Introduction to Spatial Raster Data Using the terra Package

Josh Carrell - Ph.D. Student | Forest Sciences - Colorado State University

Contents
Spatial Raster Data e 2
Sif/ A files Lo 2
Resolution o 3
Raster over the same extent, at 4 different resolutions
0,8 88 0,8 8,8 0,8 88 0,8 8,8

BeITa L e e 3
SpatVector e e 3
SpatRaster e 3

Data e 4

ODbjJectives o e 5
Libraries o e 5
Projections e 6

terra functions L L L e 6
rast() ... 6
SUMMArY()o 6
freq() . . . o 6
hist() . . . o o 7
PlOt() o 7
Project() « o v v o 8
mosaic() 9
crop() vs.mask() 13

Slope . . . L 15

Aspect . . . L e 16

TPI . 17

TRI . e e e 18
TOUGHNESS . . .« . v o o e e e 19

C) o o 20
Combour() .« . . 21
classify() 23
extract() 24
rasterize() 26
Raster Math o . o e e 29
writeRaster() L 30
Raster Data Sources e 30

Spatial Raster Data

Welcome to Raster data. This is the fun stuff.

If you remember from the week 4 lecture guide, spatial raster data consists of cells that are of equal width
and length. These cells contain values which either numerical/continuous or discrete/categorical in nature.

height

width

Individual cells Single cell

- —
=10 x10

tif/ tiff files

We will be working with .tif or .tiff files for a majority of the class (possibly all of it). tif stands for Tagged
image format whereas tiff stands for Tagged image file format. The two versions are synonymous.

Some other data types that function like .tif files are .img and .hdr files. For now, focus on the .tif.

Resolution

Resolution (in working with the raster data of this guide) refers to pixel size. This is technically called
“Spatial Resolution”. The data in this guide has a spatial resolution of 30m and lkm.

Raster over the same extent at 4 different resolutions
0,8 88 08 8,8 0,8 88 0,8 8,8

0,0 80 0,0 80 0,0 80 0,0 T 8,0
8 meter 4 meter 2 meter 1 meter

terra

Straight from the R documentation on the terra package:

“terra provides methods to manipulate geographic (spatial) data in”raster” and “vector” form. Raster data
divide space into rectangular cells (pixels) and they are commonly used to represent spatially continuous
phenomena, such as elevation or the weather. Satellite images also have this data structure. In contrast,
“vector” spatial data (points, lines, polygons) are typically used to represent discrete spatial entities, such
as a road, country, or bus stop.”

Now, terra has the capability of being a one stop shop for using spatial data, both raster and vector. If you
remember them from the week 4 lecture, we cover this briefly. Let’s look at SpatRasters and SpatVectors
quickly once again.

SpatVector

SpatVectors function the same way that vector data does. It is simply a different data type than your sf
vectors and sometimes, it required for analysis using the terra package.

SpatRaster

“SpatRaster supports handling large raster files that cannot be loaded into memory; local, focal, zonal, and
global raster operations; polygon, line and point to raster conversion; integration with modeling methods to
make spatial predictions; and more” - R Documentation on terra package

Data

For this coding guide, we will be working with raster and vector data provided by the National Park Service,
specifically Zion National Park. You can get spatial data of national parks, forests, and monuments from
Data.gov. The boundaries of every National Park/Monument/Area under the specific agency jurisdiction is
provided in the data folder called, “nps_ boundary.shp”.

nps <- sf::st_read("D:/NR_6950/data/Rasters/nps_boundary.shp")

Reading layer ‘nps_boundary’ from data source

‘D:\NR_6950\data\Rasters\nps_boundary.shp’ using driver ‘ESRI Shapefile’
Simple feature collection with 427 features and 15 fields

Geometry type: MULTIPOLYGON

Dimension: XY

Bounding box: =xmin: -170.7276 ymin: -14.28316 xmax: 145.7318 ymax: 68.65539
Geodetic CRS: NADS83

plot (nps$geometry, main = "A lot of polygons!")

A lot of polygons!

Objectives

We’ll be walking through the basics of raster data analysis using the terra package. By the end of this guide,
you will have a firm grasp on how to load, manipulate, analyze, and visualize raster data.

Libraries

Load the following libraries as you follow along:

1. terra
2. sf

3. tidyverse

Projections

If you remember from week 4, coordinate system data can be obtained from using EPSG codes. This week
we will be using the proj4string data. Simply put, it is another way to project data. We’ll be projecting
our data to NAD 83 Albers Equal Area by using it’s projdstring information. Check out the proj 4 string
information in the code and copy it to your own R script.

prj.aeaN83 <- "+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +towgs:

terra functions

Just like the spatial vector coding guide, we will be walking through several functions that are important to
learn in working with spatial vector data.

rast()

The rast() function stands for raster. It is the method for loading raster data in R. Syntax is as follows:
variable <- rast(“pathway /raster.tif”)

Let’s load in our 1 digital elevation models, using rast(). Load “zion_B”.

NOTE: A Digital Elevation Model (DEM) is a raster data set that contains elevation information in each

pixel. It is one of the most common raster data types you will encounter.

zionB <- terra::rast("D:/NR_6950/data/Rasters/zion_B.tif") # Load dem

summary ()

summary() provides a quick summary of the data by providing the basic descriptive statistics of the dataset.
Since we are working with elevation in meters, we should see values in the 1000’s for Zion National Park.

terra: :summary(zionB)

Warning: [summary] used a sample

zion_B

Min. 11171
1st Qu.:1835
Median :2109
Mean 121563
3rd Qu.:2421
Max. 13387

freq()

freq() stands for frequency. This data can get overwhelming as it is equivalent the function, table(). It will
return the count of cells that contain a given value. That’s alot of information. So lets just run a head() on
it to get the idea.

head(terra: :freq(zionB),5)

layer value count

1 1 1158 2
2 1 1159 2
3 1 1160 7
4 1 1161 15
5 1 1162 12
hist()

A histogram would provide the same information as freq(), just in a visual and less overwhelming manner.

terra: :hist(zionB)

Warning: [hist] a sample o0f8), of the cells was used

zion B
o
o —
o _
o
[qV}
—
8] I
o | |
e 3 |
m w
>
g b | —
r 3
O p—
o
<
O —1 I—I
| | | | |
1500 2000 2500 3000 3500
\'
plot()

By now, you're very familiar with the plot() function. However, when working with SpatRasters, you need
to be sure you are using the plot() function from the terra package. plot() from the base R package will not
work on SpatRasters. One easy way to make sure you are using the right function is to call the package by
using 2 :, like so:

terra::plot(raster)

I often call a package before using a specific function to be sure I am doing the right thing!

terra: :plot(zionB)

37.2
I

37.0
|

-113.0 -112.5 -112.0

project()
project() is the equivalent of st_ transform(), but for raster data. Check out the code:

zionB <- terra::project(zionB, prj.aeaN83)
terra: :plot(zionB)

3000

2500

2000

1500

o
o
o
o -
o]
S
3000
o
o
o
S -
©
~
—
o
g 2500
S -
<
~
—
o
o
o
8 =
N~
g 2000
o
o
o
o =
o
~
—
o 1500
(=]
o
O =
0]
©
—

-1500000 -1450000 -1400000

mosaic()
mosaic() is very similar to merging vector data, only with rasters. 2 or more overlapping/touching raster
data can be combined into a single raster which is extremely useful.

To get the idea, let’s look at our loaded raster data and the boundary of Zion National Park (we’ll need to
subset that data from our larger dataset using the PARKNAME column and then transform it to match our
Zion raster data).

zion_bounds <- nps %>%
filter (PARKNAME == "Zion") # subset to only Zion NP

zion_bounds <- st_transform(zion_bounds, prj.aeaN83) # change the crs

plot(zionB) # plot
plot(zion_bounds$geometry, add = T) # add boundary

o
o
o
o -
o]
S
3000
o
o
o
S -
©
~
—
o
g 2500
S -
<
~
—
o
o
o
8 =
N~
g 2000
o
o
o
o =
o
~
—
o 1500
(=]
o
O =
0]
©
—

-1500000 -1450000 -1400000

So looking at the plot above, we are lucky enough that our raster data only covers about half of Zion...
Luckily, we have the other half! Let’s load zion_ A.

zionA <- terra::rast("D:/NR_6950/data/Rasters/zion_A.tif")

zionA <- terra::project(zionA, prj.aeaN83)

terra::plot(zionA, main = "They both cover Zion!")
plot(zion_bounds$geometry, add = T)

10

They both cover Zion!

1700000 1720000 1740000 1760000 1780000 1800000

-1600000 -1550000 -1500000

terra::plot(zionB, main = "But we need them to be one...")
plot(zion_bounds$geometry, add = T)

11

—-1450000

3000

2500

2000

1500

1000

But we need them to be one...

1680000 1700000 1720000 1740000 1760000 1780000

-1500000 -1450000 -1400000

This is where mosaic() comes in. Check out the code and the output.

mosaic_r <- mosaic(zionA, zionB)

Warning: [mosaic] rasters did not align and were resampled

terra: :plot(mosaic_r)
plot(zion_bounds$geometry, add = T)

12

3000

2500

2000

1500

8
S |
2
& 3000
8 2500
8 —
5
7 2000
o
3
g —
N~
= 1500
o
S 1000
O -
3
—

-1550000 -1500000 -1450000 -1400000

crop() vs. mask()

Great. Our rasters are now 1 and they cover our park completely. We're going to be running analyses on
raster data in Zion so we don’t need all that excess data outside of the park boundary.

Both crop() and mask() perform this action, only slightly different. Let’s take a look at what they do:
NOTE: We are cropping/masking (essentially just trimming down the size of raster) a raster by a vector
data. Currently, our Zion boundary was loaded through the package sf and is an sf object. For these
funcitons to work, the sf objects must become SpatVectors. We can change the data by using the
as() function. Check the code to see how it works.

zion_bounds_v <- as(zion_bounds, "SpatVector") # change to SpatVector

Zion <- terra::crop(mosaic_r, zion_bounds_v) # crop

terra::plot(Zion, main = "This is the crop() output!")
plot(zion_bounds$geometry, add = T)

13

This is the crop() output!

1720000 1730000 1740000
| | |

1710000
1

1700000
|

-1510000 -1500000 -1490000 -1480000

-1470000

-1460000

2500

2000

1500

Zion_m <- terra::mask(Zion, zion_bounds_v) # mask to a defined polygon boundary
terra::plot(Zion_m, main = "This is the mask() output!")

plot(zion_bounds$geometry, add = T)

14

This is the mask() output!

8 2600
S |
N
—
2400

8
S Lt 2200
N~
—

L 2000
8
S |
N L1 1800
3 L 1600
o
g
S

L 1400
o
g | - 1200
o
~ T T T T T T —

—1510000 —1500000 —-1490000 —-1480000 —-1470000 —-1460000

From here on forward, we will be working with masked version.

terrain()

terrain() allows you to compute terrain characteristics from a DEM. These characteristics are useful to have
when examining a landscape. You will specify which characteristic you want to calculate in quotation marks.

Slope Slope measures the... well, slope. Slope is the the angle of a slopeing hill/cliff face and is provided
in units between 0-90 degrees. 90 degrees being a straight up cliff while 0 degrees is flat ground.

If you have been to Zion National Park (if you haven’t, you must go) you are familiar with the Sandstone
cliffs. So in your mind, how would slope look? Probably alot of values between 80-90 degrees! There are a
lot of cliffs in Zion.

slp <- terra::terrain(Zion_m, "slope'")

terra: :plot(slp)
plot(zion_bounds$geometry, T

15

8 80
8
N
—
70

8
=3 60
Q
—

— 50
8
S -t 40
i

— 30
o
S
Sh L1 20
—

— 10
o
8
S G
~ T T T T T T —

—1510000 —1500000 —-1490000 —-1480000 —-1470000 —-1460000

Aspect Aspect refers to the direction the slope face is facing. The output is measured in 360 degrees with
North being values 0/360, east being 90, south being 180, and west being 270.

asp <- terra::terrain(Zion_m, "aspect")

terra: :plot(asp)
plot(zion_bounds$geometry, T

16

8 350
§_
:

300
o
8
< 250
5
i 1 200
S
8.
N
- —+ 150
o
g 1 100
=
5

— 50

o
S
8 -
~ T T T T T T —

—1510000 —1500000 —-1490000 —-1480000 —-1470000 —-1460000

TPI Topographic position index (TPI) is an algorithm increasingly used to measure topographic slope
positions and to automate landform classifications. If you look close (and you will need to look close. ..),
you can see the general landscape of Zion being broken up into sub-landscape types.

tpi <- terra::terrain(Zion_m, "TPI")

terra: :plot(tpi)
plot(zion_bounds$geometry, add = T)

17

o

8

=

S 100
N~

—

o

o

S

8 L 50
—

o

o

o

S

S L1 0
-

o

o

o

S

> L1 -50
o

o

o

O_

E LI

— T T T I T T

-1510000 —1500000 —-1490000 —-1480000 —-1470000 —-1460000

TRI The topographic ruggedness index (TRI) was developed by Riley et al. (1999) to express the amount
of elevation difference between adjacent cells of a DEM. It calculates the difference in elevation values from a
center cell and the eight cells immediately surrounding it. Basically, higher values indicate a greater change
in elevation between cells.

tri <- terra::terrain(Zion_m, "TRI")

terra::plot(tri)
plot(zion_bounds$geometry, T)

18

o
o
o
o+
<
N~
i
150
o
o
o
o+
™
N~
i
o — 100
o
o
S+
N
N~
i
S
o 1
S 50
i
N~
i
o
o
o
(@R
E
— T T T 1 T T

—1510000 —1500000 —-1490000 —-1480000 —-1470000 —-1460000

roughness Roughness is the degree of irregularity of the surface. It’s calculated by the largest inter-cell
difference of a central pixel and its sourrounding cell. Do you see any differences between roughness and
TRI? Hardly.

Rougher terrains are an important indicator of habitat resources of certain wildlife species. For example,
Mtn Lions like rough terrain.

rough <- terra::terrain(Zion_m, "roughness")
terra: :plot(rough)
plot(zion_bounds$geometry, T

19

c()

8
S
E
—
400

8
S
g
—

L | 300
o
S
S
N

L | 200
o
8
g
S L 1 100
8
S |
E T T T 1 T T - O

-1510000 —1500000 —-1490000 —-1480000 —-1470000 —-1460000

Great. We've started with a DEM and calculate 5 extra terrain characteristics. Pretty cool, huh?

Now we could plot them all separately and save them all as individual rasters. However, raster data has the
unique option of being “stacked”. If 2 or more raster data have the same extent, crs, and resolution, they
can be stacked on top of each other and act as a single .tif file of multiple layers.

It’s pretty simple to do. Just using the c() function and assign a variable all of the raster data you want.

rasterz <- c(Zion_m, slp, asp, tpi, tri, rough)

rasterz

##
##
##
##
##
##
##
##
##
##
##
##

class
dimensions
resolution
extent

coord. ref.

sources

names
min values
max values

: SpatRaster

1601, 985, 6 (nrow, ncol, nlyr)

1 27.9354, 27.9354 (x, y)
: -1501419, -1473902, 1698450, 1743175 (xmin, xmax, ymin, ymax)
: +proj=aea +lat_0=23 +lon_0=-96 +lat_1=29.5 +lat_2=45.5 +x_0=0 +y_0=0 +ellps=GRS80 +tow

! memory
memory
memory
. and 3 more source(s)
zion_A, slope, aspect, TPI, TRI,
1.118037e+03, 1.269219e-02, 5.216110e-13, -1.073425e+02, 6.332397e-02,
2662.07104, 83.33023, 359.99973, 116.36192, 196.85442,

20

roughne;
0.000000e+
518.671

dim(rasterz)

[1] 1601 985

terra: :plot(rasterz)

6

zion_A slope aspect
o o o
8 y 2600 S 80 S 350
IS [sE IS
g 4 g g
S § 2400~ 70 - 300
o - ..’ o o
S A S oo S
2 I 2200 S 2 L 250
S w S S
I 50

o . a‘ I 2000 o o - 200
o o o
o o o
9 1800 & | T4 {1
& T & & - 150
o o = 30 o
8 —+ 1600 S =1 L 100
a7 ? a7 20 S

) ~ ~
5 It 1400 S 5
8] P dl —T10 g r S0
=3 1200 G | . =3
o L] o L] o
~ T T T T T T T T ~ T T T T T T T T ~ T T
=1505000 -1490000 -1475000 =1505000 -1490000 -1475000 =1505000 ~1490000 -1475000

TPI TRI roughness
o o o
8 8 8
S 100 S S
~ ~ ~
- - -
° ° 150 400
o o o
- - -
@ 50 & @
S S S

L 300
8 38 I 100 8
o o o
sk S+ S4
I S] I I
S S S L 200
o o o
8 8 8
=< =< I s0 S
N I 50 < N 100
: — - B
o o o
o o o
o o o
o4 o4 o4
o L o L o L 0
~ T T T T T T T T ~ T T T T T T T T ~ T T T T T T T T
=1505000 -1490000 -1475000 =1505000 -1490000 -1475000 =1505000 -1490000 -1475000
contour()

If you have ever taken a physical geology/geography course, or ever looked a map, chances are you have
come across contour lines. Contours are lines that continually cross a single unit of elevation.

If contour lines are close together on a map, count on steep terrain. If they are widespread, the terrain

should be gently slopes.

contour() allows you to create contour lines on a DEM. Check out the code to create contours!

terra: :plot(Zion_m)

terra::contour(Zion_m, T)

plot(zion_bounds$geometry, T)

21

8 2600
S |
N
—
2400

g
S L 2200
N~
—

L 2000
8
S |
N L1 1800
3 L 1600
o
g
S

L 1400
o
g | - 1200
o
~ T T T —

-1510000 —1500000 —-1490000 —-1480000 —-1470000 —-1460000

Don’t like the distance between lines? You can change this by including the specified number of contours

you would like. use “nlevels =”. Let’s make 5 contours.
terra::plot(Zion_m, "5 Contours")
terra::contour(Zion_m, T, 5)
plot(zion_bounds$geometry, T

22

5 Contours

8 2600
S |
N
—
2400
g
3 L 2200
—
Lt 2000
8
S |
N L1 1800
g Lt 1600
g
S
L 1400
o
g | - 1200
E T T T I T T _
-1510000 —-1500000 -1490000 -1480000 -1470000 -1460000
classify()

classify() allows you to reclassify the values of a given raster. For example, our DEM has values from ~1100
to ~2650. Any value between those 2, could occupy and given cell within that raster.

Reclassifying a raster would allow us to say, “Any value between 1000-1500m in elevation will now have the
same pixel value”. We are really just breaking down all the potential values into categories.

Take a look at the code and the output below:
Zion_m
class : SpatRaster

dimensions : 1601, 985, 1 (urow, ncol, nlyr)
resolution : 27.9354, 27.9354 (x, y)

extent : -1501419, -1473902, 1698450, 1743175 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=aea +lat_0=23 +lon_0=-96 +lat_1=29.5 +lat_2=45.5 +x_0=0 +y_0=0 +ellps=GRS80 +tow
source . memory

name : zion_A

min value ¢ 1118.037

max value 1 2662.071

classifyz <- terra::classify(Zion_m,
c (1000,
1500,

23

2000,

2500,
3000))
terra::plot(classifyz)
plot(zion_bounds$geometry, T)
o
§ | O (1000-1500]
NI O (1500-2000]
- O (2000-2500]
B (2500-3000]
o
S
S
S
o
8
S
S
o
S
8 =
S
o
S
8 =
~ T T T T T T
-1510000 —1500000 —1490000 —1480000 —1470000 -1460000
extract()

extract() does exactly what it sounds like. It extracts. A very common practice in spatial modeling (species
distribution modeling in particular!) requires a dataset of points that contain the value of the many raster
data it overlaps with.

For example, load into your script the “overlook.shp”. These are designated scenic overlooks in Zion.

overlook <- sf::st_read("D:/NR_6950/data/Rasters/overlook.shp") # Load

Reading layer ‘Overlook’ from data source ‘D:\NR_6950\data\Rasters\Overlook.shp’ using driver ‘ESRI
Simple feature collection with 15 features and 30 fields

Geometry type: POINT

Dimension: XY

Bounding box: xmin: 305178.6 ymin: 4115900 xmax: 333338.2 ymax: 4148434

Projected CRS: NAD83 / UTIM zone 12N

24

overlook <- st_transform(overlook, prj.aeaN83) # Transform to match

terra::plot(Zion_m, main = "Scenic Overlook Points on Zion DEM") # plot dem
plot(zion_bounds$geometry, add = T) # Zion boundary
plot(overlook$geometry, add = T, pch = 18) # add points, pch = symbol shape.

Scenic Overlook Points on Zion DEM

8 2600
g_
S
2400

8
S Lt 2200
S

— 2000
8
§_
N — 1800
3 | 1600
S
S
S

—+ 1400
o
g | 1200
o
~ T T T T T T —

-1510000 -1500000 -1490000 -1480000 -1470000 -1460000

Now our overlook points do not have information regarding our DEM values. BUT, in space, they are
synonymous with an associated elevation.

extract() can take point data, and extract those associated values of a raster (or polygon!). Lets give it a
test run and see the output for extracting values from our DEM to our points.

overlook_v <- as(overlook, "SpatVector") # must be spatvector when working with spatraster
overlook_ex <- terra::extract(Zion, overlook_v) #raster first, point data second
pander: :pander (head (overlook_ex)) # pander table

1) zion A

1864
1677
1900
1652
2382

Uk W N~

25

1D zion A
6 2278

The output table above is ID: the id of the point data, and zion_A: The elevation value in the cell of the
overlapping point. So now, we have elevations of each scenic overlook!

This can also work with raster stacks! Let’s extract the values of our stacked rasters.

overlook_v <- as(overlook, "SpatVector") # must be spatvector when working with spatraster
overlook_ex <- terra::extract(rasterz, overlook_v) #raster first, point data second
pander: :pander (head (overlook_ex)) # pander table

1D zion__ A slope aspect TPI TRI roughness
1 1864 26.5 357.7 -0.2674 10.32 29.32
2 1677 7.011 3.884 0.3437 2.979 8.588
3 1900 3.426 124.4 1.52 1.916 6.234
4 1652 19.75 3.412 -2.028 7.712 21.8
5 2382 30 77.48 4.235 13.44 44.77
6 2278 4.216 152.7 0.9659 1.679 6.302
rasterize()

You might be saying, “This is all great! But what if you have polygons of some data that you can’t find as
a raster?”. Well if that’s you, then look no further!

rasterize() allows you to rasterize polygons. It requires you to have: 1) a polygon to rasterize; 2) a raster
dataset.

The polygon will then be rasterized and will match the same CRS and resolution as the provided raster.

In the data folder, I have provided a shapefile called “soil.shp”. Load it in your script and let’s look at it.

soils <- sf::st_read("D:/NR_6950/data/Rasters/soil.shp")

Reading layer ‘soil’ from data source ‘D:\NR_6950\data\Rasters\soil.shp’ using driver ‘ESRI Shapefil
Simple feature collection with 13 features and 59 fields
Geometry type: MULTIPOLYGON

Dimension: XY

Bounding box: xmin: -1501414 ymin: 1698460 xmax: -1473913 ymax: 1743165
CRS: unknown

plot(soils$geometry)

26

head(soils, 2)

Simple feature collection with 2 features and 59 fields

Geometry type: MULTIPOLYGON

Dimension: XY

Bounding box: xmin: -1501414 ymin: 1709128 xmax: -1474838 ymax: 1743165

CRS: unknown

mukey taxorder taxsuborde = taxgrtgrou taxsubgrp subord grtgrp
1 658437 Entisols Fluvents Ustifluvents Aridic Ustifluvents Flu Ust
2 674742 Mollisols Ustolls Haplustolls Lithic Haplustolls Ust Hap
c_order c_sbord c_ggrp phmin phave phmax frag3tol0 sieveno4 sievenol0

1 104 110 137 660 792 900 1 92 89

2 107 125 120 560 744 840 9 85 82

sieveno40 sieveno200 sand silt clay omr dryweight ksat awc wsat minalogy
##H 1 7 51 46 34 20 93 175 282 18 39 mixed
2 72 54 43 31 26 375 169 917 6 0 mixed
reaction ph_ave frag 3tol0 sieve_4 sieve_10 sieve_40 sieve_200 sand_txt
1 calcareous 792 1 92 89 7 51 46
2 <NA> 744 9 85 82 72 54 43
silt_txt clay_txt orgmat dwieght ksat_txt awc_txt wsat_txt minerals

##H 1 34 20 93 175 282 18 39 mixed

2 31 26 375 169 917 6 na mixed

calcereous UNIT_CODE

1 calcareous ZION

2 <NA> ZION

27

GIS_Notes
1 Lands - http://landsnet.nps.gov/tractsnet/documents/ZI0ON/Metadata/zion_metadata.xml
2 Lands - http://landsnet.nps.gov/tractsnet/documents/ZION/Metadata/zion_metadata.xml

UNIT_NAME DATE_EDIT STATE REGION GNIS_ID UNIT_TYPE CREATED_BY

1 Zion National Park 2017-06-22 UT IM 1455157 National Park Lands

2 Zion National Park 2017-06-22 uT IM 1455157 National Park Lands

#i# METADATA PARKNAME Shape_Leng
1 https://irma.nps.gov/DataStore/Reference/Profile/2181118 Zion 1.638446
2 https://irma.nps.gov/DataStore/Reference/Profile/2181118 Zion 1.638446
Shape_Area Unified_Re 0ld_Region geometry

1 0.061158561 7 IM MULTIPOLYGON (((-1497787 17...

2 0.06115851 7 IM MULTIPOLYGON (((-1475591 17...

So this data is already trimmed to the Zion NP boundary and contains a lot of fields! As you recall, a
shapefile can contain 1 geometry but multiple characteristics.

Let’s rasterize this thing. The syntax is as follows:
variable <- rasterize(polygon, raster, field = “Which column do you want to rasterize?”)

Let’s rasterize phmin (minimum ph level in the soil):
soils_v <- as(soils, "SpatVector") # Must be spatvector
phave <- terra::rasterize(soils_v, Zion_m, field = "phmin")

plot(phave)

8

g | O 560

Ni O 610

S O 660
Wl 740

o

S

o

IS

I

N~

—

o

S

=)

34

N

~

—

o

s

S

34

-

~

—

o

=)

S

S

S

~ T T T T T

-1510000 -1500000 -1490000 —1480000 —1470000 -1460000

28

Raster Math
Rasters of equal extent, resolution, and crs can use mathematical functions to generate new rasters of the
same spatial characteristics.

T’ve provided some rasters of current annual mean temperature and the projected future annual mean tem-
perature for 2100.

Since they are the same CRS, resolution, and extent, I can use mathematical operators to work with my
data. Let’s first look at the rasters.

clim <- terra::rast("D:/NR_6950/data/Rasters/amt.tif")
terra::plot(clim)

CHELSA_biol_1981-2010_V.2.1 ZLSA_biol_2071-2100_gfdi-esm4_ssp585_V.2.1

2 140 2]

i i 18.
< 12.0 «
~ ~ -
L aL
o L1 10.0 o,
]] - 14,
N — 80
o] o] — 12,

L1 6.0

~ ~
N~ -1 | 1 |
™ T T T T T T T — g T T T T T T T — 10

-113.20 -113.10 -113.00 -112.90 -113.20 -113.10 -113.00 -112.90

While they look exactly the same, look at the scale bars on the right of each plot. 2100 is showing much
higher annual mean temperature.

We can find out the difference between the 2 rasters by simply subtracting the future projection by the
current. Values will be negative... so the more negative the number, the greater the change.

x <- (clim$ CHELSA_biol_1981-2010_V.2.1 -clim$ CHELSA_biol_2071-2100_gfdl-esm4_ssp585_V.2.17)
terra: :plot(x)

29

2 -4.40
2 .
~] | | l.
™ |
2 "
5’ 7] [|
|

° n — —4.45
<
g
™
Ln
™
@
™

— —4.50
o
™
@
™
n
N
RE
@ — —4.55
o
N
R
™

[|
n
]
& T T T T = i T T —- -4.60
-113.3 -113.2 -113.1 -113.0 -112.9 -112.8
writeRaster()

After you have created a raster stack or new raster, you can save it to a specified folder using writeRaster.

writeRaster(raster, filename = “pathway/name you would like your raster to be.tif”)

Raster Data Sources

o The National Map Downloader: https://apps.nationalmap.gov/downloader/#/
o Natural Earth Data: http://www.naturalearthdata.com/downloads/

o Free GIS Dara Library: https://freegisdata.rtwilson.com/

30

https://apps.nationalmap.gov/downloader/#/
http://www.naturalearthdata.com/downloads/
https://freegisdata.rtwilson.com/

	Spatial Raster Data
	.tif/.tiff files
	Resolution

	
	terra
	SpatVector
	SpatRaster

	Data
	Objectives
	Libraries
	Projections

	terra functions
	rast()
	summary()
	freq()
	hist()
	plot()
	project()
	mosaic()
	crop() vs. mask()
	terrain()
	Slope
	Aspect
	TPI
	TRI
	roughness

	c()
	contour()
	classify()
	extract()
	rasterize()
	Raster Math
	writeRaster()

	Raster Data Sources

