
ROBERT: ROBust and privacy-presERving
proximity Tracing

PRIVATICS team, Inria, France
Fraunhofer AISEC, Germany

May 31, 2020
v1.1

The main goal of proximity tracing mobile applications is to notify people that they have been
in close proximity of COVID-19 virus carriers in the last X days even though the carriers who did
not have symptoms and were not even tested at the time of interaction. Ensuring the highest data
protection and security standards will encourage a quick and broad adoption by citizens.

Any proposed solution should preserve user privacy, but should also be robust against attacks
that aim at decreasing the performance or reliability of the system. A system that does not protect
user privacy will not be accepted neither by the citizens nor by the Data Protection Authorities. A
system that does not provide reliable results will just be useless. The challenge is to build a solution
that is privacy-preserving and robust against malicious users and “honest-but-curious” authorities at
the same time.

Although it might seem attractive in term of privacy to adopt a fully decentralized solution, such
approaches face important challenges in term of security and robustness against malicious users [7].
This document proposes a ROBust and privacy-presERving proximity Tracing (ROBERT) scheme
that relies on a federated server infrastructure and temporary anonymous identifiers with strong
security and privacy guarantees.

The ROBERT scheme is the result of a collaborative work between Inria and Fraunhofer AISEC,
and a candidate proposal for the Pan European Privacy-Preserving Proximity Tracing (PEPP-PT)
initiative. This proposal is not final and is subject to discussions, modifications and improvements.

1. Introduction

The COVID-19 virus is hard to trace because many people can be carriers – and hence contagious – without
knowing it and before experiencing any symptoms. Therefore, COVID-19 virus carriers may transmit it to
many other people in their vicinity. Successfully containing the COVID-19 pandemic closely depends on the
ability to quickly and reliably identify those who have been in close proximity to a contagious individual. In
this context, a mobile application that uses a short-range communication in Bluetooth (that is available in all
modern smartphones) is able to detect when two individuals are in close proximity. Such applications can later
allow users to know that they have been exposed to COVID-19 virus carriers. Such an alerting system would be
very beneficial to reduce the infection rate [4, 5]. Ensuring the highest data protection and security standards
will encourage fast and a broad adoption from citizens. This work presents ROBERT, a robust and privacy
preserving proximity tracing scheme.

1.1. Why is Proximity Tracing Useful?

The main goal of proximity tracing mobile applications is to notify people that they have been in close proximity
to COVID-19 virus carriers.

We use the following terminology:

• A user is infected if she is a carrier of the COVID-19 virus.

• A user is diagnosed if she has been tested and diagnosed COVID-positive.

1

• An infected user can be contagious without knowing it and before experiencing any symptoms. We call the
contagious period (CT) an upper-bound on the number of days a user that has been diagnosed positive
has been contagious1.

• A user is qualified as ”at risk of exposure” if she has been in the vicinity of a certain number of infected
user(s) during the past CT days. Further criteria such as proximity to the infected user or the duration of
a contact can be set by the health authority and can be used to parameterize the risk scoring function.

Figure 1 illustrates an example where an infected user C transmits it to user A before being tested and isolated.
User A infects in turn user B, who infects D.

Figure 1: Example of the infection process without proximity tracing App.

Figure 2 illustrates the effect (and benefit) of proximity tracing. C is infected and diagnosed COVID-positive.
User A gets notified and become ”at risk” users. A gets tested and is diagnosed COVID-positive. B is in turn
notified, becomes ”at risk” and is confined before meeting D. Consequently, B and D do not get exposed, and
therefore infected, anymore.

Figure 2: Example of the infection process with proximity tracing App that starts with person C being infected.

1.2. Design Goals

Our scheme has been designed to reliably notify individuals of past collocation with an infected person while
minimizing the impact on the individuals’ privacy. Our scheme provides the following goals as detailed in [3]:

1For simplicity, we consider that CT is fixed and the same for all users. In practice, this value could be adapted to each infected
user by doctors.

2

• Open participation. Participants are free to join or leave the system at any time.

• Simple and transparent. The system is simple to use and understand.

• Easy deployment. The scheme is easy to deploy and requires only minimal infrastructure.

• Anonymity. The smartphone App as well as the back-end server database do not collect or store any
personal data.

• Federated infrastructure. The system must scale across countries, ideally worldwide. In order to
preserve countries’ sovereignty, a trusted federation of infrastructures is necessary.

1.3. Security and Privacy Requirements

Before describing our proximity tracing scheme, we highlight the main security and privacy considerations (these
considerations are extracted from Section 3 of [3]).

• Accuracy and reliability of proximity data. Though users are free to join or leave the system, the
scheme should not miss an exposure to an infected user. Moreover, the scheme should be robust against
adversarial attacks from both the users or the database server.

• Anonymity of users from other users. The proposed scheme should guarantee that no user can
learn any information that cannot be inferred just from knowing whether they collocated with another
user (diagnosed as COVID-positive or not). Similarly, any colluding users should learn only what can be
deduced from the individual information that each colluding member is entitled to know.

• Anonymity of users from a central authority. The central authority should not be able to learn in-
formation about the identities or locations of the participating users, whether diagnosed as COVID-positive
or not.

1.4. Adversarial Model

We assume the following adversarial model:

• Users can be malicious. They can, for example, perform active and passive attacks, eavesdrop, inject
bogus messages, modify messages, pollute users’ contact lists and develop their own applications.

• The authority running the system, in turn, is ”honest-but-curious”. Specifically, it will not deploy
spying devices or will not modify the protocols and the messages. However, it might use collected
information for other purposes such as to re-identify users or to infer their contact graphs. We assume the
back-end system is secure, and regularly audited and controlled by external trusted and neutral authorities
(such as Data Protection Authorities and National Cybersecurity Agencies).

1.5. Design constraints

To ensure compatibility between different mobile operating systems and due to restrictions in the Bluetooth
advertisement, the application can only broadcast 16-byte messages (128 bits) over the device Bluetooth interface.

2. High-Level Description and Assumptions

2.1. Architecture considerations

Our proximity tracing scheme relies on an App installed on each mobile phone, supported by a back-end server.
In a such distributed architecture, two considerations are important (1) where the data are stored and (2) where
the status of the user (at risk or not) is verified. In our scheme, the data to be stored is shared between the App
and back-end server. The data collection of proximity contacts is performed and stored locally on each App.
This proximity contacts are never revealed to the server except when a user is diagnosed COVID-positive. In
this specific case, upon agreement from the user and authorisation from the health authority, the App shares,
anonymously, with the server the proximity contacts that it has collected during the estimated contagious period,
typically the last 14 days. This data is used by the back-end server to compute an exposure risk score for each
of the individuals, defined as anonymous identifiers, who have been in contact with this infected user. Users
periodically probe the server to know whether their risk score indicates that they are at risk. As a result, users
only learn one bit of information from the server (“at risk” or not “at risk”). They don’t get any information

3

about other users and, in particular, they don’t learn who potentially exposed them. The back-end server only
maintains the list of exposed users (through anonymous pseudonyms as no personal information are maintained
on the server) with their risk scores. These risk scores can easily be adapted according the evolution of the
pandemic or the evolving knowledge of the epidemiologists on the COVID-19 virus.

Other, qualified as “decentralised”, schemes broadcast to each App an aggregate information containing the
pseudonyms of all the infected users [1]. This information allow each App to decode the identifiers of infected
users and verify if any of them are part of its contact list. Our scheme does not follow this principle because we
believe that sending information about all infected users reveals too much information. In fact, it has been shown
that this information can be easily used by malicious users to re-identify infected users at scale [7]. We claim
that infected user re-identification must absolutely be avoided since it could lead to stigmatisation. Instead, we
chose to securely store this information on a central server.

Although ROBERT is proposed as a ”proximity-tracing” protocol, ROBERT is actually a framework to
assess the risk exposure of its users in order to fight pandemics. In our proposal, and as opposed to decentralized
schemes, users do not get any information about the status of their contacts. In particular, they do not learn
how many of their contacts are infected, nor which of them are. Instead, users get informed about their exposure
level only upon the computation of a risk score by the server. The risk score may be based on proximity
information, but also on other parameters that epidemiologists will define and adapt according to the evolution
of the pandemic. Finally, the risk score algorithm will also depend on how the App will actually be used by the
health authority. In fact, the algorithm will probably be different if the App is used to notify users that need to
get tested in priority or if it is used to decide who should stay/go into confinement.

2.2. System Overview

All the notations used in this paper are summarized in Table 1. The proposed system is composed of users who
install the Proximity Tracing Application, App, and a back-end server under the control of the authority. We
assume that the back-end server is configured with a well-known domain name, certificate and is highly secured.

Apps interact with the system through the four following procedures:

• Initialization: When a user wants to use the service, she installs the application, App, from an official
App store (Apple or Google). App then registers to the server that generates a permanent identifier (ID)
and several Ephemeral Bluetooth Identifiers (EBIDs). The back-end maintains a table, IDTable, that
keeps an entry for each registered ID. The stored information are “anonymous” and, by no mean, associated
to a particular user (no personal information is stored in IDTable).

• Proximity Discovery: After registering to the service, App broadcasts HELLO messages over its
Bluetooth interface and collects HELLO messages from other devices, running the same application2, in the
vicinity. These HELLO contain several fields, and in particular, an Ephemeral Bluetooth Identifier. The
collected HELLO messages are stored, together with the time of reception (and possibly other information
such as the strength of the Bluetooth signal or the user’s speed) into a local list of the application, the
LocalProximityList.

• Infected User Declaration: When an individual is tested and diagnosed COVID-positive, and after an
explicit user consent and authorisation (from the medical services), her smartphone’s application uploads
its LocalProximityList to the authority server, Srv. Srv then flags as “exposed” all IDs of IDTable of
which at least one EBID appears in the uploaded LocalProximityList. It is important to note that:

1. The server does not learn the identifiers of the infected user’s App but only the EBIDs contained in
its LocalProximityList (list of Ephemeral Bluetooth Identifiers she was in proximity with).

2. Given any two random identifiers of IDTable that are flagged as “exposed”, the server Srv can not
tell whether they appeared in the same or in different LocalProximityList lists (the proximity links
between identifiers are not kept and, therefore, no proximity graph can be built).

• Exposure Status Request: App queries (pull mechanism) the “exposure status” of its user by probing
regularly the server with its EBIDs. The server then checks how many times the App’s EBIDs were
flagged as “exposed” and computes a risk score from this information (and possibly other parameters, such
the exposure duration or the user’s speed/acceleration during the contact). If this score is larger than a
given threshold, the bit “1” (“at risk of exposure”) is sent back to the App and her account is deactivated,
otherwise the bit “0” is sent back. Upon reception of this message, a notification is displayed to the user
that indicates the instructions to follow (e.g., go the hospital for a test, call a specific phone number, stay
in quarantine, etc.).

2Federation is also considered for users who are traveling abroad. See Section 8.

4

Time-related Assumptions: This ROBERT protocol assumes that all the smartphones and the server Srv
are loosely time-synchronized (thanks to NTP or any other time synchronisation mechanism like cellular mobile
phone network information, or GPS time information, etc.). Time is expressed as the NTP “Seconds” value,
which represents, for era 0, the number of seconds since 0h January 1st, 1900 UTC 3.

Time is discretized into epochs (e.g., of 15 minutes)4. We define as epoch duration sec the duration of an
epoch in seconds.

2.3. Risk Scoring Considerations

Specific and effective risk scoring is out of scope of this paper. We assume, in this proposal, that (1) the server
returns a binary reply to its users if they are at risk or not and (2) the reply is only based on a calculated risk
score value. These two assumptions need to be discussed. It might be useful, for several reasons, to return a
probability value instead of a binary reply. Furthermore, adding some randomness in the query reply mechanism
could improve privacy (see Section A).

We further assume that it is the responsibility of the health authorities and epidemiologists to provide input to
such an algorithm. This algorithm should be public and may be adapted over time. Modifications and actionable
advice based on the risk scoring must be done in accordance with epidemiology research.

In our design, scores are computed on a trusted server and are used to notify users. While this offers more
flexibility to adapt the scoring algorithms as needed and leads to more effective systems, it also increases the
resilience of the systems against attackers that aim at identifying infected users: In order to be notified, an
attacker must inject his own HELLO messages into a victim’s App in such a way that the risk scoring algorithm
in the back-end selects him for notification. This makes such an attack more difficult as it requires an attacker
to use invasive tools or put himself at risk, consequently reducing the scalability of such an attack. We consider
especially the latter property to be a rather strong deterrent.

In contrast, processing the risk of a contact on the phone upon reception of a notification inherently reduces
the system to tracing, even for very brief encounters, between users and infected. This has major implications on
privacy as using contextual metadata makes it trivial to identify infected users [7]. The system’s design would be
based on the fact that all users which at any point ever saw an infected user’s HELLO can now use contextual
metadata (such as a meeting date and time) to identify the infected users.

3. Initialisation

This section describes the initialisation process on the server and the application.

3.1. Server Set Up

The back-end server is initialized at the beginning of the proximity tracing official period under the control
of the Authority. In order to be able to determine in which period and epoch the system is, the server stores
Tptsstart, the time when the proximity tracing service has been started in the country. From this timestamp, the
server maintains a counter i, initialized to 0, representing the current epoch number coded by 24 bits.

We also assume that the server is configured with:

-KS (“Server Key”): a L-bit long key, with L >= 128 to be defined, only known by the server5.

-KG (“Federation Key”): a L-bit long key, with L >= 128 to be defined, shared between all servers in Europe
(used for federation, see Section 8).

-(skS ,pkS) (”Registration key-pair”) : an asymmetric-key pair, whose private key skS is known only from
the server, and public key part is known to every App. This key-pair is defined over the elliptic curve
NIST-P256, with pkS = skS .G, where G is the base point of prime order on the curve defined by the
specifications6.

-CCS (“Country Code”): a 8-bit long value that codes the country where the server provides service (used
for federation, see Section 8). These country codes should be known to all international systems where
federation is possible. For example, France could use the code “33”, Germany the code ”49”, ...

3https://en.wikipedia.org/wiki/Network Time Protocol
4This value of 15 minutes is the rotation period of random address recommended in the Bluetooth v5.1 specification [6, Vol 3, Part

C, App. A]). We assume that these epochs and rotation periods are synchronized.
5Note that this key can be renewed every few epochs for better security. In this case, the server needs to store all the keys that

were generated during the last CTK epochs, where CTK = 86400 ∗ CT/epoch duration sec.
6See Annex D.1 of NIST FIPS186-4, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

5

https://en.wikipedia.org/wiki/Network_Time_Protocol
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

Note that the server relies on a security module to store and manipulate its secrets and the secrets shared
with mobile applications.

In addition, the server maintains a local database, IDTable (see Section 3.2 for details).

3.2. Application Registration (Server Side)

3.2.1. The IDTable database

For each registered application AppA, belonging to an anonymous user UA, the server Srv keeps a record in a
local database IDTable with the following information:

-Kauth
A (“Authentication Key for A”): a L-bit long key, with L ≥ 128 to be defined, shared with AppA, that is

used to authenticate AppA messages.

-Kenc
A (“Encryption Key for A”): a L-bit long key, with L ≥ 128 to be defined, shared with AppA, that is used

to encrypt sensitive information sent from the server to A.

-IDA (“Permanent IDentifier for A”): a 40-bit identifier that is unique for each registered App, and generated
randomly (random drawing process without replacement to avoid collisions). This permanent ID is only
known to the server.

-UNA (“User A Notified”): this flag indicates if the associated user has already been notified to be at risk of
exposure (“true”) or not (“false”). It is initialized with value “false”. Once set to “true”, the user is not
allowed to make any additional status request. The flag can be reset if the user can prove that she is not
at risk anymore (for example by proving that she got a test and the result was negative).

-SREA (“Status Request Epoch”): a 24-bit value that indicates the last epoch when UA has sent a “Status
Request”.

-LEEA (“List of Exposed Epoch(s)”): each time one of A’s EBID appears in the proximity list of an infected
user, the epoch j when the encounter happened between the infected user and UA is added to this list.
This list of epochs reflects the exposure of the user (temporal and frequency information) and is used,
together with other information (e.g. the duration and proximity of a contact to an infected person), to
compute the risk score. Note that a given epoch i can appear several times in this list if several HELLO
messages sent by AppA appeared in the proximity list(s) of one of several infected users during that epoch.

3.3. Application Registration (Application Side)

A user UA who wants to install the application on his device must download it from the official Apple or
Android stores. After installing the application AppA, UA needs to register to the back-end server. During this
registration phase:

• A proof-of-work (PoW) system (like a CAPCHA) is implemented in order to avoid automatic registrations
by bots or denial of service attacks (the details of this PoW system are out of scope of this document).

• AppA, the application installed on UA’s device, is configured (over a TLS channel) with:

– The current epoch value, i.

– The duration of an epoch, epoch duration sec.

– The starting time of the following epoch, Tptsstart + (i+ 1) ∗ epoch duration sec (This is required for
synchronization with the server).

– The keys Kauth
A and Kenc

A , shared with the server.

– An initial list of T (EBIDA,i, ECCA,i) pairs (see Section 4 for more details).

The keys Kauth
A and Kenc

A are exchanged by means of a key establishment procedure:

- AppA generates an ephemeral key pair (skeA, pkeA = skeA.G) and transmits the value pkeA to the server
in its registration message

- A shared secret SharedSecret, the x-coordinate of the point (skeA.skS).G, is obtained by AppA and the
server as follows:

- AppA computes skeA.pkS

6

- The server computes skS .pkeA

- AppA and the server derive Kauth
A as Kauth

A = HMAC SHA256(SharedSecret, ”authentication key”)

- AppA and the server derive Kenc
A as Kenc

A = HMAC SHA256(SharedSecret, ”encryption key”)

4. Generation of the Ephemeral Bluetooth Identifiers

During registration and then regularly, i.e. every M epochs (value to be defined), each registered user UA

connects to the server in order to obtain a list of the M (EBIDA,i, ECCA,i) pairs for the M following epochs.
For efficiency, this request can be performed together with an Exposure Status Request (see Section 6.2).

Upon receiving such a request, the server generates and sends toAppA an encrypted list of T (EBIDA,i, ECCA,i)
pairs for the upcoming T epochs7, where:

-EBIDA,i (”Ephemeral Bluetooth IDentifier for A”): a 64-bit identifier generated for the epoch i as:

EBIDA,i = ENC(KS , i | IDA)

where ENC is a 64-bit block cipher, for example, SKINNY − 64/192 (a block cipher of block size 64 bits
and key size 192 bits) [2].

-ECCA,i (”Encrypted Country Code”): an 8-bit code that indicates, in an encrypted form, the country code
of EBIDA,i. This field is used for federation purposes and can only be decrypted by back-end servers
that have federation agreements. More specifically. ECCA,i is the country code CCA encrypted using
AES −OFB with key KG and IV EBIDA,i, i.e.,

ECCA,i = MSB(AES(KG, EBIDA,i | 064))⊕ CCA

The encryption of the list is performed with the authenticated encryption algorithm AES −GCM , using key
Kenc

A with a random 96-bit IV and a 128-bit tag.

5. Proximity Discovery

In this phase, AppA performs two operations simultaneously:

- HELLO Message Broadcasting and,

- HELLO Message Collection.

5.1. HELLO Message Broadcasting

AppA continuously broadcasts HELLO messages on its Bluetooth Low Energy interface. These HELLO messages
are composed of 4 different fields and have a total length of 128 bits (16 bytes) (see Figure 3). The HELLO
messages broadcast at epoch i, HELLOA,i, are defined as:

MA,i = [ECCA,i | EBIDA,i | Time]

HELLOA,i = [MA,i | MACA,i]

where:

-ECCA,i: the encrypted country code (8 bits).

-EBIDA,i: Ephemeral Bluetooth ID at epoch i, generated by the back-end (64 bits).

-Time: 16-bit timestamp (to encode the fine-grain emission time). It contains the 16 less significant bits of the
current NTP ”Seconds” timestamp of AppA (which represents, for era 0, the number of seconds since 0h
January 1st, 1900 UTC). Since it is truncated to 16 bits, it covers a bit more than 18 hours, what is much
larger than the epoch duration. This field is used to mitigate replay attacks.

-MACA,i: a HMAC − SHA256(Kauth
A , c1 | MA,i) truncated to 40 bits (c1 is the 8-bit prefix ”01”). This field

is used to prevent integrity attacks on the HELLO messages.

Note: The HELLO contains a ”country code” that is encrypted and is therefore not visible by other devices.
It is used in case of federation by the foreign back-end servers (see Section 8 for more details).

7Note that the server does not store these pairs.

7

Figure 3: Proximity Discovery: the App continuously broadcasts HELLO messages and collects HELLO messages
sent by nearby devices running the same application.

5.2. HELLO Message Collection

AppA continuously collects HELLO messages sent by nearby devices running the same application.
Upon receiving HELLOA,i, AppA:

1. parses8 HELLOA,i to retrieve eccA (8 bits), ebidA (64 bits), timeA (16 bits) and macA (40 bits).

2. obtains a 32-bit NTP ”Seconds” timestamp, time′A.

3. checks that:
|timeA − TRUNC16(time′A)| < δ

where δ is a configurable time tolerance (typically a few seconds, value to be defined)9.

4. stores, in its LocalProximityList the following pair10:

(HELLOA,i, time
′
A)

Note: Entries in LocalProximityList are automatically deleted after CT Days (the value CT needs to be
defined with the health authority).

6. Infected User Declaration

6.1. Upload by the Application

Upload Authorization Procedure: If user UC is tested and diagnosed COVID-positive at a hospital or medical
office and it is estimated that she was contagious from ContStartC to ContEndC (expressed in seconds using
the standard NTP ”Seconds” system), she is proposed to upload to the server each (HELLO, T ime) pair of her
LocalProximityList that satisfies:

ContStartC < Time < ContEndC

In this document, we do not detail the interactions between AppC and the health authority. In particular, we do
not present the security/authorization procedure that verifies that only authorized and positively-tested users
are allowed to upload their LocalProximityList11 (note that during this upload, AppC does not reveal any of its
EBIDs to the server).

8In this paper, we use lowercase for variables that result from a parsing operation.
9Note that since timeA is only 16-bit long, this check is not enough to detect replay attacks of HELLO messages that were

generated more than 216 seconds (i.e., a bit more than 18 hours) before time′A. In case UA is diagnosed positive on COVID-19,
an additional test is performed by the server (Section 7) to further detect these attacks.

10Other information that could be useful to compute the risk score, such as the message’s reception power or the user’s
speed/acceleration during the contact, could be added.

11One solution under study is to consider that the user obtains an authorization token from the hospital or the medical office when
it is diagnosed COVID-positive. The User can then use this authorization token to validate its LocalProximityList upload.

8

Figure 4: Infected Node Declaration: upon agreement, a user tested COVID-positive uploads her LocalProxim-
ityList to the server.

Upload Mechanism: A LocalProximityList contains the EBIDs of the devices that the infected user has
encountered in the last CT days. This information together with the timing information associated with each
HELLO message could be used to build the de-identified social/proximity graph of the infected user. The
aggregation of many such social/proximity graphs may lead, under some conditions, to the de-anonymization of
its nodes, which results in the social graphs of the users.

Would that be a concern, it is necessary to ”break” the link between any two EBIDs contained in the
LocalProximityList to prevent the server from getting get this information. Therefore, instead of uploading the
LocalProximityList our scheme uploads each of its elements independently.

Different solutions can be envisioned to achieve this goal:

• The (HELLO, T ime) pairs of the LocalProximityList are sent to the server one by one using a Mixnet12.
Upon reception of these messages, the server won’t be able to associate them with a LocalProximityList if
the upload is spread over a long period of time.

• The LocalProximityList is uploaded on a trusted server (for example at a hospital or health organization)
that mixes all the (HELLO, T ime) pairs of all infected users’ LocalProximityList. The back-end server
has only access to the exposed entries via a specific API provided by the trusted server.

• The back-end server is equipped with some secure hardware component that processes the uploads of the
LocalProximityList. The back-end server has only access to the exposed entries via a specific API provided
by the secure hardware module.

6.2. Server Operations

Upon reception of a hA = (HELLOA, T imeA), the server:

1. parses hA to retrieve eccA (8 bits), ebidA (64 bits), tA (16 bits), macA (40 bits) and TimeA (32 bits).

2. checks that:
|tA − TRUNC16(TimeA)| < δ

where δ is a configurable time tolerance (typically a few seconds, value to be defined). hA is rejected if this
test is not satisfied.

3. decrypts eccA, using KG, to recover the message country code, ccA. If ccA is different from the server’s
country code, CCS , and corresponds to a valid country code, hA is forwarded to the back-end server
managing this country using the federation procedure in place (See Section 8). Otherwise it continues.

4. computes ENC−1(KS , ebidA) to retrieve iA | idA, where iA is the epoch number corresponding to ebidA
and idA is the permanent identifier13.

12Since all mobile telecom operators are using NAT, it should be studied whether the use of a Mixnet or proxy is really needed.
13In the case where KS renewal is implemented, KS is selected based on T imeA. In case the procedure fails, and if T imeA is close

to a boundary between the validity period of two KS values, the step 4 is performed again with the previous/next value of KS .

9

5. verifies that idA corresponds to the ID of a registered user, otherwise hA is rejected silently14.

6. checks that TimeA corresponds to epoch iA
15:

|(TimeA − Ttpsstart)/epoch duration sec− iA| ≤ 1

(note that a difference of 1 may happen if the HELLO message is sent at the very end of the epoch due to
transmission and processing times). hA is rejected if this test is not satisfied.

7. retrieves from IDTable, KA, the key associated with idA.

8. verifies if the MAC, macA, is valid as follows:

macA == HMAC − SHA256(KA, c1 | eccA | ebidA | tA)

If macA is invalid, hA is rejected silently16.

9. adds iA in LEEA
17.

10. erases (HELLOA, T imeA).

7. Exposure Status Request (ESR)

Figure 5: Exposure Status Request: the App regularly requests the server to know if any of its EBID appeared
in any HELLO messages collected by an infected users.

In order to check whether user UA is ”at risk”, i.e. if she has encountered infected and contagious users in the
last CT days, application AppA regularly18 sends ”Exposure Status” Requests (ESR REQUEST) to the server
Srv for IDA. The server then computes a ”risk score” value, derived in part from the list LEEA corresponding
to IDA. The server replies with a ESR REPLY message that is set to ”1” when the user is ”at risk” (i.e. if
the ”risk score” is larger than a threshold value) or to ”0” otherwise.

Application processing: AppA queries the server by sending the following request over an TLS channel:

ESR REQUESTA,i = [EBIDA,i | i | Time | MACA]

with
MACA,i = HMAC − SHA256(Kauth

A , c2 | EBIDA,i | i | Time)
where:

- c2: Fixed prefix ”02” (8 bits).

- EBIDA,i: Ephemeral Bluetooth ID of the epoch i (64 bits).

- i: epoch of validity of EBIDA,i, either the current epoch if AppA has an EBID for the current epoch, or
the latest epoch for which AppA has an EBID (24 bits).

- Time: 32-bit timestamp in seconds, corresponding to the transmission time.
14In the case where two KS values are possible (see footnote 13) and hA is rejected, the other key should be tested in Step 4.
15In the case where two KS values are possible (see footnote 13) and the following test fails, goto step 4 to test the other key value.
16In the case where two KS values are possible (see footnote 13) and macA is incorrect, goto step 4 to test the other key value.
17Note that at each epoch i, the server cleans up the LEEA list of each registered IDA by removing the ”expired” entries. More

precisely, all epochs j of LEEA such that (i− j) >= (ct ∗ 24 ∗ 3600/epoch duration sec) are deleted.
18The queries are sent regularly and at most every T epochs. If a user is allowed to perform N queries per day, T is defined as

T = 86400/(N ∗ epoch duration sec).

10

Server processing: Upon the reception of a request, ESR REQUESTA,i, at epoch i, the server:

1. parses ESR REQUESTA,i to retrieve ebidA, iA, timeA and macA.

2. verifies that timeA is close to its current time.

3. retrieves the permanent identifier idA and epoch i′A by decrypting ebidA, as

i′A | idA = ENC−1(KS , ebidA)

4. verifies that iA == i′A, otherwise the message is rejected.

5. uses idA to retrieve from IDTable the associated entries: Kauth
A , UNA, SREA, LEEA.

6. verifies that
macA,i == HMAC − SHA256(Kauth

A , c2 | ebidA | iA | tA)

If macA is incorrect, the message is silently rejected;

7. verifies that UNA is ”false” (User Notified) in order to check that the user has not already received a ”At
Risk” notification. If the user has already been notified, the message is silently rejected.

8. verifies that (i−SREA) ≥ T , where T is minimum number of epochs between two consecutive ESR REQUEST .
Otherwise, the message is silently rejected.

If the ESR REQUESTA,i is valid, the server:

1. updates SREA with the current epoch number, i, in IDTable.

2. computes a ”risk score” value, derived in part from the list LEEA.

3. Two situations are then possible:

• If the computed score indicates that the user is at risk of exposure, the server sets UNA at ”true”.
It means that App AppA cannot perform any new request until user UA is tested and her status
updated. An ESR REPLYA,i message set to ”1” (at risk of exposure) is then returned to the user.

• If the computed score does not indicate any significant risk, an ESR REPLYA,i message set to ”0”
is returned to the user.

Application processing: Upon receiving the ESR REPLYA,i message:

1. AppA replies with an ACK message.

2. If ESR REPLYA,i is set to ”1”:

• AppA keeps broadcasting HELLO messages but stops sending ESR REQUEST requests to the
server.

• User, UA, receives a notification from AppA with some instructions (for example to go to the hospital
to get tested, to call a specific number or go on quarantine).

8. Federation

In order for our system to be an effective tool, it must operate across neighboring states. This is especially true
in the case of Europe, where freedom of movement is a core value.

We therefore propose the use of a distributed, federated architecture where countries may operate their
own back-ends and develop their own Apps. This is also practical as we can expect each instance to require
country-specific options with respect to health system integration and localization.

A detailed specification of a federation protocol remains to be defined in agreement with all other partners
of the PEPP-PT initiative19. However, the proposed structure of the HELLO message allows some elegant
solutions. We propose a standard format for all HELLO messages as follows20:

ECCCountry(8bits) | EBID(64bits) | t(16bits) | MAC(40bits)

19https://www.pepp-pt.org
20Actually the adopting countries should only agree to use the 8 first bits of the HELLO message as the ”Encrypted Country Code”

that is encrypted using the following 64 bits as an IV of a stream cipher, as detailed in Section 4.

11

https://www.pepp-pt.org

Given this simple definition, a User Bernard from a given country, let’s say France, could visit another country,
let’s say Germany, and still be able to use his national application. The protocol works as follows:

• When Bernard goes to Germany, his App broadcasts, at each epoch j, HELLOFR,j messages as defined
in Section 4.

• When Bernard meets a German User, let’s say Uta, at epoch i:

– Uta stores the (HELLOFR,i, time) pair in her LocalProximityList.

– Bernard stores the (HELLODE,i,time
′) pair in his LocalProximityList (where HELLODE,i is the

HELLO message broadcast by Uta at epoch i).

• If Uta is later tested and diagnosed COVID-positive:

– Uta uploads her LocalProximityList on the German back-end server.

– The German back-end server obtains the (HELLOFR,i,time) pair and processes it as follows:

∗ It parses HELLOFR,i to retrieve eccFR (8 bits), ebidX (64 bits), time′X (16 bits) and macX (40
bits).

∗ decrypts eccFR, using KG, to recover the message country code, CCFR. Since CCFR is the
country code for France, the (HELLOFR,i,time) pair is forwarded to the French back-end server.

∗ The French server processes it as described in Section 6.

• Similarly, if Bernard is later tested and diagnosed COVID-positive in France:

– Bernard uploads his LocalProximityList on the French back-end server.

– The French back-end server obtains the (HELLOGE,i,time
′) pair and processes it as follows:

∗ It parses HelloGE,i to retrieve eccGE (8 bits), ebidX (64 bits), timeX (16 bits) and macX (40
bits).

∗ decrypts eccGE , using KG, to recover the message country code, CCGE . Since CCGE is the
country code for Germany, the (HELLOGE,i,time

′) pair is forwarded to the German back-end
server.

∗ The German server processes it as local pair.

This concept allows us to successively on-board other back-ends with potentially different EBID schemes. It
further allows us to improve upon the format without requiring changes to the federation protocols.

A. Towards Probabilistic Notifications

As described in previous work [3, 7], all proximity-tracking schemes are vulnerable to the ”one entry” attack. In
this attack, the adversary has only one entry, corresponding to UserT , in her LocalProximityList21. When the
adversary is notified ”at risk”, she learns that UserT was diagnosed COVID-positive. The ROBERT scheme,
however, mitigates this attack by:

• (1) Requiring to all users to register (anonymously) to the server.

• (2) Not allowing a user that receives an ESR REPLY message set to 1 to query the server anymore.

As a result, a registered user can only perform the attack once and then will be blocked by the system. She is
therefore limited to one victim.

We argue that the only way to prevent this attack is to use probabilistic notifications in order to introduce
some ”deniability”. In such a scheme, the server that receives a ESR REQUEST message would reply:

• ”0” (i.e. not at risk) if the User’s ID is not in the list of exposed IDs.

• ”1” if the User’s ID is in the list of exposed IDs or if it is randomly selected by the server (the server
selects additional users to receive a ”1” reply with probability p).

21This attack can easily be achieved by keeping the Bluetooth interface off, switching it on when the adversary is next her victim
and then switching it off again.

12

As a result, if the user receives a ”1” back, she does not know whether it is because she has been exposed or
whether she has been randomly selected by the server. Since the user cannot query the server anymore (as it
already received a reply ”1” back), she cannot send additional requests to refine his attack. We acknowledge that
this attacks remains possible by n colluding nodes that target one user. In this case, the n colluding nodes will
all get a ”1” back and will find out the exposure status of their victim. The scalability of the attack is however
reduced since it now requires n adversaries to target one victim.

The side effect of this proposal is that it introduces some false positives, i.e. some people will be notified
whereas they are not really ”at risk” (at least according to the proximity risk score). Is this acceptable or not?
There are several elements of answer to this question. First, we need to acknowledge that proximity tracing is not
perfect, and that there will be anyway false positives or false negatives. In this context, is it really problematic
to add 5% or 10% more false positives? Second, the answer to this question may also depend on what the
application is used for. If the App is used to target users that should get tested, we believe that testing 5 or 10%
more users randomly should be quite acceptable. If the App is used to notify users to go in quarantine, false
positives could be more problematic...

B. Server Security Considerations

This proposal assumes that the back-end server is correctly secured, implementing the best state-of the art
counter-measures and deploying the required security measures to prevent intrusions 22.

Its security will be audited, tested and validated by the competent national bodies. Different measures are
already considered like:

- A secured logging systems (in order to allow regular audits of the operations for secured or privacy checks).

- The use of hardware or at least software security modules for secure cryptographic processing, key generation
and protection.

C. Authenticated Requests

ESR Request is an authenticated request, enabling AppA to make the server perform an operation on the data
associated to user A. Other types of authenticated requests can be defined in a similar manner to trigger other
operations, for example to unregister a user.

Any type of authenticated request is built in the same manner as an ESR request (see Section 7), with the
exception that the constant c used in the MAC computation must be different.

For example, the following values of c could be used:

Code Request Type
1 Hello message
2 ESR Request
3 Unregister
4 DeleteHistory

The server processing part is identical up to step 6 (included). These steps validate the request. In following
steps the operations specific to the request are implemented.

References

[1] Decentralized privacy-preserving proximity tracing.

[2] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki,
Pascal Sasdrich, and Siang Meng Sim. The skinny family of block ciphers and its low-latency variant mantis.
In Proceedings, Part II, of the 36th Annual International Cryptology Conference on Advances in Cryptology —
CRYPTO 2016 - Volume 9815, page 123–153, Berlin, Heidelberg, 2016. Springer-Verlag.

[3] Ran Canetti, Ari Trachtenberg, and Mayank Varia. Anonymous collocation discovery: Harnessing privacy to
tame the coronavirus, 2020.

[4] Joel Hellewell et a. Feasibility of controlling covid-19 outbreaks by isolation of cases and contacts. The Lancet,
2020. https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(20)30074-7/fulltext.

22See for example: https://www.ssi.gouv.fr/entreprise/bonnes-pratiques/poste-de-travail-et-serveurs/

13

https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(20)30074-7/fulltext
https://www.ssi.gouv.fr/entreprise/bonnes-pratiques/poste-de-travail-et-serveurs/

[5] Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie Abeler-Dörner, Michael
Parker, David Bonsall, and Christophe Fraser. Quantifying sars-cov-2 transmission suggests epidemic control
with digital contact tracing. Science, 2020.

[6] Bluetooth SIG. Bluetooth Core Specification v5.1. 2019. Accessed: 2019-08-30.

[7] Serge Vaudenay. Analysis of DP3T. Cryptology ePrint Archive, Report 2020/399, 2020. https:

//eprint.iacr.org/2020/399.

14

https://eprint.iacr.org/2020/399
https://eprint.iacr.org/2020/399

Name Description
App Mobile application implementing our scheme
AppA Mobile Application installed by user UA

BLE Bluetooth Low Energy
CT An upper-bound on the number of days a user that has been diagnosed positive

has been contagious. (for example 14 days)
CCS Country Code used for routing within the federation
EBID Ephemeral Bluetooth IDentifier
EBIDA,i Ephemeral Bluetooth IDentifier of user UA at epoch i
ECC Encrypted Country Code
ECCA,i Encrypted Country Code used by UA at epoch i
epoch duration sec Duration of an epoch in seconds
ESR REQUEST Request sent by the App to query the user status
ESR REPLY Answer sent by the server to users to notify their status
HELLO Message broadcast by an App via its Bluetooth Low Energy interface
ID Permanent and anonymous identifier associated to each registered user
IDA Permanent and anonymous identifier of user UA, stored by the server
IDTable Database maintained by the back-end server
Kenc

A Shared key between the server and the AppA, used for encryption of sensitive
information.

Kauth
A Shared key between the server and the AppA, used for authentication of AppA

messages.
KG Federation Key (shared between the servers of all countries with a federation

agreement)
KS Server Key (used by a server to generate EBIDs), stored by the server
LEEA List of exposed epochs of user UA, stored in IDTable
LocalProximityList Local list on an App where the HELLO messages received by nearby devices

are stored
M Number of epochs between 2 consecutive requests by an App to the back-end

server to obtain its list of (EBID,ECC) pairs for the following epochs
(skS , pkS) Registration key-pair, an asymmetric key-pair of the server, used during regis-

tration.
Srv The back-end server
SREA Variable that indicates the last epoch when UA has sent a ”Status Request” to

the server, stored in IDTable
T The minimum number of epochs between 2 consecutive ESR REQUEST
Tpststart The time when the proximity tracing service has been started
UNA Flag indicating if UA has already been notified to be at risk of exposure. UNA

is stored in the IDTable

Table 1: Glossary of terms and variables used in this paper

15

	Introduction
	Why is Proximity Tracing Useful?
	Design Goals
	Security and Privacy Requirements
	Adversarial Model
	Design constraints

	High-Level Description and Assumptions
	Architecture considerations
	System Overview
	Risk Scoring Considerations

	Initialisation
	Server Set Up
	Application Registration (Server Side)
	The IDTable database

	Application Registration (Application Side)

	Generation of the Ephemeral Bluetooth Identifiers
	Proximity Discovery
	HELLO Message Broadcasting
	HELLO Message Collection

	Infected User Declaration
	Upload by the Application
	Server Operations

	Exposure Status Request (ESR)
	Federation
	Towards Probabilistic Notifications
	Server Security Considerations
	Authenticated Requests

