

[Public]

AMD HIP Programming
Guide

 Publication # 1.0 Revision: 1210
 Issue Date: December 2021

© 2021-22 Advanced Micro Devices, Inc. All Rights Reserved.

[Public]

DISCLAIMER
The information contained herein is for informational purposes only, and is subject to change without notice. In addition, any stated support is
planned and is also subject to change. While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro
Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no
liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any
intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth
in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

* AMD®, the AMD Arrow logo, AMD Instinct™, Radeon™, ROCm® and combinations
* thereof are trademarks of Advanced Micro Devices, Inc. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
* PCIe® is a registered trademark of PCI-SIG Corporation. Other product names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

[Public]

[This page is left blank intentionally]

4 Introduction Chapter 1

[Public]

Table of Contents
Table of Contents .. 4

Chapter 1 Introduction ... 8

1.1 Features ... 8

1.2 Accessing HIP ... 8

1.2.1 Release Tagging .. 9

1.3 HIP Portability and Compiler Technology.. 9

Chapter 2 Installing HIP ... 10

2.1 Installing Pre-built Packages ... 10

2.2 Prerequisites .. 10

2.3 AMD Platform... 10

2.4 NVIDIA Platform .. 10

2.5 Building HIP from Source... 11

2.5.1 Get HIP Source Code .. 11

2.5.2 Set Environment Variables .. 11

2.5.3 Build HIP ... 11

2.5.4 Default paths and environment variables .. 12

2.6 Verifying HIP Installation ... 12

Chapter 3 Programming with HIP .. 13

3.1 HIP Terminology... 13

3.2 Getting Started with HIP API.. 14

3.2.1 HIP API Overview .. 14

3.2.2 HIP API Examples .. 14

3.3 Introduction to Memory Allocation .. 15

3.3.1 Host Memory ... 15

3.3.2 Memory allocation flags .. 15

3.3.3 NUMA-aware host memory allocation ... 16

3.3.4 Managed memory allocation ... 16

3.3.5 HIP Stream Memory Operations ... 17

3.3.6 Coherency Controls ... 17

3.3.7 Visibility of Zero-Copy Host Memory .. 18

3.4 HIP Kernel Language .. 22

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 1 Introduction 5

[Public]

3.4.1 Function-Type Qualifiers ... 22

3.4.2 Variable-Type Qualifiers ... 24

3.4.3 Built-In Variables... 25

3.4.4 Vector Types .. 26

3.4.5 Memory-Fence Instructions ... 27

3.4.6 Synchronization Functions... 27

3.4.7 Math Functions .. 27

3.4.8 Device-Side Dynamic Global Memory Allocation.. 52

3.4.9 __launch_bounds__ ... 53

3.4.10 Register Keyword .. 55

3.4.11 Pragma Unroll .. 55

3.4.12 In-Line Assembly... 55

3.4.13 C++ Support ... 56

3.4.14 Kernel Compilation .. 56

3.4.15 gfx-arch-specific-kernel ... 56

3.5 ROCm Code Object Tooling ... 57

3.5.1 roc-obj .. 57

3.5.2 Low-Level Tooling .. 58

3.6 HIP Logging .. 60

3.6.1 HIP Logging Level .. 60

3.6.2 HIP Logging Mask ... 60

3.6.3 HIP Logging Command ... 61

3.6.4 HIP Logging Example ... 61

3.6.5 HIP Logging Tips .. 63

3.7 Debugging HIP .. 64

3.7.1 Debugging tools ... 64

3.7.2 Debugging HIP Applications ... 66

3.7.3 Useful Environment Variables ... 67

3.7.4 General Debugging Tips .. 70

3.8 HIP Version ... 70

Chapter 4 Transiting from CUDA to HIP ... 72

4.1 Transition Tool: HIPIFY ... 72

6 Introduction Chapter 1

[Public]

4.1.1 Sample and Practice .. 72

4.2 HIP Porting Process .. 73

4.2.1 Porting a New CUDA Project ... 73

4.2.2 Distinguishing Compiler Modes ... 75

4.2.3 Compiler Defines: Summary ... 76

4.3 Identifying Architecture Features.. 77

4.3.1 HIP_ARCH Defines .. 77

4.3.2 Device-Architecture Properties ... 77

4.3.3 Table of Architecture Properties ... 78

4.3.4 Finding HIP ... 79

4.3.5 Identifying HIP Runtime ... 79

4.3.6 hipLaunchKernel ... 79

4.3.7 Compiler Options .. 80

4.3.8 Linking Issues ... 81

4.4 Linking Code with Other Compilers ... 81

4.4.1 libc++ and libstdc++ ... 81

4.4.2 HIP Headers (hip_runtime.h, hip_runtime_api.h) ... 82

4.4.3 Using a Standard C++ Compiler ... 82

4.4.4 Choosing HIP File Extensions .. 83

4.5 Workarounds ... 84

4.5.1 memcpyToSymbol .. 84

4.5.2 CU_POINTER_ATTRIBUTE_MEMORY_TYPE .. 85

4.5.3 threadfence_system ... 85

4.5.4 Textures and Cache Control .. 85

4.6 More Tips .. 86

4.6.1 HIP Logging .. 86

4.6.2 Debugging hipcc ... 86

4.6.3 Editor Highlighting ... 86

4.7 HIP Porting Driver API ... 86

4.7.1 Porting CUDA Driver API .. 86

4.7.2 cuModule API ... 87

4.7.3 cuCtx API .. 87

4.7.4 HIP Module and Ctx APIs .. 88

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 1 Introduction 7

[Public]

4.7.5 hipCtx API ... 88

4.7.6 hipify translation of CUDA Driver API... 88

4.8 HIP-Clang Implementation Notes ... 89

4.8.1 .hip_fatbin .. 89

4.8.2 Initialization and Termination Functions ... 89

4.8.3 Kernel Launching... 89

4.8.4 Address Spaces .. 90

4.8.5 Using hipModuleLaunchKernel... 90

4.8.6 Additional Information .. 90

4.9 NVCC Implementation Notes .. 90

4.9.1 Interoperation between HIP and CUDA Driver... 90

4.9.2 Compilation Options .. 90

4.9.3 HIP Module and Texture Driver API... 92

Chapter 5 Appendix A – HIP API .. 94

5.1 HIP API Guide ... 94

5.2 HIP-Supported CUDA API Reference Guide ... 94

5.3 Supported HIP Math APIs ... 94

Chapter 6 Appendix C ... 95

6.1 HIP FAQ .. 95

8 Introduction Chapter 1

[Public]

Chapter 1 Introduction

HIP is a C++ Runtime API and kernel language that allows developers to create portable
applications for AMD and NVIDIA GPUs from a single source code.

1.1 Features
The key features are:

• HIP has little or no performance impact over coding directly in the CUDA mode.

• HIP allows coding in a single-source C++ programming language, including features such

as

o Templates

o C++11 lambdas

o Classes

o namespaces.

• HIP allows developers to use the development environment and tools on each target

platform.

• The HIPify tool to automatically convert sources from CUDA to HIP.

• Developers can specialize in the platform (CUDA or AMD) to tune for performance.

New projects can be developed directly in the portable HIP C++ language and run on either
NVIDIA or AMD platforms. Additionally, HIP provides porting tools, making it easy to port
existing CUDA codes to the HIP layer, with no loss of performance compared to the original
CUDA application. Thus, you can compile the HIP source code to run on either platform and
isolate some features to a specific platform using conditional compilation.

NOTE: HIP is not intended to be a drop-in replacement for CUDA, and developers should expect
to do some manual coding and performance tuning work to complete the port.

1.2 Accessing HIP
HIP is open source in GitHub, and the repository maintains the following branches.

• Develop branch: This is the default branch, which consists of new features still under

development.

CAUTION: This branch and its features may be unstable.

• Main branch: This is the stable branch and is up to date with the latest release branch. For

example, if the latest HIP release is rocm-4.1.x, the main repository is based on this

release.

• Release branch: The release branch corresponds to each ROCM release listed with release

tags, such as rocm-4.0.x, rocm-4.1.x, and others.

For more information, refer to https://github.com/ROCm-Developer-Tools/HIP

https://github.com/ROCm-Developer-Tools/HIP

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 1 Introduction 9

[Public]

1.2.1 Release Tagging

HIP releases consist of naming conventions for each ROCM release to help differentiate them. For
example, rocm x.yy, where x.yy reflects the ROCm release number.

1.3 HIP Portability and Compiler Technology
HIP C++ code can be compiled with either AMD or NVIDIA GPUs. On the AMD ROCm
platform, HIP provides a header and runtime library built on top of the HIP-Clang compiler. The
HIP runtime implements HIP streams, events, and memory APIs, and is an object library that is
linked with the application.

On the NVIDIA CUDA platform, HIP provides a header file, which translates from the HIP
runtime APIs to CUDA runtime APIs. The header file contains mostly inline functions and, thus,
has a very low overhead developers coding in HIP should expect the same performance as coding
in native CUDA. The code is then compiled with nvcc, the standard C++ compiler provided with
the CUDA SDK. Developers can use any tools supported by the CUDA SDK including the CUDA
profiler and debugger.

Thus, HIP provides source portability to either platform. HIP provides the hipcc compiler driver
which will call the appropriate toolchain depending on the desired platform. The source code for
all headers and the library implementation is available on GitHub.

10 Installing HIP Chapter 2

[Public]

Chapter 2 Installing HIP

2.1 Installing Pre-built Packages
You can install HIP with the package manager and the pre-built binary packages for your
platform.

2.2 Prerequisites
You can develop HIP code on the AMD ROCm platform using the HIP-Clang compiler and on a
CUDA platform with nvcc.

2.3 AMD Platform
HIP is installed with the ROCm driver package. For more information on HIP installation
instructions, refer to the ROCm Installation Guide at

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

Note, HIP-Clang is the compiler for compiling HIP programs on the AMD platform.

2.4 NVIDIA Platform
HIP-nvcc is the compiler for HIP program compilation on the NVIDIA platform.

• Add the ROCm package server to your system as per the OS-specific guide available here.

• Install the "hip-nvcc" package. This will install CUDA SDK and the HIP porting layer.

apt-get install hip-nvcc
Default Paths and Environment Variables

• By default, HIP looks for CUDA SDK in /usr/local/cuda (can be overriden by setting

CUDA_PATH env variable).

• By default, HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH

environment variable).

• Optionally, consider adding /opt/rocm/bin to your path to make it easier to use the tools.

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
https://rocm.github.io/ROCmInstall.html#installing-from-amd-rocm-repositories

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 2 Installing HIP 11

[Public]

2.5 Building HIP from Source
2.5.1 Get HIP Source Code

git clone -b rocm-4.5.x https://github.com/ROCm-Developer-Tools/hipamd.git
git clone -b rocm-4.5.x https://github.com/ROCm-Developer-Tools/hip.git
git clone -b rocm-4.5.x https://github.com/ROCm-Developer-Tools/ROCclr.git
git clone -b rocm-4.5.x https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime.git

2.5.2 Set Environment Variables

export HIPAMD_DIR="$(readlink -f hipamd)"
export HIP_DIR="$(readlink -f hip)"
export ROCclr_DIR="$(readlink -f ROCclr)"
export OPENCL_DIR="$(readlink -f ROCm-OpenCL-Runtime)"

HIP uses Radeon Open Compute Common Language Runtime (ROCclr), a virtual device interface
defined on the AMD platform, and HIP runtimes that interact with different backends. For more
information, see

https://github.com/ROCm-Developer-Tools/ROCclr

The HIPAMD repository provides implementation specifically for the AMD platform. For more
details, see

https://github.com/ROCm-Developer-Tools/hipamd

2.5.3 Build HIP

cd "$HIPAMD_DIR"
mkdir -p build; cd build
cmake -DHIP_COMMON_DIR=$HIP_DIR -DAMD_OPENCL_PATH=$OPENCL_DIR -DROCCLR_PATH=$ROCCLR_DIR -
DCMAKE_PREFIX_PATH="/opt/rocm/" -DCMAKE_INSTALL_PREFIX=$PWD/install ..
make -j$(nproc)
sudo make install

NOTE: If you do not specify CMAKE_INSTALL_PREFIX, the HIP runtime is installed to
/opt/rocm/hip. By default, the release version of AMDHIP is built.

https://github.com/ROCm-Developer-Tools/ROCclr
https://github.com/ROCm-Developer-Tools/hipamd

12 Installing HIP Chapter 2

[Public]

2.5.4 Default paths and environment variables

• By default, HIP looks for HSA in /opt/rocm/hsa (can be overridden by setting HSA_PATH

environment variable).

• By default, HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH

environment variable).

• By default, HIP looks for clang in /opt/rocm/llvm/bin (can be overridden by setting

HIP_CLANG_PATH environment variable)

• By default, HIP looks for device library in /opt/rocm/lib (can be overridden by setting

DEVICE_LIB_PATH environment variable).

• Optionally, consider adding /opt/rocm/bin to your PATH to make it easier to use the tools.

• Optionally, set HIPCC_VERBOSE=7 to output the command line for compilation.

 After installation, ensure HIP_PATH points to /where/to/install/hip.

2.6 Verifying HIP Installation
1. Run hipconfig. Note, the instructions below assume a default installation path.

/opt/rocm/bin/hipconfig --full

2. Compile and run the square sample from:

https://github.com/ROCm-Developer-Tools/HIP/tree/main/samples/0_Intro/square

https://github.com/ROCm-Developer-Tools/HIP/tree/main/samples/0_Intro/square

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 13

[Public]

Chapter 3 Programming with HIP

3.1 HIP Terminology
Term Description

host, host cpu Executes the HIP runtime API and is capable of initiating kernel launches to one or more
devices.

default device Each host thread maintains a "default device". Most HIP runtime APIs (including
memory allocation, copy commands, kernel launches) do not use accept an explicit
device argument but instead implicitly use the default device. The default device can be
set with hipSetDevice.

active host thread Thread running the HIP APIs.

HIP-Clang Heterogeneous AMDGPU Compiler, with its capability to compile HIP programs on the
AMD platform. https://github.com/RadeonOpenCompute/llvm-project

hipify tools Tools to convert CUDA code to portable C++ code (https://github.com/ROCm-
Developer-Tools/HIPIFY).

ROCclr A virtual device interface that computes runtimes interact with different backends such as
ROCr on Linux or PAL on Windows. The ROCclr is an abstraction layer allowing
runtimes to work on both OSes without much effort.

For more information, see

https://github.com/ROCm-Developer-Tools/ROCclr

hipconfig Tool to report various configuration properties of the target platform.

nvcc nvcc compiler

https://github.com/RadeonOpenCompute/llvm-project
https://github.com/ROCm-Developer-Tools/ROCclr

14 Programming with HIP Chapter 3

[Public]

3.2 Getting Started with HIP API
3.2.1 HIP API Overview

The HIP API includes functions such as hipMalloc, hipMemcpy, and hipFree. Programmers
familiar with CUDA will also be able to quickly learn and start coding with the HIP API.
Compute kernels are launched with the ‘hipLaunchKernel’s macro call.

For more information, refer to the HIP API Guide at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

3.2.2 HIP API Examples

3.2.2.1 Example 1

Here is an example showing a snippet of the HIP API code:

hipMalloc(&A_d, Nbytes));
hipMalloc(&C_d, Nbytes));
hipMemcpy(A_d, A_h, Nbytes, hipMemcpyHostToDevice);
const unsigned blocks = 512;
const unsigned threadsPerBlock = 256;
hipLaunchKernel(vector_square, /* compute kernel*/
 dim3(blocks), dim3(threadsPerBlock), 0/*dynamic shared*/, 0/*stream*/, /*
launch config*/
 C_d, A_d, N); /* arguments to the compute kernel */
hipMemcpy(C_h, C_d, Nbytes, hipMemcpyDeviceToHost);

The HIP kernel language defines builtins for determining grid and block coordinates, math
functions, short vectors, atomics, and timer functions. It also specifies additional defines and
keywords for function types, address spaces, and optimization controls. For a detailed description,
see Section 3.4 in this document.

3.2.2.2 Example 2

Here’s an example of defining a simple ‘vector_square’ kernel.

template <typename T>
__global__ void
vector_square(T *C_d, const T *A_d, size_t N)
{
 size_t offset = (blockIdx.x * blockDim.x + threadIdx.x);
 size_t stride = blockDim.x * gridDim.x;
 for (size_t i=offset; i<N; i+=stride) {
 C_d[i] = A_d[i] * A_d[i];
 }
}

The HIP Runtime API code and compute kernel definition can exist in the same source file - HIP
takes care of generating host and device code appropriately.

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 15

[Public]

3.2.2.3 More HIP Examples

For more examples to learn and use HIP, see

https://github.com/ROCm-Developer-Tools/HIP/tree/main/samples

3.3 Introduction to Memory Allocation
3.3.1 Host Memory

hipHostMalloc allocates pinned host memory which is mapped into the address space of all GPUs
in the system. There are two use cases for this host memory:

• Faster HostToDevice and DeviceToHost Data Transfers: The runtime tracks the

hipHostMalloc allocations and can avoid some of the setup required for regular unpinned

memory. For exact measurements on a specific system, experiment with --unpinned and -

-pinned switches for the hipBusBandwidth tool.

• Zero-Copy GPU Access: GPU can directly access the host memory over the CPU/GPU

interconnect, without need to copy the data. This avoids the need for the copy, but during

the kernel access each memory access must traverse the interconnect, which can be tens

of times slower than accessing the GPU's local device memory. Zero-copy memory can be

a good choice when the memory accesses are infrequent (perhaps only once). Zero-copy

memory is typically "Coherent" and thus not cached by the GPU but this can be overridden

if desired and is explained in more detail below.

3.3.2 Memory allocation flags

hipHostMalloc always sets the hipHostMallocPortable and hipHostMallocMapped flags. Both
usage models described above use the same allocation flags, and the difference is in how the
surrounding code uses the host memory. See the hipHostMalloc API for more information.

hipHostMallocNumaUser is the flag to allow host memory allocation to follow NUMA policy set
by the user.

See hipHostMalloc API in the HIP API guide for more information,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

https://github.com/ROCm-Developer-Tools/HIP/tree/main/samples
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

16 Programming with HIP Chapter 3

[Public]

3.3.3 NUMA-aware host memory allocation

The Non-Uniform Memory Architecture (NUMA) policy determines how memory is allocated
and selects a CPU closest to each GPU.

NUMA also measures the distance between the GPU and CPU devices. By default, each GPU
selects a Numa CPU node that has the least NUMA distance between them; the host memory is
automatically allocated closest to the memory pool of the NUMA node of the current GPU device.

Note, using the hipSetDevice API with a different GPU provides access to the host allocation.
However, it may have a longer NUMA distance.

3.3.4 Managed memory allocation

HIP now supports and automatically manages Heterogeneous Memory Management (HMM)
allocation. The HIP application performs a capability check before making the managed memory
API call hipMallocManaged.

NOTE: The _managed_ keyword is unsupported currently.

For example,

int managed_memory = 0;
HIPCHECK(hipDeviceGetAttribute(&managed_memory,
 hipDeviceAttributeManagedMemory,p_gpuDevice));
if (!managed_memory) {
 printf ("info: managed memory access not supported on the device %d\n Skipped\n",
p_gpuDevice);
}
else {
 HIPCHECK(hipSetDevice(p_gpuDevice));
 HIPCHECK(hipMallocManaged(&Hmm, N * sizeof(T)));
. . .
}

NOTE: The managed memory capability check may not be necessary; however, if HMM is not
supported, then managed malloc will fall back to using system memory. Other managed memory
API calls will, then, have undefined behavior.

For more details on managed memory APIs, refer to HIP-API.pdf at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 17

[Public]

3.3.5 HIP Stream Memory Operations

HIP supports Stream Memory Operations to enable direct synchronization between Network
Nodes and GPU. The following APIs are added:

• hipStreamWaitValue32

• hipStreamWaitValue64

• hipStreamWriteValue32

• hipStreamWriteValue64

NOTE: CPU access to the semaphore's memory requires volatile keyword to disable CPU
compiler's optimizations on memory access.
For more details, please check the documentation HIP-API.pdf.

3.3.6 Coherency Controls

ROCm defines two coherency options for host memory:

• Coherent memory: Supports fine-grain synchronization while the kernel is running. For

example, a kernel can perform atomic operations visible to the host CPU or to other (peer)

GPUs. Synchronization instructions include threadfence_system and C++11-style atomic

operations. However, coherent memory cannot be cached by the GPU and thus may have

lower performance.

• Non-coherent memory: Can be cached by GPU but cannot support synchronization while

the kernel is running. Non-coherent memory can be optionally synchronized only at

command (end-of-kernel or copy command) boundaries. This memory is appropriate for

high-performance access when fine-grain synchronization is not required.

HIP provides the developer with controls to select which type of memory is used via allocation
flags passed to hipHostMalloc and the HIP_HOST_COHERENT environment variable. By
default, the environment variable HIP_HOST_COHERENT is set to 0 in HIP.

The control logic in the current version of HIP is as follows:

• No flags are passed in: the host memory allocation is coherent, the

HIP_HOST_COHERENT environment variable is ignored.

• hipHostMallocCoherent=1: The host memory allocation will be coherent, the

HIP_HOST_COHERENT environment variable is ignored.

• hipHostMallocMapped=1: The host memory allocation will be coherent, the

HIP_HOST_COHERENT environment variable is ignored.

• hipHostMallocNonCoherent=1, hipHostMallocCoherent=0, and hipHostMallocMapped=0:

The host memory will be non-coherent, the HIP_HOST_COHERENT environment variable

is ignored.

18 Programming with HIP Chapter 3

[Public]

• hipHostMallocCoherent=0, hipHostMallocNonCoherent=0, hipHostMallocMapped=0, but

one of the other HostMalloc flags is set:

o If HIP_HOST_COHERENT is defined as 1, the host memory allocation is coherent.

o If HIP_HOST_COHERENT is not defined, or defined as 0, the host memory allocation

is non-coherent.

• hipHostMallocCoherent=1, hipHostMallocNonCoherent=1: Illegal.

3.3.7 Visibility of Zero-Copy Host Memory

The coherent and non-coherent host memory visibility is described in the table below. Note, the
coherent host memory is automatically visible at synchronization points.

HIP API Synchronization
Effect

Fence Coherent Host
Memory
Visibility

Non-Coherent
Host Memory
Visibility

hipStreamSynchronize host waits for all
commands in the
specified stream to
complete

system-scope
release

yes yes

hipDeviceSynchronize host waits for all
commands in all
streams on the
specified device to
complete

system-scope
release

yes yes

hipEventSynchronize host waits for the
specified event to
complete

device-scope
release

yes depends - see the
description below

hipStreamWaitEvent stream waits for the
specified event to
complete

none yes no

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 19

[Public]

3.3.7.1 hipEventSynchronize

Developers can control the release scope for hipEvents. By default, the GPU performs a device-
scope acquire and release operation with each recorded event. This will make host and device
memory visible to other commands executing on the same device.

A stronger system-level fence can be specified when the event is created with
hipEventCreateWithFlags.

hipEventReleaseToSystem: Perform a system-scope release operation when the event is
recorded. This will make both Coherent and Non-Coherent host memory visible to other agents in
the system but may involve heavyweight operations such as cache flushing. Coherent memory
will typically use lighter-weight in-kernel synchronization mechanisms, such as an atomic
operation, and, thus, do not need to use hipEventReleaseToSystem.

hipEventDisableTiming: Events created with this flag do not record profiling data, thus,
providing optimal performance if used for synchronization.

NOTE: For HIP events in kernel dispatch using hipExtLaunchKernelGGL/hipExtLaunchKernel,
events passed in the API are not explicitly recorded and should only be used to get elapsed time
for that specific launch.

In case events are used across multiple dispatches, for example, start and stop events from
different hipExtLaunchKernelGGL/hipExtLaunchKernel call are treated as invalid unrecorded
events, and HIP displays an error "hipErrorInvalidHandle" from hipEventElapsedTime.

Summary and Recommendations

• Coherent host memory is the default and easiest to use since the memory is visible to the

CPU at specific synchronization points. This memory allows in-kernel synchronization

commands such as threadfence_system to work transparently.

• HIP/ROCm also supports cache host memory in the GPU using the "Non-Coherent" host

memory allocations. This can provide a performance benefit, but care must be taken to use

the correct synchronization.

3.3.7.2 Direct Dispatch

By default Direct Dispatch is enabled in the HIP runtime. With this feature, the conventional
producer-consumer model where the runtime creates a worker thread (consumer) for each HIP
Stream, where as the host thread (producer) enqueues commands to a command queue (per
stream) is no longer applicable.

For Direct Dispatch, the runtime would directly queue a packet to the AQL queue (user mode
queue to GPU) in case of Dispatch and some of the synchronization. This has shown to the total
latency of the HIP Dispatch API and latency to launch first wave on the GPU.

20 Programming with HIP Chapter 3

[Public]

In addition, eliminating the threads in runtime has reduced the variance in the dispatch numbers as
the thread scheduling delays and atomics/locks synchronization latencies are reduced.

This feature can be disabled via setting the following environment variable,
AMD_DIRECT_DISPATCH=0

3.3.7.3 HIP Runtime Compilation

HIP supports runtime compilation (hipRTC), the usage of which will provide the possibility of
optimizations and performance improvement compared with other APIs via regular offline static
compilation.

hipRTC APIs accept HIP source files in character string format as input parameters and create
handles of programs by compiling the HIP source files without spawning separate processes.

For more details on hipRTC APIs, refer to HIP-API.pdf

For an example on how to program HIP application using runtime compilation mechanism, see

https://github.com/ROCm-Developer-Tools/HIP/blob/main/tests/src/hiprtc/saxpy.cpp

The example shows how to program a HIP application using the runtime compilation mechanism.

3.3.7.4 HIP Graph

HIP Graph is supported. For more details, refer to the HIP API Guide at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

3.3.7.5 Device-Side Malloc

HIP-Clang currently does not support device-side malloc and free.

3.3.7.6 Use of Long Double Type

In HIP-Clang, the long double type is an 80-bit extended precision format for x86_64, which is
not supported by AMDGPU. HIP-Clang treats long double type as IEEE double type for
AMDGPU. Using long double type in HIP source code will not cause an issue as long as data of
long double type is not transferred between host and device. However, the long double type should
not be used as kernel argument type.

3.3.7.7 FMA and Contractions

By default, HIP-Clang assumes -ffp-contract=fast. For x86_64, FMA is off by default since the
generic x86_64 target does not support FMA by default. To turn on FMA on x86_64, either use -
mfma or -march=native on CPU's supporting FMA.

When contractions are enabled and the CPU has not enabled FMA instructions, the GPU can
produce different numerical results than the CPU for expressions that can be contracted.

https://github.com/ROCm-Developer-Tools/HIP/blob/main/tests/src/hiprtc/saxpy.cpp
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 21

[Public]

3.3.7.8 Use of _Float16 Type

If a host function is used between Clang (or hipcc) and gcc for x86_64, its definition is compiled
by one compiler, but a different compiler compiles the caller, _Float16 or aggregates containing
Float16 must not be used as a function argument or return type. This is due to the lack of a stable
ABI for _Float16 on x86_64. Passing _Float16 or aggregates containing _Float16 between clang
and gcc could cause undefined behavior.

3.3.7.9 Math Functions with Special Rounding Modes

HIP does not support math functions with rounding modes ru (round up), rd (round down), and rz
(round towards zero). HIP only supports math functions with rounding mode rn (round to nearest).
The math functions with postfixes _ru, _rd, and _rz are implemented the same way as those with
postfix _rn. They serve as a workaround to get programs using them compiled.

3.3.7.10 Creating Static Libraries

HIP-Clang supports generating two types of static libraries.

• The first type of static library does not export device functions, and only exports and

launches host functions within the same library. The advantage of this type is the ability to

link with a non-hipcc compiler such as gcc.

• The second type exports device functions to be linked by other code objects. However this

requires using hipcc as the linker.

In addition, the first type of library contains host objects with device code embedded as fat
binaries. It is generated using the flag --emit-static-lib. The second type of library contains
relocatable device objects and is generated using ar.

Here is an example to create and use static libraries:

• Type 1 using --emit-static-lib:

hipcc hipOptLibrary.cpp --emit-static-lib -fPIC -o libHipOptLibrary.a
gcc test.cpp -L. -lhipOptLibrary -L/path/to/hip/lib -lamdhip64 -o test.out

• Type 2 using system ar:

hipcc hipDevice.cpp -c -fgpu-rdc -o hipDevice.o
ar rcsD libHipDevice.a hipDevice.o
hipcc libHipDevice.a test.cpp -fgpu-rdc -o test.out

For more information, see samples/2_Cookbook/15_static_library/host_functions and
samples/2_Cookbook/15_static_library/device_functions.

22 Programming with HIP Chapter 3

[Public]

3.4 HIP Kernel Language
HIP provides a C++ syntax that is suitable for compiling most code that commonly appears in
compute kernels, including classes, namespaces, operator overloading, templates, and more.
Additionally, it defines other language features designed specifically to target accelerators, such as
the following:

• A kernel-launch syntax that uses standard C++, resembles a function call, and is portable

to all HIP targets

• Short-vector headers that can serve on a host or a device

• Math functions resembling those in the "math.h" header included with standard C++

compilers

• Built-in functions for accessing specific GPU hardware capabilities

This section describes the built-in variables and functions accessible from the HIP kernel. It is
intended for readers familiar with CUDA kernel syntax and who want to understand how HIP is
different.

The features are marked with one of the following keywords:

• Supported - HIP supports the feature with a CUDA-equivalent function

• Not supported - HIP does not support the feature

• Under development - the feature is under development but not yet available

3.4.1 Function-Type Qualifiers

3.4.1.1 __device__

The supported __device__ functions are:

• Executed on the device

• Called from the device only

The __device__ keyword can combine with the host keyword (see host).

3.4.1.2 __global__

The supported __global__ functions are:

• Executed on the device

• Called ("launched") from the host

HIP __global__ functions must have a void return type. See the Kernel Launch example for more
information.

HIP lacks dynamic-parallelism support, so __global__ functions cannot be called from the device.

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 23

[Public]

3.4.1.3 __host__

The supported __host__ functions are:

• Executed on the host

• Called from the host

__host__ can combine with __device__, in which case the function compiles for both the host and
device. These functions cannot use the HIP grid coordinate functions. For example, "threadIdx_x".
A possible workaround is to pass the necessary coordinate info as an argument to the function.
_host__ cannot combine with __global__.

HIP parses the __noinline__ and __forceinline__ keywords and converts them to the appropriate
Clang attributes.

3.4.1.4 Calling __global__ Functions

__global__ functions are often referred to as kernels, and calling one is termed launching the
kernel. These functions require the caller to specify an "execution configuration" that includes the
grid and block dimensions. The execution configuration can also include other information for the
launch, such as the amount of additional shared memory to allocate and the stream where the
kernel should execute. HIP introduces a standard C++ calling convention to pass the execution
configuration to the kernel in addition to the Cuda <<< >>> syntax.

• In HIP, kernels launch with either the <<< >>> syntax or the "hipLaunchKernel" function.

• The first five parameters to hipLaunchKernel are the following:

o symbol kernelName: the name of the kernel to launch. To support template kernels

that contain "," use the HIP_KERNEL_NAME macro. The hipify tools insert this

automatically.

o dim3 gridDim: 3D-grid dimensions specifying the number of blocks to launch.

o dim3 blockDim: 3D-block dimensions specifying the number of threads in each block.

o size_t dynamicShared: the amount of additional shared memory to allocate when

launching the kernel (see shared)

o hipStream_t: stream where the kernel should execute. A value of 0 corresponds to the

NULL stream (see Synchronization Functions).

• Kernel arguments must follow the five parameters

// Example pseudo code introducing hipLaunchKernel:
__global__ MyKernel(hipLaunchParm lp, float *A, float *B, float *C, size_t N)
{
...
}
MyKernel<<<dim3(gridDim), dim3(groupDim), 0, 0>>> (a,b,c,n);
// Alternatively, kernel can be launched by
// hipLaunchKernel(MyKernel, dim3(gridDim), dim3(groupDim), 0/*dynamicShared*/, 0/*stream), a,
b, c, n);

24 Programming with HIP Chapter 3

[Public]

The hipLaunchKernel macro always starts with the five parameters specified above, followed by
the kernel arguments. HIPIFY tools optionally convert CUDA launch syntax to hipLaunchKernel,
including conversion of optional arguments in <<< >>> to the five required hipLaunchKernel
parameters. The dim3 constructor accepts zero to three arguments and will by default initialize
unspecified dimensions to 1. See dim3. The kernel uses coordinate built-ins (thread*, block*,
grid*) to determine the coordinate index and coordinate bounds of the work item that is currently
executing. For more information, see Coordinate Built-Ins.

3.4.1.5 Kernel-Launch Example

// Example showing device function, __device__ __host__
// <- compile for both device and host
float PlusOne(float x)
{
 return x + 1.0;
}
__global__
void
MyKernel (const float *a, const float *b, float *c, unsigned N)
{
 unsigned gid = threadIdx.x; // <- coordinate index function
 if (gid < N) {
 c[gid] = a[gid] + PlusOne(b[gid]);
 }
}
void callMyKernel()
{
 float *a, *b, *c; // initialization not shown...
 unsigned N = 1000000;
 const unsigned blockSize = 256;
 MyKernel<<<dim3(gridDim), dim3(groupDim), 0, 0>>> (a,b,c,n);
 // Alternatively, kernel can be launched by
 // hipLaunchKernel(MyKernel, dim3(N/blockSize), dim3(blockSize), 0, 0, a,b,c,N);
}

3.4.2 Variable-Type Qualifiers

3.4.2.1 __constant__

The __constant__ keyword is supported. The host writes constant memory before launching the
kernel; from the GPU, this memory is read-only during kernel execution. The functions for
accessing constant memory (hipGetSymbolAddress(), hipGetSymbolSize(),
hipMemcpyToSymbol(), hipMemcpyToSymbolAsync(), hipMemcpyFromSymbol(),
hipMemcpyFromSymbolAsync()) are available.

3.4.2.2 __shared__

The __shared__ keyword is supported.

extern __shared__ allows the host to dynamically allocate shared memory and is specified as a
launch parameter.

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 25

[Public]

Previously, it was essential to declare dynamic shared memory using the
HIP_DYNAMIC_SHARED macro for accuracy, as using static shared memory in the same kernel
could result in overlapping memory ranges and data-races.

Now, the HIP-Clang compiler provides support for extern shared declarations, and the
HIP_DYNAMIC_SHARED option is no longer required.

3.4.2.3 __managed__

Managed memory, except the __managed__ keyword, is supported in HIP-combined host/device
compilation.

Support of __managed__ keyword is under development.

3.4.2.4 __restrict__

The __restrict__ keyword tells the compiler that the associated memory pointer will not alias with
any other pointer in the kernel or function. This feature can help the compiler generate better code.
In most cases, all pointer arguments must use this keyword to realize the benefit.

3.4.3 Built-In Variables

3.4.3.1 Coordinate Built-Ins

These built-ins determine the coordinate of the active work item in the execution grid. They are
defined in hip_runtime.h (rather than being implicitly defined by the compiler).

HIP Syntax CUDA Syntax

threadIdx.x threadIdx.x

threadIdx.y threadIdx.y

threadIdx.z threadIdx.z

blockIdx.x blockIdx.x

blockIdx.y blockIdx.y

blockIdx.z blockIdx.z

blockDim.x blockDim.x

blockDim.y blockDim.y

blockDim.z blockDim.z

gridDim.x gridDim.x

26 Programming with HIP Chapter 3

[Public]

HIP Syntax CUDA Syntax

gridDim.y gridDim.y

gridDim.z gridDim.z

3.4.3.2 warpSize

The warpSize variable is of type int and contains the warp size (in threads) for the target device.
Note that all current Nvidia devices return 32 for this variable, and all current AMD devices return
64. Device code should use the warpSize built-in to develop portable wave-aware code.

3.4.4 Vector Types

Note that these types are defined in hip_runtime.h and are not automatically provided by the
compiler.

3.4.4.1 Short Vector Types

Short vector types derive from the basic integer and floating-point types. They are structures
defined in hip_vector_types.h. The first, second, third, and fourth components of the vector are
accessible through the x, y, z, and w fields, respectively. All the short vector types support a
constructor function of the form make_<type_name>(). For example, float4 make_float4(float x,
float y, float z, float w) creates a vector of type float4 and value (x,y,z,w).

HIP supports the following short vector formats:

Signed Integers

• char1, char2, char3, char4

• short1, short2, short3, short4

• int1, int2, int3, int4

• long1, long2, long3, long4

• longlong1, longlong2, longlong3, longlong4

Unsigned Integers

• uchar1, uchar2, uchar3, uchar4

• ushort1, ushort2, ushort3, ushort4

• uint1, uint2, uint3, uint4

• ulong1, ulong2, ulong3, ulong4

• ulonglong1, ulonglong2, ulonglong3, ulonglong4

Floating Points

• float1, float2, float3, float4

• double1, double2, double3, double4

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 27

[Public]

3.4.4.2 dim3

dim3 is a three-dimensional integer vector type commonly used to specify grid and group
dimensions. Unspecified dimensions are initialized to 1.

typedef struct dim3 {
 uint32_t x;
 uint32_t y;
 uint32_t z;
 dim3(uint32_t _x=1, uint32_t _y=1, uint32_t _z=1) : x(_x), y(_y), z(_z) {};
};

3.4.5 Memory-Fence Instructions

HIP supports __threadfence() and __threadfence_block().

HIP provides a workaround for threadfence_system() under the HIP-Clang path. To enable the
workaround, HIP should be built with environment variable HIP_COHERENT_HOST_ALLOC
enabled.

Also, the kernels that use __threadfence_system() should be modified as follows:

• The kernel should only operate on finegrained system memory; which should be allocated

with hipHostMalloc().

• Remove all memcpy for those allocated finegrained system memory regions.

3.4.6 Synchronization Functions

The __syncthreads() built-in function is supported in HIP. The __syncthreads_count(int),
__syncthreads_and(int) and __syncthreads_or(int) functions are under development.

3.4.7 Math Functions

HIP-Clang supports a set of math operations callable from the device.

3.4.7.1 Single Precision Mathematical Functions

Following is the list of supported single-precision mathematical functions.

Function Supported
on Host

Supported
on Device

float acosf (float x)

Calculate the arc cosine of the input argument.

float acoshf (float x)

Calculate the nonnegative arc hyperbolic cosine of the input argument.

28 Programming with HIP Chapter 3

[Public]

Function Supported
on Host

Supported
on Device

float asinf (float x)

Calculate the arc sine of the input argument.

float asinhf (float x)

Calculate the arc hyperbolic sine of the input argument.

float atan2f (float y, float x)

Calculate the arc tangent of the ratio of first and second input arguments.

float atanf (float x)

Calculate the arc tangent of the input argument.

float atanhf (float x)

Calculate the arc hyperbolic tangent of the input argument.

float cbrtf (float x)

Calculate the cube root of the input argument.

float ceilf (float x)

Calculate ceiling of the input argument.

float copysignf (float x, float y)

Create value with given magnitude, copying sign of second value.

float cosf (float x)

Calculate the cosine of the input argument.

float coshf (float x)

Calculate the hyperbolic cosine of the input argument.

float erfcf (float x)

Calculate the complementary error function of the input argument.

float erff (float x)

Calculate the error function of the input argument.

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 29

[Public]

Function Supported
on Host

Supported
on Device

float exp10f (float x)

Calculate the base 10 exponential of the input argument.

float exp2f (float x)

Calculate the base 2 exponential of the input argument.

float expf (float x)

Calculate the base e exponential of the input argument.

float expm1f (float x)

Calculate the base e exponential of the input argument, minus 1.

float fabsf (float x)

Calculate the absolute value of its argument.

float fdimf (float x, float y)

Compute the positive difference between x and y.

float floorf (float x)

Calculate the largest integer less than or equal to x.

float fmaf (float x, float y, float z)

Compute x × y + z as a single operation.

float fmaxf (float x, float y)

Determine the maximum numeric value of the arguments.

float fminf (float x, float y)

Determine the minimum numeric value of the arguments.

float fmodf (float x, float y)

Calculate the floating-point remainder of x / y.

float frexpf (float x, int* nptr)

Extract mantissa and exponent of a floating-point value.

 x

30 Programming with HIP Chapter 3

[Public]

Function Supported
on Host

Supported
on Device

float hypotf (float x, float y)

Calculate the square root of the sum of squares of two arguments.

int ilogbf (float x)

Compute the unbiased integer exponent of the argument.

__RETURN_TYPE1 isfinite (float a)

Determine whether the argument is finite.

__RETURN_TYPE1 isinf (float a)

Determine whether the argument is infinite.

__RETURN_TYPE1 isnan (float a)

Determine whether the argument is a NaN.

float ldexpf (float x, int exp)

Calculate the value of x ⋅ 2exp.

float log10f (float x)

Calculate the base 10 logarithm of the input argument.

float log1pf (float x)

Calculate the value of loge(1 + x).

float logbf (float x)

Calculate the floating-point representation of the exponent of the input argument.

float log2f (float x)

Calculate the base 2 logarithm of the input argument.

float logf (float x)

Calculate the natural logarithm of the input argument.

float modff (float x, float* iptr)

Break down the input argument into fractional and integral parts.

 x

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 31

[Public]

Function Supported
on Host

Supported
on Device

float nanf (const char* tagp)

Returns "Not a Number" value.

x

float nearbyintf (float x)

Round the input argument to the nearest integer.

float powf (float x, float y)

Calculate the value of the first argument to the power of the second argument.

float remainderf (float x, float y)

Compute single-precision floating-point remainder.

float remquof (float x, float y, int* quo)

Compute single-precision floating-point remainder and part of quotient.

 x

float roundf (float x)

Round to nearest integer value in floating-point.

float scalbnf (float x, int n)

Scale floating-point input by an integer power of two.

__RETURN_TYPE1 signbit (float a)

Return the sign bit of the input.

void sincosf (float x, float* sptr, float* cptr)

Calculate the sine and cosine of the first input argument.

 x

float sinf (float x)

Calculate the sine of the input argument.

float sinhf (float x)

Calculate the hyperbolic sine of the input argument.

float sqrtf (float x)

Calculate the square root of the input argument.

32 Programming with HIP Chapter 3

[Public]

Function Supported
on Host

Supported
on Device

float tanf (float x)

Calculate the tangent of the input argument.

float tanhf (float x)

Calculate the hyperbolic tangent of the input argument.

float truncf (float x)

Truncate input argument to an integral part.

float tgammaf (float x)

Calculate the gamma function of the input argument.

float erfcinvf (float y)

Calculate the inverse complementary function of the input argument.

float erfcxf (float x)

Calculate the scaled complementary error function of the input argument.

float erfinvf (float y)

Calculate the inverse error function of the input argument.

float fdividef (float x, float y)

Divide two floating-point values.

float frexpf (float x, int *nptr)

Extract mantissa and exponent of a floating-point value.

float j0f (float x)

Calculate the value of the Bessel function of the first kind of order 0 for the input
argument.

float j1f (float x)

Calculate the value of the Bessel function of the first kind of order 1 for the input
argument.

float jnf (int n, float x)
Calculate the value of the Bessel function of the first kind of order n for the input
argument.

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 33

[Public]

Function Supported
on Host

Supported
on Device

float lgammaf (float x)

Calculate the natural logarithm of the absolute value of the gamma function of the
input argument.

long long int llrintf (float x)

Round input to nearest integer value.

long long int llroundf (float x)

Round to nearest integer value.

long int lrintf (float x)

Round input to the nearest integer value.

long int lroundf (float x)

Round to nearest integer value.

float modff (float x, float *iptr)

Break down the input argument into fractional and integral parts.

float nextafterf (float x, float y)

Returns next representable single-precision floating-point value after an argument.

float norm3df (float a, float b, float c)

Calculate the square root of the sum of squares of three coordinates of the
argument.

float norm4df (float a, float b, float c, float d)

Calculate the square root of the sum of squares of four coordinates of the
argument.

float normcdff (float y)

Calculate the standard normal cumulative distribution function.

float normcdfinvf (float y)

Calculate the inverse of the standard normal cumulative distribution function.

34 Programming with HIP Chapter 3

[Public]

Function Supported
on Host

Supported
on Device

float normf (int dim, const float *a)

Calculate the square root of the sum of squares of any number of coordinates.

float rcbrtf (float x)

Calculate the reciprocal cube root function.

float remquof (float x, float y, int *quo)

Compute single-precision floating-point remainder and part of quotient.

float rhypotf (float x, float y)

Calculate one over the square root of the sum of squares of two arguments.

float rintf (float x)

Round input to nearest integer value in floating-point.

float rnorm3df (float a, float b, float c)

Calculate one over the square root of the sum of squares of three coordinates of the
argument.

float rnorm4df (float a, float b, float c, float d)

Calculate one over the square root of the sum of squares of four coordinates of the
argument.

float rnormf (int dim, const float *a)

Calculate the reciprocal of square root of the sum of squares of any number of
coordinates.

float scalblnf (float x, long int n)

Scale floating-point input by an integer power of two.

void sincosf (float x, float *sptr, float *cptr)

Calculate the sine and cosine of the first input argument.

void sincospif (float x, float *sptr, float *cptr)

Calculate the sine and cosine of the first input argument multiplied by PI.

float y0f (float x)

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 35

[Public]

Function Supported
on Host

Supported
on Device

Calculate the value of the Bessel function of the second kind of order 0 for the
input argument.

float y1f (float x)

Calculate the value of the Bessel function of the second kind of order 1 for the
input argument.

float ynf (int n, float x)

Calculate the value of the Bessel function of the second kind of order n for the
input argument.

36 Programming with HIP Chapter 3

[Public]

3.4.7.2 Double Precision Mathematical Functions

The following table consists of supported double-precision mathematical functions.

Function Supported
on Host

Supported
on Device

double acos (double x)

Calculate the arc cosine of the input argument.

double acosh (double x)

Calculate the nonnegative arc hyperbolic cosine of the input argument.

double asin (double x)

Calculate the arc sine of the input argument.

double asinh (double x)

Calculate the arc hyperbolic sine of the input argument.

double atan (double x)

Calculate the arc tangent of the input argument.

double atan2 (double y, double x)

Calculate the arc tangent of the ratio of first and second input arguments.

double atanh (double x)

Calculate the arc hyperbolic tangent of the input argument.

double cbrt (double x)

Calculate the cube root of the input argument.

double ceil (double x)

Calculate ceiling of the input argument.

double copysign (double x, double y)

Create value with given magnitude, copying sign of second value.

double cos (double x)

Calculate the cosine of the input argument.

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 37

[Public]

Function Supported
on Host

Supported
on Device

double cosh (double x)

Calculate the hyperbolic cosine of the input argument.

double erf (double x)

Calculate the error function of the input argument.

double erfc (double x)

Calculate the complementary error function of the input argument.

double exp (double x)

Calculate the base e exponential of the input argument.

double exp10 (double x)

Calculate the base 10 exponential of the input argument.

double exp2 (double x)

Calculate the base 2 exponential of the input argument.

double expm1 (double x)

Calculate the base e exponential of the input argument, minus 1.

double fabs (double x)

Calculate the absolute value of the input argument.

double fdim (double x, double y)

Compute the positive difference between x and y.

double floor (double x)

Calculate the largest integer less than or equal to x.

double fma (double x, double y, double z)

Compute x × y + z as a single operation.

double fmax (double , double)

Determine the maximum numeric value of the arguments.

38 Programming with HIP Chapter 3

[Public]

Function Supported
on Host

Supported
on Device

double fmin (double x, double y)

Determine the minimum numeric value of the arguments.

double fmod (double x, double y)

Calculate the floating-point remainder of x / y.

double frexp (double x, int* nptr)

Extract mantissa and exponent of a floating-point value.

 x

double hypot (double x, double y)

Calculate the square root of the sum of squares of two arguments.

int ilogb (double x)

Compute the unbiased integer exponent of the argument.

__RETURN_TYPE1 isfinite (double a)

Determine whether an argument is finite.

__RETURN_TYPE1 isinf (double a)

Determine whether an argument is infinite.

__RETURN_TYPE1 isnan (double a)

Determine whether an argument is a NaN.

double ldexp (double x, int exp)

Calculate the value of x ⋅ 2exp.

double log (double x)

Calculate the base e logarithm of the input argument.

double log10 (double x)

Calculate the base 10 logarithm of the input argument.

double log1p (double x)

Calculate the value of loge(1 + x).

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 39

[Public]

Function Supported
on Host

Supported
on Device

double log2 (double x)

Calculate the base 2 logarithm of the input argument.

double logb (double x)

Calculate the floating-point representation of the exponent of the input argument.

double modf (double x, double* iptr)

Break down the input argument into fractional and integral parts.

 x

double nan (const char* tagp)

Returns "Not a Number" value.

x

double nearbyint (double x)

Round the input argument to the nearest integer.

double pow (double x, double y)

Calculate the value of the first argument to the power of the second argument.

double remainder (double x, double y)

Compute double-precision floating-point remainder.

double remquo (double x, double y, int* quo)

Compute double-precision floating-point remainder and part of quotient.

 x

double round (double x)

Round to nearest integer value in floating-point.

double scalbn (double x, int n)

Scale floating-point input by an integer power of two.

__RETURN_TYPE1 signbit (double a)

Return the sign bit of the input.

double sin (double x)

Calculate the sine of the input argument.

40 Programming with HIP Chapter 3

[Public]

Function Supported
on Host

Supported
on Device

void sincos (double x, double* sptr, double* cptr)

Calculate the sine and cosine of the first input argument.

 x

double sinh (double x)

Calculate the hyperbolic sine of the input argument.

double sqrt (double x)

Calculate the square root of the input argument.

double tan (double x)

Calculate the tangent of the input argument.

double tanh (double x)

Calculate the hyperbolic tangent of the input argument.

double tgamma (double x)

Calculate the gamma function of the input argument.

double trunc (double x)

Truncate input argument to an integral part.

double erfcinv (double y)

Calculate the inverse complementary function of the input argument.

double erfcx (double x)

Calculate the scaled complementary error function of the input argument.

double erfinv (double y)

Calculate the inverse error function of the input argument.

double frexp (float x, int *nptr)

Extract mantissa and exponent of a floating-point value.

double j0 (double x)

Calculate the value of the Bessel function of the first kind of order 0 for the input
argument.

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 41

[Public]

Function Supported
on Host

Supported
on Device

double j1 (double x)

Calculate the value of the Bessel function of the first kind of order 1 for the input
argument.

double jn (int n, double x)

Calculate the value of the Bessel function of the first kind of order n for the input
argument.

double lgamma (double x)

Calculate the natural logarithm of the absolute value of the gamma function of the
input argument.

long long int llrint (double x)

Round input to a nearest integer value.

long long int llround (double x)

Round to nearest integer value.

long int lrint (double x)

Round input to a nearest integer value.

long int lround (double x)

Round to nearest integer value.

double modf (double x, double *iptr)

Break down the input argument into fractional and integral parts.

double nextafter (double x, double y)

Returns next representable single-precision floating-point value after an argument.

double norm3d (double a, double b, double c)

Calculate the square root of the sum of squares of three coordinates of the
argument.

float norm4d (double a, double b, double c, double d)

42 Programming with HIP Chapter 3

[Public]

Function Supported
on Host

Supported
on Device

Calculate the square root of the sum of squares of four coordinates of the
argument.

double normcdf (double y)

Calculate the standard normal cumulative distribution function.

double normcdfinv (double y)

Calculate the inverse of the standard normal cumulative distribution function.

double rcbrt (double x)

Calculate the reciprocal cube root function.

double remquo (double x, double y, int *quo)

Compute single-precision floating-point remainder and part of quotient.

double rhypot (double x, double y)

Calculate one over the square root of the sum of squares of two arguments.

double rint (double x)

Round input to the nearest integer value in floating-point.

double rnorm3d (double a, double b, double c)

Calculate one over the square root of the sum of squares of three coordinates of the
argument.

double rnorm4d (double a, double b, double c, double d)

Calculate one over the square root of the sum of squares of four coordinates of the
argument.

double rnorm (int dim, const double *a)

Calculate the reciprocal of the square root of the sum of squares of any number of
coordinates.

double scalbln (double x, long int n)

Scale floating-point input by an integer power of two.

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 43

[Public]

Function Supported
on Host

Supported
on Device

void sincos (double x, double *sptr, double *cptr)

Calculate the sine and cosine of the first input argument.

void sincospi (double x, double *sptr, double *cptr)

Calculate the sine and cosine of the first input argument multiplied by PI.

double y0f (double x)

Calculate the value of the Bessel function of the second kind of order 0 for the
input argument.

double y1 (double x)

Calculate the value of the Bessel function of the second kind of order 1 for the
input argument.

double yn (int n, double x)

Calculate the value of the Bessel function of the second kind of order n for the
input argument.

NOTE: [1] __RETURN_TYPE is dependent on the compiler. It is usually 'int' for C compilers and
'bool' for C++ compilers.

3.4.7.3 Integer Intrinsics

The following table lists supported integer intrinsics. Note, intrinsics are supported on devices
only.

Function

unsigned int __brev (unsigned int x)

Reverse the bit order of a 32-bit unsigned integer.

unsigned long long int __brevll (unsigned long long int x)

Reverse the bit order of a 64-bit unsigned integer.

int __clz (int x)

Return the number of consecutive high-order zero bits in a 32-bit integer.

unsigned int __clz(unsigned int x)

44 Programming with HIP Chapter 3

[Public]

Function

Return the number of consecutive high-order zero bits in 32-bit unsigned integer.

int __clzll (long long int x)

Count the number of consecutive high-order zero bits in a 64-bit integer.

unsigned int __clzll(long long int x)

Return the number of consecutive high-order zero bits in 64-bit signed integer.

unsigned int __ffs(unsigned int x)

Find the position of least significant bit set to 1 in a 32-bit unsigned integer.1

unsigned int __ffs(int x)

Find the position of least significant bit set to 1 in a 32-bit signed integer.

unsigned int __ffsll(unsigned long long int x)

Find the position of least significant bit set to 1 in a 64-bit unsigned integer.1

unsigned int __ffsll(long long int x)

Find the position of least significant bit set to 1 in a 64 bit signed integer.

unsigned int __popc (unsigned int x)

Count the number of bits that are set to 1 in a 32-bit integer.

int __popcll (unsigned long long int x)

Count the number of bits that are set to 1 in a 64-bit integer.

int __mul24 (int x, int y)

Multiply two 24-bit integers.

unsigned int __umul24 (unsigned int x, unsigned int y)

Multiply two 24-bit unsigned integers.

NOTE: The HIP-Clang implementation of __ffs() and __ffsll() contains code to add a constant +1
to produce the ffs result format. For the cases where this overhead is not acceptable and the
programmer is willing to specialize for the platform, HIP-Clang provides
__lastbit_u32_u32(unsigned int input) and __lastbit_u32_u64(unsigned long long int input).

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 45

[Public]

3.4.7.4 Floating-point Intrinsics

The following table provides a list of supported floating-point intrinsics. Note, intrinsics are
supported on devices only.

Function
float __cosf (float x)

Calculate the fast approximate cosine of the input argument.

float __expf (float x)

Calculate the fast approximate base e exponential of the input argument.
float __frsqrt_rn (float x)

Compute 1 / √x in round-to-nearest-even mode.

float __fsqrt_rd (float x)
Compute √x in round-down mode.

float __fsqrt_rn (float x)

Compute √x in round-to-nearest-even mode.
float __fsqrt_ru (float x)

Compute √x in round-up mode.

float __fsqrt_rz (float x)

Compute √x in round-towards-zero mode.
float __log10f (float x)

Calculate the fast approximate base 10 logarithm of the input argument.

float __log2f (float x)

Calculate the fast approximate base 2 logarithm of the input argument.

float __logf (float x)

Calculate the fast approximate base e logarithm of the input argument.

float __powf (float x, float y)

Calculate the fast approximate of xy.

float __sinf (float x)

Calculate the fast approximate sine of the input argument.

float __tanf (float x)

Calculate the fast approximate tangent of the input argument.

46 Programming with HIP Chapter 3

[Public]

Function

double __dsqrt_rd (double x)

Compute √x in round-down mode.

double __dsqrt_rn (double x)

Compute √x in round-to-nearest-even mode.

double __dsqrt_ru (double x)

Compute √x in round-up mode.

double __dsqrt_rz (double x)

Compute √x in round-towards-zero mode.

3.4.7.5 Texture Functions

The supported Texture functions are listed in the following header files:

• "texture_functions.h"

For more information, see

https://github.com/ROCm-Developer-Tools/HIP/blob/main/include/hip/hcc_detail/texture_functions.h

• "texture_indirect_functions.h"

For more information, see

https://github.com/ROCm-Developer-Tools/HIP/blob/main/include/hip/hcc_detail/texture_indirect_functions.h

3.4.7.6 Surface Functions

Surface functions are not supported.

3.4.7.7 Timer Functions

HIP provides the following built-in functions for reading a high-resolution timer from the device.

clock_t clock()
long long int clock64()

Returns the value of a counter that is incremented every clock cycle on devices. The difference in
values returned provides the cycles used.

https://github.com/ROCm-Developer-Tools/HIP/blob/main/include/hip/hcc_detail/texture_functions.h
https://github.com/ROCm-Developer-Tools/HIP/blob/main/include/hip/hcc_detail/texture_indirect_functions.h

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 47

[Public]

3.4.7.8 Atomic Functions

Atomic functions execute as read-modify-write operations residing in global or shared memory.
No other device or thread can observe or modify the memory location during an atomic operation.
If multiple instructions from different devices or threads target the same memory location, the
instructions are serialized in an undefined order.

HIP adds new APIs with _system as suffix to support system scope atomic operations. For
example, atomicAnd atomic is dedicated to the GPU device, atomicAnd_system will allow
developers to extend the atomic operation to system scope, from the GPU device to other CPUs
and GPU devices in the system.

HIP supports the following atomic operations:

Function Supported in HIP Supported in CUDA
int atomicAdd(int* address, int val) ✓ ✓
int atomicAdd_system(int* address, int val) ✓ ✓
unsigned int atomicAdd(unsigned int* address,unsigned int val) ✓ ✓
unsigned int atomicAdd_system(unsigned int* address, unsigned
int val)

✓ ✓

unsigned long long atomicAdd(unsigned long long*
address,unsigned long long val)

✓ ✓

unsigned long long atomicAdd_system(unsigned long long*
address, unsigned long long val)

✓ ✓

float atomicAdd(float* address, float val) ✓ ✓
float atomicAdd_system(float* address, float val) ✓ ✓
double atomicAdd(double* address, double val) ✓ ✓
double atomicAdd_system(double* address, double val) ✓ ✓
int atomicSub(int* address, int val) ✓ ✓
int atomicSub_system(int* address, int val) ✓ ✓
unsigned int atomicSub(unsigned int* address,unsigned int val) ✓ ✓
unsigned int atomicSub_system(unsigned int* address, unsigned
int val)

✓ ✓

int atomicExch(int* address, int val) ✓ ✓
int atomicExch_system(int* address, int val) ✓ ✓
unsigned int atomicExch(unsigned int* address,unsigned int val) ✓ ✓
unsigned int atomicExch_system(unsigned int* address, unsigned
int val)

✓ ✓

unsigned long long atomicExch(unsigned long long int*
address,unsigned long long int val)

✓ ✓

48 Programming with HIP Chapter 3

[Public]

unsigned long long atomicExch_system(unsigned long long*
address, unsigned long long val)

✓ ✓

unsigned long long atomicExch_system(unsigned long long*
address, unsigned long long val)

✓ ✓

float atomicExch(float* address, float val) ✓ ✓
int atomicMin(int* address, int val) ✓ ✓
int atomicMin_system(int* address, int val) ✓ ✓
unsigned int atomicMin(unsigned int* address,unsigned int val) ✓ ✓
unsigned int atomicMin_system(unsigned int* address, unsigned
int val)

✓ ✓

unsigned long long atomicMin(unsigned long long*
address,unsigned long long val)

✓ ✓

int atomicMax(int* address, int val) ✓ ✓
int atomicMax_system(int* address, int val) ✓ ✓
unsigned int atomicMax(unsigned int* address,unsigned int val) ✓ ✓
unsigned int atomicMax_system(unsigned int* address, unsigned
int val)

✓ ✓

unsigned long long atomicMax(unsigned long long*
address,unsigned long long val)

✓ ✓

unsigned int atomicInc(unsigned int* address) ✗ ✓
unsigned int atomicDec(unsigned int* address) ✗ ✓
int atomicCAS(int* address, int compare, int val) ✓ ✓
int atomicCAS_system(int* address, int compare, int val) ✓ ✓
unsigned int atomicCAS(unsigned int* address,unsigned int
compare,unsigned int val)

✓ ✓

unsigned int atomicCAS_system(unsigned int* address, unsigned
int compare, unsigned int val)

✓ ✓

unsigned long long atomicCAS(unsigned long long*
address,unsigned long long compare,unsigned long long val)

✓ ✓

unsigned long long atomicCAS_system(unsigned long long*
address, unsigned long long compare, unsigned long long val)

✓ ✓

int atomicAnd(int* address, int val) ✓ ✓
int atomicAnd_system(int* address, int val) ✓ ✓
unsigned int atomicAnd(unsigned int* address,unsigned int val) ✓ ✓
unsigned int atomicAnd_system(unsigned int* address, unsigned
int val)

✓ ✓

unsigned long long atomicAnd(unsigned long long*
address,unsigned long long val)

✓ ✓

unsigned long long atomicAnd_system(unsigned long long*
address, unsigned long long val)

✓ ✓

int atomicOr(int* address, int val) ✓ ✓
int atomicOr_system(int* address, int val) ✓ ✓

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 49

[Public]

unsigned int atomicOr(unsigned int* address,unsigned int val) ✓ ✓
unsigned int atomicOr_system(unsigned int* address, unsigned int
val)

✓ ✓

unsigned int atomicOr_system(unsigned int* address, unsigned int
val)

✓ ✓

unsigned long long atomicOr(unsigned long long int*
address,unsigned long long val)

✓ ✓

unsigned long long atomicOr_system(unsigned long long*
address, unsigned long long val)

✓ ✓

int atomicXor(int* address, int val) ✓ ✓
int atomicXor_system(int* address, int val) ✓ ✓
unsigned int atomicXor(unsigned int* address,unsigned int val) ✓ ✓
unsigned int atomicXor_system(unsigned int* address, unsigned
int val)

✓ ✓

unsigned long long atomicXor(unsigned long long*
address,unsigned long long val))

✓ ✓

unsigned long long atomicXor_system(unsigned long long*
address, unsigned long long val)

✓ ✓

NOTE: To maintain backwards compatibility in float/double atomicAdd functions, a new
compilation flag in the CMake file, __HIP_USE_CMPXCHG_FOR_FP_ATOMICS, is an option
introduced.

This compilation flag is not set ("0") by default, so the HIP runtime uses current float/double
atomicAdd functions. If the compilation flag is set to 1 with the CMake option,
D__HIP_USE_CMPXCHG_FOR_FP_ATOMICS=1, the old float/double atomicAdd functions are
used for compatibility with compilers that do not support floating point atomics.

For details on how to build HIP runtime, refer to the HIP Installation section in this guide.

Caveats and Features Under-Development

HIP enables atomic operations on 32-bit integers. Additionally, it supports an atomic float add.
AMD hardware, however, implements the float add using a CAS loop, so this function may not
perform efficiently.

3.4.7.9 Warp Cross-Lane Functions

Warp cross-lane functions operate across all lanes in a warp. The hardware guarantees that all
warp lanes will execute in lockstep, so additional synchronization is unnecessary and the
instructions use no shared memory.

Note that Nvidia and AMD devices have different warp sizes, so portable code should use the
warpSize built-ins to query the warp size. Hipified code from the CUDA path requires careful
review to ensure it doesn’t assume a waveSize of 32. "Wave-aware" code that assumes a waveSize
of 32 will run on a wave-64 machine, but it will utilize only half of the machine resources.

50 Programming with HIP Chapter 3

[Public]

WarpSize built-ins should only be used in device functions and its value depends on GPU arch.
Host functions should use hipGetDeviceProperties to get the default warp size of a GPU device:

cudaDeviceProp props;
cudaGetDeviceProperties(&props, deviceID);
 int w = props.warpSize;
 // implement portable algorithm based on w (rather than assume 32 or 64)

Note, assembly kernels may be built for warp size, which is different than the default warp size.

3.4.7.10 Warp Vote and Ballot Functions

int __all(int predicate)
int __any(int predicate)
uint64_t __ballot(int predicate)

Threads in a warp are referred to as lanes and are numbered from 0 to warpSize -- 1. For these
functions, each warp lane contributes 1 -- the bit value (the predicate), which is efficiently
broadcast to all lanes in the warp. The 32-bit int predicate from each lane reduces to a 1-bit value:
0 (predicate = 0) or 1 (predicate != 0). __any and __all provide a summary view of the predicates
that the other warp lanes contribute:

• __any() returns 1 if any warp lane contributes a nonzero predicate, or 0 otherwise

• __all() returns 1 if all other warp lanes contribute nonzero predicates, or 0 otherwise

Applications can test whether the target platform supports the any/all instruction using the
hasWarpVote device property or the HIP_ARCH_HAS_WARP_VOTE compiler define.

__ballot provides a bit mask containing the 1-bit predicate value from each lane. The nth bit of the
result contains the 1 bit contributed by the nth warp lane. Note that HIP's __ballot function
supports a 64-bit return value (compared with 32 bits). Code ported from CUDA should support
the larger warp sizes that the HIP version of this instruction supports. Applications can test
whether the target platform supports the ballot instruction using the hasWarpBallot device
property or the HIP_ARCH_HAS_WARP_BALLOT compiler define.

3.4.7.11 Warp Shuffle Functions

Half-float shuffles are not supported. The default width is warpSize---see Warp Cross-Lane
Functions. Applications should not assume the warpSize is 32 or 64.

int __shfl (int var, int srcLane, int width=warpSize);
float __shfl (float var, int srcLane, int width=warpSize);
int __shfl_up (int var, unsigned int delta, int width=warpSize);
float __shfl_up (float var, unsigned int delta, int width=warpSize);
int __shfl_down (int var, unsigned int delta, int width=warpSize);
float __shfl_down (float var, unsigned int delta, int width=warpSize) ;
int __shfl_xor (int var, int laneMask, int width=warpSize)

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 51

[Public]

float __shfl_xor (float var, int laneMask, int width=warpSize);

3.4.7.12 Cooperative Groups Functions

Cooperative Groups is a mechanism for forming and communicating between threads at a
granularity different from the block. This feature was introduced in CUDA 9.
HIP supports the following kernel language Cooperative groups types or functions.

Function HIP CUDA
void thread_group.sync() ;
unsigned thread_group.size();
unsigned
thread_group.thread_rank() ;

bool thread_group.is_valid();
grid_group this_grid();
void grid_group.sync() ;
unsigned grid_group.size() ;
unsigned grid_group.thread_rank() ;
bool grid_group.is_valid();
multi_grid_group this_multi_grid() ;
void multi_grid_group.sync();
unsigned multi_grid_group.size() ;
unsigned
multi_grid_group.thread_rank() ;

bool multi_grid_group.is_valid() ;
unsigned
multi_grid_group.num_grids() ;

unsigned
multi_grid_group.grid_rank();

thread_block this_thread_block() ;
multi_grid_group this_multi_grid() ;
void multi_grid_group.sync();
void thread_block.sync() ;
unsigned thread_block.size() ;
unsigned
thread_block.thread_rank() ;

bool thread_block.is_valid() ;
dim3 thread_block.group_index() ;
dim3 thread_block.thread_index()

52 Programming with HIP Chapter 3

[Public]

3.4.7.13 Warp Matrix Functions

Warp matrix functions allow a warp to cooperatively operate on small matrices whose elements
are spread over the lanes in an unspecified manner. This feature was introduced in CUDA 9.

HIP does not support any of the kernel language warp matrix types or functions.

Function Supported in
HIP

Supported in
CUDA

void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned lda)

✓
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned lda,
layout_t layout)

✓

void store_matrix_sync(T* mptr, fragment<...> &a, unsigned lda, layout_t
layout)

✓

void fill_fragment(fragment<...> &a, const T &value)

✓
void mma_sync(fragment<...> &d, const fragment<...> &a, const
fragment<...> &b, const fragment<...> &c , bool sat)

✓

3.4.7.14 Independent Thread Scheduling

The hardware support for independent thread scheduling introduced in certain architectures
supporting CUDA allows threads to progress independently of each other and enables intra-warp
synchronizations that were previously not allowed.

HIP does not support this type of thread scheduling.

3.4.7.15 Profiler Counter Function

The Cuda __prof_trigger() instruction is not supported.

3.4.7.16 Assert

The assert function is under development. HIP does support an "abort" call which will terminate
the process execution from inside the kernel.

3.4.7.17 Printf

The printf function is supported.

3.4.8 Device-Side Dynamic Global Memory Allocation

Device-side dynamic global memory allocation is under development.

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 53

[Public]

3.4.9 __launch_bounds__

GPU multiprocessors have a fixed pool of resources (primarily registers and shared memory)
which are shared by the actively running warps. Using more resources can increase IPC of the
kernel but reduces the resources available for other warps and limits the number of warps that can
be simultaneously running. Thus, GPUs have a complex relationship between resource usage and
performance.

__launch_bounds__ allows the application to provide usage hints that influence the resources
(primarily registers) used by the generated code. It is a function attribute that must be attached to
a __global__ function:

__global__ void `-__launch_bounds__`-(MAX_THREADS_PER_BLOCK, MIN_WARPS_PER_EU) MyKernel(...) ...
MyKernel(...)

launch_bounds supports two parameters:

• MAX_THREADS_PER_BLOCK - The programmers guarantees that the kernel will be

launched with threads less than MAX_THREADS_PER_BLOCK. (On NVCC this maps to

the .maxntid PTX directive). If no launch_bounds is specified,

MAX_THREADS_PER_BLOCK is the maximum block size supported by the device

(typically 1024 or larger). Specifying MAX_THREADS_PER_BLOCK less than the maximum

effectively allows the compiler to use more resources than a default unconstrained

compilation that supports all possible block sizes at launch time. The threads-per-block is

the product of (hipBlockDim_x * hipBlockDim_y * hipBlockDim_z).

• MIN_WARPS_PER_EU - directs the compiler to minimize resource usage so that the

requested number of warps can be simultaneously active on a multi-processor. Since

active warps compete for the same fixed pool of resources, the compiler must reduce

resources required by each warp(primarily registers). MIN_WARPS_PER_EU is optional

and defaults to 1 if not specified. Specifying a MIN_WARPS_PER_EU greater than the

default 1 effectively constrains the compiler's resource usage.

When the kernel is launched with HIP APIs, for example, hipModuleLaunchKernel(), HIP
validates to ensure the input kernel dimension size is not larger than the specified launch_bounds.
In case it exceeds, HIP returns launch failure, if AMD_LOG_LEVEL is set with the proper value.
The error details are shown in the error log message, including launch parameters of kernel dim
size, launch bounds, and the name of the faulting kernel. It is usually helpful to identify the
faulting kernel. Besides, the kernel dim size and launch bounds values also assist in debugging
such failures.

54 Programming with HIP Chapter 3

[Public]

3.4.9.1 Compiler Impact

The compiler uses these parameters as follows:

• The compiler uses the hints only to manage register usage and does not

automatically reduce shared memory or other resources.

• Compilation fails if the compiler cannot generate a kernel that meets the

requirements of the specified launch bounds.

• From MAX_THREADS_PER_BLOCK, the compiler derives the maximum number of

warps/block that can be used at launch time. Values of

MAX_THREADS_PER_BLOCK less than the default allows the compiler to use a

larger pool of registers: each warp uses registers, and this hint contains the launch

to a warps/block size that is less than maximum.

• From MIN_WARPS_PER_EU, the compiler derives a maximum number of registers

that can be used by the kernel (to meet the required #simultaneous active blocks).

If MIN_WARPS_PER_EU is 1, then the kernel can use all registers supported by the

multiprocessor.

• The compiler ensures that the registers used in the kernel is less than both allowed

maximums, typically by spilling registers (to shared or global memory), or by using

more instructions.

• The compiler may use heuristics to increase register usage or may simply be able

to avoid spilling. The MAX_THREADS_PER_BLOCK is particularly useful in this

case, since it allows the compiler to use more registers and avoid situations where

the compiler constrains the register usage (potentially spilling) to meet the

requirements of a large block size that is never used at launch time.

3.4.9.2 CU and EU Definitions

A compute unit (CU) is responsible for executing the waves of a workgroup. It is composed of one
or more execution units (EU) that are responsible for executing waves. An EU can have enough
resources to maintain the state of more than one executing wave. This allows an EU to hide
latency by switching between waves in a similar way to symmetric multithreading on a CPU. To
allow the state for multiple waves to fit on an EU, the resources used by a single wave have to be
limited. Limiting such resources can allow greater latency hiding but it can result in having to spill
some register state to memory. This attribute allows an advanced developer to tune the number of
waves that are capable of fitting within the resources of an EU. It can be used to ensure at least a
certain number will fit to help hide latency and can also be used to ensure no more than a certain
number will fit to limit cache thrashing.

3.4.9.3 Porting from CUDA __launch_bounds

CUDA defines a __launch_bounds, which is also designed to control occupancy:

__launch_bounds(MAX_THREADS_PER_BLOCK, MIN_BLOCKS_PER_MULTIPROCESSOR)
The second parameter __launch_bounds parameters must be converted to the format used
__hip_launch_bounds, which uses warps and execution-units rather than blocks and multi-
processors (this conversion is performed automatically by hipify tools).

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 55

[Public]

MIN_WARPS_PER_EXECUTION_UNIT = (MIN_BLOCKS_PER_MULTIPROCESSOR * MAX_THREADS_PER_BLOCK) / 32
The key differences in the interface are:

• Warps (rather than blocks): The developer is trying to tell the compiler to control resource

utilization to guarantee some amount of active Warps/EU for latency hiding. Specifying

active warps in terms of blocks appears to hide the micro-architectural details of the warp

size, however, makes the interface more confusing since the developer ultimately needs to

compute the number of warps to obtain the desired level of control.

• Execution Units (rather than multiProcessor): The use of execution units rather than

multiprocessors provides support for architectures with multiple execution units/multi-

processor. For example, the AMD GCN architecture has 4 execution units per

multiProcessor. The hipDeviceProps has a field executionUnitsPerMultiprocessor.

Platform-specific coding techniques such as #ifdef can be used to specify different

launch_bounds for NVCC and HIP-Clang platforms if desired.

3.4.9.4 Maxregcount

Unlike nvcc, HIP-Clang does not support the "--maxregcount" option. Instead, users are
encouraged to use the hip_launch_bounds directive since the parameters are more intuitive and
portable than micro-architecture details like registers, and also the directive allows per-kernel
control rather than an entire file. hip_launch_bounds works on both HIP-Clang and nvcc targets.

3.4.10 Register Keyword

The register keyword is deprecated in C++ and is silently ignored by both nvcc and HIP-Clang.
You can pass the option `-Wdeprecated-register` to the compiler warning message.

3.4.11 Pragma Unroll

Unroll with a bound that is known at compile-time is supported. For example:

#pragma unroll 16 /* hint to compiler to unroll next loop by 16 */
for (int i=0; i<16; i++) ...
#pragma unroll 1 /* tell compiler to never unroll the loop */
for (int i=0; i<16; i++) ...
#pragma unroll /* hint to compiler to completely unroll next loop. */
for (int i=0; i<16; i++) ...

3.4.12 In-Line Assembly

GCN ISA In-line assembly is supported. For example:

asm volatile ("v_mac_f32_e32 %0, %2, %3" : "=v" (out[i]) : "0"(out[i]), "v" (a), "v" (in[i]));
The HIP compiler inserts the GCN into the kernel using asm() Assembler statement. volatile
keyword is used so that the optimizers must not change the number of volatile operations or
change their order of execution relative to other volatile operations. v_mac_f32_e32 is the GCN
instruction. For more information, refer to the AMD GCN3 ISA architecture manual Index for the
respective operand in the ordered fashion is provided by % followed by a position in the list of

56 Programming with HIP Chapter 3

[Public]

operands "v" is the constraint code (for target-specific AMDGPU) for 32-bit VGPR register. For
more information, refer to the Supported Constraint Code List for AMDGPU. Output Constraints
are specified by an "=" prefix as shown above ("=v"). This indicates that assembly will write to
this operand, and the operand will then be made available as a return value of the asm expression.
Input constraints do not have a prefix - just the constraint code. The constraint string of "0" says to
use the assigned register for output as an input as well (it being the 0'th constraint).

3.4.13 C++ Support

The following C++ features are not supported:

• Run-time-type information (RTTI)

• Virtual functions

• Try/catch

3.4.14 Kernel Compilation

hipcc now supports compiling C++/HIP kernels to binary code objects.

The file format for binary is `.co` which means Code Object. The following command builds the
code object using `hipcc`.

`hipcc --genco --offload-arch=[TARGET GPU] [INPUT FILE] -o [OUTPUT FILE]`
[TARGET GPU] = GPU architecture
[INPUT FILE] = Name of the file containing kernels
[OUTPUT FILE] = Name of the generated code object file

NOTE: When using binary code objects is that the number of arguments to the kernel is different
on HIP-Clang and NVCC path. Refer to the sample in samples/0_Intro/module_api for differences
in the arguments to be passed to the kernel.

3.4.15 gfx-arch-specific-kernel

Clang defined '__gfx*__' macros can be used to execute gfx arch-specific codes inside the kernel.
Refer to the sample 14_gpu_arch in samples/2_Cookbook.

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 57

[Public]

3.5 ROCm Code Object Tooling
ROCm compiler-generated code objects (executables, object files, and shared object libraries) can
be examined and extracted with the tools listed in this section.

3.5.1 roc-obj

High-level wrapper around low-level tooling as described below. For a more detailed overview,
see the help text available with roc-obj --help.

3.5.1.1 Examples

3.5.1.1.1 Extract all ROCm code objects from a list of executables

roc-obj <executable>...

3.5.1.1.2 Extract all ROCm code objects from a list of executables, and disassemble them

 roc-obj --disassemble <executable>...
 or
 roc-obj -d <executable>...

3.5.1.1.3 Extract all ROCm code objects from a list of executables into dir/

roc-obj --outdir dir/ <executable>...
or
roc-obj -o dir/ <executable>...

3.5.1.1.4 Extract only ROCm code objects matching regex over Target ID

 roc-obj --target-id gfx9 <executable>...
 or
 roc-obj -t gfx9 <executable>...

58 Programming with HIP Chapter 3

[Public]

3.5.2 Low-Level Tooling

3.5.2.1 URI Syntax

 ROCm Code Objects can be listed/accessed using the following URI syntax:

 code_object_uri ::== file_uri | memory_uri
 file_uri ::== file:// extract_file [range_specifier]
 memory_uri ::== memory:// process_id range_specifier
 range_specifier ::== [# | ?] offset= number & size= number
 extract_file ::== URI_ENCODED_OS_FILE_PATH
 process_id ::== DECIMAL_NUMBER
 number ::== HEX_NUMBER | DECIMAL_NUMBER | OCTAL_NUMBER

 Examples

• file://dir1/dir2/hello_world#offset=133&size=14472

• memory://1234#offset=0x20000&size=3000

3.5.2.2 List available ROCm Code Objects: roc-obj-ls

Use this tool to list available ROCm code objects. Code objects are listed by bundle number,
entry ID, and URI syntax.

 Usage: roc-obj-ls [-v|h] executable...

 List the URIs of the code objects embedded in the specfied host executables.

• -v -Verbose output - Adds column headers for more human readable format

• -h -Show this help message

3.5.2.3 Extract ROCm Code Objects: roc-obj-extract

 Extracts available ROCm code objects from specified URI.

 Usage: roc-obj-extract [-o|v|h] URI...

• URIs can be read from STDIN, one per line.

• From the URIs specified, extracts code objects into files named: <executable_name>-

[pid<number>]-offset<number>-size<number>.co

 Options:

• -o <path> Path for output. If "-" specified, code object is printed to STDOUT.

• -v Verbose output (includes Entry ID).

• -h Show this help message

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 59

[Public]

 Note, when specifying a URI argument to roc-obj-extract, if cut and pasting the output from roc-
obj-ls you need to escape the '&' character or your shell will interpret it as the option to run the
command as a background process.

As an example, if roc-obj-ls generates a URI like this

file://my_exe#offset=24576&size=46816xxi

you need to use the following argument to roc-obj-extract:

file://my_exe#offset=24576\&size=46816

3.5.2.4 Examples

3.5.2.4.1 Dump the ISA for gfx906:
 roc-obj-ls -v <exe> | awk '/gfx906/{print $3}' | roc-obj-extract -o - | llvm-objdump -d - >
<exe>.gfx906.isa
3.5.2.4.2 Check the e_flags of the gfx908 code object:
 roc-obj-ls -v <exe> | awk '/gfx908/{print $3}' | roc-obj-extract -o - | llvm-readelf -h - |
grep Flags
3.5.2.4.3 Disassemble the fourth code object:
 roc-obj-ls <exe> | sed -n 4p | roc-obj-extract -o - | llvm-objdump -d -
3.5.2.4.4 Sort embedded code objects by size:
for URI in

 $(roc-obj-ls <exe>); do printf "%d: %s\n" "$(roc-obj-extract -o - "$uri" | wc -c)" "$uri"; done
| sort -n
3.5.2.4.5 Compare disassembly of gfx803 and gfx900 code objects:
dis() { roc-obj-ls -v <exe> | grep "$1" | awk '{print $3}' | roc-obj-extract -o - | llvm-objdump
-d -; }
 diff <(dis gfx803) <(dis gfx900)

60 Programming with HIP Chapter 3

[Public]

3.6 HIP Logging
HIP provides a logging mechanism, which is a convenient way of printing important information
to trace HIP API and runtime codes during the execution of a HIP application. It assists the HIP
development team in the development of HIP runtime and is useful for HIP application developers
as well. Depending on the setting of logging level and logging mask, HIP logging will print
different kinds of information, for different types of functionalities such as HIP APIs, executed
kernels, queue commands, and queue contents, etc.

3.6.1 HIP Logging Level

By default, HIP logging is disabled, it can be enabled via environment setting,

AMD_LOG_LEVEL

The value of the setting controls different logging level.

enum LogLevel {
LOG_NONE = 0,
LOG_ERROR = 1,
LOG_WARNING = 2,
LOG_INFO = 3,
LOG_DEBUG = 4
};

3.6.2 HIP Logging Mask

Logging mask is designed to print types of functionalities during the execution of HIP application.
It can be set as one of the following values:

enum LogMask {
 LOG_API = 0x00000001, //!< API call
 LOG_CMD = 0x00000002, //!< Kernel and Copy Commands and Barriers
 LOG_WAIT = 0x00000004, //!< Synchronization and waiting for commands to finish
 LOG_AQL = 0x00000008, //!< Decode and display AQL packets
 LOG_QUEUE = 0x00000010, //!< Queue commands and queue contents
 LOG_SIG = 0x00000020, //!< Signal creation, allocation, pool
 LOG_LOCK = 0x00000040, //!< Locks and thread-safety code.
 LOG_KERN = 0x00000080, //!< kernel creations and arguments, etc.
 LOG_COPY = 0x00000100, //!< Copy debug
 LOG_COPY2 = 0x00000200, //!< Detailed copy debug
 LOG_RESOURCE = 0x00000400, //!< Resource allocation, performance-impacting events.
 LOG_INIT = 0x00000800, //!< Initialization and shutdown
 LOG_MISC = 0x00001000, //!< misc debug, not yet classified
 LOG_AQL2 = 0x00002000, //!< Show raw bytes of AQL packet
 LOG_CODE = 0x00004000, //!< Show code creation debug
 LOG_CMD2 = 0x00008000, //!< More detailed command info, including barrier commands
 LOG_LOCATION = 0x00010000, //!< Log message location
 LOG_ALWAYS = 0xFFFFFFFF, //!< Log always even mask flag is zero
};
Once AMD_LOG_LEVEL is set, the logging mask is set as default with the value 0x7FFFFFFF.
However, for different purpose of logging functionalities, logging mask can be defined as well via
an environment variable,

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 61

[Public]

AMD_LOG_MASK

3.6.3 HIP Logging Command

To print HIP logging information, the function is defined as

#define ClPrint(level, mask, format, ...)
 do {
 if (AMD_LOG_LEVEL >= level) {
 if (AMD_LOG_MASK & mask || mask == amd::LOG_ALWAYS) {
 if (AMD_LOG_MASK & amd::LOG_LOCATION) {
 amd::log_printf(level, __FILENAME__, __LINE__, format, ##__VA_ARGS__);
 } else {
 amd::log_printf(level, "", 0, format, ##__VA_ARGS__);
 }
 }
 }
 } while (false)

In the HIP code, call ClPrint() function with proper input variables as needed, for example,

ClPrint(amd::LOG_INFO, amd::LOG_INIT, "Initializing HSA stack.");

3.6.4 HIP Logging Example

Below is an example to enable HIP logging and get logging information during execution of
hipinfo,

user@user-test:~/hip/bin$ export AMD_LOG_LEVEL=4
user@user-test:~/hip/bin$./hipinfo
:3:rocdevice.cpp :453 : 23647210092: Initializing HSA stack.
:3:comgrctx.cpp :33 : 23647639336: Loading COMGR library.
:3:rocdevice.cpp :203 : 23647687108: Numa select cpu
agent[0]=0x13407c0(fine=0x13409a0,coarse=0x1340ad0) for gpu agent=0x1346150
:4:runtime.cpp :82 : 23647698669: init
:3:hip_device_runtime.cpp :473 : 23647698869: 5617 : [7fad295dd840] hipGetDeviceCount:
Returned hipSuccess
:3:hip_device_runtime.cpp :502 : 23647698990: 5617 : [7fad295dd840] hipSetDevice (0)
:3:hip_device_runtime.cpp :507 : 23647699042: 5617 : [7fad295dd840] hipSetDevice: Returned
hipSuccess
--
device# 0
:3:hip_device.cpp :150 : 23647699276: 5617 : [7fad295dd840] hipGetDeviceProperties (
0x7ffdbe7db730, 0)
:3:hip_device.cpp :237 : 23647699335: 5617 : [7fad295dd840] hipGetDeviceProperties:
Returned hipSuccess
Name: Device 7341
pciBusID: 3
pciDeviceID: 0
pciDomainID: 0
multiProcessorCount: 11
maxThreadsPerMultiProcessor: 2560
isMultiGpuBoard: 0
clockRate: 1900 Mhz
memoryClockRate: 875 Mhz

62 Programming with HIP Chapter 3

[Public]

memoryBusWidth: 0
clockInstructionRate: 1000 Mhz
totalGlobalMem: 7.98 GB
maxSharedMemoryPerMultiProcessor: 64.00 KB
totalConstMem: 8573157376
sharedMemPerBlock: 64.00 KB
canMapHostMemory: 1
regsPerBlock: 0
warpSize: 32
l2CacheSize: 0
computeMode: 0
maxThreadsPerBlock: 1024
maxThreadsDim.x: 1024
maxThreadsDim.y: 1024
maxThreadsDim.z: 1024
maxGridSize.x: 2147483647
maxGridSize.y: 2147483647
maxGridSize.z: 2147483647
major: 10
minor: 12
concurrentKernels: 1
cooperativeLaunch: 0
cooperativeMultiDeviceLaunch: 0
arch.hasGlobalInt32Atomics: 1
arch.hasGlobalFloatAtomicExch: 1
arch.hasSharedInt32Atomics: 1
arch.hasSharedFloatAtomicExch: 1
arch.hasFloatAtomicAdd: 1
arch.hasGlobalInt64Atomics: 1
arch.hasSharedInt64Atomics: 1
arch.hasDoubles: 1
arch.hasWarpVote: 1
arch.hasWarpBallot: 1
arch.hasWarpShuffle: 1
arch.hasFunnelShift: 0
arch.hasThreadFenceSystem: 1
arch.hasSyncThreadsExt: 0
arch.hasSurfaceFuncs: 0
arch.has3dGrid: 1
arch.hasDynamicParallelism: 0
gcnArch: 1012
isIntegrated: 0
maxTexture1D: 65536
maxTexture2D.width: 16384
maxTexture2D.height: 16384
maxTexture3D.width: 2048
maxTexture3D.height: 2048
maxTexture3D.depth: 2048
isLargeBar: 0
:3:hip_device_runtime.cpp :471 : 23647701557: 5617 : [7fad295dd840] hipGetDeviceCount (
0x7ffdbe7db714)
:3:hip_device_runtime.cpp :473 : 23647701608: 5617 : [7fad295dd840] hipGetDeviceCount:
Returned hipSuccess
:3:hip_peer.cpp :76 : 23647701731: 5617 : [7fad295dd840] hipDeviceCanAccessPeer (
0x7ffdbe7db728, 0, 0)
:3:hip_peer.cpp :60 : 23647701784: 5617 : [7fad295dd840] canAccessPeer: Returned
hipSuccess
:3:hip_peer.cpp :77 : 23647701831: 5617 : [7fad295dd840] hipDeviceCanAccessPeer:
Returned hipSuccess
peers:

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 63

[Public]

:3:hip_peer.cpp :76 : 23647701921: 5617 : [7fad295dd840] hipDeviceCanAccessPeer (
0x7ffdbe7db728, 0, 0)
:3:hip_peer.cpp :60 : 23647701965: 5617 : [7fad295dd840] canAccessPeer: Returned
hipSuccess
:3:hip_peer.cpp :77 : 23647701998: 5617 : [7fad295dd840] hipDeviceCanAccessPeer:
Returned hipSuccess
non-peers: device#0

:3:hip_memory.cpp :345 : 23647702191: 5617 : [7fad295dd840] hipMemGetInfo (
0x7ffdbe7db718, 0x7ffdbe7db720)
:3:hip_memory.cpp :360 : 23647702243: 5617 : [7fad295dd840] hipMemGetInfo: Returned
hipSuccess
memInfo.total: 7.98 GB
memInfo.free: 7.98 GB (100%)

3.6.5 HIP Logging Tips

• HIP logging works for both release and debug version of HIP application.

• Logging function with different logging level can be called in the code as needed.

• Information with a logging level less than AMD_LOG_LEVEL will be printed.

• If need to save the HIP logging output information in a file, just define the file at the

command when running the application at the terminal, for example,

user@user-test:~/hip/bin$./hipinfo > ~/hip_log.txt

64 Programming with HIP Chapter 3

[Public]

3.7 Debugging HIP
This section information for HIP developers to trace and debug code during execution.

3.7.1 Debugging tools

3.7.1.1 Using ltrace

ltrace is a standard linux tool which provides a message to stderr on every dynamic library call.
Since ROCr and the ROCt (the ROC thunk, which is the thin user-space interface to the ROC
kernel driver) are both dynamic libraries, this provides an easy way to trace the activity in these
libraries. Tracing can be a powerful way to quickly observe the flow of the application before
diving into the details with a command-line debugger. ltrace is a helpful tool to visualize the
runtime behavior of the entire ROCm software stack. The trace can also show performance issues
related to accidental calls to expensive API calls on the critical path.

Samples

Command-line to trace HIP APIs and output:

$ ltrace -C -e "hip*" ./hipGetChanDesc
hipGetChanDesc->hipCreateChannelDesc(0x7ffdc4b66860, 32, 0, 0) = 0x7ffdc4b66860
hipGetChanDesc->hipMallocArray(0x7ffdc4b66840, 0x7ffdc4b66860, 8, 8) = 0
hipGetChanDesc->hipGetChannelDesc(0x7ffdc4b66848, 0xa63990, 5, 1) = 0
hipGetChanDesc->hipFreeArray(0xa63990, 0, 0x7f8c7fe13778, 0x7ffdc4b66848) = 0
PASSED!
+++ exited (status 0) +++
Command-line only trace hsa APIs and output:

$ ltrace -C -e "hsa*" ./hipGetChanDesc
libamdhip64.so.4->hsa_init(0, 0x7fff325a69d0, 0x9c80e0, 0 <unfinished ...>
libhsa-runtime64.so.1->hsaKmtOpenKFD(0x7fff325a6590, 0x9c38c0, 0, 1) = 0
libhsa-runtime64.so.1->hsaKmtGetVersion(0x7fff325a6608, 0, 0, 0) = 0
libhsa-runtime64.so.1->hsaKmtReleaseSystemProperties(3, 0x80084b01, 0, 0) = 0
libhsa-runtime64.so.1->hsaKmtAcquireSystemProperties(0x7fff325a6610, 0, 0, 1) = 0
libhsa-runtime64.so.1->hsaKmtGetNodeProperties(0, 0x7fff325a66a0, 0, 0) = 0
libhsa-runtime64.so.1->hsaKmtGetNodeMemoryProperties(0, 1, 0x9c42b0, 0x936012) = 0
...
<... hsaKmtCreateEvent resumed>) = 0
libhsa-runtime64.so.1->hsaKmtAllocMemory(0, 4096, 64, 0x7fff325a6690) = 0
libhsa-runtime64.so.1->hsaKmtMapMemoryToGPUNodes(0x7f1202749000, 4096, 0x7fff325a6690, 0) = 0
libhsa-runtime64.so.1->hsaKmtCreateEvent(0x7fff325a6700, 0, 0, 0x7fff325a66f0) = 0
libhsa-runtime64.so.1->hsaKmtAllocMemory(1, 0x100000000, 576, 0x7fff325a67d8) = 0
libhsa-runtime64.so.1->hsaKmtAllocMemory(0, 8192, 64, 0x7fff325a6790) = 0
libhsa-runtime64.so.1->hsaKmtMapMemoryToGPUNodes(0x7f120273c000, 8192, 0x7fff325a6790, 0) = 0
libhsa-runtime64.so.1->hsaKmtAllocMemory(0, 4096, 4160, 0x7fff325a6450) = 0
libhsa-runtime64.so.1->hsaKmtMapMemoryToGPUNodes(0x7f120273a000, 4096, 0x7fff325a6450, 0) = 0
libhsa-runtime64.so.1->hsaKmtSetTrapHandler(1, 0x7f120273a000, 4096, 0x7f120273c000) = 0
<... hsa_init resumed>) = 0
libamdhip64.so.4->hsa_system_get_major_extension_table(513, 1, 24, 0x7f1202597930) = 0
libamdhip64.so.4->hsa_iterate_agents(0x7f120171f050, 0, 0x7fff325a67f8, 0 <unfinished ...>
libamdhip64.so.4->hsa_agent_get_info(0x94f110, 17, 0x7fff325a67e8, 0) = 0
libamdhip64.so.4->hsa_amd_agent_iterate_memory_pools(0x94f110, 0x7f1201722816, 0x7fff325a67f0,
0x7f1201722816 <unfinished ...>
libamdhip64.so.4->hsa_amd_memory_pool_get_info(0x9c7fb0, 0, 0x7fff325a6744, 0x7fff325a67f0) = 0

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 65

[Public]

libamdhip64.so.4->hsa_amd_memory_pool_get_info(0x9c7fb0, 1, 0x7fff325a6748, 0x7f1200d82df4) = 0
...
<... hsa_amd_agent_iterate_memory_pools resumed>) = 0
libamdhip64.so.4->hsa_agent_get_info(0x9dbf30, 17, 0x7fff325a67e8, 0) = 0
<... hsa_iterate_agents resumed>) = 0
libamdhip64.so.4->hsa_agent_get_info(0x9dbf30, 0, 0x7fff325a6850, 3) = 0
libamdhip64.so.4->hsa_agent_get_info(0x9dbf30, 0xa000, 0x9e7cd8, 0) = 0
libamdhip64.so.4->hsa_agent_iterate_isas(0x9dbf30, 0x7f1201720411, 0x7fff325a6760,
0x7f1201720411) = 0
libamdhip64.so.4->hsa_isa_get_info_alt(0x94e7c8, 0, 0x7fff325a6728, 1) = 0
libamdhip64.so.4->hsa_isa_get_info_alt(0x94e7c8, 1, 0x9e7f90, 0) = 0
libamdhip64.so.4->hsa_agent_get_info(0x9dbf30, 4, 0x9e7ce8, 0) = 0
...
<... hsa_amd_memory_pool_allocate resumed>) = 0
libamdhip64.so.4->hsa_ext_image_create(0x9dbf30, 0xa1c4c8, 0x7f10f2800000, 3 <unfinished ...>
libhsa-runtime64.so.1->hsaKmtAllocMemory(0, 4096, 64, 0x7fff325a6740) = 0
libhsa-runtime64.so.1->hsaKmtQueryPointerInfo(0x7f1202736000, 0x7fff325a65e0, 0, 0) = 0
libhsa-runtime64.so.1->hsaKmtMapMemoryToGPUNodes(0x7f1202736000, 4096, 0x7fff325a66e8, 0) = 0
<... hsa_ext_image_create resumed>) = 0
libamdhip64.so.4->hsa_ext_image_destroy(0x9dbf30, 0x7f1202736000, 0x9dbf30, 0 <unfinished ...>
libhsa-runtime64.so.1->hsaKmtUnmapMemoryToGPU(0x7f1202736000, 0x7f1202736000, 4096, 0x9c8050) =
0
libhsa-runtime64.so.1->hsaKmtFreeMemory(0x7f1202736000, 4096, 0, 0) = 0
<... hsa_ext_image_destroy resumed>) = 0
libamdhip64.so.4->hsa_amd_memory_pool_free(0x7f10f2800000, 0x7f10f2800000, 256, 0x9e76f0) = 0
PASSED!

3.7.1.2 Using ROCgdb

HIP developers on ROCm can use AMD's ROCgdb for debugging and profiling. ROCgdb is the
ROCm source-level debugger for Linux, based on GDB, the GNU source-level debugger. It is
similar to cuda-gdb. It can be used with debugger frontends, such as eclipse, vscode, or gdb-
dashboard.

For details, see https://github.com/ROCm-Developer-Tools/ROCgdb

The sample below shows you how to use the ROCgdb run and debug HIP applications.

Note, ROCgdb is installed with the ROCM package in the folder /opt/rocm/bin.

$ export PATH=$PATH:/opt/rocm/bin
$ rocgdb ./hipTexObjPitch
GNU gdb (rocm-dkms-no-npi-hipclang-6549) 10.1
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
...
For bug reporting instructions, please see:
<https://github.com/ROCm-Developer-Tools/ROCgdb/issues>.
Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.
...
Reading symbols from ./hipTexObjPitch...
(gdb) break main
Breakpoint 1 at 0x4013d1: file /home/test/hip/tests/src/texture/hipTexObjPitch.cpp, line 98.
(gdb) run
Starting program: /home/test/hip/build/directed_tests/texture/hipTexObjPitch
[Thread debugging using libthread_db enabled]

https://github.com/ROCm-Developer-Tools/ROCgdb

66 Programming with HIP Chapter 3

[Public]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 1, main ()
 at /home/test/hip/tests/src/texture/hipTexObjPitch.cpp:98
98 texture2Dtest<float>();
(gdb)c

3.7.2 Debugging HIP Applications

The following example shows how to get useful information from the debugger while running an
application, which causes the GPUVM fault issue.

Memory access fault by GPU node-1 on address 0x5924000. Reason: Page not present or supervisor
privilege.

Program received signal SIGABRT, Aborted.
[Switching to Thread 0x7fffdffb5700 (LWP 14893)]
0x00007ffff2057c37 in __GI_raise (sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
56 ../nptl/sysdeps/unix/sysv/linux/raise.c: No such file or directory.
(gdb) bt
#0 0x00007ffff2057c37 in __GI_raise (sig=sig@entry=6) at
../nptl/sysdeps/unix/sysv/linux/raise.c:56
#1 0x00007ffff205b028 in __GI_abort () at abort.c:89
#2 0x00007ffff6f960eb in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
#3 0x00007ffff6f99ea5 in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
#4 0x00007ffff6f78107 in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
#5 0x00007ffff744f184 in start_thread (arg=0x7fffdffb5700) at pthread_create.c:312
#6 0x00007ffff211b37d in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:111
(gdb) info threads
 Id Target Id Frame
 4 Thread 0x7fffdd521700 (LWP 14895) "caffe" pthread_cond_wait@@GLIBC_2.3.2 () at
../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
 3 Thread 0x7fffddd22700 (LWP 14894) "caffe" pthread_cond_wait@@GLIBC_2.3.2 () at
../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
* 2 Thread 0x7fffdffb5700 (LWP 14893) "caffe" 0x00007ffff2057c37 in __GI_raise
(sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
 1 Thread 0x7ffff7fa6ac0 (LWP 14892) "caffe" 0x00007ffff6f934d5 in ?? () from
/opt/rocm/hsa/lib/libhsa-runtime64.so.1
(gdb) thread 1
[Switching to thread 1 (Thread 0x7ffff7fa6ac0 (LWP 14892))]
#0 0x00007ffff6f934d5 in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
(gdb) bt
#0 0x00007ffff6f934d5 in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
#1 0x00007ffff6f929ba in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
#2 0x00007fffe080beca in HSADispatch::waitComplete() () from /opt/rocm/hcc/lib/libmcwamp_hsa.so
#3 0x00007fffe080415f in HSADispatch::dispatchKernelAsync(Kalmar::HSAQueue*, void const*, int,
bool) () from /opt/rocm/hcc/lib/libmcwamp_hsa.so
#4 0x00007fffe080238e in Kalmar::HSAQueue::dispatch_hsa_kernel(hsa_kernel_dispatch_packet_s
const*, void const*, unsigned long, hc::completion_future*) () from
/opt/rocm/hcc/lib/libmcwamp_hsa.so
#5 0x00007ffff7bb7559 in hipModuleLaunchKernel () from /opt/rocm/hip/lib/libhip_hcc.so
#6 0x00007ffff2e6cd2c in mlopen::HIPOCKernel::run (this=0x7fffffffb5a8, args=0x7fffffffb2a8,
size=80) at /root/MIOpen/src/hipoc/hipoc_kernel.cpp:15
...

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 67

[Public]

3.7.3 Useful Environment Variables

HIP provides environment variables which allow HIP, hip-clang, or HSA driver to disable features
or optimizations. These are not intended for production but can be useful to diagnose
synchronization problems in the application (or driver).

See the sections below for a description of environment variables. They are supported on the
ROCm path.

3.7.3.1 Kernel Enqueue Serialization

Developers can control kernel command serialization from the host using the environment
variable,

• AMD_SERIALIZE_KERNEL, for serializing kernel enqueue.

• AMD_SERIALIZE_KERNEL = 1, Wait for completion before enqueue,

• AMD_SERIALIZE_KERNEL = 2, Wait for completion after enqueue,

• AMD_SERIALIZE_KERNEL = 3, Both. Or AMD_SERIALIZE_COPY, for serializing copies.

• AMD_SERIALIZE_COPY = 1, Wait for completion before enqueue

• AMD_SERIALIZE_COPY = 2, Wait for completion after enqueue

• AMD_SERIALIZE_COPY = 3, Both.

Note, HIP runtime can wait for GPU idle before/after any GPU command depending on the
environment setting.

3.7.3.2 Making Device Visible

For system with multiple devices, it is possible to make only certain device(s) visible to HIP via
the setting environment varible - HIP_VISIBLE_DEVICES. Only devices whose index is present
in the sequence are visible to HIP.

For example,

$ HIP_VISIBLE_DEVICES=0,1
or in the application,

if (totalDeviceNum > 2) {
 setenv("HIP_VISIBLE_DEVICES", "0,1,2", 1);
 assert(getDeviceNumber(false) == 3);

}

3.7.3.3 Dump code object

Developers can dump code object to analyze compiler-related issues via setting environment
variable, GPU_DUMP_CODE_OBJECT

68 Programming with HIP Chapter 3

[Public]

3.7.3.4 HSA related environment variables

HSA provides environment varibles help to analyze issues in drivers or hardware. For example,

• HSA_ENABLE_SDMA=0 It causes host-to-device and device-to-host copies to use

compute shader blit kernels rather than the dedicated DMA copy engines. Compute shader

copies have low latency (typically < 5us) and can achieve approximately 80% of the

bandwidth of the DMA copy engine. This environment variable is useful to isolate issues

with the hardware copy engines.

• HSA_ENABLE_INTERRUPT=0 Causes completion signals to be detected with memory-

based polling rather than interrupts. This environment variable can be useful to diagnose

interrupt storm issues in the driver.

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 69

[Public]

3.7.3.5 Summary of Environment Variables in HIP

Environment Variable Default Value Usage

AMD_LOG_LEVEL
Enable HIP log on different
Levels.

0 0: Disable log.
1: Enable log on error level.
2: Enable log on warning and below
levels.
0x3: Enable log on information and
below levels.
0x4: Decode and display AQL
packets.

AMD_LOG_MASK
Enable HIP log on different
Levels.

0x7FFFFFFF 0x1: Log API calls.
0x02: Kernel and Copy Commands
and Barriers.
0x4: Synchronization and waiting
for commands to finish.
0x8: Enable log on information and
below levels.
0x20: Queue commands and queue
contents.
0x40:Signal creation, allocation,
pool.
0x80: Locks and thread-safety code.
0x100: Copy debug.
0x200: Detailed copy debug.
0x400: Resource allocation,
performance-impacting events.
0x800: Initialization and shutdown.
0x1000: Misc debug, not yet
classified.
0x2000: Show raw bytes of AQL
packet.
0x4000: Show code creation debug.
0x8000: More detailed command
info, including barrier commands.
0x10000: Log message location.
0xFFFFFFFF: Log always even
mask flag is zero.

HIP_VISIBLE_DEVICES
Only devices whose index is
present in the sequence are visible
to HIP.

 0,1,2: Depending on the number of
devices on the system.

GPU_DUMP_CODE_OBJECT
Dump code object.

0 0: Disable.
1: Enable.

AMD_SERIALIZE_KERNEL
Serialize kernel enqueue.

0 1: Wait for completion before
enqueue.
2: Wait for completion after

70 Programming with HIP Chapter 3

[Public]

enqueue.
3: Both.

AMD_SERIALIZE_COPY
Serialize copies.

0 1: Wait for completion before
enqueue.
2: Wait for completion after
enqueue.
3: Both.

HIP_HOST_COHERENT
Coherent memory in
hipHostMalloc.

0 0: memory is not coherent between
host and GPU.
1: memory is coherent with host.

AMD_DIRECT_DISPATCH
Enable direct kernel dispatch.

0 0: Disable.
1: Enable.

3.7.4 General Debugging Tips

• 'gdb --args' can be used to conviently pass the executable and arguments to gdb.

• From GDB, you can set environment variables "set env". Note the command does not use

an '=' sign:
(gdb) set env AMD_SERIALIZE_KERNEL 3

• The fault will be caught by the runtime but was actually generated by an asynchronous

command running on the GPU. So, the GDB backtrace will show a path in the runtime.

• To determine the true location of the fault, force the kernels to execute synchronously by

seeing the environment variables AMD_SERIALIZE_KERNEL=3 AMD_SERIALIZE_COPY=3.

This will force HIP runtime to wait for the kernel to finish executing before retuning. If the

fault occurs during the execution of a kernel, you can see the code which launched the

kernel inside the backtrace. A bit of guesswork is required to determine which thread is

actually causing the issue - typically it will the thread which is waiting inside the libhsa-

runtime64.so.

• VM faults inside kernels can be caused by:

o incorrect code (ie a for loop which extends past array boundaries),

o memory issues - kernel arguments which are invalid (null pointers, unregistered

host pointers, bad pointers),

o synchronization issues,

o compiler issues (incorrect code generation from the compiler),

o runtime issues.

3.8 HIP Version
The HIP version definition is updated since the ROCm v4.2 release as follows:

HIP_VERSION=HIP_VERSION_MAJOR * 10000000 + HIP_VERSION_MINOR * 100000 + HIP_VERSION_PATCH)

The HIP version can be queried from the following HIP API call,

hipRuntimeGetVersion(&runtimeVersion);

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 3 Programming with HIP 71

[Public]

The version returned will always be greater than the versions in previous ROCm releases.

NOTE: The version definition of HIP runtime is different from CUDA. On the AMD platform, the
function returns HIP runtime version, while on the NVIDIA platform, it returns CUDA runtime
version. There is no mapping or a correlation between HIP version and CUDA version.

72 Transiting from CUDA to HIP Chapter 4

[Public]

Chapter 4 Transiting from CUDA to HIP

4.1 Transition Tool: HIPIFY
4.1.1 Sample and Practice

Here is a simple test, which shows how to use hipify-Perl to port CUDA code to HIP. See a
related blog that explains the example. Now, it is even simpler and requires no manual
modification to the hipified source code - just hipify and compile:

1. Add hip/bin path to the PATH.

 $ export PATH=$PATH:[MYHIP]/bin
2. Define the environment variable.

 $ export HIP_PATH=[MYHIP]
3. Build an executable file.

 $ cd ~/hip/samples/0_Intro/square
 $ make
 /home/user/hip/bin/hipify-perl square.cu > square.cpp
 /home/user/hip/bin/hipcc square.cpp -o square.out
 /home/user/hip/bin/hipcc -use-staticlib square.cpp -o square.out.static

4. Execute the file.

 $./square.out
 info: running on device Vega20 [Radeon Pro W5500]
 info: allocate host mem (7.63 MB)
 info: allocate device mem (7.63 MB)
 info: copy Host2Device
 info: launch 'vector_square' kernel
 info: copy Device2Host
 info: check result
 PASSED!

http://gpuopen.com/hip-to-be-squared-an-introductory-hip-tutorial

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 73

[Public]

4.2 HIP Porting Process
4.2.1 Porting a New CUDA Project

4.2.1.1 General Tips

• Starting the port on a CUDA machine is often the easiest approach since you can

incrementally port pieces of the code to HIP while leaving the rest in CUDA. (Recall that

on CUDA machines HIP is just a thin layer over CUDA, so the two code types can

interoperate on nvcc platforms.) Also, the HIP port can be compared with the original

CUDA code for function and performance.

• Once the CUDA code is ported to HIP and is running on the CUDA machine, compile the

HIP code using the HIP compiler on an AMD machine.

• HIP ports can replace CUDA versions: HIP can deliver the same performance as a native

CUDA implementation, with the benefit of portability to both Nvidia and AMD architectures

as well as a path to future C++ standard support. You can handle platform-specific

features through the conditional compilation or by adding them to the open-source HIP

infrastructure.

• Use bin/hipconvertinplace-perl.sh to hipify all code files in the CUDA source directory.

4.2.1.2 Scanning existing CUDA code to scope the porting effort

The hipexamine-perl.sh tool will scan a source directory to determine which files contain CUDA
code and how much of that code can be automatically hipified.

> cd examples/rodinia_3.0/cuda/kmeans
> $HIP_DIR/bin/hipexamine-perl.sh.
info: hipify ./kmeans.h =====>
info: hipify ./unistd.h =====>
info: hipify ./kmeans.c =====>
info: hipify ./kmeans_cuda_kernel.cu =====>
 info: converted 40 CUDA->HIP refs(dev:0 mem:0 kern:0 builtin:37 math:0 stream:0 event:0 err:0
def:0 tex:3 other:0) warn:0 LOC:185
info: hipify ./getopt.h =====>
info: hipify ./kmeans_cuda.cu =====>
 info: converted 49 CUDA->HIP refs(dev:3 mem:32 kern:2 builtin:0 math:0 stream:0 event:0 err:0
def:0 tex:12 other:0) warn:0 LOC:311
info: hipify ./rmse.c =====>
info: hipify ./cluster.c =====>
info: hipify ./getopt.c =====>
info: hipify ./kmeans_clustering.c =====>
info: TOTAL-converted 89 CUDA->HIP refs(dev:3 mem:32 kern:2 builtin:37 math:0 stream:0 event:0
err:0 def:0 tex:15 other:0) warn:0 LOC:3607
 kernels (1 total) : kmeansPoint(1)

74 Transiting from CUDA to HIP Chapter 4

[Public]

hipexamine-perl scans each code file (cpp, c, h, hpp, etc.) found in the specified directory:

• Files with no CUDA code (kmeans.h) print a one-line summary just listing the source file

name.

• Files with CUDA code print a summary of what was found - for example, the

kmeans_cuda_kernel.cu file:

info: hipify ./kmeans_cuda_kernel.cu =====>
info: converted 40 CUDA->HIP refs(dev:0 mem:0 kern:0 builtin:37 math:0 stream:0 event:0

• Information in kmeans_cuda_kernel.cu :

o How many CUDA calls were converted to HIP (40)

o Breakdown of the CUDA functionality used (dev:0 mem:0 etc). This file uses many

CUDA builtins (37) and texture functions (3).

o Warning for code that looks like CUDA API but was not converted (0 in this file).

o Count Lines-of-Code (LOC) - 185 for this file.

• hipexamine-perl also presents a summary at the end of the process for the statistics

collected across all files. This has a similar format to the per-file reporting, and also

includes a list of all kernels which have been called. An example from above:

info: TOTAL-converted 89 CUDA->HIP refs(dev:3 mem:32 kern:2 builtin:37 math:0 stream:0 event:0
err:0 def:0 tex:15 other:0) warn:0 LOC:3607
kernels (1 total) : kmeansPoint(1)

4.2.1.3 Converting a project in-place

> hipify-perl --inplace
For each input file FILE, this script will: - If FILE.prehip file does not exist, copy the original
code to a new file with extension.prehip. Then hipify the code file. If “FILE.prehip” file exists,
hipify FILE.prehip and save to FILE.

This is useful for testing improvements to the hipify toolset.

The hipconvertinplace-perl.sh script will perform an in-place conversion for all code files in the
specified directory. This can be quite handy when dealing with an existing CUDA code base since
the script preserves the existing directory structure and filenames - and includes work. After
converting in-place, you can review the code to add additional parameters to directory names.

> hipconvertinplace-perl.sh MY_SRC_DIR

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 75

[Public]

4.2.1.4 Library Equivalents

CUDA
Library

ROCm
Library

Comment

cuBLAS rocBLAS Basic Linear Algebra Subroutines
cuFFT rocFFT Fast Fourier Transfer Library
cuSPARSE rocSPARSE Sparse BLAS + SPMV
cuSolver rocSOLVER Lapack library
AMG-X rocALUTION Sparse iterative solvers and preconditioners with Geometric and Algebraic

MultiGrid
Thrust rocThrust C++ parallel algorithms library
CUB rocPRIM Low Level Optimized Parallel Primitives
cuDNN MIOpen Deep learning Solver Library
cuRAND rocRAND Random Number Generator Library
EIGEN EIGEN C++ template library for linear algebra: matrices, vectors, numerical solvers,
NCCL RCCL Communications Primitives Library based on the MPI equivalents

4.2.2 Distinguishing Compiler Modes

4.2.2.1 Identifying HIP Target Platform

All HIP projects target either AMD or NVIDIA platform. The platform affects the headers that are
included and libraries that are used for linking.

• HIP_PLATFORM_AMD is defined if the HIP platform targets AMD.

Note, HIP_PLATFORM_HCC was previously defined if the HIP platform targeted AMD. It

is now deprecated.

• HIP_PLATFORM_NVDIA is defined if the HIP platform targets NVIDIA.

Note, HIP_PLATFORM_NVCC was previously defined if the HIP platform targeted

NVIDIA. It is now deprecated.

4.2.2.2 Identifying the Compiler: HIP-Clang or NVIDIA

Often, it is useful to know whether the underlying compiler is HIP-Clang or NVIDIA. This
knowledge can guard platform-specific code or aid in platform-specific performance tuning.

#ifdef __HIP_PLATFORM_AMD__
// Compiled with HIP-Clang
#endif

#ifdef __HIP_PLATFORM_NVIDIA__
// Compiled with nvcc
// Could be compiling with CUDA language extensions enabled (for example, a ".cu file)
// Could be in pass-through mode to an underlying host compile OR (for example, a .cpp file)
#ifdef __CUDACC__
// Compiled with nvcc (CUDA language extensions enabled)

76 Transiting from CUDA to HIP Chapter 4

[Public]

HIP-Clang directly generates the host code (using the Clang x86 target) without passing the code
to another host compiler. Thus, they have no equivalent of the __CUDACC__ define.

4.2.2.3 Identifying Current Compilation Pass: Host or Device

NVCC makes two passes over the code: one for host code and one for device code. HIP-Clang
will have multiple passes over the code: one for the host code, and one for each architecture on the
device code. __HIP_DEVICE_COMPILE__ is set to a nonzero value when the compiler (HIP-
Clang or nvcc) is compiling code for a device inside a __global__ kernel or for a device function.
__HIP_DEVICE_COMPILE__ can replace #ifdef checks on the __CUDA_ARCH__ define.

// #ifdef __CUDA_ARCH__
#if __HIP_DEVICE_COMPILE__

Unlike __CUDA_ARCH__, the __HIP_DEVICE_COMPILE__ value is 1 or undefined, and it
does not represent the feature capability of the target device.

4.2.3 Compiler Defines: Summary

Define HIP-Clang nvcc Other (GCC, ICC,
Clang, etc.)

HIP-related defines:

__HIP_PLATFORM_AMD__ Defined Undefined Defined if targeting
AMD platform;
undefined otherwise

__HIP_PLATFORM_NVIDIA__ Undefined Defined Defined if targeting
NVIDIA platform;
undefined otherwise

__HIP_DEVICE_COMPILE__ 1 if compiling for
device; undefined if
compiling for host

1 if compiling for device;
undefined if compiling for
host

Undefined

__HIPCC__ Defined Defined Undefined
__HIP_ARCH_* 0 or 1 depending on

feature support (see
below)

0 or 1 depending on feature
support (see below)

0

nvcc-related defines:

__CUDACC__ Defined if source
code is compiled by
nvcc; undefined
otherwise

Undefined

__NVCC__ Undefined Defined Undefined
__CUDA_ARCH__ Undefined Unsigned representing

compute capability (e.g.,
"130") if in device code; 0 if
in host code

Undefined

hip-clang-related defines:

__HIP__ Defined Undefined Undefined
HIP-Clang common defines:

__clang__ Defined Defined Undefined

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 77

[Public]

4.3 Identifying Architecture Features
4.3.1 HIP_ARCH Defines

Some CUDA code tests __CUDA_ARCH__ for a specific value to determine whether the
machine supports a certain architectural feature. For instance,

#if (__CUDA_ARCH__ >= 130)
// doubles are supported

This type of code requires special attention since AMD and CUDA devices have different
architectural capabilities. Moreover, you cannot determine the presence of a feature using a simple
comparison against an architecture's version number. HIP provides a set of defines and device
properties to query whether a specific architectural feature is supported.

The __HIP_ARCH_* defines can replace comparisons of __CUDA_ARCH__ values:

//#if (__CUDA_ARCH__ >= 130) // non-portable
if __HIP_ARCH_HAS_DOUBLES__ { // portable HIP feature query
 // doubles are supported
}
For host code, the __HIP_ARCH__* defines are set to 0. You should only use the HIP_ARCH
fields in the device code.

4.3.2 Device-Architecture Properties

The host code should query the architecture feature flags in the device properties that
hipGetDeviceProperties returns, rather than testing the "major" and "minor" fields directly:

hipGetDeviceProperties(&deviceProp, device);
//if ((deviceProp.major == 1 && deviceProp.minor < 2)) // non-portable
if (deviceProp.arch.hasSharedInt32Atomics) { // portable HIP feature query
 // has shared int32 atomic operations ...
}

78 Transiting from CUDA to HIP Chapter 4

[Public]

4.3.3 Table of Architecture Properties

The table below shows the full set of architectural properties that HIP supports.

Define (use only in device code) Device Property (run-
time query)

Comment

32-bit atomics:

__HIP_ARCH_HAS_GLOBAL_INT32_ATOMICS__ hasGlobalInt32Atomics 32-bit integer
atomics for global
memory

__HIP_ARCH_HAS_GLOBAL_FLOAT_ATOMIC_EXCH_
_

hasGlobalFloatAtomicExc
h

32-bit float atomic
exchange for
global memory

__HIP_ARCH_HAS_SHARED_INT32_ATOMICS__ hasSharedInt32Atomics 32-bit integer
atomics for shared
memory

__HIP_ARCH_HAS_SHARED_FLOAT_ATOMIC_EXCH_
_

hasSharedFloatAtomicExc
h

32-bit float atomic
exchange for
shared memory

__HIP_ARCH_HAS_FLOAT_ATOMIC_ADD__ hasFloatAtomicAdd 32-bit float atomic
add in global and
shared memory

64-bit atomics

__HIP_ARCH_HAS_GLOBAL_INT64_ATOMICS__ hasGlobalInt64Atomics 64-bit integer
atomics for global
memory

__HIP_ARCH_HAS_SHARED_INT64_ATOMICS__ hasSharedInt64Atomics 64-bit integer
atomics for shared
memory

Doubles

__HIP_ARCH_HAS_DOUBLES__ hasDoubles Double-precision
floating point

Warp cross-lane operations:

__HIP_ARCH_HAS_WARP_VOTE__ hasWarpVote Warp vote
instructions (any,
all)

__HIP_ARCH_HAS_WARP_BALLOT__ hasWarpBallot Warp ballot
instructions

__HIP_ARCH_HAS_WARP_SHUFFLE__ hasWarpShuffle Warp shuffle
operations (shfl_*)

__HIP_ARCH_HAS_WARP_FUNNEL_SHIFT__ hasFunnelShift Funnel shift two
input words into
one

Sync

__HIP_ARCH_HAS_THREAD_FENCE_SYSTEM__ hasThreadFenceSystem threadfence_syste
m

__HIP_ARCH_HAS_SYNC_THREAD_EXT__ hasSyncThreadsExt syncthreads_count,
syncthreads_and,
syncthreads_or

Miscellaneous

__HIP_ARCH_HAS_SURFACE_FUNCS__ hasSurfaceFuncs

__HIP_ARCH_HAS_3DGRID__ has3dGrid Grids and groups
are 3D

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 79

[Public]

Define (use only in device code) Device Property (run-
time query)

Comment

__HIP_ARCH_HAS_DYNAMIC_PARALLEL__ hasDynamicParallelism

4.3.4 Finding HIP

Makefiles can use the following syntax to conditionally provide a default HIP_PATH if one does
not exist:

HIP_PATH ?= $(shell hipconfig --path)

4.3.5 Identifying HIP Runtime

HIP can depend on ROCclr, or CUDA as runtime.

The AMD platform HIP uses the Radeon Open Compute common language runtime called
ROCclr. ROCclr is a virtual device interface that HIP runtimes to interact with different backends,
allowing runtimes to work on Linux and Windows without much effort.

On the NVIDIA platform, HIP is just a thin layer on top of CUDA. On a non-AMD platform, HIP
runtime determines if CUDA is available and can be used. If available, HIP_PLATFORM is set to
NVIDIA, and underneath the CUDA path is used.

4.3.6 hipLaunchKernel

hipLaunchKernel is a variadic macro that accepts as parameters the launch configurations (grid
dims, group dims, stream, dynamic shared size) followed by a variable number of kernel
arguments. This sequence is then expanded into the appropriate kernel launch syntax depending on
the platform. While this can be a convenient single-line kernel launch syntax, the macro
implementation can cause issues when nested inside other macros. For example, consider the
following:

// Will cause compile error:
#define MY_LAUNCH(command, doTrace) \
{\
 if (doTrace) printf ("TRACE: %s\n", #command); \
 (command); /* The nested () will cause compile error */\
}

MY_LAUNCH (hipLaunchKernel(vAdd, dim3(1024), dim3(1), 0, 0, Ad), true, "firstCall");

80 Transiting from CUDA to HIP Chapter 4

[Public]

NOTE: Avoid nesting macro parameters inside parenthesis - here's an alternative that will work:

#define MY_LAUNCH(command, doTrace) \
{\
 if (doTrace) printf ("TRACE: %s\n", #command); \
 command;\
}

MY_LAUNCH (hipLaunchKernel(vAdd, dim3(1024), dim3(1), 0, 0, Ad), true, "firstCall");

4.3.7 Compiler Options

HIPcc is a portable compiler driver that calls nvcc or HIP-Clang (depending on the target system)
and attach all required include and library options. It passes options through to the target compiler.
Tools that call hipcc must ensure the compiler options are appropriate for the target compiler. The
hipconfig script may help in identifying the target platform, compiler, and runtime. It can also help
set options appropriately.

4.3.7.1 Compiler Options Supported on AMD Platforms

Option Description

--amdgpu-target=<gpu_arch> [DEPRECATED] This option is replaced by `--offload-arch=<target>`.
Generate code for the given GPU target. Supported targets are gfx701, gfx801,
gfx802, gfx803, gfx900, gfx906, gfx908, gfx1010, gfx1011, gfx1012, gfx1030,
gfx1031. This option could appear multiple times on the same command line
to generate a fat binary for multiple targets.

--fgpu-rdc Generate relocatable device code, which allows kernels or device functions
calling device functions in different translation units.

-ggdb Equivalent to `-g` plus tuning for GDB. This is recommended when using
ROCm's GDB to debug GPU code.

--gpu-max-threads-per-
block=<num>

Generate code to support up to the specified number of threads per block.

-O<n> Specify the optimization level.

-offload-arch=<target> Specify the AMD GPU [target ID]

https://clang.llvm.org/docs/ClangOffloadBundlerFileFormat.html#target-id

-save-temps Save the compiler-generated intermediate files.

-v Show the compilation steps.

https://clang.llvm.org/docs/ClangOffloadBundlerFileFormat.html#target-id

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 81

[Public]

4.3.7.2 Option for specifying GPU processor

To specify target ID, use

--offload-arch=X

NOTE: For backward compatibility, hipcc also accepts --amdgpu-target=X for specifying target
ID. However, it will be deprecated in future releases.

4.3.8 Linking Issues

4.3.8.1 Linking with hipcc

hipcc adds the necessary libraries for HIP as well as for the accelerator compiler (nvcc or AMD
compiler). It is recommended to link with hipcc since it automatically links the binary to the
necessary HIP runtime libraries. It also enables linking and managing GPU objects.

-lm Option

NOTE: hipcc adds -lm by default to the link command.

4.4 Linking Code with Other Compilers
CUDA code often uses nvcc for accelerator code (defining and launching kernels, typically
defined in .cu or .cuh files). It also uses a standard compiler (g++) for the rest of the application.
nvcc is a preprocessor that employs a standard host compiler (gcc) to generate the host code. The
code compiled using this tool can employ only the intersection of language features supported by
both nvcc and the host compiler. In some cases, you must take care to ensure the data types and
alignment of the host compiler are identical to those of the device compiler. Only some host
compilers are supported---for example, recent nvcc versions lack Clang host-compiler capability.

HIP-Clang generates both device and host code using the same Clang-based compiler. The code
uses the same API as gcc, which allows code generated by different gcc-compatible compilers to
be linked together. For example, code compiled using HIP-Clang can link with code compiled
using "standard" compilers (such as gcc, ICC, and Clang). Take care to ensure all compilers use
the same standard C++ header and library formats.

4.4.1 libc++ and libstdc++

hipcc links to libstdc++ by default. This provides better compatibility between g++ and HIP.

If you pass "--stdlib=libc++" to hipcc, hipcc will use the libc++ library. Generally, libc++ provides
a broader set of C++ features while libstdc++ is the standard for more compilers (notably
including g++).

82 Transiting from CUDA to HIP Chapter 4

[Public]

When cross-linking C++ code, any C++ functions that use types from the C++ standard library
(including std::string, std::vector and other containers) must use the same standard-library
implementation. They include the following:

• Functions or kernels defined in HIP-Clang that are called from a standard compiler

• Functions defined in a standard compiler are called from HIP-Clang.

• Applications with these interfaces should use the default libstdc++ linking.

Applications that are compiled entirely with hipcc, and which benefit from advanced C++ features
not supported in libstdc++, and which do not require portability to nvcc, may choose to use
libc++.

4.4.2 HIP Headers (hip_runtime.h, hip_runtime_api.h)

The hip_runtime.h and hip_runtime_api.h files define the types, functions and enumerations
needed to compile a HIP program:

• hip_runtime_api.h: defines all the HIP runtime APIs (e.g., hipMalloc) and the types required

to call them. A source file that is only calling HIP APIs but neither defines nor launches

any kernels can include hip_runtime_api.h. hip_runtime_api.h uses no custom hc language

features and can be compiled using a standard C++ compiler.

• hip_runtime.h: included in hip_runtime_api.h. It additionally provides the types and defines

required to create and launch kernels. It can be compiled using a standard C++ compiler,

but will expose a subset of the available functions.

CUDA has slightly different content for these two files. In some cases, you may need to convert
hipified code to include the richer hip_runtime.h instead of hip_runtime_api.h.

4.4.3 Using a Standard C++ Compiler

You can compile hip_runtime_api.h using a standard C or C++ compiler (e.g., gcc or ICC). The
HIP include paths and defines (__HIP_PLATFORM_AMD__ or _HIP_PLATFORM_NVIDIA__)
must pass to the standard compiler; hipconfig then returns the necessary options:

> hipconfig --cxx_config
 -D__HIP_PLATFORM_AMD__ -I/home/user1/hip/include

You can capture the hipconfig output and passed it to the standard compiler; below is a sample
makefile syntax:

CPPFLAGS += $(shell $(HIP_PATH)/bin/hipconfig --cpp_config)

Nvcc includes some headers by default. However, HIP does not include default headers, and
instead, all required files must be explicitly included. Specifically, files that call HIP run-time
APIs or define HIP kernels must explicitly include the appropriate HIP headers. If the compilation

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 83

[Public]

process reports that it cannot find necessary APIs (for example, "error: identifier ‘hipSetDevice’ is
undefined"), ensure that the file includes hip_runtime.h (or hip_runtime_api.h, if appropriate). The
hipify-perl script automatically converts "cuda_runtime.h" to "hip_runtime.h," and it converts
"cuda_runtime_api.h" to "hip_runtime_api.h", but it may miss nested headers or macros.

4.4.3.1 cuda.h

The HIP-Clang path provides an empty cuda.h file. Some existing CUDA programs include this
file but do not require any of the functions.

4.4.4 Choosing HIP File Extensions

Many existing CUDA projects use the ".cu" and ".cuh" file extensions to indicate code that should
be run through the nvcc compiler. For quick HIP ports, leaving these file extensions unchanged is
often easier, as it minimizes the work required to change file names in the directory and #include
statements in the files.

For new projects or ports which can be re-factored, we recommend the use of the extension
".hip.cpp" for source files, and ".hip.h" or ".hip.hpp" for header files. This indicates that the code
is standard C++ code, but also provides a unique indication for make tools to run hipcc when
appropriate.

84 Transiting from CUDA to HIP Chapter 4

[Public]

4.5 Workarounds
4.5.1 memcpyToSymbol

HIP support for hipMemcpyToSymbol is complete. This feature allows a kernel to define a
device-side data symbol that can be accessed on the host side. The symbol can be in __constant or
device space.

Note that the symbol name needs to be encased in the HIP_SYMBOL macro, as shown in the code
example below. This also applies to hipMemcpyFromSymbol, hipGetSymbolAddress, and
hipGetSymbolSize.

For example, Device Code:

#include<hip/hip_runtime.h>
#include<hip/hip_runtime_api.h>
#include<iostream>
#define HIP_ASSERT(status) \
 assert(status == hipSuccess)
#define LEN 512
#define SIZE 2048
__constant__ int Value[LEN];
__global__ void Get(hipLaunchParm lp, int *Ad)
{
 int tid =threadIdx.x + blockIdx.x *blockDim.x;
 Ad[tid] = Value[tid];
}
int main()
{
 int *A, *B, *Ad;
 A = new int[LEN];
 B = new int[LEN];
 for(unsigned i=0;i<LEN;i++)
 {
 A[i] = -1*i;
 B[i] = 0;
 }
 HIP_ASSERT(hipMalloc((void**)&Ad, SIZE));
 HIP_ASSERT(hipMemcpyToSymbol(HIP_SYMBOL(Value), A, SIZE, 0, hipMemcpyHostToDevice));
 hipLaunchKernel(Get, dim3(1,1,1), dim3(LEN,1,1), 0, 0, Ad);
 HIP_ASSERT(hipMemcpy(B, Ad, SIZE, hipMemcpyDeviceToHost));
 for(unsigned i=0;i<LEN;i++)
 {
 assert(A[i] == B[i]);
 }
 std::cout<<"Passed"<<std::endl;
}

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 85

[Public]

4.5.2 CU_POINTER_ATTRIBUTE_MEMORY_TYPE

To get pointer's memory type in HIP/HIP-Clang one should use hipPointerGetAttributes API. The
first parameter of the API is hipPointerAttribute_t which has 'memoryType' as a member variable.
'memoryType' indicates the input pointer is allocated on device or host.

For example:

double * ptr;
hipMalloc(reinterpret_cast<void**>(&ptr), sizeof(double));
hipPointerAttribute_t attr;
hipPointerGetAttributes(&attr, ptr); /*attr.memoryType will have value as hipMemoryTypeDevice*/

double* ptrHost;
hipHostMalloc(&ptrHost, sizeof(double));
hipPointerAttribute_t attr;
hipPointerGetAttributes(&attr, ptrHost); /*attr.memoryType will have value as
hipMemoryTypeHost*/

4.5.3 threadfence_system

Threadfence_system makes all device memory writes, all writes to mapped host memory, and all
writes to peer memory visible to CPU and other GPU devices. Some implementations can provide
this behavior by flushing the GPU L2 cache. HIP/HIP-Clang does not provide this functionality.
As a workaround, users can set the environment variable HSA_DISABLE_CACHE=1 to disable
the GPU L2 cache. This will affect all accesses and for all kernels and so may have a performance
impact.

4.5.4 Textures and Cache Control

Compute programs sometimes use textures either to access dedicated texture caches or to use the
texture-sampling hardware for interpolation and clamping. The former approach uses simple point
samplers with linear interpolation, essentially only reading a single point. The latter approach uses
the sampler hardware to interpolate and combine multiple samples. AMD hardware, as well as
recent competing hardware, has a unified texture/L1 cache, so it no longer has a dedicated texture
cache. But the nvcc path often caches global loads in the L2 cache, and some programs may
benefit from explicit control of the L1 cache contents. We recommend the __ldg instruction for
this purpose.

AMD compilers currently load all data into both the L1 and L2 caches, so __ldg is treated as a no-
op.

We recommend the following for functional portability:

• For programs that use textures only to benefit from improved caching, use the __ldg

instruction

• Programs that use texture object and reference APIs work well on HIP

86 Transiting from CUDA to HIP Chapter 4

[Public]

4.6 More Tips
4.6.1 HIP Logging

On an AMD platform, set the AMD_LOG_LEVEL environment variable to log HIP application
execution information.

Refer to the section on HIP Logging in this document for more information.

4.6.2 Debugging hipcc

To see the detailed commands that hipcc issues, set the environment variable HIPCC_VERBOSE
to 1. Doing so will print to stderr the HIP-clang (or nvcc) commands that hipcc generates.

4.6.3 Editor Highlighting

See the utils/vim or utils/gedit directories to add handy highlighting to hip files.

4.7 HIP Porting Driver API
4.7.1 Porting CUDA Driver API

CUDA provides a separate CUDA Driver and Runtime APIs. The two APIs have significant
overlap in functionality:

• Both APIs support events, streams, memory management, memory copy, and error

handling.

• Both APIs deliver similar performance.

• Driver APIs calls begin with the prefix cu while Runtime APIs begin with the prefix cuda.

For example, the Driver API API contains cuEventCreate while the Runtime API contains

cudaEventCreate, with similar functionality.

• The Driver API defines a different but largely overlapping error code space than the

Runtime API uses a different coding convention. For example, Driver API defines

CUDA_ERROR_INVALID_VALUE while the Runtime API defines cudaErrorInvalidValue

NOTE: The Driver API offers two additional pieces of functionality not provided by the Runtime
API: cuModule and cuCtx APIs.

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 87

[Public]

4.7.2 cuModule API

The Module section of the Driver API provides additional control over how and when accelerator
code objects are loaded. For example, the driver API allows code objects to be loaded from files or
memory pointers. Symbols for kernels or global data can be extracted from the loaded code
objects. In contrast, the Runtime API automatically loads and (if necessary) compiles all of the
kernels from an executable binary when run. In this mode, NVCC must be used to compile kernel
code so the automatic loading can function correctly.

Both Driver and Runtime APIs define a function for launching kernels (called cuLaunchKernel or
cudaLaunchKernel. The kernel arguments and the execution configuration (grid dimensions, group
dimensions, dynamic shared memory, and stream) are passed as arguments to the launch function.
The Runtime additionally provides the <<< >>> syntax for launching kernels, which resembles a
special function call and is easier to use than explicit launch API (in particular the handling of
kernel arguments). However, this syntax is not standard C++ and is available only when NVCC is
used to compile the host code.

The Module features are useful in an environment that generates the code objects directly, such as
a new accelerator language front-end. Here, NVCC is not used. Instead, the environment may have
a different kernel language or a different compilation flow. Other environments have many kernels
and do not want them to be all loaded automatically. The Module functions can be used to load the
generated code objects and launch kernels. As we will see below, HIP defines a Module API
which provides similar explicit control over code object management.

4.7.3 cuCtx API

The Driver API defines "Context" and "Devices" as separate entities. Contexts contain a single
device, and a device can theoretically have multiple contexts. Each context contains a set of
streams and events specific to the context. Historically contexts also defined a unique address
space for the GPU, though this may no longer be the case in Unified Memory platforms (since the
CPU and all the devices in the same process share a single unified address space). The Context
APIs also provide a mechanism to switch between devices, which allowed a single CPU thread to
send commands to different GPUs. HIP as well as a recent version of CUDA Runtime provide
other mechanisms to accomplish this feat - for example using streams or cudaSetDevice.

The CUDA Runtime API unifies the Context API with the Device API. This simplifies the APIs
and has little loss of functionality since each Context can contain a single device, and the benefits
of multiple contexts have been replaced with other interfaces. HIP provides a context API to
facilitate easy porting from existing Driver codes. In HIP, the Ctx functions largely provide an
alternate syntax for changing the active device. Most new applications will prefer to use
hipSetDevice or the stream APIs , therefore HIP has marked hipCtx APIs as deprecated. Support
for these APIs may not be available in future releases. For more details on deprecated APIs, refer
to HIP deprecated APIs at:

https://github.com/ROCm-Developer-
Tools/HIP/blob/main/docs/markdown/hip_deprecated_api_list.md

https://github.com/ROCm-Developer-Tools/HIP/blob/main/docs/markdown/hip_deprecated_api_list.md
https://github.com/ROCm-Developer-Tools/HIP/blob/main/docs/markdown/hip_deprecated_api_list.md

88 Transiting from CUDA to HIP Chapter 4

[Public]

4.7.4 HIP Module and Ctx APIs

Rather than present two separate APIs, HIP extends the HIP API with new APIs for Modules and
Ctx control.

4.7.4.1 hipModule API

Like the CUDA Driver API, the Module API provides additional control over how code is loaded,
including options to load code from files or in-memory pointers. NVCC and HIP-Clang target
different architectures and use different code object formats: NVCC is `cubin` or `ptx` files, while
the HIP-Clang path is the `hsaco` format. The external compilers which generate these code
objects are responsible for generating and loading the correct code object for each platform.
Notably, there is no fat binary format that can contain code for both NVCC and HIP-Clang
platforms. The following table summarizes the formats used on each platform:

Format APIs NVCC HIP-CLANG
Code Object hipModuleLoad, hipModuleLoadData .cubin or PTX text .hsaco
Fat Binary hipModuleLoadFatBin .fatbin .hip_fatbin

`hipcc` uses HIP-Clang or NVCC to compile host codes. Both may embed code objects into the
final executable, and these code objects will be automatically loaded when the application starts.
The hipModule API can be used to load additional code objects, and in this way provides an
extended capability to the automatically loaded code objects. HIP-Clang allows both capabilities
to be used together if desired. It is possible to create a program with no kernels and thus no
automatic loading.

4.7.5 hipCtx API

HIP provides a Ctx API as a thin layer over the existing Device functions. This Ctx API can be
used to set the current context or to query properties of the device associated with the context. The
current context is implicitly used by other APIs such as hipStreamCreate.

4.7.6 hipify translation of CUDA Driver API

The HIPIFY tools convert CUDA Driver APIs for streams, events, modules, devices, memory
management, context, profiler to the equivalent HIP driver calls. For example, cuEventCreate will
be translated into hipEventCreate. HIPIFY tools also convert error codes from the Driver
namespace and coding convention to the equivalent HIP error code. Thus, HIP unifies the APIs for
these common functions. The memory copy API requires additional explanation. The CUDA
driver includes the memory direction in the name of the API (ie cuMemcpyH2D) while the CUDA
driver API provides a single memory copy API with a parameter that specifies the direction and
additionally supports a "default" direction where the runtime determines the direction
automatically. HIP provides APIs with both styles: for example, hipMemcpyH2D as well as
hipMemcpy. The first flavor may be faster in some cases since they avoid host overhead to detect
different memory directions.

HIP defines a single error space and uses camel-case for all errors (i.e. hipErrorInvalidValue)

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 89

[Public]

4.8 HIP-Clang Implementation Notes
4.8.1 .hip_fatbin

hip-clang links device code from different translation units together. For each device target, a code
object is generated. Code objects for different device targets are bundled by clang-offload-bundler
as one fatbinary, which is embedded as a global symbol __hip_fatbin in the .hip_fatbin section of
the ELF file of the executable or shared object.

4.8.2 Initialization and Termination Functions

HIP-Clang generates initialization and termination functions for each translation unit for the host
code compilation. The initialization functions call __hipRegisterFatBinary to register the fatbinary
embedded in the ELF file. They also call __hipRegisterFunction and __hipRegisterVar to register
kernel functions and device-side global variables. The termination functions call
__hipUnregisterFatBinary. HIP-Clang emits a global variable __hip_gpubin_handle of void**
type with linkonce linkage and initial value 0 for each host translation unit. Each initialization
function checks __hip_gpubin_handle and register the fatbinary only if __hip_gpubin_handle is 0
and saves the return value of __hip_gpubin_handle to __hip_gpubin_handle. This is to guarantee
that the fatbinary is only registered once. A similar check is done in the termination functions.

4.8.3 Kernel Launching

HIP-Clang supports kernel launching by CUDA <<<>>> syntax, hipLaunchKernel, and
hipLaunchKernelGGL. The latter two are macros that expand to CUDA <<<>>> syntax.

When the executable or shared library is loaded by the dynamic linker, the initialization functions
are called. In the initialization functions, when __hipRegisterFatBinary is called, the code objects
containing all kernels are loaded; when __hipRegisterFunction is called, the stub functions are
associated with the corresponding kernels in code objects. HIP-Clang implements two sets of
kernels launching APIs.

By default, in the host code, for the <<<>>> statement, hip-clang first emits call of
hipConfigureCall to set up the threads and grids, then emits call of the stub function with the given
arguments. In the stub function, hipSetupArgument is called for each kernel argument, then
hipLaunchByPtr is called with a function pointer to the stub function. In hipLaunchByPtr, the real
kernel associated with the stub function is launched.

If HIP program is compiled with -fhip-new-launch-api, in the host code, for the <<<>>>
statement, hip-clang first emits call of __hipPushCallConfiguration to save the grid dimension,
block dimension, shared memory usage and stream to a stack, then emits call of the stub function
with the given arguments. In the stub function, __hipPopCallConfiguration is called to get the
saved grid dimension, block dimension, shared memory usage and stream, then hipLaunchKernel
is called with a function pointer to the stub function. In hipLaunchKernel, the real kernel
associated with the stub function is launched.

90 Transiting from CUDA to HIP Chapter 4

[Public]

4.8.4 Address Spaces

HIP-Clang defines a process-wide address space where the CPU and all devices allocate addresses
from a single unified pool. Thus, addresses may be shared between contexts, and unlike the
original CUDA definition, a new context does not create a new address space for the device.

4.8.5 Using hipModuleLaunchKernel

`hipModuleLaunchKernel` is `cuLaunchKernel` in HIP world. It takes the same arguments as
`cuLaunchKernel`.

4.8.6 Additional Information

HIP-Clang creates a primary context when the HIP API is called. In a pure driver API code, HIP-
Clang will create a primary context while HIP/NVCC will have an empty context stack.
HIP-Clang will push the primary context to the context stack when it is empty. This can have
subtle differences in applications that mix the runtime and driver APIs.

4.9 NVCC Implementation Notes
4.9.1 Interoperation between HIP and CUDA Driver

CUDA applications may want to mix CUDA driver code with HIP code. This table shows the type
equivalence to enable this interaction.

HIP Type CU Driver Type CUDA Runtime Type
hipModule_t CUmodule

hipFunction_t CUfunction

hipCtx_t CUcontext

hipDevice_t CUdevice

hipStream_t CUstream cudaStream_t
hipEvent_t CUevent cudaEvent_t
hipArray CUarray cudaArray

4.9.2 Compilation Options

The hipModule_t interface does not support cuModuleLoadDataEx function, which is used to
control PTX compilation options. HIP-Clang does not use PTX and does not support these
compilation options. HIP-Clang code objects always contain fully compiled ISA and do not
require additional compilation as a part of the load step.

The corresponding HIP function `hipModuleLoadDataEx` behaves as `hipModuleLoadData` on
HIP-Clang path (compilation options are not used) and as `cuModuleLoadDataEx` on NVCC path.

For example,

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 91

[Public]

CUDA

CUmodule module;
void *imagePtr = ...; // Somehow populate data pointer with code object
const int numOptions = 1;
CUJit_option options[numOptions];
void * optionValues[numOptions];
options[0] = CU_JIT_MAX_REGISTERS;
unsigned maxRegs = 15;
optionValues[0] = (void*)(&maxRegs);

cuModuleLoadDataEx(module, imagePtr, numOptions, options, optionValues);
CUfunction k;
cuModuleGetFunction(&k, module, "myKernel");

HIP

hipModule_t module;
void *imagePtr = ...; // Somehow populate data pointer with code object
const int numOptions = 1;
hipJitOption options[numOptions];
void * optionValues[numOptions];
options[0] = hipJitOptionMaxRegisters;
unsigned maxRegs = 15;
optionValues[0] = (void*)(&maxRegs);
// hipModuleLoadData(module, imagePtr) will be called on HIP-Clang path, JIT options will not be
used, and
// cupModuleLoadDataEx(module, imagePtr, numOptions, options, optionValues) will be called on
NVCC path
hipModuleLoadDataEx(module, imagePtr, numOptions, options, optionValues);
hipFunction_t k;
hipModuleGetFunction(&k, module, "myKernel");

The sample below shows how to use hipModuleGetFunction:

#include<hip_runtime.h>
#include<hip_runtime_api.h>
#include<iostream>
#include<fstream>
#include<vector>
#define LEN 64
#define SIZE LEN<<2
#ifdef __HIP_PLATFORM_HCC__
#define fileName "vcpy_isa.co"
#endif
#ifdef __HIP_PLATFORM_NVCC__
#define fileName "vcpy_isa.ptx"
#endif
#define kernel_name "hello_world"
int main(){
 float *A, *B;
 hipDeviceptr_t Ad, Bd;
 A = new float[LEN];
 B = new float[LEN];
 for(uint32_t i=0;i<LEN;i++){
 A[i] = i*1.0f;
 B[i] = 0.0f;

92 Transiting from CUDA to HIP Chapter 4

[Public]

 std::cout<<A[i] << " "<<B[i]<<std::endl;
 }

#ifdef __HIP_PLATFORM_NVCC__
 hipInit(0);
 hipDevice_t device;
 hipCtx_t context;
 hipDeviceGet(&device, 0);
 hipCtxCreate(&context, 0, device);
#endif
 hipMalloc((void**)&Ad, SIZE);
 hipMalloc((void**)&Bd, SIZE);
 hipMemcpyHtoD(Ad, A, SIZE);
 hipMemcpyHtoD(Bd, B, SIZE);
 hipModule_t Module;
 hipFunction_t Function;
 hipModuleLoad(&Module, fileName);
 hipModuleGetFunction(&Function, Module, kernel_name);
 std::vector<void*>argBuffer(2);
 memcpy(&argBuffer[0], &Ad, sizeof(void*));
 memcpy(&argBuffer[1], &Bd, sizeof(void*));
 size_t size = argBuffer.size()*sizeof(void*);
 void *config[] = {
 HIP_LAUNCH_PARAM_BUFFER_POINTER, &argBuffer[0],
 HIP_LAUNCH_PARAM_BUFFER_SIZE, &size,
 HIP_LAUNCH_PARAM_END
 };
 hipModuleLaunchKernel(Function, 1, 1, 1, LEN, 1, 1, 0, 0, NULL, (void**)&config);
 hipMemcpyDtoH(B, Bd, SIZE);
 for(uint32_t i=0;i<LEN;i++){
 std::cout<<A[i]<<" - "<<B[i]<<std::endl;
 }

#ifdef __HIP_PLATFORM_NVCC__
 hipCtxDetach(context);
#endif

 return 0;
}

4.9.3 HIP Module and Texture Driver API

HIP supports texture driver APIs however texture reference should be declared in host scope. The
following code explains the use of texture reference for the HIP_PLATFORM_HCC platform.

// Code to generate code object
#include "hip/hip_runtime.h"
extern texture<float, 2, hipReadModeElementType> tex;
__global__ void tex2dKernel(hipLaunchParm lp, float* outputData,
 int width,
 int height)
{
int x = blockIdx.x*blockDim.x + threadIdx.x;
int y = blockIdx.y*blockDim.y + threadIdx.y;
outputData[y*width + x] = tex2D(tex, x, y);
}

// Host code:
texture<float, 2, hipReadModeElementType> tex;
void myFunc ()

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 93

[Public]

{
 // ...
 textureReference* texref;
 hipModuleGetTexRef(&texref, Module1, "tex");
 hipTexRefSetAddressMode(texref, 0, hipAddressModeWrap);
 hipTexRefSetAddressMode(texref, 1, hipAddressModeWrap);
 hipTexRefSetFilterMode(texref, hipFilterModePoint);
 hipTexRefSetFlags(texref, 0);
 hipTexRefSetFormat(texref, HIP_AD_FORMAT_FLOAT, 1);
 hipTexRefSetArray(texref, array, HIP_TRSA_OVERRIDE_FORMAT);
 // ...
}

94 Appendix A – HIP API Chapter 5

[Public]

Chapter 5 Appendix A – HIP API

The following appendices are available on the AMD ROCm GitHub documentation website.

5.1 HIP API Guide
You can access the Doxygen-generated HIP API Guide at the following location:

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

5.2 HIP-Supported CUDA API Reference Guide
The HIP-Supported CUDA API Reference Guide consists of CUDA APIs supported in HIP and
covers the Driver API, Runtime API, cuComplex API, Device API, and APIs for the following
supported libraries:

• cuBLAS
• cuRAND

• cuFFT
• cuSPARSE

• cuDNN

For more information, see

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

5.3 Supported HIP Math APIs
You can access the supported HIP Math APIs at:

https://github.com/ROCm-Developer-Tools/HIP/blob/main/docs/markdown/hip-math-api.md

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf
https://github.com/ROCm-Developer-Tools/HIP/blob/main/docs/markdown/hip-math-api.md

1.0 Rev. 1210 December 2021 AMD HIP Programming Guide

 Chapter 6 Appendix C 95

[Public]

Chapter 6 Appendix C

6.1 HIP FAQ
You can access the HIP FAQ at:

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq

	Chapter 1 Introduction
	1.1 Features
	1.2 Accessing HIP
	1.2.1 Release Tagging

	1.3 HIP Portability and Compiler Technology

	Chapter 2 Installing HIP
	2.1 Installing Pre-built Packages
	2.2 Prerequisites
	2.3 AMD Platform
	2.4 NVIDIA Platform
	2.5 Building HIP from Source
	2.5.1 Get HIP Source Code
	2.5.2 Set Environment Variables
	2.5.3 Build HIP
	2.5.4 Default paths and environment variables

	2.6 Verifying HIP Installation

	Chapter 3 Programming with HIP
	3.1 HIP Terminology
	3.2 Getting Started with HIP API
	3.2.1 HIP API Overview
	3.2.2 HIP API Examples
	3.2.2.1 Example 1
	3.2.2.2 Example 2
	3.2.2.3 More HIP Examples

	3.3 Introduction to Memory Allocation
	3.3.1 Host Memory
	3.3.2 Memory allocation flags
	3.3.3 NUMA-aware host memory allocation
	3.3.4 Managed memory allocation
	3.3.5 HIP Stream Memory Operations
	3.3.6 Coherency Controls
	3.3.7 Visibility of Zero-Copy Host Memory
	3.3.7.1 hipEventSynchronize
	3.3.7.2 Direct Dispatch
	3.3.7.3 HIP Runtime Compilation
	3.3.7.4 HIP Graph
	3.3.7.5 Device-Side Malloc
	3.3.7.6 Use of Long Double Type
	3.3.7.7 FMA and Contractions
	3.3.7.8 Use of _Float16 Type
	3.3.7.9 Math Functions with Special Rounding Modes
	3.3.7.10 Creating Static Libraries

	3.4 HIP Kernel Language
	3.4.1 Function-Type Qualifiers
	3.4.1.1 __device__
	3.4.1.2 __global__
	3.4.1.3 __host__
	3.4.1.4 Calling __global__ Functions
	3.4.1.5 Kernel-Launch Example

	3.4.2 Variable-Type Qualifiers
	3.4.2.1 __constant__
	3.4.2.2 __shared__
	3.4.2.3 __managed__
	3.4.2.4 __restrict__

	3.4.3 Built-In Variables
	3.4.3.1 Coordinate Built-Ins
	3.4.3.2 warpSize

	3.4.4 Vector Types
	3.4.4.1 Short Vector Types
	3.4.4.2 dim3

	3.4.5 Memory-Fence Instructions
	3.4.6 Synchronization Functions
	3.4.7 Math Functions
	3.4.7.1 Single Precision Mathematical Functions
	3.4.7.2 Double Precision Mathematical Functions
	3.4.7.3 Integer Intrinsics
	3.4.7.4 Floating-point Intrinsics
	3.4.7.5 Texture Functions
	3.4.7.6 Surface Functions
	3.4.7.7 Timer Functions
	3.4.7.8 Atomic Functions
	3.4.7.9 Warp Cross-Lane Functions
	3.4.7.10 Warp Vote and Ballot Functions
	3.4.7.11 Warp Shuffle Functions
	3.4.7.12 Cooperative Groups Functions
	3.4.7.13 Warp Matrix Functions
	3.4.7.14 Independent Thread Scheduling
	3.4.7.15 Profiler Counter Function
	3.4.7.16 Assert
	3.4.7.17 Printf

	3.4.8 Device-Side Dynamic Global Memory Allocation
	3.4.9 __launch_bounds__
	3.4.9.1 Compiler Impact
	3.4.9.2 CU and EU Definitions
	3.4.9.3 Porting from CUDA __launch_bounds
	3.4.9.4 Maxregcount

	3.4.10 Register Keyword
	3.4.11 Pragma Unroll
	3.4.12 In-Line Assembly
	3.4.13 C++ Support
	3.4.14 Kernel Compilation
	3.4.15 gfx-arch-specific-kernel

	3.5 ROCm Code Object Tooling
	3.5.1 roc-obj
	3.5.1.1 Examples
	3.5.1.1.1 Extract all ROCm code objects from a list of executables
	3.5.1.1.2 Extract all ROCm code objects from a list of executables, and disassemble them
	3.5.1.1.3 Extract all ROCm code objects from a list of executables into dir/
	3.5.1.1.4 Extract only ROCm code objects matching regex over Target ID

	3.5.2 Low-Level Tooling
	3.5.2.1 URI Syntax
	3.5.2.2 List available ROCm Code Objects: roc-obj-ls
	3.5.2.3 Extract ROCm Code Objects: roc-obj-extract
	3.5.2.4 Examples
	3.5.2.4.1 Dump the ISA for gfx906:
	3.5.2.4.2 Check the e_flags of the gfx908 code object:
	3.5.2.4.3 Disassemble the fourth code object:
	3.5.2.4.4 Sort embedded code objects by size:
	3.5.2.4.5 Compare disassembly of gfx803 and gfx900 code objects:

	3.6 HIP Logging
	3.6.1 HIP Logging Level
	3.6.2 HIP Logging Mask
	3.6.3 HIP Logging Command
	3.6.4 HIP Logging Example
	3.6.5 HIP Logging Tips

	3.7 Debugging HIP
	3.7.1 Debugging tools
	3.7.1.1 Using ltrace
	3.7.1.2 Using ROCgdb

	3.7.2 Debugging HIP Applications
	3.7.3 Useful Environment Variables
	3.7.3.1 Kernel Enqueue Serialization
	3.7.3.2 Making Device Visible
	3.7.3.3 Dump code object
	3.7.3.4 HSA related environment variables
	3.7.3.5 Summary of Environment Variables in HIP

	3.7.4 General Debugging Tips

	3.8 HIP Version

	Chapter 4 Transiting from CUDA to HIP
	4.1 Transition Tool: HIPIFY
	4.1.1 Sample and Practice

	4.2 HIP Porting Process
	4.2.1 Porting a New CUDA Project
	4.2.1.1 General Tips
	4.2.1.2 Scanning existing CUDA code to scope the porting effort
	4.2.1.3 Converting a project in-place
	4.2.1.4 Library Equivalents

	4.2.2 Distinguishing Compiler Modes
	4.2.2.1 Identifying HIP Target Platform
	4.2.2.2 Identifying the Compiler: HIP-Clang or NVIDIA
	4.2.2.3 Identifying Current Compilation Pass: Host or Device

	4.2.3 Compiler Defines: Summary

	4.3 Identifying Architecture Features
	4.3.1 HIP_ARCH Defines
	4.3.2 Device-Architecture Properties
	4.3.3 Table of Architecture Properties
	4.3.4 Finding HIP
	4.3.5 Identifying HIP Runtime
	4.3.6 hipLaunchKernel
	4.3.7 Compiler Options
	4.3.7.1 Compiler Options Supported on AMD Platforms
	4.3.7.2 Option for specifying GPU processor

	4.3.8 Linking Issues
	4.3.8.1 Linking with hipcc

	4.4 Linking Code with Other Compilers
	4.4.1 libc++ and libstdc++
	4.4.2 HIP Headers (hip_runtime.h, hip_runtime_api.h)
	4.4.3 Using a Standard C++ Compiler
	4.4.3.1 cuda.h

	4.4.4 Choosing HIP File Extensions

	4.5 Workarounds
	4.5.1 memcpyToSymbol
	4.5.2 CU_POINTER_ATTRIBUTE_MEMORY_TYPE
	4.5.3 threadfence_system
	4.5.4 Textures and Cache Control

	4.6 More Tips
	4.6.1 HIP Logging
	4.6.2 Debugging hipcc
	4.6.3 Editor Highlighting

	4.7 HIP Porting Driver API
	4.7.1 Porting CUDA Driver API
	4.7.2 cuModule API
	4.7.3 cuCtx API
	4.7.4 HIP Module and Ctx APIs
	4.7.4.1 hipModule API

	4.7.5 hipCtx API
	4.7.6 hipify translation of CUDA Driver API

	4.8 HIP-Clang Implementation Notes
	4.8.1 .hip_fatbin
	4.8.2 Initialization and Termination Functions
	4.8.3 Kernel Launching
	4.8.4 Address Spaces
	4.8.5 Using hipModuleLaunchKernel
	4.8.6 Additional Information

	4.9 NVCC Implementation Notes
	4.9.1 Interoperation between HIP and CUDA Driver
	4.9.2 Compilation Options
	4.9.3 HIP Module and Texture Driver API

	Chapter 5 Appendix A – HIP API
	5.1 HIP API Guide
	5.2 HIP-Supported CUDA API Reference Guide
	5.3 Supported HIP Math APIs

	Chapter 6 Appendix C
	6.1 HIP FAQ

