
Intro to Git and GitHub

Rory Crean

Researcher

Department of Chemistry - BMC

Uppsala University

18th December 2023

Part 1: Git

Git is a version control system used to track changes

1

Example local version control diagram,
Taken from: Pro Git book Advantages over “manual” version control:

• More automated and easier to use.
• More space efficient.
• Much less likely for user error.
• No need to write files like:

”final_version3_draft_V3.py”

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

2

You start by defining a folder for Git to Monitor

• New project, new folder.

• Store each project/folder in the same general place.

• Don’t have spaces in the file path.

• If you use dropbox/onedrive, don’t track this location.

My Setup

Each folder above has it’s own git repository

The three states of a file in Git

3

Modified Staged Committed

Git has no record of this file, if you
remove it now, Git will never know.

Image taken from: Pro Git book

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

The three states of a file in Git

3

Modified Staged Committed

Use ”git add [file_name]” to move a file
to the staging area.

Image taken from: Pro Git book

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

The three states of a file in Git

3

Modified Staged Committed

Use “git commit” to store a new version of the project.
Changes in the staging area are used in this commit.

Image taken from: Pro Git book

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

Tools/IDEs Can Help You Make Use of Git

4

Image taken from: gitkraken.comImage taken from: desktop.github.com

GitHub Desktop GitKraken

VSCode

https://help.gitkraken.com/gitkraken-client/stand-alone/
https://desktop.github.com/

Hands on Session 1:

Please go to:

https://rmcrean.github.io/bmc-git-and-github-

tutorial/

or:

https://github.com/RMCrean/bmc-git-and-

github-tutorial (and then click on the link on

the left handside.)

5

https://rmcrean.github.io/bmc-git-and-github-tutorial/
https://github.com/RMCrean/bmc-git-and-github-tutorial

Part 2: GitHub and Git Combined

6

The difference between Git and GitHub

7

Image taken from: https://blog.hubspot.com/website/git-vs-github

https://blog.hubspot.com/website/git-vs-github

• You can have several versions of the same project, this
can be useful both working alone or in a team.

GitHub is a place to store/host remote Repositories

8

Image taken from openclassrooms

Local means it’s on your pc (or
someone else’s pc, in which
case that version is local for
them).

Remote means you need to
connect to it (e.g. hosted on a
server).

Why Use a Remote:
• Back up your own work.
• To collaborate with other people.
• Share your work.

https://openclassrooms.com/en/courses/7476131-manage-your-code-project-with-git-and-github/7681891-work-in-your-local-git-repository

9

Not everything should be uploaded to GitHub

Example of things you should not add:
• Large datasets.
• Sensitive/Personal data.
• Passwords/usernames.
• System-specific files, e.g. .DS_Store on a Mac.

How to do this:
• Use a “.gitignore” file and add to it as you need.
• You should commit your .gitignore file.

• Use a “.gitignore” template file designed for your
programming language.

• Be careful about using “git add .”

More Git Vocabulary: Push and Pull

10

• “git push” – Update local commits to the remote repo.

• “git pull” – Get remote commits from your pc to remote repo

And one more:
• “git clone” – Make a local copy of a remote repo.

Image taken from: https://www.javatpoint.com/git-push

https://www.javatpoint.com/git-push

11

Hands on Session 2:

Please go to:

https://rmcrean.github.io/bmc-git-and-github-

tutorial/

or:

https://github.com/RMCrean/bmc-git-and-

github-tutorial (and then click on the link on

the left handside.)

https://rmcrean.github.io/bmc-git-and-github-tutorial/
https://github.com/RMCrean/bmc-git-and-github-tutorial

Part 3: Branches and Merging

12

Branches in Git

13

• Branches allow us to separate out different blocks of work.

• Once we’re happy with the changes on the branch, we want to
merge the changes (commits) back onto the main branch.

• If working alone, you can probably get away with not using branches.

Image taken from: https://coderefinery.github.io/git-intro/branches/

Image taken from: https://coderefinery.github.io/git-intro/branches/

https://coderefinery.github.io/git-intro/branches/
https://coderefinery.github.io/git-intro/branches/

Merging two branches can be done with either Git

or GitHub

14

Rough Protocol:

1. Make new branch.
2. Add changes to branch
3. Push changes to GitHub
4. Follow Instructions on GitHub

15

Hands on Session 3:

Please go to:

https://rmcrean.github.io/bmc-git-and-github-

tutorial/

or:

https://github.com/RMCrean/bmc-git-and-

github-tutorial (and then click on the link on

the left handside.)

https://rmcrean.github.io/bmc-git-and-github-tutorial/
https://github.com/RMCrean/bmc-git-and-github-tutorial

Summary

16

Image taken from openclassrooms

• It’s easier to keep things simple, especially while learning in the
beginning.

https://openclassrooms.com/en/courses/7476131-manage-your-code-project-with-git-and-github/7681891-work-in-your-local-git-repository

21

BELOW ARE SLIDES I

CONSIDERED USING BUT

DIDN’T DUE TO TIME

CONSTRAINTS

Trunk based development can be a good strategy for

small groups

X

• There are a lot of branching strategies…

• Most are inappropriate for small scientific projects involving you and
a few colleagues.

• Trunk based development can be a good idea…

Image taken from: https://www.optimizely.com/optimization-glossary/trunk-based-development/

main/

https://www.optimizely.com/optimization-glossary/trunk-based-development/

Practicing trunk based development

X

Image taken from: https://www.optimizely.com/optimization-glossary/trunk-based-development/

main/

• You have one main branch which holds code you’re all happy with.
• New features/ideas get implemented on a different branch.
• Once happy with the new feature, it is merged onto the main branch.
• Don’t take too long to merge the new feature.

• Discuss and plan with co-workers who will do what. Working on different
aspects of a project can make the merging process much much much easier

https://www.optimizely.com/optimization-glossary/trunk-based-development/

