Excite project:
All the truth about Symbolic
Execution for BIOS security -

llia Safonov " t I) \
S~
Alex Matrosov (ln e, - N
N
with Lee Rosenbaum and Zhenkun Yang i \\\ ;

www.zeronights.org -‘§

> Excite team:

e Mark Tuttle

e Lee Rosenbaum

e |lia Safonov

 Zhenkun Yang

> SeCoE team:

Alex Matrosov
Rodrigo Branco

Topher Timzen

Acknowledgement

» Our colleagues in Intel:

Alex Bazhaniuk
Vincent Zimmer
John Loucaides

Brian Delgado

Alexey Kovalev \
Jin Yang T \ U
~,

3

»

www.zeronights.org 'S ,%
R

b Notes about examples in the talk

, » All fragments of source code as well as memory dumps relate to

open-source projects:

. Firmware for MinnowBoard: <@ MiNNowooard.org

 EDK2: http://www.tianocore.org/edk2/

\

» Otherwise it is artificial examples, which have no relations with \ '1

Intel products \: \7,‘
- Na. 2

R
o8

, www.zeronights.org = ,!

UEFI Firmware Security
Validation Challenges

riﬁ’

www.zeronights.org t

Validation Challenges

é » UEFI Firmware code base is huge (millions of lines of code)
v' SMM code always in the most critical scope
v’ Legacy code/support makes validation more fun ;)

» Boot procedure after power on, sleep and hibernate differentials. It requires additional

effort for fuzzing \
v' Code coverage can be different even for the same code due to a huge = R \ U
~a |
number of global variables and hardware configuration Oy ",
= S
5 www.zeronights.org = R

- i

(

Pre
Verifier

e

- UEFI

OS-Absent
App

Interface

Q

)

Transient OS
Environment

Q)

Transient OS
Boot Loader

FI Driver
Dispatcher

Intrinsic Services

Final OS Boot

Loader

OS-Present

App

Final OS

Environment

Security Pre EFI Driver Execution | Boot Dev Transient Run Time After
(SEC) Initialization Environment | Select System Load (RT) Life
(PEI) (DXE) (BDS) (TSL) (AL)
Power on — [..Platform initialization . .] ————— [....0Sboot....] » Shutdown

www.zeronights.org

A=

LN

.

B

SMM Specifics

X~

N
A |

www.zeronights.org .E
&L

g » System Management Mode (SMM) is a highly-privileged mode of CPU

System Managment Mode (SMM)

» SMRAM is a range in DRAM reserved for SMI handlers (protected for access from the OS)

(SMM

Ring 3
Ring 0

Ring -1

Ring -2

)

\

~ \
-~

_f‘:;\ AN v//’

R
o8

www.zeronights.org = ,%
(X

S~ SMRAM
A

SMBASE + FFFFh

\\ SMBASE + FC0O0Oh
\ \
\

“

\ \ |

\ SMBASE + 8000h

) >
\ \“}\- <
0:;:)00000000 N SMBASE !

Pointer Arguments to SMI Handlers
(Legacy notation)

Phys Memory

" RAX (code) @ AW State Save Area
RBX (pointer)

SMI Entry Point

RCX (function) Tl e (SMBASE + 8000h)

SMBASE

OS Memory \

SMI handler specific structure ~~ v
< N

%, \\ %
e (CPU stores current value of SMBASE in SMM save state area on SMI and |
10 restores it on RSM www.zeronights.org tﬁ

Pointer Arguments to SMI Handlers
(CommBuffer notation)

.@ » CommBuffer is a memory buffer used as a communication protocol between OS runtime
and DXE SMI handlers. Pointer to CommBuffer is stored in “UEFI” ACPI table in ACPI

memory

» Contents of CommBuffer are specific to SMI handler. For example Variable SMI handler \

read variable GUID, Name and Data from CommBuffer = \ U

=

R
o8

" www.zeronights.org = ,%
(X

A
g

12

Pointer Arguments to SMI Handlers
(CommBuffer notation)

Normal DRAM
ACPI Table
Header
Identifier Smm Communicate
DataOffset Buffer
SwSmi - GUID
Smm Communicate Length
Buffer Pointer Addr
Invocation register
Data

ACPI NVS

Smm Communicate
Buffer Pointer

S
%—\f%

www.zeronights.org -‘E

i Pointer Arguments to SMI Handlers
~ - (CommBuffer notation)

SMRAM Normal DRAM
| SmmPrivateData
SmmPrivateData Pointer [— SmmIplImageHandle
SmmEntryPoint () SmramRangeCount SmramRanges ‘
{
PERF START ("SMM"); & SmramRanges Ptr
BeforeSmmDispatch () SmmEntryPoint
SmiManage ():
AfterSmmDispatch () Smst Ptr)
PERF END (“SMM”); Smm CBol:?fr;'l:mlcate
} SmmEntryPoint =
Registered —> GUID
Smst \
InSmm Length \
Header Smm Communicate =~ \ X
Buffer Pointer -~
SmmaAllocate/Free ke S
Smm Communicate Data .
SmminstallProtocol Buffer Size T \ %
. - Y
SmmRegister Return Status RN
13 vww.zeronights.org t,E
B

Pointer Arguments to SMI Handlers
(CommBuffer notation)

Runtime Communication
OS Memory Buffer SMRAM
GetVariable () SMM Comm Head Smﬂﬁavna;llea:le
SetVariable () Header GUID
...... _ SmmGet?ar()'
UEFI Message Length
oS .
> Variable > -
Consumer Driver Variable Comm Head
. SmmSetVar ()
Function Id
Data[] |k Return Status
o VarAccess Comm Data| | | ccee=-
L™
i N — > GUID
GUID |f—--—- 7T :
\\ Data Size Crypto) -
“ Name Size Service
Name [] |b—e__ SN Attributes \
4—-_________1*_ Flash ~ *
\\-_"* Name [] Access ~
RING 0 o Datal[] - \ \q
S~
s AN %
» Example: VariableAuthenticated SMI Handler reads/writes UEFI variables from/to CommBuffer - N

14 www.zeronights.org -‘ ,E
B

15

Excite project

X~

N
A |

www.zeronights.org .E
&L

- Excite project

_‘\/’)“ Excite project combines dynamic symbolic execution and guided fuzzing for automatic
test case generation, and our flow uses Intel Virtual Platform to dump BIOS data,

%' replay tests (measuring code coverage) and find vulnerabilities

Symbolic Guided
Execution Fuzzing -

. N
Platform \ |

Simics %— \\ %
www.zeronights.org ta

Virtual

16

—_— SMM in current scope of Excite

» SMI call-out vulnerabilities for SMI handlers with CommBuffer notations:
'g v’ Excite check execution outside SMRAM

v’ Excite check memory access outside of valid regions:

« SMRAM
« MMIO -
e ACPI_NVS \
* BIOS reserved =~
<\
» Excite does not check security configuration bits for the platform f -
- N

\.h‘

pd
=
2

17 www.zeronights.org =
B

18

Source code
repository

N

A
y

Code coverage
report

[
\

\
\/

Issues report

[
\

R
A

Test cases

N~

[
\/

Updated
test cases

[
\

Excite flow

<\
%—\Z‘%

www.zeronights.org -‘E

IV Symbolic Execution Technique

for Automatic Test Case
Generation

www.zeronights.org t

riﬁ’

Symbolic Execution

%' » Symbolic execution is a technique that can be used for automatic test
generation which provides high code coverage

» The main idea is to substitute parameters of functions with symbolic

values and then execute the function parametrically such that [1]: -
* the values of all variables are computed as symbolic expressions over the \
symbolic input values - -~ \ N
* the execution can proceed along any feasible path * . \?,,

W

- www.zeronights.org 'S ,%
Y IS

31 0 Symbolic Execution Tree

* nodes of a SET represent the symbolic program states and edges represent

\ transitions between these states

* symbolic state consists of symbolic variables, a program location and a path
constraint (PC) which is the conjunction of all the logical constraints collected
over the variables to reach that program location

* the paths of a SET characterize all execution paths

< |
» In Static Symbolic Execution, SET is constructed for the whole prog?am\ "{
%

under analysis and without usage of concrete values of variables - N,

21 www.zeronights.org 5’%

Constraints and SMT Solvers

* e g . X>YAY+X<8
'gl' * solution of the constraint is a set of assignments, one for each variable

that makes the constraint satisfiable

 {X=3,Y=2}is asolution but {X =6, Y=5}is not

» A constraint solver is a tool that finds satisfying assignments for

\

a constraint, if it is satisfiable N \ q

> SMT (Satisfiability Modulo Theory) solver is used to check the \7,‘
= \ Na. <

satisfiability of each PC) N3
: hts.org - TR
Wwww.zeronights.org §§

LCoONULREWNE

int some_func(uint x, uinty)
{
if (x>vy)
X=X-Y,
else
X=Y-X;
if (x >=0)
X *=y;
else
. } “Dead Code”
x/=y;
return x;

23

1: if(x>y) - else

1: if(x>y) - the

5:if(x>=0) - else 5: if(x>=0) - the 5: if(x>=0) - else

Unsatisfiable PC
>> Infeasible path
=~

Unsatisfiable PC
>> Infeasible path

www.zeronights.org ;E
&_

Limitations of Static SE

\-/]\
U Inability to solve very complex and non-linear constraints

4 + X%9>3AY>15
e (X>>4)&2<Y

» Inability to handle external calls

* f(X) >0, where function f is inaccessible for static analysis =
» Inability to deal with parallel execution |)
v’ Mitigation of the limitations: Dynamic Symbolic Execution or \\ RS \ - !

Concolic Testing = N ?j

24 www.zeronights.org =
g

)

(

Dynamic Symbolic Execution

Concolic technique

~—
N

)
w

performs symbolic

execution dynamically
b, along an execution path of

a concrete input and

b
‘ ’ # generates tests one by one

bg for each path

. =
| b CONCOLIC \
O

- S~
} ’ CONCRETE~ B A
UST T, ST T, T3 + ;\ —%
e \\\\

) SYMBOLIC ~ <N
PC = pc,A\pc,ApcsA\pc, ... PC" = pciA\pc,A=pc; = \

N www.zeronights.org “‘.E

B

~—
N

Path explosion challenge

» Number of feasible paths grows exponentially with
the size of the code
» Loops lead to a huge number of test cases

» The number can be even infinite for programs with

unbounded loops and recursion 3b2f328 mov edx,0x3fd \

3b2ff32d in al,dx "

. : : 3b2ff32e test al,0x20

» Symbolic execution engine can get stuck due to Soff330 0x3b2ff3\2~8\ 4
. . . — AN v/)
polling loops in firmware =N 2

o8

- www.zeronights.org = ,!

27

DFS

BFS

Search strategies for SET

Which path should be selected?
= Mainly random search
Y generates a test set with a
® better code coverage, but such
test set is not deterministic
= De-randomization is required
for reproducibility, but it is

O palliative \
Random _\Z‘
+ N

www.zeronights.org -‘E

28

Combining Symbolic Execution
and Fuzzing

www.zeronights.org t

riﬁ’

- Combining Symbolic Execution and fuzzing

Unlikely a fuzzer would generate the constant 0x12345.
In contrast, symbolic execution creates a test for

typedef struct { covering code inside.
int signature;

int num;
} SOME BUF;

negative pbuf->num

int some fuction(SOME BUF *pbuf)
leads to error!

{
if (pbuf->signature == 0x12345)

{
return (int)sqgrt((double)pbuf->num) ;

} S - ,
: \\ \ N

return O; : _))
Unlikely the symbolic execution creates a test with
} negative pbuf->num. Probability of generating - v/,
negative pbuf->num by fuzzing is high. \\; z

o

29 Fuzzing of tests generated by symbolic execution is a better way! www.zeronights.org t!
B

Pool of test
cases

N—

Similar scheme to American

Fuzzy Lop (AFL) fuzzer [2]

30

Fuzzing guided by code coverage

No

www.zeronights.org

B

31

Gray-box fuzzing

. Variation of CommBufSize from 1 to 100 and Functionld in CommBuf from 0 to 20

. Application of the following fuzzing strategies for tests collected in a pool as long as we have

improvement in code coverage; the strategies were inspired by AFL but with taking into account
SMM specific:

Walking 1 bit flip, step = 1 bit

Walking byte flips: 1, 2, 4 and 8 bytes, step = 1 byte

Walking insertion of addresses inside SMRAM, outside SMRAM in ACPI_NVS and outside SMRAM in*=

“available” memory region, step = 1 byte \
Changing of Functionld and cyclic rotation of CommBuf fragment = - \ U
Random splicing of test cases \\ >,

pd

N
Walking addition and subtraction of small constant for byte, word, dword and gword, step =1 t}t‘e‘. -

www.zeronights.org 'S ,%
Y IS

—_— White-box fuzzing

~T
i | q typedef struct {
unsigned short Bus;

‘i unsigned int Device;

'é unsigned short Port;
unsigned int Function;
char Password[48];

} COMM BUF 4 SOME HANDLER;

We know the format of CommBuffer for each handler:
* meaning of fields

« data types \
e sometimes ranges of data _ '»
 Interesting constants, for example GUIDs, addresses inside and outside SMRAM~ - \ 1

7i;\ > V/)

It IS possible to do a better fuzzing based on a priori knowledge! SN <
32 www.zeronights.org = !

Symbolic Execution Engines

X~

. .

N
N
- \1\\ :

33 www.zeronights.org -‘,E
B

-4 i “‘ \y
1 e A\
KRN g
ey | 4 \/v
= | |
|

34

~

= .= Open-source Symbolic Execution tools

JCUTE

Otter

KLEE

S2E

Triton

angr

Java

C

llvm

binary x86, x86-64, ARM
binary x86, x86-64

libVEX based

https://github.com/osl/jcute
https://bitbucket.org/khooyp/otter/overview
http://klee.github.io/

http://s2e.epfl.ch =
http://triton.quarkslab.com

q
http://angr.io/ l

::'—; S2E — Selective Symbolic Execution

* S’E is based on KLEE symbolic execution engine and QEMU virtual machine [4]

% * Flexible architecture with plug-ins

Virtual Virtual Virtual A ‘ .
. ; ete domain
CPU memory devices L || e,
aPPET, :"';o‘\vo“c domein app -
QEMU KLEE { ol R, AN
dynamic e SibEnd| Iib \

binary VM symbolic

_ kernel \ \q

: — i

Real Real Real ﬂ/ S AL LN Al \—%
g app N

CPU memory devices [Kemner &7 | e ; NN
www.zeronights.org -‘,E
B

translation execution

Harness program

=
Virtual machine

Symbolic execution engine
with constraint solver

Test cases

36

Test harness for S2E

. Mapping dump of SMRAM to harness

memory space by mmap

. Making symbolic of input parameters of a

SMM handler: CommBuffer and size of

CommBuffer

. Set RSP value of stack pointer in SMM handler

captured in boot procedure

. Invocation by pointer of SMM handler from

mapped SMRAM

. Return back RSP of the harness program

Harness

Guest OS:
Debian

QEMU =

\

!

Host OS:
Ubu nty \ A

www.zeronights.org -‘E

37

Excite details

X~

N
A |

www.zeronights.org .E
&L

Intel Virtual Platform

& Simics - Wind River Simics

File Edit MNavigate Search Project Run Window Help

2 REHLIRSE Ry R SRS R - e
4, 1 ™ = Serial Console on minnowmax.board.pcu.com[0] = = -

Simulate Anything, Chip to System

. . = < :
Y P [minnowmax.beard.pcu.backport infe] @xeea@
e r eC SI l I I u a IO n O a r Wa re [minnowmax.board.pcu.backport info] @x@els
[minnowmax.board.pcu.backport info] @xeebe
[minnowmax. board.pcu.backport info] BxB87¢
< bd [minnowmax.board.pcu.backport info] @x8038
. [minnowmax. board.pcu.backport info] Bx88as
», = [minnowmax.board.pcu.backport info] @xee46
* Boot after power on, sleep and hibernate @ oo b e
) BS ~ | i) [minnowmax.board.pcu.backport info] @xéeed
[minnowmax.board.pcu.backport info] @x@e3z
[minnowmax.board.pcu.backport info] @x8e67
=] viv2-minnowm: [minnowmax.board.pcu.backport info] exeese
. D [minnowmax.board.pcu.backport info] exee7l
u l I l p l I Iel I lo ry I I |a p a n O e r pa ra I I le e rS [minnowmax.board.pcu.backport info] @xeezd
V4 [minnowmax. board. pcu.backport info] BxBBga
bmrbmns iefal nueanod

-

L

Foudmmmsimnns mmmd e

* Disassembling \

* Replaying test cases generated by s?e and fuzzing =~

-

* Dynamic check of accesses out of allowable memory regions and SMRAM call-outs

 Measurement of code coverage without instrumenting of BIOS

38

Dump SMRAM

Simics has access to all memory, even to SMRAM when SMRAM is locked

e Base address and size of SMRAM are captured from serial boot log

« SMRAM is dumped just after SMRAM is locked, trigger of it is message in serial boot log

SMM IPL opened SMRAM window @)
SMM IPL loadin

g

o

SMM Core at SMRAM 3JB3F6000 Fragment of
SMM IPL calling SMM Core at SMRAM 3B3F62C0 boot log for \
mMaximumSupportAddress = @xFFFFFFFFF open-source
InstallProtocolInterface: FACCBFB7-F6E@-47FD-9DDA-10A8F150C191 39CB9440 MinnowMax ﬂ
BIOS |

g

SmmLockBox SmmLockBoxHandler Exit (3)
SmmLockBoxDxelib SetlockBoxAttributes - Exi Success) T R

v

-

SMM IPL locked SMRAM window - Ty

7 I\

39 www.zeronights.org =

= ~-

N i

i~ Scanning SMRAM

e Parsing PECOFF and extraction of .text &
PECOFF 1

Binary to disassembler .
'g' text > .rdata sections

PDB path to dbghelp

.-rdata

e Several SMI handlers entry points can be

smih SMI handler entry point
DBRC SMI handler entry point found in SMI_HANDLER structures which has
MZ ”I;’ECOFFN smih signature
text Binary to disagsembler o Qther SMI handler entry points can be found) .
rdata PDB path to dbghelp in DATABASE_RECORD structures which has ‘
smih — SMI handler entry point DBRC signature [7,] ~_ 1

DBRC SMI handler e=ntry point

-

l,"'\i

e

\b

&
pd
40 www.zeronights.org = %

N
d ‘\

"'o§$ef struct {

4& LIST ENTRY
SMM_HANDLER ENTRY POINT2
SMI_ENTRY

} SMI HANDLER;

typedef struct {

ERe At /2 6D 69 63 G0 00 00 00 || 38 BB 31 3B 00 00 00 00
. 38 BB 31 3B e

Link; 10 BB 31 3B

Handler;

*SmiEntry;

UINTN

Signature;

LIST ENTRY
EFI_GUID
LIST ENTRY

} SMI ENTRY;

AllEntries;
HandlerType;
SmiHandlers;
s &
a~ \%b P
. . . T \
EFI scripts for IDA Pro [5] contains a broad collection of known GUIDs. . R
www.zeronights.org = R

41

= i
=

breakpoint on SMRAM base addr

5£Fipt branch {
ile (TRUE) {
uLlf for hrwckpﬁirt

1n _ b o0 t

&anmE
= &CommBufSize
Phr-lwr _entry_point

Playing and tracing test cases

EFI STATUS EFIAPI SmmHandler (

IN EFI HANDLE DispatchHandle,
IN CONST VOID *RegisterContext,
IN OUT VOID *CommBuf,

IN OUT UINTN *CommBufSize);

Simics can trace all executed instructions and memory

accesses

([]
L

Captured Issues:

1. Call-out SMM \
2. Memory access out of allowable regions (SM RAM,\ !
MMIO, ACPI_NVS, BIOS reserved) L
e N
3. ASSERT ‘ ~ N

www.zeronights.org = .EE

Code Coverage measuring

Y instructions, which were executed
Code coverage = : : : : X100%
Y. reachable instructions in computing tree

* Dynamic tracing for calculating the sum of executed instruction: we just mark
addresses of executed instructions in Simics

* Traversal of a computing tree on a disassembled code for calculating the sum of
reachable instructions

* Distribution of statement code coverage from assembler level to C-source level by

\

Microsoft dbghelp.dll -

* Estimation of branch/decision coverage [3] RSN \ \
* Measuring of function coverage 2 A 2

W

3 www.zeronights.org 'S ,%
Y IS

= Traversal of a computing tree

Pseudo-code of traversal of computing tree
based on disassembled code
Set label(cur_addr) {

it (asm_label[cur_addr] != @) return

(' Challenge in processing of indirect calls and jumps: while (true) {
asm_label[cur_addr]

call gword ptr 12[rcx] ii(hftmfﬂﬂr[cuucﬁﬂ
return
: 1t (instruction| cur_addr
jmp rax or instruc 'I'j_ur[ur_addr
. . } extraction of destinat
We collect addresses of indirect calls and jumps from instructi
from map for D
during playing of test cases, addresses are stored in , Set_label(destina
)
. . . it (instruction[cur_addr]
a map that is used in a recursive procedure for extraction of destina
from instruc +1ur for dire
traversal of computing:) -r m map -':r_. indirec

std: ::map<int*, std::set<int*>> 1ic map;

44

45

How long it works

Now we deal with 10-20 SMI handlers

s’e generates about 20000 test cases per handler in 2 hour

3 hours are necessary for playing 20000 test cases in Simics and at least 5
additional hours for fuzzing

Total time in one thread: 10*(2 + 3 + 5) = 100 hours =~ 4 days

Fortunately, each handler can be processed independently in parallel

\

Test cases playing and fuzzing can be parallelized as well o\ 'l
We use 2 servers, each one has 54 CPU and 64 GB RAM \\ \,‘
el Na Z

W

www.zeronights.org 'S ,E
Y IS

Total time for 2 servers: < 4 hours

Parallel execution

.zeronights.org ‘,E
B

47

Results

X~

N
.. |
EEN =

~
\\\

www.zeronights.org .E
&L

Handler 1

Handler 2 0%
Handler 3 49 %
Handler 4 46 %
Handler 5 0%

* 1Code coverage is measured in normal boot process after power on

* 250000 random tests
48

5%

24 %

3%

38 %

88 %

58 %

57 %

51%

47 %

Code Coverage Outcomes

Simple BlackBox
SMM Handler Baseline?! Fuzzing?
0% 7%

90 %
65 %
60 %
55 %
47 %
)

.

v,

www.zeronights. org

N

~

LN

Symbolic Execution
Symbolic Execution and Fuzzing

2

pd
~

The line
was covered

Some lines

in the macro
were covered,
some were not //

~ Z -

The line
wasn’t covered

There was only d-d+
one decision =

TRUE or FALSE

for the condition +

49

Code coverage report

Asm statement coverage = 80.2 %
Source statement coverage = 89.0 %
Branch coverage =44.3 %

Function coverage = 90.0 %

len = GetPathSize (path);
LIST FOR EACH (entry) ({
list = GET LIST (entry, link);

if (memcmp (list->node.path, path,
_memcpy (list->node.pwd, password,

return SUCCESS;

}

}
dev = AllocatePool (D_LIST SIZE);

if (dev == NULL) {
return ERROR;
}

len) ==

0) {

PWD_LEN) ;

_memcpy (dev->node.pwd, password, PWD _ LEN) ;

(@)

Artificial
example

\

. \ cl

/

&
) pd
www.zeronights.org = %

Automatically Detected Issues

\ : Symbolic Execution and
SMM Handler Simple BlackBox Fuzzing Symbolic Execution Fuzzing
#, Handler 1

Handler 2 1 1 2
Handler 3 0 0 0
Handler 4 0 0 0 =
\
Handler 5 0 0 0
SN
* We worked with well-tested production-level version of BIOS. So, the number of real issues is not high, but the N>
i detected automatically. % 2
issues were detected automatically - \f\v 2
~
50 www.zeronights.org ",!

B

\-/']\

0x8cd9cf78 mov al,byte ptr [rax] 1line: 110 filp: \lib\module.c

)

— Example of Issue report

Access outside of valid memory regions in (1Q0.txt) on address 0x18£f79859 (1 byte(s) 0)!

Unallowed
address

=> RUCT *) (Node)) ->Type;
Instruction of the \l
violation
Call stack: Test file

Fragment of
C-source that

performed the access

C-file and line #

0x8cd9d038 1line: e: \lib\module.c

ASSERT (Node != NULL) ;

(@

Artificial

— return (BOOLEAN) (SomeType (Node) == SOME T

Call stack trace with
fragments of source code

example

Note: Stack trace truncated for display, report contains the full stack trace.

51

www.zeronights.org ",%

B

@

)

4

~

%

52

Future plans

Validation of integer/buffers overflows for checking memory corruptions in SMI
Handlers inside SMM

Support of more SMI handlers, selection of appropriate variables to be symbolic
Increase of code coverage by means of more symbolic variables

Experiments with other Symbolic Execution engines

\
Investigation of approaches for testing BIOS beyond SMM -~ \ “
?\ . \?,,

»

www.zeronights.org 'S ,%
R

53

References

Amal Khalil & Juergen Dingel, CISC836: Models in Software Development: Methods, Techniques,
and Tools, 2015.

AFL: http://Icamtuf.coredump.cx/afl/

Code Coverage: http://www.bullseye.com/coverage.html

Vitaly Chipounov, Volodymyr Kuznetsov, George Candea, “S2E: A Platform for In Vivo Multi-Path
Analysis of Software Systems”, 16t Intl. Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011

EFI scripts for IDA Pro: https://github.com/snare/ida-efiutils

Andriesse, D., Chen, X., van der Veen, V., Slowinska, A. and Bos, H., “An In-Depth Analysis of \
Disassembly on Full-Scale x86/x64 Binaries”, USENIX-2016
Xeno Kovah and Corey Kallenberg, How Many Million BIOSes Would you Like to Infect?” 2015 \ 'l

SN

Extract SMI handlers: http://blog.crd.sh/2016/10/exploiting-ami-aptio-firmware.html -~
7§;"\ A
/.:A \\\ <

N

www.zeronights.org '5' ,%
= =

54

Thank you!

..\ !

www.zeronights.org -‘E

