
Technical Report: Hardening Code Obfuscation Against Automated Attacks

Moritz Schloegel?, Tim Blazytko?, Moritz Contag?, Cornelius Aschermann?

Julius Basler?, Thorsten Holz†, Ali Abbasi?

?Ruhr-Universität Bochum
†CISPA Helmholtz Center for Information Security

Abstract
Software obfuscation is a crucial technology to protect intel-
lectual property and manage digital rights within our society.
Despite its huge practical importance, both commercial and
academic state-of-the-art obfuscation methods are vulnera-
ble to a plethora of automated deobfuscation attacks, such
as symbolic execution, taint analysis, or program synthesis.
While several enhanced obfuscation techniques were recently
proposed to thwart taint analysis or symbolic execution, they
either impose a prohibitive runtime overhead or can be re-
moved in an automated way (e. g., via compiler optimizations).
In general, these techniques suffer from focusing on a single
attack vector, allowing an attacker to switch to other, more
effective techniques, such as program synthesis.

In this work, we present LOKI, an approach for software
obfuscation that is resilient against all known automated de-
obfuscation attacks. To this end, we use and efficiently com-
bine multiple techniques, including a generic approach to
synthesize formally verified expressions of arbitrary com-
plexity. Contrary to state-of-the-art approaches that rely on
a few hardcoded generation rules, our expressions are more
diverse and harder to pattern match against. Even the most
recent state-of-the-art research on Mixed-Boolean Arithmetic
(MBA) deobfuscation fails to simplify them. Moreover, LOKI
protects against previously unaccounted attack vectors such
as program synthesis, for which it reduces the success rate
to merely 19%. In a comprehensive evaluation, we show that
our design incurs significantly less overhead while providing
a much stronger protection level compared to existing works.

1 Introduction

Obfuscation describes the process of applying transformations
to a given program with the goal of protecting the code from
prying eyes. Generally speaking, obfuscation works by taking
(parts of) a program and transforming it into a more complex,
less intelligible representation, while at the same time pre-
serving its observable input-output behavior [19]. Usually,

such transformations come at the cost of increased program
runtime and size, thus trading intelligibility for overhead. Al-
though formal verification of code transformations is hard
to achieve in practice [49, 84], obfuscation is used in a wide
range of real-world scenarios. Examples include protection of
intellectual property (IP), digital rights management (DRM),
and concealment of malicious behavior in software. Generally
speaking, obfuscation protects critical (often small) code parts
against reverse engineering and, thus, misuse by competitors
or other parties. For example, most contemporary DRM sys-
tems rely on some kind of obfuscation to prevent attackers
from distributing unauthorized copies of their product [53].
License checks and cryptographic authentication schemes are
examples for code that is commonly obfuscated in practice
to prevent analysis. Most copy-protection schemes used by
games use some kind of obfuscation to prevent unauthorized
copies. As another example, market-leading companies, such
as Snapchat, obfuscate how API calls to their backend are
constructed, preventing abuse and access by competitors [28].

Among the countless obfuscation methods proposed in the
literature [1,8,14,19,31,35,40,50,54,56,66,73,76,79,80,86],
one of the most promising techniques is Virtual Machine
(VM)-based obfuscation [31,58]. State-of-the-art, commercial
obfuscators such as THEMIDA [55] and VMPROTECT [72],
as well as most game copy-protection schemes used in prac-
tice [26, 65], make extensive use of VM-based obfuscation.
They transform the to-be-protected code from its original
Instruction Set Architecture (ISA) into a custom one, and
bundle an interpreter with the program that emulates the new
ISA. This effectively breaks any analysis tool unfamiliar with
the new architecture. Attackers aiming to deobfuscate code
affected by this scheme must first uncover the custom ISA be-
fore they can reconstruct the original code [58, 63]. Since the
custom instruction sets are conceptually simple, VM-based
obfuscation software usually applies additional obfuscating
transformations to the interpreter such that it is harder to ana-
lyze. For example, dead code insertion or constant unfolding
are often used. At their core, these transformations inflate the
number of executed instructions and mainly add to the code’s

1

syntactic complexity, but can be successful in thwarting man-
ual attacks.

However, it is often sufficient to apply well-known com-
piler optimizations, such as dead code elimination, constant
folding, or constant propagation, to reduce the code’s syn-
tactic complexity and enable subsequent analyses [34, 83].
We tested this hypothesis and observe that this applies to the
state-of-the-art tools THEMIDA and VMPROTECT, for both
their fastest and strongest protection configurations: We found
that a simple dead code elimination manages to reduce the
number of assembly instructions per handler by at least 50%
for five different targets, tremendously simplifying both man-
ual and automated analyses (cf. Table 1). Subsequently, the
resulting code can be further simplified using a wide range
of automated techniques, including taint analysis [81, 83],
symbolic execution [82, 83], program synthesis [7, 25], and
various others [5, 6, 21, 29, 30, 34, 36, 42, 47, 58, 59, 63].

The reliance on syntactic complexity in state-of-the-art ob-
fuscation schemes and the broad arsenal of advanced deobfus-
cation techniques sparked further research in the construction
of more resilient schemes that aim to impede these automated
analyses. Proposals were made to hinder taint analysis [10,60]
and render symbolic execution ineffective [1, 54, 79, 86]. For
example, the latter can be achieved by triggering a path explo-
sion for the symbolic execution engine by artificially increas-
ing the number of paths to analyze. Other promising obfusca-
tion schemes emerged, including Mixed Boolean-Arithmetic
(MBA) expressions [2, 29, 86] that offer a model to encode
arbitrary arithmetic formulas in a complex manner. The ex-
pressions are represented in a domain that does not easily lend
itself to simplification, effectively hiding the actual semantic
operations. Usually, automated approaches to deobfuscate
MBAs are based on symbolic simplification [6, 29, 30, 36];
they rely on certain assumptions about the expression’s struc-
ture, making them unfit to simplify such expressions in the
general case. Other approaches are based on program synthe-
sis [7, 25, 51], which have been proven highly effective for
most tasks. In general, synthesis-based deobfuscation tech-
niques remain unchallenged to date and are valuable methods
for automated analysis of obfuscated code. Recent works
aiming at simplifying MBA turned towards machine learn-
ing [32] and algebraic simplification [48]. Especially the latter
approach, relying on a hidden two-way feature between 1-bit
and n-bit variables used within MBAs, provides an automated
attacker with enormous MBA deobfuscation capabilities.

In this paper, we introduce a novel and comprehensive set of
obfuscation techniques that can be combined to protect code
against all known automated deobfuscation attacks, while
imposing only reasonable overhead in terms of space and
runtime. Our techniques are specifically designed such that a
human analyst gains no significant advantage from employ-
ing automated deobfuscation techniques, including compiler
optimizations (cf. Table 1), forward taint analysis, symbolic
execution, and even program synthesis (cf. Section 6). We

explicitly assume scenarios where these techniques are specif-
ically tailored to our design (white-box scenario).

To achieve such protection, we propose a generic algorithm
to synthesize formally verified, arbitrarily complex MBA ex-
pressions. This is in strong contrast to state-of-the-art ap-
proaches that rely on a few handwritten rules, greatly limiting
their effectiveness. For example, given 7,000 VM handlers,
TIGRESS—the state-of-the-art academic obfuscator—uses
only 16 unique MBAs, while our design features ~5,500
unique MBAs. As a result, our MBAs are highly unlikely
to be simplified: In fact, current state-of-the-art MBA deob-
fuscation tools such as MBA-BLAST [48] can only simplify
0.5% of LOKI’s MBAs. Furthermore, we conduct the first
conclusive analysis of the limits of program synthesis with
regard to deobfuscation. Based on the resulting insights, we
present a hardening technique capable of impeding program
synthesis, reducing its success rate to 19%—for TIGRESS, it
is 67%. In summary, we present a new design featuring both
high diversity and resilience against static and dynamic, au-
tomated deobfuscation attacks. While providing more value,
our design incurs significantly less overhead compared to
commercial, state-of-the-art obfuscation schemes (up to 40
times). Moreover, we port modern testing techniques, i. e.,
formal verification and fuzzing, to our design and show that
complex combinations of obfuscation transformations benefit
from such methods to assert the correctness of complex and
non-deterministic obfuscation transformations.
Contributions. We make the following contributions:

• We present the design, implementation, and evaluation of
LOKI, a software obfuscation approach resilient against
all known automated deobfuscation attacks, even in
white-box scenarios.

• We introduce a generic approach to synthesize diverse
and formally verified Mixed Boolean-Arithmetic (MBA)
expressions of arbitrary complexity that withstand even
current state-of-the-art deobfuscation attacks.

• We are the first to propose an approach resilient against
program synthesis-based attacks and map out limits of
program synthesis in an empirical evaluation.

We publish the source code of LOKI as well as all evaluation
artifacts (including test cases, binaries, and evaluation tooling)
at https://github.com/RUB-SysSec/loki.

2 Technical Background

We start by providing an overview of the required technical
information on obfuscation and deobfuscation techniques.

2.1 VM-based Obfuscation
Virtual machine-based obfuscation, also known as virtual-
ization, protects code by translating it into an intermediate

2

https://github.com/RUB-SysSec/loki

Table 1: VM handler statistics for THEMIDA, VMPROTECT, and our approach called LOKI. The two commercial obfuscators are configured in their fastest
(Virtualization and Tiger White) and strongest configuration (Ultra and Dolphin Black), but without additional security features (e. g., anti-debug). We track their
handlers’ average number of assembly and intermediate language (IL) instructions before and after dead code elimination (denoted as the percentage-wise
reduction in parentheses). All values are averaged over five cryptographic algorithms (AES, DES, MD5, RC4, and SHA-1).

VMPROTECT THEMIDA LOKI
Statistics Virtualization Ultra Tiger White Dolphin Black

Assembly instructions 69 (−50.79%) 73 (−51.58%) 219 (−53.68%) 243 (−56.01%) 222 (−1.14%)
IL instructions 75 (−50.88%) 80 (−51.89%) 221 (−53.76%) 247 (−55.94%) 234 (−1.44%)

Handlers executed 46,591 151,303 83,191 290,815 4,123
. . . of them unique 274 4,578 204 337 55

representation called bytecode. This bytecode is interpreted
by a CPU implemented in software, adhering to a custom in-
struction set architecture (ISA). An attacker must first reverse
engineer this software CPU, a tedious and time-consuming
task [58, 63]. Only after understanding the VM, they can re-
construct the original high-level code.

VM Interpreter. The original, unprotected code is re-
placed with a call to the VM entry that invokes the interpreter.
It sets up the initial context of the VM and points it to the byte-
code that is to be interpreted. This is implemented by the VM
dispatcher using a fetch-decode-execute loop: first, it fetches
the next instruction, decodes its opcode, and then transfers
execution to the respective VM handler. Often, the handler is
determined via a global handler table that is indexed by the
opcode. After handler execution, the control flow returns to
the VM dispatcher. Eventually, execution finishes by invoking
a special VM exit handler aborting the loop.

Abstraction of Handler Semantics. Handlers are often
semantically simple [7, 58]; they perform a single arithmetic
or logical operation on a number of operands, e. g., x� y. We
call the semantic function of a handler, i. e., the underlying
instruction it implements, its core semantics. We can repre-
sent core semantics as a function f (x,y), or more general
as f (x,y,c) where c is a constant. To measure the syntactic
complexity of the core semantics, we compute the (syntactic)
expression depth of f as the sum of all variable occurrences
and operators. In contrast, the semantic depth refers to the
syntactic depth of the syntactically shortest equivalent expres-
sion. Intuitively, it can be understood as the number of nodes
in an Abstract Syntax Tree (AST).

Example 1: We can represent a VM handler’s core semantics
x+ y as f (x,y,c) := x+ y with a syntactic depth of 3. A syn-
tactically more complex function g(x,y,c) := x+y−x+c−c
has a syntactic depth of 9 but a semantic depth of 1, since g
can be simplified to g(x,y,c) := y.

Superoperators. Superoperators [57] are an approach to
make handlers semantically more complex. Intuitively, this is
achieved by combining different instruction sequences from
the unprotected code into a single VM handler. Usually, these
sequences compute independent results such that this VM “su-
perhandler” computes multiple, independent VM handlers in a
single step. As a consequence, superoperators often have mul-

tiple input and output tuples. Related to our function abstrac-
tion, we can say the function fs((x0,y0,c0), . . . ,(xn,yn,cn))
computes an output tuple (o0, . . . ,on), where xi, yi, ci and oi
represent the core semantics’ inputs/output of a semantically
simple VM handler. While originally developed to minimize
the number of handlers executed to improve performance, su-
peroperators have been used by obfuscators such as TIGRESS
primarily for obtaining more complex VM handlers.

2.2 Mixed Boolean-Arithmetic

Mixed Boolean-Arithmetic (MBA) describes an approach to
encode expressions in a syntactically complex manner. The
goal is to hide underlying semantics in syntactically complex
constructs. First described by Zhou et al. [86], MBA algebra
connects arithmetic operations (e. g., addition) with bitwise
operations (e. g., logical operations or bitshifts). The resulting
expressions are usually hard to simplify symbolically [29,77],
since, for every expression, an infinite number of syntactic
representations exists. In general, the task of reducing MBA
expressions—known as arithmetic encodings [1]—to equiva-
lent but simpler expressions is NP-hard [86].
Example 2: f (x,y,c) := x+ y and g(x,y,c) := (x⊕ y)+ 2 ·
(x∧ y) are semantically equivalent. Both implement the same
core semantics, but g uses a syntactically more complex rep-
resentation, called MBA.

3 Automated Deobfuscation Attacks

In the following, we detail common techniques used to
analyze obfuscated code.

Forward Taint Analysis. Forward taint analysis follows
the data flow of so-called taint sources, e. g., input variables,
and marks all instructions as tainted that directly or indirectly
depend on these sources [62,63,81,83]. Taint analyses are im-
plemented with varying granularity, referring to the smallest
unit they can taint. Common approaches use either bit-level or
byte-level granularity. Forward taint analysis can be used to
reduce obfuscated code to the instructions depending on user
input. The underlying idea is that important semantics rely
only on the identified taint sources. All other code constructs,

3

1 mov edx, eax ; edx1 := eax1
2 mov ecx, 0x20 ; ecx1 := 0x20
3 add edx, ecx ; edx2 := edx1 + ecx1
4 add edx, 0x10 ; edx3 := edx2 + 0x10

Figure 1: An assembly code snippet used to illustrate forward taint analysis,
backward slicing, and symbolic execution.

e. g., as added by an obfuscator, can be omitted in an auto-
mated matter. Still, if these constructs perform calculations
on the user input, taint analysis can be mislead [10, 60].
Example 3: In Figure 1, assume eax is a taint source. The
analysis taints the first, third, and fourth instruction since
they propagate a taint source. It does not taint the second
instruction. While its value is later used in tainted instructions,
it does not directly depend on eax.

Backward Slicing. Contrary to forward taint analysis,
backward slicing is a backward analysis. Starting from some
output variable, it recursively backtracks and marks all input
variables on which the output depends [24, 74, 83]. In code
deobfuscation, slicing can be used to find all instructions that
contribute to the output. Applied to VM handlers, it allows to
strip all code not directly related to a handler’s core seman-
tics. Similar to forward taint analysis, increasing the number
of dependencies (e. g., by inserting junk calculations to the
output) reduces the usefulness of slicing.
Example 4: When backtracking the value of edx (line 4 in
Figure 1) by following each use and definition, each instruc-
tion is marked as they all contribute to the output.

Symbolic Execution. Symbolic execution allows to sum-
marize assembly code algebraically. Instead of using concrete
values, it tracks symbolic assignments of registers and mem-
ory in a state map [62]. Often, it works on a verbose represen-
tation of code, called intermediate language (IL). Symbolic
executors usually know common arithmetic identities and
can perform basic simplification, e. g., constant propagation.
Applied to code obfuscation, symbolic execution is used to
symbolically extract the core semantics of VM handlers [47],
track user input in an execution trace [59, 82, 83], or detect
opaque predicates (in combination with SMT solvers) [5].
Typically, techniques to impede symbolic execution aim at
artificially increasing the syntactic complexity of arithmetic
operations (via MBAs) or the number of paths to analyze
(triggering a so-called path explosion) [1, 54].
Example 5: After symbolic execution of Figure 1, we obtain
the following mappings: eax maps to itself (it has not been
modified), ecx maps to 0x20 (line 2). The formula for edx is
eax+0x20+0x10. Using arithmetic identities, the symbolic
execution engine can simplify the expression to eax+0x30.

Program Synthesis. In contrast to other techniques that
rely on syntactic analysis of obfuscated code, program syn-
thesis-based approaches operate on the semantic level. They
treat code as a black box and attempt to reconstruct the origi-
nal code based on the observable behavior, often represented

in the form of input-output samples. Approaches such as
SYNTIA [7] and XYNTIA [51] attempt to find an expres-
sion with equivalent behavior by relying on a stochastic al-
gorithm traversing a large search space. Other approaches,
e. g., QSYNTH [25], are based on enumerative synthesis: they
compute large lookup tables of expressions which they use
to simplify parts of an expression, reducing its overall com-
plexity. For code deobfuscation, these approaches are used to
simplify syntactically complex constructs (e. g., MBAs) or to
learn semantics of VM handlers. However, program synthesis
struggles with finding semantically complex expressions.
Example 6: Consider the function f (x,y,c) := (x⊕ y)+2 ·
(x∧ y). To learn f ’s core semantics, we generate random
inputs and observe f (2,2,2) = 4, f (10,13,10) = 23, and
f (16,3,0) = 19. A synthesizer eventually produces a function
g(x,y,c) := x+ y that has the same input-output behavior.
Notably, it learns that parameter c is irrelevant.

Ideally, superoperators provide such expressions. However,
our experiments (cf. Section 6.3) demonstrate that current
designs (e. g., as used by TIGRESS) are still vulnerable; since
superoperators combine different core semantics (represented
as individual inputs/output tuples), an attacker can synthesize
each core semantics separately by targeting each output oi.

Semantic Codebook Checks. A semantic codebook con-
tains a list of expressions that an attacker expects to exist
within obfuscated code. For a syntactically complex expres-
sion f , an attacker checks if f is semantically equivalent to
an expression g in the codebook by using an SMT solver [68].
If the SMT solver cannot find an input distinguishing f and
g, it formally proved they behave the same for all possible
inputs. A typical application scenario are VM handlers: They
often implement a simple core semantics (e. g., x+ y) [7, 58].
Thus, an attacker can construct a codebook based on simple
arithmetic and logical operations. As codebooks must contain
the respective semantics, increasing the semantic complexity
of expressions requires an (exponentially) larger codebook,
making the approach infeasible for a practical application.
Example 7: Consider a function f (x,y,c) := (x⊕y)+2 ·(x∧
y) and a codebook CB := {x− y,x · y,x+ y, . . .}. An attacker
can consecutively pick an entry g(x,y,c) ∈ CB and verify
whether f = g using an SMT solver. To this end, the solver
searches an assignment that satisfies f (x,y,c) 6= g(x,y,c).
Only for g(x,y,c) := x+ y no solution can be found. Thus,
the attacker proved that f can be reduced to a syntactically
shorter expression, x+ y.

4 Design

We envision a combination of obfuscation techniques where
the individual techniques harmonize and complement each
other to thwart automated deobfuscation attacks. In line with
this philosophy, we now present a set of generic techniques
where each constitutes a defense in a particular domain. How-

4

ever, when these techniques are effectively combined, they
exhibit comprehensive protection against automated attacks.
To achieve lasting resilience, we focus on inherent weak-
nesses underlying existing automated attack methods, instead
of targeting specific shortcomings of a given implementation.
We further underline our techniques’ generic nature by dis-
cussing their application on an abstract function f (x,y,c) as
introduced in Section 2.1. Next, we first discuss the design
principles of our approach, present the attacker model, and
afterwards explain the individual techniques in detail.

4.1 Design Principles
We have seen outlined automated attack methods can succeed
in extracting a function f ’s core semantics (cf. Section 3). To
mitigate these attacks, our design is based on four principles:
(1) merging core semantics, (2) diversifying the selection
mechanism, (3) adding syntactic complexity, and (4) adding
semantic complexity. In the following, we present techniques
incorporating these principles and discuss their purpose as
well as synergy effects emerging for our overall design.

Merging Core Semantics. Our first technique extends f
by merging different, independent core semantics to increase
the complexity. This can be understood as combining differ-
ent, independent VM handlers in a single handler, or—in a
more generic setting—combining different semantic opera-
tions of an unprotected unit of code in a single function f . The
merge is facilitated in such a way that each core semantics is
always executed. Still, as these semantics are independent of
each other, we must ensure they are individually addressable,
i. e., f ’s output is equivalent to the result of a specific core
semantics. To allow the selection of the desired semantics, we
extend the function definition to f (x,y,c,k), where k is a key
selecting the targeted core semantics. Formally, the selection
is realized by introducing a point function ei(k), called key
encoding, that is associated with a specific core semantics and
returns 1 only for its associated key, 0 for other valid keys. Es-
sentially, the ei(k) are (partial) point functions guaranteeing
that only the selected semantics’ output is propagated despite
executing all semantics. A consequence of this interlocked,
“always-execute” nature is that taint analysis and backward
slicing fail to remove all semantics in f not associated with a
specific k.
Example 8: We want to design a function f that returns,
based on a distinguishing key, either x+ y or x− y. We write
this as f (x,y,c,k) := e0(k)(x+ y)+ e1(k)(x− y) where ei(k)
can be any point function returning 1 for the associated k and
0 otherwise, for example e0(k) := k == 0xdead. Assuming
that e0(k) returns 1 and e1(k) yields 0, f returns x+ y.

Diversifying Selection. Assuming a function f contains
multiple merged semantics, an attacker’s goal might be to ex-
tract operations by comparing them to a semantic codebook.
For static attackers (cf. Section 4.2) using an SMT solver,
this implies finding a key satisfying the core semantics’ as-

sociated key check. Therefore, we propose to arithmetically
encode the key checks such that SMT solvers struggle with
finding a satisfying key. However, relying on a specific en-
coding (e. g., based on factorization), may allow an attacker
to identify patterns and adapt their attack to the specific prob-
lem at hand, e.g., by using domain-specific solutions such as
brute-forcing the factors. Accounting for this attack vector,
we propose a second type of key encoding, which relies on the
synthesis of partial point functions tailored to the respective
key check. The synthesis creates a diverse and unpredictable
set of functions that hinder efficient pattern matching. Us-
ing both key encodings within a function f , we ensure that
SMT solvers struggle while maintaining sufficient diversity
to render specialized attacks inefficient.

Adding Syntactic Complexity. Assuming merged seman-
tics using different key encodings, an attacker can still dif-
ferentiate between key encoding and core semantics for a
given function f , as ei(k) operates only on the key while the
core semantics use x, y, and c. At the same time, a dynamic
attacker with knowledge of k can employ symbolic execution
to simplify f to the core semantics associated with the known
k by arithmetically nullifying operations not contributing to
the result. To prevent such an attack, we increase the syntac-
tic complexity by adding Mixed Boolean-Arithmetic (MBA)
formulas to key encodings as well as core semantics.

Symbolically executing these syntactically complex formu-
las creates no meaningful expressions. Even though modern
symbolic execution engines feature simplification rules for
basic arithmetic identities and laws, there exists an unlimited
number of MBA representations. In general, simplifying such
an expression to its syntactically smallest representative is
NP-hard [86].

Example 9: For f (x,y,c,k) := e0(k)(x+ y) + e1(k)(x− y),
we can replace x + y with (x⊕ y) + 2 · (x∧ y), x− y with
x+¬y+1, and replace the multiplication of e1(k)(x−y) with
the rule (a∧b) ·(a∨b)+(a∧¬b) ·(¬a∧b) for a ·b, resulting
in the final function f (x,y,c,k) := e0(k)((x⊕y)+2 ·(x∧y))+
(e1(k)∧(x+¬y+1)) ·(e1(k)∨(x+¬y+1))+(e1(k)∧¬(x+
¬y+1)) · (¬e1(k)∧ (x+¬y+1)).

To exploit this weakness of symbolic execution and provide
a high diversity, we synthesize and formally verify MBAs in-
stead of using hardcoded rules. This additionally complicates
pattern matching and increases the number of instructions
marked by forward taint analysis and backward slicing.

Adding Semantic Complexity. One of the remaining
problems are semantic attacks, for example, a dynamic at-
tacker that performs a codebook check or uses input-output
behavior to learn an expression equivalent to the core seman-
tics (e. g., via program synthesis). Therefore, we increase the
core semantics’ complexity by applying the concept of super-
operators (cf. Section 2.1). These superoperators make core
semantics arbitrarily long and increase the search space for
semantic attacks drastically.

5

Example 10: Instead of using core semantics of depth 3
(e. g., x+ y), we apply more advanced core semantics such as
(x+ y) · (x⊕ y)) with depth 7 or ((x · c)� (y∨ (x⊕ c))) with
depth 9, resulting in f (x,y,c,k) := e0(k)((x+ y) · (x⊕ y))+
e1(k)((x · c)� (y |(x⊕ c))).

While superoperators increase the semantic and syntactic
complexity of core semantics, we further extend their syn-
tactic complexity using MBAs. Their synergy additionally
diminishes the effect of automated attacks.

4.2 Attacker Model
Intuitively, we envision a strong attacker to measure how our
obfuscation scheme fares under worst-case conditions. For
this purpose, we assume that an attacker has access to all
automated attacks (cf. Section 3).

We assume an attacker has access to the target binary that
includes at least one well-defined unit of obfuscated code at a
known location. In line with our previous abstraction, we say
this code unit can be represented by a function f (x,y,c,k).
The attacker’s goal is to reconstruct the core semantics of f
associated with a specific k. We require the reconstructed se-
mantics to (1) contain only the core semantics associated with
the specified k and (2) be comparable to the original code’s
semantics in terms of syntactic complexity. The intuition be-
hind these constraints is to exclude trivial solutions such as
providing the unmodified function f itself (which contains,
amongst others, the core semantics for the required k).

Further, we assume two types of attackers, a static and a
dynamic one. The static attacker knows the precise code lo-
cations of x, y, c, and k as well as the location of function
f ’s output. As a result, they can enrich static analyses, e. g.,
by defining these code locations as taint sources. A dynamic
attacker extends the former by the ability to inspect and mod-
ify the values at these code locations. In particular, they can
observe any key k and propagate it to remove core semantics
not associated with this k. While a dynamic attacker is more
powerful (in terms of accessible information), certain analysis
scenarios such as code running on specific hardware (e. g.,
embedded devices), analysis on function-level without con-
text, or the presence of techniques like anti-debugging [12,13]
may rule out dynamic analysis in practice.

4.3 Key Selection Diversification
We want to prevent static attackers from learning the core
semantics via semantic codebook checks and prevent identifi-
cation of patterns in the key selection. To do so, we employ
two different key encoding schemes: Key selection based on
(1) the factorization problem, and (2) synthesized partial point
functions. To conduct a semantic codebook check, an attacker
uses an SMT solver to check for each entry of the codebook
whether it is semantically equivalent to f . Assuming that f
indeed includes a matching core semantics, the SMT solver

has to find a value for k such that the corresponding ei(k)
evaluates to 1. One way to prevent this is to design a key
encoding that relies on inherently hard problems for the SMT
solver, such as factorization.

Factorization-based Key Encoding. Factorization of a
semiprime n (the product of two primes, p and q) is an inher-
ently hard problem as long as the size of the factors are large
enough (commonly, a few thousand bits). SMT solvers prune
the search space by learning partial solutions for a given prob-
lem [45], but since no partial solutions exist for factorization,
they are forced to perform an exhaustive search.

We define our factorization-based key encoding as ei(k) :=
(n mod k) ≡ 0 where k is a valid 32-bit integer represent-
ing one of the two factors (k 6∈ {1,n}). As our evaluation
shows, this encoding suffices to stall SMT solvers. However,
its distinct structure makes pattern matching attempts easy. To
increase diversity, we use MBAs and a second key encoding.

Partial Point Functions. Instead of restraining our set of
key encodings to a specific type, we synthesize generic point
functions without any predefined structure. This is based on
the insight that the ei(k) impose only a single constraint: they
must be defined for all valid keys (returning 1 for their asso-
ciated one, 0 for others). Invalid keys may return arbitrary
values, making our synthesized functions partial point func-
tions. Consequently, we are not restricted to specific point
functions, such as the factorization-based encoding, but can
use arbitrary point functions fulfilling this constraint.

Given a grammar containing ten different arithmetic and
logical operations (such as addition, multiplication, and logi-
cal and bitwise operations), we generate expressions by chain-
ing a randomly selected operation with random operands. This
operand is either an arbitrary key byte or a random 64-bit con-
stant. We chain at most 15 operations to limit the overhead
resulting from this expression. Finally, we check if the syn-
thesized expression satisfies the point function’s constraint.

Example 11: Let (k0,k1,k2) := (0x1336, 0xabcd, 0x11cd)
be a set of keys. Then, we synthesize the point function
e0(k) := ((0xff∧ k)⊕0xcd) ·0x28cbfbeb9a020a33 for a 64-
bit vector k. e0(k) evaluates to 1 for k0 and to 0 for k1 and k2.
For all other keys, it returns arbitrary values.

4.4 Syntactic Complexity: MBA Synthesis
To thwart symbolic execution and pattern matching, we use
MBAs for all components, including core semantics and key
encodings. As hardcoded rules only provide low diversity,
we precompute large classes of semantically equivalent arith-
metic expressions and combine them through recursive, ran-
domized expression rewriting. We now detail the creation of
the equivalence classes and discuss our term rewriting.

Equivalence Class Synthesis. To create semantic equiva-
lence classes for expressions, we rely on enumerative program
synthesis [4, 37]. To this end, we first define a context-free

6

Algorithm 1: Computing equivalence classes.
Data: n is the maximum depth.

1 states← {S}
2 for d← 1 to n do
3 terminals← derive_terminals(states)
4 process_terminals(terminals)
5 non_terminals← derive_non_terminals(states)
6 states← non_terminals

grammar with a single non-terminal symbol S as start symbol
and two terminal symbols, x and y, representing variables. For
each arithmetic operation, we define a production rule that
maps the non-terminal symbol to arithmetic operations (e. g.,
addition) or terminal symbols. To apply a specified production
rule to a non-terminal expression, we replace the left-most S
with the rule. Expressions without a non-terminal symbol can
be evaluated by assigning concrete values to x and y. We say
that the depth of an expression represents the number of times
a non-terminal symbol was replaced by a production rule.
Example 12: The grammar ({S},Σ = V ∪O,P,S) with the
variables V = {x,y}, the set of arithmetic symbols O =
{+,−} and the production rules P = {S → x | y | (S +
S) | (S − S)} defines the syntax of how to generate termi-
nal expressions. To derive the expression x+ y of depth 3, we
apply the following rules: S→ (S+S)→ (x+S)→ (x+ y).
With a mapping of {x 7→ 2,y 7→ 6}, we can evaluate the ter-
minal expression to 8.

We now describe how we use our context-free grammar
in combination with Algorithm 1, which illustrates the high-
level approach of equivalence class synthesis. Starting with
a worklist of non-terminal states (initialized with the start
symbol S), we iteratively process all expressions for a cer-
tain depth until we reach a specified upper bound depth N.
For a given depth, we derive all terminal and non-terminal
expressions (also referred to as states) before processing the
terminals and then repeating the process for the next depth.
The call to process_terminals is responsible for sorting the
expressions into the respective equivalence classes. To this
end, we evaluate all expressions for a high number of different
inputs (e. g., 1,000), recording their output. Expressions with
the same output behavior for all provided inputs are sorted
into the same equivalence class. This provides an effective
but coarse-grained sorting of expressions into potential equiv-
alence classes. In a final step, we verify that these classes are
semantically correct. For this, we choose the member with the
smallest depth as representative and check with an SMT solver
that all other members are semantically equivalent to this rep-
resentative. Expressions failing this check are removed from
the equivalence class. All remaining expressions are formally
proven to not alter the original semantics.

To prune the search space and avoid trivial expressions
(e. g., x+0), we symbolically simplify each terminal and non-
terminal expression. For this purpose, we apply a normaliza-

tion step to commutative operators, perform constant propa-
gation, and simplify based on common arithmetic identities
(e. g., x+ y− y becomes x).

Expression Rewriting. So far, we generated a large set of
diverse equivalence classes we can use for replacing syntac-
tically simple expressions with more complex ones. A naive
approach replacing expressions with MBAs from the equiv-
alence classes is bounded by the largest depth found in the
respective class. To overcome this limitation, we propose
a recursive expression rewriting approach using the equiv-
alence classes as building blocks. This allows us to create
expressions of arbitrary syntactical depth. Even assuming an
attacker is in possession of all rewriting rules, it is difficult
to invert an expression: Term rewriting is inherently destruc-
tive [75]. Without knowing the applied rewriting rules and
their order, an attacker has to check all possibilities: n rewrit-
ing rules applied over m layers, resulting in the prohibitively
large number of nm candidates.

Given some expression e, we pick a random subexpression
and check if it is a member of an equivalence class. If it is, we
randomly choose another member from this class and use it
to replace the picked subexpression within e. We recursively
repeat this process for a randomly determined upper bound
n. As all members within an equivalence class are proven
to be pairwise equivalent, each replacement is guaranteed
to produce an equivalent expression. Consequently, the final
expression is provably equivalent to the first.
Example 13: Assume that we want to increase the syntactic
complexity of e := (x+ y)+ z with the upper bound n = 2.
First, we randomly choose the subexpression x+ y. We then
pick another member of the same equivalence class—(x⊕
y)+ 2 · (x∧ y)—and replace it in e. In this case, we obtain
e := ((x⊕ y)+ 2 · (x∧ y))+ z. In a second step, we choose
x⊕y, pick the semantically equivalent member (x∨y)−(x∧y)
and replace it again. The final MBA-obfuscated expression is
e := (((x∨ y)− (x∧ y))+2 · (x∧ y))+ z.

Empirical testing showed that for an initial expression the
randomly picked subexpressions would often be short, caus-
ing the resulting recursive rewriting to be very local in nature
rather than considering all of the expression. The previous ex-
ample illustrates this behavior. Considering the expression as
an abstract syntax tree (AST), we twice replaced deeper parts
of the AST while ignoring the top-level operation (addition
with z). Consequently, subsequent iterations would be even
less likely to pick the high-level operation, considering the
wealth of other operations to pick from. Therefore, the AST
would be significantly unbalanced. To avoid this, we prefer
selecting top-level operations in the first loop iterations.

4.5 Semantic Complexity: Superoperators
Up to this point, f ’s core semantics have a rather low semantic
complexity (e. g., x+ y). To thwart semantic attacks, we use
a variation of superoperators that increase the semantic com-

7

plexity. The intention is to significantly increase the search
space for an attacker: For example, assume a set of three vari-
ables V and a set of six binary operations O: For semantic
depth 3 (e. g., x+ y), an expression contains m = 2 variables
and n = 1 operations, such that an attacker has to brute-force
at most |V |m ∗ |O|n = 32 ∗61 = 54 possibilities. For depth 7
(e. g., ((x+y) ·(x⊕c))), they must try up to 34+63 = 17,496
different expressions (or 314,928 for depth 9). In other words,
the search space grows exponentially, making semantic code
book checks as well as program synthesis infeasible.

However, common superoperator strategies, e. g., as used
by Tigress [18], are not resilient against these attacks (cf. Sec-
tion 6.3). They usually include independent core semantics,
each having their own output; this causes the handler to have
multiple, independent outputs, which an attacker can target in-
dividually. As each core semantics itself usually implements
only a single operation [7,58] (e. g., x+y with semantic depth
3) attacking one such superoperator is similar to attacking
a series of regular handlers. To avoid this pitfall, we design
our superoperators to preserve the signature of f (a single
output and x, y, c and k as inputs) while providing a high
semantic depth. In other words, our superoperators consist
of a chain of core semantics that depend on each other and
must be executed sequentially: The output of the core seman-
tics is used as input for subsequent core semantics; the last
core semantics produces the output of the handler. Even if an
attacker is aware of these superoperators, they cannot split a
handler into multiple separate synthesis tasks and forces them
to synthesize the whole expression.

On a technical level, we construct superoperators based on
data-flow dependencies, more precisely use-definition chains
based on static single assignment (SSA) [22]: Given an unpro-
tected code unit in form of instructions in three-address code,
we assign a unique variable to each variable definition and
replace subsequent variable uses with its latest definition on
the right-hand side (called SSA form). Then, we build superop-
erators by first randomly picking variables on the right-hand
side and then replacing these uses by their respective variable
definitions recursively. By choosing lower and upper limits
for the recursion bound, we can control the superoperators’
semantic depth. To further increase the syntactic complexity,
we apply our MBAs.

Example 14: Assume we have three sequential instructions
(Figure 2, l. 1-3) implementing semantically simple opera-
tions; each represents an individual core semantics. Notably,
the first instruction’s output serves as input for the second
and third. Similarly, the second instruction is an input to the
third. To create a superoperator that implements a seman-
tically more complex operation, we transform the code into
SSA form, (randomly) pick b1 in the third instruction and
replace this use by its definition (l. 2), yielding d2 := (a *
d1) | d1. When picking d1, we replace it by its definition (l.
1) accordingly, transforming the expression into d2 := (a *

1 d := a + b ; d1 := a + b
2 b := a * d ; b1 := a * d1
3 d := b | d ; d2 := b1 | d1

Figure 2: Three different core semantics, each implementing a simple opera-
tion. On the right-hand side, the SSA form of the respective expressions.

(a + b)) | (a + b). While the initial expressions have a
semantic depth of 3, the superoperator’s depth is 9.

Intuitively, replacing a use by its respective definition is
guaranteed to preserve the semantics, as variable assignments
are immutable in SSA form. Additionally, we prove the rewrit-
ten superoperator is equivalent to the original code with sym-
bolic execution.

4.6 Synergy Effects
To summarize, each of our components thwarts specific de-
obfuscation attacks: MBAs tackle symbolic execution and
pattern matching, while the nature of f with its multiple core
semantics, selected via a key, prevents taint analysis and back-
ward slicing from removing irrelevant semantics. Further, our
key encodings render semantic codebook checks infeasible
superoperators increase the semantic complexity, throwing
off semantic attacks.

As indicated, especially the combination of our techniques
prevents automated deobfuscation attacks: They do not only
co-exist but have beneficial synergy effects, which in turn im-
prove the overall resilience of the combination. For example,
our MBAs weaken pattern matching on all levels, including
key encodings, and cause the differences between key encod-
ing and core semantics to blur. Besides the syntactic confusion
introduced, we can propagate the core semantics into the key
encoding and vice versa. For instance, we may use MBAs that
extend the key check with the variables x or y using arithmetic
identities that do not alter the key check itself. At the same
time, MBAs benefit from superoperators given they provide
ample opportunity to pick and replace subexpressions.

4.7 Verification of Code Transformations
Obfuscation generally modifies the syntactic representation
of code; thus, it is crucial to verify that it does not change the
code’s semantic behavior. One can achieve this by checking if
the transformed code is semantically equivalent to the original
one. While this works well for short sequences of instructions
(e. g., by using SMT solvers) within a reasonable amount of
time, it does not scale to complex programs. In such cases,
the industrial state of the art approximates these guarantees
by using extensive random testing [43, 85].

For our design, we choose the best applicable verification
method to ensure correctness: For individual components, we
use formal verification to prove their correctness (cf. Sec-
tions 4.3, 4.4, 4.5). To improve the confidence of the correct-
ness of the combination, we use an approach similar to black-

8

box fuzzing [27, 38], where we compare the I/O behavior of
the original and transformed code for a user-configurable num-
ber of random inputs, usually ranging from 1,000 to 10,000.
These are randomly sampled depending on the type expected
by the program (e. g., ASCII strings, random 64-bit integers,
or known edge cases such as 0 or 0x f f .. f f), which needs to
be specified by the user. Crucially, we rely on human insight
and careful specification of the input domain such that the
sampled inputs cover the full program functionality. We apply
this fuzzing both on the binary level as well as on the interme-
diate representation; for the former, we compare the compiled
versions of the unprotected and protected programs, while we
emulate the program’s intermediate representation before and
after transformations for the latter. As a consequence of our
handlers’ interlocked, always-execute nature, we achieve full
code coverage and path coverage both on the intermediate
representation as well as on the binary level for all handlers
needed to represent the original code.

5 Implementation

To evaluate our techniques, we implement a VM-based obfus-
cation scheme named LOKI on top of LLVM [67] (version
9.0.0) and a code transformation component written in Rust.
LOKI consists of ~3,100 LOC in C++ and ~8,700 LOC in
Rust. In this scheme, each function f (x,y,c,k) is represented
by one of our 510 handlers. In other words, each handler can
implement any semantic operation that requires no more than
two input variables and one constant. Our handlers support
the inclusion of three to five core semantics (randomly cho-
sen at creation time), which can be addressed by setting k
accordingly. Besides these 510 handlers, we have a VM exit
and a handler managing memory operations. The control flow
between handlers is realized as direct threaded code [44], i. e.,
each handler inlines the VM dispatcher. Our VM assumes
a 64-bit architecture. Code operating on smaller bit sizes is
semantically upcasted to guarantee correctness.

Our approach to obfuscate real-world code consists of three
major steps: Lifting, code transformation, and compilation.
The lifting starts with a given C/C++ input program that con-
tains a specified function to protect. We then translate this
function to LLVM’s intermediate representation (IR) and
use various compiler passes to optimize the input and unroll
loops as our prototype does not support control-flow to reduce
engineering burden. Note that this is no inherent limitation
of our approach, but a simplification we made as LLVM’s
passes sufficed in creating binaries that our prototype imple-
mentation can process. Finally, we lift the resulting LLVM
IR to a custom IR which the code transformation component
internally operates on. This component (a) parses the lifted
representation of the targeted function, (b) creates superop-
erators based on this input (with recursion bound 3 to 12),
(c) instantiates the VM handlers, applies our obfuscation tech-
niques (e. g., MBAs), and verifies them. For MBAs, we use

a random recursive expression rewriting bound between 20
and 30. We choose from a pre-computed database of 843,467
MBAs (all expressions up to a depth of 9), split over 48 equiv-
alence classes. In each class, there are roughly 17,500 entries
on average. To exemplify the dimensions: An attacker has
to try up to nm

Loki = 843,46730 = 6.1 ∗ 10177 possibilities to
simplify our MBAs; Based on our reverse engineering efforts,
state-of-the-art obfuscator TIGRESS features only 47 hand-
crafted rules (that are not applied recursively), such that an
attacker has to evaluate nm

Tig = 471 = 47 possibilities. (d) Fi-
nally, the Rust component generates the VM bytecode and
translates the handlers back into LLVM IR. Then, obfuscated
and original code are compiled with -O3 and verified.

6 Experimental Evaluation

Based on our prototype implementation, we evaluate if our
approach can withstand automated deobfuscation techniques
(resilience), while maintaining correctness and imposing only
acceptable overhead (execution cost). Overall, we follow the
evaluation principles outlined by Collberg et al. [20].

All experiments were performed using Intel Xeon Gold
6230R CPUs at 2.10 GHz with 52 cores and 188 GiB RAM,
running Ubuntu. Our obfuscation tooling uses LLVM [67] (v.
9.0) and the SMT solver Z3 [52] (v. 4.8.7). For tracing cover-
age, we rely on Intel Pin [39] (v. 3.23). Our deobfuscation tool-
ing is based on MIASM [11] (commit 65ab7b8), TRITON [61]
(v. 0.8.1), and SYNTIA [7] (commit e26d9f5). We use our
prototype of LOKI and the academic state-of-the-art obfus-
cator, TIGRESS [18] (v. 3.1), to obfuscate five different pro-
grams, each implementing a cryptographic algorithm: AES,
DES, MD5, RC4, and SHA1. This is a common approach: the
first three are based on an obfuscation data set provided by
Ollivier et al. [54]; the others are adapted from reference im-
plementations [9, 69]. These algorithms are representative for
real-world scenarios in which cryptographic algorithms are
used to guard intellectual property (e. g., hash functions used
for checksums in commercial DRM systems) [53]. In a case
study, we obfuscate VLC’s DVD decryption routine to show
how LOKI can be applied onto real-world use cases. Where
necessary, we adapt the programs slightly to allow LOKI to
process them (cf. Section 5) without modifying their function-
ality. TIGRESS’ configuration (cf. Appendix 9.1) resembles
our design and works on the same source code files.

6.1 Benchmarking
Our goal is to benchmark the correctness and cost of our
obfuscator. We do so by conducting a series of experiments,
measuring the overhead in terms of runtime and disk size as
well as verifying the correctness of transformed code. For
each obfuscator, we create 1,000 obfuscated instances for
each of the five targeted programs and use them for all exper-
iments. The overhead comparison is given as factor relative

9

to the original, unobfuscated program compiled with -O3. To
measure the MBA overhead, we create another 1,000 obfus-
cated instances without any MBAs for LOKI.
Experiment 1: Correctness. For each target, we verify
that all 1,000 obfuscated instances produce the same out-
put as the original program for more than 1,000,000
inputs. To obtain a uniform distribution over varying
input lengths of our cryptographic targets, we create
10,000 random inputs for each supported input length l ∈
[16;128]. Additionally, we test a number of edge cases
∈ {0x0..0,0x f f .. f f ,0x80..00,0x00..01,0xaa..aa,0x55..55}
(or their cartesian product if two inputs are required). This
amounts to a total of 1,134,068 inputs, for which we assert
equal input-output behavior.

All obfuscated binaries (both those with and without
MBAs) exhibit exactly the same behavior for the 1,134,068
inputs tested.
Experiment 2: Code Coverage and Path Coverage. To fur-
ther increase confidence in our correctness tests, we measure
both the code coverage and the path coverage that the inputs
from Experiment 1 achieve on the to-be-protected code both
for the original program and obfuscated instances.

We find that each of the more than 1,000,000 inputs from
Experiment 1 achieves full code coverage and full path cover-
age. This ensures that our inputs cover the complete behavior
of the code we obfuscate and that our obfuscation transforma-
tions have not altered this behavior.
Experiment 3: Overhead. For each target, we measure the
average execution runtime. To this end, each target wraps
the to-be-protected code in a single function, which is called
10,000 times per input. We then execute each obfuscated
binary for 1,000 random inputs, recording the collected tim-
ings. We also compare the original program’s disk size to the
average of the obfuscated binaries.

As evident from Table 2, the runtime overhead ranges from
a factor of 301 to 482 compared to the original program’s
execution time. While this overhead may appear excessive—
also in comparison to TIGRESS—state-of-the-art commercial
obfuscation generally imposes an even larger slowdown, up
to ten times more than LOKI (cf. Table 2, [15]). We re-run
this experiment on the 1,000 binaries without MBAs to eval-
uate their impact. On average, they are responsible for ~39%
of the overhead. Similar for the disk size, the obfuscated
programs are 18 to 51 times larger than the original ones.
Size-wise, MBAs cause ~33% of the overhead. For further
details of our MBAs’ overhead, we refer to Appendix 9.2.
Compared to THEMIDA and VMPROTECT, our obfuscating
transformations generate almost always smaller programs,
while TIGRESS always produces significantly smaller bina-
ries.

Overall, we conclude that our overhead is moderate in com-
parison to commercial state-of-the-art obfuscators. For further
discussion, we refer to Section 7. TIGRESS’ overhead is im-

pressively small, but it falls short in providing comprehensive
protection as the following experiments show.

Case Study: VLC with LIBDVDCSS. To showcase the
practical feasibility of LOKI in real-world scenarios, we ob-
fuscate the DecryptKey function in LIBDVDCSS [70]; this
component of VLC [71] is responsible for decrypting the
multimedia content of DVDs keys. The underlying idea is
to protect the decryption algorithm from the prying eyes of
crackers and protect intellectual property. However, the vast
majority VLC’s code is irrelevant to content decryption, such
that there is no need to obfuscate the whole LIBDVDCSS li-
brary or even the whole media player. After obfuscating the
DecryptKey function, which is called before the actual media
content is played, we measure the execution time of the func-
tion during initial startup, when the DVD is decrypted. We
average the results over ten executions. We find that without
obfuscation, the function is executed in 2,952 nanoseconds,
while with obfuscation, the decryption lasts 937,606 nanosec-
onds. Overall, LOKI slows down the initialization by one
millisecond, a negligible cost for protecting one’s intellectual
property, especially if the to-be-protected function is only
called in the application’s startup phase.

6.2 Resilience

We evaluate whether our techniques can withstand automated
deobfuscation approaches. To this end, we analyze the impact
of syntactic and semantic attacks against the obfuscated code
in the presence of both static and dynamic attackers. We de-
sign all experiments by assuming the strongest attacker model.
To this end, we test each component individually, therefore
ignoring beneficial synergy effects. Where applicable, we
first evaluate our techniques on a general design level before
testing their concrete implementations. The former serves
as universal evaluation of a technique’s resilience, while the
latter demonstrates that this also holds when actually imple-
mented on the binary level.

LOKIATTACK. Fundamentally, attacking the obfuscated
VM on the binary-level has two stages: (1) Identifying a spe-
cific handler within the VM, and (2) attacking (simplifying)
this particular handler as far as possible. For our evaluation,
especially (2) is interesting, as all our techniques focus on
hardening individual handlers. As such, we develop a custom
attack framework that we call LOKIATTACK. It is specifically
tailored to the attacked obfuscators and automates the first
stage: It identifies all VM handlers and provides the attacker
(for each handler) with access to the handler parameters (x, y,
c, and—for LOKI—k). For a dynamic attacker, it also provides
concrete values for these parameters. Finally, LOKIATTACK
uses symbolic execution to obtain all code paths through
the intermediate representation (IR) of the O3-optimized VM
code that depend on an unknown (static attacker) or known
(dynamic attacker) value of k (for LOKI). For each such path,
an attacker can launch the actual attack on the handler (stage

10

Table 2: Runtime and disk size overhead as factors relative to the non-obfuscated binaries (compiled with O3). (w/o = without)

Time Factor Size Factor
AES DES MD5 RC4 SHA1 AES DES MD5 RC4 SHA1

VMPROTECT
Virtualization 2,489 1,859 1,982 1,321 2,524 37 21 40 44 40
Ultra 8,925 9,152 13,047 5,806 15,411 47 37 57 59 53

THEMIDA
Tiger White 1,388 622 203 240 552 58 38 58 58 59
Dolphin Black 11,695 5,052 2,428 3,634 8,354 67 47 85 63 84

LOKI 386 301 357 482 386 33 18 39 37 51
w/o MBA 236 185 204 315 233 21 13 25 26 32

TIGRESS 261 51 101 58 111 3 4 2 2 3

2), for which LOKIATTACK provides a number of techniques
implemented as plugins, e. g., taint analysis, symbolic exe-
cution, or program synthesis. To implement LOKIATTACK,
we use MIASM; the plugins for stage 2 are based on TRI-
TON (byte-level taint analysis), MIASM (bit-level taint analy-
sis, backward slicing, and symbolic execution), and SYNTIA
(program synthesis). These plugins include costly operations
(SMT solving, program synthesis, and symbolic execution),
from which some may run for several days. As our evalua-
tion consists of more than 300,000 analysis tasks, we limit
each one to 1 hour to keep the analysis time manageable.
This is a common use-case and in-line with previous work on
deobfuscation [5, 7, 51].

6.3 Evaluation of Key Encodings

We evaluate whether a static attacker can obtain a specific
core semantics using semantic codebook checks. Note this
experiment is only applicable to LOKI as TIGRESS has no
concept of key-based selection of core semantics. Assume
that the function f (x,y,c,k) includes x + y as one of its
core semantics. Then, an attacker can use an SMT solver
to find a value for k such that f is semantically equivalent
to g(x,y,c) := x+ y. On a technical level, we employ an ap-
proach called Counterexample-Guided Abstraction Refine-
ment (CEGAR) [16, 17] that relies on two independent SMT
solvers: While SMT solver A tries to find assignments for all
variables (including k) such that f and g produce the same
output, solver B tries to find a counterexample for this value
of k such that f and g behave differently. Then, A uses the
counterexample as guidance.

Experiment 4: Hardness of Key Encodings. We generate
1,000 random instances of our factorization-based key encod-
ing and synthesize 10,000 point functions. Then, we apply
the CEGAR approach independently to both key encodings
and check if the SMT solver finds a correct value for k.

We observe that the SMT solver found no correct key for
the factorization-based encoding, but hit the 1h timeout in all
cases. Considering the point function-based key encoding, Z3
managed to find a value for k in 6,932 cases (~69%). On av-
erage, it found the solution in 284s (excluding timeouts). We
conclude that an SMT solver struggles with our factorization-

based key encoding, while point functions often can be solved.
Recall though that point functions primarily serve to diversify
and erase discernible patterns to impede pattern matching.

Experiment 5: Key Encoding on Binary Level. To verify
if our implementation properly emits these key encodings, we
generate 1,000 binaries that contain one specific handler
which includes x+ y as one of its core semantics. These bina-
ries contain neither MBAs nor superoperators. Assuming a
static attacker uses CEGAR, we check in how many cases the
SMT solver finds a correct value for k.

Using LOKIATTACK, we obtain the handler’s instructions
and use our CEGAR plugin based on Z3 to find a value for
k, such that these instructions are semantically equivalent to
x+ y. While hitting the timeout in 690 cases, Z3 managed
to find a correct value for k in 310 cases (31%). The SMT
solver needed, on average, 444s to find the solution (excluding
timeouts). Overall, we conclude that our key encodings indeed
pose a challenge for a static attacker relying on SMT solvers.

Note that this component is special within our system, as
its approach specifically targets only static attackers. This is
due to the fact that dynamic attackers can trivially observe
a value for k. While a dynamic scenario is not always possi-
ble, another attack vector could be to offload 64-bit integer
factorization to custom tools (assuming an attacker manages
to locate the key encodings, which in itself is a non-trivial
task given our MBAs and point functions). Thus, our key
encodings can be considered to be our weakest component.
However, our design assumes that an attacker can retrieve a
value for k, but we try to make this as hard as possible. The
syntactic simplification experiments show that knowledge of
a key k is beneficial but not sufficient to simplify any handler.

Syntactic Simplification. In the following, we evaluate
whether syntactic simplification techniques—namely, forward
taint analysis, backward slicing, and symbolic execution—
succeed in extracting a core semantics associated with a spe-
cific key, either by trying to identify instructions not con-
tributing to a function f ’s output or by symbolically simpli-
fying f . We use LOKIATTACK as a basis and conduct the
respective attack in stage 2 for both a static and a dynamic
attacker. We assume that an attacker is given a binary contain-
ing seven handlers, f0(x,y,c,k), · · · , f6(x,y,c,k)), each con-
taining between 3 and 5 core semantics. Further, each han-

11

Table 3: Statistics for backward slicing and forward taint analysis (TA),
averaged over 7,000 handlers. Unmarked instruction can be removed as
irrelevant. (Unmark. = not tainted / not sliced; Dyn. = dynamic attacker)

Byte-level TA Bit-level TA Slicing
Static Dyn. Static Dyn. Static Dyn.

L
O

K
I IR paths 1,950 199 1,451 168 1,656 179

Unmark. 17.49% 17.50% 17.61% 17.62% 5.49% 7.57%
Time [s] 556 58 710 78 630 67

T
IG

R
E

S
S IR paths 1 1 1

Unmark. 44.70% 44.70% 22.35%
Time [s] 1.3 1.6 1.4

dler fi contains one predefined core semantics from the set
{x+y,x−y,x ·y,x∧y,x∨y,x⊕y,x� y} that an attacker wants
to identify via syntactic simplification. As sample set for our
experiments, we generate 1,000 binaries protected by MBAs
but without superoperators, amounting to 7,000 handlers to
analyze. For each binary, we use LOKIATTACK to extract all
handlers; for each handler, LOKIATTACK provides us with the
parameter locations (and values for the dynamic scenario) and
all code paths. For each code path (a list of instructions), we
then use the respective stage 2 plugin. We apply the following
experiments also to 7,000 TIGRESS handlers (with disabled
superoperators), respectively.

Experiment 6: Forward Taint Analysis. For each of the
7,000 handlers, we conduct a forward taint analysis with
byte-level and bit-level granularity. The former is based on
TRITON, while the more precise bit-level taint analysis is
implemented on top of MIASM. In general, higher precision
is expected to produce fewer false positives and result in
fewer tainted instructions. Recall that an attacker’s goal is
to identify all instructions that do not belong to the core
semantics associated with a specific key. Using taint analysis,
an attacker can remove all instructions not depending on x, y,
c, or k (in a dynamic scenario: on a concrete value for k).

The resulting data is shown in Table 3 (where unmarked
instructions refer to instructions that are not tainted, i. e., in-
structions that can be removed). The results show two inter-
esting insights: First, the granularity has negligible impact
on the results (difference of 0.12%). Second, the number of
tainted instructions is almost equal for a static and a dynamic
attacker. This is surprising as for LOKI the number of visited
paths in the IR’s control-flow graph is significantly lower in
the dynamic setting. Intuitively, this means a dynamic attacker
has better chances of removing more instructions. However,
our results show that the sole benefit of a dynamic attacker
is spending less time per handler. In numbers, an attacker is
always able to only remove about ~18% of a handler’s as-
sembly instructions. Manually inspecting the instructions not
tainted revealed that these can always be put into two cate-
gories: Either they are part of the inlined VM dispatcher that
is responsible for loading the next handler (which is indepen-
dent of the current handler’s semantics), or it is an instruction
loading a constant value before it interacts with tainted in-

Table 4: Symbolic execution for semantic depth 3 and 5, each averaged over
7,000 handlers. (Simplified = percentage of handlers simplified)

Depth 3 Depth 5
Static Dynamic Static Dynamic

LOKI
IR paths 4,960 559 5,450 703
Simplified 0% 17.93% 0% 14.64%
Time [s] – 94 – 168

TIGRESS
IR paths 1 –
Simplified 30.61% –
Time [s] 1.4 –

structions (comparable to Example 3). To summarize, forward
taint analysis fails to remove a single instruction that is related
to the core semantics or key encodings. For TIGRESS, on the
contrary, only one IR path exists, meaning the handlers are
short and simplistic in nature. No difference between bit and
byte-wise taint analysis exists; overall, an attacker succeeds
in removing 45% of instructions—significantly more than for
LOKI.

Experiment 7: Backward Slicing. Besides forward taint
analysis, an attacker can use backward slicing to identify all
instructions that contribute to a handler’s output. We again
consider both a static and dynamic attacker trying to reduce
each handler to the core semantics associated with a specific
k by removing as many unrelated instructions as possible. Our
backward slicing approach is based on MIASM and operates
on the same 7,000 handlers as Experiment 6.

The results are denoted in Table 3, where an unmarked
instruction refers to an instruction that was not sliced, i. e., it
does not contribute to the output. Other than for taint analy-
sis, a dynamic attacker has a slight advantage compared to
a static attacker (2.08%), as they slice slightly fewer instruc-
tions. While the static attacker marks all instructions but the
inlined dispatcher, our manual inspection revealed that dy-
namic analysis skips some IR paths depending on irrelevant
key values. Compared to forward taint analysis, backward
slicing marks more instructions, i. e., it removes fewer instruc-
tions (~7% vs. ~18%). This is due to the backward-directed
nature of the approach, which allows it to slice instructions
loading constant values. We conclude that backward slicing is
technically more precise than forward taint analysis, but fails
to remove instructions belonging to the core semantics or key
encodings. For TIGRESS, slicing succeeds to remove signif-
icantly more instructions, however, less than taint analysis.
This is again due to the loading of constant values.

Experiment 8: Symbolic Execution. Besides removing in-
structions not contributing to the output, an attacker can use
symbolic execution to extract a handler’s core semantics.
To this end, a symbolic executor uses simplification rules to
syntactically simplify the handler’s semantics as much as pos-
sible. We use the same 7,000 handlers as Experiment 6. We
analyze each handler independently with MIASM’s symbolic
execution engine and measure whether it can be simplified to
the original core semantics.

12

We model both a static and more powerful dynamic attacker.
In the latter scenario, the attacker observes a value for k and
thus can nullify all core semantics not related to this specific k.
Hence, they obtain a much simpler expression containing only
the desired core semantics, albeit in syntactically complex
form (due to MBAs). Recall that for the 7,000 handlers, the
semantic depth of the core semantics is always 3 (e. g., x+ y).
This intentionally weakens resilience, as superoperators with
a higher depth naturally increase both semantic and syntactic
complexity. To show this, we create another 7,000 handlers
(1,000 binaries à 7 core semantics) with a semantic depth
of 5 (e. g., x+ y+ c) and repeat this experiment. We cannot
create handlers of depth 5 for TIGRESS, as it is not possible
to explicitly set the handler’s semantic depth.

All results are shown in Table 4. Notably, a static attacker
fails to simplify any of LOKI’s handlers. Without knowing
a value for k, an attacker has to analyze the expression con-
taining all key encodings and their associated core semantics.
In other words, an attacker fails to nullify irrelevant core se-
mantics. To significantly simplify the handler, a static attacker
has to find a valid key first (reducing the problem to Exper-
iment 5). A dynamic attacker, on the other hand, only has
to simplify the MBAs as they already identified the core se-
mantics associated with the key. For depth 3, they succeed in
removing all MBAs for ~18% of LOKI’s handlers, while, for
TIGRESS, ~31% of the handlers can be simplified. In other
words, an attacker can simplify significantly more handler
for TIGRESS than for LOKI. For a more realistic depth of 5—
subsequent experiments show ~80% of LOKI’s handlers are
at least of depth 5—the attacker’s success rate is even lower,
namely ~15%. This percentage implies that a number of ex-
pressions can be simplified regardless of the higher base depth.
This may be the case, e. g., when the random combination of
applied MBAs cancels itself out. Still, this demonstrates our
synergy effects are indeed helpful to prevent an attacker from
symbolically simplifying the core semantics, leaving them
with a complex MBA that conceals the actual semantics.

We conclude that our MBAs are successful in thwarting
symbolic execution, one of the most powerful deobfuscation
attacks. For a more detailed analysis of how a user of LOKI
can trade performance against reducing the attacker’s success
chances even further (to 6.79%), refer to Appendix 9.3.

Experiment 9: Diversity of MBAs. An attacker tasked with
removing such MBAs may investigate whether a diverse num-
ber of expressions exists for the same core semantics. If this
is not the case, they can manually analyze each MBA and
extend the symbolic executor’s limited set of simplification
rules by rewriting rules to “undo” specific MBAs. To this
end, we assume a dynamic attacker that already symbolically
simplified the expression as far as possible without any MBA-
specific simplification rules. We do this for each handler type
(recall that the 7,000 handlers of depth 3 consist of 7 different
core semantics à 1,000 handlers) and then analyze how many
different, unique MBA expressions exist.

Our analysis reveals that, in summary, LOKI generates
5,482 unique MBAs for the 7,000 expressions analyzed
(78.31%), while TIGRESS creates only 16 (~0.23%) unique
MBAs. Thus, an attacker adding 16 rules to their symbolic
executor could simplify all core semantics. This difference
can be explained by the fact that TIGRESS uses only a few
handwritten rules to create MBAs, while LOKI features a
generic approach to synthesize MBAs. To further highlight
the difference between both approaches, we repeat this exper-
iment for another set of 7,000 handlers—created in the same
configuration but with different random seeds—and calculate
the intersection of unique MBAs. TIGRESS re-uses exactly the
same 16 MBAs, while LOKI re-uses 109 expressions but gen-
erates 5,299 new unique MBAs (i. e., 10,781 unique MBAs
in total). Creating simplification rules specific to LOKI is a
tedious task (given the high number of unique MBAs) that
does not pay off when analyzing other obfuscated instances.
For a discussion of what an attacker can achieve when they
are in possession of all available MBA rewriting rules, refer
to Section 7. We conclude that LOKI’s MBAs are superior
to state-of-the-art approaches relying on a small number of
hardcoded MBAs, both in terms of resilience and diversity.

State-of-the-art MBA Deobfuscation. A number of ap-
proaches for MBA simplification have been proposed, most
notably SSPAM [30], ARYBO [36], NEUREDUCE [32], and
MBA-BLAST [48]. The deployed techniques range from pat-
tern matching-based simplification over machine learning to
algebraic simplification. Regardless of the underlying tech-
nique, they all share one major drawback: They expect the
MBAs to be available on the source code level in form of a
formula, such as “x + y - y”, rather than dealing with them
on the binary level. As a consequence, these deobfuscation
tools lack support for MBAs using different bit sizes and
operations such as zero-extension or sign-extension. Further-
more, they assume that the MBAs are free of constants and
more complex arithmetic operations, such as multiplication
or left-shifts. In contrast to these limitations and assumptions,
LOKI’s MBAs not only employ all these operators but also
contain constants, thus making a fair, direct evaluation of our
MBAs contained in binaries difficult. To avoid these pitfalls,
we use LOKI’s term rewriter to generate simpler MBAs—
called artificial MBAs—and emit them as a formula rather
than deploying them in the binary. We make the following
artificial restrictions: We (a) emit no constants, (b) do not
intertwine the MBAs with the key encoding, (c) remove any
information (or operation) relating to size casts, and (d) avoid
complex, unsupported operations such as multiplications or
left-shifts. Instead, the resulting MBAs are a formula contain-
ing only the following operations {+,−,∧,∨,⊕}. While this
significantly weakens LOKI’s MBAs, aforementioned state-
of-the-art MBA deobfuscation techniques can now process
these artificial MBAs, allowing a fair evaluation. For NEURE-
DUCE, we use the Gated Recurrent Unit (GRU)-based Long
Short-Term Memory (LSTM) model provided by the authors.

13

5 10 15 20 25 30

Recursive Expression Rewriting Bound

0

200

400

600

800

1000

#
S

u
cc

es
sf

u
ll

y
S

im
p

li
fi

ed

Deobfuscation of 1,000 artificial MBAs

LokiAttack

MBA Blast

SSPAM

NeuReduce

Figure 3: Number of artificial MBAs that have been successfully simplified
(averaged over 5 different core semantics). The gray-shaded area marks the
recursive rewriting bounds randomly picked by LOKI for our regular MBAs.

We further adapt MBA-BLAST to recursively attempt simpli-
fication for subexpressions. MBA-BLAST cannot deal with
nested arithmetic expressions; only expressions on the root
level of the expression’s abstract syntax tree may contain arith-
metic operators. All subexpressions must consist purely of
Boolean operators. As our MBAs are highly nested, we apply
the respective tool recursively on each subexpression until
it cannot simplify the expression any longer. We considered
evaluating ARYBO [36]; however, we noticed it does not termi-
nate for 64-bit expressions within one hour. Further, ARYBO
outputs truth tables in form of expressions representing the
relations between different bit positions. Its goal is aiding a
human analyst rather than automated simplification. Thus, we
exclude it from the following experiment. As a baseline, we
port our deobfuscation tooling, LOKIATTACK with the SE
plugin, to the source level: We first use aggressive compiler
optimizations (“-O3”) to simplify the MBA and then—as a
stage 2 plugin—symbolically summarize it using MIASM’s
symbolic execution engine. This is the same approach as has
been used for the previous experiments.

Experiment 10: MBA Formula Deobfuscation. For each
core semantics from the set {x+ y,x− y,x∧ y,x∨ y,x⊕ y},
we use LOKI to generate 1,000 artificially simplified MBAs
on the source code level. We do this for each recursive
term rewriting bound from [1,30] (during normal operation,
LOKI’s rewriting bound is randomly chosen between [20,30]).
In summary, we generate 5,000 MBAs per rewriting bound,
i. e., 150,000 obfuscated expressions in total. We then pass
each MBA to the deobfuscation tools MBA-BLAST, NEURE-
DUCE, SSPAM, and LOKIATTACK and observe how many
expressions they can simplify to the ground truth.

The number of simplified expressions, averaged over the
five different core semantics, are depicted in Figure 3. As the
data shows, our custom deobfuscation tooling, LOKIATTACK,
significantly outperforms all state-of-the-art deobfuscation
techniques. NEUREDUCE can only simplify a handful of ex-

pressions in total. One limitation is that it can only work with
inputs up to 100 characters; however, our artificial MBAs with
a rewriting bound of 20 contain, on average, 7,960 charac-
ters (after removing all whitespaces). We have tried a similar
approach as we have employed for MBA-BLAST, however,
found it does not improve its accuracy. Studying their dataset
used to train the model, we believe that their approach heavily
overfits on the training data, a set of simple and short (on
average 75 characters without whitespace) MBAs. SSPAM
fails to deal with the highly recursive nature of our MBAs,
frequently hitting the stack recursion limit. MBA-BLAST
performs better and manages to simplify a number of simple
MBAs. However, the success rate of all tools decreases with
a higher term rewriting bound. LOKI’s default is to use a ran-
dom recursive rewriting bound between 20 and 30, for which
all but LOKIATTACK fail to simplify basically any MBA. For
example, MBA-BLAST simplifies only 157 of 55,000 MBAs
for LOKI’s recursive rewriting bounds, [20,30]. While the
success rate of LOKIATTACK may seem high, recall that we
artificially weakened these MBAs by excluding a number of
operations and removing all constants; Experiment 8 evalu-
ates how LOKIATTACK with the symbolic execution plugin
performs on our regular MBAs.

Semantic Attacks. Semantic attacks such as program syn-
thesis exploit the low semantic depth of individual core seman-
tics. We evaluate the impact of our superoperators on these
attacks. First, we analyze the average semantic complexity
of core semantics with and without superoperators. Then, we
perform a high-level experiment to measure the general limits
of synthesis-based approaches. Finally, we demonstrate that
our superoperators withstand synthesis-based attacks on the
binary level. Note that we only consider a dynamic attacker
in the following, as knowing a value for k is a prerequisite for
any reasonable semantic attack. A static attacker would only
learn random behavior, as the key encodings are only valid
for a predefined set of keys.

Experiment 11: Complexity of Core Semantics. To evalu-
ate our superoperators’ distribution and their impact on the
complexity of core semantics, i. e., their semantic depth, we
create 1,000 obfuscated binaries without superoperators as
a baseline for each benchmarking target (cf. Section 6.1) and
1,000 binaries with superoperators. We compare the two sets
on the average number of unique core semantics and their
semantic depths. To simplify evaluation, no MBAs are used.

Without superoperators, each binary on average contains
15.8 core semantics. With superoperators, this number in-
creases to 58.8. Additionally, Figure 4 shows that superop-
erators have a significantly higher semantic depth, usually
ranging from 5 to 13 with a clearly visible peak at depth 9.
Compared to obfuscation without superoperators, where only
a few core semantics with semantically low complexity are
used, superoperators increase the number of unique core se-

14

0 2 4 6 8 10 12 14 16 18 20 22

Semantic Depth

0

5

10

15

A
v
er

a
g
e

N
u

m
b

er
o
f

S
em

a
n
ti

cs
Complexity of Generated Handlers

With Superoperators

No Superoperators

Figure 4: The distribution of core semantics with and without superoperators.

0 2 4 6 8 10 12 14 16 18 20

Semantic Depth

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

li
ty

(9
9
.9

%
co

n
fi

d
en

ce
in

te
rv

a
l)

Probability of Synthesizing Formulas of Depth N

Figure 5: The probability to synthesize a valid candidate for formulas of
depth N. The error bars are calculated as the 99.9% confidence interval for
the true probability.

mantics and their semantic depth notably. This makes the task
of synthesizing semantics more difficult.
Experiment 12: Limits of Program Synthesis. We evaluate
how the success rates of program synthesis relate to semantic
complexity. We generate 10,000 random expressions for each
semantic depth between 1 and 20 and measure how many
of them can be synthesized successfully. Modeling our func-
tion f , we use SYNTIA’s grammar [7] to generate random
expressions depending on three variables. Based on the au-
thors’ guidance, we set SYNTIA’s configuration vector to
(1.5, 50000, 20, 0) and use it to synthesize each expression.

Figure 5 shows that simple expressions can be synthesized
quite easily; at a semantic depth of 7, only ~50% can be syn-
thesized. For larger semantic depths, it becomes increasingly
unlikely to synthesize expressions. Given our results from
Experiment 11, we conclude that our superoperators produce
core semantics of sufficient depth to impede program synthe-
sis.
Experiment 13: Superoperators on Binary Level. To eval-
uate the impact of program synthesis, we assume a dynamic
attacker has extracted a handler’s core semantics (for LOKI:
associated with a known value of k). They then use SYNTIA—
configured as in Experiment 12—to learn an expression hav-
ing the same input-output behavior. We create 400 obfuscated

binaries (without MBAs, with superoperators) for each bench-
marking target (cf. Section 6.1), randomly pick 10,000 core
semantics and measure SYNTIA’s success rate.

Overall, using SYNTIA as a stage 2 plugin on top of LOKI-
ATTACK, we managed to synthesize 1,888 (~19%) of LOKI’s
expressions and 6,779 (~68%) of TIGRESS’ expressions. On
average, it took 157s to synthesize an expression for LOKI
and 144s for TIGRESS. The results show that—while both
designs employ superoperators—it is crucial how these super-
operators are crafted. As outlined in Section 2.1, TIGRESS
usually includes independent core semantics, allowing the
attacker to split the superoperators into multiple smaller syn-
thesis tasks, each of low semantic complexity. On the other
hand, LOKI’s design ensures that its superoperators cannot
be split into smaller tasks but have high semantic depths. In
summary, LOKI is the first obfuscation design showing suffi-
cient protection against program synthesis, an attack vector all
state-of-the-art obfuscators fail to account for. Given LOKI’s
synergy effects and high resilience against syntactic simplifi-
cation approaches, semantic deobfuscation techniques remain
an attacker’s last resort. However, even when using program
synthesis, arguably the strongest semantic attack, an attacker
can only recover less than a fifth of LOKI’s core semantics.

7 Discussion

Overhead. Table 2 indicates that the overhead of code obfus-
cation is generally excessive. However, this cost is accepted
in practice because only small, critical parts of the whole pro-
gram need to be protected (e. g., proprietary algorithms, API
accesses, or licensing-related code). As a result, the overhead
has to be seen in relation to the whole program. As our case
study shows for LIBDVDCSS, using obfuscation only for crit-
ical, well-chosen code parts has no negative impact on the
usability of the respective program (here VLC).

MBA Database. Assuming an attacker intends to symboli-
cally simplify MBAs, they may benefit from using a lookup
table mapping complex MBAs to simpler expressions. This
approach is effective for state-of-the-art obfuscators such as
TIGRESS that only use a limited number of hardcoded rewrit-
ing rules (cf. Experiment 9). LOKI, in contrast, is the first ob-
fuscator that employs a generic approach to synthesize highly
diverse MBAs, resulting in a large number of MBAs (stored in
a database for performance reasons). Users of LOKI can keep
their MBA database (including the synthesis limit up to which
MBAs were synthesized) private. In fact, users could choose
arbitrary lower and upper limits as well as completely differ-
ent grammars to create an MBA database. Without knowing
the parameters, a re-creation of the database is not feasible.
That said, even in cases where an attacker is in possession
of the MBA database, there is no straightforward process to
reverse the recursively generated expression (cf. Section 4.4).

15

Attacker Model. Our evaluation assumes a strong attacker
model with significant domain knowledge and access to all
kinds of static and dynamic analyses. In practice, an attacker
is often weaker. Especially without prior knowledge about
the given obfuscation techniques, the usage of additional tech-
niques (e. g., VM bytecode blinding [7] or range dividers [1])
and other countermeasures (e. g., self-modifying code [50] or
anti-debugging techniques [33]) complicates analysis.

Human Attacker. Ultimately, code obfuscation schemes
are usually broken by human analysts [58]. This is partly
because humans excel at recognizing patterns and adapt to
the given obfuscation [23]. Collberg et al. [19] define potency
to denote how confusing an obfuscation is for a human ana-
lyst. Due to the difficulty of measuring a human’s capability
with regard to deobfuscation, we restrict our evaluation to
automated attacks. We argue that without automated tech-
niques, analysis becomes subjectively harder. Nevertheless,
we believe that pattern matching might be the most potent
attack on our approach. While we use a fixed structure, we
argue that our MBAs remove identifiable patterns. Still, we
are not aware of an adequate way of measuring this. How-
ever, even if we assume that a human attacker breaks one
obfuscated instance, other instances remain hard. This is as
our design samples from large search spaces for its critical
components, providing significant diversity for MBAs and
superoperators. In summary, we expect LOKI to perform rea-
sonably well against human attackers even if this cannot be
easily quantified.

8 Related Work

Over the years, a large number of obfuscation techniques were
proposed [1, 8, 19, 31, 35, 40, 50, 53, 54, 56, 73, 76, 86]. Many
of these techniques are orthogonal to our work and focus on
one specific transformation. For an overview over the field
of obfuscation, we refer the interested reader to the overview
by Banescu and Pretschner [3]. In the following, we discuss
techniques closest to our work.

MBA. Zhou et al. introduced the concept of Mixed
Boolean-Arithmetic (MBA) to hide constants and calculations
within complex expressions. While conceptually simple, this
approach proved effective against many analysis techniques,
such as symbolic execution. As a consequence, a number
of approaches towards deobfuscating MBAs were proposed,
including pattern matching (SSPAM [30]), symbolic simplifi-
cation using a Boolean expression solver (ARYBO [36]), pro-
gram synthesis (SYNTIA [7], XYNTIA [51], QSYNTH [25]),
machine learning (NEUREDUCE [32]), and algebraic sim-
plification (MBA-BLAST [48]). While those techniques are
effective against common MBAs, LOKI’s generic approach
to synthesize diverse MBAs produces expressions resilient
against such attacks (cf. Section 6).

VM Obfuscation. Our prototype implementation LOKI
uses a VM-based architecture to showcase our techniques.

However, we make no attempt at obfuscating the VM structure
itself, which we consider orthogonal to our work. Examples
for such work include virtual code folding, where the map-
ping between opcodes and individual handlers is obfuscated
to impede static analyses [14, 46, 66, 80]. While they use dy-
namic keys to determine the next handler, we use keys within
our handlers to select a specific core semantics. With regard
to deobfuscation, approaches such as VMHUNT [78], VMAT-
TACK [41], and others [42, 63] may succeed in reconstructing
LOKI’s VM structure (similar to LOKIATTACK). However,
they cannot recover individual handler semantics, since they
rely on techniques such as symbolic execution and backward
slicing, for which LOKI is resilient against by design.

Thwarting Symbolic Execution. With regard to thwarting
symbolic execution-based deobfuscation approaches, early
work by Sharif et al. [64] already proposed key-based encod-
ings to make path exploration infeasible. Later approaches
extend on this work by introducing multi-level opaque pred-
icates (so-called range dividers) [1] or artificial loops [54].
LOKI extends these ideas: it does not only make path explo-
ration infeasible, but also prevents symbolic simplification
attacks due to its MBAs.

Thwarting Program Synthesis. Program synthesis is one
of the most powerful attack vectors [7, 51]. Concurrent
work [51] proposes a search-based program synthesis ap-
proach outperforming SYNTIA. However, the authors note
that merging handlers and increasing a handler’s semantic
complexity proved effective in thwarting such attacks. This is
in line with our evaluation.

In this section we hyphenate each of these two approaches
to show how they differ from one another (i) for synthesiz-
ing programs using both techniques; () when only syntac-
tic specialization can be used as an attack surface reduction
technique against symbolic execution engines ; Session A:
Symbolic Execution slave xen.

9 Conclusion

In this paper, we present and extensively evaluate a set of
novel and generic obfuscation techniques that, in combina-
tion, succeed to thwart automated deobfuscation attacks. Our
four core techniques include a novel and generic approach to
synthesize and formally verify MBAs of arbitrary complex-
ity, overcoming the limits imposed by using hardcoded rules.
We further include a new approach to increase obfuscation’s
semantic complexity, based on an investigation of the limits
of program synthesis. In conclusion, we show that a compre-
hensive and effective intellectual property protection can be
achieved without excessive overheads.

16

References

[1] Sebastian Banescu, Christian Collberg, Vijay Ganesh,
Zack Newsham, and Alexander Pretschner. Code Obfus-
cation against Symbolic Execution Attacks. In Annual
Computer Security Applications Conference (ACSAC),
2016.

[2] Sebastian Banescu, Christian Collberg, and Alexander
Pretschner. Predicting the Resilience of Obfuscated
Code Against Symbolic Execution Attacks via Machine
Learning. In USENIX Security Symposium, 2017.

[3] Sebastian Banescu and Alexander Pretschner. A Tuto-
rial on Software Obfuscation. Advances in Computers,
108:283–353, 2018.

[4] Sorav Bansal and Alex Aiken. Automatic Generation
of Peephole Superoptimizers. In ACM Sigplan Notices,
2006.

[5] Sébastien Bardin, Robin David, and Jean-Yves Marion.
Backward-Bounded DSE: Targeting Infeasibility Ques-
tions on Obfuscated Codes. In IEEE Symposium on
Security and Privacy, 2017.

[6] Lucas Barhelemy, Ninon Eyrolles, Guenaël Renault, and
Raphaël Roblin. Binary Permutation Polynomial Inver-
sion and Application to Obfuscation Techniques. In
ACM Workshop on Software PROtection (SPRO), 2016.

[7] Tim Blazytko, Moritz Contag, Cornelius Aschermann,
and Thorsten Holz. Syntia: Synthesizing the Semantics
of Obfuscated Code. In USENIX Security Symposium,
2017.

[8] Pietro Borrello, Emilio Coppa, and Daniele Cono D’Elia.
Hiding in the Particles: When Return-Oriented Program-
ming Meets Program Obfuscation. In Conference on
Dependable Systems and Networks (DSN), 2021.

[9] Jasin Bushnaief. SHA-1. https://gist.github.com/
rverton/a44fc8ca67ab9ec32089, 2016.

[10] Lorenzo Cavallaro, Prateek Saxena, and R Sekar. Anti-
Taint-Analysis: Practical Evasion Techniques against
Information Flow-based Malware Defense. Technical
report, Secure Systems Lab, Stony Brook University,
2007.

[11] CEA IT Security. Miasm – Reverse Engineering Frame-
work. https://github.com/cea-sec/miasm.

[12] Ping Chen, Christophe Huygens, Lieven Desmet, and
Wouter Joosen. Advanced or Not? A Comparative Study
of the Use of Anti-Debugging and Anti-VM Techniques
in Generic and Targeted Malware. In IFIP International
Conference on ICT Systems Security and Privacy Pro-
tection, pages 323–336, 2016.

[13] Xu Chen, Jon Andersen, Z. Morley Mao, Michael Bailey,
and Jose Nazario. Towards an Understanding of Anti-
Virtualization and Anti-Debugging Behavior in Modern
Malware. In Conference on Dependable Systems and
Networks (DSN), pages 177–186. IEEE, 2008.

[14] Xiaoyang Cheng, Yan Lin, Debin Gao, and Chunfu Jia.
DynOpVm: VM-based Software Obfuscation with Dy-
namic Opcode Mapping. In International Conference
on Applied Cryptography and Network Security, 2019.

[15] Christian Collberg. Performance vs. Security. https:
//tigress.wtf/blog.html.

[16] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,
and Helmut Veith. Counterexample-guided Abstraction
Refinement. In International Conference on Computer
Aided Verification, 2000.

[17] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,
and Helmut Veith. Counterexample-guided Abstraction
Refinement for Symbolic Model Checking. Journal of
the ACM (JACM), 50(5):752–794, 2003.

[18] Christian Collberg. The Tigress C Diversifier/Obfusca-
tor. http://tigress.cs.arizona.edu/.

[19] Christian Collberg, Clark Thomborson, and Douglas
Low. A Taxonomy of Obfuscating Transformations.
Technical report, Department of Computer Science, The
University of Auckland, New Zealand, 1997.

[20] Christian Collberg, Clark Thomborson, and Douglas
Low. Manufacturing Cheap, Resilient, and Stealthy
Opaque Constructs. In ACM Symposium on Principles
of Programming Languages (POPL), 1998.

[21] Kevin Coogan, Gen Lu, and Saumya Debray. Deobfusca-
tion of Virtualization-obfuscated Software: A Semantics-
Based Approach. In ACM Conference on Computer and
Communications Security (CCS), 2011.

[22] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. An Efficient Method
of Computing Static Single Assignment Form. In ACM
Symposium on Principles of Programming Languages
(POPL), 1989.

[23] B. Dang, A. Gazet, E. Bachaalany, and S. Josse. Prac-
tical Reverse Engineering: x86, x64, ARM, Windows
Kernel, Reversing Tools, and Obfuscation. Wiley, 2014.

[24] Sebastian Danicic and Michael R. Laurence. Static
Backward Slicing of Non-Deterministic Programs and
Systems. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 40(3):11:1–11:46, 2018.

17

https://gist.github.com/rverton/a44fc8ca67ab9ec32089
https://gist.github.com/rverton/a44fc8ca67ab9ec32089
https://github.com/cea-sec/miasm
https://tigress.wtf/blog.html
https://tigress.wtf/blog.html
http://tigress.cs.arizona.edu/

[25] Robin David, Luigi Coniglioi, and Mariano Ceccato.
QSynth – A Program Synthesis based Approach for
Binary Code Deobfuscation. In Symposium on Network
and Distributed System Security (NDSS), Workshop on
Binary Analysis Research, 2020.

[26] Denuvo Software Solutions GmbH. Denuvo Anti-
Tamper. http://www.denuvo.com.

[27] Michael Eddington. Peach Fuzzer: Discover Unknown
Vulnerabilities. https://www.peach.tech/.

[28] Abdelrahman Eid. Reverse Engineer-
ing Snapchat (Part I): Obfuscation Tech-
niques. https://hot3eed.github.io/
snap_part1_obfuscations.html.

[29] Ninon Eyrolles. Obfuscation with Mixed Boolean-
Arithmetic Expressions: Reconstruction, Analysis and
Simplification Tools. PhD thesis, Université de Versailles
Saint-Quentin-en-Yvelines, 2017.

[30] Ninon Eyrolles, Louis Goubin, and Marion Videau. De-
feating MBA-based Obfuscation. In ACM Workshop on
Software PROtection (SPRO), 2016.

[31] Hui Fang, Yongdong Wu, Shuhong Wang, and Yin
Huang. Multi-stage Binary Code Obfuscation using
Improved Virtual Machine. In International Confer-
ence on Information Security, pages 168–181. Springer,
2011.

[32] Weijie Feng, Binbin Liu, Dongpeng Xu, Qilong Zheng,
and Yun Xu. NeuReduce: Reducing Mixed Boolean-
Arithmetic Expressions by Recurrent Neural Network.
In Conference on Empirical Methods in Natural Lan-
guage Processing: Findings, 2020.

[33] Michael N Gagnon, Stephen Taylor, and Anup K Ghosh.
Software Protection through Anti-Debugging. IEEE
Security & Privacy, 5(3):82–84, 2007.

[34] Peter Garba and Matteo Favaro. SATURN – Software
Deobfuscation Framework Based On LLVM. In ACM
Workshop on Software PROtection (SPRO), 2019.

[35] Jun Ge, Soma Chaudhuri, and Akhilesh Tyagi. Control
Flow based Obfuscation. In ACM Workshop on Digital
Rights Management. ACM, 2005.

[36] Adrien Guinet, Ninon Eyrolles, and Marion Videau.
Arybo: Manipulation, Canonicalization and Identifica-
tion of Mixed Boolean-Arithmetic Symbolic Expres-
sions. In GreHack Conference, 2016.

[37] Sumit Gulwani. Dimensions in Program Synthesis. In
International ACM SIGPLAN Symposium on Principles
and Practice of Declarative Programming, 2010.

[38] Aki Helin. Radamsa: A General-purpose Fuzzer.
https://github.com/aoh/radamsa.

[39] Intel Corporation. Pin – A Dynamic Binary Instru-
mentation Tool. https://software.intel.com/
en-us/articles/pin-a-dynamic-binary-
instrumentation-tool.

[40] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie
Michielin. Obfuscator-LLVM – Software Protection for
the Masses. In ACM Workshop on Software PROtection
(SPRO), 2015.

[41] Anatoli Kalysch, Johannes Götzfried, and Tilo Müller.
VMAttack: Deobfuscating Virtualization-based Packed
Binaries. In Availability, Reliability and Security
(ARES), 2017.

[42] Johannes Kinder. Towards Static Analysis of
Virtualization-Obfuscated Binaries. In IEEE Working
Conference on Reverse Engineering (WCRE), 2012.

[43] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating Fuzz Testing. In ACM
Conference on Computer and Communications Security
(CCS), 2018.

[44] Paul Klint. Interpretation Techniques. Software, Prac-
tice and Experience, 11(9):963–973, 1981.

[45] Daniel Kroening and Ofer Strichman. Decision Proce-
dures. Springer, 2016.

[46] Jae-Yung Lee, Jae Hyuk Suk, and Dong Hoon Lee.
VODKA: Virtualization Obfuscation Using Dynamic
Key Approach. In International Workshop on Informa-
tion Security Applications, 2018.

[47] Mingyue Liang, Zhoujun Li, Qiang Zeng, and Zhejun
Fang. Deobfuscation of Virtualization-Obfuscated Code
Through Symbolic Execution and Compilation Opti-
mization. In International Conference on Information
and Communications Security, 2017.

[48] Binbin Liu, Junfu Shen, Jiang Ming, Qilong Zheng, Jing
Li, and Dongpeng Xu. MBA-Blast: Unveiling and Sim-
plifying Mixed Boolean-Arithmetic Obfuscation. In
USENIX Security Symposium, 2021.

[49] Weiyun Lu, Bahman Sistany, Amy Felty, and Philip
Scott. Towards Formal Verification of Program Ob-
fuscation. In IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), 2020.

[50] Matias Madou, Bertrand Anckaert, Patrick Moseley,
Saumya Debray, Bjorn De Sutter, and Koen De Boss-
chere. Software Protection through Dynamic Code Mu-
tation. In International Workshop on Information Secu-
rity Applications. Springer, 2005.

18

http://www.denuvo.com
https://www.peach.tech/
https://hot3eed.github.io/snap_part1_obfuscations.html
https://hot3eed.github.io/snap_part1_obfuscations.html
https://github.com/aoh/radamsa
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

[51] Grégoire Menguy, Sébastien Bardin, Richard Bonichon,
and Cauim de Souza Lima. Search-Based Local Black-
Box Deobfuscation: Understand, Improve and Mitigate.
In ACM Conference on Computer and Communications
Security (CCS), 2021.

[52] Microsoft Research. The Z3 Theorem Prover. https:
//github.com/Z3Prover/z3.

[53] Fukutomo Nakanishi, Giulio De Pasquale, Daniele Ferla,
and Lorenzo Cavallaro. Intertwining ROP Gadgets
and Opaque Predicates for Robust Obfuscation. CoRR,
abs/2012.09163, 2020.

[54] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon,
and Jean-Yves Marion. How to Kill Symbolic Deob-
fuscation for Free (or: Unleashing the Potential of Path-
Oriented Protections). In Annual Computer Security
Applications Conference (ACSAC), 2019.

[55] Oreans Technologies. Themida – Advanced Win-
dows Software Protection System. https://
www.oreans.com/Themida.php.

[56] Andre Pawlowski, Moritz Contag, and Thorsten Holz.
Probfuscation: An Obfuscation Approach using Proba-
bilistic Control Flows. In Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), 2016.

[57] Todd A. Proebsting. Optimizing an ANSI C Interpreter
with Superoperators. In ACM Symposium on Principles
of Programming Languages (POPL), 1995.

[58] Rolf Rolles. Unpacking Virtualization Obfuscators. In
USENIX Workshop on Offensive Technologies (WOOT),
2009.

[59] Jonathan Salwan, Sébastien Bardin, and Marie-Laure
Potet. Symbolic Deobfuscation: From Virtualized Code
Back to the Original. In Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), 2018.

[60] Golam Sarwar, Olivier Mehani, Roksana Boreli, and
Dali Kaafar. On the Effectiveness of Dynamic Taint
Analysis for Protecting against Private Information
Leaks on Android-based Devices. In International
Conference on Security and Cryptography (SECRYPT),
2013.

[61] Florent Saudel and Jonathan Salwan. Triton: A Dy-
namic Symbolic Execution Framework. In Symposium
sur la sécurité des technologies de l’information et des
communications (SSTIC), 2015.

[62] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. All You Ever Wanted to Know About Dynamic
Taint Analysis and Forward Symbolic Execution (But
Might Have Been Afraid to Ask). In IEEE Symposium
on Security and Privacy, 2010.

[63] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and
Wenke Lee. Automatic Reverse Engineering of Mal-
ware Emulators. In IEEE Symposium on Security and
Privacy, 2009.

[64] Monirul I Sharif, Andrea Lanzi, Jonathon T Giffin, and
Wenke Lee. Impeding Malware Analysis Using Con-
ditional Code Obfuscation. In Symposium on Network
and Distributed System Security (NDSS), 2008.

[65] Sony DADC. SecuROM Software Protection.
https://www2.securom.com/Digital-Rights-
Management.68.0.html.

[66] Jae Hyuk Suk and Dong Hoon Lee. VCF: Virtual Code
Folding to Enhance Virtualization Obfuscation. IEEE
Access, 8, 2020.

[67] The LLVM Project. The LLVM Compiler Infrastructure.
https://llvm.org/.

[68] Julien Vanegue, Sean Heelan, and Rolf Rolles. SMT
Solvers in Software Security. In USENIX Workshop on
Offensive Technologies (WOOT), 2012.

[69] Robin Verton. RC4. https://gist.github.com/
rverton/a44fc8ca67ab9ec32089, 2015.

[70] VideoLAN. libdvdcss. https://www.videolan.org/
developers/libdvdcss.html.

[71] VideoLAN. VLC media player. https://
www.videolan.org/.

[72] VMProtect Software. VMProtect Software. https:
//vmpsoft.com/.

[73] Zhi Wang, Jiang Ming, Chunfu Jia, and Debin Gao. Lin-
ear Obfuscation to Combat Symbolic Execution. In
European Symposium on Research in Computer Secu-
rity (ESORICS), 2011.

[74] Mark Weiser. Program Slicing. In International Confer-
ence on Software Engineering (ICSE), 1981.

[75] Max Willsey, Chandrakana Nandi, Yisu Remy Wang,
Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. egg:
Fast and Extensible Equality Saturation. In ACM Sympo-
sium on Principles of Programming Languages (POPL),
2021.

[76] Gregory Wroblewski. General Method of Program Code
Obfuscation. In International Conference on Software
Engineering Research and Practice (SERP), 2002.

[77] Dongpeng Xu, Binbin Liu, Weijie Feng, Jiang Ming,
Qilong Zheng, Jing Li, and Qiaoyan Yu. Boosting SMT

19

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://www.oreans.com/Themida.php
https://www.oreans.com/Themida.php
https://www2.securom.com/Digital-Rights-Management.68.0.html
https://www2.securom.com/Digital-Rights-Management.68.0.html
https://llvm.org/
https://gist.github.com/rverton/a44fc8ca67ab9ec32089
https://gist.github.com/rverton/a44fc8ca67ab9ec32089
https://www.videolan.org/developers/libdvdcss.html
https://www.videolan.org/developers/libdvdcss.html
https://www.videolan.org/
https://www.videolan.org/
https://vmpsoft.com/
https://vmpsoft.com/

Solver Performance on Mixed-bitwise-arithmetic Ex-
pressions. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
2021.

[78] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu.
VMHunt: A Verifiable Approach to Partially-virtualized
Binary Code Simplification. In ACM Conference on
Computer and Communications Security (CCS), 2018.

[79] Hui Xu, Yangfan Zhou, Yu Kang, Fengzhi Tu, and
Michael Lyu. Manufacturing Resilient Bi-Opaque Pred-
icates against Symbolic Execution. In Conference on
Dependable Systems and Networks (DSN), 2018.

[80] Chao Xue, Zhanyong Tang, Guixin Ye, Guanghui Li,
Xiaoqing Gong, Wei Wang, Dingyi Fang, and Zheng
Wang. Exploiting Code Diversity to Enhance Code
Virtualization Protection. In International Conference
on Parallel and Distributed Systems, 2018.

[81] Babak Yadegari and Saumya Debray. Bit-level Taint
Analysis. In IEEE Conference on Source Code Analysis
and Manipulation, 2014.

[82] Babak Yadegari and Saumya Debray. Symbolic Exe-
cution of Obfuscated Code. In ACM Conference on
Computer and Communications Security (CCS), 2015.

[83] Babak Yadegari, Brian Johannesmeyer, Ben Whitely,
and Saumya Debray. A Generic Approach to Automatic
Deobfuscation of Executable Code. In IEEE Symposium
on Security and Privacy, 2015.

[84] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and Understanding Bugs in C Compilers. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2011.

[85] Michał Zalewski. American Fuzzy Lop. http://
lcamtuf.coredump.cx/afl/.

[86] Yongxin Zhou, Alec Main, Yuan X Gu, and Harold
Johnson. Information Hiding in Software with Mixed
Boolean-Arithmetic Transforms. In International Work-
shop on Information Security Applications, 2007.

[87] Dimitra C. Antonopoulou, Marina Bitsaki, and Georgia
Karali. The multi-dimensional stochastic stefan finan-
cial model for a portfolio of assets. ArXiv:2012.13432v1,
2020.

[88] Logan E. Beaver, Michael Dorothy, Christopher Kro-
ninger, and Andreas A. Malikopoulos. Energy-optimal
motion planning for agents: Barycentric motion and
collision avoidance constraints. ArXiv:2009.00588v1,
2020.

[89] Sruti Bhagavatula, Lujo Bauer, and Apu Kapadia. (how)
do people change their passwords after a breach?
ArXiv:2010.09853v1, 2020.

[90] Cristian Bravo-Lillo, Lorrie Faith Cranor, Julie S.
Downs, Saranga Komanduri, Stuart E. Schechter, and
Manya Sleeper. Operating system framed in case of
mistaken identity: measuring the success of web-based
spoofing attacks on os password-entry dialogs. In Proc.
of ACM Conference on Computer and Communications
Security (CCS), pages 365–377, 2012.

[91] Yuan Chen, Jiaqi Li, Guorui Xu, Yajin Zhou, Zhi Wang,
Cong Wang, and Kui Ren. Towards efficiently establish-
ing mutual distrust between host application and enclave
for sgx. ArXiv:2010.12400v1, 2020.

[92] Austin Conner, Hang Huang, and J. M. Landsberg. Bad
and good news for strassen’s laser method: Border
rank of the 3x3 permanent and strict submultiplicativity.
ArXiv:2009.11391v1, 2020.

[93] Guy Goren, Yoram Moses, and Alexander Spiegelman.
Probabilistic indistinguishability and the quality of va-
lidity in byzantine agreement. ArXiv:2011.04719v1,
2020.

[94] Katarzyna Kosek-Szott, Alice Lo Valvo, Szymon Szott,
Pierluigi Gallo, and Ilenia Tinnirello. Downlink channel
access performance of nr-u: Impact of numerology and
mini-slots on coexistence with wi-fi in the 5 ghz band.
ArXiv:2007.14247v4, 2020.

[95] Kun Li, Jingyu Yang, Yu-Kun Lai, and Daoliang Guo.
Robust non-rigid registration with reweighted position
and transformation sparsity. ArXiv:1703.04861v2, 2017.

[96] Ruoran Liu, Haruna Isah, and Farhana Zulkernine.
A big data lake for multilevel streaming analytics.
ArXiv:2009.12415v1, 2020.

[97] Ying Mao, Yuqi Fu, Suwen Gu, Sudip Vhaduri, Long
Cheng, and Qingzhi Liu. Resource management
schemes for cloud-native platforms with computing con-
tainers of docker and kubernetes. ArXiv:2010.10350v1,
2020.

[98] Daniel McDuff and Ewa Nowara. "warm bodies": A
post-processing technique for animating dynamic blood
flow on photos and avatars. ArXiv:2103.07987v1, 2021.

[99] Zili Meng, Jun Bi, Chen Sun, Shuhe Wang, Minhu Wang,
and Hongxin Hu. Pam: When overloaded, push your
neighbor aside! ArXiv:1805.10434v2, 2018.

[100] Cainã Passos, Carlos Pedroso, Agnaldo Batista,
Michele Nogueira, and Aldri Santos. Grown: Local data
compression in real-time to support energy efficiency in
wban. ArXiv:2010.09134v1, 2020.

20

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

[101] Lina M. Rojas-Barahona. Is the user enjoying the
conversation? a case study on the impact on the reward
function. ArXiv:2101.05004v1, 2021.

[102] David M. Russinoff. Formal verification of
arithmetic rtl: Translating verilog to c++ to acl2.
ArXiv:2009.13761v1, 2020.

[103] William Schultz, Siyuan Zhou, and Stavros Tri-
pakis. Design and verification of a logless dy-
namic reconfiguration protocol in mongodb replication.
ArXiv:2102.11960v1, 2021.

[104] Mario Scrocca, Marco Comerio, Alessio Carenini, and
Irene Celino. Turning transport data to comply with eu
standards while enabling a multimodal transport knowl-
edge graph. ArXiv:2011.06423v1, 2020.

[105] Alan Smeaton, Hyowon Lee, Niamh Morris, and David
Hanley. Using online implicit association tests in opin-
ion polling. ArXiv:2007.04183v1, 2020.

[106] Than Htut Soe, Oda Elise Nordberg, Frode Guribye,
and Marija Slavkovik. Circumvention by design – dark
patterns in cookie consents for online news outlets.
ArXiv:2006.13985v1, 2020.

[107] Jesper Larsson Träff and Manuel Pöter. A more prag-
matic implementation of the lock-free, ordered, linked
list. ArXiv:2010.15755v2, 2020.

[108] Shinji Watanabe, Florian Boyer, Xuankai Chang,
Pengcheng Guo, Tomoki Hayashi, Yosuke Higuchi,
Takaaki Hori, Wen-Chin Huang, Hirofumi Inaguma,
Naoyuki Kamo, Shigeki Karita, Chenda Li, Jing Shi,
Aswin Shanmugam Subramanian, and Wangyou Zhang.
The 2020 espnet update: new features, broadened appli-
cations, performance improvements, and future plans.
ArXiv:2012.13006v1, 2020.

[109] Won Joon Yun and Joongheon Kim. 3d modeling and
webvr implementation using azure kinect, open3d, and
three.js. ArXiv:2009.09357v1, 2020.

[110] Guodong Zhang, Nan Feng, and Kapil Khandelwal.
Computational frameworks for homogenization and
multiscale stability analyses of nonlinear periodic meta-
materials. ArXiv:2010.02371v1, 2020.

[111] Ioannis Zografopoulos, Charalambos Konstantinou,
Nektarios Georgios Tsoutsos, Dan Zhu, and Robert
Broadwater. Security assessment and impact analy-
sis of cyberattacks in integrated t&d power systems.
ArXiv:2102.03215v3, 2021.

[112] Sebastian P. Bayerl, Marc Wenninger, Jochen Schmidt,
Alexander Wolff von Gudenberg, and Korbinian Ried-
hammer. Stan: A stuttering lpt dpr jpg therapy analysis
helper. ArXiv:2106.09545v1, 2021.

[113] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and
Andrew W. Appel. Verified correctness and security of
openssl e5 nd tim hmac. In Proc. of USENIX Security
Symposium, pages 207–221, 2015.

[114] Cory McCartan and Kosuke Imai. Sequential monte
carlo for sampling balanced and imm cu gzip compact
redistricting plans. ArXiv:2008.06131v2, 2020.

[115] Yuki Okamoto, Keisuke Imoto, Shinnosuke Takamichi,
Ryosuke Yamanishi, Takahiro Fukumori, and Yoichi
Yamashita. Rwcp-ssd-onomatopoeia: Onomatopoeic
word dataset for rs3 wrongli rif environmental sound
synthesis. ArXiv:2007.04719v1, 2020.

[116] Wasuwee Sodsong, Bernhard Scholz, and Sanjay
Chawla. Spark: pkey cimplifi x5 static pro-
gram analysis reasoning and retrieving knowledge.
ArXiv:1711.01024v1, 2017.

9.1 Tigress

--Environment=x86_64:Linux:Clang :9.0 \
--Seed=<UNIQUE_SEED > \
--Transform=InitOpaque \

--InitOpaqueStructs=list \
--Functions=target_function \

--Transform=InitImplicitFlow \
--InitImplicitFlowHandlerCount =1 \
--InitImplicitFlowKinds=bitcopy_signal \
--Functions=target_function \

--Transform=Virtualize \
--Functions=target_function \
--VirtualizeDispatch=indirect \
--VirtualizeOptimizeBody=true \
--VirtualizeOptimizeTreeCode=true \
--VirtualizeOperands=registers \
--VirtualizeSuperOpsRatio =2.0 \
--VirtualizeMaxMergeLength =12 \
--VirtualizeImplicitFlowPC=PCUpdate \
--VirtualizeImplicitFlow ="(single

bitcopy_signal)" \
--Transform=EncodeArithmetic \

--Functions=target_function \
--EncodeArithmeticKinds=integer

Listing 1: Configuration of TIGRESS used to generate obfuscated samples. To
guarantee randomness and diversity, we provided a unique seed per instance.

To achieve comparability, we configure TIGRESS to resem-
ble our approach in terms of VM architecture, superopera-
tors, and arithmetic encodings. The detailed configuration of
TIGRESS is depicted in Listing 1. In short, we configure a
VM architecture with an inlined dispatcher (featuring direct
threaded code), an upper bound for superoptimization with a
depth of 12 (in line with LOKI’s upper recursion bound of 12),
and allow optimizations to decrease overhead. Additionally,
we use MBAs (called encode arithmetic) to harden the code
further and employ Tigress’ anti-taint feature. When creating

21

binaries with TIGRESS, we assign each instance a unique seed
to produce a diverse set of obfuscated binaries.

9.2 MBA Overhead
We analyze the overhead of our MBAs further.
Experiment 14: MBA Overhead. To further quantify the
overhead of MBAs in terms of additional instructions, we
recursively apply MBAs for a bound r ∈ {0,10,20,30,40,50}.
For each r, we generate 100 obfuscated binaries and average
the number of instructions over LOKI’s 512 handlers.

Table 5: Average number of assembly instructions per handler for various
recursion bounds.

Bound 0 10 20 30 40 50
Instructions 111 164 217 269 321 372

As can be seen in Table 5, increasing the recursion bound
by 10 adds ~52 new assembly instructions. This experiment
visualizes the trade-off between achieving a sufficient level
of protection and overhead. To strike a good balance, we
randomly choose a recursion bound between 20 and 30 in our
implementation, resulting in ~222 instructions per handler
(cf. Table 1). Given the MBAs’ importance with regard to
deterring an attacker, we consider their overhead acceptable.

9.3 Symbolic Execution for Different MBA
Bounds

In the following, we analyze the impact of LOKI’s recursive
rewriting bounds (chosen randomly between 20 and 30 by
our prototype) on its security.
Experiment 15: Impact of MBA bounds on Security.
We create 1,000 binaries with handlers as described in
Section 6.3 for each recursive MBA rewriting bound r ∈
{0,5,10,15,20,25,30,35,40,45,50,55}. Similar to Experi-
ment 8, we do this for handlers of semantic depth 3 and 5. We
then evaluate for each handler, whether a dynamic attacker
using MIASM’s symbolic execution engine can simplify the
MBAs to their original core semantics (given a timeout of one
hour).

The results are plotted in Figure 6. For all bounds, it is visi-
ble that a higher semantic depth correlates with less handlers
simplified (on average, the distance of simplified handlers
between depth 3 and depth 5 is 3.3%). This confirms that
superoperators have beneficial synergy effects as they cause
core semantics to have a higher semantic depth. If users of
LOKI desire a higher security than our prototype provides,
they can set a bound of 55 to reduce the number of handlers
simplified to 9.56% (depth 3) or 6.79% (depth 5), respec-
tively. However, the higher level of security comes at the cost
of increased overhead, both in terms of space and runtime (cf.
Experiments 3 and 14).

0 10 20 30 40 50

MBA Bounds

0.0

0.2

0.4

0.6

0.8

1.0

S
im

p
li
fi
ca

ti
o
n

P
ro

b
a
b
il
it

y

Simplified Handlers for Different MBA Bounds

Depth 3

Depth 5

Figure 6: The probability of simplifying a handler per MBA bound. An
MBA bound refers to the number of times MBAs were recursively applied, 0
indicates no MBA were applied.

22

	Introduction
	Technical Background
	VM-based Obfuscation
	Mixed Boolean-Arithmetic

	Automated Deobfuscation Attacks
	Design
	Design Principles
	Attacker Model
	Key Selection Diversification
	Syntactic Complexity: MBA Synthesis
	Semantic Complexity: Superoperators
	Synergy Effects
	Verification of Code Transformations

	Implementation
	Experimental Evaluation
	Benchmarking
	Resilience
	Evaluation of Key Encodings

	Discussion
	Related Work
	Conclusion
	Tigress
	MBA Overhead
	Symbolic Execution for Different MBA Bounds

