# Buildsheet autogenerated by ravenadm tool -- Do not edit. NAMEBASE= R-future.apply VERSION= 1.20.1 KEYWORDS= cran VARIANTS= std SDESC[std]= Apply Function in Parallel using Futures HOMEPAGE= https://future.apply.futureverse.org CONTACT= CRAN_Automaton[cran@ironwolf.systems] DOWNLOAD_GROUPS= main SITES[main]= CRAN/src/contrib https://loki.dragonflybsd.org/cranfiles/ DISTFILE[1]= future.apply_1.20.1.tar.gz:main DIST_SUBDIR= CRAN DF_INDEX= 1 SPKGS[std]= single OPTIONS_AVAILABLE= none OPTIONS_STANDARD= none BUILDRUN_DEPENDS= R-future:single:std R-globals:single:std USES= cran gmake DISTNAME= future.apply GENERATED= yes INSTALL_REQ_TOOLCHAIN= yes [FILE:625:descriptions/desc.single] future.apply: Apply Function to Elements in Parallel using Futures Implementations of apply(), by(), eapply(), lapply(), Map(), .mapply(), mapply(), replicate(), sapply(), tapply(), and vapply() that can be resolved using any future-supported backend, e.g. parallel on the local machine or distributed on a compute cluster. These future_*apply() functions come with the same pros and cons as the corresponding base-R *apply() functions but with the additional feature of being able to be processed via the future framework <doi:10.32614/RJ-2021-048>. [FILE:110:distinfo] 10855b037ba1b9f5723d6168ce5b26b550b017ff4a11724c7151a4c110f66628 74864 CRAN/future.apply_1.20.1.tar.gz