COeXISTENCE

Playing urban mobility games with intelligent machines. Framework to discover and mitigate human-machine conflicts.

ERC Starting Grant, 2023-2028, @ GMUM, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków Rafał Kucharski rafal.kucharski@uj.edu.pl https://rafal-kucharski.u.matinf.uj.edu.pl/

CONFLICT or COeXISTENCE

intelligent machines in urban mobility games will learn to win at the cost of humans.

Context

Al-driven technologies are ready to enter urban mobility. They promise relief to the notoriously congested transport systems in pursuing sustainability goals.

Problem

Since AI already outperforms humans in the most complex games (chess and Go) it is likely to win the urban mobility games as well.

Tempting us and policymakers to gradually hand over our decisions to intelligent machines.

Objective

experimentally discover the existence machine-dominated urban mobility system, where (collective) decisions of machine intelligence improve system-wide performance, yet at the cost of humans, now facing e.g. longer travel times costs or being nudged to change natural travel habits into the optimal ones - desired by the machine-centred system.

Solution

rc

CONFLICT or COeXISTENCE

intelligent machines in urban mobility games will learn to win at the cost of humans.

Context

Al-driven technologies are ready to enter urban mobility. They promise relief to the notoriously congested transport systems in pursuing sustainability goals.

Problem

Since AI already outperforms humans in the most complex games (chess and Go) it is likely to win the urban mobility games as well.

Tempting us and policymakers to gradually hand over our decisions to intelligent machines.

Objective

experimentally discover the existence machine-dominated urban mobility system, where (collective) decisions of machine intelligence improve system-wide performance, yet at the cost of humans, now facing e.g. longer travel times costs or being nudged to change natural travel habits into the optimal ones - desired by the machine-centred system.

Solution

rc

CONFLICT or COeXISTENCE

intelligent machines in urban mobility games will learn to win at the cost of humans.

Context

Al-driven technologies are ready to enter urban mobility. They promise relief to the notoriously congested transport systems in pursuing sustainability goals.

Problem

Since AI already outperforms humans in the most complex games (chess and Go) it is likely to win the urban mobility games as well.

Tempting us and policymakers to gradually hand over our decisions to intelligent machines.

Objective

experimentally discover the existence machine-dominated urban mobility system, where (collective) decisions of machine intelligence improve system-wide performance, yet at the cost of humans, now facing e.g. longer travel times costs or being nudged to change natural travel habits into the optimal ones - desired by the machine-centred system.

Solution

rc

CONFLICT or COeXISTENCE

intelligent machines in urban mobility games will learn to win at the cost of humans.

Context

Al-driven technologies are ready to enter urban mobility. They promise relief to the notoriously congested transport systems in pursuing sustainability goals.

Problem

Since AI already outperforms humans in the most complex games (chess and Go) it is likely to win the urban mobility games as well.

Tempting us and policymakers to gradually hand over our decisions to intelligent machines.

Objective

experimentally **discover** the existence machine-dominated urban mobility system, where (collective) decisions of machine intelligence improve system-wide performance, yet at the cost of humans, now facing e.g. longer travel times costs or being nudged to change natural travel habits into the optimal ones - desired by the machine-centred system.

now: assist. prof, Jagiellonian University, Faculty of Math. and Comp-Sci, GMUM, prof. Jacek Tabor

2023-2028 ERC Starting Grant - COeXISTENCE 3 PhDs + PostDoc.

2021-2024 NCN OPUS - Post-corona shared mobility 2 PhDs + PostDoc.

past: PostDoc @ TU Delft working in Critical MaaS ERC Starting Grant

past²: assist. prof @ Politechnika Krakowska, prof. Andrzej Szarata

PhD: DTA, La Sapienza Rome, prof. Guido Gentile

outside academia: • R&D software developer (PTV SISTeMA)

- transport modeller (models for Kraków, Warsaw and more)
- data scientist, ML engineer (NorthGravity)

urban mobility

Urban mobility problem formalization

Demand

each agent (person, traveller) i wants to travel from her origin o to her destination d at a given time τ

 $q_i = \{o_i, d_i, \tau_i\}$

Spatiotemporal distributions

in the morning we travel from homes to work/school in the afternoon we come back

Decisions

each of us chooses where she lives, works, goes to school and when she travels.

Predictability

demand patterns of agents evolve, adapt and fluctuate day-to-day yet can remain predictable

Networks travel times, costs and capacity

Congestion

travel time is the non-linear function of the demand (flow) and the capacity:

$$c_a(\tau) = f(t0_a, q_a(\tau), Q_a) \approx t0_a \left(1 + \left(\frac{q_a}{Q_a}\right)^b\right)$$

Shortest path search

the shortest path from o_i to d_i depends on the flows q_a : $a \in A$

Fixed point problem

Travel time is a function of the flow:

 $t_a = f(q_a)$

Plow is the function of travel time (we use links least congested):

 $q_a \equiv f(t_a)$

Assignment problem

Problem

Determine the flow $q_a(\tau)$ and cost $c_a(\tau)$ for each link in the network $a\in A$ throughout the day $\tau\in T$

User-perspective

Each agent i selects the path k from her origin o_i to destination d_i at her departure time τ :

$$k_{od} = \operatorname*{arg\,min}_{k \in K_{od}} \sum_{a \in k} c_a$$

path k is a sequence of links starting at origin o ending at destination d. Among the all possible paths K_{od} each of us selects the best one.

Solutions Price of anarchy

All or nothing

We all choose shortest $\ensuremath{\textit{free-flow}}$ paths, assuming that we are the only ones in the city.

We regret very soon, in a completely jammed city.

System Optimum - Amazon warehouse

We are all centrally controlled and follow the centralized guidelines. The costs are minimal, the freedom as well. We do not control $\Delta c_{k,i} = c_{k,i} - \min_{k' \in K} c_{k',i}$

User Equilibrium

each user chooses the route that is the best. a user-optimized equilibrium is reached when no user may lower his tranportation cost through unilateral action and when her expectations equal the realization

Price of anarchy

Difference between total costs in the User Equilibiurm and (the minimal ones) in the System Optimal

$$PoA = C_{UE}/C_{SO} = \sum_{i \in \mathcal{I}} c_{i,UE} / \sum_{i \in \mathcal{I}} c_{i,SO}$$

Solutions Price of anarchy

All or nothing

We all choose shortest $\ensuremath{\textit{free-flow}}$ paths, assuming that we are the only ones in the city.

We regret very soon, in a completely jammed city.

System Optimum - Amazon warehouse

We are all centrally controlled and follow the centralized guidelines. The costs are minimal, the freedom as well. We do not control $\Delta c_{k,i} = c_{k,i} - \min_{k' \in K} c_{k',i}$

User Equilibrium

each user chooses the route that is the best. a user-optimized equilibrium is reached when no user may lower his t portation cost through unilateral action

and when her expectations equal the realization

Price of anarchy

Difference between total costs in the User Equilibiurm and (the minimal ones) in the System Optimal

$$PoA = C_{UE}/C_{SO} = \sum_{i \in \mathcal{I}} c_{i,UE} / \sum_{i \in \mathcal{I}} c_{i,SO}$$

Solutions Price of anarchy

All or nothing

We all choose shortest $\ensuremath{\textit{free-flow}}$ paths, assuming that we are the only ones in the city.

We regret very soon, in a completely jammed city.

System Optimum - Amazon warehouse

We are all centrally controlled and follow the centralized guidelines. The costs are minimal, the freedom as well. We do not control $\Delta c_{k,i} = c_{k,i} - \min_{k' \in K} c_{k',i}$

User Equilibrium

each user chooses the route that is the best. a user-optimized equilibrium is reached when no user may lower his transportation cost through unilateral action

and when her expectations equal the realization

Price of anarchy

Difference between total costs in the User Equilibiurm and (the minimal ones) in the System Optimal

$$PoA = C_{UE} / C_{SO} = \sum_{i \in \mathcal{I}} c_{i, UE} / \sum_{i \in \mathcal{I}} c_{i, SO}$$

Rational utility maximisers

Rational

Let's assume all humans are rational:

$$\Pr(k|od, i) = \Pr\left(c_{k,i} = \min_{k' \in K_{od}} c_{k',i}\right)$$

i.e. we take the best option.

Perceived costs - utility

length and travel time are physical cost is subjective, in discrete choice called Utility

$$U_{k,i} = \beta_{0,i} + \beta_{t,i}t_k + \beta_{c,i}c_k + \cdots + \varepsilon$$

- β_0 alternative-specific constant, i.e. taste variation, i.e. sentiment
- ε random term
- β_t value of time (10€/h)
- 3_c value of money

Rational utility maximisers

Rational

Let's assume all humans are rational:

$$\Pr(k|od, i) = \Pr\left(c_{k,i} = \min_{k' \in K_{od}} c_{k',i}\right)$$

i.e. we take the best option.

Perceived costs - utility

length and travel time are physical cost is subjective, in discrete choice called Utility

$$U_{k,i} = \beta_{0,i} + \beta_{t,i}t_k + \beta_{c,i}c_k + \cdots + \varepsilon$$

- $\beta_{\rm O}$ alternative-specific constant, i.e. taste variation, i.e. sentiment
 - € random term
- β_t value of time (10€/h)
- β_c value of money

User equilibrium

As an iterative game

Solution

As with Nash equilibria, simple solutions to selfish equilibrium can be found through iterative simulation, with each agent assigning its route given the choices of the others. This is very slow computationally. The Frank–Wolfe algorithm improves on this by exploiting dynamic programming.

Algorithm 1: Wardrop

Wardrop

```
inputs: set \mathcal{A} or agents, defined as i = \{o_i, d_i, t_i\}: a \in \mathcal{A}
foreach day/iteration until convergence t \in \mathcal{T} do
foreach agent i do
k_i = \arg \min_{k \in K_i} c_k  # each agent rationally selects the best option
c_k(t) = f(q_a: a \in k)  # collect feedback from environment - travel times
c_k = f((c_k(t'): t' = 0, ..., t))  # and builds epxerience
```


User equilibrium

as an iterative learning

Reaching equilibrium paraphrased

- Traveller has a goal to reach to destination at lowest costs
- She makes actions selects paths
- The environment changes (others are making actions) the link costs c_a change $c_a = f(q_a)$
- Agent learns to minimize the costs

Connected autonomous vehicles

Autonomous car

a car that is capable of travelling without human input

SYNOPSYS[®]

LEVELS OF DRIVING AUTOMATION

0	1	2	3	4	5
NO AUTOMATION	ASSISTANCE	AUTOMATION	AUTOMATION	AUTOMATION	AUTOMATION
Manual control. The human performs all driving tasks (steering, acceleration, braking, etc.).	The vehicle features a single automated system (e.g. it mostion: speed through cruise control).	ADAS. The vehicle can perform steering and acceleration. The human still monitors all tasks and can take control at any time.	Environmental detection capabilities. The white can perform most driving tasks, but human override is still required.	The vehicle performs all driving tasks under specific cloarnstances. Geodescing is neguted. Human override is still an option.	The vehicle performs all driving tasks under all conditions. Zero humen attention or interaction is required.
THE HUMAN MONITORS THE DRIVING ENVIRONMENT			THE AUTOMATED SYSTEM MONITORS THE DRIVING ENVIRONMENT		

Autonomy

Now the focus is on making them capable to drive

but the challenge is beyond that (personal opinion)

Decisions

Now CAVs are 3yo kids and we teach them how to walk and not to get lost. The real problems come when they are teenagers and they start making decisions

Decisions

- route-choice: how to get to destination?
- time-choice: when to leave?
- destination choices: which shopping mall?
- predictions: will it be crowded tomorrow?

System decisions

- pricing: how much should we charge Mr. X for his Uber
- service: how to reposition a fleet of our vehicles across the city?

mixed population

multi-class assignment

Mixing SO with UE

Let's assume we have two classes of users, each behaving differently.

humans behavioural, rational utility maximisers;

- X controllable, obedient, non-selfish;
- X' and potentially two competing providers.

Possible impact

Objective

Experimentally demonstrate case d) and show is we can reach COeXSITENCE

Advantages

Machines (unlike humans):

- are designed to behave optimally, i.e. use all the data and computational power to make optimal decisions;
- can collaborate, i.e. share information and cooperatively reach synergy;
- may understand human behaviour: predict it and anticipate our decisions;
- are automated and thus controllable by design;

- *c_a* is controllable by design reward function, not bounded by rationality
- $C_G = \sum_{a \in G} C_a$ possibly collective rewards
- $p_{k,a} \in \{0,1\}$ deterministic choices (controllable)

Advantages not digital-twins

Machines (unlike humans):

- are designed to behave optimally, i.e. use all the data and computational power to make optimal decisions;
- can collaborate, i.e. share information and cooperatively reach synergy;
- may understand human behaviour: predict it and anticipate our decisions;
- are automated and thus controllable by design;

- *c_a* is controllable by design reward function, not bounded by rationality
- $C_G = \sum_{a \in G} C_a$ possibly collective rewards
- $p_{k,a} \in \{0, 1\}$ deterministic choices (controllable)

Advantages

Machines (unlike humans):

- are designed to behave optimally, i.e. use all the data and computational power to make optimal decisions;
- can collaborate, i.e. share information and cooperatively reach synergy;
- may understand human behaviour: predict it and anticipate our decisions;
- are automated and thus controllable by design;

- *c_a* is controllable by design reward function, not bounded by rationality
- $C_G = \sum_{a \in G} C_a$ possibly collective rewards
- $p_{k,a} \in \{0, 1\}$ deterministic choices (controllable)

Advantages

Machines (unlike humans):

- are designed to behave optimally, i.e. use all the data and computational power to make optimal decisions;
- can collaborate, i.e. share information and cooperatively reach synergy;
- may understand human behaviour: predict it and anticipate our decisions;
- are automated and thus controllable by design;

- *c_a* is controllable by design reward function, not bounded by rationality
- $C_G = \sum_{a \in G} C_a$ possibly collective rewards
- $p_{k,a} \in \{0,1\}$ deterministic choices (controllable)

Conflicts

novel phenomena

congested bottleneck with limited capacity

we (humans) rationally optimize our decisions

and reach user-equilibrium:

- democratic
- egalitarian

erc

Conflicts

new players

intelligent machines

change the rules of the game

better at:

- · calculations
- · access to data
- controllable
- collaborative

designed to win

COeXISTENCE

TENCE discover and mitigate human-machine conflicts in Urban Mobility Rafał Kucharski

erc

Conflicts

by collaboration

machines **trick** the demand-actuated traffic lights

collaboratively reroute

receive more green light

pass the bottleneck faster

humans queue longer

erc

summary

TSTP2023 Conference, Politechnika Śląska w Gliwicach

COeXISTENCE

framework to discover how machine intelligence may take-over our urban mobility and how to avoid it

=

URBAN MOBILITY

+

DEMAND

INTELLIGENT + MACHINES

sustainability efficiency infrastructure

SUPPLY

people

COeXISTENCE

anticipate demonstrate resolve

paradigm shift in urban mobility

COeXISTENCE ERC Starting Grant

Thank you for your attention,

welcome to discuss

feel free to join us (to inner- or outer-circles)

Rafał Kucharski

rafal.kucharski@uj.edu.pl

