
Arioc User Guide

written by

Richard Wilton

richard.wilton@jhu.edu

in collaboration with

Tamás Budavári

Ben Langmead

Sarah Wheelan

Steven L. Salzberg

Alexander S. Szalay

Copyright and other notices

This documentation: copyright © 2014-2023 Johns Hopkins University. All rights reserved. Revised for

Arioc release v1.51 (09-Feb-2023 07:13).

Arioc software: please see the LICENSE.txt file in the Arioc software distribution for software copyright

and licensing information.

Other: Microsoft, Windows, SQL Server, and Visual Studio are registered trademarks or trademarks of

Microsoft Corporation. Linux is a registered trademark of Linus Torvalds. GCC, g++, and GNU Make are

copyrighted by the Free Software Foundation. Nvidia is a registered trademark of Nvidia Corporation.

The tinyxml2 source code distribution (http://www.grinninglizard.com) is used under the terms of the

zlib license.

Arioc User Guide page 2

Arioc User Guide

Introduction .. 3

What Arioc is (and isn't) .. 5

Installation .. 7

Arioc runtime roadmap ... 9

AriocE: encoding sequence data .. 11

AriocU: aligning unpaired reads ... 20

AriocP: aligning paired end reads .. 24

Alignment results .. 28

Tuning for speed and sensitivity ... 31

Tuning for variant calling .. 37

BS-seq alignment .. 39

Troubleshooting .. 42

References .. 43

Arioc User Guide page 3

Introduction
Arioc is a set of computer programs that carry out the alignment of short DNA sequences to a large

reference sequence or genome.

There have been numerous attempts to use GPU (general-purpose graphics processing unit) hardware

to accelerate the process of DNA sequence alignment – but this has turned out to be “easier said than

done.” Arioc is unique because it was designed and engineered expressly to use GPU hardware to

maximize the speed of DNA sequence alignment without sacrificing functionality or accuracy.

GPU acceleration of short read alignment

GPU programming requires software-development techniques that aren't needed for programs that run

exclusively on a CPU. GPU hardware can run tens of thousands of threads of execution concurrently,

but speed improvements in GPU software are not obtained simply by replicating source code that runs

efficiently on one or two dozen CPU threads.

There are two fundamental reasons for this. One has to do with the way GPUs manage threads. In

Nvidia's CUDA environment (for which Arioc is implemented), threads execute in fixed-size groups of 32,

in which each thread simultaneously executes the same instruction on different data. This SIMD (single

instruction, multiple data) model constrains the layout of data in memory as well as the structure of

source code, so algorithms that operate efficiently in CPU threads are often suboptimal when executed

in SIMD threads on a GPU. Algorithms that contain a great deal of branching logic must be carefully

redesigned to accommodate SIMD parallelism.

The second, and perhaps more important, reason why GPU application speeds don't scale in direct

proportion to the number of available GPU threads is that there isn't enough memory bandwidth to

keep up with all those threads. Consequently, GPU programming involves writing code that conforms to

a variety of memory-layout and memory-addressing constraints. This can fundamentally change

assumptions that are taken for granted in algorithms that run efficiently on CPUs. Of course, memory

optimization techniques are important in CPU software engineering as well, but the idiosyncrasies of

GPU memory tend to dominate other considerations in choosing optimal algorithms for a GPU

application.

This all means that, in practice, a 10-fold speedup in a GPU-based sequence-alignment application

(compared to a multi-threaded CPU-based implementation that performs the same computational task)

represents a reasonable "return on investment" [Anderson, 2011]. (A hundred-fold GPU-versus-CPU

speedup would be extraordinary and make one wonder whether the corresponding CPU application had

been properly optimized!) As far as Arioc is concerned, we did not release the software until we

reached this 10x threshold.

How Arioc is different

The central problem in read alignment is essentially that of quantifying the similarity between two

strings of symbols. This problem has attracted a great deal of attention since the early 1980s, and

several successful algorithms have been developed in response. Of these, two dynamic-programming

techniques — one using weighted scores for mismatches and gaps [Smith and Waterman, 1981] and the

Arioc User Guide page 4

other using Levenshtein edit distance [Ukkonen, 1983] — are the predominant algorithms in modern

read aligners. Arioc uses the Smith-Waterman algorithm, which consistently finds better mappings for

reads that contain multiple insertions and deletions [Wilton et al, 2015], even though it requires more

computational effort than edit-distance alignment.

String similarity computations are time-consuming and use a large amount of memory. With a

reference sequence the size of the human genome, it is impractical to align a read by computing

similarity at every location in the entire genome. For this reason, read aligners perform a great deal of

preliminary work to narrow down the number of reference-sequence locations at which they must

compute alignments. This work cannot easily be reduced to a single algorithmic description. Instead,

read aligners rely on heuristics and on software-engineering considerations to limit the number of

reference-sequence locations they examine (and ultimately the number of string-similarity

computations they perform) for each read.

It is here that GPU-based parallelism can greatly improve performance. Arioc implements a well-known

technique known as "seed and extend" [Altschul, 1992] using parallel sorting and adjacent-neighbor

comparisons on long, one-dimensional arrays of integers. Such operations are well suited to SIMD

implementation on GPU hardware. In Arioc, GPU acceleration of this aspect of the read-alignment

process is essential to obtaining high throughput.

Arioc User Guide page 5

What Arioc is (and isn't)
Arioc is a read aligner that uses GPU acceleration to find high-priority locations at which to compute

alignments and then to compute them. These are the two most significant computational bottlenecks in

a short-read aligner. Arioc uses GPU hardware to accelerate these computations and thereby achieve

higher throughput [Wilton et al, 2015].

What Arioc does

Arioc accepts as input a large number — typically, hundreds of millions — of short sequencer reads. For

each such read, Arioc reports the locations within a given reference sequence where a highly similar

subsequence is found.

Ideally, Arioc would find a perfect and unique mapping for every read; there would be exactly one

location in the reference sequence where each read sequence precisely matches the reference

sequence. In practice, of course, many reads do not map perfectly or uniquely within a given reference

sequence. For such reads, Arioc reports what it considers to be the "best" mapping (or mappings).

Arioc does these things rapidly and accurately.

Nongapped and gapped alignment

For each sequencer read, Arioc first tries to find alignments that contain no gaps (insertions or deletions)

and no more than a few differences between the read sequence and the reference sequence. The

"spaced seed" algorithm that Arioc uses for these alignments is very fast, and Arioc's overall speed is

greatly improved by identifying nongapped mappings prior to computing Smith-Waterman alignments.

Input and output data

Arioc expects FASTA-formatted reference sequences and FASTQ-formatted sequencer reads. It

generates SAM-formatted output that includes an alignment score (AS) and mapping quality score

(MAPQ) for every mapping it finds. Arioc's output can thus be used by any software tool that can handle

alignment results from CPU-only aligners such as BWA [Li, 2013] or Bowtie 2 [Langmead and Salzberg,

2012].

Arioc has several "database-oriented" features in its implementation. One of Arioc's original design

goals was to carry out read alignment on sequence data residing in relational database tables. For this

reason, Arioc can create output files in the binary data format used by the Microsoft SQL Server for high-

speed "bulk" input.

Arioc was designed to align large amounts of sequencer data to genomes the size of the human

reference genome. If you are processing sequencer reads on a terabyte or petabyte scale, we assume

that you have the CPU, GPU, memory, and disk space resources required by Arioc. We also provide a

variety of parameterization options that let you tune Arioc's performance to your specific hardware and

data-analysis requirements. (See Tuning for speed and sensitivity, page 31.)

What Arioc does not do

Arioc is not a tool for searching a database of short sequences and ranking those sequences by their

similarity to a given sequence. (CUDASW++ [Liu et al, 2013] is perhaps the best-known GPU-accelerated

Arioc User Guide page 6

tool for this.) Arioc does not operate with any sequences other than DNA; it does not understand any

sequence "alphabet" other than ACGTN. It does not report SNPs or recognize structural variations. It

does not do multiple sequence alignment or assemble sequencer reads in any way.

Finally, Arioc is not by any means a "simple", "turnkey", or "one size fits all" tool. Instead, Arioc exposes

a variety of user-configurable parameters that let you optimize speed and sensitivity (or trade one for

the other). Although this approach exposes the complexity of the read-alignment process, it provides

the ability to fine-tune Arioc's performance to high-performance computing hardware and to the

specific characteristics of sequencer read data.

The GPU software-development landscape continues to evolve. Since its initial release, Arioc has grown

and adapted to newer, faster GPU hardware and software libraries. We think Arioc's approach to the

read-alignment problem is sound, and that its accuracy and speed make it a compelling alternative to

CPU-only alignment software as DNA sequencers generate ever-increasing quantities of WGS and WGBS

reads to align.

Arioc User Guide page 7

Installation
Arioc is written in C++ and compiled for the Nvidia CUDA environment. The same code base is used for

both Windows and Linux.

Hardware requirements

Arioc requires the following minimum hardware:

• a multi-core 64-bit Intel- or PowerPC-compatible CPU

• at least 80 gigabytes of free memory; more memory required for larger reference genomes

• enough disk space to store reference sequences, reads, and alignment results

• at least one Nvidia GPU of compute capability 3.5 or greater, with at least 5 gigabytes of GPU

memory

We have tested Arioc on the following Nvidia GPU microarchitectures:

• Kepler

• Maxwell

• Pascal

• Volta

• Ampere

CUDA

The current version of Arioc was developed and tested with the following minimum CUDA versions:

• Nvidia video driver v471.11

• CUDA runtime version 11.4

We recommend using the most recent stable versions of these products to run Arioc.

Operating systems

Arioc requires a 64-bit operating system. It is compatible with the following minimum operating-system

versions:

• Windows 7 (64-bit)

• Windows Server 2008 R2 datacenter

• RHEL Scientific Linux v7.2

Arioc should be compatible with more recent versions of these operating systems as well as with other

recent Linux distributions.

Installation

Windows

Install using the Windows installer and the Arioc setup package (AriocSetup.msi). For source code

only, unzip the Arioc.w.151.zip archive.

Linux

Unzip the Arioc.x.151.zip archive and build from source code.

Arioc User Guide page 8

Building from source code

The source code for is available in an archive whose name embodies the operating system and release

version number. The Windows sources for release 1.51 are found in Arioc.w.151.zip; the Linux

sources for the same release are in Arioc.x.151.zip.)

The same sources can be compiled for Windows and for Linux:

• In Windows, use Microsoft Visual Studio 2019 or later to load the Arioc solution (Arioc.sln).

You may need to edit the associated .vsproj files to reference the version of the CUDA SDK

installed in your development environment.

• In Linux, use GNU make and the makefile in the top-level directory of the source-code

distribution. Build each Arioc binary separately:

make clean

make AriocE

make AriocU

make AriocP

• You may verify your Arioc installation using the test data distributed in the Arioc.RQA.151.zip

archive. The readme.txt file in that archive contains additional details.

Arioc User Guide page 9

Arioc runtime roadmap
There are three executable binaries in the Arioc distribution:

• AriocE: encodes sequence data

• AriocU: aligns unpaired reads

• AriocP: aligns paired end reads

Here is how they are used:

The three executables are described in detail in the sections that follow.

Arioc command-line syntax

Each of the Arioc executables obtains its runtime configuration from an XML-formatted configuration

file, so the command-line syntax for running them is simple:

AriocE config_filename

AriocU config_filename

AriocP config_filename

where config_filename is the name of the configuration file to use.

Arioc error messages

In general, Arioc error messages contain condensed information that identifies the source-code location

that detected the error, along with human-readable text that explains the nature of the error. For

example, if Arioc cannot open the configuration file you specify, it emits an error message like the

following:

Sequence data

(FASTA or FASTQ)

AriocE

Encoded

sequence data

AriocU (unpaired) or AriocP (paired-end)

Alignment results

(SAM, SBF)

Arioc User Guide page 10

44:37.416 [00001704] ApplicationException ([0x5892] AriocAppMainBase.cpp 715):

XMLDocument::Loadfile("AriocP.cfg") failed with error 3: file not found

XML error details:

AriocP.cfg

If Arioc produces an error message whose origin is not immediately apparent, you can usually find the

cause of the problem by taking additional debugging and internal monitoring steps (see

Troubleshooting, page 42).

Arioc input and output

Arioc writes status and error messages to the stderr device. In practice, this means that all output

appears in the console by default. If you want to redirect console output to a file, use command-line

redirection syntax. For example:

AriocU test23.cfg 2> test23.log

For sequence input and alignment results, Arioc uses the files you specify in the configuration (.cfg) file.

Arioc User Guide page 11

AriocE: encoding sequence data
The AriocE component transforms raw sequence data from FASTA or FASTQ format into the binary

format read by the AriocU and AriocP executables. Encoded sequence data resides in separate files

whose contents can be distinguished by filename extension:

• $a21.sbf, $a21.rc.sbf: encoded forward and reverse-complement bases (3 bits per base, 20

bases per 64-bit value)

• $raw.sbf, $raw.rc.sbf: ASCII representation of the sequence data (forward and reverse

complement)

• $sqm.sbf, $sqm.rc.sbf: sequence metadata (FASTA or FASTQ description line)

• $sqq.sbf, $sqq.rc.sbf: sequence quality scores (for FASTQ-formatted input only)

For example, encoded sequence data for human chromosome 1 might reside in the following set of files:

hs_ref_GRCh38_chr1$a21.sbf

hs_ref_GRCh38_chr1$a21.rc.sbf

hs_ref_GRCh38_chr1$raw.sbf

hs_ref_GRCh38_chr1$raw.rc.sbf

hs_ref_GRCh38_chr1$sqm.sbf

hs_ref_GRCh38_chr1$sqm.rc.sbf

Before using the Arioc aligners, AriocU and AriocP, you must encode both a reference sequence and a

set of reads to align. Encoding is a one-time-only procedure. You can re-use the encoded files for

multiple invocations of either the AriocU or AriocP executables.

Encoding unpaired reads

Encoding reads with AriocE is straightforward. For each FASTA file, AriocE generates $a21, $raw, and

$sqm files; for FASTQ input, AriocE generates a $sqq file as well.

The configuration file you provide to AriocE, in addition to specifying input and output filenames,

contains "metadata" that is passed to the AriocU or AriocP aligners:

<?xml version="1.0" encoding="utf-8"?>

<AriocE>

 <dataIn sequenceType="Q">
 <file subId="1">C:\test103\i100p_1.fastq</file>
 </dataIn>

 <dataOut>
 <path>C:\BulkData\Q\Mason\test103</path>
 </dataOut>

</AriocE>

Simple configuration file for AriocE (unpaired reads).

In the XML configuration file, the sequenceType= attribute of the <dataIn> element indicates that the

input sequences are to be encoded as reads. The <dataIn> element also contains one or more <file>

Arioc User Guide page 12

elements, each of which specifies the fully qualified name of an input file. Similarly, the <dataOut>

element contains a <path> element that contains the fully qualified name of the output directory.

AriocE requires that you use the subId= attribute of each <file> element to assign a "subunit ID"

number to each input file. (Think of the subunit ID as a chromosome number for a reference genome or

a sample subset identifier for a set of reads.) The subunit ID can be any integer between 1 and 127.

AriocE combines the subunit ID, the data-source ID (specified as srcId= in the <dataIn> element), and

an ordinal to create a unique 64-bit integer sequence identifier for every input sequence in every file

you specify.

Although it was originally intended to simplify the automation of the sequence-alignment process, the

use of an XML configuration file provides flexibility in parameterization as well as an opportunity to

accompany runtime parameters with human-readable documentation. Here is an example of a more

complex configuration file:

<?xml version="1.0" encoding="utf-8"?>

<AriocE>

 <dataIn sequenceType="Q" srcId="1">
 <!-- The following rg element defines read-group attributes common to all files -->
 <rg CN="JHU PHA" DS="test 103" PL="ILLUMINA" />

 <!-- Each file is associated with different read group ID and SM attributes -->
 <file subId="1" ID="RG1" SM="sample 1: 11221">C:\test103\i100p_1.fastq</file>
 <file subId="2" ID="RG2" SM="sample 1: 11222">C:\test103\i100p_2.fastq</file>
 </dataIn>

 <dataOut>
 <path>C:\BulkData\Q\Mason\test103</path>
 </dataOut>

</AriocE>

Configuration file for AriocE (unpaired reads) with comments, optional parameters (XML attributes), and SAM-style read

groups.

This configuration encodes two different files. It also illustrates how AriocE associates read group

information with reads. The read group associated with each file is the union of the SAM-conformant

read group attributes (ID, CN, DS, PL, and SM) from the <rg> and <file> elements. (The <rg> element

defines read group attributes that are common to all the files; the <file> element defines attributes

specific to individual files.) AriocE copies the consolidated read group attributes for each file into an

associated metadata file in the output directory. The Arioc aligner (AriocU or AriocP) subsequently uses

these metadata files to generate appropriate @RG headers and RG tags in SAM-formatted output.

Arioc User Guide page 13

Here is a summary of the optional XML elements and attributes that control the runtime configuration

of AriocE:

Element Attribute Description

<AriocE> maxDOP Number of concurrent CPU threads

<dataIn> srcId Data source ID (between 0 and 4,194,303)

 QNAME Encodes only the parenthesized fields in the FASTQ defline

 SAMtags Encodes the parenthesized fields as SAM fields

 qualityScoreBias Bias (offset) for encoding base quality scores (33 or 64)

<rg> ID CN DS DT FO KS
LB PG PI PL PU SM

SAM read group fields (common to all input files)

<file> SN SAM sequence name field ID

 ID CN DS DT FO KS
LB PG PI PL PU SM

SAM read group fields (merged with fields in the <rg> element)

Optional elements and attributes in the AriocE configuration file for encoding unpaired reads.

The QNAME= and SAMtags= attributes in the <dataIn> element, as well as the ID= attribute in the <rg>

element, accept a simple wildcard pattern that parses subfields from the FASTQ definition line

("defline") associated with each read. Each pair of parentheses in the pattern identifies a substring to

extract from the defline.

This technique makes it possible to generate meaningful SAM-formatted QNAME and RG (read-group)

identifiers using the information in the FASTQ defline for each read. For example, given a read with a

CASAVA-formatted FASTQ defline [Illumina, 2015]:

ERR037901.323683141 509.8.45.13203.181161/1

you can specify <dataIn ... QNAME="(*) *(/*)"> to cause AriocE to generate the QNAME string

ERR037901.323683141/1. Similarly, you can use <rg ... ID="* (*.*)."> to associate the read with a

read group whose ID is 509.8.

AriocE uses the same wildcard pattern syntax to copy one or more SAM fields from each FASTQ defline

into the corresponding SAM output records. Consider, for example, a FASTQ defline that contains

CASAVA-formatted read information, a space, and two SAM-formatted fields separated with a tab

character:

@A112233:4127:HC3MGFFIY:2:679:9341:1024 BC:Z:ATGGTAGC+NGATCGACtabid:H:00000408

You could specify SAMtags="* (*)\t" as a <dataIn> attribute to cause AriocU or AriocP to copy the BC

field into the corresponding SAM output, or simply SAMtags="* (*)" to copy everything after the space.

AriocE converts tabs in the defline into spaces in the corresponding QNAME, so substrings extracted

from the defline become space-separated fields in a formatted QNAME. For example, this defline:

@00000001/2 sx:i:13tabrx:Z:14tabpx:i:94362283tabvx:i:284

Arioc User Guide page 14

can be converted to the following QNAME

00000001/1 13 chr14 94362283 284

using QNAME="(*/*)*:*:(*\t)*:*:(*\t)*:*:(*\t)*:*:(*)" in the <dataIn> element. (Alternatively, the

attribute string QNAME="(*/*)sx:i:(*\t)rx:Z:(*\t)px:i:(*\t)vx:i:(*)" would produce the same

result.)

Encoding paired end reads

The AriocE configuration file for paired end reads uses the same parameters as the configuration file for

unpaired reads, but it uses an additional XML attribute (mate=) to indicate the files in which mate 1 and

mate 2 are found.

<?xml version="1.0" encoding="utf-8"?>

<AriocE>

 <dataIn sequenceType="Q">
 <file subId="1" mate="1">C:\test103\paired\i100p_1.fastq</file>
 <file subId="1" mate="2">C:\test103\paired\i100p_2.fastq</file>
 </dataIn>

 <dataOut>
 <path> C:\BulkData\Q\Mason\test103</path>
 </dataOut>

</AriocE>

Simple configuration file for AriocE (paired end reads).

Multiple input files

It is possible to encode multiple input files (or, more exactly, pairs of input files) by using the subId= and

mate= attributes of the <file> element:

<?xml version="1.0" encoding="utf-8"?>

<AriocE>

 <dataIn sequenceType="Q" srcId="110114">
 <file subId="5" mate="1">E:\yh110114\s_5_1_sequence.txt</file>
 <file subId="5" mate="2">E:\yh110114\s_5_2_sequence.txt</file>
 <file subId="6" mate="1">E:\yh110114\s_6_1_sequence.txt</file>
 <file subId="6" mate="2">E:\yh110114\s_6_2_sequence.txt</file>
 <file subId="7" mate="1">E:\yh110114\s_7_1_sequence.txt</file>
 <file subId="7" mate="2">E:\yh110114\s_7_2_sequence.txt</file>
 </dataIn>

 <dataOut>
 <path>C:\BulkData\Q\yh110114</path>
 </dataOut>

</AriocE>

Configuration file for AriocE (paired end reads) with multiple input files and optional parameters.

Nevertheless, you should exercise caution when you encode multiple input files (or pairs of input files)

because AriocE cannot recognize different layouts among the input files. For example, files that

Arioc User Guide page 15

originate from different sequencer runs may have different defline layouts or may use a different bias to

encode base quality scores (e.g., 33 for Sanger, 64 for Illumina v1.3 and later).

Encoding a reference sequence

Encoding a reference sequence or genome is like encoding reads in that AriocE creates binary files that

encode the sequence data and metadata. In addition, for a reference sequence or genome, AriocE

builds a set of lookup tables (hash tables) that are used in both AriocU and AriocP.

Input files

AriocE accepts reference sequence files in FASTA format only. Each reference sequence file should be

identified with a distinct "subunit ID" (subId=) attribute in the AriocE configuration file.

When a FASTA file contains only one reference sequence, you should specify the sequence name

(corresponding to the SN tag in a @SQ record in SAM/BAM format) explicitly in the .cfg file:

<file subId="1" SN="chr1">chr1.fna</file>
<file subId="2" SN="chr2">chr2.fna</file>
<file subId="3" SN="chr3">chr3.fna</file>

When a FASTA file contains multiple sequences, AriocE extracts the sequence name for each sequence

in the file from the FASTA defline for that sequence. In this case, AriocE uses a parenthesized wildcard

specification (see above, page 13) to parse each defline, and you must use the same field-formatted

layout for every defline in the file. For example, given a reference sequence with the following FASTA-

formatted defline:

>acc|GENBANK|AF338823.1|linear|Possum adenovirus 1

you can specify <file ... SN="*|*|(*)"> to cause AriocE to associate the SN string AF338823.1 with

this reference sequence.

Two-pass encoding

AriocE encodes each sequence and then indexes the encoded sequence. Encoding involves the

transformation of the original ASCII character set used in FASTA or FASTQ format into a bit-packed

representation where each base is represented using only three bits; the sequence is thus encoded as a

sequence of 8-byte (64-bit) integers, each of which contains 21 3-bit fields.

At every location in each reference sequence, the encoder extracts a "seed", that is, a short

subsequence (either 84 bases for nongapped alignment or about 20-30 bases for gapped alignment).

The seed length and pattern are specified in the AriocE configuration file. A numerical hash function is

applied to each seed and the reference-sequence location is appended to a list of such locations for the

seed's hash value. Other configuration-file parameters control the number of bits in a hash value (and

thus the size of the hash table) as well as the maximum number of reference-sequence locations

recorded for a given hash value.

AriocE builds hash tables in two passes. The reason is that both the AriocU (unpaired) and AriocP

(paired end) aligners implement a pipeline in which nongapped alignments for each read are computed

prior to gapped alignments. The aligners use different hash tables for nongapped (spaced-seed)

alignment and for gapped (seed-and-extend) alignment. This means that you must execute AriocE twice

Arioc User Guide page 16

to fully encode a reference sequence. The idea is to make it possible to use AriocE multiple times to

create hash tables with different characteristics and then choose among those hash tables when you

execute the AriocU or AriocP aligners.

Here is an example of an AriocE configuration file that builds a nongapped (spaced seed) hash table for

the human reference genome:

<?xml version="1.0" encoding="utf-8"?>

<AriocE seed="ssi84_2_30" maxJ="*">

 <dataIn sequenceType="R" srcId="0" filePath="/dss004/R/GRCh38.p6" AS="GRCh38"
uriPath="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000001405.21_GRCh38.p6/GCA_000001405.21_GR
Ch38.p6_assembly_structure/Primary_Assembly/assembled_chromosomes/FASTA">
 <file SN="chr1" subId="1">chr1.fna</file>
 <file SN="chr2" subId="2">chr2.fna</file>
 <file SN="chr3" subId="3">chr3.fna</file>
 <file SN="chr4" subId="4">chr4.fna</file>
 <file SN="chr5" subId="5">chr5.fna</file>
 <file SN="chr6" subId="6">chr6.fna</file>
 <file SN="chr7" subId="7">chr7.fna</file>
 <file SN="chr8" subId="8">chr8.fna</file>
 <file SN="chr9" subId="9">chr9.fna</file>
 <file SN="chr10" subId="10">chr10.fna</file>
 <file SN="chr11" subId="11">chr11.fna</file>
 <file SN="chr12" subId="12">chr12.fna</file>
 <file SN="chr13" subId="13">chr13.fna</file>
 <file SN="chr14" subId="14">chr14.fna</file>
 <file SN="chr15" subId="15">chr15.fna</file>
 <file SN="chr16" subId="16">chr16.fna</file>
 <file SN="chr17" subId="17">chr17.fna</file>
 <file SN="chr18" subId="18">chr18.fna</file>
 <file SN="chr19" subId="19">chr19.fna</file>
 <file SN="chr20" subId="20">chr20.fna</file>
 <file SN="chr21" subId="21">chr21.fna</file>
 <file SN="chr22" subId="22">chr22.fna</file>
 <file SN="chrX" subId="23">chrX.fna</file>
 <file SN="chrY" subId="24">chrY.fna</file>
 <file SN="chrMT" subId="25"
uriPath="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000001405.21_GRCh38.p6/GCA_000001405.21_GR
Ch38.p6_assembly_structure/non-nuclear/assembled_chromosomes/FASTA">chrMT.fna</file>
 </dataIn>

 <dataOut>
 <path>/dss004/BulkData/R/NCBI/GRCh38.p6</path>
 </dataOut>

</AriocE>

Configuration file for AriocE (reference sequences) for a nongapped (spaced seed) hash table.

To build the corresponding gapped (spaced seed) hash tables, change the parameters specified in the

XML attributes of the <AriocE> element and re-execute AriocE:

<AriocE seed="hsi20_0_30" maxJ="200">

Arioc User Guide page 17

Here is a list of additional configuration-file parameters for reference-sequence encoding:

Element Attribute Description

<AriocE> maxDOP Number of concurrent CPU threads

 gpuMask Bits corresponding to GPU devices

 maxJ Maximum hash table bucket size ("big bucket" threshold)

 seed One of the following values:

 Seed width Mismatches Hash bits

ssi84_2_bb 84 2 bb between

29 and 32

ssi84_2_bb_CT 84 2 bb between

29 and 32

hsiww_0_bb ww between

18 and 42

0 bb between

29 and 32

hsiww_0_bb_CT ww between

18 and 42

0 bb between

29 and 32

Examples:
 seed="ssi84_2_30"
 seed="hsi21_0_32"
 seed="hsi25_0_31_CT"

<dataIn> srcId Data source ID (between 0 and 4,194,303)

 AS SAM genome assembly identifier (common to all input files)

 filePath Parent directory for files specified in <file> elements

 uriPath Original URI for reference sequences (copied to the UR field in the @SQ

records in SAM-formatted output)

<file> SN Reference-sequence subunit (chromosome) name (e.g., "chr1")

 AS SAM genome assembly identifier (overrides AS in <dataIn>)

 uriPath Original URI for reference sequence (overrides uriPath in <dataIn>)

 TP Reference-sequence topology: "linear" (default) or "circular"

Optional elements and attributes in the AriocE configuration file for encoding reference sequences or a genome.

Most of these parameters are self-evident, but the seed= and maxJ= values deserve careful attention.

seed=. The seed= value for the nongapped hash table should generally be ssi84_2_30 (seed width 84,

up to 2 mismatches, 30-bit hash values). For the gapped hash table, a seed width of 20 or 21 bits is

usually appropriate for WGS reads, whereas a 25-bit seed width is generally a better choice for bisulfite-

treated (WGBS) reads.

For both WGS and WGBS reads, there is a tradeoff between hash table size and the number of hash-

value bits: 29-bit hash values require a 2.5GB table and the table size doubles with each additional bit in

Arioc User Guide page 18

the hash value. If enough memory is available, "wider" hash values and correspondingly larger hash

tables may provide up to 5% additional speed and about 0.5% additional sensitivity.

maxJ=. Because it limits the number of reference-sequence locations associated with a seed, the maxJ=

parameter trades speed for sensitivity during read alignment. For the nongapped hash table, however,

this effect is barely noticeable, so you can usually specify maxJ="*" to indicate that the maximum size of

a hash table bucket is unlimited.

In contrast, the value of maxJ= has a tangible effect on the sensitivity of seed-and-extend (gapped) read

alignment. In general, maximum throughput is obtained with a value of about 16 (but with less

sensitivity), whereas maximum sensitivity can be achieved by using values of 200 and up (but with a

corresponding decrease in throughput).

When encoding a genome such as the human genome that contains numerous repetitive regions, AriocE

uses the limit specified by maxJ= to optimize the hash table by pruning repetitive regions of the genome

where adjacent seeds hash to "big buckets". This optimization improves throughput significantly with

very little decrease in sensitivity for reads that map to repetitive regions.

maxDOP=. The maxDOP= value controls the number of concurrent threads AriocE uses for encoding and

validating reference sequences. Additional threads generally cause AriocE to run faster due to increased

parallelism. Since AriocE's default behavior is to use all available CPU threads, there is usually no reason

to specify maxDOP= explicitly unless you wish to "reserve" CPU resources for another concurrently

executing program.

gpuMask=. The gpuMask= parameter is a bit mask (specified as a hexadecimal value) that indicates

which GPU device is to be used by AriocE for sorting hash-table bins. Each bit in the parameter

corresponds to a GPU device identifier. Because AriocE uses only one GPU for sorting, only one bit in

the parameter should be set. If gpuMask= is omitted or specified as zero, AriocE uses CPU threads to

sort.

TP=. Certain reference sequences (e.g., human mitochondrial chromosome, bacteriophage lambda,

EBV) have circular topology. When you specify TP="circular", AriocE encodes these reference

sequences in a way that enables AriocU and AriocP to report read mappings that straddle the origin of

the reference sequence. This can improve mapping coverage near the origin of a circular reference

sequence, although not all software tools can recognize the SAM representation of such mappings.

Output directory layout

The output from each invocation of AriocE should occupy a single directory that contains encoded

sequence files as well as a subdirectory for each hash table. If, for example, you run AriocE twice (once

for a nongapped hash table and once for a gapped hash table) and configure it to write its output to a

directory named /GRCh38, the resulting directory layout would look like this:

/GRCh38 encoded reference sequence files (*.sbf)

/GRCh38/ssi84_2_30 LUTs for nongapped (spaced seed) aligner

/GRCh38/hsi20_0_30 LUTs for gapped (seed-and-extend) aligner

Arioc User Guide page 19

If you use a set of previously encoded reference sequence files, ensure that the directory structure

follows this pattern. The lookup tables for both the nongapped and the gapped aligner must reside in

subdirectories of the directory that contains the encoded reference sequences, and the subdirectory

names must correspond to the "seed" strings that describe their format, seed width, and hash-value

size.

Arioc User Guide page 20

AriocU: aligning unpaired reads
Before running AriocU, use AriocE to encode a reference sequence and hash tables (see AriocE:

encoding sequence data, page 11).

To run AriocU, use a configuration file that specifies where to find encoded reference-sequence and

read files, where to write alignment-result files, and how to parameterize the aligner:

<?xml version="1.0" encoding="utf-8"?>

<AriocU gpuMask="0x00000001" batchSize="64k">

 <R>C:\BulkData\R\NCBI\GRCh38.p6</R>

 <nongapped seed="ssi84_2_30" maxJ="*" />

 <gapped seed="hsi20_0_30" maxJ="200" Wmxgs="2_6_5_3" Vt="400"/>

 <Q filePath="C:\BulkData\Q\mason\test203">
 <unpaired subId="1">
 <file>i250p_1</file>
 </unpaired>
 </Q>

 <sam report="mu">C:\BulkData\A\mason</sam>

</AriocU>

Simple configuration file for AriocU.

Each of the XML elements in the configuration file controls a different aspect of the read-alignment

pipeline:

• <AriocU>: GPU devices, GPU memory, and CPU threads

• <R>: encoded reference sequence files

• <nongapped>: seed type for nongapped alignments

• <gapped>: seed type and scoring parameters for gapped alignments

• <Q>: encoded read files

• <A>: output files and formats

 The following table summarizes the basic configuration parameters:

Arioc User Guide page 21

Element Attribute Description

<AriocU> gpuMask Bits corresponding to GPU devices

 batchSize Number of reads per batch per GPU

 maxDOP Number of concurrent CPU threads

<nongapped> seed Seed used for AriocE nongapped reference-sequence encoding

 maxJ Per-seed maximum number of reference-genome locations at

which to compute nongapped alignments

<gapped> seed Seed used for AriocE gapped reference-sequence encoding

 maxJ Per-seed maximum number of reference-genome locations at

which to compute gapped alignments

 Wmxgs Smith-Waterman scoring parameters

 Vt Minimum reportable alignment score

 AtO Minimum number of overall (nongapped + gapped) proper

mappings per read (see Tuning for speed and sensitivity, page 31)

<unpaired> subId Subunit ID used for AriocE read encoding

<Q> filePath Directory path for Q sequence (FASTQ) files

 subRate Expected per-base substitution rate (percentage)

<A> overwrite "true" to overwrite existing result file(s)

 cigarFormat =XIDS [default], MIDS, or MID

 mdFormat standard: [default] conforms with SAM format specification regex

compact: omits placeholder '0' characters for adjacent mismatches

 mapqVersion 0: [default] (0 ≤ MAPQ ≤ 60)

1: Bowtie 2 model (0 ≤ MAPQ ≤ 44)

2: Bowtie 2 model (0 ≤ MAPQ ≤ 44), optimized for AriocU

3: BWA model (0 ≤ MAPQ ≤ 60)

 maxAperRead Maximum number of output records per read

 seedDepth Limits the number of seed iterations (see Tuning for speed and

sensitivity, page 31)

 maxAperFile Maximum number of read alignments per output file

 xmClip "true": [default] exclude soft-clipped bases from SAM XM

(methylation context) field

"false": include soft-clipped bases in XM

 xmBQS Base quality score threshold for SAM XM methylation contexts

<sam>
<sbf>

report Alignment result type(s) to report in SAM or SBF format in the

specified output directory

XML elements and attributes in the AriocU configuration file.

Some of these configuration parameter values are self-evident, but others demand careful attention:

gpuMask=. The gpuMask= parameter is a bit mask (specified as a hexadecimal value) that indicates

which GPU device(s) are to be used by AriocU. Each bit in the parameter corresponds to a GPU device

identifier. If there is only one GPU in the computer, the value of gpuMask= should be 1. To run AriocU

on two or more GPUs, set the corresponding bits in gpuMask=. For example, to use GPUs 0, 1, and 2,

specify gpuMask="0x0007".

Arioc User Guide page 22

batchSize=. The batchSize= parameter determines how many reads AriocU can process concurrently

per GPU. Batch sizes are limited by available GPU memory, but the amount of GPU memory needed to

compute alignments cannot be precisely predicted because it depends on the number of Smith-

Waterman computations AriocU must perform in its search for satisfactory mappings for every read —

and this is something you don't know until you try it.

With some data, we have observed overall speed increases up to 10% with well-chosen batch sizes, but

batch size has less effect on speed than other runtime configuration parameters (see Tuning for speed

and sensitivity, page 31). If you do want to try to find an optimal batch size for your data, start with a

batch size of about 64K. If AriocU runs without memory-allocation errors, increase the batch size and

re-run AriocU until it runs out of GPU memory or until its throughput does not improve with increasing

batch size.

The batchSize= parameter may be specified either as a positive integer (e.g., "25000") or as a multiple

of 1024 (e.g., "128K").

maxDOP=. AriocU uses CPU threads for file input/output and for post-processing alignment data

(computing mapping qualities, formatting alignment results, and so on). If you omit maxDOP=, AriocU

uses as many CPU threads as are available. You should specify a value for maxDOP= only if you wish to

reserve CPU threads for a task other than AriocU.

Wmxgs=. This parameter specifies four Smith-Waterman scoring parameters as non-negative integers

separated by commas or underscores. The four values indicate the score for a match, mismatch, gap

open, and gap space respectively. For example, "2,6,5,3" means match=+2; mismatch=−6; gap open=−5;

gap space=−3.

Vt=. This parameter indicates the minimum reportable Smith-Waterman alignment score. You can

specify Vt= in one of two ways: as a non-negative integer threshold score (e.g., "100") or as a function

of read length described in a Bowtie-style function parameter: "[LSG],b,a", where the initial letter

indicates the function type (L: linear; S: square root; G: natural log), b is a constant term and a is the

coefficient. For example, Vt="S,75,2.5" specifies a reportable alignment score threshold of

75 + 2.5*sqrt(read_length).

subRate=. Arioc uses the value of the optional subRate= parameter to fine-tune the computation of

MAPQ values for mapqVersion="0" (see below). The substitution rate is specified as a percentage, e.g.,

subRate="0.25" (that is, a nominal substitution rate of 0.25%) could be appropriate for Illumina paired

end WGS reads.

mapqVersion=. The mapqVersion= parameter specifies the computational model that AriocU uses to

generate mapping quality (MAPQ) scores for reads:

• mapqVersion="0": [default] a probabilistic model using exponentiated scores in a partition

function (0 ≤ MAPQ ≤ 60) [Frith, 2020]

• mapqVersion="1": Bowtie 2 model (0 ≤ MAPQ ≤ 44)

• mapqVersion="2": Bowtie 2 model (0 ≤ MAPQ ≤ 44), optimized for AriocU

• mapqVersion="3": BWA model (0 ≤ MAPQ ≤ 60)

Arioc User Guide page 23

See the Arioc source-code distribution for details.

maxAperRead=. The maxAperRead= parameter limits the number of alignment-result records output by

AriocU. This is independent of the AtO= parameter whose purpose is to establish a minimum number of

proper mappings to compute for each read. (This may exceed the number of proper mappings to

report.) Thus, for example, you might use AtO="2" (to increase accuracy by searching for at least two

proper mappings for every read) and maxAperRead="1" (to report only the primary mapping for each

read, regardless of how many proper mappings were found).

xmClip=. When computing BS-seq alignments, setting xmClip="true" causes Arioc to exclude soft-

clipped bases from methylation context analysis. This parameter is true by default. (See Additional

SAM output fields for BS-seq reads, page 40.)

xmBQS=. For each cytosine base (methylated or unmethylated) in BS-seq alignments, Arioc uses the

value of xmBQS= as a threshold for determining whether to report CpG, CHG, and CHH methylation

contexts. When either the cytosine or one of the adjoining bases in the read sequence has a sub-

threshold base quality score, Arioc reports only an "unknown" methylation context. (See Additional

SAM output fields for BS-seq reads, page 40.)

report=. Use the report= parameter to filter reported alignment results. You can use any combination

of m (mapped) and u (unmapped). For example, to report both mapped and unmapped results in the

same SAM file, use a <sam> element with report="mu". To report the same results to two separate

SAM files, use two <sam> elements, one with report="m" and one with report="u".

Arioc User Guide page 24

AriocP: aligning paired end reads
You must use AriocE to encode a reference sequence and hash tables (see AriocE: encoding sequence

data, page 11) before you run AriocP.

The AriocP configuration file resembles the one that AriocU uses. The important differences have to do

with parameters that control the alignment of paired end reads:

<?xml version="1.0" encoding="utf-8"?>

<AriocP gpuMask="0x00000001" batchSize="48k">

 <R>/BulkData/R/NCBI/GRCh38.p6</R>

 <nongapped seed="ssi84_2_30" maxJ="*" />

 <gapped seed="hsi20_0_30" maxJ="200" Wmxgs="2,6,5,3" Vt="100" />

 <Q filePath="/BulkData/Q/mason/test103">
 <paired subId="1">
 <file>i100p_1</file>
 <file>i100p_2</file>
 </paired>
 </Q>

 <sam report="cdru">/BulkData/A/mason</sam>

</AriocP>

Simple configuration file for AriocP.

Each of the XML elements in the configuration file controls a different aspect of the read-alignment

pipeline:

• <AriocP>: GPU devices, GPU memory, and CPU threads

• <R>: encoded reference sequence files

• <nongapped>: seed type for nongapped alignments

• <gapped>: seed type and scoring parameters for gapped alignments

• <Q>: encoded read files

• <A>: output files and formats

 The following table summarizes the basic configuration parameters:

Arioc User Guide page 25

Element Attribute Description

<AriocP> gpuMask Bits corresponding to GPU devices

 batchSize Number of reads per batch per GPU

 maxDOP Number of concurrent CPU threads

<nongapped> seed Seed used for AriocE nongapped reference-sequence encoding

 maxJ Per-seed maximum number of reference-genome locations at

which to compute nongapped alignments

<gapped> seed Seed used for AriocE gapped reference-sequence encoding

 maxJ Per-seed maximum number of reference-genome locations at

which to compute gapped alignments

 Wmxgs Smith-Waterman scoring parameters

 Vt Minimum reportable alignment score

 Vtw Vt for low-scoring mates

 AtO Minimum number of overall (nongapped + gapped) proper

mappings per read (see Tuning for speed and sensitivity, page 31)

<paired> subId Subunit ID used for AriocE read encoding

<Q> filePath Directory path for Q sequence (FASTQ) files

 subRate Expected per-base substitution rate (percentage)

<A> overwrite "true" to overwrite existing result file(s)

 pairFragmentLength Distance between the ends of a paired end mapping

 pairOrientation Specifies the relative orientation (convergent/divergent/same) of

the mates in a pair.

 pairCollision Indicates whether mates may overlap, cover, or dovetail.

 cigarFormat =XIDS [default], MIDS, or MID

 mdFormat standard: [default] conforms with SAM format specification regex

compact: omits placeholder '0' characters

 mapqVersion 0: [default] (0 ≤ MAPQ ≤ 60)

1: Bowtie 2 model (0 ≤ MAPQ ≤ 44)

2: Bowtie 2 model (0 ≤ MAPQ ≤ 44), optimized for AriocP

3: BWA model (0 ≤ MAPQ ≤ 60)

 maxAperRead Maximum number of output records per read

 seedDepth Limits the number of seed iterations (see Tuning for speed and

sensitivity, page 31)

 maxAperFile Maximum number of read alignments per output file

 xmClip "true": [default] exclude soft-clipped bases from SAM XM

(methylation context) field

"false": include soft-clipped bases in XM

 xmBQS Base quality score threshold for SAM XM methylation contexts

<sam>
<sbf>

report Alignment result type(s) to report in SAM or SBF format in the

specified output directory

XML elements and attributes in the AriocP configuration file.

Arioc User Guide page 26

Most of the AriocP configuration parameters control the same behaviors as they do with AriocU. The

important differences are related to the management of paired end alignments:

Vt=. The Vt= parameter is the minimum reportable alignment score for each individual mate in a pair,

not the combined alignment scores for both mates.

Vtw=. The optional Vtw= parameter specifies a minimum reportable alignment score to be used when

AriocP computes a gapped alignment for a mate whose opposite mate has a high-scoring mapping. This

lets AriocP report mappings for pairs where one mate maps with a low alignment score in a region of

high variability and the opposite mate maps with a high alignment score. This can provide additional

sensitivity for the detection of variants in hard-to-map regions of the genome.

Specify Vtw= as an integer value or as a Bowtie-style function (see page 22).

pairFragmentLength=. The pairFragmentLength= parameter specifies a range of acceptable

fragment-length values. AriocP computes the pair fragment length as a SAM TLEN, that is, the number

of mapped reference-sequence positions between the first ("upstream") mapped base and the last

("downstream") mapped base in a pair of mappings:

pairOrientation=. This parameter specifies the expected orientation of the mates in a pair:

• convergent: the "upstream" mate (that is, the mate at the lower-numbered location on the

reference sequence) maps to the forward strand and the opposite mate maps to the reverse-

complement strand

• divergent: the upstream mate maps to the reverse-complement strand and the opposite mate

to the forward strand

• same: both mates map to the same strand

pairCollision=. The pairCollision= parameter indicates whether the mappings of a pair of mates

may overlap, cover, or dovetail each other:

fragment length

(no collision)

o (overlap)

c (cover)

d (dovetail)

Arioc User Guide page 27

report=. The report= parameter value can be any combination of the following (similar to Bowtie's

paired end alignment result categories):

• c (concordant): both mates in a pair have reportable mappings and meet the user-specified

constraints for orientation and fragment length

• d (discordant): each mate has a unique mapping, but the mappings do not meet the user-

specified paired end constraints

• r (rejected): both mates have mappings and at least one of the mates has two or more

mappings, but no combination of the mappings meets the user-specified paired end constraints

• u (unmapped): one or both mates have no reportable mapping

You can write alignment results to two, three, or four different files by using multiple <sam> elements,

each with a different, mutually exclusive subset of the four alignment-result categories.

Arioc User Guide page 28

Alignment results
Both AriocU and AriocP can generate alignment results in two different formats: SAM [SAM/BAM

Format Specification Working Group, 2017] and SBF (the binary format that the Microsoft SQL Server

uses for "native" bulk inserts). The <sam> and <sbf> elements in the configuration file control whether

the Arioc aligners emit results in SAM, SBF, or both formats.

SAM results

The Arioc aligners emit the following tab-separated fields. (See the SAM optional fields specification

document for details):

Field name Description

QNAME Query-sequence (read) metadata

FLAG Flag bits

RNAME Reference sequence name

POS Mapping position

MAPQ Mapping quality

CIGAR CIGAR string

RNEXT Opposite mate reference sequence name

PNEXT Opposite mate mapping position

TLEN Paired end fragment length

SEQ Query sequence

QUAL Phred-scaled base quality scores

AS Alignment score

XS Second-highest alignment score

YS Opposite mate alignment score

NM Edit distance

MD MD string

YT Alignment result category

Na Number of distinct mappings found by the aligner

Nb Number of maximum-score Smith-Waterman mappings

RG Read group

c3 Triplet complexity score

id Unique sequence identifier

af Aligner flags

qf Query flags

Tab-separated fields in Arioc SAM files.

Arioc User Guide page 29

Here are some additional details about the SAM fields reported by AriocU and AriocP:

RNAME: By default, the Arioc aligners use a 3-digit decimal string in RNAME. This numerical identifier

corresponds to the subId= parameter that you associate with each reference sequence at the time the

sequence is encoded (see Encoding a reference sequence, page 15). The metadata associated with each

reference sequence (that is, in the original FASTA file for the reference sequence) appears in the rm=

field of the corresponding @SQ record in the SAM file.

You can override this default behavior by running AriocE with a configuration file that specifies an SN=

value (for example, a chromosome name) in each <file> element in the .cfg file. (See the example on

page 16).

YT: AriocP assigns a 2-character "mapping type" (based on the YT field in Bowtie 2) to each SAM record:

YT Description

CP Concordant (meets user-specified criteria for mate orientation and fragment length)

DP Discordant (unique mapping that does not meet user-specified criteria for orientation

and fragment length)

RP Rejected (both mates mapped without meeting user-specified criteria for orientation

and fragment length, and one or both mates had multiple mappings)

UP Unmapped (one or both mates unmapped)

Paired end mapping types reported by AriocP.

Na: Because the Arioc aligners evaluate potential alignments in parallel, the number of mappings they

discover may be significantly greater than the number of mappings they report. The Na field indicates

the total number of distinct mappings that were found by the aligner.

Nb: In the scoring matrix computed for Smith-Waterman alignment, two or more different cells may

contain the same maximum alignment score. The Nb field records the number of different cells that

contained the same maximum score for the reported mapping.

c3: The c3 field contains a "triplet complexity" score for a FASTQ read sequence. This score estimates

the information content of a read sequence as a weighted sum of the counts of each three-base triplet

in the sequence based on the technique used in DUST [Morgulis et al, 2006]:

sum((ct*(ct-1))/2)

The score is normalized to the sequence length and represented as a phred score. Low-complexity

sequences have lower c3 scores; 95% of randomly generated short reads from the human reference

genome have c3 scores between 45 and 60. See the AriocE source code distribution for details.

id: The AriocE encoder assigns a unique 64-bit sequence identifier to each sequence it reads from a

FASTA or FASTQ file. The AriocU and AriocP aligners emit this unique identifier in the id field. The

identifiers are assigned in the order in which they are encountered in the input FASTA or FASTQ file,

although this ordering is not preserved in SAM output.

af, qf: These fields contain status flags used internally by the Arioc aligners.

Arioc User Guide page 30

SBF results

The binary format of SBF files generated by the Arioc aligners corresponds to the following SQL table

definition (where N is a placeholder for a user-specified maximum size for variable-length strings):

create table AriocSBFTable
(qname varchar(N) not null,
 flag smallint not null,
 rname smallint not null,
 pos int not null,
 mapq tinyint not null,
 cigar varchar(N) not null,
 rnext smallint not null,
 pnext int not null,
 tlen int not null,
 seq varchar(N) not null,
 qual varbinary(N) not null,
 sqId bigint not null,
 V smallint not null,
 XS smallint not null,
 NM smallint not null,
 MD varchar(N) not null,
 NA smallint not null,
 NB smallint not null,
 RG smallint not null,
 af smallint not null,
 qf smallint not null
)

SQL table definition corresponding to the Arioc SBF file format.

Arioc User Guide page 31

Tuning for speed and sensitivity
Like other short-read aligners, Arioc exhibits a decrease in speed when you configure it for higher

sensitivity. To discover acceptable mappings for read sequences that contain larger numbers of

mismatches and indels, the aligner computes more alignments and therefore runs more slowly:

The simplest way to mitigate this is to use more capable hardware! Increasing the number of GPU

threads available to Arioc increases overall throughput. You can accomplish this either by using multiple

GPU devices or by running Arioc on newer GPU hardware with a larger number of compute cores and a

higher degree of parallelism.

Before you process multiple samples with Arioc, we recommend that you perform a few test runs to

establish a reasonable balance between speed and sensitivity. Arioc supports a variety of parameters

you can use to control the tradeoff between speed and sensitivity.

The configuration files distributed with Arioc contain settings for reference-sequence encoding (AriocE)

and alignment (AriocU, AriocP) that are reasonable for the human reference genome and for typical

Illumina whole-genome sequencing (WGS) reads. You can use these settings as a starting point to adjust

Arioc's performance to the reference genome you are using and to the content of your own sequencer

reads.

The verboseMask= and maxQ= parameters

The verboseMask= parameter (used with the <AriocE>, <AriocU>, or <AriocP> element) controls the

amount of detail in the output of each of the Arioc executables. Specify the parameter value as a 32-bit

hexadecimal bitmap:

re
a

d
s/

se
c

% pairs mapped

Arioc

Bowtie 2

BWA-MEM

NVBIO

SOAP3-DP

Arioc User Guide page 32

Bit Hexadecimal Description

31 0x80000000 Output to stderr

30 0x40000000 Output to Windows debugger

29 0x20000000 Emit timestamps

11 0x00000800 Trace main loop iterations

10 0x00000400 Trace file open/close

9 0x00000200 Trace CUDA (GPU) memory management

8 0x00000100 Trace host (CPU) memory management

4 0x00000010 Detailed trace

3 0x00000008 Basic trace

2 0x00000004 Detailed performance metrics

1 0x00000002 Basic performance metrics

0 0x00000001 Banners and exceptions

Bit flags in the verboseMask= parameter.

For performance tuning, use verboseMask=0xE0000807 to see time-stamped intermediate results and

summary timings.

The readId= parameter (used with the <Q> element) limits read alignment computation to a specified

subset of the input reads. For example, <Q readId="0-999" ...> causes only the first 1,000 input reads

(or pairs) to be aligned.

Tuning for sensitivity

Arioc finds more high-scoring mappings when it evaluates potential alignments at more reference-

sequence locations. Here are several ways to broaden Arioc's "search space":

AriocE: The parameters provided in the sample configuration files for AriocE represent a reasonable

starting point for encoding the lookup tables used by AriocU and AriocP, but you can adjust the tradeoff

between speed and sensitivity by choosing alternative values for those parameters.

maxJ=. Build the seed-and-extend lookup table (hash table) with a higher value for maxJ= to increase

sensitivity at the expense of speed. The maxJ= parameter affects "big bucket" hash values, that is, seeds

that derive from highly repetitive regions and that are therefore associated with many reference-

sequence locations. Increasing maxJ= causes AriocU and AriocP to compute more potential alignments

for reads that contain "big bucket" seeds.

Increasing maxJ= has no effect on most hash table buckets because seeds that are not associated with

highly repetitive regions of the reference hash to comparatively few reference-sequence locations.

Thus, with increased maxJ=, AriocU and AriocP find additional mappings primarily for a few noisy reads.

(By "noisy", we mean that a read contains so many mismatches and indels that only a few of its seeds

remain intact. When those intact seeds happen to be associated with "big buckets" in the hash table,

the aligner is more likely to find a mapping when you use a larger value for maxJ=.)

Arioc User Guide page 33

AriocU and AriocP spend more time evaluating additional seed locations when they use a seed-and-

extend hash table built with larger values for maxJ= in AriocE. For example, with the human reference

genome, speed starts to decrease sharply with maxJ= values above 500 or 1000, with relatively small

improvements in sensitivity. With a larger, highly repetitive reference such as the bread wheat genome,

a maxJ= value of 100 or less may provide a better tradeoff between speed and sensitivity.

This effect is much less noticeable with the spaced-seed (nongapped) lookup table because the spaced-

seed alignment algorithm is much faster than the Smith-Waterman algorithm used in Arioc's seed-and-

extend (gapped) aligner. (More about this below.) If you do not notice a significant improvement in

speed by limiting maxJ= for the spaced-seed lookup table, then simply use maxJ="*" in AriocE.

seed=. AriocE supports a variety of seeds of different widths and bit encodings. The first part of each

seed name specifies the number of bases in the seed; the third part of the seed name specifies the

number of bits used to encode a seed's hash value. For example, seed="hsi20_0_30" represents 20-

base seeds encoded using 30-bit hash values.

If you want to increase the aligner's ability to find mappings for reads that contain a significant number

of differences from the reference genome – that is, with an "error rate" of 5% or more – you can

increase sensitivity by using shorter seeds (with, of course, a tangible decrease in speed). Conversely,

reads with typical Illumina error rates of 1% or less can be aligned with high sensitivity using longer

seeds (21 bases or higher).

You can also encode the reference lookup tables (hash tables) with up to 32-bit hash values. Larger

hash values (and their correspondingly larger lookup tables) provide additional sensitivity because there

are fewer hash collisions. You should use the largest hash tables that fit into available memory.

AriocU, AriocP: To obtain greater sensitivity from the AriocU and AriocP aligners, you can increase the

value of any or all of the following parameters:

Element Attribute Description

<nongapped> maxJ Per-seed maximum number of reference-genome locations at which to

compute nongapped alignments

<gapped> maxJ Per-seed maximum number of reference-genome locations at which to

compute gapped alignments

 AtO Per-read threshold for overall (nongapped + gapped) proper mappings

 seedDepth Number of seed iterations

Configuration parameters useful for AriocU and AriocP performance tuning.

To understand how to use these parameters, consider how the AriocU and AriocP aligners process each

read.

First, the aligner uses periodic spaced seeds to find nongapped mappings that contain no more than two

mismatches. The value of maxJ= sets an upper limit on the number of reference-genome locations at

which the aligner computes nongapped mappings (see above). Higher AtO= values cause the aligner to

compute alignments until it finds a greater number of proper mappings. In this way, the aligner may

Arioc User Guide page 34

discover additional high-scoring mappings for hard-to-map reads that contain multiple indels. The

additional mappings may also improve the accuracy of the aligner's mapping quality (MAPQ) estimates

because the aligner computes a lower MAPQ score for reads with multiple high-scoring mappings.

After searching for nongapped mappings, the aligner uses seed-and-extend to find gapped mappings for

the remaining reads (i.e., those that do not have the minimum number of proper mappings). For each

such read, the aligner iteratively chooses seeds, starting with the set of seeds that are immediately

adjacent to each other. (For example, with 20nt seeds, the aligner starts with the seeds at positions 0,

20, 40... in the read). If none of these seeds leads to a successful mapping, the seed interval is halved

and the new set of seeds is evaluated.

With typical seed sizes, six such "interval halving" iterations are needed to evaluate every possible seed

location in the read. You can alter this behavior by setting the seedDepth= parameter, which limits the

number of seed iterations to a number between 1 and 6. The Arioc aligners run significantly faster with

smaller values of seedDepth=, but they also find fewer high-scoring mappings for reads that contain

multiple differences from the reference genome. Also, as read length increases, more seeds are

generated in each iteration, so you may find that fewer seed iterations are needed to find enough

mappings for longer reads.

Arioc abandons the search for seed-and-extend mappings for a read when it discovers at least the

configured number of high-scoring mappings. Again, Arioc keeps searching for higher-scoring mappings

until it finds at least the number of mappings specified in AtO= (or until it runs out of seeds).

Because Arioc computes potential alignments in parallel, it cannot strictly respect the value specified for

AtO=. For example, even with the default setting of AtO="1", Arioc often finds multiple high-scoring

mappings for many reads because those mappings are all discovered in parallel.

AriocP: For paired-end reads, you can use the Vtw= parameter to specify a minimum reportable

alignment score for the special case where one mate of a pair maps may map within a region of high

variability in the reference genome. This lets AriocP report mappings in "hard-to-map" regions where

one mate maps only with an exceptionally low alignment score and the opposite, high-scoring mate

"anchors" the overall paired mapping.

A reasonable value for Vtw= is roughly 15% of the alignment score for a perfect mapping. This obviously

permits AriocP to report mappings with a considerable number of mismatches and/or indels, but in

general this special case occurs infrequently enough that there should be little adverse effect on overall

speed.

Tuning for speed

Arioc runs faster when it searches for fewer mappings. In general, choosing lower values for the same

set of tuning parameters leads to higher throughput.

AriocE: Build the seed-and-extend hash table with a lower value for maxJ=. This causes AriocE to be

more aggressive in identifying "big bucket" regions of the reference genome and pruning the hash table

accordingly. You can use values for maxJ= as low as 16 and still obtain acceptable alignment results with

AriocU and AriocP.

Arioc User Guide page 35

AriocU, AriocP: The AriocU and AriocP aligners also require the maxJ= parameter. (Use maxJ= on the

<nongapped> and <gapped> elements in the configuration file.) In the aligners, maxJ= specifies a limit to

the number of reference-sequence locations that the aligners examine for each seed. Changing maxJ=

has little effect when used with the nongapped aligner (which is very fast anyway) but using lower

values for maxJ= can tangibly increase the speed of the gapped aligner.

You can also increase throughput by using smaller values for the seedDepth= and AtO= parameters.

• seedDepth: AriocU and AriocP iterate through overlapping subsets of the seeds for each read

sequence. By limiting the number of iterations, you limit the number of reference-sequence

locations at which each read can potentially be mapped.

• AtO: this parameter specifies the minimum number of overall (nongapped plus gapped)

mappings that AriocU or AriocP must find for a read before it stops computing alignments for

the read. The default value (AtO="1") favors speed but can overestimate MAPQ for some reads

that actually have two or more high-scoring mappings. Consider using larger values if you prefer

to avoid this inaccuracy or if you want the aligner to report secondary mappings for such reads.

As you decrease these parameter values, you may notice that speed is limited by factors other than the

intrinsic speed of the aligners. Disk I/O bandwidth and contention for the PCIe bus can each limit overall

throughput, especially when you run AriocU or AriocP on multiple GPUs.

Multiple input files

It is possible to align multiple input files (or, more exactly, pairs of input files) by using the subId= and

mate= attributes of the <paired> or <unpaired> element in the configuration file. This may provide a

marginal improvement in overall speed because GPU initialization, which takes several minutes in some

computers, is performed only once.

Nevertheless, you should exercise caution when you align multiple input files (or pairs of input files)

because AriocE cannot recognize different layouts among the input files. For example, files that

originate from different sequencer runs may use a different bias to encode base quality scores (e.g., 33

for Sanger, 64 for Illumina v1.3 and later), but AriocU and AriocP cannot recognize this on the fly.

It is preferable simply to encode and align one sequencer run at a time.

Extra ("X") parameters

AriocU and AriocP recognize several additional configuration parameters that may be useful for

optimizing performance with certain hardware configurations.

The X parameters are documented in file Xparams.txt in the Arioc.RQA.zip archive.

GPU-specific builds

More recent iterations of the Nvidia GPU microarchitecture support a more powerful instruction set

than do older Nvidia GPUs. Nvidia identifies instruction set versions with an identifier it calls the

"compute capability." For example, the Kepler K80 device, released in 2014, has compute capability 3.7,

whereas the V100 GPU, released in 2017, has compute capability 7.0. (Complete lists of compute

capabilities for all CUDA-enabled Nvidia GPUs are available online.)

Arioc User Guide page 36

To ensure broad hardware compatibility, the makefile shipped with the Linux distribution of Arioc

specifies that the Nvidia compiler generate code that targets an older (lower-numbered) compute

capability. If you will be using Arioc with a GPU with a more recent (higher-numbered) compute

capability, you can build AriocU and AriocP specifically for that hardware by specifying an additional

parameter, CUDA_CC, on the make command line. For example, to target V100 GPUs, you could build

AriocP like this:

make AriocP CUDA_CC=70

The resulting executable binary will be incompatible with GPU devices that do not support the targeted

compute capability, but it may run up to 5% faster on the same GPU device than a binary that is built for

an older (lower-numbered) compute capability.

Arioc User Guide page 37

Tuning for variant calling
Arioc can be used in a variant-calling toolchain with results comparable to those obtained with aligners

such as BWA-MEM or Bowtie 2. For example, here are typical results with GIAB HG002 "difficult-to-map

regions" using the GATK v4.2.6.1 HaplotypeCaller, GATK VariantFiltration with recommended "generic"

filtration parameters, and hap.py:

BWA-MEM2 v2.2.1

Type Filter METRIC.Recall METRIC.Precision METRIC.F1_Score

INDEL ALL 0.991472 0.989025 0.990247

INDEL PASS 0.991431 0.989787 0.990608

SNP ALL 0.992490 0.984448 0.988453

SNP PASS 0.989958 0.992017 0.990987

Arioc v1.51

Type Filter METRIC.Recall METRIC.Precision METRIC.F1_Score

INDEL ALL 0.991882 0.989013 0.990445

INDEL PASS 0.991832 0.989840 0.990835

SNP ALL 0.992938 0.984200 0.988549

SNP PASS 0.989979 0.992634 0.991305

For a given set of whole genome sequencing reads, Arioc, BWA, and Bowtie generally produce the same

set of alignments. However, the aligners differ in details that can influence the performance of

downstream variant callers:

Alignment scores for hard-to-align mates: Short-read sequences that vary considerably from the

reference genome generally contain many mismatches and/or indels – but such mappings may be of

particular interest for variant calling. You can cause AriocP to report such mappings for mates whose

opposite mate has a high alignment score by specifying the Vtw= parameter (see page 26.)

Alignment scoring weights can influence variant calling performance: In high-variability, hard-to-map

regions that contain numerous mismatches, small adjustments to scoring weights can affect variant-

calling recall and precision. For example, using Wmxgs="2,8,5,3" penalizes mismatches more than Arioc's

default "2,6,5,3" does; with HG002 and GRCh38, using this higher mismatch penalty weight results in

incrementally improved precision at the cost of a slight decrease in runtime speed.

MAPQ computation: Mapping quality (MAPQ), the probability that a given read is mapped to the wrong

place in the reference genome, is an essential component in computing the probability that a variant is

correctly reported. However, every short-read aligner computes MAPQ using a probabilistic model that

is heuristically "tuned" to the details of the aligner's implementation.

Arioc's MAPQ model has been validated with a recent version (v4.2.6.1) of the GATK HaplotypeCaller

using reads and variant-call references for HG002 and Arioc's default MAPQ model (mapqVersion="0").

To fine-tune Arioc's MAPQ model, you can specify the subRate= parameter in the AriocU or AriocP

configuration file to indicate the expected base substitution rate in your short-read data. (The

"substitution rate" is the overall percentage of bases in read sequences that are expected to differ from

Arioc User Guide page 38

the corresponding bases in the reference genome.) By default, Arioc uses subRate="0.25" (0.25%).

You can confirm the actual substitution rate for properly mapped reads by examining Arioc's output.

TLEN distribution: The fragment lengths for paired-end mappings (reported in the TLEN field in

SAM/BAM format) typically have a right-skewed, non-symmetric distribution, so it is important to verify

that you configure AriocP with an appropriate range of TLEN values.

Arioc's default criteria for proper (concordant) mappings include a minimum TLEN of 0 and a maximum

TLEN of 1000 (pairFragmentLength="0-1000"). Although these are acceptable TLEN criteria for most

Illumina paired-end sequencing experiments, they are not universally optimal. If the configured range is

too large for the actual distribution of fragment lengths in the reads, AriocP reports a certain number of

proper mappings that should be considered outliers; if the range is too small, AriocP reports too few

proper mappings (and runs slower as it searches for mappings that fall within the fragment-length

range).

AriocP's output includes several TLEN-related statistics that help you confirm that you are using an

appropriate range for the pairFragmentLength= parameter:

TLEN mean and

standard deviation

Compare with expected mean and standard deviation

TLEN distribution TLEN histogram for all pairs considered by the aligner as being

potential proper (concordant) mappings, regardless of

whether they are ultimately reported as proper mappings

TLEN-discordant pairs Number and percentage of mappings not classified as

concordant because TLEN was outside the range specified in

the pairFragmentLength= parameter; should generally be

<= 0.01%

Arioc User Guide page 39

BS-seq alignment
The Arioc aligners natively support alignment of bisulfite-treated DNA reads. By "natively" we mean

that the additional logic involved in computing BS-seq alignments is integrated into Arioc. Although this

approach allows for significant GPU acceleration of the code as well as increased sensitivity [Wilton et

al., 2017], Arioc nevertheless aligns BS-seq reads several times more slowly than it does non-bisulfite-

treated reads of similar length.

Arioc's BS-seq functionality is compatible with that of the Bismark aligner [Krueger and Andrews, 2011].

In particular, AriocU and AriocP produce SAM-formatted output that is recognized by Bismark's

downstream processing tools, so Arioc is functionally compatible with Bismark in a BS-seq read-

processing workflow.

Preparing for BS-seq alignment

In terms of sequencer output, bisulfite-treated DNA sequences represent a six-letter alphabet using only

five letters, so T in a BS-seq read may represent either cytosine or thymine in the original DNA sequence:

 original DNA sequencer read

adenine A A

cytosine C T

methylcytosine Cm C

guanine G G

thymine T T

(unknown) N N

The Arioc aligners use hash tables in which the reference sequence (genome) is similarly encoded. They

then disambiguate Ts in each mapped sequence by comparing them to the corresponding base in the

original reference sequence.

To encode the reference sequence for BS-seq alignment, specify a CT-converted seed type in the seed=

attribute of the <AriocE> element when you execute AriocE. For example, the following creates a

gapped (spaced seed) hash table with seeds of length 25:

<AriocE seed="hsi25_0_30_CT" maxJ="200">

(See also Encoding a reference sequence, page 15.)

Running the aligner

When executed using CT-converted hash tables, the Arioc aligners use CT-converted lookup tables to

identify reference genome alignment locations, compute mappings, and report methylcytosines in

context. The following configuration file illustrates how to accomplish this:

Arioc User Guide page 40

<?xml version="1.0" encoding="utf-8"?>

<AriocU gpuMask="0x0007" batchSize="8K" verboseMask="0xE0000007">

 <R>C:\data\raid5-2\BulkData\R\NCBI\GRCh38.p6\maxJ 2048</R>

 <nongapped seed="ssi84_2_30_CT" maxJ="*" />

 <gapped seed="hsi25_0_30_CT" maxJ="200" Wmxgs="2_6_5_3" Vt="L,-50,2" />

 <Q filePath="C:\data\data2\BulkData\Q\Sherman">
 <unpaired srcId="1" subId="1">
 <file>test00</file>
 </unpaired>
 </Q>

 <sam report="mu">C:\data\data2\BulkData\A\Sherman</sam>

</AriocU>

BS-seq configuration file for AriocU.

In the above example, the cigarFormat= attribute of the <A> element specifies the SAM CIGAR

encoding style recognized by Bismark's bismark_methylation_extractor.

Additional SAM output fields for BS-seq reads

When computing BS-seq alignments, Arioc emits three additional fields in SAM-formatted output:

Field name Description

XM Methylation context map

XR Reference-sequence encoding (always CT)

XG Read sequence encoding (CT or GA)

Additional tab-separated fields in Arioc SAM files for BS-seq alignments.

These three fields are modeled after the identically named fields in SAM output from the Bismark read

aligner. Although the format of each field in Arioc SAM output matches the Bismark format, there are

small differences in the way the fields are generated.

The XM field is a character map of the position of each methylcytosine (Cm) identified by the read aligner.

For each mapped read, Arioc encodes the methylation context for each cytosine by examining the two

symbols that follow it in the read sequence:

XM encoding methylation context symbols following C

Z, z CpG G

H, h CAG, CTG, CCG AA AC AT CA CC CT TA TC TT

X, x CHG AG CG TG

U, u unknown N AN CN TN (or end of read)

Uppercase letters (ZHXU) represent methylcytosine. Lowercase letters (zhxu) represent unmethylated

cytosine.

Arioc User Guide page 41

Arioc differs from Bismark in that AriocP and AriocU determine methylation context exclusively by

examining the read sequence, whereas Bismark always uses the corresponding reference sequence and

ignores the bases in the read that follow each cytosine. Consequently, there are observable differences

between the XM maps generated by Bismark and by Arioc for identically mapped reads:

• If a cytosine appears at the end of a read sequence, Arioc cannot determine a methylation

context for it and therefore reports it as U or u.

• Where the read sequence contains a variation from the reference genome (mismatch or indel),

Arioc may report a different methylation context than Bismark would. This can happen due to

true biological variation, but it can also occur in bases associated with low base quality scores

(BQS). The xmBQS= parameter specifies the BQS threshold at which Arioc reports each

methylation context. If you specify a non-zero threshold value for xmBQS=, Arioc will report a

methylation context as "unknown" if any of the corresponding bases in the read sequence have

sub-threshold BQS.

Arioc also gives you the option to exclude or include soft-clipped bases in the analysis of methylation

context:

CIGAR 69M6S
reference ATGCTAATCATAAATCATATTAATTTAATCATTTATGCACATTATAAACAATATTACTATCAATAAACT

 |||||||||||||||| ||
read ATGTTAATTATAAATTGTATTAATTTAATTATTTATGTATATTATAAATAATATTATTATTAATAAATTCCTCCN

Arioc XM ...h....h......z.............h.......h.h........h.......h...h......h.......
Bismark XM ...h....h......h.............h.......h.h........h.......h...h......u.......

For the methylation context highlighted in yellow, Arioc's XM map contains z (unmethylated C in CpG

context) because Arioc uses the read sequence to determine the methylation context; Bismark would

report h (unmethylated C in CHH context) because it uses the reference sequence to infer the

methylation context. In the soft-clipped region highlighted in green, both Arioc and Bismark exclude the

methylated Cs from the XM map.

In Arioc, you can override this behavior and include soft-clipped Cs by specifying xmClip="false" in the

<A> element of the Arioc configuration file:

reference ATGCTAATCATAAATCATATTAATTTAATCATTTATGCACATTATAAACAATATTACTATCAATAAACT
 |||||||||||||||| ||

read ATGTTAATTATAAATTGTATTAATTTAATTATTTATGTATATTATAAATAATATTATTATTAATAAATTCCTCCN
Arioc XM ...h....h......z.............h.......h.h........h.......h...h......h.HH.UU.

Although Arioc does not use the same approach as Bismark to index the reference genome for

computing BS-seq alignments, it emits XG and XR fields for each mapped read that correspond to those

generated by Bismark. This maintains compatibility with the bismark_methylation_extractor tool.

In practice, with high-quality BS-seq reads, both Bismark and Arioc produce nearly identical methylation

context calls. The optional xmClip= and xmBQS= parameters should not be used unless downstream

analysis indicates that Arioc's default behavior does not lead to optimal methylation context calls.

Arioc User Guide page 42

Troubleshooting
We test each Arioc release against full-size human WGS and WGBS data samples to validate its

functionality and measure its performance, but we cannot guarantee that the software is entirely free

from bugs and other problems with functionality. Here are some suggestions for troubleshooting

problems you encounter with the Arioc software:

• Ensure that Arioc operates correctly with the sample reference and read data that we provide.

These data are downloadable in the Arioc.RQA.151.zip archive. You should be able to

complete an end-to-end test of the software (AriocE, AriocU, and AriocP) in 10 to 15 minutes.

• Use the verboseMask= parameter to generate trace and debugging information. A setting of

verboseMask="0xE0000007" is a good place to start.

• Do a debug build of the Arioc software and add additional verboseMask= flags to obtain more

detailed trace information (see Tuning for speed and sensitivity, page 31).

• Use the public source-code repository (https://github.com/RWilton/Arioc) to let us know about

the problem. You may also contact us directly (richard.wilton@jhu.edu).

Arioc User Guide page 43

References
Altschul SF et al. (1990) Basic Local Alignment Search Tool. J Mol Biol 215, 403-410.

Anderson M et al. (2011) Considerations when evaluating microprocessor platforms. Proceedings of

the 3rd USENIX conference on hot topics in parallelism.

Frith MC. (2020) How sequence alignment scores correspond to probability models. Bioinformatics

36:408–415.

Illumina Corporation. (2015) CASAVA v1.8 User Guide. Available at http://support.illumina.com/

help/SequencingAnalysisWorkflow/Content/Vault/Informatics/Sequencing_Analysis/CASAVA/swSEQ_m

CA_FASTQFiles.htm.

Krueger F, Andrews SR. (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq

applications. Bioinformatics 27:11.

Langmead B, Salzberg S. (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357-359.

Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv

1303.3997v1.

Liu Y et al. (2013) CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling

CPU and GPU SIMD instructions. BMC Bioinformatics 14:117.

Morgulis et al. (2006) A fast and symmetric DUST implementation to mask low-complexity DNA

sequences. J Comp Biol 13, 1028-1040

SAM/BAM Format Specification Working Group. (2020) Sequence Alignment/Map Format Specification.

Available at https://samtools.github.io/hts-specs/SAMv1.pdf.

SAM/BAM Format Specification Working Group. (2020) Sequence Alignment/Map Optional Fields

Specification. Available at https://samtools.github.io/hts-specs/SAMtags.pdf.

Smith TF, Waterman MS. (1981) Identification of common molecular subsequences. J Mol Biol 147,

195-197.

Ukkonen E. (1983) On approximate string matching. Springer: Foundations of Computer Theory,

Lecture Notes on Computer Science 158, 487–495.

Wilton R et al. (2015) Arioc: high-throughput read alignment with GPU-accelerated exploration of the

seed-and-extend search space. PeerJ 3:e808; DOI 10.7717/peerj.808

Wilton R et al. (2018) Arioc: GPU-accelerated alignment of bisulfite-treated short-read sequences.

Bioinformatics 34:2673–2675; DOI 10.1093/bioinformatics/bty167

Wilton R, Szalay AS. (2022) Performance optimization in DNA short-read alignment. Bioinformatics

38:2081–2087; DOI 10.1093/bioinformatics/btac066

