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Notes about examples in the talk  

All fragments of source code as well as memory dumps relate to 

open-source projects:   

• Firmware for MinnowBoard:

• EDK2: http://www.tianocore.org/edk2/ 

Otherwise it is artificial examples, which have no relations with 

Intel products 
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UEFI Firmware Security 
Validation Challenges  
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 UEFI Firmware code base is huge (millions of lines of code)

 SMM code always in the most critical scope 

 Legacy code/support makes validation more fun ;)

 Boot procedure after power on, sleep and hibernate differentials. It requires additional 

effort for fuzzing

 Code coverage can be different even for the same code due to a huge 

number of global variables and hardware configuration

Validation Challenges 
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SMM Specifics
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System Managment Mode (SMM)

8

 System Management Mode (SMM) is a highly-privileged mode of CPU

 SMRAM is a range in DRAM reserved for SMI handlers (protected for access from the OS)



System Management Interrupt (SMI) Handlers
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Pointer Arguments to SMI Handlers 
(Legacy notation)
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Phys Memory

SMI Handler

OS Memory

• CPU stores current value of SMBASE in SMM save state area on SMI and 
restores it on RSM

RAX (code)

RBX (pointer)

RCX (function)

SMI handler specific structure

SMI

SMBASE

SMM State Save AreaSaved SMBASE value

SMI Entry Point 
(SMBASE + 8000h)



Pointer Arguments to SMI Handlers 
(CommBuffer notation)
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 CommBuffer is a memory buffer used as a communication protocol between OS runtime 

and DXE SMI handlers. Pointer to CommBuffer is stored in “UEFI” ACPI table in ACPI 

memory

 Contents of CommBuffer are specific to SMI handler. For example Variable SMI handler 

read variable GUID, Name and Data from CommBuffer



Pointer Arguments to SMI Handlers 
(CommBuffer notation )
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Pointer Arguments to SMI Handlers 
(CommBuffer notation)
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Pointer Arguments to SMI Handlers 
(CommBuffer notation)
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 Example: VariableAuthenticated SMI Handler reads/writes UEFI variables from/to CommBuffer



Excite project
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Excite project

Excite project combines dynamic symbolic execution and guided fuzzing for automatic 

test case generation, and our flow uses Intel Virtual Platform to dump BIOS data, 

replay tests (measuring code coverage) and find vulnerabilities
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Symbolic 
Execution

Virtual 
Platform 
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 SMI call-out vulnerabilities for SMI handlers with CommBuffer notations:

 Excite check execution outside SMRAM

 Excite check memory access outside of valid regions: 

• SMRAM

• MMIO

• ACPI_NVS

• BIOS reserved

 Excite does not check security configuration bits for the platform

SMM in current scope of Excite



Excite flow
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Source code 
repository

BIOS
build

Dump 
SMRAM 

using Simics

Harness
generation

Symbolic 
Execution 
using S2E

Test cases

Playing 
tests and  
fuzzing in 

Simics

Code coverage 
report

Issues report
Updated 
test cases



Symbolic Execution Technique 
for Automatic Test Case 

Generation 
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Symbolic Execution

 Symbolic execution is a technique that can be used for automatic test 

generation which provides high code coverage

 The main idea is to substitute parameters of functions with symbolic 

values and then execute the function parametrically such that [1]:

• the values of all variables are computed as symbolic expressions over the 

symbolic input values

• the execution can proceed along any feasible path
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Symbolic Execution Tree

 Symbolic Execution Tree (SET) is created during symbolic execution

• nodes of a SET represent the symbolic program states and edges represent 

transitions between these states

• symbolic state consists of symbolic variables, a program location and a path 

constraint (PC) which is the conjunction of all the logical constraints collected 

over the variables to reach that program location

• the paths of a SET characterize all execution paths

 In Static Symbolic Execution, SET is constructed for the whole program 

under analysis and without usage of concrete values of variables
21



Constraints and SMT Solvers
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 Path constraint (PC)

• e.g.: X > Y Λ Y+X ≤ 8

• solution of the constraint is a set of assignments, one for each variable 

that makes the constraint satisfiable

• {X = 3, Y=2} is a solution but {X = 6, Y=5} is not 

A constraint solver is a tool that finds satisfying assignments for 

a constraint, if it is satisfiable

 SMT (Satisfiability Modulo Theory) solver is used to check the 

satisfiability of each PC
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int some_func(uint x, uint y)
{

1:    if (x > y)
2:       x = x - y;
3:    else
4:       x = y - x;
5:    if (x >=0)
6:       x *= y;
7:    else
8:       x /= y;
9:    return x;

}

x: X, y: Y
PC: true

x: X, y: Y
PC: X<=Y

1: if(x>y) - else

x: Y-X, y: Y
PC: X<=Y

4: x = y - x;

x: X-Y, y: Y
PC: X>Y^X-Y>=0

5: if(x>=0) - then

x: X-Y, y: Y
PC: X>Y^X-Y<0

5: if(x>=0) - else

x: Y-X, y: Y
PC: X<=Y^Y-X>=0

5: if(x>=0) - then 5: if(x>=0) - else

x: X-Y, y: Y
PC: X>Y

2: x = x - y;

x: X, y: Y
PC: X>Y

1: if(x>y) - then

x: (X-Y)*Y, y: Y
PC: X>Y^X-Y>=0

6: x*=y;

x: (Y-X)*Y, y: Y
PC: X<=Y^Y-X>=0

6: x*=y;Unsatisfiable PC 
>> Infeasible path

“Dead Code”

x: Y-X, y: Y
PC: X<=Y^Y-X<0

Unsatisfiable PC 
>> Infeasible path



Limitations of Static SE
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 Inability to solve very complex and non-linear constraints

• X % 9 > 3 Λ Y > 15 

• (X >> 4) & 2 < Y

 Inability to handle external calls

• f(X) > 0, where function f is inaccessible for static analysis

 Inability to deal with parallel execution

Mitigation of the limitations: Dynamic Symbolic Execution or 

Concolic Testing



Dynamic Symbolic Execution
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execution dynamically 

along an execution path of 

a concrete input and 

generates tests one by one 

for each path

CONCOLIC

CONCRETE
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Path explosion challenge
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Number of feasible paths grows exponentially with 

the size of the code 

 Loops lead to a huge number of test cases

 The number can be even infinite for programs with 

unbounded loops and recursion

 Symbolic execution engine can get stuck due to 

polling loops in firmware 

3b2ff328  mov edx,0x3fd
3b2ff32d  in al,dx
3b2ff32e  test al,0x20
3b2ff330  je 0x3b2ff328



Search strategies for SET
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DFS BFS Random

- - +

Which path should be selected?

 Mainly random search 

generates a test set with a 

better code coverage, but such  

test set is not deterministic

 De-randomization is required 

for reproducibility, but it is 

palliative



Combining Symbolic Execution 
and Fuzzing 
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Combining Symbolic Execution and fuzzing

typedef struct {

int signature;

int num;

} SOME_BUF;

int some_fuction(SOME_BUF *pbuf)

{
if (pbuf->signature == 0x12345)

{

return (int)sqrt((double)pbuf->num);  

}

return 0;

}

negative pbuf->num

leads to error! 

Fuzzing of tests generated by symbolic execution is a better way! 

Unlikely a fuzzer would generate the constant 0x12345.

In contrast, symbolic execution creates a test for 

covering code inside. 

Unlikely the symbolic execution creates a test  with 

negative pbuf->num. Probability of generating 

negative pbuf->num by fuzzing is high. 
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Fuzzing guided by code coverage
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Pool of test 
cases

Take out a 
test from  

pool

Create a 
new test via 

current 
strategy

Playing new test 
and code 
coverage 

measurement 

Change of a 
fuzzing 
strategy

Add the test 
to a pool

Does 
coverage 

grow? 

Were 
played all 
tests in 
pool? 

Yes

No

Yes No

Similar scheme to American 

Fuzzy Lop (AFL) fuzzer [2]



Gray-box fuzzing

1. Variation of CommBufSize from 1 to 100 and FunctionId in CommBuf from 0 to 20

2. Application of the following fuzzing strategies for tests collected in a pool as long as we have 

improvement in code coverage; the strategies were inspired by AFL but with taking into account 

SMM specific: 

• Walking 1 bit flip, step = 1 bit

• Walking byte flips:  1, 2, 4 and 8 bytes, step = 1 byte

• Walking insertion of addresses inside SMRAM, outside SMRAM in ACPI_NVS and outside SMRAM in 

“available” memory region, step = 1 byte

• Changing of FunctionId and cyclic rotation of CommBuf fragment

• Random splicing of test cases

• Walking addition and subtraction of small constant for byte, word, dword and qword, step = 1 byte 
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White-box fuzzing
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typedef struct {

unsigned short Bus; 

unsigned int Device;  

unsigned short  Port; 

unsigned int Function;

char            Password[48];

} COMM_BUF_4_SOME_HANDLER;

We know the format of CommBuffer for each handler:  

• meaning of fields

• data types

• sometimes ranges of data

• interesting constants,  for example GUIDs, addresses inside and outside  SMRAM

It is possible to do a better fuzzing based on a priori knowledge!



Symbolic Execution Engines
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Open-source Symbolic Execution tools

34

Tool Architecture / Language URL

jCUTE Java https://github.com/osl/jcute

Otter C https://bitbucket.org/khooyp/otter/overview

KLEE llvm http://klee.github.io/

S2E binary x86, x86-64, ARM http://s2e.epfl.ch

Triton binary x86, x86-64 http://triton.quarkslab.com

angr libVEX based http://angr.io/



S2E – Selective Symbolic Execution

• S2E is based on KLEE symbolic execution engine and QEMU virtual machine [4]

• Flexible architecture with plug-ins 
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Test harness for S2E

1. Mapping dump of SMRAM to harness 

memory space by mmap

2. Making symbolic of input parameters of a 

SMM handler: CommBuffer and size of 

CommBuffer

3. Set RSP value of stack pointer in SMM handler 

captured in boot procedure  

4. Invocation by pointer of SMM handler from 

mapped SMRAM

5. Return back RSP of the harness program
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S2E
• Virtual machine

• Symbolic execution engine 

with constraint solver

Harness program

Test cases

Guest OS: 
Debian

Host OS: 
Ubuntu

QEMU

Harness



Excite details
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Intel Virtual Platform

• Perfect simulation of hardware

• Boot after power on, sleep and hibernate

• Dump SMRAM, memory map and other parameters

• Disassembling 

• Replaying test cases generated by s2e and fuzzing 

• Dynamic check of accesses out of allowable memory regions and SMRAM call-outs

• Measurement of code coverage without instrumenting of BIOS  
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Dump SMRAM

• Simics has access to all memory, even to SMRAM when SMRAM is locked

• Base address and size of SMRAM are captured from serial boot log

• SMRAM is dumped just after SMRAM is locked, trigger of it is message in serial boot log
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Fragment of 
boot log for 
open-source 
MinnowMax

BIOS



Scanning SMRAM
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Binary to disassembler

SMRAM

PECOFF 1

PECOFF N

.text

.text

.rdata

.rdata

smih
…

DBRC

PDB path to dbghelp

…

…

DBRC
…

smih

MZ

MZ
• Parsing PECOFF and extraction of .text & 

.rdata sections

• Several SMI handlers entry points can be 

found in SMI_HANDLER structures which has 

smih signature

• Other SMI handler entry points can be found 

in DATABASE_RECORD structures which has 

DBRC signature [7, 8]

SMI handler entry point

SMI handler entry point

Binary to disassembler

PDB path to dbghelp

SMI handler entry point

SMI handler entry point



SMI_HANDLER and SMI_ENTRY structures
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typedef struct {

UINTN                    Signature;

LIST_ENTRY               Link; 

SMM_HANDLER_ENTRY_POINT2 Handler; 

SMI_ENTRY                *SmiEntry;

} SMI_HANDLER;

typedef struct {

UINTN                    Signature;

LIST_ENTRY               AllEntries; 

EFI_GUID                 HandlerType; 

LIST_ENTRY               SmiHandlers; 

} SMI_ENTRY;

EFI scripts for IDA Pro [5] contains a broad collection of known GUIDs. 



Playing and tracing test cases 

EFI_STATUS EFIAPI SmmHandler (

IN     EFI_HANDLE   DispatchHandle,

IN     CONST VOID   *RegisterContext,

IN OUT VOID         *CommBuf,

IN OUT UINTN        *CommBufSize );
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• Simics can trace all executed instructions and memory 

accesses

• Captured Issues:

1. Call-out SMM 

2. Memory access out of allowable regions (SMRAM, 

MMIO, ACPI_NVS, BIOS reserved)

3. ASSERT



Code Coverage measuring

• Dynamic tracing for calculating the sum of executed instruction: we just mark 

addresses of executed instructions in Simics

• Traversal of a computing tree on a disassembled code for calculating the sum of 

reachable instructions

• Distribution of statement code coverage from assembler level to C-source level by 

Microsoft dbghelp.dll

• Estimation of branch/decision coverage [3]

• Measuring of function coverage
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Code coverage =
σ 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝑤ℎ𝑖𝑐ℎ 𝑤𝑒𝑟𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

σ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑡𝑟𝑒𝑒
×100%  



Traversal of a computing tree

Challenge in processing of indirect calls and jumps:

call qword ptr 12[rcx]

jmp rax

We collect addresses of indirect calls and jumps 

during playing of test cases, addresses are stored in 

a map that is used in a recursive procedure for 

traversal of computing:

std::map<int*, std::set<int*>> ic_map; 
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Pseudo-code of traversal of computing tree 

based on disassembled code



How long it works
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• Now we deal with 10-20 SMI handlers

• s2e generates about 20000 test cases per handler in 2 hour 

• 3 hours are necessary for playing 20000 test cases in Simics and at least 5 

additional hours for fuzzing

• Total time in one thread: 10*(2 + 3 + 5) = 100 hours =~ 4 days

• Fortunately, each handler can be processed independently in parallel 

• Test cases playing and fuzzing can be parallelized as well

• We use 2 servers, each one has 54 CPU and 64 GB RAM

• Total time for 2 servers: < 4 hours



Parallel execution
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Dump SMRAM

Tests cases 
generation for 

handler 1

Tests cases 
generation for 

handler N

Tests cases 
playing for 
handler 1, 
thread 1

Tests cases 
playing for 
handler N,
thread P Legend:

Windows

Linux

Tests cases 
playing for 
handler 1,
thread M

Tests cases 
playing for 
handler N,
thread T

Fuzzing for 
handler 1, 
thread 1

Fuzzing for 
handler N,
thread P

Fuzzing for 
handler 1,
thread M

Fuzzing for 
handler N,
thread T



Results
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Code Coverage Outcomes
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SMM Handler Baseline1

Simple BlackBox
Fuzzing2 Symbolic Execution

Symbolic Execution 
and Fuzzing

Handler 1 0 % 7 % 88 % 90 %

Handler 2 0 % 5 % 58 % 65 %

Handler 3 49 % 24 % 57 % 60 %

Handler 4 46 % 3 % 51 % 55 %

Handler 5 0 % 38 % 47 % 47 %

• 1 Code coverage is measured in normal boot process after power on

• 2 50000 random tests



Code coverage report 
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Asm statement coverage = 80.2 %
Source statement coverage = 89.0 %
Branch coverage = 44.3 %
Function coverage = 90.0 %

+      len = GetPathSize(path);  

+- LIST_FOR_EACH (entry) {

- list = GET_LIST (entry, link);

- d-d- if (_memcmp(list->node.path, path, len) == 0){

- _memcpy(list->node.pwd, password, PWD_LEN);

- return SUCCESS;

}

}  

+       dev = AllocatePool (D_LIST_SIZE);

+ d-d+  if (dev == NULL) {

- return ERROR;

}

+       _memcpy(dev->node.pwd, password, PWD_LEN);

The line 

was covered 

Some lines 

in the macro 

were covered,

some were not   

The line 

wasn’t covered

There was only 

one decision

TRUE or FALSE 

for the condition 

Artificial 
example



Automatically Detected Issues
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SMM Handler Simple BlackBox Fuzzing Symbolic Execution
Symbolic Execution and 

Fuzzing

Handler 1 1 2 2

Handler 2 1 1 2

Handler 3 0 0 0

Handler 4 0 0 0

Handler 5 0 0 0

• We worked with well-tested production-level version of BIOS.  So, the number of real issues is not high, but the 
issues were detected automatically.



Example of Issue report
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1. Access outside of valid memory regions in (100.txt) on address 0x18f79859 (1 byte(s) 0)!

0x8cd9cf78 mov al,byte ptr [rax]  line: 110 file: \lib\module.c

BYTE SomeType ( void* Node  )

{

ASSERT (Node != NULL);

=>    return ((SOME_STRUCT *)(Node))->Type;

Call stack:

0x8cd9d038  line: 211  file: \lib\module.c

ASSERT (Node != NULL);

 return (BOOLEAN) (SomeType (Node) == SOME_TYPE);

Note: Stack trace truncated for display, report contains the full stack trace.

Test file

Unallowed

address 

Instruction of the 

violation 
Fragment of 

C-source that 

performed the access

Call stack trace with 

fragments of source code

C-file and line #

Artificial 
example



Future plans

• Validation of integer/buffers overflows for checking memory corruptions in SMI 

Handlers inside SMM

• Support of more SMI handlers, selection of appropriate variables to be symbolic

• Increase of code coverage by means of more symbolic variables

• Experiments with other Symbolic Execution engines

• Investigation of approaches for testing BIOS beyond SMM
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Thank you!
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