
1.1 - Interactive coding

1

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

1.2.10

1.2.11

1.2.12

1.2.13

1.2.14

1.2.15

1.2.16

1.2.17

1.2.18

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

1.3.11

1.3.12

1.3.13

1.3.14

Table of Contents
Introduction

1.0 - Programming basics

1.1 - Interactive coding

1.2 - Strings

1.3 - Nil and variables

1.4 - Using functions

1.5 - Comments in code

1.6 - Scripting and printing

1.7 - Making functions

1.8 - Booleans

1.9 - Flow control

1.10 - While

1.11 - Type checking

1.12 - First game

1.13 - Tables (part 1)

1.14 - Tables (part 2)

1.15 - For loops (part 1)

1.16 - For loops (part 2)

1.17 - Scopes

1.18 - Chapter review

2.0 - Introducing LÖVE

2.1 - Up and running

2.2 - LÖVE structure

2.3 - Geometry

2.4 - Game loop

2.5 - Delta time

2.6 - Mapping

2.7 - The world

2.8 - Reading documentation

2.9 - Modules and organization

2.10 - Collision callbacks

2.11 - Breakout (part 1)

2.12 - Breakout (part 2)

2.13 - Breakout (part 3)

2.14 - Breakout (part 4)

1.1 - Interactive coding

2

1.3.15

1.3.16

1.3.17

1.3.18

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

2.15 - Breakout (part 5)

2.16 - Binary and bitmasks

2.17 - Networking (part 1)

2.18 - Networking (part 2)

3.0 - Programming in-depth

3.01 - Primitives and references

3.02 - Higher-order functions

3.03 - Map and filter

3.04 - Stack and recursion

3.05 - Reduce

1.1 - Interactive coding

3

learn2love
Current progress:

Chapter 1 - Programming basics ✔
Chapter 2 - Introducing LÖVE ✔
Chapter 3 - Programming in depth (in progress)
Chapter 4 - LÖVE in depth (to do)

View as a webpage: link

Download in ebook format: pdf - epub

What is this book?
This book teaches programming from the ground up in the context of Lua and
LÖVE. It teaches basic computer science and software building skills along the
way, but more importantly, teaches you how to teach yourself and find out how to
go about solving a problem or building a solution. Tools come and go, so the goal
is to teach things of value with less focus on the programming language and other
tools used to build the software. I have been programming since 2007, focusing
on teaching myself best practices. Along the way I have found a lot of good and
bad tutorials on the right and wrong way to build things and I want to help others
avoid getting stuck like I did.

Who is this for?
Any age group. Kids too, with a bit of demonstration, help and
encouragement!
Anybody that wants to learn basic computer science. This book will touch
on several computer science subjects in order to build programs.
Anybody that wants to learn to program. No prior skills or knowledge
required.
Anybody that wants to learn to make a game. Making games are fun and
require learning many things along the way. We'll build a few through this
book.
Anybody that wants to learn Lua. Although we won't dive into the
advanced features of the language, we will gain a large understanding on
how the language works in order to actually build some things. There are
already online guides and references covering some of the more advanced
topics. For experienced programmers wanting to learn Lua, the Programming
in Lua book may be sufficient.

Author and contributors
jaythomas: Original author

https://rvagamejams.com/learn2love/
https://rvagamejams.com/learn2love/pages/01-00-programming-basics.html
https://rvagamejams.com/learn2love/pages/02-00-introducing-love.html
https://rvagamejams.com/learn2love/pages/03-00-programming-in-depth.html
https://rvagamejams.com/learn2love/
https://raw.githubusercontent.com/RVAGameJams/learn2love/master/book.pdf
https://raw.githubusercontent.com/RVAGameJams/learn2love/master/book.epub
https://www.lua.org/pil/contents.html
https://github.com/jaythomas

1.1 - Interactive coding

4

JimmyStevens: Edits and suggestions in chapter 1 & 2
rm-code: Chapter 2 getting started
ValentinChCloud: Chapter 3 primitives and references
valuefit: Chapter 2 bug fix [1]

Contributing
Issues, comments, and suggestions can be made using the GitHub issues
page.
To download, build, and run the book or any code examples use the "Clone
or download" button on the main repository page.

For developers and the curious

Feel free to submit a pull request. The documentation is built using NodeJS. If you
wish to run the documentation for local development purposes, install nodejs then
run these commands from within the learn2love directory you downloaded:

Once the local web server is running, any edits you make to the pages will rebuild
the book and reload the page you're viewing.

npm install # Downloads build tools to the a "node_modules" folder inside the d
npm start # Creates a local web server to where you can visit the link http:/

https://github.com/JimmyStevens
https://github.com/rm-code
https://github.com/ValentinChCloud
https://github.com/valuefit
https://github.com/RVAGameJams/learn2love/commit/b98c3cc1dca97f0adc4b25933cf4c2e3f7d3546a
https://github.com/RVAGameJams/learn2love/issues
https://github.com/RVAGameJams/learn2love
https://nodejs.org/en/

1.1 - Interactive coding

5

Chapter 1: Programming Basics
The goal of this chapter is to teach the most necessary building blocks of
programming. By the end of the chapter you will be be able to build basic
programs which we will apply with exercises in the following chapters.

1.1 - Interactive coding

6

Interactive coding

What's a REPL?
Programming doesn't take much effort beyond loading up a REPL and just typing.
What is a REPL? It's an interactive window you can type code into and it spits out
the results on screen when you hit enter. It stands for Read-Evaluate-Print-Loop.
These are the 4 things the REPL does:

1. Read the code that was just typed
2. Evaluate, or process the code down into a result
3. Print, or spit out the result
4. Loop... do everything again and again until the programmer is done

It's actually simpler than it sounds. Let's go to a website with a REPL and try it
out: https://repl.it/languages/Lua

You will see two window panes on the website: a light side on the left and dark
side on the right. The right-side is the REPL and is what we're interested in for
now. It has a lot of information that isn't necessarily useful to us at the moment.
Something similar to this:

Lua 5.1 Copyright (C) 1994-2006 Lua.org, PUC-Rio
[GCC 4.2.1 (LLVM, Emscripten 1.5)] on linux2

This is just telling you what programming language this REPL is loading, in this
case, Lua. If you click inside the window pane and start typing you will see your
text appear.

Let's try typing some code for the REPL to Read. You already know some code if
you know arithmetic. Type:

2 + 2

Then hit ENTER and immediately the REPL will Print out:

=> 4

A lot happened very quickly. After hitting ENTER, the REPL, Read the line 2 +
2 , it Evaluated the value of that statement to be 4 , it Printed 4 on the screen for
you, then Looped back to a new line to await your next command. Try out some
more arithmetic. Multiplication:

2 * 3

Subtraction:

https://repl.it/languages/Lua

1.1 - Interactive coding

7

2 + 2 - 4

Division:

6 / 2

You can use parenthesis to tell it which order to do the operations:

(2 + 2) * (3 + 1)

Which gives different results than:

2 + 2 * 3 + 1

If you give the REPL a single number:

12

It will give you back 12 , because this can't be simplified down any further.

You can also do exponents using the ̂ (caret) symbol:

2^4

Numbers are a type of data, and + , - , / , * , ̂ , % are operators.
Statements such as 2 - 2 and 23 * 19 are all operations.

One last arithmetic operation we'll cover is modulo, which is done with the
modulus operator. The modulus operator is represented in most languages as a
 % (percent) symbol:

8 % 3

Modulus operations aren't seen in grade school classrooms as often as the rest,
but are quite common in software and computer sciences. The way it works is you
take the 2nd number and subtract it from the bigger number as many times as
possible until the 2nd number is bigger than the 1st. The result is what's left of the
1st number. With 8 % 3 , if you keep subtracting 3 from 8 then you end up
with 2 left.

A real world example is time elapsing on an analog clock. Imagine the face of a
clock with the hour hand on noon. If 25 hours pass then the hour hand goes all
the way around twice and ends on 1. That would be equivalent to writing:

25 % 12
=> 1

1.1 - Interactive coding

8

The hour hand resets every time it passes 12, so 13 % 12 , 25 % 12 , and 37 %
12 would all equal 1 . Likewise, 10 % 4 results in 2 because 4 goes into 10
twice, and leaves a remainder of 2.

Exercises
Try typing different modulo operations in and guessing what the answer will
be.
Try using negative numbers (-3 + -2).
Try using a set of parenthesis inside another set of parenthesis. Does it
behave as you expect?
After running through all the exercises press the 'up' key in the REPL. What
happens and how can this speed up your work?

1.1 - Interactive coding

9

Strings
Numbers are one type of data that can be operated on. Let's explore another data
type within the REPL. Take a set of quotes and put some text in it and hit ENTER:

"hello"

The REPL will print hello back to you. This is a string. A string is a set of
characters (letters and symbols) stringed together as one single piece of data.
This string is made of 9 characters:

"H-E-L-L-O"

Like numbers, there are operators to make strings play with each other. The
concatenate operator (..) combines strings together:

"hello" .. "world"

What's the result? Notice that the resulting string has no space between the two
words. If you wanted a space, you would have to put one in the quotes to be part
of the operation:

"hello " .. "world"

You could even make a separate string with the space in it:

"hello" .. " " .. "world"

Strings can have any characters in them that you want.

"abc" .. "123"

"Япо́нский" .. "ロシア語!!"

Exercises
Try using an arithmetic operator on strings "hello" / "world" . What
happens?
Try using the concatenate operator (..) on numbers (1 .. 1).

1.1 - Interactive coding

10

Nil and variables

Data, or the lack thereof
Humans have different ways of representing a lack of data. If there are no sheep
to count then we have zero sheep. If there are no words on a page then the page
is blank. In a computer we may represent the number of sheep as 0 or the
missing words on a page as an empty "" . These are still data though... a
number and a string. In software when you want to represent a lack of data we
have:

nil

Sometimes called null or undefined data in other languages. It's seemingly
useless. You can't use operators on nil .

nil + nil

This will print an error like it did when you tried doing arithmetic on strings. Let's
take a look at variables and we'll discover the purpose of nil .

Variables
Sometimes you want to write out data, but you want that data to be easy to
change. Variables let you give data a name to reference. Here's an example to
try:

name = "Mandy"
"hello my name is " .. name

Since you told it what name is, it knows what value to add to the string "hello my
name is " . If you type:

name

...and hit ENTER, it will print out the value that belongs to this variable to remind
you. The = (equal) sign tells Lua that you want to assign a value to the given
name/variable. You can change the value of a variable and get different results:

name = "Jeff"
"hello my name is " .. name

Assignment isn't the same as it is in Algebra. You can change the value of a
variable multiple times. We can tell name that it equals itself with some additional
information concatenated to it:

1.1 - Interactive coding

11

name = "abc"
name = name .. "def"
name

You can assign any type of data to a variable, including numbers:

name = "Jeff"
age = 16
"hello my name is " .. name .. " and I am " .. age .. "."

You can change numbers after assignment too:

age = 16
age = age * 2
"my age doubled is " .. age

So, what if you type in a made up variable name?

noname

You will see it has nil , or no data yet. If you try to use nil in your string
operation you will get an error:

"hello my name is " .. nil

"hello my name is " .. noname

Try assigning a value to a variable name:

best_color = "purple"

then assigning that variable data to another:

worst_color = best_color
worst_color

You'll see that both variables now have the value "purple" .

Variables can have names made up of letters, numbers and underscores (_).
Variable names cannot begin with a number though, otherwise it will think you're
trying to type in number data. Here's some examples of valid variables:

[string "return "hello my name is " .. nil"]:1: attempt to concatenate a nil va

[string "return "hello my name is " .. noname"]:1: attempt to concatenate globa

1.1 - Interactive coding

12

my_dog = "Poe"
myDog = "Zia"
DOG3 = "Ember"

Exercises
Try out different variable names. Try a few invalid variables names too just to
see what the error message looks like. It's important to see error messages
and understand them. They help you understand how a program breaks so
you can fix it.

1.1 - Interactive coding

13

Using functions
Most programming languages come with some variables already defined for us.
Lua has many, so let's type one in and hit ENTER to see what the value is:

string.reverse

=> function: 0x2381b60

Oh my. So "function" is another data type, but what is 0x2381b60 ? It's just telling
you where in the computer's memory that function exists, just in case you wanted
to know. Functions work very differently than numbers in strings. Essentially
functions are pre-defined instructions that tell the program how to do different
things. They take data and return back different data. Let's see how to give this
function data:

string.reverse("hello")

=> olleh

At the end of the function's variable name, string.reverse , we type a set of
parenthesis, string.reverse() , and put inside the parenthesis some data we
want changed (string.reverse("hello")). Making the function run is often called
invoking the function. Having a function that reverses text in a string for us can be
useful, and we can capture the return value (the results) of the function using a
variable. Try it out:

greeting = "hello, how are you?"
backwards_greeting = string.reverse(greeting)
backwards_greeting

=> ?uoy era woh ,olleh

It should be obvious from the name what that function's purpose is. How about
this one?

string.upper("hello, how are you?")

Now try capturing that value by assigning it to a variable:

greeting = "hello, how are you?"
shouting_greeting = string.upper(greeting)
crazy_greeting = string.reverse(shouting_greeting)

1.1 - Interactive coding

14

We can get crazier. How about invoking a function when invoking another
function??

string.reverse(string.upper("hey"))

What's happening here is the string is being uppercased by string.upper but
then the value from string.upper is being reversed by string.reverse as soon
as it is done. It's just like in arithmetic when you have nested parenthesis. The
inner-most parenthesis are resolved before doing the outer-most parenthesis.

Let's try one more function. This function has two parameters, meaning it accepts
two pieces of data which it requires to work properly.

math.max(7, 10)

When giving more than one piece of data to a function, you need to put a comma
(,) between the parameters

These are great functions, but wouldn't it be great if we could make our own?
We'll give it a shot in just a few pages.

Exercises
See if you can figure out what math.max does. Give it different numbers and
examine the result.
There is another function called math.min that also takes two numbers.
What does it return?

1.1 - Interactive coding

15

Comments in code
Sometimes we might want to write a comment in our code– an explanation to a
friend or our future selves on what the purpose of some code is. Perhaps we want
to write a note to ourselves to change something later. Comments work very
similarly in different languages so they're pretty easy to read even if you don't
understand the programming language or the code itself. Lua denotes a comment
as -- and any text that follows it:

1 + 1
-- This is a code comment
1 + 2
-- This is another line of comments
3 + 4

These comments will be completely ignored by the computer and are meant for
the human to read. Comments can also be on the same line as code. The
computer will just ignore the rest of the line when it sees a comment starting.

You will see comments appear in future example code, so don't let it surprise you!

1 + 1 -- This is my comment. This code adds some numbers together in case you d

1.1 - Interactive coding

16

Scripting and printing
Looking back at the website, (you bookmarked it, right?) we have been using the
REPL window pane on the right, but haven't talked about the pane on the left.
This window is just a text editor. Instead of running the program with each line you
type, it allows you to write multiple lines of code before executing it all. Let's try
typing something in it. Once you are done typing all the code you can click the
"Run" button.

number = 4
number = number + 1

But when you click run, nothing happens. So let's provide another statement to
our program.

number = 4
number = number + 1
print(number)

Now when you click Run, the text 5 appears in the right-hand pane. When you
told it to run, it read and evaluated each line of the code in sequence.

You can print any type of data, not just numbers:

print("hello")

Remember those other functions we used before? You can write those inside of a
print statement.

print(string.reverse("hello"))

We can even print functions themselves:

print(string.reverse)

And see a memory location of where that function exists:

function: 0x1795320

This can serve as a unique indentity for that function, which we'll see more of in a
later page.

Lua provides this print function to allow us to poke around while our program is
running. We can print as many things as we want.

print("hello")
print("world")

1.1 - Interactive coding

17

Exercises
When we pass data into a function, it is called an argument. We passed 1
argument into print but it can pass in two, or three, or more. What does it
look like when you print multiple arguments?
When using a text editor along-side the REPL you can run the code without
the mouse by pressing 'command + enter' on Mac and 'Ctrl + Enter' on
Windows. Does this speed up your learning?

1.1 - Interactive coding

18

Making functions
Functions are the third data type we've seen. We've accessed some variables
where functions were defined for us and had a blast using them (I know I did).
Functions are the building blocks of software. You can compose them then snap
them together like Danish plastic blocks. It takes time to understand how they
work and much longer to master their inner power. So without further ado, let's
see what they actually look like:

function()
 return 4 + 4
end

Type it out in the text editor window and let us break this down line by line and
word for word. Whenever we type function() we are beginning a new function.
The 2nd line is the body of our function where things happen. The body of the
function can be many lines long. The body of the function could also be empty
(but that's not very useful). On the last line of the function body we write return
which tells our function to stop running and to "return" data back to the main
program. Then on the third line, we're telling the computer we're done writing our
function. In order to use this example function, we should probably use a variable
to give it a name:

add = function()
 return 4 + 4
end

The first bit should be understandable. We declared a variable called add , then
we assigned some data to it on the right of the equal sign. In this case, our
function. Now it is ready to use.

add = function()
 return 4 + 4
end

result = add()
print(result)

8

We've made our very own function with our very own name for it and even
invoked it and got back data! If you instead got an error message, double check
what you typed that nothing is missing. Error messages give you a line number of
where to find the error that crashed the program.

Take a look for a minute at how we invoked our function:

add()

1.1 - Interactive coding

19

We typed out the variable name that our function is assigned to, followed by some
parenthesis. In those parenthesis is the data that we passed into our function...
wait a minute the parenthesis are empty. We didn't pass any data into our
function. Whenever we called those other functions we passed in data, like when
we passed "hello" into string.reverse("hello") . What if we modify our line
where we invoke our function and give it some data?

add = function()
 return 4 + 4
end

result = add(16)
print(result)

It seems it always returns 8 no matter what arguments we try to pass in. We
need to rewind to the first line of our function and take a close look at this bit:

add = function()

The () at the end of function() is where we tell our program how many
arguments we are accepting. If the parenthesis are empty, then our function is
ignoring all arguments and will likely always return the same result. Let's tweak
the function slightly and give it one parameter with the name a . Let's also tweak
the second line while we're at it:

add = function(a)
 return a + 4
end

result = add(16)
print(result)

20

Now when we pass in different numbers, we get different results:

add = function(a)
 return a + 4
end

print(add(16))
print(add(12))

To complete this function, let's give it a second parameter of b and modify the
return statement in the function body:

add = function(a, b)
 return a + b
end

print(add(16))
print(add(12))

1.1 - Interactive coding

20

If we try and run the code now, we'll get another error:

Let's read this error carefully. It is saying inside the square brackets that an error
occurred when using the function we defined (add = function(a, b)...). To the
right of the square brackets it is saying line 2 (:2) of our text is the particular
location of the crash. To the right of the line number is what happened that made
it crash. It tried to perform addition with a + b but the value of b was nil. We
stated that our function requires two parameters now, a and b , and our
program will crash if we try and invoke the function with only one parameter. Let's
modify the lines where we invoke the function to give it two arguments each time
we invoke it:

add = function(a, b)
 return a + b
end

print(add(16, 10))
print(add(12, 2))

Great, everything is working again! With the experience of our first, fully-functional
function, we can now start treading the waters of this great world.

Exercises
To get used to writing functions, try writing some complimentary functions
named subtract , multiply , divide , or modulate (modulus).
Make a concatenate function that accepts 2 strings and returns 1 combined
string.
Try making a function that takes 3 or more parameters.

[string "add = function(a, b)..."]:2: attempt to perform arithmetic on local 'b

1.1 - Interactive coding

21

Booleans
Data types are like elements on the periodic table. The more elements you have
the more chemicals can create. Luckily there aren't as many data types as there
are elements. In fact we've learned almost all of them. There are only two
possible booleans:

true

and

false

That's right. And you can assign them to variables just like numbers, strings, nil,
and functions:

myboolean = true
print(myboolean)

The cool thing with numbers and strings is you can use them to create statements
that can be evaluated as true or false . Let me give an example by introducing
some new operators. Try these out in the REPL:

5 > 3

=> true

5 < 3

=> false

"5 is greater than 3" is a true statement so it returns a true boolean. Naturally,
"5 is less than 3" is a false statement and returns false . We can check to see if
two numbers are equal in value:

number = 5
number == 5

=> true

By using a double equal (==) we can compare the equality of two numbers. This
also works for strings:

"hello" == "hello"

1.1 - Interactive coding

22

=> true

"hello" == "HELLO"

=> false

For strings, often time you will see single quotes ' ' (apostrophe) used instead
of regular quotes (sometimes called double quotes) wrapper around the text. Lua
doesn't care as long as the text inside both strings are identical. We can prove
that with an equality check:

'hello' == "hello"

=> true

Anyways, you can also do the inverse of an equality check and check for
inequality (if two things are not equal):

5 ~= 3

=> true

"HELLO" ~= string.upper("hello")

=> false

Now let's dig in a little deeper with two more operators. First is the and operator:

3 < 4 and 4 < 5

=> true

This reads out almost as plain English. 3 is less than 4 and 4 is less than 5. This
is a logically sound statement so it evaluates to true. Just to be clear on what's
actually going on here though, let's break it down. What we said is being grouped
into 3 separate operations:

(3 < 4) and (4 < 5)

The two sets of parenthesis are evaluated first and internally the computer breaks
these two operations down to:

(true) and (true)

1.1 - Interactive coding

23

True and true are both true. This sounds silly, but it is indeed logically sound. Let's
try one more just to get the hang of it:

"hello" == "hello" and 6 > 10

Finally, let's try one more operator to put a bow on things. Sometimes we don't
care that both operations are correct. We only care if one or the other is correct.

4 == 10 or 4 ~= 10

=> true

1 > 100 or 12 == 12 or "hello" == "bananas"

=> true

As long as one of the operations is correct, the entire statement is logically true.
With the introduction of true and false we've brought in a lot of new operators:
"greater than" (>), "less than" (<), "equal" (==), "not equal" (~=), "and"
(and), and "or" (or).

Trivia
Booleans get their name from George Boole who invented boolean algebra, which
we've just seen a little bit of.

Exercises
Try writing different statements with all the new operators.
Try using two and operators in the same statement and see if you can make
it evaluate to true .
Try out these two bonus operators with some numbers: "greater than or equal
to" (>=), and "less than or equal to" (<=).

https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/Boolean_algebra

1.1 - Interactive coding

24

Flow control
Typically the computer starts at the top of our script and reads each line down in a
sequence. We make the programs jump around with functions in the mix Try this
out in the text editor:

print("I'm called 1st")

add = function(a, b)
 print("I'm called 5th")
 return a + b
end

subtract = function(a, b)
 print("I'm called 3rd")
 return a - b
end

print("I'm called 2nd")

subtract(16, 10)

print("I'm called 4th")

add(12, 2)

We have a function that is saved to the variable add but it isn't invoked until
further down in the code. So in a sense our program has worked its way down the
page then jumped back up to the function and worked its way through the body of
the function then picked back up where it was before. In a similar fashion, we can
make our program take one path or another depending if the data is true or
 false .

noise = function(animal)
 if (animal == "dog") then return "woof" end
 return ""
end

print(noise("dog"))
print(noise("rabbit"))

Let's analyze this function line by line. The function is called noise and takes an
animal name (string) as a parameter. On the next line it says if "animal is dog" is
true then return something special. We put an end at the end of our statement to
make it obvious to the computer. If the statement was false, then "woof" does
not get returned. Instead an empty string ("") gets returned. When we invoke
the function with the argument "dog" then we get back "woof!". With "rabbit" we
get back silence. Maybe the rabbit doesn't want the dog to hear where she is.
Let's make our function more versatile by adding more animals:

1.1 - Interactive coding

25

noise = function(animal)
 if animal == "dog" or animal == "wolf" then return "woof" end
 if animal == "cat" then return "meow" end
 return ""
end

print(noise("dog"))
print(noise("cat"))
print(noise("rabbit"))
print(noise("wolf"))

We have branching paths happening within our function. If we were to map out
these branches it may look something like:

 |
 +--> "woof"
 +--> "meow"
 |
 +--> ""

There's no requirement that a statement has to be all written out on one line.
Sometimes when doing multiple things inside an if statement we may want to put
it on multiple lines:

if my_age > 17 then
 print("You're an adult!")
 print("Get a job!")
end

Similar to functions having bodies, everything between then and end is
considered the body of the if statement. Sometimes it is necessary for our
branches to have forks within them. Let's say our function takes a language as a
second, optional parameter:

noise = function(animal, language)
 if animal == "dog" or animal == "wolf" then return "woof" end
 if animal == "cat" then return "meow" end
 if animal == "bird" then
 if language == "spanish" then return "pío" end
 return "tweet"
 end
 return ""
end

print(noise("dog"))
print(noise("rabbit"))
print(noise("bird"))
print(noise("bird", "spanish"))

The if statement for checking if the animal is a bird is 4 lines long. Once we find
out that the animal is a bird, while still in the body of the if statement, we stop to
check and see if the language is set to Spanish. If it is, we end up inside an if
statement within an if statement! Otherwise we'll return "tweet" if the language
isn't Spanish. Maybe mapping out the paths will clear things up:

1.1 - Interactive coding

26

 |
 +--> "woof"
 +--> "meow"
 +-----> "pío"
 | |
 | +--> "tweet"
 |
 +--> ""

Our code can get unreadable very quickly if we start nesting if statements inside
each other. Fortunately doing so isn't usually necessary.

Let's talk about another aspect of if statements. Suppose I have two branches of
code that are opposite of each other:

if daytime == true then
 thermostat = 71
end
if daytime == false then
 thermostat = 68
end

Rather than writing this out as two if statements and checking the value of
daytime twice, I can take advantage of the keyword else :

if daytime == true then
 thermostat = 71
else
 thermostat = 68
end

That way if daytime is not true , it will default to the second branch. You could
read this off almost like a sentence: "If daytime is true then set the thermostat to
71, otherwise set the thermostat to 68." Not having to check things twice when
doing computations saves us time and makes our program run more efficiently.
Since daytime is a boolean in this case, we don't need to check if it is true or
false. We can just pass it to the if statement to be checked for true / false and
make our operation even simpler.

if daytime then
 thermostat = 71
else
 thermostat = 68
end

Better. "If daytime then set thermostat to 71, otherwise set thermostat to 68."
There's one more feature of if statements we should discuss. If there is another
condition you need to check, maybe several more, you can use the elseif
keyword. It looks something like this:

1.1 - Interactive coding

27

color = "green"

if color == "blue" then
 print("That's my favorite color!")
elseif color == "green" then
 print("Very subtle choice. I like it.")
elseif color == "pink" then
 print("Nice, bold choice.")
else
 print("I don't think that color would match your shoes.")
end

Try it out!

The beginning of the if statement... if color == "blue" then ... is false. This
code gets skipped over.
Then the next part of the if statement... elseif color == "green" then ... is
true so that section of code underneath it... print("Very subtle choice. I
like it.") is ran.
The rest of the if statement is skipped without checking if its true or not. So
 elseif color == "pink" then / else are never processed.

Exercises
Write out a function that takes 1 parameter named "sides". Make the function
return the name of the shape depending on the number of sides (for instance,
"triangle"). Try to make the if statement include an else at the end to
account for everything else that the if doesn't.

1.1 - Interactive coding

28

While
Another way to check conditions is with the while keyword.

while 1 + 1 == 2 do
 print("My math is correct!")
end

While a condition is true, the body (everything between the do and end) will be
run repeatedly and not stop. So if you tried to run that bit of code, your screen
probably went crazy printing over and over in a never-ending loop. We need to
make sure the condition can get changed so we're not stuck in a never-ending
loop. Let's write a loop we can escape out of.

boolean = true

-- This condition will get checked twice. The first time it
-- is checked it will be true and the body of the while-loop
-- will be run. The second time the condition is checked,
-- our boolean will be false and the while-loop won't be run again!
while boolean do
 print("Switching boolean to false.")
 boolean = false
 print("Boolean has been set to false.")
end

print("We made it out of the loop!")

Understanding that we can change the while condition from inside the body of the
loop, we have the power to write programs that end exactly when we want them
to. Can you guess what this will do when we run it?

countdown = 10

while countdown > 1 do
 print(countdown .. "...")
 -- This line is critical to make our number shrink.
 countdown = countdown - 1
end

print("Blast off!")

...And remember to use a > and not a < , or your loop may never run.

Exercise
Come up with your own idea for a while loop.

1.1 - Interactive coding

29

Type checking
Lua doesn't care what type of data a variable has.

data = 12
data = "hello"
data = true

To this end, we can use the type function to check what kind of data a variable
is holding.

type(data)

=> boolean

We can check the type of function:

type(string.reverse)
type(type)

We can also use it to check what type of data a function is returning back to us:

type(string.reverse("hello"))

=> string

type(type(12))

=> string

Converting data types
We've already seen data type conversion previously when we took numbers and
an operation in, transforming that into a true or false statement.

type(12 > 3)

=> boolean

There are also ways to convert between numbers and strings using tonumber
and tostring .

1.1 - Interactive coding

30

number = tonumber("24")
print(type(number))
string = tostring(number)
print(type(string))

number
string

Interesting but maybe less useful, you can convert other data types to string:

print(tostring("already a string"))
print(tostring(true))
print(tostring(nil))
print(tostring(tostring))

Exercises
Which of these strings can be converted to a number successfully? "001" ,
 "7.12000" , " 5 " , "1,943"

1.1 - Interactive coding

31

First game
Let's learn about a few new functions and then we'll be able to write our first
game!

Reading input
Not only can our program print out data, but using the function io.read it can
take data too. This function doesn't need any arguments because it will prompt us
in the window on the right for us to type in data.

print("Enter your name:")
name = io.read()

print("Your name is " .. name .. ".")

After you click "Run", the program will pause when it runs io.read() . Type your
name and hit ENTER and look, the program prints back out the name you gave it.
Notice the last print statement. We combined the name with two other strings to
form a sentence. You can prompt the user multiple times if you need to get
additional information:

One limitation with doing this is the data will always come in as a string:

print("What's your favorite number?")
data = io.read()

print(type(data))

string

In the last section we talked about converting data between different types. If we
wanted to find out whether your favorite number is odd or even, we would need to
convert it to an actual number to perform operations on it. Type this in your text
editor and run it:

print("Enter your name:")
name = io.read()

print("What's your favorite food?")
food = io.read()

print("Your name is " .. name .. " and your favorite food is " .. food .. ".")

1.1 - Interactive coding

32

print("What's your favorite number?")
data = io.read()
number = tonumber(data)

-- If the user gave us an answer that isn't a
-- number, then the value of "number" is nil.
if number == nil then
 print("Invalid number.")
elseif number % 2 == 0 then
 print("Your number is even.")
else
 print("Your number is odd.")
end

Random number
Many languages give us access to a random number generator. Randomness is
how we generate secure passwords and keys in the real world. To generate a
random number in Lua, we use math.random :

math.random(100)

=> 63

This generates a random number between 1 and 100. Except, if you run the
program repeatedly you may notice that it spits out the same number. That's
because nothing in the computer world is random. If we fed in random noises
through a speaker or white noise from an old television set then our computer
could use this to generate random numbers. Since we don't easily have access to
those things, we need to seed Lua with some perceived randomness.

If we run os.time we will get the computer's current time in integer form:

os.time()

=> 1.529098167e+09

This number is hard enough to guess that it will work as a seed for our program.
Let's take the system time and feed it in using math.randomseed then from there,
Lua will be able to generate a "random" number in the range we want (1-100).

seed_number = os.time()
math.randomseed(seed_number)
print(math.random(100))

=> 19

Success! It is generated different numbers each time we run it, with no pattern.

1.1 - Interactive coding

33

Putting it all together
I should probably explain what this game is. It's quite simple. We want the
computer to make up a number and the user has to guess what the number is. If
they're wrong, then we should give them a hint and make them guess again. We
can take advantage of the while loop to make them continue guessing while their
guess is incorrect.

-- The computer's secret number
math.randomseed(os.time())
number = math.random(100)

print("Guess my secret number. It is between 1 and 100.")

guess = tonumber(io.read())

-- While the user's guess is not equal to
-- the number, repeat the body of the loop.
while guess ~= number do
 -- Give them some hints
 if guess > number then
 print("Your guess is too high.")
 end
 if guess < number then
 print("Your guess is too low.")
 end

 -- Make them guess again and again until they get it
 print("Guess again:")
 guess = tonumber(io.read())
end

-- Winning message
print("You guessed correctly! The number was " .. number .. ".")

Let's re-factor one bit of this code to make it easier to read. When we talked about
if statements, remember the keyword else ?

1.1 - Interactive coding

34

-- The computer's secret number
math.randomseed(os.time())
number = math.random(100)

print("Guess my secret number. It is between 1 and 100.")

guess = tonumber(io.read())

-- While the user's guess is not equal to
-- the number, repeat the body of the loop.
while guess ~= number do
 -- Give them some hints
 if guess > number then
 print("Your guess is too high.")
 else
 print("Your guess is too low.")
 end

 -- Make them guess again and again until they get it
 print("Guess again:")
 guess = tonumber(io.read())
end

-- Winning message
print("You guessed correctly! The number was " .. number .. ".")

Now that things are cleaner, let's add one feature to our program. It would be
more fun if the game kept track of how many guesses we made so we could give
them a special message. Let's create a variable called guess_count that will start
at 1 and increment every time the user makes another guess. We'll also go
ahead and add some messages to the bottom to praise the user if they did it in a
reasonable number of guesses.

1.1 - Interactive coding

35

-- The computer's secret number
math.randomseed(os.time())
number = math.random(100)
-- Our starting number of guesses
guess_counter = 1

print("Guess my secret number. It is between 1 and 100.")

guess = tonumber(io.read())

-- While the user's guess is not equal to
-- the number, repeat the body of the loop.
while guess ~= number do
 -- Increment the guess counter by 1
 guess_counter = guess_counter + 1

 -- Give them some hints
 if guess > number then
 print("Your guess is too high.")
 else
 print("Your guess is too low.")
 end

 -- Make them guess again and again until they get it
 print("Guess again:")
 guess = tonumber(io.read())
end

-- Winning messages
print("You guessed correctly! The number was " .. number .. ".")

if guess_counter <= 5 then
 print("Amazing! It only took you " .. guess_counter .. " tries.")
else
 print("It took you " .. guess_counter .. " tries. Not bad.")
end

Exercises
Try adding more messages for different numbers of guesses. You can modify
the if statement where guess_counter is checked.
Make the while condition exit if guess_counter goes above 10 and tell the
user they lost the game (but that should try again).
Try adding some messages to the if statement with the hints for when the
user guesses an invalid number too far out of range. What if they guess a
number that is more than 100? How would you do that?

1.1 - Interactive coding

36

Tables (part 1)
Tables are the last data type we'll discuss in this chapter. Other languages have
different names for this data type like "object", "hash", "map" and "dictionary", and
the features may vary from one programming language to another. Tables are
used to build composite data types like lists, trees, or a big green orc running
across the screen. Composite data types are higher order data structures created
from more primitive data types like numbers and strings. The number of data
structures you can create are endless. We need to learn about a few to not only
understand how tables work, but to be able to build any modern software.

The basic syntax for tables is to make a curly brace { (same key as the square
brace on most keyboards) to start the table, write some data in the table, then put
a closing curly brace } to end the table. So an empty table would look like this:

my_cool_table = {}

Lists
Lists are usually started by writing the first item, then the second, and so on. If we
wanted to make a grocery list in software, it may look like this:

groceries = {
 [1] = "beans",
 [2] = "bananas",
 [3] = "buns"
}

Ok maybe your typical grocery list looks different. What do we do with this data
now that we got it? We can access and modify the data as if they were stored in
their own variables.

return groceries[1]

=> beans

First we specify the variable name of the table, then in square brackets we put the
number we want. You can access them in any order and modify them as needed:

print(groceries[3])
groceries[1] = "coffee beans"
print(groceries[1])

buns
coffee beans

1.1 - Interactive coding

37

The order you define them in doesn't matter:

groceries = {
 [3] = "beans",
 [1] = "bananas",
 [2] = "buns"
}

The number in square brackets is the key. A key that is part of a numeric
sequence of keys such as this list is often called an index. So "bananas" has an
index of 1 . The plural of index is indices.

Don't forget the commas between each item in your list or you will get quite the
error message:

When you are missing a comma between items, it thinks it has reached the end of
the table but then errors out when it goes to close the table but sees another item
instead of the close curly bracket } .

Another issue you may run into is if you try to access a key that has no data.
There is no 4th item in our table so if we try to access it:

print(groceries[4])

We get back nil , the same way we would if we tried to access a variable name
that has no data assigned to it.

Writing out large lists can become a headache when we have to manually number
each item in a list:

groceries = {
 [1] = "beans",
 [2] = "bananas",
 [3] = "buns",
 [4] = "blueberries",
 [5] = "butter",
 [6] = "broccoli",
 [7] = "basil"
}

What if we remove an item or we want to move something to a different position in
the list? What a pain to have to re-index everything. Thankfully there is shorthand
way of writing lists:

[string "groceries = {..."]:3: '}' expected (to close '{' at line 1) near '['

1.1 - Interactive coding

38

groceries = {
 "beans",
 "bananas",
 "buns",
 "blueberries",
 "butter",
 "broccoli",
 "basil"
}

This is identical to the code written above, except now the indices are auto-
generated for me. "basil" has an index of 7 since it is the 7th item in the list,
but if I cut and pasted it to the top of my list, it's index would be 1 and everything
below it would be renumbered accordingly.

Looping over lists
If we wanted to print our grocery list, we could say something like:

print(groceries[1])
print(groceries[2])
print(groceries[3])
print(groceries[4])
-- and so on...

But that is quite repetitious and requires updating if the size of our list changes.
Luckily we already know about while loops.

index = 1

while groceries[index] ~= nil do
 print(index, groceries[index])
 -- Go to the next index in the list
 index = index + 1
end

See how instead of accessing each item as groceries[1] , groceries[2] ... we
can just use a variable in the square brackets instead of a number. Then inside
the loop we bump the number up and access the next item in the list. The loop
stops when the index goes beyond the last item in the list and there is nothing
there. So when index 8 is read, groceries[8] is nil and the while condition is no
longer true. While conditions don't even need a boolean expression. It can know
whether or not to continue simply if the given item has data or is nil. It can be
simplified to read:

index = 1

while groceries[index] do
 print(index, groceries[index])
 -- Go to the next index in the list
 index = index + 1
end

1.1 - Interactive coding

39

Again, it knows to exit when it sees false or nil . The caveat to this would be if
you make a special list with false in it:

groceries = {
 "beans",
 "bananas",
 false,
 "blueberries",
 "butter",
 "broccoli",
 "basil"
}

When the while loop gets to the third item in the list and sees false , it would
stop looping before it reads the rest. It's not typically a good idea to mix and
match different data types in a list because of issues like this, however, we could
work around this if we needed to. There is a special operator for tables to get the
size of the list.

print(#groceries)

7

An easy way to remember the # operator is to remember that it returns the # of
items in a list. Using this operator we could write our while loop in a different way.

index = 1

while index <= #groceries do
 print(index, groceries[index])
 -- Go to the next index in the list
 index = index + 1
end

You could even tweak this slightly to read the list backwards if you wanted to:

index = #groceries

while index > 0 do
 print(index, groceries[index])
 -- Go to the next index in the list
 index = index - 1
end

Notice we are subtracting from the index with each loop in order to accomplish
this.

Exercises
Try to modify the while loop to only print every other item in the grocery list.
(Hint: instead of incrementing by 1 on each read, you want to increment
more.)

1.1 - Interactive coding

40

Write a while loop that counts to 10 and populates an empty table with the
same item 10 times. (Hint: you assign to indices just like variables,
 list[index] = "hi" .)

1.1 - Interactive coding

41

Tables (part 2)
In the last section we saw how simple it was to make a list. Working with the list
was a little tricky at first but hopefully not too bad. If we rewind back, we can
remember that we created a table by assigning some keys values.

boxes = {
 [1] = "John Doe",
 [2] = "Amanda Parker",
 [3] = "Tyler Reese"
}

Think of it like post office boxes and we label each box with a unique number.
Whenever we reference a postal box, we do so by referencing the number within
the array (list) of boxes: boxes[2] . The label, or key, is ultimately arbitrary
though. For making a list, we label things in an incremental order to make them
easier to loop over and to give us a sense of linear sequence. Keys don't need to
be numbers. They could just as well be strings:

coins = {
 ["half"] = "50 cents",
 ["quarter"] = "25 cents",
 ["dime"] = "10 cents",
 ["nickel"] = "5 cents",
 ["penny"] = "1 cent"
}

Which would be accessed just the same way:

print(coins["nickel"])

5 cents

This can be really useful for doing a lookup if we instead use a variable for the
key. Try this one out:

coins = {
 ["half"] = "50 cents",
 ["quarter"] = "25 cents",
 ["dime"] = "10 cents",
 ["nickel"] = "5 cents",
 ["penny"] = "1 cent"
}

print("Which coin do you have?")
response = io.read()

print("Your coin is worth " .. coins[response] .. ".")

1.1 - Interactive coding

42

This isn't far off from how certain databases and digital services work. Items are
stored in a unique key that can be referenced for getting a definition out of later.
That's why this data structure is sometimes called a dictionary. Remember, we
can add items to a table after it is defined:

coins["silver dollar"] = "1 dollar"

Another shortcut Lua gives us is we don't need to use the square braces or
quotes when adding keys that are strings.

coins.nickel = "5 cents"

The limitation with doing this is the keys defined this way can't have spaces or
special characters. They must be valid in the same way variable names are valid.

coins.silver dollar = "1 dollar" -- INVALID
coins.silver_dollar = "1 dollar" -- Valid
coins.100 = "1 dollar" -- INVALID

You can use variable names for keys when creating the table too:

color = "purple"
description = "the best color"
colors = {
 [color] = description
}

print(colors.purple)
print(colors[color]) -- prints the same thing

By convention, strings are typically used for dictionary-like tables while lists are
numbers. Don't make the mistake of thinking these are the same:

list = {
 1 = "some item",
 ["1"] = "a unique item"
}

You could use other data types as keys, but you might find your results to be very
unexpected:

crazy_list = {
 [true] = "works",
 [false] = "works",
 ["true"] = "not the same",
 ["false"] = "not the same"
}

print(crazy_list[true])
print(crazy_list[false])
print(crazy_list["true"])
print(crazy_list["false"])

1.1 - Interactive coding

43

crazy_key = {}
crazy_list = {
 [crazy_key] = "works"
}
print(crazy_list[crazy_key])

crazy_list = {
 [nil] = "doesn't work!"
}
print(crazy_list[nil])

Throws an error:

[string "crazy_list = {..."]:2: table index is nil

Values in a table can be any type of data, including functions:

cat = {
 color = "gray",
 smelly = true,
 make_sound = function()
 print("meyuow!")
 end
}

cat.make_sound()

Exercises
Remember the early function we made that returned the animal sounds?
Make a function with a table in it, where each key in the table is an animal
name. Give each key a value equal to the sound the animal makes and
return the animal sound. Try invoking the function and see if you get back the
correct sound.

1.1 - Interactive coding

44

For loops (part 1)
We saw previously that we could use while loops for many things, but we also
saw how easy it was to make a while loop that didn't run properly. The
programmer has to make a variable to pass to the condition, make sure the
condition is written out correctly, and then make sure the condition can be
changed so the loop can eventually end. This many steps each time we want to
write a simple loop leaves us prone to errors and wasting our time. With for loops,
we can tell a loop exactly how many times we want it to run and skip all these
steps.

Numeric for loops

for number = 1, 10 do
 print(number)
end

On the first line we are saying "For [starting number] through [ending number] do
the following". The number = is a variable you are assigning the starting number
to. The variable name can be whatever you want. The second line is the body of
the loop and the third line ends the loop. If you run this program, it will print the
numbers 1 , 2 , 3 ... through 10 as number is being incremented by 1 with
each loop. This variable is a bit peculiar though, not only because we defined it in
the middle of a statement but because it disappears after we are done with the
loop.

for number = 1, 10 do
 print(number)
end

return number

=> nil

This is called a local variable, because it only exists locally within the for loop.

For loops actually have 3 parameters:

start number - we assign the variable to it and the variable will increment with
each loop
stop number- the last number to increment to before stopping the loop
step - how much to increment by with each loop. If we don't specify a step
size it will default to 1.

Let's say we wanted to print out only even numbers. We could change the starting
number to 2 and set the size of the step (3rd parameter) to 2:

1.1 - Interactive coding

45

for number = 2, 10, 2 do
 print(number)
end

If we wanted to iterate, or loop over and read each item in a list, it would look
similar to a while loop. Let's look at the while loop example again just for
comparison:

items = {'a', 'b', 'c', 'd'}
index = 1

while index <= #items do
 print(items[index])
 index = index + 1
end

items = {'a', 'b', 'c', 'd'}

for index = 1, #items do
 print(items[index])
end

We could also count down by changing the parameters around and setting the
step to a negative 1.

items = {'a', 'b', 'c', 'd'}

for index = #items, 1, -1 do
 print(items[index])
end

In this case the index starts at the position of the last item and stops when it gets
to the stop number, 1.

Exercises
Modify the previous loop so that it only prints every other item in the list.

1.1 - Interactive coding

46

For loops (part 2)
We can create a different style of for loop using functions, but in order to do that,
we need to understand another aspect of functions we haven't yet covered.
Functions can return multiple values.

sort_numbers = function(a, b)
 if a > b then
 return a, b
 end
 return b, a
end

bigger, smaller = sort_numbers(12, 18)

print(bigger)
print(smaller)

This function takes two numbers, checks to see which is bigger, then returns both
the bigger number first then the smaller number second. Notice we did this by
putting a comma in the return statement then providing a second value after the
comma. Likewise, we were able to capture both values into variables by putting
the first variable name, a comma, then the second variable (bigger, smaller =).
We don't need to capture everything returned from a function. We could have just
as easily called the function and only captured the bigger number if that's all we
wanted from it.

bigger = sort_numbers(12, 18)

Generic for loops
Let's take a look at the sibling to the numeric for loop called the generic for loop.
It's called generic for loop because it takes a function that makes it behave in
different ways for different situations. It doesn't do anything on its own. It relies on
the function to tell it how to behave.

ipairs

Here's what generic for loops look like:

list = {'dog', 'cat', 'mouse'}
for index in ipairs(list) do
 print(index, list[index])
end

 ipairs takes our for loop and makes it iterate over each item in the list and gives
us an index variable to work with inside the loop. But wait, there's more! ipairs
provides us with another variable that holds the value of the item at that index. Try
it out yourself:

1.1 - Interactive coding

47

list = {'dog', 'cat', 'mouse'}
for index, value in ipairs(list) do
 print(index, value)
end

Ah yes, so convenient! There is one gotcha with doing this. If you wanted to edit
the table from inside the loop, you need to access the table directly:

list = {'dog', 'cat', 'mouse'}
for index, value in ipairs(list) do
 list[index] = string.upper(value)
end

print(list[1])

If you try to just edit the value:

list = {'dog', 'cat', 'mouse'}
for index, value in ipairs(list) do
 value = string.upper(value)
end

print(list[1])

the list won't be modified, because value is just a copy of the data that's actually
in the list. You're editing a temporary copy.

pairs

Another function for programming for loops with special functionality is pairs .
This will iterate over every key in a table:

table = {
 cat = 'meow',
 dog = 'bark'
}

for key, value in pairs(table) do
 print(key, value)
end

Even indices:

table = {
 'a',
 'b',
 'c',
 cat = 'meow',
 dog = 'bark'
}

for key, value in pairs(table) do
 print(key, value)
end

No sneaking past pairs for any of these keys either:

1.1 - Interactive coding

48

table = {
 [1] = 'a',
 [2] = 'b',
 [3] = 'c',
 cat = 'meow',
 dog = 'bark',
 [true] = false,
 [{}] = 'what?'
}

for key, value in pairs(table) do
 print(key, value)
end

An easy way to remember the difference between ipairs and pairs is the "i" in
 ipairs stands for index. Sure there's a difference when working with weird
tables like the one above, but why can't we just use pairs for regular list-style
tables?

table = {
 [2] = 'b',
 [3] = 'c',
 [1] = 'a'
}

for key, value in pairs(table) do
 print(key, value)
end

3 c
2 b
1 a

As you can see, the order of the items isn't guaranteed with pairs . ipairs is
also optimized to handle numeric keys and will generally perform faster, so it's
good to know the difference.

Under the generic-for-loop hood

 ipairs and pairs are just regular functions that we invoke. They return a
function (yes, a function that returns a function!) and this returned function
programs our loop to behave how we want.

for key, value in iterator, list, start_number do
 print(index)
end

So this is what a generic for loop really looks like without the help of ipairs or
 pairs . It requires 3 parameters that ipairs / pairs provides data back to the
key and value variables that we can use inside the loop. iterator , list ,
 start_number are all variables we would otherwise have to define without their
help.

 iterator would be a function we provide to the loop

1.1 - Interactive coding

49

 list would be what we want to iterate over
 start_number would be the starting index in the list

list = {'a', 'b', 'c'}

iterator, list, start_number = ipairs(list)

for index, value in iterator, list, start_number do
 print(index)
end

 ipairs gives us an iterator to pass to the for loop, as well as our list we already
had, and a starting number. We can print the results of ipairs and see the 3 things
it gives us:

print(ipairs(list))

function: 0x156a3f0 table: 0x1572aa0 0

So to say it again, generic for loops require 3 things: an iterator function, our list,
and a number. In order to not have to write them ourselves, we generated those 3
things by invoking ipairs then passing them into the for loop parameters. Don't
fret too much if this seems confusing right now because we're not going to need
to write custom for loops or custom iterators.

Numeric versus generic: which to use?

Numeric for loops are good for simple counting but perform just as well or maybe
even better than generic for loops. Generic for loops are more adaptable. If you
have a situation where either would work, just use whichever you want. It really
won't make any difference.

Exercises
Make a list and then write both a numeric for loop and generic for loop that
iterate over the list and print each item. Compare the two approaches.
Make a table with animals for keys and the sounds they make for the key
values. Make a for loop that uses pairs to iterate over each and change the
noises to all capital letters.

1.1 - Interactive coding

50

Scopes
When defining functions, we define parameters for those functions which work like
regular variables. If we try to access a parameter outside a function we will see
that it is nil .

addition = function(a, b)
 print(a, b)
 return a + b
end

addition(1, 2)

print(a, b)

The parameters a and b are local variables. We've seen local variables with
for loops, where the variable counting_number couldn't be accessed outside the
for loop:

for counting_number = 1, 4 do
 print(counting_number)
end

print(counting_number)

Functions, for loops, and while loops create a scope each time they are ran.
Things created in the scope, including local variables, are destroyed when that
loop or function invoke is done. This is how the program tidies up after itself and
keeps the computer from running out of memory. The process of removing
unused data from memory and releasing control of that memory is called garbage
collection. Lua does this for us so we don't have to think about it. Variables we
create normally don't follow the same rules. They will continue to exist after the
scope they were created in has been destroyed.

addition = function(a, b)
 text = "I'm not going away."
 return a + b
end

addition(1, 2)

print(text)

Eventually all these variables we make will fill up memory unnecessarily. This can
also be problematic if we accidentally make two variables but use the same
name.

1.1 - Interactive coding

51

x = 2

addition = function(a, b)
 -- This modifies the x at the top!
 x = 9
 return a + b
end

print(x)
result = addition(x, y)
print(x)

When you write a large program, you'll inevitably make two variables with the
same name, so this could be a huge issue. The solution is to make our variables
local variables by putting the keyword local before all our variables when we
create them.

addition = function(a, b)
 local text = "I'm only accessible inside the function."
 return a + b
end

addition(1, 2)

print(text)

Now text is only in the scope of the function and not getting into other people's
business. If you don't write local before a variable, then what you are creating is
a global variable. It's a shame that variables are global unless we explicitly tell
them not to be. There is never a reason to create global variables if you have
enough knowledge to know not to. So as a best practice, all code examples going
forward, only local variables will be created. Let's see a few more examples:

local number = 12

-- This function has no parameters
local print_numbers = function()
 -- This works. You can see variables outside the function
 print('number:', number)
 -- This doesn't work. The variable didn't exist
 -- at the time "print_numbers" was created.
 print('number2:', number2)
end

local number2 = 18

print_numbers()

-- We already "declared" number. We don't write "local" again.
number = 13

print_numbers()

Notice when it printed that it knew number was updated to 13 but couldn't track
 number2 . As long as a variable was created before the scope (function's scope in
this case) was created then it will always track the latest value.

1.1 - Interactive coding

52

As a reminder, we already saw with the for loop and while loop that you can
modify variables in the outer, or parent, scope:

local number = 1

while number < 10 do
 number = number + 1
end

This also works with functions:

local number = 1

local mutate_number = function()
 number = 7
end

print(number)
mutate_number()
print(number)

What if you make two variables with the same name in two different scopes? Try
running this one:

local number = 18

local shadowing = function()
 local number = 6
 print(number)
end

print(number)
shadowing()

The inner number does not affect the outer number in any way. The outer
 number is not accessible inside the function as long as the inner number exists.
If a variable has the same name as another variable in a parent scope then the
parent scope variable becomes inaccessible: this is called shadowing. Typically
you would want to avoid shadowing if at least for the reason that using the same
variable name twice in the same file can make the code harder to read and more
prone to errors being introduced.

One more interesting things with scopes. Normally a function cannot see itself:

local self_reference = function()
 print(self_reference) -- This will be nil!
end

self_reference()

It doesn't see itself because the variable is still being created when the function is
being created. But remember that if a variable exists before the function does, it
can see the latest up-to-date content of that variable. So here's the trick to make
that work:

1.1 - Interactive coding

53

local self_reference = nil
self_reference = function()
 print(self_reference)
end

self_reference()

The variable is declared, even though we assigned nil to it. Assigning nil to get
a variable declared is pretty common, so Lua includes a shorthand way of
declaring empty variables:

local self_reference
self_reference = function()
 print(self_reference)
end

self_reference()

This may seem silly that a function would need to access itself, but there are
some very powerful applications for this that we will see later on.

Exercises
Declare a global variable inside a function, x = 5 (no local keyword) then try
to print the variable from outside the function. Can it be printed? How?

1.1 - Interactive coding

54

Chapter review

Terminology
Operator and Operation - Operators are symbols that cause an operation,
or interaction to happen between two pieces of data. An example operation
would be 5 + 5 . (5 + 5) * 2 would be two operations.

Modulo and Modulus - Modulo is a special type of arithmetic operation
between two numbers using a modulus operator. The modulus is represented
by a % (percent symbol). Example: 24 % 2 == 0

Variable and Value - Variables are names that reference a certain piece of
data. The value is what is stored inside the variable: variable = "value"

Statement - This is when you do something, like an operation (or group of
operations), declare a variable, or invoke a function. For instance, this is a
print statement: print("hello")

Invoke - Run/call a function.

Parameter and Argument - Functions tell you what and how many
parameters they have. Arguments are the data that gets passed into those
parameters.

Boolean - true or false

Equality - Whether or not two things are equal. This is usually done with an
equal (==) comparison.

Loop - Code that repeats.

Key and Index - Key is the named reference in a table where data can be
found. It is similar to a variable. Index is a key that comes in an ordered
sequence, such as numbered keys in a list. The plural of index is indices.

Iterate - Loop over a list and do something with it.

Scope - An area where variables can be created that aren't accessible from
the outside. Scopes are created by functions and loops.

Local and Global - Local describes things accessible only in the current
scope, such as local variables. Global things are accessible from anywhere in
the program.

Shadowing - When a local variable has the same name as a variable in a
parent scope and prevents you from accessing the parent scope variable.

1.1 - Interactive coding

55

Chapter 2: Introducing LÖVE
The goal of this chapter is to apply all the building blocks we learned in the first
chapter and make them concrete through practice. By the end of the chapter you
will learn real-world skills such as how to interact with other people's software and
basic principles for designing and building your own programs.

1.1 - Interactive coding

56

Up and running
Learning by making is fun and effective. Learning to interface with other people's
software is part of being a programmer and is a necessary skill to have as one.
LÖVE is a framework for making games. A framework is just a set of tools or
functionality combined together to serve a larger purpose. In the case of LÖVE
this includes, but is not limited to:

Functions for loading images, audio, and text
Functions for creating and moving objects on screen
Parameters for making the objects interact

Installing your development environment
The LÖVE website has links to install the software on your system. If you have
LÖVE installed already, make sure that you at least version 11 (mysterious
mysteries) as some functionality we'll cover here doesn't exist in older versions.
For mobile devices you can find a copy in the app store.

Along with installing LÖVE, you will need a text editor for creating Lua files on
your system. I'm not going to make any recommendations here, because in the
end it all comes down to personal preference, but you can check this list by the
LÖVE community if you need a starting point. It features different editors (and
recommended plugins) for LÖVE and Lua development. Simply pick one.

Test that LÖVE runs
When you launch LÖVE, (see instructions below on how to do that) you will be
greeted with a friendly graphic and the text "NO GAME", meaning you are running
the engine but didn't give it a game to load.

macOS

Once you have downloaded the LÖVE binary for macOS (64-bit zipped), proceed
to the "Downloads" folder and unzip the archive. You should now see an
application called "love".

macOS might show you a warning modal, because you are trying to open an
application by an unverified developer. If so, right click on the application and
choose "open" and "open" again in the following dialog. You should now be
greeted by the no-game screen.

Addendum: Homebrew

https://love2d.org/
https://love2d.org/
https://github.com/love2d-community/awesome-love2d/blob/master/README.md#ides

1.1 - Interactive coding

57

If you are familiar with development on a macOS machine, you might have heard
of Homebrew. It is a package manager which allows you to install a lot of
programs, libraries and so on directly through your Terminal.

I only recommend this approach for advanced developers who know what they
are doing. For completeness sake here are the steps to install LÖVE via
Homebrew.

One of the benefits of this approach is, that you don't have to set up your own
terminal alias, because Homebrew also takes care of that.

Windows

If a shortcut for LÖVE didn't appear in the start menu, you should be able to type
"love" in the search and see it.

Ubuntu

Open the "Ubuntu Software" application and search "love2d". Click on the top
result and you should see a familiar application description:

Click the "Install" button to install it. Once installed, you can search for the
"terminal" application. Once that is open, type love to launch the application.

Other GNU/Linux operating systems

Most distros have LÖVE in their respective repositories:

Arch linux-based systems - sudo pacman -Sy love
Fedora-based systems - yum install love

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/insta
brew tap caskroom/cask
brew cask install love

https://brew.sh/

1.1 - Interactive coding

58

Once installed from your package manager, open a terminal and type love to
test that it runs.

If your distro doesn't have LÖVE in the package manager an alternative way to
get it is to downloaded the AppImage version from the homepage
(https://love2d.org/). AppImage files are like a universal executable that works
across Linux systems similar to the way an "exe" file works on Windows. Once
downloaded, open the terminal, change to the directory where you downloaded
the AppImage and type the commands:

 love-11.1-linux-x86_64.AppImage should be changed to match the name of the
downloaded AppImage file.

Create a project folder
Find a safe place to create a folder and give it the name "hello". Within the folder,
create a new text file named "main.lua". This will be where our game's code goes.

Note for Windows: In order to create a file with the name "main.lua", you may
need to first create a new "Text Document", right-click on it, click "Properties" then
from the properties menu change the file extension from reading "main.lua.txt" to
just "main.lua". To avoid having to do this for every Lua file you create in the
future you can tell Windows to always show the full name of files, including their
extension. To enable this, type "Control Panel" in the program search and open
the "Control Panel" result. Within the control panel, select "File Explorer Options".
Click the "View" tab. Remove the check mark from the "Hide extensions for known
file types" and press Apply/OK.

Create a test game
Within "main.lua", write out the following function:

love.draw = function()
 love.graphics.print('Hello World!', 400, 300)
end

Now let's figure out how to run it and see what it does.

Run the game
This will be different for different operating systems.

macOS

chmod a+x love-11.1-linux-x86_64.AppImage # Marks the file as a safe executable
./love-11.1-linux-x86_64.AppImage

https://love2d.org/

1.1 - Interactive coding

59

Starting your game

The simplest way to start a LÖVE game is to drag the whole folder containing the
game's source files (not just the main.lua file!) onto the application file.

This also works with .love files.

Using the terminal

If you are familiar with the Terminal, you can use it as a more convenient method
of starting games.

Assuming the downloaded "love" application is still in your "Downloads" folder,
open a new Terminal and type the following lines (you need to press return after
each line):

Switches to the Downloads folder
cd ~/Downloads/

Start the LÖVE app
open love.app

This obviously starts LÖVE with a no-game screen since we didn't specify which
folder to load. Let's fix this by typing the following command:

In my case the full command to start the galaxy demo would be:
open -a love.app ~/Downloads/galaxy
open -a love.app <path-to-your-game>

Using a terminal alias

We can still improve on the previous method by using an alias. Before we do this,
we move the "love" application bundle to the Application folder.

https://en.wikipedia.org/wiki/Terminal_(macOS)

1.1 - Interactive coding

60

Move the app from Downloads to Applications.
~ mv ~/Downloads/love.app/ ~/Applications/love.app

Now try the following command:

Start LÖVE by using the script inside of the application bundle.
~/Applications/love.app/Contents/MacOS/love <path-to-your-game>

As you can see we now can run LÖVE without using the open command, which
also has the added benefit of showing the game's console output directly in our
terminal.

Of course it would be rather inconvenient if we had to specify the full path each
time we want to run our game, so we'll now set up an alias in your .bash_profile
(which basically acts as a configuration file for your bash sessions).

Since it is a hidden file you might not be able to spot it in your finder, but we can
simply edit it through our Terminal.

And that's it: You can now quickly run your games with the love alias. This is
especially handy if you are inside of the game's directory, because all it takes now
is a quick love . to start the game.

Windows

Find the shortcut to LÖVE and drag and drop it in the game folder like so:

Then right-click on the LÖVE shortcut and you will see a "Properties" dialog
window similar to this:

Appends the alias definition to an existing .bash_profile
or creates a new one.
echo "alias love='~/Applications/love.app/Contents/MacOS/love'" >> ~/.bash_prof

Use the updated .bash_profile for the current session.
source ~/.bash_profile

Start your game through the alias.
love <path-to-your-game>

https://en.wikipedia.org/wiki/Alias_(command)

1.1 - Interactive coding

61

The "Target" field may be the same or slightly different depending on your system
version. Without deleting the text string currently in the "Target" field, append the
path to your game folder in quotes to the end. You can copy and paste this path
from the folder's address bar. For instance the target path in the picture should go
from reading:

"C:\Program Files\LOVE\love.exe"

to

"C:\Program Files\LOVE\love.exe" "C:\Users\IEUser\Desktop\hello"

Now press "OK" to close the Properties dialog and clicking the shortcut will launch
the game. If the game ran successfully, you will see a black window with the text
"Hello world!" in small print.

GNU/Linux
If you know the location of your folder, you can open a terminal and type the
command:

1.1 - Interactive coding

62

love <path-to-your-game>

Where <path-to-your-game> has been changed to the actual folder path where
your game resides.

If you are already navigated into the game folder, you can run a terminal
command within that directory:

love .

The "." simply means "this folder that I am currently in".

Congratulations!
You've set up your development environment for writing a game in Lua. If you had
issues getting through this, reach out to me either through a GitHub issue or my
contact information and I will update this guide to including any additional
troubleshooting steps for future users.

Now that our development environment is set up and our first game is running, try
modifying the code so the string "Hello World!" reads something different. It's
pretty apparent that running this function prints to the screen whatever string we
give it. But what are the 2nd and 3rd parameters for?

 love.graphics.print('Hello World!', 400, 300)

Try modifying those numbers and see what it does to the text.

1.1 - Interactive coding

63

LÖVE structure
Open up "main.lua" and take a look at our first line. We defined a function called
 love.draw , which implies there is a table called love and we created a key in it
called draw . Indeed this is the case, but somehow the function was invoked
without using having to write love.draw() and invoke it ourselves. This requires a
high-level explanation of what the engine is doing with our file.

When LÖVE is run, before our main.lua file is ran, a table called love is defined
as a global variable. We can assign functions to this table (love.draw) and
access functions already defined in it (love.graphics.print).
 love.graphics.print has two dots in it, so that means the love table probably
looks something like:

love = {
 draw = nil,
 graphics = {
 print = function() ... end
 }
}

The love table has a plenty of other tables nested in it, and it puts similar
functions in tables together. So all the functions relating to graphics are inside the
 love.graphics table.

Once "main.lua" is done running, we've accessed and modified the love table
and added some new functionality to it, telling it how to draw to the screen by
defining our love.draw function. If we define a function with this name, the game
engine will see it and invoke it. In fact, it continuously invokes love.draw many
times a second. To prove my point, let's modify main.lua and make it print a
number.

local number = 0

love.draw = function()
 number = number + 1
 love.graphics.print(number, 400, 300)
end

Each time we go to print the number, we increase it by 1. Run this program and
see how quickly the number climbs.

The love table is a seemingly complex structure of tables inside tables and
functions inside those, but we'll gradually learn the structure and purpose of each
thing over the course of this chapter. In the next section, let's take a look at the
2nd and 3rd parameters in love.graphics.print and see how they work.

1.1 - Interactive coding

64

Geometry
If you modified the numbers 400 and 300 in main.lua you will have seen that
they move the text. Realizing that they're some kind of coordinates, let's talk
about graphs.

When learning about graphs in geometry class, we learned about an x-axis and y-
axis and labeled plotted points along the graph. If you wanted to mark (-2, -4) then
you would find where -2 on the x-axis intersects with -4 on the y-axis. Knowing
that X is horizontal and Y is vertical, if we had (-2, -4) and (1, 2) we could draw it
out like this:

These two points could even be connected to form a 2-dimensional line:

Before we get too far on drawing points and lines, let's look back at our function:

 love.graphics.print("Hello World!", 400, 300)

The 400 is the X position and increasing it will move the text further to the right.
Decreasing the X position will move the text further to the left. The 300 is the Y
position, one difference between computers and geometry class is data is
calculated from top to bottom, so increasing the Y position moves the text down
and decreasing it moves the text up. Let's take a look at what our game's graph
looks like with the point (5, 3) highlighted:

Notice that the top-left corner of our screen is (0, 0), so if you tried to draw any
points with negative numbers they would be drawn off screen where we can't see
them. Another thing to note is in the game, the coordinates represent how many
pixels down and to the right we want to draw. Since computer screens are made
of so many pixels, you need to use large numbers to make a noticeable
difference.

If we wanted to draw a polygon (shape) such as a triangle on this graph, we
would have to give three points:

In the same way, we can plot out points in our code and tell it to draw a line to
connect the dots. Let's use larger numbers though. Rewrite main.lua to look like
this:

love.draw = function()
 love.graphics.polygon('line', 50, 0, 0, 100, 100, 100)
end

The numbers in this code can be read off in pairs to identify the coordinates: (50,
0), (0, 100), (100, 100) LÖVE's physics engine takes the coordinates, starting at
the first point and connects them with a line sequentially. Once it reaches the last
point, it draws a line from the last point back to the first to close the shape.

Let's try a rectangle to get some more practice in:

1.1 - Interactive coding

65

love.draw = function()
 local rectangle = {100, 100, 100, 200, 200, 200, 200, 100}
 love.graphics.polygon('line', rectangle)
end

Notice this time instead of passing the numbers directly into
 love.graphics.polygon , we put them into a list and passed the list in. Passing in
coordinates both ways has the same effect.

Another important thing to think about is if you draw a polygon with 4 or more
sides, you need to make sure the points are listed in the correct order. Consider
the following example:

If we fed the points into the function in a clockwise or counter-clockwise/anti-
clockwise order, the rectangle would be drawn the same either way. If we fed the
points in from cross directions, we may accidentally draw a bow tie:

Creating shapes with unclosed sides don't play well with LÖVE's physics engine
as such shapes are not physically possible. If you try to do this, you may not see
the shape you expect, and perhaps nothing will be drawn.

Exercises
Take a look at the documentation for the function love.graphics.polygon. The
example shows the argument 'line' is a string and represents the
"drawMode". Try changing the "drawMode" from 'line' to one of the other
available options (see the examples or click the drawMode link on the wiki
page). What other option is there? How does it work? Try it out and see how
it works!
Try making a polygon with 5 sides/points. Hint: use the square example
above as a reference.

https://love2d.org/wiki/love.graphics.polygon
https://love2d.org/wiki/DrawMode

1.1 - Interactive coding

66

Game loop
Another aspect common with game engines is that there is a loop (like a while
loop) that continuously runs and keeps the game going. The order that things
happen in varies, but the contents more of less look like:

1. Game is started. Load game files.
2. Begin loop.
3. Check for input from keyboard, joystick, or other peripherals.
4. Tick time in game.
5. Redraw the screen.
6. Go back to step 2.

During steps in the game loop, LÖVE invokes certain functions inside the love
table. For instance, every time the screen needs to be re-drawn, the game loop
invokes love.draw() if you defined it. In the step where LÖVE checks for user
input, if there is user input, it invokes love.keypressed(PRESSED_KEY) if we defined
it. The PRESSED_KEY that is passes in of course depends on what key the user
pressed. When defining love.keypressed , it may look something like this:

love.keypressed = function(pressed_key)
 print('key was pressed:', pressed_key)
end

Let's modify main.lua to have a contrived example:

local current_color = {1, 1, 1, 1}

love.draw = function()
 local square = {100, 100, 100, 200, 200, 200, 200, 100}

 -- Initialize the square with the default color (white)
 love.graphics.setColor(current_color)
 -- Draw the square
 love.graphics.polygon('fill', square)
end

love.keypressed = function(pressed_key)
 if pressed_key == 'b' then
 -- Blue
 current_color = {0, 0, 1, 1}
 elseif pressed_key == 'g' then
 -- Green
 current_color = {0, 1, 0, 1}
 elseif pressed_key == 'r' then
 -- Red
 current_color = {1, 0, 0, 1}
 elseif pressed_key == 'w' then
 -- White
 current_color = {1, 1, 1, 1}
 end
end

1.1 - Interactive coding

67

When you press any of the keys, "b", "g", "r", or "w", our function
 love.keypressed will be invoked and the variable pressed_key will be a string
matching one of our letters. This changes current_color , which is changing the
color being drawn in love.draw .

In the next section, let's see how LÖVE handles the "4. Tick time in game." step of
the game loop.

Exercises
Try adding a few more colors to the program. To understand how
 love.graphics.setColor works, see the documentation.
Make is so that if the escape key is pressed, the function love.event.quit is
invoked and the game exits. The string to use for the escape key can be
found on the wiki's KeyConstant page. Spoilers: the solution can be seen in
the next section.

https://love2d.org/wiki/love.graphics.setColor
https://love2d.org/wiki/KeyConstant

1.1 - Interactive coding

68

Delta time
Here's what we've learned about the game loop so far:

1. Game is started. Load game files.
main.lua is loaded and the love table is updated with our modifications.

2. Begin loop.
3. Check for input from keyboard, joystick, or other peripherals.

If there was keyboard input and we defined love.keypressed , invoke it,
passing it information about the pressed key.

4. Tick time in game.
???

5. Redraw the screen.
Invoke love.draw if we defined it.

6. Go back to step 2.

Let's take a look at the function love.update :

love.update = function(dt)
 print(dt)
end

Note for Windows: Unless you are running LÖVE from the console, you won't
see anything printed out. Put this file in the game folder next to main.lua under the
name "conf.lua":

-- LÖVE configuration file

love.conf = function(t)
 t.console = true
end

This configuration file will let us set special parameters for our game. Don't worry
too much about what all the options are, but if you're curious then you can find the
documentation here. Essentially this will open a console window on Windows to
see printed values.

Now run the game and if you weren't seeing the print(dt) message display
anything you should now see it being invoked many times a second, printing out a
decimal number. dt stands for delta time and it represents the amount of
seconds that has passed since the last game loop. If the game loops 4 times a
second, that means love.update and love.draw get invoked 4 times each
second as well. The delta time in this case would be roughly 0.25 as roughly 1/4
a second has passed between each time love.update was called. Some
computers are faster than others so the number of game loops per second will be
different. You are likely seeing numbers around 0.01 or smaller, meaning the
game is running roughly 100 frames a second. Let's add a counter to the screen
like before, but now using delta time.

https://love2d.org/wiki/love.update
https://love2d.org/wiki/Config_Files

1.1 - Interactive coding

69

local current_color = {1, 1, 1, 1}
local seconds = 0

love.draw = function()
 local square = {100, 100, 100, 200, 200, 200, 200, 100}

 -- Print a counter clock
 local clock_display = 'Seconds: ' .. seconds
 love.graphics.print(clock_display, 0, 0, 0, 2, 2)

 -- Initialize the square with the default color (white)
 love.graphics.setColor(current_color)
 love.graphics.polygon('fill', square)
end

love.keypressed = function(pressed_key)
 if pressed_key == 'b' then
 -- Blue
 current_color = {0, 0, 1, 1}
 elseif pressed_key == 'g' then
 -- Green
 current_color = {0, 1, 0, 1}
 elseif pressed_key == 'r' then
 -- Red
 current_color = {1, 0, 0, 1}
 elseif pressed_key == 'w' then
 -- White
 current_color = {1, 1, 1, 1}
 end
 if pressed_key == 'escape' then
 love.event.quit()
 end
end

love.update = function(dt)
 -- Add up all the delta time as we get it
 seconds = seconds + dt
end

Imagine if we wanted to move a character across the screen but we didn't use
delta time. The character would run faster on some computers and slower on
others. Computers would keep getting faster and the game would run so fast it
would no longer be playable. Delta time solves this issue and we'll be taking
advantage of it for everything time-based in our game.

Exercises
Change the line local clock_display = 'Seconds: ' .. seconds so that
 seconds is formatted to display whole numbers. Hint: you will need to use
Lua's built-in math.floor function to format seconds .
Change the x position of the left side of the square from 100 to (seconds *
10) and watch what the square does.

1.1 - Interactive coding

70

Mapping
Let's sidetrack from LÖVE for a minute to learn about a concept called maps. Not
to be confused with overhead maps a player would walk around on in a game, but
data maps. We actually did mapping back in chapter 1 when we learned about
tables.

coins = {
 ["half"] = "50 cents",
 ["quarter"] = "25 cents",
 ["dime"] = "10 cents",
 ["nickel"] = "5 cents",
 ["penny"] = "1 cent"
}

print("Which coin do you have?")
response = io.read()

print("Your coin is worth " .. coins[response] .. ".")

Whenever the user typed in a coin, we mapped the coin name to a value by
looking up the coin name in the table, or dictionary. So what's the difference
between tables, dictionaries, and maps?

tables are just a data type in Lua that can be used to build data structures like
lists and dictionaries
dictionaries are key-value storages used to centralize similar-purpose data in
one place and make it easier to look the data up
maps are data structures used to translate one type of information to another,
and a dictionary is one type of map

Dictionaries are the only types of map we'll be concerned about here, but know
that maps generally refer to instances of data structures that do mapping. There
are often discrepancies in terminology between mathematics and the various
fields in computer science. Don't be surprised if you see dictionaries and maps
being used synonymously in other contexts later in life.

Let's do some mapping on our code we previously wrote to get a better feel for
them. Remember all those if/elseif statements in main.lua?

1.1 - Interactive coding

71

 if pressed_key == 'b' then
 -- Blue
 current_color = {0, 0, 1, 1}
 elseif pressed_key == 'g' then
 -- Green
 current_color = {0, 1, 0, 1}
 elseif pressed_key == 'r' then
 -- Red
 current_color = {1, 0, 0, 1}
 elseif pressed_key == 'w' then
 -- White
 current_color = {1, 1, 1, 1}
 end
 if pressed_key == 'escape' then
 love.event.quit()
 end

We can put all that functionality in a map like this:

local key_map = {
 b = function()
 current_color = {0, 0, 1, 1} -- Blue
 end,
 g = function()
 current_color = {0, 1, 0, 1} -- Green
 end,
 r = function()
 current_color = {1, 0, 0, 1} -- Red
 end,
 w = function()
 current_color = {1, 1, 1, 1} -- White
 end,
 -- Close the game
 escape = function()
 love.event.quit()
 end
}

This doesn't look any more concise than our previous code, but our goal is to
keep the love.keypressed function clean in this case. When a key is pressed it
will be mapped to a key function we define in key_map . Another important thing is
these functions could be modular and moved anywhere we need them to be, and
even re-used. Let's not go too crazy right now though. We'll keep the key map
somewhere near the top.

1.1 - Interactive coding

72

local current_color = {1, 1, 1, 1}
local seconds = 0

local key_map = {
 b = function()
 current_color = {0, 0, 1, 1} -- Blue
 end,
 g = function()
 current_color = {0, 1, 0, 1} -- Green
 end,
 r = function()
 current_color = {1, 0, 0, 1} -- Red
 end,
 w = function()
 current_color = {1, 1, 1, 1} -- White
 end,
 escape = function()
 love.event.quit()
 end
}

love.draw = function()
 local square = {100, 100, 100, 200, 200, 200, 200, 100}

 -- Print a counter clock
 local clock_display = 'Seconds: ' .. math.floor(seconds)
 love.graphics.print(clock_display, 0, 0, 0, 2, 2)

 -- Initialize the square with the default color (white)
 love.graphics.setColor(current_color)
 love.graphics.polygon('fill', square)
end

love.keypressed = function(pressed_key)
 -- Check in the key map if there is a function
 -- that matches this pressed key's name
 if key_map[pressed_key] then
 key_map[pressed_key]()
 end
end

love.update = function(dt)
 -- Add up all the delta time as we get it
 seconds = seconds + dt
end

If you press a key that isn't part of the map then the new if statement (if
key_map[pressed_key] ...) will see that key doesn't exist in the map and not do
anything. key_map[pressed_key]() is the same as saying key_map['b']() ,
 key_map['escape']() or whatever the value of pressed_key was at the time.

1.1 - Interactive coding

73

The world
A world is a physical space where objects can be created (spawned) and interact.
Shapes and other things drawn on the screen are not implicitly part of a world and
won't interact with each other unless they are. Multiple worlds can co-exist, but
the objects in each world won't interact. Going forward I will refer to these objects
as entities.

Entities
Entities are made up of different components that allow them to interact. These
are the 3 fundamental physical components:

shape - some sort of polygon to give our entity a physical shape that
determines the boundaries of the entity
body - holds physical properties such as mass
fixture - attaches a shape to a body

Let's write a new main.lua from scratch and see how these are all wired up. First,
a world needs to be defined:

local world = love.physics.newWorld(0, 100)

 love.physics.newWorld returns a table, an instance of a world. The table holds
functions that allow us to apply attributes to the world. It also holds all the entities
in our world, which is currently none on initialization. According to the
documentation on love.physics.newWorld , our 1st and 2nd parameters set the X
and Y gravity on our world. We don't want any sideways gravity, but we'll go
ahead and set an arbitrary number for the vertical gravity.

While focusing on the world, we should allow the world to know whenever we get
an update to the delta time. A world without time would be frozen; By letting the
world know about the passage of time, it can know whether it needs to make an
entity fall another meter or two meters…

love.update = function(dt)
 world.update(world, dt)
end

Actually, let's do one trick here. When calling a function in Lua and the first
parameter of the function is the table the function is stored in, you can use a
shortcut notation:

love.update = function(dt)
 world:update(dt)
end

https://love2d.org/wiki/love.physics.newWorld

1.1 - Interactive coding

74

Aside from being easier to write, you'll see this way of invoking functions used all
over the place in the LÖVE documentation.

Finally, we'll add an entity to the game in 4 steps:

1. Create a table to store all the pieces of our entity together. Not entirely
necessary but we'll learn later why this step makes things easier.

2. Create a body. This will be added to the entity table and the world.
3. Create the shape we want the entity to have.
4. Create a fixture to attach the body and shape together.

After creating the body table inside triangle , we called triangle.body.setMass
to set a weight property on our triangle so it can fall. Notice we wrote
 triangle.body:setMass(32) , which is the same as saying
 triangle.body.setMass(triangle.body, 32) but shorter and more conventional to
the way the LÖVE documentation writes.

What's going on inside love.draw looks pretty crazy so let's break the long line
up.

 love.graphics.polygon(
 'line',
 triangle.body:getWorldPoints(triangle.shape:getPoints())
)

We've used love.graphics.polygon previously so its purpose should already be
familiar. The first parameter 'line' is telling it that we want an outline of a shape
drawn. The second parameter is a table containing the points that need to be
outlined. To get the triangle's points we call triangle.shape:getPoints() , but this
only returns the shape of the triangle and the relative position of the points. By
then calling triangle.body:getWorldPoints(triangle.shape:getPoints()) we
convert those relative points to their absolute position as that's what the polygon
drawing function needs to know so it can draw the triangle exactly where it is
supposed to be on the screen.

Let's put it all together and add one more entity into the mix so the two can
interact:

-- Triangle is the name of our first entity
local triangle = {}
triangle.body = love.physics.newBody(world, 200, 200, 'dynamic')
-- Give the triangle some weight
triangle.body:setMass(32)
triangle.shape = love.physics.newPolygonShape(100, 100, 200, 100, 200, 200)
triangle.fixture = love.physics.newFixture(triangle.body, triangle.shape)

love.draw = function()
 love.graphics.polygon('line', triangle.body:getWorldPoints(triangle.shape:get
end

1.1 - Interactive coding

75

This is a lot to digest so don't hesitate to re-read through this code several times if
necessary. There were a lot of new functions introduced in this section, so in the
next section we'll take a deeper look at the documentation and read more about
them and their components.

Exercises
Try changing the mass (triangle.body:setMass) and gravity
(love.physics.newWorld) and see what happens.

local world = love.physics.newWorld(0, 100)

-- Triangle is the name of our first entity
local triangle = {}
triangle.body = love.physics.newBody(world, 200, 200, 'dynamic')
-- Give the triangle some weight
triangle.body.setMass(triangle.body, 32)
triangle.shape = love.physics.newPolygonShape(100, 100, 200, 100, 200, 200)
triangle.fixture = love.physics.newFixture(triangle.body, triangle.shape)

-- Another entity
local bar = {}
bar.body = love.physics.newBody(world, 200, 450, 'static')
bar.shape = love.physics.newPolygonShape(0, 0, 0, 20, 400, 20, 400, 0)
bar.fixture = love.physics.newFixture(bar.body, bar.shape)

local key_map = {
 escape = function()
 love.event.quit()
 end
}

love.draw = function()
 love.graphics.polygon('line', triangle.body:getWorldPoints(triangle.shape:get
 love.graphics.polygon('line', bar.body:getWorldPoints(bar.shape:getPoints()))
end

love.keypressed = function(pressed_key)
 -- Check in the key map if there is a function
 -- that matches this pressed key's name
 if key_map[pressed_key] then
 key_map[pressed_key]()
 end
end

love.update = function(dt)
 world:update(dt)
end

1.1 - Interactive coding

76

Reading documentation
You typically run into two types of documentation for software: guides and API
documentation. Guides would be information on getting started, tutorials, and
books. An API (application programming interface) is a portion of software that a
programmer writes for his/her program to allow fellow programmers to interact
with their application. As for LÖVE's programming interface, most of your
interactions with the framework are done through the love global variable that
the framework purposely exposes. API documentation is the most fundamental
form of software documentation because without it, you would not know what all
the functions in the program do unless you were resourceful enough to go in and
study all the source code and figure each function out on your own.

The documentation for LÖVE (bookmark this!) is written in a wiki style where each
table and function has an article that describes how to use it. From here you
should see many modules listed. Click on love.physics . Again, love.physics is
just a table with functions in it. So within the article we see each of the functions
stored in it including the functions love.physics.newBody which we used to create
our entities' bodies, love.physics.newPolygonShape which we used to create their
shapes, and love.physics.newFixture which we used to create their fixtures. We
also see love.physics.newWorld which created our world table. Let's look at the
first function's article.

Clicking on the article for love.physics.newBody we get a synopsis showing how
the function might be used, along with a description of its parameters and what
the function returns. Over the course of different versions of the framework,
functions may be modified so in the case of this function you can see examples of
how to use it differently in different versions of LÖVE. Since the function lists that
it returns a body, click the link to go over to the article on the body table's
documentation.

There's a lot of functions here that set properties on the body and get properties
from the body. One of them is the body:setMass function we used to give our
entity weight. We can see that it takes one parameter and that the parameter is
meant to simulate how many kilograms of mass the body has. We originally told it
that our triangle in the last section weighed 32 kilograms, which if you think the
object fell too fast or too slow then you may need to adjust your world's gravity to
match your expectation.

Now let's go back to love.physics for a moment and take a look at one of the
other components we added to our previous code, the fixture. We previously
created a fixture table by calling triangle.fixture =
love.physics.newFixture(triangle.body, triangle.shape) . However, we haven't
seen any of these functions in the fixture table that could come in handy. For
instance, we could give our triangle bounciness by invoking
 fixture:setRestitution . Our triangle fixture is named triangle.fixture though,
not fixture . If 0 is no bounciness (default) and 1 is 100%, try modifying the
game code and adding a restitution of 75%:

https://love2d.org/wiki/love
https://love2d.org/wiki/love.physics
https://love2d.org/wiki/love.physics.newBody
https://love2d.org/wiki/love.physics.newPolygonShape
https://love2d.org/wiki/love.physics.newFixture
https://love2d.org/wiki/love.physics.newWorld
https://love2d.org/wiki/Body
https://love2d.org/wiki/Body:setMass
https://love2d.org/wiki/love.physics
https://love2d.org/wiki/Fixture
https://love2d.org/wiki/love.physics.newFixture
https://love2d.org/wiki/Fixture:setRestitution

1.1 - Interactive coding

77

triangle.fixture:setRestitution(0.75)

Try running the game and see how that works. If you set the restitution to 1 or
higher then the triangle won't stop bouncing and will bounce itself right off the
screen.

Callbacks
Let's backtrack now to the main article about the love table. If you scroll down a
little on the page, you'll see a section titled "Callbacks" that contains some
functions we've become familiar with such as love.draw and love.update . This
is a list of all the functions in the game loop that we have and haven't talked about
yet. A "callback" is a function you create and give to an API (the love table in
this case) that will later get invoked as needed. Creating functions with these
names allow you to tap into specific portions of the game loop and trigger your
own events.

Let's take a look at the love.keypressed callback for instance. In the synopsis
you see that it has 3 parameters (the documentation mistakenly calls parameters
"arguments"). We used the first parameter key to see what key was pressed. If
you ever need to know what keys are available, you can click on the link provided
next to the parameter name, KeyConstant to see a well-defined list of all the
available key strings passed in to this parameter. The second parameter
 scancode we didn't talk about, but it has a well-defined Scancode article
explaining what it is. If you are not familiar with scancodes, take a minute to read
it and perhaps you'll learn about a feature you may want to use in your game.

One more callback we'll look at while we're here is love.focus . Take a moment
to stop here and read what it does and what parameters it takes before
continuing. Now it would be really cool if we were making a game and when the
user switched to another application window, the game automatically paused for
the user. So first let's start by implementing a pause feature in our earlier game
code:

https://love2d.org/wiki/love

1.1 - Interactive coding

78

Notice the 3 changes:

We added a boolean called paused and set it to false
We added a new function to key_map so that when "space" is pressed, the
value of paused is set to not paused . not is an operator for booleans we
previously didn't discuss. It simply says "the opposite of this boolean". So if
 paused is true , then setting paused to not paused will set it to false .
Lastly, inside love.update to told the world to update only if we are not
paused . So the passage of time in the game world will cease when pressing
the space key.

local world = love.physics.newWorld(0, 9.81 * 128)

-- Triangle is the name of our first entity
local triangle = {}
triangle.body = love.physics.newBody(world, 200, 200, 'dynamic')
-- Give the triangle some weight
triangle.body.setMass(triangle.body, 32)
triangle.shape = love.physics.newPolygonShape(100, 100, 200, 100, 200, 200)
triangle.fixture = love.physics.newFixture(triangle.body, triangle.shape)
triangle.fixture:setRestitution(0.75)

-- Another entity
local bar = {}
bar.body = love.physics.newBody(world, 200, 450, 'static')
bar.shape = love.physics.newPolygonShape(0, 0, 0, 20, 400, 20, 400, 0)
bar.fixture = love.physics.newFixture(bar.body, bar.shape)

-- Boolean to keep track of whether our game is paused or not
local paused = false

local key_map = {
 escape = function()
 love.event.quit()
 end,
 space = function()
 paused = not paused
 end
}

love.draw = function()
 love.graphics.polygon('line', triangle.body:getWorldPoints(triangle.shape:get
 love.graphics.polygon('line', bar.body:getWorldPoints(bar.shape:getPoints()))
end

love.keypressed = function(pressed_key)
 -- Check in the key map if there is a function
 -- that matches this pressed key's name
 if key_map[pressed_key] then
 key_map[pressed_key]()
 end
end

love.update = function(dt)
 if not paused then
 world:update(dt)
 end
end

1.1 - Interactive coding

79

Exercises
Now with the documentation in hand, define love.focus and make it so the
game pauses when the user clicks away from the game window.
Bonus: make the game print a text saying that the game is paused when
 paused is true . Go find the documentation for love.graphics.print to see
an example on displaying text.

1.1 - Interactive coding

80

Modules and organization
Eventually when you start writing real programs, you realize if you keep all the
code in one file that things can get a bit messy. Putting your code in separate files
helps you not only keep your different pieces of code separated from each other,
but it helps you visualize the structure of your program.

Let's start with a single main.lua file and we'll then split it into different files:

When we go to run the code, we get a blank window because we're not drawing
anything. We do see our print statements output our function and table to the
console though:

my_cool_function is function: 0x41f2abc0
my_cool_table is table: 0x41f2aa08

Modules and require
Think of your Lua files as giant functions that get invoked whenever you load the
file. Just like a function, you can return values from your files. If you load one Lua
file from another, you will get whatever value is returned. Let's modify our
previous code. First define these two new files in the game folder:

function-module.lua

table-module.lua

local my_cool_functon = function()
 love.graphics.print('This function came from function-module.lua', 100, 100,
end

local my_cool_table = {}
my_cool_table.print_stuff = function()
 love.graphics.print('This function came from table-module.lua', 100, 200, 0,
end

print('my_cool_function is', my_cool_function)
print('my_cool_table is', my_cool_table)

return function()
 love.graphics.print('This function came from function-module.lua', 100, 100,
end

1.1 - Interactive coding

81

Then update main.lua:

local function_module = require('function-module')
local table_module = require('table-module')

print('function_module is', function_module)
print('table_module is', table_module)

Let's start from the top. In function-module.lua we write a return statement that
returns a function with no name. We don't invoke the function, we just return it as
a value the same way a function may return a number or string. Likewise in table-
module.lua we defined a table (with a function in it) and returned the table on the
last line of the file. The function name and local variable name my_cool_table is
inconsequential and can't be seen outside the table-module.lua file as modules
have their own scope.

In main.lua we are requiring function-module using a built-in Lua function,
 require . require takes one argument, a string that equals the name of your file
and it then invokes that file and returns back a function which we assign to a new
variable function_module . We then do the same thing for table-module.lua. We
require it, which invokes it and returns back whatever that file returns. In this case
is a table. Notice that when we pass in the filenames as arguments we just give
the first part of the filename without the extension ".lua" at the end. This function
expects that any file it is requiring is a Lua file.

After we required the files, we printed the values of those variables, so you should
see the results of the print statements appear in the console like before:

function_module is function: 0x40479548
table_module is table: 0x40479bc8

We pulled in the return values from the other two files into our main.lua file and
printed the values, but since we didn't invoke the functions from those two files
then we got a blank game window when running the program. Let's define a
 love.draw in main.lua like before and invoke the functions we got back from both
modules:

local my_cool_table = {}
my_cool_table.print_stuff = function()
 love.graphics.print('This function came from table-module.lua', 100, 200, 0,
end

return my_cool_table

1.1 - Interactive coding

82

local function_module = require('function-module')
local table_module = require('table-module')

print('function_module is', function_module)
print('table_module is', table_module)

love.draw = function()
 function_module()
 table_module.print_stuff()
end

We were able to invoke the functions and use the returned data as if it were all in
the same file.

Organizing modules
It may help to see a real example of using modules in a game, so let's take our
previous game code from 2.8 - Reading documentation and see how we can
separate out functionality. The first thing we did in our game was define a world,
so let's start by putting our world-related code in a dedicated file named
world.lua:

-- world.lua

local world = love.physics.newWorld(0, 9.81 * 128)

return world

Remember that you need the return statement at the end of your files or else the
code will return nil when you go to require it and this could cause all kinds of
unexepcted errors when you run it. Next let's create a folder named entities that
we can keep all our game entities in. We plan on creating more entities so it will
help to keep them all together. In the entities folder, create a file and name it
triangle.lua. We'll cut all the code from the original main.lua that related to our
triangle entity and put it here:

-- entities/triangle.lua

local world = require('world')

local triangle = {}
triangle.body = love.physics.newBody(world, 200, 200, 'dynamic')
triangle.body.setMass(triangle.body, 32)
triangle.shape = love.physics.newPolygonShape(100, 100, 200, 100, 200, 200)
triangle.fixture = love.physics.newFixture(triangle.body, triangle.shape)
triangle.fixture:setRestitution(0.75)

return triangle

Notice how we are requiring the world table from world.lua, because we need to
access that table in this entity's file so we can add the entity to the world. We also
need to do the same thing as above with the bar entity:

file:///tmp/calibre_5.10.1_tmp_815xatn7/msnkjn_y_pdf_out/pages/02-08-reading-documentation.md

1.1 - Interactive coding

83

-- entities/bar.lua

local world = require('world')

local bar = {}
bar.body = love.physics.newBody(world, 200, 450, 'static')
bar.shape = love.physics.newPolygonShape(0, 0, 0, 20, 400, 20, 400, 0)
bar.fixture = love.physics.newFixture(bar.body, bar.shape)

return bar

Now our main.lua should only contain our key map and love functions:

Our two entities and world get pulled into main.lua and everything should run
exactly as before. One thing to note is that even though we require world.lua 3
times in our code, it is the same world and not 3 copies. This is because Lua
knows to only run a module the first time you require it and not invoke it again.

-- main.lua

local bar = require('entities/bar')
local triangle = require('entities/triangle')
local world = require('world')

-- Boolean to keep track of whether our game is paused or not
local paused = false

local key_map = {
 escape = function()
 love.event.quit()
 end,
 space = function()
 paused = not paused
 end
}

love.draw = function()
 love.graphics.polygon('line', triangle.body:getWorldPoints(triangle.shape:get
 love.graphics.polygon('line', bar.body:getWorldPoints(bar.shape:getPoints()))
end

love.focus = function(focused)
 if not focused then
 paused = true
 end
end

love.keypressed = function(pressed_key)
 -- Check in the key map if there is a function
 -- that matches this pressed key's name
 if key_map[pressed_key] then
 key_map[pressed_key]()
 end
end

love.update = function(dt)
 world:update(dt)
end

1.1 - Interactive coding

84

Once it runs the first time, the returned results are stored in memory for the next
time you try to require it. We can prove this by adding a print statement to
world.lua:

-- world.lua

print("This is the world")

local world = love.physics.newWorld(0, 9.81 * 128)

return world

How many times does "This is the world" get printed to the console?

Exercises
Try creating two new modules; One that returns a string and one that returns
a number.

1.1 - Interactive coding

85

Collision callbacks
When writing a game such as a platformer you may want something special to
happen when two objects collide. If it's a powerup, for instance, you may want the
powerup to despawn (be removed from the world) if a player touches it and then
give the player a special ability (think Mario and mushrooms). If a player and an
enemy bump into each other, you may want the player's health to decrement. The
world table has a method that allows you to program in functionality like this for
when two entities collide. It does this by allowing you to create callbacks as we
learned before, but these callbacks are triggered before, during, or after collision.
Take a look at World:setCallbacks.

If you look at the parameters for World:setCallbacks , you see it can take four
functions. The description of these parameters helps explain when the functions
will be called. beginContact and endContact should be self explanatory; They
happen at the point where contact begins and ends in a collision, but preSolve
and postSolve may not be as obvious. Nonetheless, let's edit the previously-
created world.lua file and write some collision callbacks to test this functionality.

-- world.lua

local begin_contact_counter = 0
local end_contact_counter = 0
local pre_solve_counter = 0
local post_solve_counter = 0

local begin_contact_callback = function()
 begin_contact_counter = begin_contact_counter + 1
 print('beginContact called ' .. begin_contact_counter .. ' times')
end

local end_contact_callback = function()
 end_contact_counter = end_contact_counter + 1
 print('endContact called ' .. end_contact_counter .. ' times')
end

local pre_solve_callback = function()
 pre_solve_counter = pre_solve_counter + 1
 print('preSolve called ' .. pre_solve_counter .. ' times')
end

local post_solve_callback = function()
 post_solve_counter = post_solve_counter + 1
 print('postSolve called ' .. post_solve_counter .. ' times')
end

local world = love.physics.newWorld(0, 9.81 * 128)

world:setCallbacks(
 begin_contact_callback,
 end_contact_callback,
 pre_solve_callback,
 post_solve_callback
)

return world

https://love2d.org/wiki/World:setCallbacks

1.1 - Interactive coding

86

Try it out. Every time one of the callbacks is invoked, it will increment its own
number by 1 then print a message to the console telling you how many times it
has been invoked. It's clear right away that pre_solve_callback and
 post_solve_callback get invoked many more times than begin_contact_callback
and end_contact_callback in this situation.

Unless you've edited the behavior of the triangle entity, it will bounce a bit
(because of the triangle's restitution). Once it bounces and neither corner or side
is touching the floor underneath, the contact ends. This process is repeated every
time it bounces. Once the triangle settles down it will slide a bit, maybe even a
lot... like an air hockey puck. This is because our triangle and bar have no friction
between them to prevent that. Anyways, this is good because it allows us to see
that while the triangle is sliding it is still making contact. While the triangle is
sliding and still making contact, the pre_solve_callback and
 post_solve_callback will continue to get called with every frame of movement.

Pretend our triangle was a futuristic race car moving across a neon strip of road
that recharged the vehicle. You could start increasing the race car's power meter
inside begin_contact_callback as the car makes contact with that section of road
and then stop increasing power when end_contact_callback is invoked. This
could work pretty well, but then the player may try parking for a moment on the
power strip and continue to gain health as long as they want. So another
approach could be to only increase the power meter as the player continues to
move and make contact with the road, increasing health by 1 point every time the
 post_solve_callback function is invoked.

You don't necessarily need to use all of these callbacks, so you could just pass in
an empty function or nil to World:setCallbacks for the arguments you don't
need.

Without knowing what entities are colliding, the collision callbacks aren't very
useful. Luckily, our callbacks have parameters of their own that we can access.
Let's modify the code again and check out those parameters:

1.1 - Interactive coding

87

-- world.lua

-- Called at the beginning of any contact in the world. Parameters:
-- {fixture} fixture_a - first fixture object in the collision.
-- {fixture} fixture_b - second fixture object in the collision.
-- {contact} contact - world object created on and at the point of
-- contact. When sliding along an object, there may be several.
-- See further: https://love2d.org/wiki/Contact
local begin_contact_callback = function(fixture_a, fixture_b, contact)
 print(fixture_a, fixture_b, contact, 'beginning contact')
end

local end_contact_callback = function(fixture_a, fixture_b, contact)
 print(fixture_a, fixture_b, contact, 'ending contact')
end

local pre_solve_callback = function(fixture_a, fixture_b, contact)
 print(fixture_a, fixture_b, contact, 'about to resolve a contact')
end

local post_solve_callback = function(fixture_a, fixture_b, contact)
 print(fixture_a, fixture_b, contact, 'just resolved a contact')
end

local world = love.physics.newWorld(0, 9.81 * 128)

world:setCallbacks(
 begin_contact_callback,
 end_contact_callback,
 pre_solve_callback,
 post_solve_callback
)

return world

This should print out some information in the console similar to:

 Fixture: 0x561020bf8570 is a text representation of our first entity's fixture. The
 0x56... is the memory address of the fixture to help identify it, although this
information still doesn't tell us which entity this fixture belongs to. We also printed
out a contact table, which contains a set of functions just like the entities. This
instance of a contact provides information such as where the contact happened
and how much velocity was involved.

Let's work on modifying the print statements so we can collect more useful
information on these collisions. There is a pair of functions on every fixture that
let's you set any arbitrary data you want on that fixture and another function to get
that data back out the fixture. These functions are called Fixture:setUserData
and Fixture:getUserData . These functions can be used to set a name or ID on
the fixture to help us identify what entity it belongs to. We can accomplish this by
first modifying our entity files and passing some strings to Fixture:setUserData :

Fixture: 0x561020bf8570 Fixture: 0x561020bf7350 Contact: 0x561020bf7480 beginni
Fixture: 0x561020bf8570 Fixture: 0x561020bf7350 Contact: 0x561020bf7480 about t
Fixture: 0x561020bf8570 Fixture: 0x561020bf7350 Contact: 0x561020bf7480 just re
Fixture: 0x561020bf8570 Fixture: 0x561020bf7350 Contact: 0x561020bf7480 ending

https://love2d.org/wiki/Contact
https://love2d.org/wiki/Fixture:setUserData
https://love2d.org/wiki/Fixture:getUserData

1.1 - Interactive coding

88

-- entities/bar.lua

local world = require('world')

local bar = {}
bar.body = love.physics.newBody(world, 200, 450, 'static')
bar.shape = love.physics.newPolygonShape(0, 0, 0, 20, 400, 20, 400, 0)
bar.fixture = love.physics.newFixture(bar.body, bar.shape)
bar.fixture:setUserData('bar')

return bar

-- entities/triangle.lua

local world = require('world')

local triangle = {}
triangle.body = love.physics.newBody(world, 200, 200, 'dynamic')
triangle.body.setMass(triangle.body, 32)
triangle.shape = love.physics.newPolygonShape(100, 100, 200, 100, 200, 200)
triangle.fixture = love.physics.newFixture(triangle.body, triangle.shape)
triangle.fixture:setRestitution(0.75)
triangle.fixture:setUserData('triangle')

return triangle

Now go back to the world's collision callbacks and you can easily extract this
information back out of the fixtures:

1.1 - Interactive coding

89

-- world.lua

-- Called at the beginning of any contact in the world. Parameters:
-- {fixture} fixture_a - first fixture object in the collision.
-- {fixture} fixture_b - second fixture object in the collision.
-- {contact} contact - world object created on and at the point of
-- contact. When sliding along an object, there may be several.
-- See further: https://love2d.org/wiki/Contact
local begin_contact_callback = function(fixture_a, fixture_b, contact)
 local name_a = fixture_a:getUserData()
 local name_b = fixture_b:getUserData()

 print(name_a, name_b, contact, 'beginning contact')
end

local end_contact_callback = function(fixture_a, fixture_b, contact)
 local name_a = fixture_a:getUserData()
 local name_b = fixture_b:getUserData()

 print(name_a, name_b, contact, 'ending contact')
end

local pre_solve_callback = function(fixture_a, fixture_b, contact)
 local name_a = fixture_a:getUserData()
 local name_b = fixture_b:getUserData()

 print(name_a, name_b, contact, 'about to resolve a contact')
end

local post_solve_callback = function(fixture_a, fixture_b, contact)
 local name_a = fixture_a:getUserData()
 local name_b = fixture_b:getUserData()

 print(name_a, name_b, contact, 'just resolved a contact')
end

local world = love.physics.newWorld(0, 9.81 * 128)

world:setCallbacks(
 begin_contact_callback,
 end_contact_callback,
 pre_solve_callback,
 post_solve_callback
)

return world

Ah, now we can see which fixture is colliding which!

bar triangle Contact: 0x55bf29c07590 beginning contact
bar triangle Contact: 0x55bf29c07590 about to resolve a contact
bar triangle Contact: 0x55bf29c07590 just resolved a contact
bar triangle Contact: 0x55bf29c07590 ending contact

Exercises
Modify the print statements in each collision callback to print out the
coordinates where the entities' fixtures are making contact. You can find the
information you need to do this in the documentation for the contact table
mentioned above.

1.1 - Interactive coding

90

1.1 - Interactive coding

91

Breakout (part 1): more entity practice
Let's bring all these concepts together by making another game, a breakout
clone. The requirements are pretty simple:

The objective of the game is to destroy all the bricks on the screen
The player controls a "paddle" entity that hits a ball
The ball destroys the bricks
The ball needs to stay within the boundaries of the screen
If the ball touches the bottom of the screen (below the paddle), the game
ends

If you still have the code from the previous sections, feel free to copy the folder
naming the new one "breakout" or whatever you want your breakout clone to be
called. At the end of this section there will be a link to all the source code to use
as a reference in case you get stuck. This may be time consuming, but I
encourage you to type out each section and stop to understand what it is you are
typing. If you copy, paste, and don't read then it will be easy to get lost in this
chunk of the chapter as things will move fast.

The first modification we'll make is to set a specific window size so no matter
which version of LÖVE you're on we're working with the same window proportions
and entity dimensions. To do this, open of conf.lua or create it if you don't have it
and put in the following code:

-- conf.lua
-- LÖVE configuration file

love.conf = function(t)
 t.console = true -- Enable the debug console for Windows.
 t.window.width = 800 -- Game's screen width (number of pixels)
 t.window.height = 600 -- Game's screen height (number of pixels)
end

The conf, or configuration file lets you define a callback in the love table that
modifies the game engine's configuration on load. You can read more about all
the interesting things you can do with it here but most of its features won't be
necessary for our simple game.

The next modification we'll make is deleting the entities from the last section. Let's
create new entities to represent the ball and paddle:

https://en.wikipedia.org/wiki/Breakout_clone
https://love2d.org/wiki/Config_Files

1.1 - Interactive coding

92

-- entities/ball.lua

local world = require('world')

local entity = {}
entity.body = love.physics.newBody(world, 200, 200, 'dynamic')
entity.body:setMass(32)
entity.body:setLinearVelocity(300, 300)
entity.shape = love.physics.newCircleShape(0, 0, 10)
entity.fixture = love.physics.newFixture(entity.body, entity.shape)
entity.fixture:setRestitution(1)
entity.fixture:setUserData(entity)

return entity

-- entities/paddle.lua

local world = require('world')

local entity = {}
entity.body = love.physics.newBody(world, 200, 560, 'static')
entity.shape = love.physics.newRectangleShape(180, 20)
entity.fixture = love.physics.newFixture(entity.body, entity.shape)
entity.fixture:setUserData(entity)

return entity

Before we try and run anything, take a look at a few things we've done differently
in defining these entities than we've previously done.

In ball.lua we are defining a circle shape instead of a polygon. This means
we have no sides or corner points we can reference when spawning or
tracking the position of this object. Circles have to be tracked from their
center point and their boundaries by their radius.
In this file we're using Body:setLinearVelocity to apply movement on the ball
in a specific direction when the entity spawns.
In paddle.lua we are defining a polygon shape, but instead of specifying
each point we are using the love.physics.newRectangleShape function to
define the shape. This will still generate a polygon as before, but instead of
specifying each point in the shape we are giving a height and width and
allowing it to figure out the shape we want based on those two parameters.
Think of it as a shortcut version of the love.physics.newPolygonShape
function.
The paddle has a static body while the ball is dynamic. What this entails is
the ball will be affected by the paddle but the paddle won't be affected by the
ball. Even though the paddle is static, it can be manually repositioned as we'll
do later with buttons.
In both entity files, we are passing the full entity table as the fixture user data
instead of just a string name like before. This will allow us to easily access
the entire entity inside the collision callback as we'll see later. You'll want to
go back and compare that code from the Collision Callbacks section to these
entities, but don't worry if it doesn't make complete sense yet.

Now we need to modify main.lua to load up our new entities:

https://love2d.org/wiki/Body:setLinearVelocity
https://love2d.org/wiki/love.physics.newRectangleShape
https://love2d.org/wiki/love.physics.newPolygonShape

1.1 - Interactive coding

93

-- main.lua

local paddle = require('entities/paddle')
local ball = require('entities/ball')
local world = require('world')

-- Boolean to keep track of whether our game is paused or not
local paused = false

local key_map = {
 escape = function()
 love.event.quit()
 end,
 space = function()
 paused = not paused
 end
}

love.draw = function()
 local ball_x, ball_y = ball.body:getWorldCenter()
 love.graphics.circle('fill', ball_x, ball_y, ball.shape:getRadius())
 love.graphics.polygon(
 'line',
 paddle.body:getWorldPoints(paddle.shape:getPoints())
)
end

love.focus = function(focused)
 if not focused then
 paused = true
 end
end

love.keypressed = function(pressed_key)
 -- Check in the key map if there is a function
 -- that matches this pressed key's name
 if key_map[pressed_key] then
 key_map[pressed_key]()
 end
end

love.update = function(dt)
 if not paused then
 world:update(dt)
 end
end

Take note of a few things we're doing here:

For drawing the circle, we need to invoke love.graphics.circle .
For drawing the paddle, we still invoke love.graphics.polygon as the
rectangle is still a polygon shape.

Now let's remove any print statements in world.lua just to clean things up. We'll
leave the callbacks there since we may use them later but we'll leave them empty
for now. We'll also set the gravity to 0 because we want the ball to bounce freely
like in the real Breakout game and not lose any momentum.

https://love2d.org/wiki/love.graphics.circle
https://love2d.org/wiki/love.graphics.polygon

1.1 - Interactive coding

94

-- world.lua

-- Called at the beginning of any contact in the world. Parameters:
-- {fixture} fixture_a - first fixture object in the collision.
-- {fixture} fixture_b - second fixture object in the collision.
-- {contact} contact - world object created on and at the point of
-- contact. When sliding along an object, there may be several.
-- See further: https://love2d.org/wiki/Contact
local begin_contact_callback = function(fixture_a, fixture_b, contact)
end

local end_contact_callback = function(fixture_a, fixture_b, contact)
end

local pre_solve_callback = function(fixture_a, fixture_b, contact)
end

local post_solve_callback = function(fixture_a, fixture_b, contact)
end

local world = love.physics.newWorld(0, 0)

world:setCallbacks(
 begin_contact_callback,
 end_contact_callback,
 pre_solve_callback,
 post_solve_callback
)

return world

What happens if you run the game now? The ball flies right off the screen without
consequence. There are a couple different ways of preventing the ball from
moving off screen. Possibly the most simple approach is to put up some walls.
Can you guess what the code to those walls may look like? Yup, they will be
entities similar to the paddle except that they just sit at the edges of the screen.
Let's create some entities for that purpose:

-- entities/boundary-top.lua

local world = require('world')

local entity = {}
entity.body = love.physics.newBody(world, 400, 5, 'static')
entity.shape = love.physics.newRectangleShape(800, 10)
entity.fixture = love.physics.newFixture(entity.body, entity.shape)
entity.fixture:setUserData(entity)

return entity

Take a look at these numbers for a minute. For the location of the body we
specified 400 pixels. So starting from the top left corner and moving right along
the x-axis we've specified the very center of an 800-pixel-wide window. The
reason we've done this is because we want the top and bottom wall boundaries to
stretch 800 pixels wide, the entire length of the window, and when calling
 newBody and spawning an entity's body it will spawn the center point of the entity
shape at that location. Not all entity shapes are square, or even polygonal, so it is
simplest for the game engine to center the shape on the body's spawn point

1.1 - Interactive coding

95

rather than using another point of reference on the shape, like the top left corner
of the shape (not all shapes have corners). In fact, the ball and paddle spawned
centered on the location we gave for their bodies.

So we made the walls 800 pixels wide and just to give it a little visibility we made
them 10 pixels tall. You would think we'd spawn the wall at the very top of the
screen (0 pixels on the y-axis,) but since our walls will be centered to the spawn
points we should move down half the height of the wall if we want it all to appear
on screen.

Now the boundary on the bottom will have the same dimensions, but it will be
spawned at the bottom of the screen (600 pixels) minus half the height of the wall
(5 pixels):

-- entities/boundary-bottom.lua

local world = require('world')

local entity = {}
entity.body = love.physics.newBody(world, 400, 595, 'static')
entity.shape = love.physics.newRectangleShape(800, 10)
entity.fixture = love.physics.newFixture(entity.body, entity.shape)
entity.fixture:setUserData(entity)

return entity

The left and right boundaries will follow the same pattern except they will be the
height of the screen instead of the width of the screen:

-- entities/boundary-left.lua

local world = require('world')

local entity = {}
entity.body = love.physics.newBody(world, 5, 300, 'static')
entity.shape = love.physics.newRectangleShape(10, 600)
entity.fixture = love.physics.newFixture(entity.body, entity.shape)
entity.fixture:setUserData(entity)

return entity

-- entities/boundary-right.lua

local world = require('world')

local entity = {}
entity.body = love.physics.newBody(world, 795, 300, 'static')
entity.shape = love.physics.newRectangleShape(10, 600)
entity.fixture = love.physics.newFixture(entity.body, entity.shape)
entity.fixture:setUserData(entity)

return entity

We won't see these entities until we require them and draw them on the screen.
So modify main.lua to require and draw them the same way we do the ball and
paddle:

1.1 - Interactive coding

96

-- main.lua

local boundary_bottom = require('entities/boundary-bottom')
local boundary_left = require('entities/boundary-left')
local boundary_right = require('entities/boundary-right')
local boundary_top = require('entities/boundary-top')
local paddle = require('entities/paddle')
local ball = require('entities/ball')
local world = require('world')

-- Boolean to keep track of whether our game is paused or not
local paused = false

local key_map = {
 escape = function()
 love.event.quit()
 end,
 space = function()
 paused = not paused
 end
}

love.draw = function()
 love.graphics.polygon('line', boundary_bottom.body:getWorldPoints(boundary_bo
 love.graphics.polygon('line', boundary_left.body:getWorldPoints(boundary_left
 love.graphics.polygon('line', boundary_right.body:getWorldPoints(boundary_rig
 love.graphics.polygon('line', boundary_top.body:getWorldPoints(boundary_top.s
 local ball_x, ball_y = ball.body:getWorldCenter()
 love.graphics.circle('fill', ball_x, ball_y, ball.shape:getRadius())
 love.graphics.polygon('line', paddle.body:getWorldPoints(paddle.shape:getPoin
end

love.focus = function(focused)
 if not focused then
 paused = true
 end
end

love.keypressed = function(pressed_key)
 -- Check in the key map if there is a function
 -- that matches this pressed key's name
 if key_map[pressed_key] then
 key_map[pressed_key]()
 end
end

love.update = function(dt)
 if not paused then
 world:update(dt)
 end
end

1.1 - Interactive coding

97

When you run the game, you should see pretty much the same thing as this:

If you missed anything or are having issues, here's a copy of the completed
source code for this section:
https://github.com/RVAGameJams/learn2love/tree/master/code/breakout-1

Looking back at our list of minimal requirements we've already completed one
thing on our list:

The ball needs to stay within the boundaries of the screen

There's still quite a bit more work to complete this list so let's continue in the next
section.

Exercises
Maybe it would be better if the boundary lines were even with the screen so
we couldn't see them. Modify the boundary positions so it looks like the ball is
bouncing off the edge of the screen.
What happens if we require the boundaries but don't draw them in
 love.draw ? Does the game still work?

https://github.com/RVAGameJams/learn2love/tree/master/code/breakout-1

1.1 - Interactive coding

98

Breakout (part 2): entity management

Review
In the previous section we made a checklist of requirements and accomplished
one of them:

The objective of the game is to destroy all the bricks on the screen
The player controls a "paddle" entity that hits a ball
The ball destroys the bricks
✔ The ball needs to stay within the boundaries of the screen
If the ball touches the bottom of the screen, the game ends

In the previous exercise, the goal was to move the boundaries so they were just
off screen. This gives the effect that the ball is bouncing off the edges of the game
window.

-- entities/boundary-bottom.lua
entity.body = love.physics.newBody(world, 400, 606, 'static')

-- entities/boundary-left.lua
entity.body = love.physics.newBody(world, -6, 300, 'static')

-- entities/boundary-right.lua
entity.body = love.physics.newBody(world, 806, 300, 'static')

-- entities/boundary-top.lua
entity.body = love.physics.newBody(world, 400, -6, 'static')

Here they have been moved 6 pixels off screen just to use even numbers and
make calculation easier. Previously we also raised the question of whether or not
the boundaries would work if we still require 'd them in main.lua but didn't draw
them in love.draw . The answer is they still work but we don't see them. Since
they are off screen, that doesn't matter anyway and we can save our program
from doing extra work:

Entity list

-- main.lua
love.draw = function()
 local ball_x, ball_y = ball.body:getWorldCenter()
 love.graphics.circle('fill', ball_x, ball_y, ball.shape:getRadius())
 love.graphics.polygon('line', paddle.body:getWorldPoints(paddle.shape:getPoin
end

1.1 - Interactive coding

99

Let's think about the problem of brick entities for a minute. We could create an
entity file for each brick, but they are more or less the same except that they
spawn in different spots. Imagine making 50 different entity files and then inside
 love.draw making 50 lines to draw each brick and so on. What we can instead
do is make an entity file for 1 brick then make a list with 50 copies of it (or
however many brick copies we end up fitting on the screen). We can then loop
over this list to draw the bricks.

Let's first create the brick entity file:

-- entities/brick.lua

local world = require('world')

return function(x_pos, y_pos)
 local entity = {}
 entity.body = love.physics.newBody(world, x_pos, y_pos, 'static')
 entity.shape = love.physics.newRectangleShape(50, 20)
 entity.fixture = love.physics.newFixture(entity.body, entity.shape)
 entity.fixture:setUserData(entity)

 return entity
end

Instead of returning an entity in this file, we returned a function that takes an x-
position and y-position as parameters. When the function gets invoked wherever it
is required, it will generate a new entity with those coordinates for its spawn point.
Here's how we can use it:

1.1 - Interactive coding

100

-- main.lua

local boundary_bottom = require('entities/boundary-bottom')
local boundary_left = require('entities/boundary-left')
local boundary_right = require('entities/boundary-right')
local boundary_top = require('entities/boundary-top')
local paddle = require('entities/paddle')
local ball = require('entities/ball')
local brick = require('entities/brick')

local entities = {
 brick(100, 100),
 brick(200, 100),
 brick(300, 100)
}

local world = require('world')

-- Boolean to keep track of whether our game is paused or not
local paused = false

local key_map = {
 escape = function()
 love.event.quit()
 end,
 space = function()
 paused = not paused
 end
}

love.draw = function()
 local ball_x, ball_y = ball.body:getWorldCenter()
 love.graphics.circle('fill', ball_x, ball_y, ball.shape:getRadius())
 love.graphics.polygon('line', paddle.body:getWorldPoints(paddle.shape:getPoin

 for _, entity in ipairs(entities) do
 love.graphics.polygon('fill', entity.body:getWorldPoints(entity.shape:getPo
 end
end

love.focus = function(focused)
 if not focused then
 paused = true
 end
end

love.keypressed = function(pressed_key)
 -- Check in the key map if there is a function
 -- that matches this pressed key's name
 if key_map[pressed_key] then
 key_map[pressed_key]()
 end
end

love.update = function(dt)
 if not paused then
 world:update(dt)
 end
end

1.1 - Interactive coding

101

We made an entity table with a list of brick entities in it, then in love.draw we
made a for loop to draw each entity in the list. Before we change anything else try
running the game and taking a look that the bricks appear and that everything
works.

Rule of single responsibility
Our goal for the rest of this section will be to simplify entity management. One
strategy we'll have for doing this is to think of each file in our game as having a
single responsibility. A good sign that we're doing this is main.lua is very small
and easy to scan over with the eyes and digest.

So what is the responsibility of main.lua?

Create the callback functions necessary to run the game.

Here's some things it is doing that don't fit that responsibility:

Load and store all the entities
Figure out how to draw each type of entity in love.draw
Store a map of keypresses

Imagine our game is an organization and each file is a role in the company. Our
main file is like the secretary that knows how to handle requests from outsiders. If
somebody called asking the secretary about building-maintenance issues, the
secretary wouldn't grab plumbing tools and take care of the problem but rather
dispatch the person whose responsibility is that exact kind of problem. As the
owner of this organization we should know everyone's roles so it's easy to know
where each responsibility lies. It will make it easier for us to grow the company to
the size we desire.

One easy improvement is to not write out all the instructions for drawing each
entity within the main file, but rather let each entity file be responsible for every
feature of that entity, including how to draw that entity. We may want to get fancy
later and draw bricks in different colors, for instance. That could get complicated
and we don't want the main file to retain a bunch of code about brick colors and
such.

Modifying the entities is as easy as creating draw functions in the entity tables:

1.1 - Interactive coding

102

-- entities/ball.lua

local world = require('world')

return function(x_pos, y_pos)
 local entity = {}
 entity.body = love.physics.newBody(world, x_pos, y_pos, 'dynamic')
 entity.body:setMass(32)
 entity.body:setLinearVelocity(300, 300)
 entity.shape = love.physics.newCircleShape(0, 0, 10)
 entity.fixture = love.physics.newFixture(entity.body, entity.shape)
 entity.fixture:setRestitution(1)
 entity.fixture:setUserData(entity)

 entity.draw = function(self)
 local self_x, self_y = self.body:getWorldCenter()
 love.graphics.circle('fill', self_x, self_y, self.shape:getRadius())
 end

 return entity
end

-- entities/brick.lua

local world = require('world')

return function(x_pos, y_pos)
 local entity = {}
 entity.body = love.physics.newBody(world, x_pos, y_pos, 'static')
 entity.shape = love.physics.newRectangleShape(50, 20)
 entity.fixture = love.physics.newFixture(entity.body, entity.shape)
 entity.fixture:setUserData(entity)

 entity.draw = function(self)
 love.graphics.polygon('fill', self.body:getWorldPoints(self.shape:getPoints
 end

 return entity
end

-- entities/paddle.lua

local world = require('world')

return function(pos_x, pos_y)
 local entity = {}
 entity.body = love.physics.newBody(world, pos_x, pos_y, 'static')
 entity.shape = love.physics.newRectangleShape(180, 20)
 entity.fixture = love.physics.newFixture(entity.body, entity.shape)
 entity.fixture:setUserData(entity)

 entity.draw = function(self)
 love.graphics.polygon('line', self.body:getWorldPoints(self.shape:getPoints
 end

 return entity
end

1.1 - Interactive coding

103

Go ahead and make all the entities return a function with x_pos and y_pos
parameters and we'll just add everything to the entity list like the bricks. Don't
forget to change out the numbers in the love.physics.newBody(world, 200, 200,
'dynamic') with the arguments being passed in by the function:
 love.physics.newBody(world, x_pos, y_pos, 'dynamic') . For the boundaries entity
files there is no need for entity.draw functions, but still make them return
functions with the two parameters. Now update the entities list in main.lua to
include all the entities:

1.1 - Interactive coding

104

-- main.lua

local boundary_bottom = require('entities/boundary-bottom')
local boundary_left = require('entities/boundary-left')
local boundary_right = require('entities/boundary-right')
local boundary_top = require('entities/boundary-top')
local paddle = require('entities/paddle')
local ball = require('entities/ball')
local brick = require('entities/brick')

local entities = {
 boundary_bottom(400, 606),
 boundary_left(-6, 300),
 boundary_right(806, 300),
 boundary_top(400, -6),
 paddle(300, 500),
 ball(200, 200),
 brick(100, 100),
 brick(200, 100),
 brick(300, 100)
}

local world = require('world')

-- Boolean to keep track of whether our game is paused or not
local paused = false

local key_map = {
 escape = function()
 love.event.quit()
 end,
 space = function()
 paused = not paused
 end
}

love.draw = function()
 for _, entity in ipairs(entities) do
 if entity.draw then entity:draw() end
 end
end

love.focus = function(focused)
 if not focused then
 paused = true
 end
end

love.keypressed = function(pressed_key)
 -- Check in the key map if there is a function
 -- that matches this pressed key's name
 if key_map[pressed_key] then
 key_map[pressed_key]()
 end
end

love.update = function(dt)
 if not paused then
 world:update(dt)
 end
end

1.1 - Interactive coding

105

Take a look at our love.draw function. It is much simpler now that it no longer
needs to know how to draw each entity. It just asks the entity if it knows how to
draw itself and if it does it tells it to do so. Remember that invoking
 entity:draw() is just shorthand for writing entity.draw(entity) because of the
 : .

Ok, but putting the entities in a list didn't clean up this file. Now this file is
responsible for knowing where to spawn the entities and having them in a list just
makes this file bigger. Well you see the reason we put them in a list is because
we want to make a new game file called entities.lua that will be responsible for
loading, spawning, and storing all the entities when the game starts up. Create a
new file then cut all the entity require statements and the entity list and paste it
in the new file:

-- entities.lua

local boundary_bottom = require('entities/boundary-bottom')
local boundary_left = require('entities/boundary-left')
local boundary_right = require('entities/boundary-right')
local boundary_top = require('entities/boundary-top')
local paddle = require('entities/paddle')
local ball = require('entities/ball')
local brick = require('entities/brick')

return {
 boundary_bottom(400, 606),
 boundary_left(-6, 300),
 boundary_right(806, 300),
 boundary_top(400, -6),
 paddle(300, 500),
 ball(200, 200),
 brick(100, 100),
 brick(200, 100),
 brick(300, 100)
}

And now the top of our main file only needs to load the entities file and it will have
the list to use in love.draw and elsewhere as needed:

-- main.lua

local entities = require('entities')
local world = require('world')

1.1 - Interactive coding

106

When you run the game, you should be seeing something similar to this:

If you missed anything or are having issues, here's a copy of the completed
source code for this section:
https://github.com/RVAGameJams/learn2love/tree/master/code/breakout-2

And that's about it for entity management. We'll figure out how to handle
keypresses for the paddle and everything else in the next section. We'll finish the
cleanup in our main file while we're at it.

Exercises
Now that our entities have passed off knowledge on where they spawn over
to entities.lua, our left and right boundaries are identical files. Replace
boundary-left.lua and boundary-right.lua with a single boundary-
vertical.lua file and spawn two copies of that in entities.lua. If you get stuck,
check out the entities.lua file in the next section for how this is done.

https://github.com/RVAGameJams/learn2love/tree/master/code/breakout-2

1.1 - Interactive coding

107

Breakout (part 3): inputs

Review
In the previous section we reconstructed our entities to make room for bricks and
additional functionality. We haven't completed any new items on our checklist:

The objective of the game is to destroy all the bricks on the screen
The player controls a "paddle" entity that hits a ball
The ball destroys the bricks
✔ The ball needs to stay within the boundaries of the screen
If the ball touches the bottom of the screen, the game ends

So let's come up with a system to handle user input and get the paddle moving.

Input service
Inside main.lua there is some functionality for this that we are going to remove
and rewrite starting with a new file that specifically handles all the user input. This
kind of file is typically called a service because it abstracts away tedious
functionality into an easy-to-use service. I encourage you to write out the service
instead of copying and pasting. Read through each function and try to understand
what each one does.

1.1 - Interactive coding

108

-- input.lua

-- This table is the service and will contain some functions
-- that can be accessed from entities or the main.lua.
local input = {}
-- Map specific user inputs to game actions
local press_functions = {}
local release_functions = {}

-- For moving paddle left
input.left = false
-- For moving paddle right
input.right = false
-- Keep track of whether game is pause
input.paused = false
-- Look up in the map for actions that correspond to specific key presses
input.press = function(pressed_key)
 if press_functions[pressed_key] then
 press_functions[pressed_key]()
 end
end
-- Look up in the map for actions that correspond to specific key releases
input.release = function(released_key)
 if release_functions[released_key] then
 release_functions[released_key]()
 end
end
-- Handle window focusing/unfocusing
input.toggle_focus = function(focused)
 if not focused then
 input.paused = true
 end
end

press_functions.left = function()
 input.left = true
end
press_functions.right = function()
 input.right = true
end
press_functions.escape = function()
 love.event.quit()
end
press_functions.space = function()
 input.paused = not input.paused
end

release_functions.left = function()
 input.left = false
end
release_functions.right = function()
 input.right = false
end

return input

The input table is what gets returned, meaning when we require('input') in
another file, we get back that table and its contents. Inside the input there are
three boolean properties that get toggled by user input: input.left ,

1.1 - Interactive coding

109

 input.right , and input.paused . Along with these three properties, there are
three functions exposed to us to make use of: input.press , input.release , and
 input.toggle_focus , all of which we will invoke from our callbacks in main.lua:

-- main.lua

local entities = require('entities')
local input = require('input')
local world = require('world')

love.draw = function()
 for _, entity in ipairs(entities) do
 if entity.draw then entity:draw() end
 end
end

love.focus = function(focused)
 input.toggle_focus(focused)
end

love.keypressed = function(pressed_key)
 input.press(pressed_key)
end

love.keyreleased = function(released_key)
 input.release(released_key)
end

love.update = function(dt)
 if not input.paused then
 for _, entity in ipairs(entities) do
 if entity.update then entity:update(dt) end
 end
 world:update(dt)
 end
end

In love.update we skip updates if input.paused is true . However if the game
is not paused then it will loop through the entity list, calling entity.update if the
entity has an update function. With this added functionality, we can append an
 entity.update function into our existing paddle code:

-- entities/paddle.lua

entity.update = function(self)
 -- Don't move if both keys are pressed. Just return
 -- instead of going through the rest of the function.
 if input.left and input.right then
 return
 end
 local self_x, self_y = self.body:getPosition()
 if input.left then
 self.body:setPosition(self_x - 10, self_y)
 elseif input.right then
 self.body:setPosition(self_x + 10, self_y)
 end
end

1.1 - Interactive coding

110

The left and right arrows will now move the paddle! There isn't much else to say
here in the way of input. A bit unrelated to the actual input, but more so the paddle
functionality is it moves off screen and doesn't adhere to the boundaries? Why is
that?

If you remember when we created the paddle, it is a static entity. It doesn't have
the ability to move on its own or by the effect of other entities. This will cause us
some problems later (and we're learning the hard way)! Rather than forcing the
paddle with an invisible push, we force a new position for the paddle when we call
 body:setPosition inside the paddle's entity.update function. It's like we're
teleporting it on top of whatever space we want with a keystroke, ignoring all
physics and collision. This is simpler to code and gets around the fact the paddle's
static body won't respond to force. To fix this, we can artificially set the boundary
on the paddle by checking if it is out of bounds before moving it.

-- entities/paddle.lua

entity.update = function(self)
 -- Don't move if both keys are pressed. Just return
 -- instead of going through the rest of the function.
 if input.left and input.right then
 return
 end
 local self_x, self_y = self.body:getPosition()
 if input.left then
 local new_x = math.max(self_x - 10, 108)
 self.body:setPosition(new_x, self_y)
 elseif input.right then
 local new_x = math.min(self_x + 10, 700)
 self.body:setPosition(new_x, self_y)
 end
end

Calling math.max means we will set the new x-position to either self_x - 10 or
 100 , whichever number is bigger. This prevents us from getting a number so
small it runs off too far to the left. math.min does the opposite and takes care of
the right side of the screen.

One issue you may or may not notice is movement isn't always a uniform speed,
and depending on the speed of your computer the paddle may appear to go faster
or slower. Remember the article on delta time? We need to scale the distance
travelled to match the amount of time that has passed. Conveniently, we are
getting the delta time from love.update already. Take a closer look at it:

1.1 - Interactive coding

111

-- main.lua

love.update = function(dt)
 if not input.paused then
 for _, entity in ipairs(entities) do
 -- Delta time is being passed
 -- to the entity.update function here
 -- |
 -- |
 -- V
 if entity.update then entity:update(dt) end
 end
 world:update(dt)
 end
end

Which means we can do this:

-- entities/paddle.lua

entity.update = function(self, dt)
 -- Don't move if both keys are pressed. Just return
 -- instead of going through the rest of the function.
 if input.left and input.right then
 return
 end
 local self_x, self_y = self.body:getPosition()
 if input.left then
 local new_x = math.max(self_x - (400 * dt), 100)
 self.body:setPosition(new_x, self_y)
 elseif input.right then
 local new_x = math.min(self_x + (400 * dt), 700)
 self.body:setPosition(new_x, self_y)
 end
end

The number 400 is arbitrary and can be whatever speed you want the paddle to
move at. dt is a small number so it needs to be multiplied by a large number like
400 to match a speed similar to what we were seeing before when we simply
were adding and subtracting 10 .

If you missed anything or are having issues, here's a copy of the completed
source code for this section:
https://github.com/RVAGameJams/learn2love/tree/master/code/breakout-3

In the next section we will work on the physics more to give the ball movement a
more realistic feel. We will also implement the ability to destroy bricks using the
world collision callbacks.

Exercises
Despite having a restitution of 1, the ball is losing momentum as it collides
with other objects. This is due to friction. How can that be fixed?
When the game is paused, make it display text on the screen so the player
knows the game isn't just frozen. Hint: you'll need one of the draw functions
from love.graphics to print the text.

https://github.com/RVAGameJams/learn2love/tree/master/code/breakout-3
https://love2d.org/wiki/love.graphics

1.1 - Interactive coding

112

The answers to these exercises will be in the next section's source code.

1.1 - Interactive coding

113

Breakout (part 4): physics

Review
In the previous exercises we discussed issues with the ball slowing down due to
friction. With a bit of browsing through the love.physics documentation you
might have seen that friction is a property of the fixture and can be set to 0 in
 fixture:setFriction .

How about creating the pause screen text? Were you able to do it without
touching main.lua? Take a look at this entity that was created just for the single
responsibility of displaying pause text:

-- entities/pause-text.lua

local input = require('input')

return function()
 local window_width, window_height = love.window.getMode()

 local entity = {}

 entity.draw = function(self)
 if input.paused then
 love.graphics.print(
 {{ 0.2, 1, 0.2, 1 }, 'PAUSED'},
 math.floor(window_width / 2) - 54,
 math.floor(window_height / 2),
 0,
 2,
 2
)
 end
 end

 return entity
end

That's right. Even the pause screen is an entity. The first natural place to think to
put it would be the main file but entity files are perfect because we can create as
many as we need for each task and add it to entities.lua where it will be handled
by the game loop. For centering the text the love.window.getMode function is used
to get the full window dimensions then those numbers are divided in half. This
saves us from manually coding in numbers that would need to be readjusted if the
window size changed. Additionally, math.floor was used for good measure to
make sure we are returning a whole number. It is recommended to round
decimals off from numbers when passing coordinates to the drawing functions.
Otherwise it may attempt to draw that object between pixels on the screen and
cause some blurriness.

Physics updates

https://love2d.org/wiki/Fixture:setFriction
https://love2d.org/wiki/love.window.getMode

1.1 - Interactive coding

114

An issue we had with the game physics since we got the paddle moving is that
the ball doesn't always ricochet off the paddle as you would expect. This is
because we made the paddle static so the ball doesn't push it around, but this has
the effect of the paddle not interacting with the ball correctly. This is where
 kinematic bodies come in. Kinematic bodies, like static bodies aren't affected by
dynamic bodies. Kinematic bodies, unlike static bodies, can affect dynamic
bodies.

We're going to make 3 changes to paddle.lua:

Move the boundary dimensions, paddle dimensions, and paddle speed to
easily-referenced variables at the top of the file.
Change the body type to kinematic
Overhaul the update code to move the body with linear velocity rather than
manually setting a new location on the screen with every update

1.1 - Interactive coding

115

I took the liberty of adjusting the paddle size, but with our nice boundary-size
calculations in place the paddle dimensions can easily be adjusted and the
boundary size will take those changes into account. Let's drill into the
 entity.update function.

Once the inputs are checked to be true or false the current x-position of the
paddle is checked to see if it goes out of the boundaries (calculated near the top).
Notice that the calculations for the boundary locations are done at the top instead
of in entity.update . This means those calculations aren't done on every update
since they don't need to be.

A bit more complex than the paddle are the calculations for the ball:

-- entities/paddle.lua

local input = require('input')
local world = require('world')

return function(pos_x, pos_y)
 local window_width = love.window.getMode()
 -- Variables to make these easier to adjust
 local entity_width = 120
 local entity_height = 20
 local entity_speed = 600
 -- The limit of how far left/right the entity can move towards
 -- the edges (with a little bit of padding thrown on).
 local left_boundary = (entity_width / 2) + 2
 local right_boundary = window_width - (entity_width / 2) - 2

 local entity = {}
 entity.body = love.physics.newBody(world, pos_x, pos_y, 'kinematic')
 entity.shape = love.physics.newRectangleShape(entity_width, entity_height)
 entity.fixture = love.physics.newFixture(entity.body, entity.shape)
 entity.fixture:setUserData(entity)

 entity.draw = function(self)
 love.graphics.polygon('line', self.body:getWorldPoints(self.shape:getPoints
 end

 entity.update = function(self)
 -- Don't move if both keys are pressed. Just return
 -- instead of going through the rest of the function.
 if input.left and input.right then
 return
 end
 local self_x = self.body:getX()
 if input.left and self_x > left_boundary then
 self.body:setLinearVelocity(-entity_speed, 0)
 elseif input.right and self_x < right_boundary then
 self.body:setLinearVelocity(entity_speed, 0)
 else
 self.body:setLinearVelocity(0, 0)
 end
 end

 return entity
end

1.1 - Interactive coding

116

-- entities/ball.lua

local world = require('world')

return function(x_pos, y_pos)
 local entity_max_speed = 880

 local entity = {}
 entity.body = love.physics.newBody(world, x_pos, y_pos, 'dynamic')
 entity.body:setLinearVelocity(300, 300)
 entity.shape = love.physics.newCircleShape(0, 0, 10)
 entity.fixture = love.physics.newFixture(entity.body, entity.shape)
 entity.fixture:setFriction(0)
 entity.fixture:setRestitution(1)
 entity.fixture:setUserData(entity)

 entity.draw = function(self)
 local self_x, self_y = self.body:getWorldCenter()
 love.graphics.circle('fill', self_x, self_y, self.shape:getRadius())
 end

 entity.update = function(self)
 local vel_x, vel_y = self.body:getLinearVelocity()
 local speed = math.abs(vel_x) + math.abs(vel_y)

 local vel_x_is_critical = math.abs(vel_x) > entity_max_speed * 2
 local vel_y_is_critical = math.abs(vel_y) > entity_max_speed * 2
 -- Ball is bouncing too fast to reasonably hit.
 -- Cut down its speed by 75% if so.
 if vel_x_is_critical or vel_y_is_critical then
 self.body:setLinearVelocity(vel_x * .75, vel_y * .75)
 end
 if speed > entity_max_speed then
 self.body:setLinearDamping(0.1)
 else
 self.body:setLinearDamping(0)
 end
 end

 return entity
end

In the first chunk we get the current x and y velocity, which tells us the x and y
direction of the ball:

 local vel_x, vel_y = self.body:getLinearVelocity()
 local speed = math.abs(vel_x) + math.abs(vel_y)

An example vel_x / vel_y may be 212 / -300 , which means the ball is moving
up and towards the right. The speed is calculated by turning both these numbers
into absolute numbers and adding them together (so 512 in the example).

In the next chunk there is a safety check to make sure the ball didn't ricochet with
so much force that it's going too fast to possibly hit. If either boolean variable is
true then the linear velocity is multiplied by a fraction of itself to quickly slow it
down:

1.1 - Interactive coding

117

 local vel_x_is_critical = math.abs(vel_x) > entity_max_speed * 2
 local vel_y_is_critical = math.abs(vel_y) > entity_max_speed * 2
 -- Ball is bouncing too fast to reasonably hit.
 -- Cut down its speed by 75% if so.
 if vel_x_is_critical or vel_y_is_critical then
 self.body:setLinearVelocity(vel_x * .75, vel_y * .75)
 end

Now there is just a check to ease the ball back down to a comfortable maximum
speed. If the ball's speed is greater than entity_max_speed a damping is applied
which will reduce the balls speed below 880. Once the target speed is reached
then the damping switches back to 0:

 if speed > entity_max_speed then
 self.body:setLinearDamping(0.1)
 else
 self.body:setLinearDamping(0)
 end

Try out the changes to feel it in action compared to the previous physics and
hopefully you will find that it's an improvement. It's not a perfect replica of the
arcade game, but playing around with these tricks and features you can get it
pretty darn close to something satisfactory. Another thing to try out if within the
ball's entity.update , add a line under the speed variable that reads
 print(speed) and watch the number increase and decrease again as the
damping kicks in. Pretty neat that most of the heavy calculations are handled by
the physics engine for us.

Collision
There are 4 changes involved to make the bricks destructible:

Update world.lua to check for collision functionality for the entities when they
collide
Update brick.lua to include a collision callback
Add a new attribute on the brick entity to let us know its current condition and
if it needs to be destroyed. We'll just call it entity.health .
Update main.lua to remove/destroy any entities that have no more health

First the world:

1.1 - Interactive coding

118

-- world.lua

-- Called at the end of any contact in the world. Parameters:
-- {fixture} fixture_a - first fixture object in the collision.
-- {fixture} fixture_b - second fixture object in the collision.
-- {contact} contact - world object created on and at the point of contact
-- See further: https://love2d.org/wiki/Contact
local end_contact_callback = function(fixture_a, fixture_b, contact)
 local entity_a = fixture_a:getUserData()
 local entity_b = fixture_b:getUserData()
 if entity_a.end_contact then entity_a:end_contact() end
 if entity_b.end_contact then entity_b:end_contact() end
end

local world = love.physics.newWorld(0, 0)

world:setCallbacks(nil, end_contact_callback, nil, nil)

return world

The only callback we'll be using for this tutorial is the end-contact callback, so for
 world:setCallbacks we are going to returning nil for the rest to keep our code
fast and clean. Take a look at what is happening inside end_contact_callback .
Remember inside each entity when we invoked
 entity.fixture:setUserData(entity) ? With the entity attached to each fixture, we
can get access to those entities by invoking fixture:getUserData in the callback
above. Once we have access to each entity, we check to see if the entity has any
 end_contact functions, code specific to that entity that needs to run when ending
the collision.

Now we can go to brick.lua and define that functionality:

-- entities/brick.lua

local world = require('world')

return function(x_pos, y_pos)
 local entity = {}
 entity.body = love.physics.newBody(world, x_pos, y_pos, 'static')
 entity.shape = love.physics.newRectangleShape(50, 20)
 entity.fixture = love.physics.newFixture(entity.body, entity.shape)
 entity.fixture:setUserData(entity)

 -- How many times the brick can be hit before it is destroyed
 entity.health = 2

 entity.draw = function(self)
 love.graphics.polygon('fill', self.body:getWorldPoints(self.shape:getPoints
 end

 entity.end_contact = function(self)
 self.health = self.health - 1
 end

 return entity
end

1.1 - Interactive coding

119

Notice the two new values in the table, entity.health and entity.end_contact .
Inside end_contact we are subtracting 1 health when the collision ends. Health
could start at any number and that means the ball will need to collide with the
brick that many times before the health reaches 0. Lastly, we need to go into
main.lua and adjust love.update so it does something when it sees an entity
with 0 health:

-- main.lua
love.update = function(dt)
 if not input.paused then
 local index = 1
 while index <= #entities do
 local entity = entities[index]
 if entity.update then entity:update(dt) end
 -- When an entity has no health (brick has been hit enough times
 -- then we remove it from the list of entities. Don't increment
 -- the index number if doing that though because we have shrunk
 -- the table and made all the items shift down by 1 in the index.
 if entity.health == 0 then
 table.remove(entities, index)
 entity.fixture:destroy()
 else
 index = index + 1
 end
 end
 world:update(dt)
 end
end

The entity is removed from entities as well as having its fixture destroyed from
the world. This will only happen to bricks with 0 health. It won't happen to entities
where we didn't define health because nil is not the same thing as 0 . Notice
that a while loop was used here. This is because we may remove entities from
the list we are looping over and this would throw off the index count for a regular
 for loop.

If you missed anything or are having issues, here's a copy of the completed
source code for this section:
https://github.com/RVAGameJams/learn2love/tree/master/code/breakout-4

In the next section we'll review the checklist and see what is left to cover.

Exercises
It would be great if the colors of the bricks changed depending how much
health the brick has. Update the brick's entity.draw function with some
colors. Hint: we covered colors in 2.4 - Game loop.
Add more bricks to the screen. What's the easiest way to do that?

https://github.com/RVAGameJams/learn2love/tree/master/code/breakout-4

1.1 - Interactive coding

120

Breakout (part 5): game state

Review
We've gotten a bit done so let's look at the basic requirements again:

The objective of the game is to destroy all the bricks on the screen
✔ The player controls a "paddle" entity that hits a ball
✔ The ball destroys the bricks
✔ The ball needs to stay within the boundaries of the screen
If the ball touches the bottom of the screen, the game ends

In the previous exercise the question was brought up what would be the easiest
way to draw a bunch of bricks across the screen. A simple, but very tedious
answer to that would be to position the bricks one at a time in entities.lua like so:

 brick(40, 80),
 brick(100, 140)
 -- and so on...

If you want to make your bricks into a shape or sculpture then that might be the
best approach. If you just want to arrange your bricks into a grid, then the easiest
way would be to write a numeric for-loop.

-- entities.lua

local boundary_bottom = require('entities/boundary-bottom')
local boundary_vertical = require('entities/boundary-vertical')
local boundary_top = require('entities/boundary-top')
local paddle = require('entities/paddle')
local pause_text = require('entities/pause-text')
local ball = require('entities/ball')
local brick = require('entities/brick')

local entities = {
 boundary_bottom(400, 606),
 boundary_vertical(-6, 300),
 boundary_vertical(806, 300),
 boundary_top(400, -6),
 paddle(300, 500),
 pause_text(),
 ball(200, 200)
}

local row_width = love.window.getMode() - 20
for number = 0, 38 do
 local brick_x = ((number * 60) % row_width) + 40
 local brick_y = (math.floor((number * 60) / row_width) * 40) + 80
 entities[#entities + 1] = brick(brick_x, brick_y)
end

return entities

1.1 - Interactive coding

121

Ok this admittedly looks more complicated at first, but if you remember the
arithmetic and orders of operation covered in 1.1 - Interactive coding statements
are processed from the inner parenthesis and worked outwards. So why the long
calculation? Let's start off with a simpler calculation:

 local brick_x = number * 60

Starting with the number 0 up to 38, there will be 39 loops and therefore 39 bricks
drawn. On the first loop, number is 0. Since the bricks are 50 pixels wide this
would draw the bricks with a 10 pixel space between each. First brick at 60, then
120, then 180... Ok, but then after only a dozen bricks we would start running off
the screen. This is where the modulus comes in handy:

 local brick_x = (number * 60) % row_width

 row_width is how wide we want a row of bricks to be be. In this case row_width
is the screen width, 800 pixels, subtract 20 pixels for padding. So draw the bricks
every 60 pixels, but then when you get to 780 pixels, start back at 0 pixels and
begin drawing a new row. Thanks modulus! Now just to give the bricks some
spacing on the left side away from the wall, we can go ahead and add 40 pixels to
the final result for the x-position:

 local brick_x = ((number * 60) % row_width) + 40

The brick's y-position is calculated a little bit differently. What we need to find out
is which row we're on so we know where on the y-axis to draw. If we take the
 number and multiply it by 60 then do a modulus we know that gives us the x-
position. So let's take that chunk of code from above and make that the basis of
our y-position calculation:

 local brick_y = (number * 60) % row_width

Rather than using modulus, if we use regular division we get a small remainder
every time (number * 60) exceeds the row width:

 local brick_y = (number * 60) / row_width

This will give us a number with decimals so to keep things rounded we can use
 math.floor to snap the y-position down to the nearest whole number:

 local brick_y = math.floor((number * 60) / row_width)

Great! Now every time the x-position exceeds the row width, we get back the
number of the row we're on... 0 for the first, 1 for the second, 2 and so on. With
this number we can now space out each row by 40 pixels:

 local brick_y = math.floor((number * 60) / row_width) * 40

1.1 - Interactive coding

122

Then finally just to shift the bricks a little further down the screen we give it a
padding that looks right, say 80:

 local brick_y = (math.floor((number * 60) / row_width) * 40) + 80

And there you go. The entity can just be added to the end of the entities list so it
doesn't get lost:

 entities[#entities + 1] = brick(brick_x, brick_y)

In the previous exercises we also talked about drawing the bricks different colors
to indicate their integrity/health left before they will be destroyed. Rather than
review that now, let's dive into state management and we'll wrap coloring up along
the way.

State management
Your average, every-day program has a lot of information it needs to story in
memory. For our game to function with just the basic features, we need to store
information about each entity, whether or not the game is currently paused, or if
the game is won or lost. This information is called the state. The state is data that
may change during the lifetime of the application. Think of the state of your lights
in your room. Are they currently in an "on" or "off" state? The state can cause
different effects on the application, like if the "pause" state of the game is "true"
then the world will no longer receive updates.

One thing we must think of is how to organize the state of our application. This is
something we take for granted often in the real world; We don't have to figure out
where to store the state of our lights. It's a piece of information intrinsic to the
lamp's design.

So why do we have to care so much about our game's state? To be fair, our game
is small so we probably don't need to. However, it is crucial to reconcile such
things while applications are small because it will be very difficult to go back and
fix a bunch of code once the application is big. The way you should organize the
state of your application should accomplish a few things:

It should be easy to find and access the necessary data that makes up
the state. For instance, how easy is it for our main file to access the entities
and loop over them in the love.update function?
There should only be one copy of the state. If we want to access the
"paused" state of our game in multiple places that is fine, but we shouldn't
have multiple "paused" variables floating around our game. If we had a
"paused" variable inside an entity file and another inside the input service
updating independently then they could get out of sync and our game would
get confused on when it should be paused.
The state should only be accessed where it is needed. If you were
accessing or storing the "paused" state inside the ball entity, then if that ball

1.1 - Interactive coding

123

was destroyed then something bad will happen the next time the game
checks to see if it is paused.

What files contain the state of our game?

entities.lua - Each entity table is responsible for its own state. For instance,
each brick stores the state of its own health. All the entities tables are
generated and stored here. The entities are not stored in the entities folder.
Those are just functions used to generate the entities. The blueprints.
input.lua - This file is responsible for capturing user input, but also storing
the state of what keys are currently being pressed.
world.lua - This file is not only the blueprints for the game world, but it also
stores the world instance that is generated when the game starts. We made
the world instance easily accessible to the rest of the application by writing
 return world at the end. There would be no game if this wasn't easily
accessible.

A few pieces of game state we need to add are a boolean of whether the game is
over, another for if the stage is cleared, and also a list of colors to use in our game
which we'll refer to as our palette. This information wouldn't really fit in any of the
places we listed above, and we don't want to add it to main.lua because of our
first rule that the game state should be easy to access where it is needed.
Besides, that's not the main file's responsibility. We'll go ahead and just make a
new file called state.lua and store the overall game state in this file. This is also a
little matter of opinion but the "paused" and button states we'll also move in here
since they affect the overall game's state. This will also make it so that input.lua's
only responsibility is to capture and translate the user input, not to handle any
state whatsoever.

It's kind of a nice feeling to keep all the state together. We could even move the
entities list into state.lua and get rid of entities.lua, but this doesn't seem
necessary. Now with this shift in data we need to update input.lua and main.lua
to reference the new file:

-- state.lua

-- The state of the game. This way our data is separate from our functionality

return {
 button_left = false,
 button_right = false,
 game_over = false,
 palette = {
 {1.0, 0.0, 0.0, 1.0}, -- red
 {0.0, 1.0, 0.0, 1.0}, -- green
 {0.4, 0.4, 1.0, 1.0}, -- blue
 {0.9, 1.0, 0.2, 1.0}, -- yellow
 {1.0, 1.0, 1.0, 1.0} -- white
 },
 paused = false,
 stage_cleared = false
}

1.1 - Interactive coding

124

-- input.lua

local state = require('state')

-- Map specific user inputs to game states
local press_functions = {
 left = function()
 state.button_left = true
 end,
 right = function()
 state.button_right = true
 end,
 escape = function()
 love.event.quit()
 end,
 space = function()
 if state.game_over or state.stage_cleared then
 return
 end
 state.paused = not state.paused
 end
}

local release_functions = {
 left = function()
 state.button_left = false
 end,
 right = function()
 state.button_right = false
 end
}

-- This table is the service and will contain some functions
-- that can be accessed from entities or the main.lua.
return {
 -- Look up in the map for actions that correspond to specific key presses
 press = function(pressed_key)
 if press_functions[pressed_key] then
 press_functions[pressed_key]()
 end
 end,
 -- Look up in the map for actions that correspond to specific key releases
 release = function(released_key)
 if release_functions[released_key] then
 release_functions[released_key]()
 end
 end,
 -- Handle window focusing/unfocusing
 toggle_focus = function(focused)
 if not focused then
 state.paused = true
 end
 end
}

1.1 - Interactive coding

125

-- main.lua

local entities = require('entities')
local input = require('input')
local state = require('state')
local world = require('world')

love.draw = function()
 for _, entity in ipairs(entities) do
 if entity.draw then entity:draw() end
 end
end

love.focus = function(focused)
 input.toggle_focus(focused)
end

love.keypressed = function(pressed_key)
 input.press(pressed_key)
end

love.keyreleased = function(released_key)
 input.release(released_key)
end

love.update = function(dt)
 if state.game_over or state.paused or state.stage_cleared then
 return
 end

 local index = 1
 while index <= #entities do
 local entity = entities[index]
 if entity.update then entity:update(dt) end
 -- When an entity has no health (brick has been hit enough times
 -- then we remove it from the list of entities. Don't increment
 -- the index number if doing that though because we have shrunk
 -- the table and made all the items shift down by 1 in the index.
 if entity.health and entity.health < 1 then
 table.remove(entities, index)
 entity.fixture:destroy()
 else
 index = index + 1
 end
 end

 world:update(dt)
end

Notice the change to love.update . We check if state.game_over , state.paused
or state.stage_cleared is true and if so, we return from love.update without
doing any of the updates as these kind of game states merit freezing the screen.

Next up, update paddle.lua to require state instead of input . The
 entity.update function now needs to reference state.button_left and
 state.button_right to tell if the player has pressed any buttons. Try updating it
on your own. If you do get stuck, the source code will be in the link at the bottom
waiting for you.

Ok, now that we have a state where we stored the colors it is probably a good
time to try and update brick.lua. First let's look at those colors stored in state.lua:

1.1 - Interactive coding

126

 palette = {
 {1.0, 0.0, 0.0, 1.0}, -- red
 {0.0, 1.0, 0.0, 1.0}, -- green
 {0.4, 0.4, 1.0, 1.0}, -- blue
 {0.9, 1.0, 0.2, 1.0}, -- yellow
 {1.0, 1.0, 1.0, 1.0} -- white
 },

The palette table is a list of more tables. Each table in the list represents colors
where the first number is the amount of red, 2nd the amount of green, 3rd the
amount of blue, and 4th number the amount of opacity. Setting the last number to
 0 means the color is 100% transparent and 1 means it is completely opaque.
All of these values mix together to form a single color. In the case of the first color,
we have the red value set to maximum opaque red with no other colors mixed in. I
would encourage you to go back and edit the colors in this palette after everything
is working. Now, inside brick.lua let's update entity.draw :

Before drawing the brick's polygon, we set the graphics renderer to use one of the
colors from state.palette . The color to use depends on what the brick's health
is. So if the brick has 2 health then state.palette[self.health] will become
 state.palette[2] which will grab the 2nd color in the list... green. If the brick's
health was 1, then the first color from the palette would be selected... red. After

-- entities/brick.lua

local state = require('state')
local world = require('world')

return function(x_pos, y_pos)
 local entity = {}
 entity.body = love.physics.newBody(world, x_pos, y_pos, 'static')
 entity.shape = love.physics.newRectangleShape(50, 20)
 entity.fixture = love.physics.newFixture(entity.body, entity.shape)
 entity.fixture:setUserData(entity)

 -- How many times the brick can be hit before it is destroyed
 entity.health = 2
 -- Used to check during update if this entity is a brick
 -- If no bricks are found then the level was cleared
 entity.type = 'brick'

 entity.draw = function(self)
 -- Draw the brick in a different color depending on health
 love.graphics.setColor(state.palette[self.health] or state.palette[5])
 love.graphics.polygon('fill', self.body:getWorldPoints(self.shape:getPoints
 -- Reset graphics drawer back to the default color (white)

 love.graphics.setColor(state.palette[5])
 end

 entity.end_contact = function(self)
 self.health = self.health - 1
 end

 return entity
end

1.1 - Interactive coding

127

the colored polygon is drawn, entity.draw finishes up by setting the renderer
color back to white. If we didn't do this step, the ball and paddle would get drawn
the same color as the bricks.

One last thing we need to do to get the game working is update pause-text.lua
as it is incorrectly looking for the "pause" state in input.lua instead of the new
state.lua location:

-- entities/pause-text.lua

local state = require('state')

return function()
 local window_width, window_height = love.window.getMode()

 local entity = {}

 entity.draw = function(self)
 if state.paused then
 love.graphics.print(
 {state.palette[3], 'PAUSED'},
 math.floor(window_width / 2) - 54,
 math.floor(window_height / 2),
 0,
 2,
 2
)
 end
 end

 return entity
end

Final touches
We need the game to end when the player destroys all the bricks or loses the ball.
Just like the pause-text entity, display some messages based on the game state.

1.1 - Interactive coding

128

-- entities/game-over-text.lua

local state = require('state')

return function()
 local window_width, window_height = love.window.getMode()

 local entity = {}

 entity.draw = function(self)
 if state.game_over then
 love.graphics.print(
 {state.palette[5], 'GAME OVER'},
 math.floor(window_width / 2) - 100,
 math.floor(window_height / 2),
 0,
 2,
 2
)
 end
 end

 return entity
end

-- entities/stage-clear-text.lua

local state = require('state')

return function()
 local window_width, window_height = love.window.getMode()

 local entity = {}

 entity.draw = function(self)
 if state.stage_cleared then
 love.graphics.print(
 {state.palette[4], 'STAGE CLEARED'},
 math.floor(window_width / 2) - 110,
 math.floor(window_height / 2),
 0,
 2,
 2
)
 end
 end

 return entity
end

To trigger the "GAME OVER" text is easy enough. We need to add a collision
callback to boundary-bottom.lua to set the game's state.game_over to true on
any collision:

1.1 - Interactive coding

129

-- entities/boundary-bottom.lua

local state = require('state')
local world = require('world')

return function(x_pos, y_pos)
 local entity = {}
 entity.body = love.physics.newBody(world, x_pos, y_pos, 'static')
 entity.shape = love.physics.newRectangleShape(800, 10)
 entity.fixture = love.physics.newFixture(entity.body, entity.shape)
 entity.fixture:setUserData(entity)

 entity.end_contact = function(self)
 state.game_over = true
 end

 return entity
end

Don't forget we need to update entities.lua to add our two new entities:

-- entities.lua

local boundary_bottom = require('entities/boundary-bottom')
local boundary_vertical = require('entities/boundary-vertical')
local boundary_top = require('entities/boundary-top')
local paddle = require('entities/paddle')
local game_over_text = require('entities/game-over-text')
local pause_text = require('entities/pause-text')
local stage_clear_text = require('entities/stage-clear-text')
local ball = require('entities/ball')
local brick = require('entities/brick')

local entities = {
 boundary_bottom(400, 606),
 boundary_vertical(-6, 300),
 boundary_vertical(806, 300),
 boundary_top(400, -6),
 paddle(300, 500),
 game_over_text(),
 pause_text(),
 stage_clear_text(),
 ball(200, 200)
}

local row_width = love.window.getMode() - 20
for number = 0, 38 do
 local brick_x = ((number * 60) % row_width) + 40
 local brick_y = (math.floor((number * 60) / row_width) * 40) + 80
 entities[#entities + 1] = brick(brick_x, brick_y)
end

return entities

Ok, test that out and check that the "GAME OVER" text works. If it does, then let's
continue on and add the conditions for how to win the game. This involves
checking through all the entities in love.update to make sure we still have bricks.
If we don't have any bricks left, then the player destroyed them all and the stage
is cleared.

1.1 - Interactive coding

130

-- main.lua
love.update = function(dt)
 if state.game_over or state.paused or state.stage_cleared then
 return
 end

 -- Switch to true if we have bricks left
 local have_bricks = false

 local index = 1
 while index <= #entities do
 local entity = entities[index]
 if entity.type == 'brick' then have_bricks = true end
 if entity.update then entity:update(dt) end
 -- When an entity has no health (brick has been hit enough times
 -- then we remove it from the list of entities. Don't increment
 -- the index number if doing that though because we have shrunk
 -- the table and made all the items shift down by 1 in the index.
 if entity.health and entity.health < 1 then
 table.remove(entities, index)
 entity.fixture:destroy()
 else
 index = index + 1
 end
 end

 -- Flag the stage cleared if there are no more bricks
 state.stage_cleared = not have_bricks
 world:update(dt)
end

Every time love.update is ran, we set a variable have_bricks to false. If this
boolean stays false all the way to the bottom of the function then
 state.stage_cleared gets switched to true and the game is won. Inside the
 while loop, however, we check every entity to see if we find an entity.type of
 'bricks' and if so, have_bricks gets flipped to true to stop the game from
being won yet.

So that about does it for completing our checklist. The game may not be as
feature-complete as a true breakout game, but that room for improvement leaves
opportunity for you to modify the game to work how you want it to. It's really up to
your imagination. Try out a few exercises if you can't think up any new features. If
you are having trouble running the game, be sure to check out the source code:

https://github.com/RVAGameJams/learn2love/tree/master/code/breakout-5

Exercises
Instead of getting a game over as soon as the ball touches the ground once,
add a new property in state.lua named lives and set it to as many lives as
you want the player to have. Make is so the state.lives decreases when
the ball hits the ground and make the game_over not trigger unless
 state.lives < 1 .
Try setting the paddle to different shape to make the game play differently
Come up with new features to make the game play better and feel more
polished

https://github.com/RVAGameJams/learn2love/tree/master/code/breakout-5

1.1 - Interactive coding

131

Change the ball and paddle colors
Add a background color
Figure out how to play a sound effect when the ball collides with things
Create some kind of power-up entity

1.1 - Interactive coding

132

Binary and bitmasks
In 2.10 - Collision callbacks we saw how to react to entities colliding. In this
section we're going to discuss how we can better control when collisions happen.
As the title suggests, this will involve understanding some binary.

Let's say we have a beat-em-up game where two players are fighting bad guys
and we don't want players to collide with each other and instead only collide with
enemies. The collision callback could look something like this:

local begin_contact_callback = function(fixture_a, fixture_b)
 local entity_a_type = fixture_a:getUserData()
 local entity_b_type = fixture_b:getUserData()
 -- Check these aren't the same type of entity
 if entity_a_type ~= entity_b_type then
 -- Some code to handle the collision goes here...

 end
end

But what if you had power-ups and you want players to collide with the power-ups
but you don't want enemies touching the power-ups? Things can get complicated
pretty quickly:

Let's find a better way!

Binary operations
Back in 1.0 - Programming basics we discussed operations– how to operate on
strings with equality (==) checks, how to operate on numbers with arithmetic
operations, and even how to perform boolean operations like and and or .
Binary numbers have their own operations, often called bitwise operations. To
perform binary operations, let's first look at how to represent binary numbers.
Typing a number like 101 , Lua will interpret it as a decimal number (literally one-
hundred one) so we need to represent it as a string and convert it to a number. To
convert a string to a number, you pass in the number and the base (base-2 in this
case) like so:

local begin_contact_callback = function(fixture_a, fixture_b)
 local a = fixture_a:getUserData()
 local b = fixture_b:getUserData()

 if (a == 'powerup' and b == 'player') or (a == 'player' and b == 'powerup') t
 -- Some power-up code...

 -- Don't let power-ups collide with other entity types like bad guys
 elseif a ~= b and a ~= 'powerup' and b~= 'powerup' then
 -- Code to handle the rest of the collisions...

 end
end

file:///tmp/calibre_5.10.1_tmp_815xatn7/msnkjn_y_pdf_out/02-10-collision-callbacks

1.1 - Interactive coding

133

print(tonumber('101', 2))

Which converts the binary number 101 to decimal when it prints out:

5

For counting in binary and learning how to read and convert between binary and
decimal, there are many resources that already explain it in much better. Learning
how to do the conversions isn't necessary to learning these basic binary
operations, but is an essential skill to have in the field of computer science.

Moving on, let's take a look at some of the basic operations.

AND

Binary numbers are similar to booleans in that binary only has 1's and 0's. The
AND operator also works similarly to the boolean and . You give it two digits and
both must be 1 (true) for the output to be 1 .

Unfortunately at the time of writing this the online REPL has an outdated version
of Lua that doesn't support binary operations. No worries, let's create a main.lua
file and try it out using LÖVE. To perform binary operations, the included 'bit'
library must be loaded. When required, it will return a table with many functions in
it related to binary operations. The first function we'll try, bit.band() performs a
binary AND operation.

local bit = require('bit')

print(bit.band(0, 0))
print(bit.band(0, 1))
print(bit.band(1, 0))
print(bit.band(1, 1))

This will print to the debug console:

0
0
0
1

You can pass it the decimals 1 and 0 as those numbers are the same in binary
and decimal.

The operation is not limited to two inputs:

print(bit.band(1, 0, 1))

You can also pass it multi-digit numbers:

1.1 - Interactive coding

134

print(bit.band(
 tonumber('111', 2),
 tonumber('101', 2)
))

Note that you need to always use tonumber() to convert your binary string to a
number as the function always expects a decimal number. Likewise the output will
always be a decimal number:

5

Lay it out like an arithmetic table and you can solve it just as easily:

 111
 101

 101 --> 5

 11011010
 10111100

 10011000 --> 152

OR

Like with the boolean or , the binary OR output will be 1 if either the first or the
second number is 1. You could say it is the least picky operator in that it doesn't
care as long as it gets a 1 somewhere at least once.

-- main.lua
local bit = require('bit')

print(bit.bor(1, 1))
print(bit.bor(1, 0))
print(bit.bor(0, 0))
print(bit.bor(0, 0, 0, 1, 0))

1
1
0
1

XOR

Xor (exclusive or), returns 1 only when it gets one 1. Let's compare XOR in a
table to the others:

AND

1.1 - Interactive coding

135

input A input B output

0 0 0

0 1 0

1 0 0

1 1 1

OR

input A input B output

0 0 0

0 1 1

1 0 1

1 1 1

XOR

input A input B output

0 0 0

0 1 1

1 0 1

1 1 0

Binary operations are some of the most fundamental computer operations and
can be physically built with a few transistors. Given the simplicity of these
operations, it also makes for a fast method of calculating collisions.

Bitmasks

http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/trangate.html

1.1 - Interactive coding

136

Let's take a look at this scene for a moment and identify from the crudely drawn
shapes some potential entities:

All these entities fall into unique categories in that we want each of them to collide
with certain other entities. If this were a game, we'd define each category with a
unique binary digit, or bit, so let's first do that:

1.1 - Interactive coding

137

entity category

sun 0000

player 0001

powerup 0010

enemy 0100

ground 1000

Let's set some rules for each of these entities. For instance, we want the player to
collide with the powerup (0010), enemy (0100), and of course the ground (1000).
To tell the game engine this, we create a bitmask for the fixture. This is a binary
number with all the bits switched on that we want the entity to collide with. In other
words, the player's bitmask would be (1110). We left the first bit blank so that the
player can't collide with other potential players (player 2). Let's update the table
with the bitmask we want each entity to have:

entity category bitmask

sun 0000 0000

player 0001 1110

powerup 0010 1001

enemy 0100 1001

ground 1000 1111

So how does it all come together and work? When two entity's fixtures contact, a
binary AND operation is performed again the entity's bitmask and the other
entity's category. If the resulting number isn't 0000 then we have a collision. Take
the player and enemy for instance:

0001 player's category
1001 enemy's bitmask

0001 we have a collision

And how about the enemy and the powerup:

0100 enemy's category
1001 powerup's bitmask

0000 we have NO collision

Armed with this knowledge, we can assert the following information from the table
above:

The sun collides with nothing (and doesn't even get a category). It's just in
the background and non-interactive.
The player collides with everything except other players (and of course the
sun).
The powerup collides only with the ground and players.

1.1 - Interactive coding

138

The enemy collides only with the ground and players.
The ground collides with everything.

Copy or download the "collision" game from the example code and run it:

https://github.com/RVAGameJams/learn2love/tree/master/code/collision

Do the entities interact as expected? Take a look inside the entities folder to see
the particular function being called to accomplish apply the categories and
bitmasks to each entity– Fixture:setFilterData

-- square.lua
...
square.category = tonumber('0001', 2)
square.mask = tonumber('1110', 2)
square.group = 0
...
square.fixture:setFilterData(square.category, square.mask, square.group)

The examples above only use 4 bits for the category and mask bceause that's all
we needed, however LÖVE supports up to 16 bits for the category and bitmask
(0000000000000000). The group property isn't used and should be set to 0 when it
isn't. We haven't mentioned groups before because if you know how to use
categories and bitmasks then you don't need to use groups as categories and
bitmasks offer a more powerful way of doing the same thing. That being said,
collision groups should be relatively straight-forward to learn about so it will be left
up as an exercise to read and study.

Exercises
Play with the bitmasks. Can you make the enemy collide with the powerup
instead of the player?
Take a look at how groups work as described in Fixture:setGroupIndex. This
is a simpler, but more limited method of detecting collision. Can it be used to
imitate the collision rules above?

https://github.com/RVAGameJams/learn2love/tree/master/code/collision
https://love2d.org/wiki/Fixture:setFilterData
https://love2d.org/wiki/Fixture:setGroupIndex

1.1 - Interactive coding

139

Networking (part 1)
When creating a program such as a game, one of the first things to consider
should be whether it is a networked application. Such a choice will radically
change the structure and complexity of the application. To build a networked
("online") multiplayer game, we must understand some networking basics. Some
of this information is oversimplified, but let's establish a baseline of knowledge.

Internet protocol (IP)
Networks are possible because computers agree on a way to communicate with
each other. Like ogres, messages sent across the internet have many layers.
Each layer represents a different protocol that interprets how the message should
be handled. The internet protocol (IP) tells computers how to relay messages to
their intended destination. There are two things we need to know about this
protocol: IP addresses and ports.

Every device connected to the internet has an IP address assigned to it when it
connects. Messages sent out from your device are sent with a destination IP
address attached so it knows where to go. Messages are relayed from one
machine to another until it reaches the destination machine's address.

If you open your terminal or command prompt and type ping google.com you will
get a response back that tells you the destination IP address; The IP address of
the server running the google.com homepage you see. You may even be able to
type that IP address into your web browser and it will direct you to the website in
the same fashion typing google.com in the address bar would (although this won't
work for all websites because of unrelated, complicated reasons). Let's say you
connected to google.com through the IP address 172.217.7.14. You're actually
connecting to that IP through a specific port. Ports are represented as numbers,
so that IP like most every other website on the internet is accessed through port
443.

IP ports are like the maritime ports that harbor ships. A single destination can
have multiple ports for different purposes. If I were bringing in a military vessel I
may go to a different port than a commercial vessel.

Depending on your intentions for a network connection you will use different IP
ports. For instance, if you are trying to view a website located at 172.217.7.14 you
will use port 443 for an HTTPS connection, port 80 for an HTTP connection (if
allowed), and if I am an administrator of the machine running on 172.217.7.14 I
will use a completely different port to establish a backdoor connection such as
port 22.

For our example program we will try connecting to a special reserved IP address,
127.0.0.1. This IP address is your machine's own IP address it uses when it wants
to connect to itself. Since we'll be testing our program by running both copies on
the same computer we won't need to worry about multiple IP addresses for now.

1.1 - Interactive coding

140

For the port you have a range from 0 to 65535 and it doesn't really matter which
one you use so long as it's not already in use or being reserved for other
purposes. We'll pick a random one that is unlikely to be in use by other
programs... 6789.

Transport layer
The transport layer decides how your data will be packaged and streamed. You
have a choice on a few different protocols for the transport layer. Understanding
the details of each protocol in the transport layer isn't too important for this section
of the book but let's discuss why we may want to use one or the other.

TCP - This protocol provides different features to make sure data doesn't get
corrupt. Most notably, it waits for a confirmation response from the other end
to make sure the message was received. If a response isn't received by a
certain timeout then the connection is considered a failure. Websites use
TCP 99% of the time because of its reliability and ensuring you've received
the site's full content.
UDP - This protocol sends data to a server and expects no response back.
Sending data without confirming it reaches the destination could lead to less
reliable data transportation. However, less back and forth communication
could mean a faster connection. This protocol is used by applications
needing to send lots of data quickly, like an audio stream or a video game.
This is the protocol we'll use.

Imagine you have two players needing to communicate their position with each
other so we decide to use UDP. You may send messages back and forth several
times a second to communicate your positions. Since you are sending data so
rapidly, if one of those messages is lost then the player position can be re-
synchronized next message. This is fast and unless one of the players has a
faulty internet connection you typically won't notice a small jitter or hiccup every
now and then.

Now imagine another scenario where we want to send a message that a player
gained an extra life. If we were using UDP and that message got lost, we could
have two online players with out-of-sync information that would ultimately
jeopardize gameplay. One solution around this would be to use TCP for mission-
critical messages and UDP for everything else. Another solution is to keep all
messages in UDP, but to write a callback in Lua around our mission-critical
messages to check that we get a reply. Yup, you can have your application send
UDP messages and expect a response but even though UDP doesn't have this
feature as part of its protocol you can still program in your application a timeout
that expects a response. This sounds like a lot of work, but Lua and many other
languages have libraries available you can require in your project that do this for
you. We'll see how easy this is later on.

Application layer

1.1 - Interactive coding

141

Finally we have the protocol we create for each running copy of a game to know
how to communicate once a connection is established. For instance if a message
with the string "ping" is being received, we may want to respond "pong" . The
more complicated the game is, the more complicated the protocol will be. Let's
check out one of the libraries Lua offers for networking and build a test program
with a basic application protocol where the server responds to "meow" with
 "bark" and the client responds to "bark" with "meow" . As you can guess this
will lead to an infinite back-and-forth conversation between the two hosts if we are
successful.

ENet
There are several third-party libraries for Lua for networking. LÖVE includes two
of the most popular, LuaSocket and lua-enet. LuaSocket is very flexible and
allows you to create TCP and UDP connections. Lua-enet is built on top of the
ENet library, a simple yet high performance networking library. It uses UDP, but
handles everything around the transport layer for us so we can focus on our
application layer. It even does message confirmation over UDP for us when we
need it to so we get the best of both worlds. Let's create a server and client
program in LÖVE and we'll run them separately, connecting them to each other.

Our server application
Create a folder called server and in it create a file named server.lua . We'll
start by requiring enet :

-- server/server.lua
local enet = require('enet')

This file will return a table of functions for starting and stopping the server. To start
the server, we need to create a host and tell it which IP address and port it is
running on. Let's create a server.start function that does just that:

-- server/server.lua
local enet = require('enet')

local host
local server = {}

server.start = function()
 host = enet.host_create('127.0.0.1:6789')
end

return server

The IP address is 127.0.0.1 as we said we would use. That is telling ENet we
want to start the server on our machine's local address. The IP address is
followed by a colon (:) then the port number (6789) which is an arbitrary port
that should be free to use. If we create a main.lua file we can require server.lua
and create a server when LÖVE starts.

http://w3.impa.br/~diego/software/luasocket/
http://leafo.net/lua-enet/

1.1 - Interactive coding

142

-- server/main.lua
-- Our server application
local server = require('server')

love.load = function()
 server.start()
end

If we try and run this, nothing will happen. Let's define love.draw and print some
text to tell us when someone connects to our server:

-- server/main.lua
-- Our server application
local server = require('server')

love.load = function()
 -- Keep text pixels sharp and intact instead of blurring
 -- https://love2d.org/wiki/FilterMode
 love.graphics.setDefaultFilter('nearest', 'nearest')

 server.start()
end

love.draw = function()
 -- Scale up the size of the text being printed
 local transform = love.math.newTransform(0, 0, 0, 3)
 if server.is_connected() then
 love.graphics.print('client connected to us (see console)', transform)
 else
 love.graphics.print('server started... awaiting clients', transform)
 end
end

-- It's convenient to be able to press escape to close the program
love.keypressed = function(pressed_key)
 if pressed_key == 'escape' then
 love.event.quit()
 end
end

With this done, we need to figure out how the server knows someone is
connected. We call server.is_connected() in love.draw , so let's start by
defining that:

-- server/server.lua
local enet = require('enet')

local host
local received_data = false
local server = {}

server.start = function()
 host = enet.host_create('127.0.0.1:6789')
end

server.is_connected = function()
 return received_data
end

return server

1.1 - Interactive coding

143

Ok, so server.is_connected() will return the value of received_data which
defaults to false . Now the part that does all the action:

-- server/server.lua
local enet = require('enet')

local host
local peer
local received_data = false
local server = {}

server.start = function()
 host = enet.host_create('127.0.0.1:6789')
end

server.is_connected = function()
 return received_data
end

server.update = function()
 if not host then return end
 local event = host:service()
 if event then
 received_data = true
 peer = event.peer
 print('----')
 for k, v in pairs(event) do
 print(k, v)
 end
 event.peer:send('bark')
 end
end

return server

Let's take a close look at server.update piece by piece. First thing is an if
statement to check that host is defined. If server.update is called before
 server.start then it won't be so there is no server update to be made. If our
server host was created and we get past the if-statement check, we call
 host:service() . If we read the documentation for host:service we can see the
purpose of calling this is to check for any incoming packets (messages) and send
out any we have queued up. If we receive any, we will get back an event table. If
we do get an event table, we'll change received_data to true (which in turn
means server.is_connected() now returns true). Next we will capture the peer
(the client) that sent us this data which we can use to send messages to later:

peer = event.peer

While we have the event table, let's just iterate over it and print its contents to the
console:

for k, v in pairs(event) do
 print(k, v)
end

Then finally we'll send the client a message that simply reads "bark".

http://leafo.net/lua-enet/#hostservicetimeout

1.1 - Interactive coding

144

event.peer:send('bark')

We can now call server.update inside our game loop's love.update function:

love.update = function()
 server.update()
end

We need to test our server, but to test our server, we need a client.

Our client application
Create a "client" folder like the "server" folder created above. Most of the code will
be identical to our server. The main difference is that when we create a host we
won't pass it an IP address and port to serve on, but instead will tell it to connect
to the address and port the server is running on.

-- client/main.lua
-- Our client application
local client = require('client')

love.load = function()
 -- Keep text pixels sharp and intact instead of blurring
 -- https://love2d.org/wiki/FilterMode
 love.graphics.setDefaultFilter('nearest', 'nearest')

 client.start()
end

love.draw = function()
 -- Scale up the size of the text being printed
 local transform = love.math.newTransform(0, 0, 0, 3)
 if client.is_connected() then
 love.graphics.print('connected to server (see console)', transform)
 else
 love.graphics.print('establishing a connection...', transform)
 end
end

love.keypressed = function(pressed_key)
 if pressed_key == 'escape' then
 love.event.quit()
 end
end

love.update = function()
 client.update()
end

1.1 - Interactive coding

145

-- client/client.lua
local enet = require('enet')
local client = {}
local host
local peer
local received_data = false

client.start = function()
 host = enet.host_create()
 peer = host:connect('127.0.0.1:6789')
end

client.is_connected = function()
 return received_data
end

client.update = function()
 if host then
 local event = host:service()
 if event then
 received_data = true
 print('----')
 for k, v in pairs(event) do
 print(k, v)
 end
 event.peer:send('meow')
 end
 end
end

return client

If we receive a message from the server we'll "meow" back at it.

Testing things out
If you run the server you will see a message saying "server started... awaiting
clients". Since we are printing to the console, if you are running this code on
Windows remember that you will need to enable the console. This can be done by
creating a conf.lua file in both the client and server folders.

-- LÖVE configuration file

love.conf = function(t)
 t.console = true -- Enable the debug console for Windows.
 t.window.width = 800 -- Game's screen width (number of pixels)
 t.window.height = 600 -- Game's screen height (number of pixels)
end

If the server is up and running with the console enabled, go ahead and start the
client with its console enabled too. You should immediately see a flood of events
printing out in the server and client consoles.

Server console:

1.1 - Interactive coding

146

peer 127.0.0.1:58384
channel 0
data meow
type receive

Client console:

peer 127.0.0.1:6789
channel 0
data bark
type receive

This will go back and forth until you close either one of them. If you close one
though, the messages will stop and it will just sit there. If you close the server first,
for instance, the client will sit there then after several seconds a message will
appear:

peer 127.0.0.1:6789
data 0
type disconnect

Normally a disconnect like this wouldn't be detected with UDP, but the ENet library
sends "heartbeat" messages back and forth to make sure both peers are still
connected to each other. The timeout is defined to be somewhere between 5 and
30 seconds before the peer realizes it has been disconnnected from the other
one. Just to polish things off here, let's make ENet send a disconnect event to the
other peer immediately when we are closing our application. The lua-enet
documentation lists a function we can invoke to do that, peer:disconnect_now .
LÖVE has a love.quit callback that is called when our application is closing. We
can write a server.disconnect function and call it from love.quit .

Server:

-- server/main.lua

...

love.quit = function()
 server.disconnect()
end

http://leafo.net/lua-enet/#peerdisconnect_nowdata
https://love2d.org/wiki/love.quit

1.1 - Interactive coding

147

-- server/server.lua

...

server.disconnect = function()
 if peer then
 peer:disconnect_now()
 peer = nil
 end
 host = nil
 received_data = false
end

The client.disconnect code would be identical.

To see this full example or if you have any problems getting your code to run
check out the code on GitHub:
https://github.com/RVAGameJams/learn2love/tree/master/code/networking-1

In the next part we will look at network architecture and add entities to the screen
to work with.

Exercises
What happens if you try to connect multiple clients to the server? What about
running multiple servers on the same IP address and port? Why does it
behave like it does?

https://github.com/RVAGameJams/learn2love/tree/master/code/networking-1

1.1 - Interactive coding

148

Networking (part 2)
In the previous section we made two applications that could talk to each other.
One application was the server and the second one connecting to it was the
client. In game design this style of networking can be described as a direct
connection.

Direct connection

In a direct connection one of the players takes on the role of server, meaning their
game world is the ultimate authority if there are any discrepancies or out-of-sync
communication between the two. This also means the server player can find ways
to cheat and exploit the game.

One of the advantages to this setup is since you are directly connected to each
other, you get as minimal lag as possible. This advantage doesn't hold true if
there are more than 2 players. If player 1 is the server and player 2 and 3 are
connected to player 1, then player 2 and 3 have to relay updates to each other
through player 1 instead of directly to each other. Outside of 2-player games, this
setup isn't as popular as having a dedicated server.

Dedicated server

1.1 - Interactive coding

149

Dedicated servers are exactly what they sound like. They are hosts dedicated to
serving players. The difference here is all players are clients and the server is a
neutral ground where players can connect and communicate indirectly with each
other through it. Servers typically run a modified version of the game code that
has no user interface and therefore can run on a less expensive computer. If one
of the players is detected cheating the server can detect that something is wrong
and kick them from the game. The server is the ultimate authority over the state of
the game world.

Our network setup will sort of be a mix between the two styles of networking. We'll
have a dedicated server that doesn't participate in the gameplay, but the server
will have a graphical interface so we can view what is going on during our testing.

Consolidating our code
Rather than managing two folders of code like in the previous section, we'll
combine the code and use a menu system to select between being a server and
being a client. The menu code isn't important to this tutorial so try to focus on the
client and server code as before. The refactored code can be found in the code
repository here.

Given the amount of files it is easiest to download the zip of the whole project
where you will find the relevant files inside code/networking-2 :
https://github.com/RVAGameJams/learn2love/archive/master.zip

Once downloaded, when you run the program you should be greeted with a menu
screen like so:

https://github.com/RVAGameJams/learn2love/tree/master/code/networking-2
https://github.com/RVAGameJams/learn2love/archive/master.zip

1.1 - Interactive coding

150

Test it out and confirm you can connect a server and client instance with the new
code.

Ok. The modifications to main.lua should be easy enough to understand. Let's
take a look at that and the new "net" service first before we begin making any
modifications. At the top of the file we're loading the net and menu services then
telling the menu service which menu to load on startup:

-- main.lua

local menu_service = require('services/menu')
local net_service = require('services/net')

love.load = function()
 -- Keep text pixels sharp and intact instead of blurring
 -- https://love2d.org/wiki/FilterMode
 love.graphics.setDefaultFilter('nearest', 'nearest')

 menu_service.load('main-menu')
end

Next, if a key is pressed it will pass that pressed-key event to the menu service. If
we are in the game and no menu is loaded, the menu service will do nothing with
the event.

love.keypressed = function(pressed_key)
 menu_service.handle_keypress(pressed_key)
end

Inside love.draw we have a similar story. If we have an active menu then
 menu_service.draw() will draw it Otherwise it won't do anything. (If you open
 services/menu.lua you will see the draw function where this all happens.)

1.1 - Interactive coding

151

love.draw = function()
 menu_service.draw()
 -- Scale up the size of the text being printed
 local transform = love.math.newTransform(0, 0, 0, 3)
 if net_service.is_connected() then
 love.graphics.print('peer connected (see console)', transform)
 end
end

Another thing inside love.draw is a check to see if we've made a connection
either as server or client (using net_service.is_connected()) then draw the "peer
connected" text on the screen as before. We use the word "peer" as a generic
term to refer to either the client we're connected to (if we're the server) or the
server (if we're the client).

Inside love.update and love.quit we have combined the code we had before
and added a menu.update() call. If there is a menu, update it. If either a server
host or client host is running, net.update() will update it.

love.update = function()
 menu_service.update()
 net_service.update()
end

love.quit = function()
 net_service.disconnect()
end

So everywhere we were calling "server" or "client" we just call net_service and it
will do it's thing no matter the type of connection. Let's open up net.lua and we'll
see something very close to the original code:

-- net.lua

local enet = require('enet')

-- Populate one or the other depending if we start a server or client host
local client_host
local server_host

-- As a server, we want to keep track of all the connected clients
local peers = {}
local received_data = false

-- The service we will be returning
local net = {}

At the top of the file we create some empty local variables. The net table is full
of functions that are being used in main.lua and elsewhere.

1.1 - Interactive coding

152

net.start_server = function()
 server_host = enet.host_create('localhost:6789')
end

net.start_client = function()
 client_host = enet.host_create()
 server_host = client_host:connect('localhost:6789')
end

On the menu when you select "Host" or "Join", the net.start_server and
 net.start_client functions are being called respectively.

Below that are some functions to check what kind of connection we have:

net.is_connected = function()
 return received_data
end

net.is_client = function()
 return client_host and true or false
end

net.is_server = function()
 return server_host and not client_host
end

Then finally we have the update and disconnect code like we originally had in
the server and client services, but combined. One addition to the disconnect
function is we are looping over the peers list. The peers list exists because we
are expecting to have multiple players connect to the server and if the server is
running, it will want to disconnect from them all when the game quits.

Communication layer
Before we update the code, let's discuss the functionality and draw out the
network communication for that functionality.

When connecting to the server you should have a controllable player spawn
on screen
When you move your player, your peers should be able to see your player
move
When other peers move their players, you should be able to see them move
Each player should look different so you know which one is you

1.1 - Interactive coding

153

Client Server Description

(Create a host) (Create a host)

Both client and
server's net services
are booted. No
communication has
been made between
the two at this point.

Send "connect"
message to
server

Client sends a
connect message
automatically. This will
be interpreted as a
request to join the
game.

(Spawn entity)

Server generates and
stores all the entities
in the game. When
spawning an entity,
associate the client's
connection ID with it.

Respond "your-
id|4177457821|100|500"

Server responds by
passing the client a
 "your-id" message.
All messages sent
must be strings so in
this case where
multiple values need
to be embedded in the
message, each value
is separated by a pipe
("|") character to help
us re-separate the
values when receiving
the message client
side. The first value is
the unique player ID
that the server has
assigned the client,
followed by the X
position then Y
position.

Send "peer-
id|233142890|326|177"

Server sends the new
client other peers that
need to be spawned
on screen. Included
are the ID, X and Y
position of that player.

Send
"move|233142890|327|177"

Server is letting the
client know the player
with the ID
"233142890" has
changed position.
Notice the updated X
position.

Send
"move|233142890|328|177" Another move update.

Send
"move|100|502"

Client is letting the
server know it is
moving its player too.

1.1 - Interactive coding

154

Client Server Description

Send "peer-
id|81850530|500|500"

Another player has
joined the server.

Adding entities
On connection from a client, the server needs to spawn entities so let's create an
entity service for handling all our entity-related needs:

-- entity.lua

local entity_service = {}

-- All player entities
entity_service.entities = {}

entity_service.spawn = function(player_id, x_pos, y_pos)
 return {
 -- TODO: We'll add a color randomizer later
 color = {1, 1, 1, 1},
 id = player_id,
 -- TODO: We'll add a shape randomizer later too
 shape = love.physics.newPolygonShape(0, 0, 50, 0, 50, 50, 0, 50),
 x_pos = x_pos,
 y_pos = y_pos
 }
end

entity_service.draw = function(entity)
 love.graphics.setColor(entity.color)
 local points = { entity.shape:getPoints() }
 for idx, point in ipairs(points) do
 if idx % 2 == 1 then
 points[idx] = point + entity.x_pos
 else
 points[idx] = point + entity.y_pos
 end
 end
 love.graphics.polygon('line', points)
end

return entity_service

These entities will just be basic shapes. No world, body, or fixtures to worry about
as dealing with physics is a bit out of the scope of this section.

Now we'll do some heavy upgrades to the net service. Somewhere near the top of
the file we'll define two tables with callbacks that will get invoked when an event
comes in. They'll be empty functions for now and we'll fill them out as we go.

1.1 - Interactive coding

155

Then we'll modify the net.update function so it can call one of the three callbacks
inside the event_handlers table:

net.update = function()
 local host = client_host or server_host
 if not host then return end
 local event = host:service()
 if event then
 received_data = true
 -- event.type will be either "connect", "disconnect", or "receive"
 event_handlers[event.type](event, net.is_server())
 -- Print out the event table for debug purposes
 print('----')
 for k, v in pairs(event) do
 print(k, v)
 end
 end
end

So you see, event_handlers.connect will be called when a "connect" type event
comes in and we'll pass it the event and net.is_server() boolean as its two
parameters. Now we can go back and fill out the "connect" event handler. Read
each code comment as there is a lot going on here in just a few lines of code.

-- Callbacks to invoke when certain events are received from a peer
-- Define a callback to handle every type of message in our application protoco
local message_handlers = {
 ['your-id'] = function(message, event, is_server)
 end,
 ['peer-id'] = function(message, event, is_server)
 end,
 ['move'] = function(message, event, is_server)
 end
}
-- These event types are defined by Lua-enet. A "receive" type of event
-- is a generic event that carries any of the messages above.
local event_handlers = {
 connect = function(event, is_server)
 end,
 disconnect = function(event, is_server)
 end,
 receive = function(event, is_server)
 end
}

1.1 - Interactive coding

156

Since we're using the entity service in net.lua we'll need to require it at the very
top:

local entity_service = require('services/entity')

Now that the player receives the message to spawn an entity, we can fill out the
"receive" event handler.

local event_handlers = {
 connect = function(event, is_server)
 -- Only the server needs to do stuff here on connect
 if is_server then
 -- event.peer:connect_id() provides us with a unique number.
 -- We'll convert that number to a string and use it as the player ID.
 local player = entity_service.spawn(tostring(event.peer:connect_id()), 10
 -- Store this player in the player table with the player ID as the key.
 entity_service.entities[player.id] = player
 -- Send the initial "your-id" message back to the connecting client so th
 event.peer:send('your-id|' .. player.id .. '|' .. player.x_pos .. '|' ..
 end
 end,
 disconnect = function(event, is_server)
 -- TODO: Add code to remove entities when a client disconnects
 end,
 receive = function(event, is_server)
 -- TODO: Add code to parse "receive" events and call the appropriate messag
 end
}

local event_handlers = {
 connect = function(event, is_server)
 -- Only the server needs to do stuff here on connect
 if is_server then
 -- event.peer:connect_id() provides us with a unique number.
 -- We'll convert that number to a string and use it as the player ID.
 local player = entity_service.spawn(tostring(event.peer:connect_id()), 10
 -- Store this player in the player table with the player ID as the key.
 entity_service.entities[player.id] = player
 -- Send the initial "your-id" message back to the connecting client so th
 event.peer:send('your-id|' .. player.id .. '|' .. player.x_pos .. '|' ..
 end
 end,
 disconnect = function(event, is_server)
 -- TODO: Add code to remove entities when a client disconnects
 end,
 receive = function(event, is_server)
 -- Extract the message out from the event and call the appropriate callback
 local message = {}
 for match in (event.data .. '|'):gmatch('(.-)|') do
 table.insert(message, match)
 end
 message_handlers[message[1]](message, event, is_server)
 end
}

1.1 - Interactive coding

157

Don't let this code feel intimidating as it's only taking the string message from the
event ("your-id:87335:500:500") and splitting it into a list table ({ "your-id",
"87335", "500", "500" }) so we can work with the data. Once we have the
message fragments, we call message_handlers[message[1]]() , where message[1]
will be one of the keys in the message_handlers table: "your-id" , "peer-id" , or
 "move" . Let's fill out the "your-id" handler first:

Now when the client gets the "your-id" message, it can spawn an entity too. Let's
add the appropriate code to main.lua for drawing entities so we can see if our
protocol is working so far:

-- main.lua

local entity_service = require('services/entity')

...

If you've updated everything correctly, you'll see this happen when a server and
client run side-by-side:

-- Callbacks to invoke when certain events are received from a peer
-- Define a callback to handle every type of message in our application protoco
local message_handlers = {
 ['your-id'] = function(message, event, is_server)
 local player_id = message[2]
 local x_pos = message[3]
 local y_pos = message[4]
 entity_service.player_id = player_id
 entity_service.entities[player_id] = entity_service.spawn(player_id, x_pos,
 end,
 ['peer-id'] = function(message, event_is_server)
 end,
 ['move'] = function(message, event, is_server)
 end
}

love.draw = function()
 menu_service.draw()
 -- Scale up the size of the text being printed
 local transform = love.math.newTransform(0, 0, 0, 3)
 if net_service.is_connected() and net_service.is_server() then
 love.graphics.setColor({1, 1, 1, 1})
 love.graphics.print('Server preview. See console for details.', transform)
 end
 for _, entity in pairs(entity_service.entities) do
 entity_service.draw(entity)
 end
end

1.1 - Interactive coding

158

If you get an error, remember to check the line number and filename where the
error occurred and make sure the code looks similar to how it is above. If you get
stuck, there will be a full example available at the bottom of this section.

If everything is working for you then fantastic. This means the server and client
are successfully syncing an entity state with each other.

Next let's add movement so we can see live updates happening between the two
game windows. Inside the services folder, we'll create an input.lua file that
returns an empty table:

-- input.lua

return {}

Why are we returning an empty table? Well, it's only empty right now, but as keys
are pressed and released our table will get updated. Let's update
 love.keypressed and add a love.keyreleased function to main.lua to see how
that works:

-- main.lua

local input_service = require('services/input')

...

love.keypressed = function(pressed_key)
 menu_service.handle_keypress(pressed_key)
 input_service[pressed_key] = true
end

love.keyreleased = function(released_key)
 input_service[released_key] = false
end

Now when we press some arrow keys for instance, our table in input.lua will look
more like this in memory:

{
 left = true,
 right = false,
 up = true,
 down = false
}

1.1 - Interactive coding

159

Now inside entity.lua we'll add an entity_service.move function that checks for
input changes and moves the entity if any of the arrow keys are pressed:

-- entity.lua

local input_service = require('services/input')

...

entity_service.move = function()
 local player = entity_service.entities[entity_service.player_id]

 -- Don't let the player press up and down at the same time
 if input_service.up and not input_service.down then
 player.y_pos = player.y_pos - 2
 elseif input_service.down and not input_service.up then
 player.y_pos = player.y_pos + 2
 end

 -- Don't let the player press left and right at the same time
 if input_service.left and not input_service.right then
 player.x_pos = player.x_pos - 2
 elseif input_service.right and not input_service.left then
 player.x_pos = player.x_pos + 2
 end
end

This will cause our entity to move across the client's screen, but the server won't
get these updates unless the client sends them over. We need to go back to
main.lua and send a "move" message. Inside love.update check to see if the
player position has changed and send a move message to the server if so:

The net_service.send function we haven't defined that yet. Jump back over to
net.lua and we'll define that for sending either client or server messages if
needed:

love.update = function()
 menu_service.update()
 -- Check to see if a player has spawned and update its movement if any direct
 if entity_service.player_id then
 local player = entity_service.entities[entity_service.player_id]
 local old_x = player.x_pos
 local old_y = player.y_pos
 entity_service.move()
 if player.x_pos ~= old_x or player.y_pos ~= old_y then
 net_service.send('move|' .. player.id .. '|' .. player.x_pos .. '|' .. pl
 end
 end
 net_service.update()
end

1.1 - Interactive coding

160

net.send = function(message)
 if net.is_client() then
 server_host:send(message)
 else
 server_host:broadcast(message)
 end
end

Now we are sending a message to the server when we move, but we need to
have the server read the message and update the entity position on its end too.
Let's fill out the "move" message handler in net.lua to accomplish this:

Notice the extra server check. If the server received the "move" command it
should relay it over to any other connected player so they can see you moving
too. The peers table needs to be defined inside net.lua above the message
handlers or you may get an error when it tries to loop over the table and sees a nil
value that hasn't been defined yet.

Try it out again and we should see the square moving on both screens now.

All that hard work is starting to pay off! We have a few more changes to make for
this to be fully functional though. If you try and run the game now with multiple
clients, the players won't see each other. In our application protocol we defined a
 peer-id message so that when new players connect we receive information to
spawn them.

Inside net.lua, go ahead and fill out the "peer-id" message handler so that it
spawns an entity when invoked:

local message_handlers = {
 ['your-id'] = function(message, event, is_server)
 local player_id = message[2]
 local x_pos = message[3]
 local y_pos = message[4]
 entity_service.player_id = player_id
 entity_service.entities[player_id] = entity_service.spawn(player_id, x_pos,
 end,
 ['peer-id'] = function(message, event, is_server)
 -- TODO: handle peer-id messages for when more players join the server
 end,
 ['move'] = function(message, event, is_server)
 local player_id = message[2]
 local x_pos = message[3]
 local y_pos = message[4]
 entity_service.entities[player_id].x_pos = x_pos
 entity_service.entities[player_id].y_pos = y_pos
 if is_server then
 -- Relay this message to the other players
 for id, peer in pairs(peers) do
 if id ~= player_id then
 peer:send(event.data)
 end
 end
 end
 end
}

1.1 - Interactive coding

161

Now the server needs to send all the peers to a new player connecting, but it also
needs to send new players to pre-existing peers during a connect event. We'll
update the "connect" event handler to do that:

After sending the new client their id as "your-id", we send that id to every other
client as "peer-id" in the for loop. Notice we add the new connecting client to the
peer table at the very end. We do this after looping over the peer list so we don't
send that client a "peer-id" message of themselves. Again, when registering peers
and entities we call tostring() on the connect_id() to ensure we are storing
IDs as strings rather than numbers. Storing data in tables it matters whether you
store them as keys or numbers. See 1.14 - Tables (part 2) to see what I mean.

Anyways, try running the game now with multiple clients connecting to the server
and you will see each entity can move separately and the changes will be
synchronized across all clients. One change to make the entities easier to
distinguish would be to randomize their color and shape. Let's modify
 entity_service.spawn inside entity.lua:

 ['peer-id'] = function(message, event, is_server)
 local player_id = message[2]
 local x_pos = message[3]
 local y_pos = message[4]
 entity_service.entities[player_id] = entity_service.spawn(player_id, x_pos,
 end,

 connect = function(event, is_server)
 -- Only the server needs to do stuff here on connect
 if is_server then
 -- event.peer:connect_id() provides us with a unique number.
 -- We'll convert that number to a string and use it as the player ID.
 local player = entity_service.spawn(tostring(event.peer:connect_id()), 10
 -- Store this player in the player table with the player ID as the key.
 entity_service.entities[player.id] = player
 -- Send the initial "your-id" message back to the connecting client so th
 event.peer:send('your-id|' .. player.id .. '|' .. player.x_pos .. '|' ..
 -- Let all the other peers know about this player
 for _, peer in pairs(peers) do
 local peer_player = entity_service.entities[tostring(peer:connect_id())
 peer:send('peer-id|' .. player.id .. '|' .. player.x_pos .. '|' .. play
 event.peer:send('peer-id|' .. peer_player.id .. '|' .. peer_player.x_po
 end
 -- Add this peer to the peer list
 peers[tostring(event.peer:connect_id())] = event.peer
 end
 end,

file:///tmp/calibre_5.10.1_tmp_815xatn7/msnkjn_y_pdf_out/01-14-tables-2

1.1 - Interactive coding

162

Here we use a modulus to cycle through the list of colors and shapes and assign
one based on the pseudo-random player ID we received. This also means a
player will look the same on every other players' client. Try running it again and
you should see something similar:

The final networking code can be found here. Again, given the amount of files if
you need the whole folder then it is easiest to download the zip of the whole
project. You will find the relevant files inside code/networking-3 :
https://github.com/RVAGameJams/learn2love/archive/master.zip

Conclusion
This is about as basic in functionality as a multiplayer game can get. There are
many features missing from our code. Just to name a few major ones:

entity_service.spawn = function(player_id, x_pos, y_pos)
 local colors = {
 {1, 0, 0, 1},
 {0, 1, 0, 1},
 {0, 0, 1, 1},
 {0, 1, 1, 1},
 {1, 0, 1, 1},
 {1, 1, 0, 1},
 {1, 1, 1, 1}
 }
 local shapes = {
 love.physics.newPolygonShape(25, 0, 50, 50, 0, 50),
 love.physics.newPolygonShape(0, 0, 50, 0, 50, 50, 0, 50),
 love.physics.newPolygonShape(12, 0, 36, 0, 49, 15, 49, 33, 36, 49, 12, 49,
 }
 return {
 -- Cycle through the list of colors based on whatever the player id is
 -- Calling tonumber() to make player_id a number instead of a string so we
 color = colors[(tonumber(player_id) % #colors) + 1],
 id = player_id,
 shape = shapes[(tonumber(player_id) % #shapes) + 1],
 x_pos = x_pos,
 y_pos = y_pos
 }
end

https://github.com/RVAGameJams/learn2love/tree/master/code/networking-3
https://github.com/RVAGameJams/learn2love/archive/master.zip

1.1 - Interactive coding

163

Sanity checks on messages. You can crash the server by sending it an
invalid message.
The "move" message expects a player id when the server should be able to
figure this out on its own. The server can easily be fooled into accepting
"move" messages from a client to move another client.
To make things simpler there is no world or physics nor any net code to
handle collisions or anything of the like.
The entities just stick around when you close/disconnect a client.
If you lose connection, there is no attempt to restore the connection.

There is a great set of articles by Gabriel Gambetta on the problems faced by
making a action-based multiplayer games and it's worth a read to get a high-level
overview of the challenges and how to reason about them.

Exercises
Having all the players spawn at the exact same point isn't ideal. Inside net.lua
in the "connect" event handler, make a list of spawn points and make the
players spawn at one of the points based on their peer:connect_id() . Hint:
the code should look similar to the color cycle code inside entity.spawn in
entity.lua.
Inside net.lua, complete the "disconnect" event handler and make is so when
a client quits their entity is removed from the game for all peers.

http://www.gabrielgambetta.com/client-server-game-architecture.html

1.1 - Interactive coding

164

Chapter 3: Programming in depth
The goal of this chapter is to touch on a variety of topics and problems faced
while programming and to understand and solve them using Lua. A wider variety
of topics will be covered here. One topic will lead into another which will then build
on top of concepts introduced in the previous topic.

1.1 - Interactive coding

165

Primitives and references
Take a look at this code:

local string1 = "hello"
local string2 = 'hello'

print(string1 == string2)

local number1 = 14
local number2 = 14

print(number1 == number2)

local table1 = {}
local table2 = {}

print(table1 == table2)

local function1 = function() end
local function2 = function() end

print(function1 == function2)

What would happen if you were to run this?

In chapter 1 we learned about comparing strings with the == operator when we
talked about booleans. Run the code above in the REPL and see what it returns:

true
true
false
false

The strings equal and the numbers equal, but why aren't the tables and functions
equal since they are both empty? Try printing the tables and functions and look
what happens:

local table1 = {}
local table2 = {}

print(table1)
print(table2)

local function1 = function() end
local function2 = function() end

print(function1)
print(function2)

table: 0x16af270
table: 0x16af220
function: 0x16ae840
function: 0x16aeff0

https://repl.it/languages/Lua

1.1 - Interactive coding

166

Attempting to print each value you are given back a hexadecimal number, the
place in memory where those values are located. Each table and function resides
in a different place in memory. So how is this relevant?

When checking data like strings and numbers, the == operator does indeed
check that the data matches. These data types are simple and take very little
effort for a computer to check that they are equal. Booleans, strings, numbers,
and nil are all primitive types of data and behave this way.

When checking data like functions and tables, however, the == operator checks
the memory location of the data on both sides of the operator and if the variables
reference the same location then they are equal. In other words, the == operator
checks these data types to see if they have the same identity. No matter how
many empty tables or functions you have, each one is created with a unique
identity.

local string1 = 'hello'
local string2 = "hello"
-- Another copy of "hello" is created in memory:
local string3 = string2
-- But these two copies are equal
print(string2 == string3)

local table1 = {}
local table2 = table1
print(table1 == table2)

What is the result of print(table1 == table2) ? Aha! Both these variables
reference the same data. Quick– a magician waves two wands in front of your
face and asks you to count how many wands there are. How do you know if there
are really two wands or if this is just a trick with mirrors? What do you do? You
take one of the wands and break it of course. If the other wand breaks then they
were the same wand the entire time. Let's try that with the two objects:

local table1 = {}
local table2 = table1
table1.rabbit = 'white'

print(table2.rabbit) -- Equals 'white' too

As long as your variables reference the same table, updating the table from one
variable you will see the result when checking the other variable. This doesn't
work with primitive data because you're always making a copy when assigning it
to a new variable name:

local string1 = 'hello'
local string2 = string1
string1 = 'world'

return string2

=> hello

https://en.wikipedia.org/wiki/Hexadecimal

1.1 - Interactive coding

167

Primitive versus non-primitive data types
Whenever we assign non-primitive data to a new variable, we're always
referencing the original data:

local grocery_list = {
 'carrots',
 'celery',
 'pecans'
}

local same_list = grocery_list

grocery_list[1] = 'grapes'

return same_list[1]

But assigning primitive data to a variable, even primitive data inside tables, we're
always making a unique copy:

local grocery_list = {
 'carrots',
 'celery',
 'pecans'
}

local item_copy = grocery_list[1]

print('item_copy is ' .. item_copy)

grocery_list[1] = 'grapes'

print('item_copy still is ' .. item_copy)

If you need to make each item in your table reference-able, you need to make
each item a non-primitive data type:

local grocery_list = {
 { name = 'carrots', location = 'produce' },
 { name = 'celery', location = 'produce' },
 { name = 'pecans', location = 'baking' }
}

local item_reference = grocery_list[1]

print('item_reference is ' .. item_reference.name)

grocery_list[1].name = 'grapes'

print('item_reference is now ' .. item_reference.name)

So rather than replacing the first item in the list, the first item was retained and
only modified:

item_reference is carrots
item_reference is now grapes

1.1 - Interactive coding

168

Cloning non-primitive data types
As we are familiar with at this point, tables are a special data type that can contain
other data types. You can build structures containing strings, variables, and even
other tables. That makes the table a composite data type, in other words, a data
type with distinguishable parts. Not all languages have composite data types, but
for Lua the table is one of its primary features.

One thing a programmer may want to do with a table is once constructed, create
a copy of it. If there was a table for a monster in a video game, you may want to
have more than one table. If you did this:

local enemy1 = { health = 10, strength = 12, type = 'orc' }
local enemy2 = enemy1

You would still only have one table. You could use a loop to copy all the values
out of a table and into a brand new table. A function to do that may look like this,
more or less:

local copy = function(orig_table)
 local new_table = {}
 for key, value in pairs(orig_table) do
 new_table[key] = value
 end
 return new_table
end

local enemy1 = { health = 10, strength = 12, type = 'orc' }
local enemy2 = copy(enemy1)

There is nothing terribly wrong with this method, but a more efficient way to do
such a thing would be to construct each monster table inside a function instead of
copying one from another. This method will be familiar already if you read and
followed through the breakout game.

local create_orc = function(strength)
 return {
 health = 10,
 strength = strength,
 type = 'orc'
 }
end

local enemy1 = create_orc(12)
local enemy2 = create_orc(12)

Every time the function create_orc is ran, it constructs a new table from scratch.
You define an orc-style table only once and don't need to read values in from one
table to another. A function that constructs tables for you is a common paradigm
in programming known as a factory function. You made a factory that builds orcs!
Of course this factory function paradigm works with other non-primitive types of
data as well:

1.1 - Interactive coding

169

local create_function = function()
 return function() return 1 + 1 end
end

local fn1 = create_function()
local fn2 = create_function()

print(fn1)
print(fn2)

A function that generates other functions? This may seem like an odd thing to
want to do, but this method of programming can be quite useful as we'll see in
3.02 - Higher-order functions and later follow-up sections. One thing that should
be mentioned though is that functions can also be considered a composite data
type as it can return other data types, and even other functions. Composite in that
you can compose higher-order functionality in the way tables can be used to
compose higher-order structures.

Conclusion
When comparing or referencing data, always keep in mind whether you handling
primitive or non-primitive data. If you are modifying data in one place, think if this
might be affecting you somewhere else in your program. Even when writing out a
 local some_module = require('some-module') in your code some_module is just a
table and like every other table, every reference to it can affect each other. So
modifying some_module in two different files can have either beneficial or
disastrous consequences depending how much care and regard you give your
code.

1.1 - Interactive coding

170

Higher-order functions
In 1.07 Making functions we learned about, well, making functions. So what about
higher-order functions? What are they and how do we make them? Simply put,
higher-order functions are functions built on top of other functions. Here's a basic
example:

local run_twice = function(some_function, some_data)
 some_function(some_data)
 some_function(some_data)
end

run_twice(print, 'Hello World!')

It can take any function and run it twice for you, in this case the print function,
but it could be any function you pass it. Typically higher-order functions return
data. Here's a trickier example that does just that:

local twice = function(fn, val)
 return fn(fn(val))
end

local add_four = function(num)
 return num + 4
end

return twice(add_four, 12)

Take a look at the bottom line for a second. We are calling the function twice
with two arguments, the add_four function and the number 12 . The purpose of
the twice function is to take a value, 12 in this case, and run it through the
given function (add_four) twice. Now take a look inside the twice function.
Inside it returns fn(fn(val)) . Given what we know is being passed to this
function, this can be read as saying add_four(add_four(12)) . The order of
operation says to start from the inner-most parenthesis and work your way out:

add_four(add_four(12))

becomes

add_four(16)

which becomes

20

and that is what is returned when you run the code. The power of these higher-
order functions is that they are re-usable. You can give the twice function
anything that takes and returns a value:

1.1 - Interactive coding

171

local twice = function(fn, val)
 return fn(fn(val))
end

local double = function(number)
 return number * 2
end

return twice(double, 3)

...or similar to our original example:

local twice = function(fn, val)
 return fn(fn(val))
end

local shout = function(message)
 print(message .. '!!')
 return message
end

return twice(shout, 'hello')

There are all examples of higher-order functions that accept a function as an
argument. Another kind of higher-order function is one that returns another
function:

local wrapper = function()
 return function()
 return 'You found the treasure!'
 end
end

local kinder_surprise = wrapper()
local secret = kinder_surprise()
return secret

When we ran wrapper it returned us another function that we had to invoke to get
to the innermost value. To avoid all the variable names, you can save some time
and invoke such kinds of functions like so:

local wrapper = function()
 return function()
 return 'You found the treasure!'
 end
end

return wrapper()()

Closures
Which number will print out by running the following code?

1.1 - Interactive coding

172

local number = 3

local closure = function()
 local number = 5
 return function()
 print(number)
 end
end

local print_number = closure()
print_number()

Strange?

Ok, so let's try a this same function-returning-a-function thing but passing in some
data:

local adder = function(a)
 return function(b)
 return a + b
 end
end

local add_three = adder(3)

return add_three(1)

The add_three variable is assigned a unique and special function. It is assigned
the inner function within the adder function, but with the data we passed in now
assigned to the a variable. Even though the function was returned outside of the
scope it was defined in, the scope's data was enclosed inside the returned
function until the function was discarded and the program exited. These types of
functions are common in situations where a function needs to be generated
multiple times but with different data sets.

The data in the closure can also continue to be updated, giving you the ability to
make storage containers for your data. Try this out:

local make_counter = function()
 local number = 0
 return function()
 number = number + 1
 return number
 end
end

local count = make_counter()
print(count())
print(count())
print(count())
print(count())

In programs like LÖVE there are callback systems where a similar effect happens:

1.1 - Interactive coding

173

local entity = require('entity')

love.draw = function()
 entity:draw()
end

As seen in the previous chapter, the love.draw callback is defined in a main.lua
file and later invoked somewhere within the game engine. Since love.draw was
defined in the scope where the entity variable is defined, the entity variable lives
on and can be used inside love.draw long after the main.lua file is done being
invoked.

Conclusion
Closures take some practice to understand and appreciate, but once you see
practical examples of where and how to use them they become an indispensable
item on your programming toolbelt. In the previous section we used the term
composite data to compare primitive and non-primitive data types. In this section
we saw how to go about composing higher-order functions. In the following pages
we will cover some higher-order functions that are the building blocks for old and
modern software alike.

Exercises
In the make_counter example above, try generating multiple counters:

-- Do the numbers in each counter stay in
-- sync or are they tracked independently?
local count_a = make_counter()
local count_b = make_counter()

Using the same make_counter example, modify it to return a table instead of
a function. Within this table, define an increment and decrement function so
that you can make the counter number go up or down. How would you use
such a function?

1.1 - Interactive coding

174

Map and filter
In the previous section we practiced creating some higher order functions. In this
sections we'll compose two higher-order functions commonly used in internet
applications for transforming lists.

We'll start by taking a look at our grocery list to see what items we need to pick
up:

local grocery_list = {
 {
 name = 'grapes',
 price = '7.20',
 location = 'produce'
 },
 {
 name = 'celery',
 price = '5.50',
 location = 'produce'
 },
 {
 name = 'walnuts',
 price = '6.20',
 location = 'baking'
 },
 {
 name = 'sugar',
 price = '8.00',
 location = 'baking'
 },
 {
 name = 'mayonnaise',
 price = '3.50',
 location = 'dressings'
 },
 {
 name = 'cream',
 price = '3.00',
 location = 'dairy'
 }
}

This list has more information than we want to see at a quick glance. If we wanted
to only display a numbered list of item names, we could do so by writing a for-loop
that generates a new list for us:

local new_grocery_list = {}
for key, value in ipairs(grocery_list) do
 new_grocery_list[key] = key .. '. ' .. value.name
end

for _, value in ipairs(new_grocery_list) do
 print(value)
end

Here we generated a list with a loop then looped over the list again to print our
results:

1.1 - Interactive coding

175

1. grapes
2. celery
3. walnuts
4. sugar
5. mayonnaise
6. cream

This works great for simple code like this example, but it can get messy if you are
working with many lists or if you want to transform lists to different formats.

Map
Here's our higher order function, map . It takes a list and a function as arguments
then returns a new list.

local map = function(list, transform_fn)
 local new_list = {}
 for key, value in ipairs(list) do
 new_list[key] = transform_fn(value, key)
 end
 return new_list
end

A new list is created by looping over each item in the original list, applying your
function to the item, then assigning the transformed data to the new list. Our code
can be re-written to use the map function:

1.1 - Interactive coding

176

local map = function(list, transform_fn)
 local new_list = {}
 for key, value in ipairs(list) do
 new_list[key] = transform_fn(value, key)
 end
 return new_list
end

local grocery_list = {
 {
 name = 'grapes',
 price = '7.20',
 location = 'produce'
 },
 {
 name = 'celery',
 price = '5.50',
 location = 'produce'
 },
 {
 name = 'walnuts',
 price = '6.20',
 location = 'baking'
 },
 {
 name = 'sugar',
 price = '8.00',
 location = 'baking'
 },
 {
 name = 'mayonnaise',
 price = '3.50',
 location = 'dressings'
 },
 {
 name = 'cream',
 price = '3.00',
 location = 'dairy'
 }
}

local new_grocery_list = map(grocery_list, function(item, index)
 return index .. '. ' .. item.name
end)

for _, value in ipairs(new_grocery_list) do
 print(value)
end

Calling map(...) we get back the new list then we loop over it again just to print
our results out. Notice how the second argument we passed into map is just a
function with no name. Functions with no names are sometimes called
anonymous functions. In some languages they're called lambdas, especially when
used inside a higher-order function in a situation like this. The transform function
takes in the item and its index and must return back a new result for map to put
inside the new function.

Maybe a few more examples will help out, so what if we want to return another list
with just the prices so we can add up how much we need to spend?

1.1 - Interactive coding

177

local price_list = map(grocery_list, function(item)
 print(item.price)
 return item.price
end)

7.20
5.50
6.20
8.00
3.50
3.00

Here the map function is passed in a transform function with a print statement
inside it. That way it will print the item prices as it builds the list so you can see
what each value will be.

If you had other lists for which you wanted to print prices, it could be done quite
easily with map :

local transform_fn = function(item) return item.price end

map(grocery_list, transform_fn)
map(car_parts, transform_fn)
map(card_transactions, transform_fn)

Filter
Let's say we wanted to only see the things on our grocery list that are in the
baking aisle. We could write a loop to do that:

local filtered_list = {}
for _, value in ipairs(grocery_list) do
 if value.location == 'baking' then
 filtered_list[#filtered_list + 1] = value
 end
end

for _, value in ipairs(filtered_list) do
 print(value.name)
end

Try running that and once it makes sense, let's think about how to turn this into a
re-usable higher-order function like map . We'll make a function called filter
that, like map , takes a list and a function. The function will return true if it wants
to put an item in the new list or false if it doesn't. We'll call it the predicate
function.

1.1 - Interactive coding

178

local filter = function(list, predicate_fn)
 local new_list = {}
 for key, value in ipairs(list) do
 -- The predicate_fn that was passed in should return
 -- a value that evaluates to either true or false.
 if predicate_fn(value, key) then
 new_list[#new_list + 1] = value
 end
 end
 return new_list
end

And we can use this function to filter down to just our baking items like this:

1.1 - Interactive coding

179

local filter = function(list, predicate_fn)
 local new_list = {}
 for key, value in ipairs(list) do
 if predicate_fn(value, key) then
 new_list[#new_list + 1] = value
 end
 end
 return new_list
end

local grocery_list = {
 {
 name = 'grapes',
 price = '7.20',
 location = 'produce'
 },
 {
 name = 'celery',
 price = '5.50',
 location = 'produce'
 },
 {
 name = 'walnuts',
 price = '6.20',
 location = 'baking'
 },
 {
 name = 'sugar',
 price = '8.00',
 location = 'baking'
 },
 {
 name = 'mayonnaise',
 price = '3.50',
 location = 'dressings'
 },
 {
 name = 'cream',
 price = '3.00',
 location = 'dairy'
 }
}

local filtered_list = filter(grocery_list, function(item)
 return item.location == 'baking'
end)

for _, value in ipairs(filtered_list) do
 print(value.name)
end

walnuts
sugar

Notice our predicate function we wrote:

function(item)
 return item.location == 'baking'
end

1.1 - Interactive coding

180

The operation after the return always returns a boolean true or false , so
 filter knows exactly what to do with the item based on those results.

You can imagine the filter function could be useful for processing a search
query. For instance, if we wanted to see only medium-sized shirts that fit a
specific price range:

filter(products, function(item)
 if item.type == 'shirt' then
 if item.size == 'M' then
 return item.price < 40
 end
 end
 return false
end)

Caveats
The filter function returns a new list, but the items in the list still reference the old
list if they aren't primitives. For instance if we modified the grocery list, the filtered
copy would be updated.

local filtered_list = filter(grocery_list, function(item)
 return item.location == 'baking'
end)

grocery_list[3].name = 'peanuts'
print(filtered_list[1].name)

peanuts

This behavior can be advantageous if it's expected, but it's something that should
be understood about how Lua and similar programming languages work. This is
explained more in 3.1 - Primitives and references.

Another thing to consider is whether or not to write the functions yourself or to use
a pre-written library you can require into your project. Not all implementations
are the same and some may perform better than others, or behave differently.
Some languages have built-in versions of these functions to standardize things.
Unfortunately Lua doesn't provide these functions built in or as a standard library.

At least you now know how to write them yourself if the need arises.

Exercises
Try filtering the grocery list to only "produce" items, then mapping those
results down to just the names.
Using filter , now can you return the number of items in the grocery list
with a price of more than 5? Hint: you will need to use tonumber() to convert
the item prices to numbers for comparing.

https://www.lua.org/manual/5.1/manual.html#pdf-tonumber

1.1 - Interactive coding

181

Stack and recursion
When running a program, the interpreter (Lua in this case) keeps track of
variables defined in a scope and which function you are currently in. It organizes
this information into a list in memory called the stack. The first item in the stack is
the starting point - the root of your application. Take the following example:

local two = function()
 print('two')
end

local one = function()
 print('one')
 two()
end

one()

When starting the program, the start of the stack is the top level of the module.
The Lua stack calls this the "main chunk". When a function is invoked, another
layer is added to the stack. Every time a function is called from another function,
the stack continues to build. So with the example code above, The stack will
follow the progression:

Stack is { "main chunk" } .
Now start executing one . Stack is { "main chunk", "one" } .
Now start executing two while still in one . Stack is { "main chunk", "one",
"two" } .
 two is done executing. Stack is now { "main chunk", "one" } .
 one is done executing. Stack is now { "main chunk" } .
Program exits.

This can be visualized by throwing an error at any point the program. The
interpreter will give you back a stack trace that details where it was when the
problem occurred. Lua provides a helpful error function for debugging that we
can use here:

local three = function()
 error('This is an error.')
end

local two = function()
 print('two')
 three()
end

local one = function()
 print('one')
 two()
end

one()

1.1 - Interactive coding

182

Unfortunately the REPL doesn't provide us with stack traces, but if you have a
Lua interpreter on your computer (lua command, luajit , or LÖVE) you will
see the error message and a stack trace like this:

lua: test.lua:2: This is an error.
stack traceback:
 [C]: in function 'error'
 test.lua:2: in upvalue 'three'
 test.lua:7: in upvalue 'two'
 test.lua:12: in local 'one'
 test.lua:15: in main chunk
 [C]: in ?

From the "stack traceback" you can see the newest from the top of the stack to
the oldest on the bottom. In complex programs is can be very beneficial to see
which function invoked another function to help trace down how an error came
about.

Understanding the stack is beneficial for more than just reading errors. Let's
switch the conversation over to something seemingly unrelated for a bit.

Recursion
When thinking of loops, many programmers first think of the for loop or the
 while loop. Another common method is to make a function call itself. Similar to
the while loop, you can create infinite loops like this one

local loop
loop = function()
 print('hello!')
 loop()
end

When a function invokes itself, whether directly or indirectly, this is called
recursion. The same function will recur again and again until a condition changes.
Or in the case above, loop() will be called unconditionally. Without a condition,
any kind of loop will run infinitely (or crash trying). Here's a loop that is a little
safer to run:

local count_to_5
count_to_5 = function(current_number)
 print(current_number)
 if current_number < 5 then
 count_to_5(current_number + 1)
 end
end

count_to_5(1)

Which prints:

1.1 - Interactive coding

183

1
2
3
4
5

One quick little aside; Notice how the function was defined in both these
situations:

local loop
loop = function()
 ...

The variable was defined before the function was created. Since the function
needs to access the variable inside itself, the variable needs to exist at the time
the function's scope is created. Variables created after the function are unknown
to the function. This is discussed in 1.17 - Scopes and is a limitation of Lua's
design. Fortunately there is shorthand syntax for writing recursive functions:

local function count_to_5(current_number)
 print(current_number)
 if current_number < 5 then
 count_to_5(current_number + 1)
 end
end

count_to_5(1)

is the same as writing:

local count_to_5
count_to_5 = function(current_number)
 ...

Let's try another recursive loop:

local grocery_list = {
 'pumpkin',
 'pecans',
 'butter',
 'flour',
 'sugar'
}

local function print_items(list, index)
 index = index or 1
 if index <= #list then
 print(list[index])
 print_items(list, index + 1)
 end
end

print_items(grocery_list)

1.1 - Interactive coding

184

Which prints the grocery list. Don't forget the local at the beginning of local
function print_items , otherwise you will accidentally generate global variables in
your code when trying to define functions.

We can even re-implement our map function from earlier to use recursion instead
of a for loop.

local grocery_list = {
 'pumpkin',
 'pecans',
 'butter',
 'flour',
 'sugar'
}

local function map(orig_list, transform_fn, new_list)
 new_list = new_list or {}
 if #new_list < #orig_list then
 local index = #new_list + 1
 new_list[index] = transform_fn(orig_list[index], index)
 return map(orig_list, transform_fn, new_list)
 end
 return new_list
end

local new_list = map(grocery_list, function(value, index)
 return index .. '. ' .. value
end)

map(new_list, function(value)
 print(value)
 return value
end)

Which prints:

1. pumpkin
2. pecans
3. butter
4. flour
5. sugar

Stack overflow
So what does the stack look like during recursion when a function enters itself?
Here's a script to test:

local function recur(n)
 -- assert is like error, but takes an expression to test. If the
 -- expression passed becomes false then it throws the error message.
 assert(n < 5, 'This is a conditional error')
 print(n)
 recur(n + 1)
end

recur(1)

1.1 - Interactive coding

185

lua: test2.lua:2: This is a conditional error
stack traceback:
 [C]: in function 'assert'
 test2.lua:2: in upvalue 'recur'
 test2.lua:4: in upvalue 'recur'
 test2.lua:4: in upvalue 'recur'
 test2.lua:4: in upvalue 'recur'
 test2.lua:4: in local 'recur'
 test2.lua:7: in main chunk
 [C]: in ?

Every time the function recurs we get another addition to the stack. This can be a
problem if you are looping over a large set of data because the stack will
consume more and more memory as it stacks up. This can be accomplished by
creating a recursive loop that runs infinitely. If you haven't tried so already, here's
an easy example:

local function recur()
 recur()
end

recur()

When the stack reaches a critical size, you get a stack overflow error:

lua: test3.lua:2: stack overflow
stack traceback:
 test3.lua:2: in upvalue 'recur'
 test3.lua:2: in upvalue 'recur'
 ...
 test3.lua:2: in upvalue 'recur'
 test3.lua:2: in upvalue 'recur'
 test3.lua:2: in local 'recur'
 test3.lua:5: in main chunk
 [C]: in ?

With a specific return statement added to the loop, however, we no longer get a
stack overflow:

local function recur()
 return recur()
end

recur()

This will run until you manually kill the application process. Killing it returns a
somewhat mysterious stack track:

lua: test4.lua:2: interrupted!
stack traceback:
 test4.lua:2: in function <test4.lua:1>
 (...tail calls...)
 test4.lua:2: in function <test4.lua:1>
 (...tail calls...)
 test4.lua:5: in main chunk
 [C]: in ?

1.1 - Interactive coding

186

So how did our modification save us from overflowing our stack?

Tail call optimization
Inside a function when you return another function call, the interpreter has the
ability to re-use the same layer of the stack instead of creating another layer. This
works with direct recursion (function calling itself) and indirect (mutual) recursion
such as two functions calling each other:

local one
local two

one = function()
 return two()
end

two = function()
 return one()
end

one()

Programming in Lua goes into greater detail on when a recursion will or won't be
optimized, but the simple thing to remember is that the function(s) must return the
value of invoking a function for this to work. The following will be tail-call
optimized:

local one
local two

one = function(n)
 print(n)
 return two(n + 1)
end

two = function(n)
 print(n)
 return one(n + 1)
end

-- Count until we run out of numbers
one(1)

But the following won't, since it returns an operation including the function call
instead of just the function call itself:

https://www.lua.org/pil/6.3.html

1.1 - Interactive coding

187

local one
local two

one = function(n)
 print(n)
 return 1 + two(n)
end

two = function(n)
 print(n)
 return 1 + one(n)
end

-- This won't work!
one(1)

The case for recursive loops
So why would we want to do recursion? It seems trickier than a for loop and
perhaps just as easy to mess up as a while loop.

It's not necessarily a replacement for the for loop, but allows you to do certain
things you can't easily do without recursion. Take this example from Rosetta Code
which will flatten a list of lists into a single, flat list. It uses a for loop and a
recursive loop in conjunction with each other:

local function flatten(list)
 if type(list) ~= "table" then return {list} end
 local flat_list = {}
 for _, elem in ipairs(list) do
 for _, val in ipairs(flatten(elem)) do
 flat_list[#flat_list + 1] = val
 end
 end
 return flat_list
end

local test_list = {
 {1},
 2,
 {{3,4}, 5},
 {{{}}},
 {{{6}}},
 7,
 8,
 {}
}

print(table.concat(flatten(test_list), ","))

Which prints:

1,2,3,4,5,6,7,8

This function isn't tail-call optimized, but it probably won't be passed a nested list
deep enough to cause a stack overflow.

http://rosettacode.org/wiki/Flatten_a_list#Lua

1.1 - Interactive coding

188

Here's just a few of the many situations where recursion is usually the best tool
for the job:

Sorting data
Searching trees (nested data) in a database or nested folders in a filesystem.
Finding the shortest path between two points
Loops that increment or decrement in irregular patterns
Evaluating a finite set of moves in a game like chess

The point isn't to replace the for loop, although you can. Take the following
example, which returns the factorial of the given number (5):

local fact = function(n)
 local acc = 1
 for iteration = n, 1, -1 do
 acc = acc * iteration
 end
 return acc
end

print(fact(5))

The same functionality written with a recursive loop would look very different:

local function fact(n, acc)
 acc = acc or 1
 if n == 0 then
 return acc
 end
 return fact(n-1, n*acc)
end

...but one method wouldn't offer an advantage over the other here. Depending on
the language you are working in, one method may be easier to read than the
other. Maybe the language supports one type of loop and not the other. These are
the factors that will often do the deciding for you.

https://en.wikipedia.org/wiki/Factorial

1.1 - Interactive coding

189

Reduce (fold)
In previous sections we discussed many methods for iterating over data and
transforming it. In this section we'll discuss another higher order function that is
arguably one of the most powerful. It is a concept recognized across enough
programming languages to get its own wikipedia article. Most popular languages
call it reduce, although some languages will call it fold or inject. Here's the
parameters it takes, and although the order of the parameters may be different in
other languages the functionality and output will be the same.

reduce(list, fn, starting_value)

Like with map() and filter() , it takes a list you want to transform and a
function (fn) to do the transformation. The transformation function behaves like
a recursive loop like seen in the last section. Here's a function that takes a list of
numbers and gives you the total sum of those numbers.

local list = {23, 63, 12, 48, 3}

local sum_fn = function(accumulator, current_number)
 return accumulator + current_number
end

local total_sum = reduce(list, sum_fn, 0)

We pass reduce a starting number of 0 . What happens is sum_fn is invoked
with the first parameter, the accumulator being the starting number 0 and
 current_number being the first number in the list. Whatever value the function
returns becomes the new value for accumulator next loop around.

Lua doesn't have a reduce function built in so we'll implement our own here with a
detailed description of all the parameters. Try not to get too hung up on the actual
reduce function's implementation at the top, but rather focus below that on how it
works. There will be several more examples. Once you understand how to use it,
go back to the top and look at the actual reduce function's implementation. Copy
all this code into the text editor window on the REPL and run it:

https://en.wikipedia.org/wiki/Fold_(higher-order_function

1.1 - Interactive coding

190

Following the print statement inside of sum_fn , we can see that the
 accumulator starts out with the 0 we pass in. We add current_number to
 accumulator and it begins to accumulate all the values as it goes.

0
23
86
98
146
The total sum is: 149

-- Applies fn on two arguments cumulative to the items of the array t,
-- from left to right, so as to reduce the array to a single value. If
-- a first value is specified the accumulator is initialized to this,
-- otherwise the first value in the array is used.
-- @param {table} t - a table to reduce
-- @param {function} fn - the reducer for comparing the two values
-- @param {*} acc - The accumulator accumulates the callback's return
-- values; It is the accumulated value previously returned in the
-- last invocation of the callback, or `first_value`, if supplied.
-- @param {*} current_value - The current element being processed in the list
-- @param {number} current_index - The index of the current element
-- being processed in the list, starting at 1.
-- @param {*} first_value - The initial value of the accumulation. If the array
-- empty, the first_value will also be the returned value. If the array is em
-- and no first value is specified an error is raised.
-- @example
-- -- returns 'zxy'
-- reduce(
-- { 'x', 'y' },
-- function(a, b) return a + b end,
-- 'z'
--)
local function reduce(t, fn, first)
 local acc = first
 local starting_value = first ~= nil
 for i, v in ipairs(t) do
 -- No starting value, start on
 -- the first element in the list
 if starting_value then
 acc = fn(acc, v, i, t)
 else
 acc = v
 starting_value = true
 end
 end
 assert(
 starting_value,
 'Attempted to reduce an empty table with no first value.'
)
 return acc
end

local list = {23, 63, 12, 48, 3}
local sum_fn = function(accumulator, current_number)
 print(accumulator)
 return accumulator + current_number
end

local total_sum = reduce(list, sum_fn, 0)
print('The total sum is:', total_sum)

1.1 - Interactive coding

191

If we don't pass in a starting number, the accumulator will begin right away with
the first number in the list:

local sum_fn = function(accumulator, current_number)
 print(accumulator)
 return accumulator + current_number
end

local total_sum = reduce(list, sum_fn)

23
86
98
146
The total sum is: 149

If you've used javascript, you may be starting to see the uncanny resemblance it
bears to javascript's reduce function. Both languages are very similar
syntactically, and given the ubiquity of javascript this Lua implementation follows
much of the same behavior.

Let's look at some more examples to better understand how to reduce and what
situations doing so could prove useful. The reduce function is omitted in the
following examples, but you can copy and paste the function in the REPL
alongside the examples to run the code yourself.

-- Concatenate a list of words
local list = {'this', 'is', 'a', 'sentence'}

local sentence = reduce(list, function(acc, word, index, list)
 -- Add a period if this is the last word
 if index == #list then
 word = word .. '.'
 end
 -- Otherwise add a space between the words
 return acc .. ' ' .. word
end)

print(sentence)

this is a sentence.

-- Only keep odd numbers
local list = {23, 63, 12, 48, 3}
local odd_numbers = reduce(list, function(acc, current_number)
 if current_number % 2 == 0 then
 return acc
 end
 acc[#acc + 1] = current_number
 return acc
end, {})

for key, value in ipairs(odd_numbers) do
 print(value)
end

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce

1.1 - Interactive coding

192

23
63
3

This looks similar to what we might do with the filter function previously
covered in 3.3 - Map and filter. In fact, we can compose filter and map from
 reduce . Take a look at the same code refactored out:

local filter = function(list, predicate_fn)
 return reduce(list, function(acc, val, i, t)
 if predicate_fn(val, i, t) then
 acc[#acc + 1] = val
 return acc
 end
 return acc
 end, {})
end

-- Only keep odd numbers
local list = {23, 63, 12, 48, 3}
local odd_numbers = filter(list, function(current_number)
 return current_number % 2 ~= 0
end)

for key, value in ipairs(odd_numbers) do
 print(value)
end

An example of wrapping reduce with a new map function won't be explained
here, but rather left up to the reader as an exercise at the end of this section.

Here's one more example that is a bit more complex, a function called compose
that creates a pipeline for passing data through. It accomplishes this by passing
any functions you give it through to reduce as a list:

1.1 - Interactive coding

193

-- Function that allows you to compose other functions
-- together to form a pipeline. The resulting pipeline
-- is a function that you can pass your intended data through.
local compose = function(...)
 -- "..." and "arg" are special keywords in Lua.
 -- See: https://www.lua.org/pil/5.2.html
 local fns = arg
 return function(x)
 return reduce(fns, function(acc, v)
 return v(acc)
 end, x)
 end
end

-- Some example composable functions
local add = function(x)
 return function(y)
 return y + x
 end
end
local multiply = function(x)
 return function(y)
 return y * x
 end
end
local subtract = function(x)
 return function(y)
 return y - x
 end
end

local number_pipeline = compose(add(12), multiply(2), subtract(9))
print(number_pipeline(3))
print(number_pipeline(2))

Alternative reduce implementations

Iterating tables

Let's go back to the implementation of reduce for a moment. Take a look at the
implementation of it given above. Notice the iteration inside is using ipairs
which expects an array/list-type table. If we wanted to reduce a non-list table we
could modify reduce to first check if the table is an array and do appropriate
iteration over the table whether or not it is. Let's test that:

1.1 - Interactive coding

194

local function reduce(t, fn, first)
 local get_iterator = function(t)
 if type(t) == 'table' then
 -- If property of 1 is empty then
 -- iterate as a regular keyed table
 if t[1] == nil then
 return pairs(t)
 end
 return ipairs(t)
 end
 error('Expected table, got ' .. tostring(t))
 end
 local acc = first
 local starting_value = first ~= nil
 -- Whether we do ipairs or pairs is conditional
 for i, v in get_iterator(t) do
 -- No starting value, start on
 -- the first element in the list
 if starting_value then
 acc = fn(acc, v, i, t)
 else
 acc = v
 starting_value = true
 end
 end
 assert(
 starting_value,
 'Attempted to reduce an empty table with no first value.'
)
 return acc
end

local list = {
 monday = 23,
 tuesday = 63,
 wednesday = 12,
 thursday = 48,
 friday = 3
}
local total_sum = reduce(list, function(acc, current_number, key)
 print(key .. ': ' .. current_number)
 return acc + current_number
end)

print('total sum: ' .. total_sum)

This should print something like this:

wednesday: 12
friday: 3
thursday: 48
monday: 23
total sum: 149

Note that the order the keys are iterated in are not guaranteed. Also "tuesday"
wasn't printed out because it was the starting number, but it was still included in
the total. Passing an extra argument of 0 to reduce would have caused all the
days to be passed through our reducer function and printed out.

Break early

1.1 - Interactive coding

195

Ok, here's another example that seems tricky at first glance; Let's say you
implemented some search functionality on top of reduce like this:

local list = {23, 63, 12, 48, 3}

local find = function(list, predicate_fn)
 return reduce(list, function(acc, v, i, t)
 if predicate_fn(v, a, t) then
 return v
 end
 return acc
 end)
end

print(find(list, function(val)
 return val > 50
end))
print(find(list, function(val)
 return val % 8 == 0
end))

Which prints out the expected results:

63
48

But do you see what's problematic about this? If we find the results we want, the
reduce function will keep running through the entire list unnecessarily. Typically
when doing a search you only want the first item you find anyway, but the above
implementation will return the last item found if more than one match is made. Do
you remember how the reduce function passes in the table as the last argument
to the reducer function? We can take control of iterator via the table and kill the
iteration prematurely. This involved mutating the table:

local list = {23, 63, 12, 48, 3}

local find = function(list, predicate_fn)
 return reduce(list, function(acc, v, i, t)
 if predicate_fn(v, a, t) then
 -- If a result was found, destroy the next item in the list
 -- to prevent the iteration from going any further.
 t[i + 1] = nil
 return v
 end
 return acc
 end)
end

print(find(list, function(val)
 return val > 1
end))

This returns the correct result:

23

1.1 - Interactive coding

196

But if we loop over the table afterwards we can see we've messed with the
original data which can lead to unexpected consequences in a real application. If
your data is coming from an immutable source, meaning something is generating
a new copy each time you use it then this wouldn't be a problem:

local generate_list = function()
 return {23, 63, 12, 48, 3}
end

reduce(generate_list(), function()
 ...
 ...

However we could fix all of this if we are willing to add another parameter to our
reduce implementation.

local function reduce(t, fn, first)
 local get_iterator = function(t)
 if type(t) == 'table' then
 -- If property of 1 is empty then
 -- iterate as a regular keyed table
 if t[1] == nil then
 return pairs(t)
 end
 return ipairs(t)
 end
 error('Expected table, got ' .. tostring(t))
 end
 local acc = first
 local starting_value = first ~= nil
 for i, v in get_iterator(t) do
 -- Exit the loop when true
 local should_break = false
 -- No starting value, start on
 -- the first element in the list
 if starting_value then
 acc, should_break = fn(acc, v, i, t)
 if should_break then
 break
 end
 else
 acc = v
 starting_value = true
 end
 end
 assert(
 starting_value,
 'Attempted to reduce an empty table with no first value.'
)
 return acc
end

Now if we pass true as a second return parameter then we will get the first
number we are looking for instead of the last. Loop through and print out the list
afterward to make sure we haven't mutated it unexpectedly.

1.1 - Interactive coding

197

local list = {23, 63, 12, 48, 3}

local find = function(list, predicate_fn)
 return reduce(list, function(acc, v, i, t)
 if predicate_fn(v, a, t) then
 return v, true
 end
 return acc
 end, false)
end

print(find(list, function(val)
 return val > 1
end))

for idx, val in ipairs(list) do
 print(idx, val)
end

reduce_right

Another possible change you would want to make is to replace the iterator with a
custom-made one to transform data in a specific order or pattern. Taken from lua-
users.org's Iteration Tutorial is this reverse-ipairs (ripairs) implementation that
allows you to iterate over a table from right to left. This modified version of
 reduce is typically called reduce_right .

http://lua-users.org/wiki/IteratorsTutorial

1.1 - Interactive coding

198

local function reduce_right(t, fn, first)
 local ripairs = function(t)
 local max = 1
 while t[max] ~= nil do
 max = max + 1
 end
 local function ripairs_it(t, i)
 i = i-1
 local v = t[i]
 if v ~= nil then
 return i,v
 else
 return nil
 end
 end
 return ripairs_it, t, max
 end
 local acc = first
 local starting_value = first ~= nil
 for i, v in ripairs(t) do
 -- Exit the loop when true
 local should_break = false
 -- No starting value, start on
 -- the first element in the list
 if starting_value then
 acc, should_break = fn(acc, v, i, t)
 if should_break then
 break
 end
 else
 acc = v
 starting_value = true
 end
 end
 assert(
 starting_value,
 'Attempted to reduce an empty table with no first value.'
)
 return acc
end

Then swap out reduce for reduce_right in the places you want to use it:

local list = {23, 63, 12, 48, 3}

local find = function(list, predicate_fn)
 return reduce_right(list, function(acc, v, i, t)
 if predicate_fn(v, a, t) then
 return v, true
 end
 return acc
 end, false)
end

print(find(list, function(val)
 return val > 1
end))

Recursive

1.1 - Interactive coding

199

Since we talked about recursion in the last section, let's try a recursive
implementation of reduce . Although with Lua there's no practical reason to
choose a recursive implementation over a for-loop or while-loop implementation,
doing recursion is fun.

local function reduce(t, fn, acc, key)
 -- Check for starting value
 if key == nil and acc == nil then
 key = next(t, key)
 acc = t[key]
 end
 -- Begin next iteration. Next is a Lua built-in function
 -- that fetches the next key in a table after the given key.
 -- See: https://www.lua.org/pil/7.3.html
 key = next(t, key)
 -- Return acc if we've iterated all keys
 if key == nil then
 return acc
 end
 local break_early = false
 -- Collect new accumulator from predicate function
 acc, break_early = fn(acc, t[key], key, t)
 -- Check to see if the predicate wants to end early
 if break_early then
 return acc
 end
 -- Recur
 return reduce(t, fn, acc, key, acc)
end

-- Test it by getting the total sum from a table like before
local list = {
 monday = 23,
 tuesday = 63,
 wednesday = 12,
 thursday = 48,
 friday = 3
}
local total_sum = reduce(list, function(acc, current_number, key)
 print(key .. ': ' .. current_number)
 return acc + current_number
end, 0)

print('total sum: ' .. total_sum)

This supports breaking early like the two previous implementations.

Exercises
Create a count function that counts up the number of items in a list that
match the predicate and returns the total. It should work like this:

1.1 - Interactive coding

200

local count = function(list, predicate_fn)
 ????
end

local list = {23, 63, 12, 48, 3}
-- Print number of items evenly divisible by 3 (should return 4)
print(count(list, function(v)
 return v % 3 == 0
end))

Go back to the map section in 3.3 and see if you can reimplement the map
function on top of reduce .

	Introduction
	1.0 - Programming basics
	1.1 - Interactive coding
	1.2 - Strings
	1.3 - Nil and variables
	1.4 - Using functions
	1.5 - Comments in code
	1.6 - Scripting and printing
	1.7 - Making functions
	1.8 - Booleans
	1.9 - Flow control
	1.10 - While
	1.11 - Type checking
	1.12 - First game
	1.13 - Tables (part 1)
	1.14 - Tables (part 2)
	1.15 - For loops (part 1)
	1.16 - For loops (part 2)
	1.17 - Scopes
	1.18 - Chapter review

	2.0 - Introducing LÖVE
	2.1 - Up and running
	2.2 - LÖVE structure
	2.3 - Geometry
	2.4 - Game loop
	2.5 - Delta time
	2.6 - Mapping
	2.7 - The world
	2.8 - Reading documentation
	2.9 - Modules and organization
	2.10 - Collision callbacks
	2.11 - Breakout (part 1)
	2.12 - Breakout (part 2)
	2.13 - Breakout (part 3)
	2.14 - Breakout (part 4)
	2.15 - Breakout (part 5)
	2.16 - Binary and bitmasks
	2.17 - Networking (part 1)
	2.18 - Networking (part 2)

	3.0 - Programming in-depth
	3.01 - Primitives and references
	3.02 - Higher-order functions
	3.03 - Map and filter
	3.04 - Stack and recursion
	3.05 - Reduce

