝑔. Suppose further that 𝑥 and 𝑥′ are points
in 𝑆 with 𝑓 (𝑥) = 𝑓 (𝑥′). Then 𝑔( 𝑓 (𝑥)) = 𝑔( 𝑓 (𝑥′)). Since 𝑔 is a left inverse, this yields
𝑥 = 𝑥′. Hence 𝑓 is one-to-one.

Solution to Exercise 6.1.3. Let 𝐺 and 𝑆 be as stated in the exercise. Regarding
uniqueness, suppose that 𝐺 has two distinct fixed points 𝑥 and 𝑦 in 𝑆. Since 𝐺𝑚𝑥 = 𝑥
and 𝐺𝑚𝑦 = 𝑥, we have 𝐺𝑚𝑥 = 𝐺𝑚𝑦. But 𝑥 and 𝑦 are distinct fixed points, so 𝑥 = 𝐺𝑚𝑥
must be distinct from 𝑦 = 𝐺𝑚𝑦. Contradiction.

Regarding the claim that 𝑥 is a fixed point, we recall that 𝐺𝑘𝑥 = 𝑥 for 𝑘 ⩾ 𝑚. Hence
𝐺𝑚𝑥 = 𝑥 and 𝐺𝑚+1𝑥 = 𝑥. But then

𝐺𝑥 = 𝐺𝐺𝑚𝑥 = 𝐺𝑚+1𝑥 = 𝑥,

so 𝑥 is a fixed point of 𝐺.
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Solution to Exercise 6.1.4. In polar form, we have 𝑢 = 𝑟e𝑖𝜑 and 𝑣 = 𝑠e𝑖𝜓, so
𝑢𝑣 = 𝑟𝑠 e𝑖(𝜑+𝜓). Hence |𝑢𝑣| = 𝑟𝑠 (see (6.8)), which is equal to |𝑢| |𝑣|.

Solution to Exercise 6.1.9. Fix 𝐵 ∈ M𝑚×𝑘 with 𝑏𝑖 𝑗 ⩾ 0 for all 𝑖, 𝑗. Pick any 𝑖 ∈ [𝑚]
and 𝑥 ∈ R𝑘. By the triangle inequality, we have |∑ 𝑗 𝑏𝑖 𝑗𝑥 𝑗 | ⩽

∑
𝑗 𝑏𝑖 𝑗 |𝑥 𝑗 |. Stacking these

inequalities yields |𝐵𝑥 | ⩽ 𝐵|𝑥 |, as was to be shown.

Solution to Exercise 6.1.11. Let 𝑥𝑛 = −5𝑛 + 𝑛2. Then |𝑥𝑛 | ⩽ 5𝑛 + 𝑛2 ⩽ 6𝑛2. Hence
(𝑥𝑛) = 𝑂(𝑛2). Regarding the second claim, suppose to the contrary that (𝑥𝑛) = 𝑂(𝑛).
Then we can take an 𝑀 such that |𝑥𝑛 | ⩽ 𝑀𝑛 for all 𝑛 ∈ N. But then 𝑥𝑛 = −5𝑛+𝑛2 ⩽ 𝑀𝑛
for all 𝑛. Dividing by 𝑛 yields 𝑛 ⩽ 5 + 𝑀 for all 𝑛. Contradiction.

Solution to Exercise 6.1.19. If 𝑥𝑛 → 𝑥 in R𝑑 and 𝑓 and 𝑔 are continuous, then
𝑓 (𝑥𝑛) → 𝑓 (𝑥) and 𝑔(𝑥𝑛) → 𝑔(𝑥) in R𝑘. But then, by Proposition 6.1.4, 𝛼 𝑓 (𝑥𝑛) + 𝛽𝑔(𝑥𝑛)
converges to 𝛼 𝑓 (𝑥) + 𝛽𝑔(𝑥) in R𝑘, as was to be shown.

Solution to Exercise 6.1.20. Here’s the answer for 𝑓 : Take (𝑥𝑛) converging to 𝑥
in R𝑑. Applying the inequalities in §6.1.1.1 pointwise to vectors, we have

0 ⩽ | 𝑓 (𝑥𝑛) − 𝑓 (𝑥) | = |𝑥𝑛 ∧ 𝑎 − 𝑥 ∧ 𝑎| ⩽ |𝑥𝑛 − 𝑥 |.

Taking the Euclidean norm over these vectors and using |𝑢| ⩽ |𝑣| implies ∥𝑢∥ ⩽ ∥𝑣∥
yields ∥ 𝑓 (𝑥𝑛) − 𝑓 (𝑥)∥ ⩽ ∥𝑥𝑛 − 𝑥∥ → 0. Similar arguments can be applied to 𝑔.

Solution to Exercise 6.1.24. Regarding the first claim, let 𝐸 = {𝑢1, . . . , 𝑢𝑘} be
linearly independent. Suppose that {𝑢1, . . . , 𝑢𝑚} is linearly dependent for some 𝑚 < 𝑘.
Then we can find a nonzero vector (𝛼1, . . . , 𝛼𝑚) such that ∑𝑚

𝑖=1 𝛼𝑖𝑢𝑖 = 0. Setting 𝛼𝑖 = 0
for 𝑖 in {𝑚 + 1, . . . , 𝑘} yields ∑𝑘

𝑖=1 𝛼𝑖𝑢𝑖 = 0, contradicting independence of 𝐸.
Regarding the second claim, suppose that 𝐸 ⊂ 𝐹 and 𝐸 is linearly dependent. If 𝐹

is linearly independent, then we have a violation of the first claim. Hence 𝐹 is linearly
dependent.

Solution to Exercise 6.1.25. Regarding (i), if 𝐴𝑥 = 𝐴𝑦 = 0, then 𝐴(𝛼𝑥 + 𝛽𝑦) =
𝛼𝐴𝑥 + 𝛽𝐴𝑦 = 0, so null 𝐴 is a linear subspace. Regarding (ii), suppose that null 𝐴 = {0}.
This means that the only 𝑥 ∈ R𝑘 satisfying 𝐴𝑥 = 0 is the zero vector, which is equivalent
to linear independence of the columns of 𝐴.

Solution to Exercise 6.1.26. For part (i) just set 𝑉 = R𝑛 in Theorem 6.1.10.
Regarding part (ii), let 𝐴 and 𝑈 be as stated, with |𝐴| =: 𝑚 > dim𝑈. Suppose to the
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contrary that 𝐴 is linearly independent. Then 𝐴 is a basis for span 𝐴 and, therefore,
dim span 𝐴 = 𝑚 > dim𝑈. At the same time, since 𝐴 ⊂ 𝑈 and 𝑈 is a linear subspace, we
have span 𝐴 ⊂ 𝑈. Hence, by Theorem 6.1.10, we have 𝑚 ⩽ dim𝑈. Contradiction.

Solution to Exercise 6.1.28. Here’s a proof by contradiction: Let 𝐴 be as stated.
Suppose to the contrary that 𝐴−1 fails to be linear. Then we can find 𝛼, 𝛽 ∈ R and
𝑥, 𝑦 ∈ R𝑛 such that 𝐴−1(𝛼𝑥 + 𝛽𝑦) and 𝛼𝐴−1𝑥 + 𝛽𝐴−1𝑦 are distinct points. Since 𝐴 is a
bijection, their images under 𝐴 are also distinct, so

𝛼𝑥 + 𝛽𝑦 ≠ 𝐴(𝛼𝐴−1𝑥 + 𝛽𝐴−1𝑦).

Linearity of 𝐴 leads to a contradiction.

Solution to Exercise 6.1.30. Fix 𝑢, 𝑣 ∈ 𝐿⊥ and 𝛼, 𝛽 ∈ R. If 𝑧 ∈ 𝐿, then

⟨𝛼𝑢 + 𝛽𝑣, 𝑧⟩ = 𝛼 ⟨𝑢, 𝑧⟩ + 𝛽 ⟨𝑣, 𝑧⟩ = 𝛼 × 0 + 𝛽 × 0 = 0

Hence 𝛼𝑢 + 𝛽𝑣 ∈ 𝐿⊥, as was to be shown.

Solution to Exercise 6.1.33. If 𝑂 is an orthonormal basis of 𝐿, then, by definition,
𝑂 spans 𝐿. In addition, the elements of 𝑂 are independent because they are orthogonal
and nonzero.

Solution to Exercise 6.1.34. For part (i), let 𝑆 = {𝑥 ∈ R𝑛
+ : 1⊤𝑥 ⩽ 1} be the unit

simplex, where 1 is a column vector of ones. Fix 𝑢, 𝑣 ∈ 𝑆 and 𝜆 ∈ [0, 1]. We have

𝜆𝑢 + (1 − 𝜆)𝑣 ⩾ 0

and
1⊤(𝜆𝑢 + (1 − 𝜆)𝑣) = 𝜆1⊤𝑢 + (1 − 𝜆)1⊤𝑣 ⩽ 𝜆 + (1 − 𝜆) = 1

Hence 𝑆 is a convex set.
For part (ii), fix 𝑢, 𝑣 ∈ 𝐵, 𝜆 ∈ [0, 1] and 𝑎 ∈ R𝑛, 𝜀 > 0. We have

∥𝜆𝑢+(1−𝜆)𝑣−𝑎∥ = ∥𝜆 (𝑢−𝑎)+(1−𝜆)(𝑣−𝑎)∥ ⩽ 𝜆∥𝑢−𝑎∥+(1−𝜆)∥𝑣−𝑎∥ ⩽ 𝜆𝜀+(1−𝜆)𝜀 = 𝜀

Hence 𝐵 is convex.
Regarding part (iii), let (𝑆𝑖) be a convex set for 𝑖 = 1, 2, · · · , 𝑛. Fix 𝑢, 𝑣 ∈ ∩𝑛𝑖=1𝑆𝑖 and

𝜆 ∈ [0, 1]. We have
𝑧 = 𝜆𝑢 + (1 − 𝜆)𝑣 ∈ 𝑆𝑖 for all 𝑖
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This implies 𝑧 ∈ ∩𝑛𝑖=1𝑆𝑖 and hence ∩𝑛𝑖=1𝑆𝑖 is convex.

Solution to Exercise 6.1.35. Fix 𝑢, 𝑣 ∈ 𝐻0, 𝜆 ∈ [0, 1], 𝑏 ∈ R and nonzero 𝑐 ∈ R𝑛.
Then

(𝜆𝑢 + (1 − 𝜆)𝑣)⊤𝑐 = 𝜆𝑢⊤𝑐 + (1 − 𝜆)𝑣⊤𝑐 = 𝜆𝑏 + (1 − 𝜆)𝑏 = 𝑏

Thus 𝐻0 is convex. The proof that 𝐻1 is convex is similar.

Solution to Exercise 6.1.37. Regarding part (i), let 𝐶 and 𝐷 be two cones. Fix
𝑥 ∈ 𝐶 ∩ 𝐷 and 𝛼 > 0. Since 𝑥 ∈ 𝐶 and 𝑥 ∈ 𝐷, and since both are cones, we have
𝛼𝑥 ∈ 𝐶 ∩ 𝐷. Hence 𝐶 ∩ 𝐷 is a cone.

Regarding part (ii), suppose first that 𝐶 is a convex cone and fix 𝑥, 𝑦 ∈ 𝐶. Since 𝐶
is convex, it must be that (1/2) (𝑥 + 𝑦) ∈ 𝐶. Since 𝐶 is a cone we can scale by 2 without
leaving 𝐶. Hence 𝑥 + 𝑦 ∈ 𝐶. Suppose next that 𝐶 is a cone and closed under addition.
Fix 𝛼 ∈ (0, 1) and 𝑥, 𝑦 ∈ 𝐶. Since 𝐶 is a cone, we have 𝛼𝑥 ∈ 𝐶 and (1 − 𝛼)𝑦 ∈ 𝐶. Since
𝐶 is closed under addition, it follows that 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝐶. Hence 𝐶 is convex.

Solution to Exercise 6.1.39. Every linear function is both convex and concave.

Solution to Exercise 6.1.41. It suffices to prove these results in the scalar case
𝑛 = 𝑘 = 1, since the vector results are just element-by-element extensions of the scalar
case. We focus on the setting where each 𝑔𝑖 is convex, as the concave case is similar.

In general, for scalars {𝑎𝑖}𝑚𝑖=1 and {𝑏𝑖}𝑚𝑖=1, we always have

max
𝑖
{𝑎𝑖 + 𝑏𝑖} ⩽ max

𝑖
{𝑎𝑖} +max

𝑖
{𝑏𝑖}.

Hence, in the scalar case, when all 𝑔𝑖s are convex, we have, for any 𝜆 ∈ [0, 1] and
𝑥, 𝑦 ∈ 𝐶,

max
𝑖
{𝑔𝑖(𝜆𝑥 + (1 − 𝜆)𝑦)} ⩽ max

𝑖
{𝜆𝑔𝑖(𝑥) + (1 − 𝜆)𝑔𝑖(𝑦)} ⩽ 𝜆 max

𝑖
𝑔𝑖(𝑥) + (1 − 𝜆)max

𝑖
𝑔𝑖(𝑦)

This proves the scalar case (and, by extension, the vector case).

Solution to Exercise 6.1.44. Regarding part (i), let 𝑓 and 𝑔 be as stated. Since 𝑔
is strictly increasing, we have

𝑓 (𝑥∗) ⩾ 𝑓 (𝑥), ∀ 𝑥 ∈ 𝐷 ⇐⇒ 𝑔( 𝑓 (𝑥∗)) ⩾ 𝑔( 𝑓 (𝑥)), ∀ 𝑥 ∈ 𝐷.

This proves the equivalence claimed in part (i). (Note why the strictly increasing
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property of 𝑔 cannot be weakened here.) The proof of (ii) is similar, with the second
inequality reversed.

Solution to Exercise 6.1.45. Let 𝑓 and 𝐶 be as described and let 𝑢∗ be a local
minimizer. Suppose, contrary to the claim in the exercise, that there exists a point 𝑢
in 𝐶 such that 𝑓 (𝑢) < 𝑓 (𝑢∗). Then, by convexity, for each 𝜆 in [0, 1], we have

𝑓 (𝜆𝑢 + (1 − 𝜆)𝑢∗) ⩽ 𝜆 𝑓 (𝑢) + (1 − 𝜆) 𝑓 (𝑢∗) < 𝑓 (𝑢∗).

Taking 𝜆 → 0, we can find a point 𝑣 := 𝜆𝑢 + (1 − 𝜆)𝑢∗ arbitrarily close to 𝑢∗ such that
𝑓 (𝑣) < 𝑓 (𝑢∗). This contradicts the definition of a local minimizer.

Solution to Exercise 6.1.48. Regarding the first claim, suppose that 𝑔(𝑥) = 0 and
ℎ(𝑥) ⩽ 0, so that 𝑥 ∈ 𝐹(𝑔, ℎ). In this case,

𝑓 (𝑥) = max
𝜃∈Θ

𝐿(𝑥, 𝜃) = 𝑓 (𝑥) + max
𝜆∈R𝑚

∑
𝑖

𝜆 𝑖𝑔𝑖(𝑥) +max
𝜇∈R𝑘

+

∑
𝑖

𝜇𝑖ℎ𝑖(𝑥) = 𝑓 (𝑥). (6.18)

Hence 𝑓 = 𝑓 on 𝐹(𝑔, ℎ) and claim (i) is verified.
Regarding claim (ii), suppose that 𝑔𝑖(𝑥) deviates from zero for some 𝑖. Then

max𝜆∈R𝑚
∑
𝑖 𝜆 𝑖𝑔𝑖(𝑥) equals +∞, so 𝑓 (𝑥) = +∞. In addition, if ℎ𝑖(𝑥) > 0 for some 𝑖,

then max𝜇∈R𝑘
+

∑
𝑖 𝜇𝑖ℎ𝑖(𝑥) = +∞, so, once again 𝑓 (𝑥) = +∞. We have confirmed that

𝑓 = +∞ whenever 𝑥 ∉ 𝐹(𝑔, ℎ).

Solution to Exercise 6.1.49. Pick any 𝑥′ ∈ 𝐸 and 𝜃 ∈ Θ. We have 𝐿(𝑥′, 𝜃) ⩾
min𝑥 𝐿(𝑥, 𝜃), so

max
𝜃

𝐿(𝑥′, 𝜃) ⩾ max
𝜃

min
𝑥

𝐿(𝑥, 𝜃).

∴ min
𝑥

max
𝜃

𝐿(𝑥, 𝜃) ⩾ max
𝜃

min
𝑥

𝐿(𝑥, 𝜃).
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