
Excite project:
All the truth about Symbolic
Execution for BIOS security
Ilia Safonov

Alex Matrosov

with Lee Rosenbaum and Zhenkun Yang

Acknowledgement

 Excite team:

• Mark Tuttle

• Lee Rosenbaum

• Ilia Safonov

• Zhenkun Yang

2

Our colleagues in Intel:

• Alex Bazhaniuk

• Vincent Zimmer

• John Loucaides

• Brian Delgado

• Alexey Kovalev

• Jin Yang

 SeCoE team:

• Alex Matrosov

• Rodrigo Branco

• Topher Timzen

Notes about examples in the talk

All fragments of source code as well as memory dumps relate to

open-source projects:

• Firmware for MinnowBoard:

• EDK2: http://www.tianocore.org/edk2/

Otherwise it is artificial examples, which have no relations with

Intel products

3

UEFI Firmware Security
Validation Challenges

4

5

 UEFI Firmware code base is huge (millions of lines of code)

 SMM code always in the most critical scope

 Legacy code/support makes validation more fun ;)

 Boot procedure after power on, sleep and hibernate differentials. It requires additional

effort for fuzzing

 Code coverage can be different even for the same code due to a huge

number of global variables and hardware configuration

Validation Challenges

6

SMM Specifics

7

System Managment Mode (SMM)

8

 System Management Mode (SMM) is a highly-privileged mode of CPU

 SMRAM is a range in DRAM reserved for SMI handlers (protected for access from the OS)

System Management Interrupt (SMI) Handlers

9

Pointer Arguments to SMI Handlers
(Legacy notation)

10

Phys Memory

SMI Handler

OS Memory

• CPU stores current value of SMBASE in SMM save state area on SMI and
restores it on RSM

RAX (code)

RBX (pointer)

RCX (function)

SMI handler specific structure

SMI

SMBASE

SMM State Save AreaSaved SMBASE value

SMI Entry Point
(SMBASE + 8000h)

Pointer Arguments to SMI Handlers
(CommBuffer notation)

11

 CommBuffer is a memory buffer used as a communication protocol between OS runtime

and DXE SMI handlers. Pointer to CommBuffer is stored in “UEFI” ACPI table in ACPI

memory

 Contents of CommBuffer are specific to SMI handler. For example Variable SMI handler

read variable GUID, Name and Data from CommBuffer

Pointer Arguments to SMI Handlers
(CommBuffer notation)

12

Pointer Arguments to SMI Handlers
(CommBuffer notation)

13

Pointer Arguments to SMI Handlers
(CommBuffer notation)

14

 Example: VariableAuthenticated SMI Handler reads/writes UEFI variables from/to CommBuffer

Excite project

15

Excite project

Excite project combines dynamic symbolic execution and guided fuzzing for automatic

test case generation, and our flow uses Intel Virtual Platform to dump BIOS data,

replay tests (measuring code coverage) and find vulnerabilities

16

Symbolic
Execution

Virtual
Platform

Simics

Guided
Fuzzing

17

 SMI call-out vulnerabilities for SMI handlers with CommBuffer notations:

 Excite check execution outside SMRAM

 Excite check memory access outside of valid regions:

• SMRAM

• MMIO

• ACPI_NVS

• BIOS reserved

 Excite does not check security configuration bits for the platform

SMM in current scope of Excite

Excite flow

18

Source code
repository

BIOS
build

Dump
SMRAM

using Simics

Harness
generation

Symbolic
Execution
using S2E

Test cases

Playing
tests and
fuzzing in

Simics

Code coverage
report

Issues report
Updated
test cases

Symbolic Execution Technique
for Automatic Test Case

Generation

19

Symbolic Execution

 Symbolic execution is a technique that can be used for automatic test

generation which provides high code coverage

 The main idea is to substitute parameters of functions with symbolic

values and then execute the function parametrically such that [1]:

• the values of all variables are computed as symbolic expressions over the

symbolic input values

• the execution can proceed along any feasible path

20

Symbolic Execution Tree

 Symbolic Execution Tree (SET) is created during symbolic execution

• nodes of a SET represent the symbolic program states and edges represent

transitions between these states

• symbolic state consists of symbolic variables, a program location and a path

constraint (PC) which is the conjunction of all the logical constraints collected

over the variables to reach that program location

• the paths of a SET characterize all execution paths

 In Static Symbolic Execution, SET is constructed for the whole program

under analysis and without usage of concrete values of variables
21

Constraints and SMT Solvers

22

 Path constraint (PC)

• e.g.: X > Y Λ Y+X ≤ 8

• solution of the constraint is a set of assignments, one for each variable

that makes the constraint satisfiable

• {X = 3, Y=2} is a solution but {X = 6, Y=5} is not

A constraint solver is a tool that finds satisfying assignments for

a constraint, if it is satisfiable

 SMT (Satisfiability Modulo Theory) solver is used to check the

satisfiability of each PC

23

int some_func(uint x, uint y)
{

1: if (x > y)
2: x = x - y;
3: else
4: x = y - x;
5: if (x >=0)
6: x *= y;
7: else
8: x /= y;
9: return x;

}

x: X, y: Y
PC: true

x: X, y: Y
PC: X<=Y

1: if(x>y) - else

x: Y-X, y: Y
PC: X<=Y

4: x = y - x;

x: X-Y, y: Y
PC: X>Y^X-Y>=0

5: if(x>=0) - then

x: X-Y, y: Y
PC: X>Y^X-Y<0

5: if(x>=0) - else

x: Y-X, y: Y
PC: X<=Y^Y-X>=0

5: if(x>=0) - then 5: if(x>=0) - else

x: X-Y, y: Y
PC: X>Y

2: x = x - y;

x: X, y: Y
PC: X>Y

1: if(x>y) - then

x: (X-Y)*Y, y: Y
PC: X>Y^X-Y>=0

6: x*=y;

x: (Y-X)*Y, y: Y
PC: X<=Y^Y-X>=0

6: x*=y;Unsatisfiable PC
>> Infeasible path

“Dead Code”

x: Y-X, y: Y
PC: X<=Y^Y-X<0

Unsatisfiable PC
>> Infeasible path

Limitations of Static SE

24

 Inability to solve very complex and non-linear constraints

• X % 9 > 3 Λ Y > 15

• (X >> 4) & 2 < Y

 Inability to handle external calls

• f(X) > 0, where function f is inaccessible for static analysis

 Inability to deal with parallel execution

Mitigation of the limitations: Dynamic Symbolic Execution or

Concolic Testing

Dynamic Symbolic Execution

25

𝑝𝑐1

𝑝𝑐2

𝑝𝑐3

𝑝𝑐4

𝜋1

𝑃𝐶 = 𝑝𝑐1⋀𝑝𝑐2⋀𝑝𝑐3⋀𝑝𝑐4⋀…

Ԧ𝑰𝟏

𝑃𝐶′ = 𝑝𝑐1⋀𝑝𝑐2⋀¬𝑝𝑐3

𝜋2𝜋1 𝜋3

Ԧ𝑰𝟑

b1

b2

b3

b4

Ԧ𝑰𝟐⟹

b9

𝜋2𝜋1

Ԧ𝑰𝟐

b1

b2

b9

b10

Concolic technique

performs symbolic

execution dynamically

along an execution path of

a concrete input and

generates tests one by one

for each path

CONCOLIC

CONCRETE

SYMBOLIC

=

+

Path explosion challenge

26

Number of feasible paths grows exponentially with

the size of the code

 Loops lead to a huge number of test cases

 The number can be even infinite for programs with

unbounded loops and recursion

 Symbolic execution engine can get stuck due to

polling loops in firmware

3b2ff328 mov edx,0x3fd
3b2ff32d in al,dx
3b2ff32e test al,0x20
3b2ff330 je 0x3b2ff328

Search strategies for SET

27

DFS BFS Random

- - +

Which path should be selected?

 Mainly random search

generates a test set with a

better code coverage, but such

test set is not deterministic

 De-randomization is required

for reproducibility, but it is

palliative

Combining Symbolic Execution
and Fuzzing

28

Combining Symbolic Execution and fuzzing

typedef struct {

int signature;

int num;

} SOME_BUF;

int some_fuction(SOME_BUF *pbuf)

{
if (pbuf->signature == 0x12345)

{

return (int)sqrt((double)pbuf->num);

}

return 0;

}

negative pbuf->num

leads to error!

Fuzzing of tests generated by symbolic execution is a better way!

Unlikely a fuzzer would generate the constant 0x12345.

In contrast, symbolic execution creates a test for

covering code inside.

Unlikely the symbolic execution creates a test with

negative pbuf->num. Probability of generating

negative pbuf->num by fuzzing is high.

29

Fuzzing guided by code coverage

30

Pool of test
cases

Take out a
test from

pool

Create a
new test via

current
strategy

Playing new test
and code
coverage

measurement

Change of a
fuzzing
strategy

Add the test
to a pool

Does
coverage

grow?

Were
played all
tests in
pool?

Yes

No

Yes No

Similar scheme to American

Fuzzy Lop (AFL) fuzzer [2]

Gray-box fuzzing

1. Variation of CommBufSize from 1 to 100 and FunctionId in CommBuf from 0 to 20

2. Application of the following fuzzing strategies for tests collected in a pool as long as we have

improvement in code coverage; the strategies were inspired by AFL but with taking into account

SMM specific:

• Walking 1 bit flip, step = 1 bit

• Walking byte flips: 1, 2, 4 and 8 bytes, step = 1 byte

• Walking insertion of addresses inside SMRAM, outside SMRAM in ACPI_NVS and outside SMRAM in

“available” memory region, step = 1 byte

• Changing of FunctionId and cyclic rotation of CommBuf fragment

• Random splicing of test cases

• Walking addition and subtraction of small constant for byte, word, dword and qword, step = 1 byte

31

White-box fuzzing

32

typedef struct {

unsigned short Bus;

unsigned int Device;

unsigned short Port;

unsigned int Function;

char Password[48];

} COMM_BUF_4_SOME_HANDLER;

We know the format of CommBuffer for each handler:

• meaning of fields

• data types

• sometimes ranges of data

• interesting constants, for example GUIDs, addresses inside and outside SMRAM

It is possible to do a better fuzzing based on a priori knowledge!

Symbolic Execution Engines

33

Open-source Symbolic Execution tools

34

Tool Architecture / Language URL

jCUTE Java https://github.com/osl/jcute

Otter C https://bitbucket.org/khooyp/otter/overview

KLEE llvm http://klee.github.io/

S2E binary x86, x86-64, ARM http://s2e.epfl.ch

Triton binary x86, x86-64 http://triton.quarkslab.com

angr libVEX based http://angr.io/

S2E – Selective Symbolic Execution

• S2E is based on KLEE symbolic execution engine and QEMU virtual machine [4]

• Flexible architecture with plug-ins

35

Virtual

CPU

Virtual

memory

Virtual

devices

Real

CPU

Real

memory

Real

devices

QEMU
dynamic

binary

translation

KLEE

symbolic

execution S
2
E

 A
P

I

Test harness for S2E

1. Mapping dump of SMRAM to harness

memory space by mmap

2. Making symbolic of input parameters of a

SMM handler: CommBuffer and size of

CommBuffer

3. Set RSP value of stack pointer in SMM handler

captured in boot procedure

4. Invocation by pointer of SMM handler from

mapped SMRAM

5. Return back RSP of the harness program

36

S2E
• Virtual machine

• Symbolic execution engine

with constraint solver

Harness program

Test cases

Guest OS:
Debian

Host OS:
Ubuntu

QEMU

Harness

Excite details

37

Intel Virtual Platform

• Perfect simulation of hardware

• Boot after power on, sleep and hibernate

• Dump SMRAM, memory map and other parameters

• Disassembling

• Replaying test cases generated by s2e and fuzzing

• Dynamic check of accesses out of allowable memory regions and SMRAM call-outs

• Measurement of code coverage without instrumenting of BIOS

38

Dump SMRAM

• Simics has access to all memory, even to SMRAM when SMRAM is locked

• Base address and size of SMRAM are captured from serial boot log

• SMRAM is dumped just after SMRAM is locked, trigger of it is message in serial boot log

39

Fragment of
boot log for
open-source
MinnowMax

BIOS

Scanning SMRAM

40

Binary to disassembler

SMRAM

PECOFF 1

PECOFF N

.text

.text

.rdata

.rdata

smih
…

DBRC

PDB path to dbghelp

…

…

DBRC
…

smih

MZ

MZ
• Parsing PECOFF and extraction of .text &

.rdata sections

• Several SMI handlers entry points can be

found in SMI_HANDLER structures which has

smih signature

• Other SMI handler entry points can be found

in DATABASE_RECORD structures which has

DBRC signature [7, 8]

SMI handler entry point

SMI handler entry point

Binary to disassembler

PDB path to dbghelp

SMI handler entry point

SMI handler entry point

SMI_HANDLER and SMI_ENTRY structures

41

typedef struct {

UINTN Signature;

LIST_ENTRY Link;

SMM_HANDLER_ENTRY_POINT2 Handler;

SMI_ENTRY *SmiEntry;

} SMI_HANDLER;

typedef struct {

UINTN Signature;

LIST_ENTRY AllEntries;

EFI_GUID HandlerType;

LIST_ENTRY SmiHandlers;

} SMI_ENTRY;

EFI scripts for IDA Pro [5] contains a broad collection of known GUIDs.

Playing and tracing test cases

EFI_STATUS EFIAPI SmmHandler (

IN EFI_HANDLE DispatchHandle,

IN CONST VOID *RegisterContext,

IN OUT VOID *CommBuf,

IN OUT UINTN *CommBufSize);

42

• Simics can trace all executed instructions and memory

accesses

• Captured Issues:

1. Call-out SMM

2. Memory access out of allowable regions (SMRAM,

MMIO, ACPI_NVS, BIOS reserved)

3. ASSERT

Code Coverage measuring

• Dynamic tracing for calculating the sum of executed instruction: we just mark

addresses of executed instructions in Simics

• Traversal of a computing tree on a disassembled code for calculating the sum of

reachable instructions

• Distribution of statement code coverage from assembler level to C-source level by

Microsoft dbghelp.dll

• Estimation of branch/decision coverage [3]

• Measuring of function coverage

43

Code coverage =
σ 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝑤ℎ𝑖𝑐ℎ 𝑤𝑒𝑟𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

σ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑡𝑟𝑒𝑒
×100%

Traversal of a computing tree

Challenge in processing of indirect calls and jumps:

call qword ptr 12[rcx]

jmp rax

We collect addresses of indirect calls and jumps

during playing of test cases, addresses are stored in

a map that is used in a recursive procedure for

traversal of computing:

std::map<int*, std::set<int*>> ic_map;

44

Pseudo-code of traversal of computing tree

based on disassembled code

How long it works

45

• Now we deal with 10-20 SMI handlers

• s2e generates about 20000 test cases per handler in 2 hour

• 3 hours are necessary for playing 20000 test cases in Simics and at least 5

additional hours for fuzzing

• Total time in one thread: 10*(2 + 3 + 5) = 100 hours =~ 4 days

• Fortunately, each handler can be processed independently in parallel

• Test cases playing and fuzzing can be parallelized as well

• We use 2 servers, each one has 54 CPU and 64 GB RAM

• Total time for 2 servers: < 4 hours

Parallel execution

46

Dump SMRAM

Tests cases
generation for

handler 1

Tests cases
generation for

handler N

Tests cases
playing for
handler 1,
thread 1

Tests cases
playing for
handler N,
thread P Legend:

Windows

Linux

Tests cases
playing for
handler 1,
thread M

Tests cases
playing for
handler N,
thread T

Fuzzing for
handler 1,
thread 1

Fuzzing for
handler N,
thread P

Fuzzing for
handler 1,
thread M

Fuzzing for
handler N,
thread T

Results

47

Code Coverage Outcomes

48

SMM Handler Baseline1

Simple BlackBox
Fuzzing2 Symbolic Execution

Symbolic Execution
and Fuzzing

Handler 1 0 % 7 % 88 % 90 %

Handler 2 0 % 5 % 58 % 65 %

Handler 3 49 % 24 % 57 % 60 %

Handler 4 46 % 3 % 51 % 55 %

Handler 5 0 % 38 % 47 % 47 %

• 1 Code coverage is measured in normal boot process after power on

• 2 50000 random tests

Code coverage report

49

Asm statement coverage = 80.2 %
Source statement coverage = 89.0 %
Branch coverage = 44.3 %
Function coverage = 90.0 %

+ len = GetPathSize(path);

+- LIST_FOR_EACH (entry) {

- list = GET_LIST (entry, link);

- d-d- if (_memcmp(list->node.path, path, len) == 0){

- _memcpy(list->node.pwd, password, PWD_LEN);

- return SUCCESS;

}

}

+ dev = AllocatePool (D_LIST_SIZE);

+ d-d+ if (dev == NULL) {

- return ERROR;

}

+ _memcpy(dev->node.pwd, password, PWD_LEN);

The line

was covered

Some lines

in the macro

were covered,

some were not

The line

wasn’t covered

There was only

one decision

TRUE or FALSE

for the condition

Artificial
example

Automatically Detected Issues

50

SMM Handler Simple BlackBox Fuzzing Symbolic Execution
Symbolic Execution and

Fuzzing

Handler 1 1 2 2

Handler 2 1 1 2

Handler 3 0 0 0

Handler 4 0 0 0

Handler 5 0 0 0

• We worked with well-tested production-level version of BIOS. So, the number of real issues is not high, but the
issues were detected automatically.

Example of Issue report

51

1. Access outside of valid memory regions in (100.txt) on address 0x18f79859 (1 byte(s) 0)!

0x8cd9cf78 mov al,byte ptr [rax] line: 110 file: \lib\module.c

BYTE SomeType (void* Node)

{

ASSERT (Node != NULL);

=> return ((SOME_STRUCT *)(Node))->Type;

Call stack:

0x8cd9d038 line: 211 file: \lib\module.c

ASSERT (Node != NULL);

 return (BOOLEAN) (SomeType (Node) == SOME_TYPE);

Note: Stack trace truncated for display, report contains the full stack trace.

Test file

Unallowed

address

Instruction of the

violation
Fragment of

C-source that

performed the access

Call stack trace with

fragments of source code

C-file and line #

Artificial
example

Future plans

• Validation of integer/buffers overflows for checking memory corruptions in SMI

Handlers inside SMM

• Support of more SMI handlers, selection of appropriate variables to be symbolic

• Increase of code coverage by means of more symbolic variables

• Experiments with other Symbolic Execution engines

• Investigation of approaches for testing BIOS beyond SMM

52

References

1. Amal Khalil & Juergen Dingel, CISC836: Models in Software Development: Methods, Techniques,
and Tools, 2015.

2. AFL: http://lcamtuf.coredump.cx/afl/
3. Code Coverage: http://www.bullseye.com/coverage.html
4. Vitaly Chipounov, Volodymyr Kuznetsov, George Candea, “S2E: A Platform for In Vivo Multi-Path

Analysis of Software Systems”, 16th Intl. Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011

5. EFI scripts for IDA Pro: https://github.com/snare/ida-efiutils
6. Andriesse, D., Chen, X., van der Veen, V., Slowinska, A. and Bos, H., “An In-Depth Analysis of

Disassembly on Full-Scale x86/x64 Binaries”, USENIX-2016
7. Xeno Kovah and Corey Kallenberg, How Many Million BIOSes Would you Like to Infect?”, 2015
8. Extract SMI handlers: http://blog.cr4.sh/2016/10/exploiting-ami-aptio-firmware.html

53

Thank you!

54

