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Abstract—Backdoors and poisoning attacks are a major threat
to the security of machine-learning and vision systems. Often,
however, these attacks leave visible artifacts in the images that
can be visually detected and weaken the efficacy of the attacks.
In this paper, we propose a novel strategy for hiding backdoor
and poisoning attacks. Our approach builds on a recent class of
attacks against image scaling. These attacks enable manipulating
images such that they change their content when scaled to a
specific resolution. By combining poisoning and image-scaling
attacks, we can conceal the trigger of backdoors as well as
hide the overlays of clean-label poisoning. Furthermore, we
consider the detection of image-scaling attacks and derive an
adaptive attack. In an empirical evaluation, we demonstrate
the effectiveness of our strategy. First, we show that backdoors
and poisoning work equally well when combined with image-
scaling attacks. Second, we demonstrate that current detection
defenses against image-scaling attacks are insufficient to uncover
our manipulations. Overall, our work provides a novel means
for hiding traces of manipulations, being applicable to different
poisoning approaches.

I. INTRODUCTION

Machine Learning is nowadays used in various security-
critical applications that range from intrusion detection and
medical systems to autonomous cars. Despite remarkable
results, research on the security of machine learning has
revealed various possible attacks. A considerable threat are
poisoning attacks during the training process [e.g. 1, 5, 8].
Deep learning applications usually require a large number of
training instances, so that there is a risk of an insider carefully
manipulating a portion of the training data. Moreover, the
training process can be outsourced either due to a lack of
expertise in deep learning or due to missing computational
resources to train large networks—again giving the chance to
manipulate training data and the model.

In the context of deep learning, recent research has demon-
strated that neural networks can be modified to return targeted
responses without an impact on their behavior for benign inputs.
An adversary, for instance, can insert a pattern in some training
images of a particular target class, so that the network learns to
associate the pattern with this class. If the pattern is added to
arbitrary images, the network returns the target class. However,
a major drawback of most attacks is the visibility of data
manipulations either at training or test time [5, 8]. The attack
is thus revealed if human beings audit the respective images.
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Fig. 1. Example of a clean-label poisoning attack [12]: a neural network learns
to classify a dog as cat by blending the dog with multiple cat images. Image-
scaling attacks allow more insidious poisoning attacks. The dog as manipulation
is not visible in the training data and appears only after downscaling.

Xiao et al. [20] have recently presented a novel attack
vulnerability in the data preprocessing of typical machine
learning pipelines. An adversary can slightly manipulate an
image, such that an image scaling algorithm produces a novel
and unrelated image in the network’s input dimensions. The
attack exploits that images are typically larger than the input
dimensions and thus need to be scaled.

This novel attack directly addresses the shortcomings of
most poisoning attacks by allowing an adversary to conceal
data manipulations. As an example, Figure 1 shows a clean-
label poisoning attack [12] on the popular TensorFlow library.
The network will learn to classify the dog as cat if this dog is
repeatedly inserted into varying images showing cats during
training. In the attack’s standard version, the slight manipulation
of the training image is still noticeable. Yet, image-scaling
attacks conceal the manipulation of the training data effectively.
The dog appears only in the downscaled image which is finally
used by the neural network.

This paper provides the first analysis on the combination of
data poisoning and image-scaling attacks. Our findings show
that an adversary can significantly conceal image manipulations
of current backdoor attacks [5] and clean-label attacks [12]
without an impact on their overall attack success rate. Moreover,
we demonstrate that defenses—designed to detect image-
scaling attacks—fail in the poisoning scenario. We examine the
histogram- and color-scattering-based detection as proposed
by Xiao et al. [20]. In an empirical evaluation, we show that
both defenses cannot detect backdoor attacks due to bounded,
local changes. We further derive a novel adaptive attack that
significantly reduces the performance of both defenses in the
clean-label setting. All in all, our findings indicate a need for
novel, robust detection defenses against image-scaling attacks.



Contributions. In summary, we make the following contribu-
tions in this paper:
• Combination of data poisoning and image-scaling attacks.

We provide the first analysis on poisoning attacks that
are combined with image-scaling attacks. We discuss two
realistic threat models and consider backdoor attacks as
well as clean-label poisoning attacks.

• Evaluation of defenses We evaluate current detection
methods against image-scaling attacks and show that
backdoor attacks cannot be detected.

• Adaptive Attack. We derive a novel variant of image-
scaling attack that reduces the detection rate of current
scaling defenses. Our evaluation shows that clean-label
attacks cannot be reliably detected anymore.

The remainder of this paper is organized as follows:
Section II reviews the background of data poisoning and
image-scaling attacks. Section III examines their combination
with the respective threat scenarios and our adaptive attack.
Section IV provides an empirical evaluation of attacks and
defenses. Section V and VI present limitations and related
work, respectively. Section VII concludes the paper.

II. BACKGROUND

Let us start by briefly examining poisoning and image-scaling
attacks on machine learning. Both attacks operate at different
stages in a typical machine learning pipeline and allow more
powerful attacks when combined, as we will show in the
remainder of this work.

A. Poisoning Attacks in Machine Learning

In machine learning, the training process is one of the most
critical steps due to the impact on all subsequent applications.
At this stage, poisoning attacks allow an adversary to change
the overall model behavior [e.g. 1, 6] or to obtain targeted
responses for specific inputs [e.g. 5, 8, 12] by manipulating
the training data or learning model. Such attacks need to be
considered whenever the training process is outsourced or an
adversary has direct access to the data or model as insider [15].
Moreover, a possible manipulation needs to be considered if a
learning model is continuously updated with external data.

In this work, we focus on poisoning attacks against deep neu-
ral networks where the adversary manipulates the training data
to obtain targeted predictions at test time. While particularly
effective with a few changed training instances, most methods
have the major shortcoming that the manipulation is visible [e.g.
5, 8]. As a result, the attack can be easily uncovered if the
dataset is, for instance, audited by human beings. We present
two representative poisoning attacks in Section III and show
that they can be easily combined with image-scaling attacks
to conceal manipulations significantly.

B. Image-Scaling Attacks

The preprocessing stage in a typical machine learning
pipeline is another critical point, surprisingly overlooked by
previous work so far. Xiao et al. [20] have recently identified
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Fig. 2. Principle of image-scaling attacks: An adversary computes A such
that it looks like S but downscales to T .

an attack possibility in the scaling routine of common machine
learning frameworks. The attack exploits that most learning-
based models expect a fixed-size input, such as 224×224 pixels
for VGG19 and 299× 299 pixels for InceptionV3 [14, 16]. As
images are usually larger than the input dimensions of learning
models, a downscaling operation as preprocessing stage is
mandatory. In this case, an adversary can slightly modify an
image such that it changes its content after downscaling. She
can thus create targeted inputs for a neural network being invisi-
ble in the original resolution before, as exemplified by Figure 2.

Attack. In particular, the adversary slightly modifies a source
image S such that the resulting attack image A = S + ∆
matches a target image T after scaling. The attack can be
modeled as the following quadratic optimization problem:

min(‖∆‖22) s.t. ‖scale(S + ∆)− T‖∞ 6 ε . (1)

Moreover, each pixel of A needs to stay in the range of [0, 255]
for 8-bit images. Note that an image-scaling attack is successful
only if the following two goals are fulfilled:
(O1) The downscaled output D of the attack image A is close

to the target image: D ∼ T .
(O2) The attack image A needs to be indistinguishable from

the source image: A ∼ S.
For a detailed root-cause analysis of image-scaling attacks, we
refer the reader to Quiring et al. [10].

Detection. Two methods have been proposed to detect image-
scaling attacks [20], that is, decide if an image was manipulated
to cause another result after downscaling. Both rest on the
following idea, exemplified by Figure 3: The downscaling of
A creates a novel image D which is unrelated to the original
content from A. If we upscale D back to its original resolution,
we can compare A and the upscaled version A′. In the case
of an attack, both images will be different to each other.
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Fig. 3. Defense based on down- and upscaling with image comparison. The
downscaled version D of A is upscaled again and compared with A.



The first method uses an intensity histogram that counts
the number of pixels for each value in the dynamic range
of an image. To this end, a color image is converted into a
grayscale image before computing its histogram. The result
is a 256 dimensional vector vh for 8-bit images. The attack
detection is now based on the cosine similarity between A and
A′: sh = cos(vh1 , v

h
2 ). A low score indicates an attack, as the

distribution of both inputs do not match to each other.
The second method based on color scattering considers

spatial relations in an image. The color image is again converted
to grayscale, and the average distance to the image center over
all pixels with the same value is calculated, respectively. This
forms a 256 dimensional vector vs. The respective vectors from
A and A′ are also compared by using the cosine similarity.

We finally note that defenses exist to prevent image-scaling
attacks [see 10]. In contrast to detection, prevention blocks
the attack from the beginning, but would not uncover that the
dataset was manipulated, which is the focus in this work.

III. DATA POISONING USING IMAGE-SCALING

Equipped with an understanding of data poisoning and image-
scaling attacks, we are ready to examine novel attacks. The
adversary’s goal is that the model returns targeted predictions
for specially crafted inputs while behaving normally for benign
inputs. As image-scaling attacks provide a new means for
creating novel content after downscaling, they are a perfect
candidate to create less visible poisoning attacks. We start by
describing two plausible threat models and continue with a
description of two attack variants.

A. Two Realistic Threat Models

Stealthiness during test time. It is common practice to
outsource the training of large deep neural networks, either
due to the lack of computational resources or due to missing
expertise. In this scenario, an adversary can arbitrarily change
the training data (or the model), as long as the returned model
has the expected accuracy and architecture. The application of
image-scaling attacks to hide changes is here not necessary.
However, common backdoor attacks add visible triggers in test
time instances to obtain a targeted prediction [e.g. 5, 8]. If
such instances are examined, a visible backdoor, for instance,
would directly reveal that a model has been tampered. These
attacks can thus benefit from image-scaling attacks at test time.

Stealthiness during training time. In the second scenario, the
adversary has only access to the training data, but the training
process or model cannot be manipulated. This scenario is
particularly relevant with insiders who already have privileged
access within a company [15]. Most poisoning attacks leave
visible traces in the training data, so that the attack is detectable
if audited by human beings. Consequently, image-scaling
attacks are also useful for these scenarios.

Finally, the application of image-scaling attacks requires (a)
knowledge of the used scaling algorithm and (b) the input size
of the neural network. Their knowledge is plausible to assume
if the attacker is an insider or trains the model herself.

B. Enhanced Poisoning Attacks

We study two representative poisoning attacks against deep
neural networks: backdoor and clean-label attacks. Both enable
us to examine different approaches to manipulate images and
their impact on image-scaling attacks and defenses.

Backdoor attack. As first attack, we use the BadNets backdoor
method from Gu et al. [5]. The adversary chooses a target label
and a small, bounded backdoor pattern. This pattern is added
to a limited number of training images and the respective label
is changed to the target label. In this way, the classifier starts
to associate this pattern with the target class.

We consider both threat models for the attack. As first variant,
the adversary hides the poisoning on test time instances only.
Thus, we use the BadNets method in its classic variant during
the training process. At test time, the adversary applies an
image-scaling attack. The original image without backdoor
represents the source image S, its version with the backdoor
in the network’s input dimensions is the target image T . By
solving Eq. (1), the adversary obtains the attack image A that
is passed to the learning system. The pattern is only present
after downscaling, so that an adversary can effectively disguise
the neural network’s backdoor.

In addition, we study the threat scenario where the adversary
hides the modifications at training time. We use the same attack
principle as before, but apply the image-scaling attack for the
backdoored training images as well. This scenario is especially
relevant if the backdoor is implemented in the physical world,
e.g. on road signs. The trigger can be disguised in the training
data by using image-scaling attacks, and easily activated in the
physical world at test time (without a scaling attack).

Clean-label poisoning attack. As second attack, we consider
the poisoning attack at training time as proposed by Shafahi
et al. [12]. The attack does not change the label of the modified
training instances. As a result, this poisoning strategy becomes
more powerful in combination with image-scaling attacks: The
manipulated images keep their correct class label and show no
obvious traces of manipulation.

In particular, the adversary’s objective is that the model
classifies a specific and unmodified test set instance Z as a
chosen target class ct. To this end, the adversary chooses a set
of images Xi from ct. Similar to watermarking, she embeds a
low-opacity version of Z into each image:

X ′i = α · Z + (1− α) ·Xi. (2)

If the parameter α, for instance, is set to 0.3, features of Z
are blended into Xi while the manipulation is less visible. For
an image-scaling attack, the adversary chooses Xi as source
image S, and creates X ′i as respective target image T in the
network’s input dimensions. The computed attack image A
serves as training image then. The changed images are finally
added to the training set together with their correct label ct.
As a result, the classifier learns to associate Z with ct. At
test time, Z can be passed to the learning system without any
changes and is classified as ct. This attack enables us to study



the detection of image-scaling attacks, if the entire image is
slightly changed instead of adding a small and bounded trigger.

C. Adaptive Image-Scaling Attack

To hide poisoned images from detection, we additionally
introduce a new variant of image-scaling attack. In particular,
it targets the histogram-based defense, but is also effective
against the color-scattering-based approach.

The difficult part is to create an attack image A that changes
its appearance to T after downscaling, but has a similar
histogram if upscaled again, denoted as A′. To this end, we
use the following strategy: we upscale the target image T and
perform a histogram matching to the source image S. After
slightly denoising the result to make the adjusted histogram
smoother, we downscale the adapted image which gives us T ′.
We finally mount the image-scaling attack with S as source
image and T ′ as target. Although the content changes after
down- and upscaling, the histogram remains similar.

Figures 4(a) and 4(b) show an example with the histograms
of A and A′ for the original attack and our adapted attack, re-
spectively. Our adaptive attack enables aligning the histograms
of A and A′ although both are visually different to each other,
as depicted by Figures 4(f) and (h). Moreover, the visual
differences to the original attack are marginal.

However, the previous example also underlines that we do
not obtain an exact histogram matching. The attack chances
increase if source- and target image already have a similar
color tone. Therefore, we let the adversary select the most
suitable images for the attack. She mounts the attack on a
larger number of adapted images and select those with the
highest score.

IV. EVALUATION

We continue with an empirical evaluation and perform the
following experiments:

1) Poisoning & image-scaling attacks. We first demonstrate
that poisoning attacks benefit from image-scaling attacks.
The attack performance remains constant while the data
manipulation is hard to notice.

2) Detection defenses. We demonstrate that currently pro-
posed defenses against image-scaling attacks cannot detect
backdoor attacks.

3) Adaptive attack. We also show that clean-label attacks
cannot be detected if our new adaptive attack is applied
to the manipulated images.

A. Dataset & Setup

For our evaluation, we use the CIFAR-10 dataset [7]. Its
respective default training set is further separated into a training
(40,000 images) and validation set (10,000 images) that are
used for model training. We choose the model architecture
from Carlini and Wagner [3] which is commonly used in the
adversarial learning literature. The model expects input images
of size 32× 32× 3. This simple configuration of dataset and
model allows us to train a neural network for a variety of
different attack configurations in feasible time.
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Fig. 4. Example of our adaptive image-scaling attack. Plot (a) and (b) show
the compared histograms for the original and our adaptive attack. Plot (c) and
(f) show A by using the original attack and our adaptive version, respectively.
Plot (d) and (g) show their respective downscaled version as input for the
neural network, (e) and (h) the respective upscaled version A′.

We implement the image-scaling attack in the strong variant
as proposed by Xiao et al. [20], and set ε = 1.0 in Eq. (1). We
use TensorFlow (version 1.13) and report results for bilinear
scaling, which is the default algorithm in TensorFlow. Due
to our controlled scaling ratio, other scaling algorithms work
identically and thus are omitted [see 10].

To evaluate image-scaling attacks realistically, we need
source images in a higher resolution. To this end, we consider
common scaling ratios from the ImageNet dataset [11]. Its
images are considerably larger than the input sizes of popular
models for this dataset. VGG19, for instance, expects images
with size 224×224×3 [14]. Based on these results, we upscale
the CIFAR-10 images to a size of 256 × 256 × 3 by using
OpenCV’s Lanczos algorithm. This avoids side effects if the
same algorithm is used for upscaling and downscaling during
an image-scaling attack and model training1.

B. Backdoor Attacks

Our first experiment tests whether image-scaling attacks
can effectively conceal backdoors. For a given target class,
we embed a filled black square in the lower-left corner as
backdoor into training images. We perform the experiments for
each class, respectively. To assess the impact of backdooring
on benign inputs, we evaluate the accuracy on the unmodified
CIFAR-10 test set. When evaluating backdoors on the test set,
we exclude images from the target class. We report averaged
results over the ten target classes. For each experiment, a
baseline is added if the backdoor attack is applied without
using an image-scaling attack.

Attack performance. Figure 5 presents the success rate of
the original attack for a varying number of backdoored training
images. The adversary can successfully control the prediction

1If we use the same algorithm, we obtained even better results against
image-scaling defenses, which might not be realistic with real-world images.
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Fig. 5. Backdoor attacks: Percentage of obtained target classes on the
backdoored test set, with and without image-scaling attacks for hiding the
backdoor. Scaling attacks have no negative impact on the attack’s success rate.
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Fig. 6. Backdoor attack examples. The first and second row result in the
third row after downscaling. However, the second row relies on image-scaling
attacks and better hides the backdoor trigger.

by embedding a backdoor on test time instances. If 5% of the
training data are changed, she obtains an almost perfect attack
result. The test set accuracy with unmodified images does not
change considerably.

The application of image-scaling attacks on the backdoored
test time instances has no negative impact on the success rate.
At the same, the adversary can considerably hide the backdoor
in contrast to the original attack, as Figure 6 shows. Although
the backdoor’s high contrast with neighboring pixels and its
locality creates rather unusual noise in the backdoor area, the
detection is hard if only quickly audited.

In addition, we evaluate the variant where the image-scaling
attack is also applied on the training data to hide the backdoor
pattern. We obtain identical results to the previous scenario
regarding the success rate and visibility of the backdoor pattern.
In summary, image-scaling attacks considerably raise the bar
to detect backdoors.

Detection of image-scaling attacks. Another relevant ques-
tion concerns the reliable detection of image-scaling attacks
(see Section II-B). Figure 7 depicts ROC curves for the
histogram-based and color-scattering-based defense when back-
doors are inserted at test time or training time.

For both threat scenarios, the defenses fail to detect image-
scaling attacks. A closer analysis reveals that the backdoor
manipulation is too small compared to the overall image size.
Thus, down- and upscaling creates an image version that still
corresponds to the respective input. We conclude that a reliable
attack detection is thus not possible if small and bounded parts
of an image are changed only.
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Fig. 7. Defenses against backdoor attacks: ROC curves of histogram-based
and color scattering-based method. Both do not reliably detect image-scaling
attacks that hide backdoors.
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Fig. 8. Clean-label attacks: Efficiency of attack in controlling the prediction
with and without image-scaling attacks, and our adaptive variant.

C. Clean-Label Poisoning Attack

We proceed with the clean-label attack from Section III-B,
following the experimental setup from Shafahi et al. [12].
We test 50 randomly selected target-source class pairs (ct, cz)
where cz denotes the original class of Z, ct the adversary’s
target class. For each pair, we choose a random target
instance Z and vary the number of modified images Xi. Again,
a baseline is added where no image-scaling attack is applied
on Xi. For the embedding, we set α = 0.3.

Attack performance. Figure 8 presents the success rate of
the attack with respect to the number of modified images. The
adversary can significantly control the prediction for Z. The
success rate increases with a larger number of modified images
that are added to the training set, and corresponds to results
as reported by Shafahi et al. [12].

Image-scaling attacks have only a slight impact on the
success rate of the poisoning attack. At the same time, the
attacker can conceal the added content of Z effectively, as
exemplified by Figure 9. The 4th row emphasizes that the
added content is not visible in the novel images used for
training, while Z is visible for the original attack.

As opposed to the backdoor attack from the previous section,
the added content Z from the clean-label attack is not noticeable
even under a closer analysis. As the whole image is partly
changed, the manipulation becomes an imperceptible noise
pattern. We conclude that poisoning attacks can benefit from
image-scaling attacks the most if the manipulation is a weaker
signal, distributed over a larger area in an image.

Detection of image-scaling attacks. Figure 10(a) depicts
ROC curves for the defenses. Only the histogram-based method
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Fig. 9. Clean-label attack examples. The 3rd and 4th row result in the 5th row
after downscaling. Image-scaling attacks can effectively hide the manipulation
(4th row), which would be visible in the original poisoning attack (3rd row).

can reliably detect attacks. At 1% false positives, 94.5% of
manipulated images are correctly marked as attack. The color-
scattering-based approach detects only 48.2% at 1% false
positives. In contrast to backdoor attacks, both defenses can
more reliably spot the manipulations by the clean-label attack.
As the whole image is slightly changed, the difference between
the attack image and its down- and upscaled version increases—
enabling the detection.

D. Adaptive attack

We finally demonstrate that an adversary can use an adaptive
strategy against both defenses to lower their detection rate.
Figure 10(b) presents ROC curves for our adaptive image-
scaling attack in the clean-label scenario. Our attack signifi-
cantly lowers the detection rate. At the same time, the overall
success rate of the attack is only slightly affected (see Figure 8).
We contribute this to the histogram matching, so that parts of Z
are slightly weaker embedded, especially for very dark or highly
saturated images. Overall, we conclude that an adversary can
circumvent current detection methods by adjusting histograms.

V. LIMITATIONS

Our findings demonstrate the benefit of image-scaling attacks
for poisoning and the need to find novel detection defenses.
Nonetheless, our analysis has limitations that we discuss in the
following. First, we consider defenses against image-scaling
attacks only. Direct defenses against data poisoning [e.g. 19]
are another possible line of defense that would need to be used
after downscaling. The design of such defenses is an ongoing
research problem [17, 19] and beyond the scope of this work.
Furthermore, we apply a simple backdoor technique by adding
a filled box into training images. We do not optimize regarding
shapes or the model architecture, resulting in a relatively high
amount of manipulated training data. Our goal is rather to draw
first conclusions about the utility of image-scaling attacks for
backdooring. As scaling attacks are agnostic to the model and
poisoning attack, other backdoor techniques are also applicable
whenever a manipulation needs to be concealed.
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Fig. 10. Defenses against clean-label attacks: ROC curves of histogram-based
and color scattering-based method with the original and adaptive attack.

VI. RELATED WORK

The secure application of machine learning requires consid-
ering various attacks along a typical workflow. Regarding the
order of the targeted step, attacks can be categorized into the
following classes: membership inference [e.g., 13], poisoning
attacks [e.g., 1, 5, 8], evasion- and perturbation attacks [e.g.,
2, 3, 9], as well as model stealing [e.g., 18].

In this work, we focus on poisoning attacks that manipulate
the training data so that the learning model returns targeted
responses with adversarial inputs only while behaving normally
for benign inputs. Two attack variants are backdoor and clean-
label poisoning attacks, differing in the the amount of necessary
data changes, visibility or robustness with transfer learning [e.g.
4, 5, 8, 12, 21]. We consider the following two rather simple,
but representative approaches: The BadNets method [5] inserts
a small, bounded pattern into images as backdoor, while the
clean-label attack from Shafahi et al. [12] slightly changes the
whole image to add a poison. Both provide first insights about
the applicability of image-scaling attacks for data poisoning.

Concurrently, Quiring et al. [10] comprehensively analyze
image-scaling attacks by identifying the root-cause and examin-
ing defenses for prevention. Our work here extends this line of
research on image-scaling attacks by analyzing the poisoning
application and detection defenses. While prevention stops
any attack, detection uncovers that an attack is going on. Our
findings here underline the need for novel detection approaches.

VII. CONCLUSION

This work demonstrates that image-scaling attacks can be
leveraged to hide data manipulations for poisoning attacks. We
consider two representative approaches: a backdoor attack [5]
and a clean-label poisoning attack [12]. Our evaluation shows
that the adversary can conceal manipulations more effectively
without impact on the overall success rate of her poisoning
attack. We find that image-scaling attacks can create almost
invisible poisoned instances if a slight manipulation is spread
over a larger area of the input.

Furthermore, our work raises the need for novel detection
defenses against image-scaling attacks. Local and bounded
changes—as done for backdoors—are not detected at all. The
detection if the whole image is changed can be circumvented
by using our proposed adaptive image-scaling attack variant.



AVAILABILITY

We make our dataset and code publicly available at
http://scaling-attacks.net to encourage further research on
poisoning attacks and image-scaling attacks.
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[18] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing
machine learning models via prediction apis. In Proc. of USENIX Security
Symposium, pages 601–618, 2016.

[19] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks. In Proc. of IEEE Symposium on Security and Privacy
(S&P), pages 707–723, 2019.

[20] Q. Xiao, Y. Chen, C. Shen, Y. Chen, and K. Li. Seeing is not believing:
Camouflage attacks on image scaling algorithms. In Proc. of USENIX
Security Symposium, pages 443–460, 2019.

[21] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao. Latent backdoor attacks on
deep neural networks. In Proc. of ACM Conference on Computer and
Communications Security (CCS), pages 2041—-2055, 2019.


