# Buildsheet autogenerated by ravenadm tool -- Do not edit. NAMEBASE= R-glmnet VERSION= 4.1-10 KEYWORDS= cran VARIANTS= std SDESC[std]= Generalized Linear Models for Lasso, etc HOMEPAGE= https://glmnet.stanford.edu CONTACT= CRAN_Automaton[cran@ironwolf.systems] DOWNLOAD_GROUPS= main SITES[main]= CRAN/src/contrib https://loki.dragonflybsd.org/cranfiles/ DISTFILE[1]= glmnet_4.1-10.tar.gz:main DIST_SUBDIR= CRAN DF_INDEX= 1 SPKGS[std]= single OPTIONS_AVAILABLE= none OPTIONS_STANDARD= none BUILDRUN_DEPENDS= R-foreach:single:std R-shape:single:std R-Rcpp:single:std R-RcppEigen:single:std USES= cran gmake gettext:build DISTNAME= glmnet GENERATED= yes INSTALL_REQ_TOOLCHAIN= yes [FILE:1104:descriptions/desc.single] glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression, Cox model, multiple-response Gaussian, and the grouped multinomial regression; see <doi:10.18637/jss.v033.i01> and <doi:10.18637/jss.v039.i05>. There are two new and important additions. The family argument can be a GLM family object, which opens the door to any programmed family (<doi:10.18637/jss.v106.i01>). This comes with a modest computational cost, so when the built-in families suffice, they should be used instead. The other novelty is the relax option, which refits each of the active sets in the path unpenalized. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the papers cited. [FILE:104:distinfo] 89a4b5844850b27e87e879a19bd20ed7f1d9f555adc94a8e88935c52677f2e9c 2419157 CRAN/glmnet_4.1-10.tar.gz