
Scalable Learning of

Probabilistic Circuits

Renato Lui Geh

Thesis presented to the

Institute of Mathematics and Statistics

of the University of São Paulo

in partial fulfillment

of the requirements

for the degree of

Master of Science

Program: Computer Science

Advisor: Professor Denis Deratani Mauá

This work was supported by CNPq grant #133787/2019-2,

CAPES grant #88887.339583/2019-00 and EPECLIN FM-USP.

São Paulo

April 4, 2022

Scalable Learning of

Probabilistic Circuits

Renato Lui Geh

This version of the thesis includes the

corrections and modifications suggested

by the Examining Committee during the

defense of the original version of the

work, which took place on April 4, 2022.

A copy of the original version is available

at the Institute of Mathematics and

Statistics of the University of São Paulo.

Examining Committee:

Professor Denis Deratani Mauá (Chair) – Universidade de São Paulo

Professor Guy Van den Broeck – University of California, Los Angeles

Professor Alessandro Antonucci – Università della Svizzera Italiana

I hereby authorize the total or partial reproduction and publishing of this

work for educational ou research purposes, as long as properly cited.

Geh, Renato Lui

Scalable Learning of Probabilistic Circuits / Renato Lui

Geh; orientador, Denis Deratani Mauá. - São Paulo, 2022.

144 p.: il.

Dissertação (Mestrado) - Programa de Pós-Graduação em

Ciência da Computação / Instituto de Matemática e Estatística

/ Universidade de São Paulo.

Bibliografia

Versão corrigida

1. Circuitos probabilísticos. 2. Aprendizado de máquina.

3. Modelos probabilísticos. 4. Inteligência Artificial. I.

Mauá, Denis Deratani. II. Título.

Bibliotecárias do Serviço de Informação e Biblioteca Carlos Benjamin de Lyra do IME-

USP, responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:

Maria Lúcia Ribeiro CRB-8/2766; Stela do Nascimento Madruga CRB 8/7534.

i

Acknowledgements

The last three years have certainly been unusual. Going through a M.Sc. amidst a

global pandemic has been, beyond a doubt, both challenging and stressful to say the least.

Yet, while at times I might have felt overwhelmed by all that was happening to and around

me, it was the many sources of inspiration and companionship who brought me back to

my feet and insulated me from all the horrible things going on outside. To these, I dedicate

this small section, a size disproportionate to their true contributions.

I am deeply grateful for having Denis Deratani Mauá as my advisor. Thank you for

your patience, readiness and for pushing me to do my best; your dedication to your craft

and the attention you gave me as an advisor were essential to my growth as an aspiring

researcher. Our research discussions always fill me with the motivation to explore new

paths and try new ideas, and I am extremely grateful for your guidance throughout the

last 7 years.

To all my friends and colleagues at IME-USP and especially the LIAMF Lab, thank you

for the many bandejões, even if they only lasted the first year. Our walks to the dining

halls have always yielded interesting discussions, even the silly ones.

A big thank you to both Katia Kiesshau and Prof. Alfredo Goldman for helping me

with all the red tape and for diligently making sure all graduate students were accounted

for. I have nothing but respect for the tremendous effort you put into for us students.

A warm embrace to my friends Clau, Rica and Yan, who once a week distract me

from all the worries and concerns of life. I am glad our friendship persists even across

intercontinental borders.

A special thank you goes out to Baza. Every page in this work carries with it a unique

moment with you beside me: from your heart-melting smiles and unmistakable laughter

to the many silly quips of yours, these will all be moments I shall hold dear to my heart,

my tiny dancer.

Lastly, I would like to thank my parents and sister, without whom none of this would

ii

be possible. All my accomplishments I owe them to you and your unconditional love and

support. Thank you for everything.

Funding. This work was supported by CNPq grant #133787/2019-2 and partially sup-

ported by CAPES grant #88887.339583/2019-00 and EPECLIN FM-USP.

Abstract

Renato Lui Geh. Scalable Learning of Probabilistic Circuits. Thesis (Master’s). Insti-

tute of Mathematics and Statistics, University of São Paulo, São Paulo, 2022.

The rising popularity of generative models together with the growing need for flexible and exact

inferences have motivated the machine learning community to look for expressive yet tractable probabilistic

models. Probabilistic circuits (PCs) are a family of tractable probabilistic models capable of answering a wide

range of queries exactly and in polynomial time. Their operational syntax in the form of a computational

graph and their principled probabilistic semantics allow their parameters to be estimated by the highly

scalable and efficient optimization techniques used in deep learning. Importantly, tractability is tightly linked

to constraints on their underlying graph: by enforcing certain structural assumptions, queries like marginals,

maximum a posteriori or entropy become linear time computable while still retaining great expressivity.

While inference is usually straightforward, learning PCs that both obey the needed structural restrictions and

exploit their expressive power has proven a challenge. Current state-of-the-art structure learning algorithms

for PCs can be roughly divided into three main categories. Most learning algorithms seek to generate a

usually tree-shaped circuit from recursive decompositions on data, often through clustering and costly

statistical (in)dependence tests, which can become prohibitive in higher dimensional data. Alternatively,

other approaches involve constructing an intricate network by growing an initial circuit through structural

preserving iterative methods. Besides depending on a sufficiently expressive initial structure, these can

possibly take several minutes per iteration and many iterations until visible improvement. Lastly, other

approaches involve randomly generating a probabilistic circuit by some criterion. Although usually less

performant compared to other methods, random PCs are orders of magnitude more time efficient. With this

in mind, this dissertation aims to propose fast and scalable random structure learning algorithms for PCs

from two different standpoints: from a logical point of view, we efficiently construct a highly structured

binary PC that takes certain knowledge in the form of logical constraints and scalably translate them

into a probabilistic circuit; from the viewpoint of data guided structure search, we propose hierarchically

building PCs from random hyperplanes. We empirically show that either approach is competitive against

state-of-the-art methods of the same class, and that their performance can be further boosted by simple

ensemble strategies.

Keywords: Probabilistic circuits. Machine learning. Probabilistic models.

Resumo

Renato Lui Geh. Aprendizado Escalável de Circuitos Probabilísticos. Dissertação

(Mestrado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,

2022.

A crescente popularidade de modelos gerativos, assim como o aumento da demanda por modelos que

produzam inferência exata e de forma flexível vêm motivando a comunidade de aprendizado de máquina a

procurar por modelos probabilísticos que sejam tanto expressivos quanto tratáveis. Circuitos probabilísticos

(PC, do inglês probabilistic circuit) são uma família de modelos probabilísticos tratáveis capazes de responder

uma vasta gama de consultas de forma exata e em tempo polinomial. Sua sintaxe operacional concretizada

por um grafo computacional, junto a sua semântica probabilística possibilitam que seus parâmetros sejam

estimados pelas eficientes e altamente escaláveis técnicas utilizadas em aprendizado profundo. Notavelmente,

tratabilidade está fortemente ligada às restrições impostas no grafo subjacente: ao impor certas restrições

gráficas, consultas como probabilidade marginal, maximum a posteriori ou entropia tornam-se computáveis

em tempo linear, ao mesmo tempo retendo alta expressividade. Enquanto que inferência é, de forma geral,

descomplicada, a tarefa de aprender PCs de forma que os circuitos tanto observem as restrições estruturais

necessárias quanto explorem sua expressividade tem se provado um desafio. O atual estado-da-arte para

algoritmos de aprendizado estrutural de PCs pode ser grosseiramente dividido em três categorias principais.

A maior parte dos algoritmos de aprendizado buscam gerar um circuito em formato de árvore através

de decomposições recursivas nos dados, na maior parte das vezes através de algoritmos de clustering e

custosos testes de independência estatística, o que pode tornar o processo inviável em altas dimensões.

Alternativamente, outras técnicas envolvem construir uma complexa rede por meio de métodos incrementais

iterativos que preservem uma certa estrutura do grafo. Além desta técnica depender de um circuito inicial

suficientemente expressivo, tais métodos podem demorar vários minutos por iteração, e muitas iterações até

que haja uma melhora visível. Por último, outras alternativas envolvem gerar aleatoriamente um circuito pro-

babilístico através de algum critério. Apesar desta técnica normalmente gerar modelos menos performativos

quando comparados com outros métodos, PCs aleatórios são ordens de grandeza mais eficiente em relação a

tempo de execução. Com isso em mente, esta dissertação busca propor algoritmos de aprendizado estrutural

de PCs que sejam rápidos e escaláveis através de duas lentes distintas: de um ponto de vista lógico, buscamos

construir um PC sob variáveis binárias altamente estruturado que tome conhecimento certo na forma de

restrições lógicas, e traduza-as em um circuito probabilístico de forma escalável; por meio da ótica de busca

por estruturas guiada por dados, nós propomos construir PCs de forma hierárquica por meio de hiperplanos

aleatórios. Nós mostramos, de forma empírica, que ambas são competitivas comparadas ao estado-da-arte, e

que podemos melhorar sua performance por meio de estratégias simples de ensembles.

Palavras-chave: Circuitos probabilísticos. Aprendizado de máquina. Modelos probabilísticos.

vii

List of Lists

List of Symbols

𝑋 , 𝑌 , 𝑍 , … Random variables or propositional variables

𝑥 , 𝑦, 𝑧, … Assignments of random or propositional variables

𝐗, 𝐘, 𝐙, … Sets of variables

𝐱, 𝐲, 𝐳, … Sets of assignments

 ,  , , … Sample space of random variables

⟂⟂ Statistical independence

⟨𝑓 ⟩ Semantics of Boolean formula 𝑓
𝑓 ≡ 𝑔 Equivalence between Boolean formulae 𝑓 and 𝑔 (i.e. ⟨𝑓 ⟩ = ⟨𝑔⟩)
[𝑎..𝑏] Integer set {𝑎, 𝑎 + 1, … , 𝑏} ⊂ ℤ for 𝑏 ≥ 𝑎
[𝑏] Integer set {1, 2, … , 𝑏} ⊂ ℤ for 𝑏 > 0
v𝜙w Iverson bracket (i.e. 1 if 𝜙 is true, 0 otherwise)

N, S, P, L Graph nodes

N, S, P, L Sets of nodes

Ch(N) Set of all children of node N

Pa(N) Set of all parents of node N

Desc(N) Set of all descendants of node N

Sc(N) Scope of node N

Inputs() Set of input nodes of circuit 
 Gaussian distribution

𝑣←, 𝑣→ Left and right children of vtree node 𝑣

viii

List of Figures

2.1 An input node as a Gaussian distribution (a), a sum node (b), and a product

node (c), the last two with three children each. Arrows in black signal

(possibly weighted) edges in the computational graph, while gray edges

indicate the computational flow: given an assignment 𝐱 , the computation

flows the opposite direction, starting on inputs and going up to the root,

resulting in the final value in green . 6

2.2 A probabilistic circuit (a) and 3 of its 12 possible induced subcircuits (b-d). 9

2.3 Decomposable but non-smooth (a), smooth but non-decomposable (b),

and smooth and decomposable (c) circuits. Labels below inputs indicate

their scope. 12

2.4 A Gaussian mixture model is deterministic if the components do not over-

lap. Graph (a) shows a deterministic Gaussian mixture model represented

as a PC in (b) and whose components 𝜓1, 𝜓2 and 𝜓3 are Gaussians truncated

in a way that they do not overlap. Given any valuation, at most one of the

components (sum node’s children) must have a positive value (c). 14

2.5 The computation, on a smooth, decomposable and deterministic proba-

bilistic circuit, of EVI 𝑝(𝑎 = 1.2, 𝑏 = 3.6, 𝑥 = 1, 𝑦 = −1) ≈ 0.089 (a),

MAP max𝑏,𝑦 𝑝(𝑏, 𝑦|𝑎 = 1.2, 𝑥 = 1) ≈ 0.183 via MaxProduct (b), and

argmax𝑏,𝑦 𝑝(𝑏, 𝑦|𝑎 = 1.2, 𝑥 = 1) = {𝑏 = 3, 𝑦 ≤ 0} by backtracking the

values set by MaxProduct (c). ↑ nodes signal the replacement of sums

with maximizations in MaxProduct. The backtracking in (c) is done from

the root down, finding a max induced tree by propagating through all

product children and only the highest valued child in ↑ nodes. 15

2.6 A vtree (a) defining an order (𝐴, 𝐵, 𝐶, 𝐷), a 2-standard structured decom-

posable probabilistic circuit that respects the vtree (b), and a 2-standard

decomposable probabilistic circuit that does not (c). 17

2.7 Two smooth, structured decomposable and deterministic logic circuits

encoding the same logic constraint 𝜙 ≡ (𝐴 ∧ 𝐵) ∨ (¬𝐶 ∧ 𝐷) for a balanced

(a) and a right-linear (b) vtree. In (a), a circuit evaluation for an assignment,

with each node value in the bottom-up evaluation pass shown inside nodes. 20

3.1 LearnSPN assigns either rows (a) or columns (b) for sum and product

nodes respectively. For sums, their edge weights are set proportionally

to the assignments. For product children, scopes are defined by which

columns are assigned to them. 29

ix

3.2 The pairwise (in)dependence graph where each node is a variable. In (a)

we show the full graph, computing independence tests for each pair of

variables in (𝑚2). However, it suffices to compute for only the connected

components (b), saving up pairwise computation time for reachable nodes.

The resulting product node and scope partitioning is shown in (c). 30

3.3 Two iterations of ID-SPN, where the contents inside the dashed line are

Markov networks. The red color indicates that a node has been chosen

as the best candidate for an extension with ExtendID. Although here we

only extend input nodes, inner nodes can in fact be extended as well. . . 32

3.4 The fully connected correlation graph (a) with weights as the pairwise cor-

relation measurements for each pair of variables; the maximum spanning

tree for determining decompositions (b); and the mixture of decomposi-

tions (c). Colors in (b) match their partitionings in (c). 33

3.5 Snapshots of four iterations from running the vtree top-down learning

strategy with pairwise mutual information. Each iteration shows a variable

partitioning, the cut-set that minimizes the average pairwise mutual infor-

mation as black edges, and the subsequent (partial) vtree. The algorithm

finishes when all partitions are singletons. 37

3.6 Snapshots from running the vtree bottom-up learning strategy with pair-

wise mutual information. Snapshots show pairings of two vtrees, with

edges between partitions joined into a single edge whose weight is the

average pairwise mutual information of all collapsed edges. In black are

edges that correspond to the matchings that maximize the average pair-

wise mutual information. The algorithm finishes when all vtrees have been

joined together into a single tree. 38

3.7 Split (left) and Clone (right) operations for growing a circuit when 𝑚 =
1. Nodes and edges highlighted in red show the modified structure. In

both cases smoothness, (structured) decomposability and determinism are

evidently preserved. 39

3.8 A vtree (middle) and probabilistic circuit (right) compiled from a Chow-Liu

Tree (left). Each conditional probability 𝑝(𝑌 |𝑋) is encoded as a (determin-

istic) sum node where each of the two children sets 𝑌 to 0 or 1. Colors in

the CLT indicate the variables in the PC, while vtree inner node colors

match with product nodes that respect them. Edges in red indicate the

induced subcircuit activated on assignment {𝐴 = 1, 𝐵 = 0, 𝐶 = 1, 𝐷 = 0}. . 42

x

3.9 A RAT-SPN generated from parameters 𝑑 = 3, 𝑟 = 2, 𝑠 = 2 and 𝑙 = 2. Nodes

within a belong to inner region nodes, to partitions and to leaf

regions; dashed lines (and node colors) indicate different PC layers. Scope

of region nodes are shown in curly braces. 50

3.10 The first iteration of XPC, where 𝑡 = 2 variables are selected, 𝐴 and 𝐵;

𝑘 = 2 conjunctions of literals are sampled, 𝛼1 = 𝐴 ∧ 𝐵, 𝛼2 = 𝐴 ∧ ¬𝐵 and

𝛼3 = ¬(𝛼1∨𝛼2); with primes set to a product of Bernoullis corresponding to

each 𝛼𝑖 and subs to CLTs. Leaf region nodes  are candidates for expansion.

Sums, products and CLT input nodes are the resulting probabilistic circuit

from the sampled region graph. Conjunctions of literals are expanded into

product of Bernoullis whose weights are inferred from data, as the circuit

on right shows; if no smoothing is applied, the circuit is deterministic. . 52

4.1 A PSDD encoding the logical constraint 𝜙(𝐴, 𝐵, 𝐶) = (𝐴 → ¬𝐵) ∧ (𝐶 → 𝐴),
following the distribution set by the probability table on the top left corner

and whose structure is defined by the vtree pictured on the bottom left

corner. 59

4.2 A(n exact) partition of 𝜙 where we assume that primes are conjunctions of

literals. Primes must be exhaustive, mutually exclusive, and have to follow

the vtree’s scope, here Sc(1←) = {𝐴, 𝐵}. The subs are then the restriction

of 𝜙 under the assignment induced by the primes. 60

4.3 An example of an invalid partition (a) due to subs disrespecting the vtree’s

right branch, here shown as the box with scope 𝐒. To fix this infraction,

variables who do not belong to 𝐒 are forgotten, as (b) shows. 61

4.4 Examples of compression (a) and merging (b) as local transformations for

reducing the size of PSDDs. Both act on elements whose subs are logically

equivalent. 64

4.5 When expanding variables breadth-wise (a), there can be at most ⌈log2(𝑘)⌉
variables in each conjunction of primes; whereas in depth-wise expansion

(b), we can have primes with at most 𝑘 − 1 literals. 65

4.6 Seven-segment LED digits for 3, 4, 5 and 6 (left), the logical constraints

for each of these digit 𝜙𝑖 (top middle) and the resulting formula derived

from listing all valid configurations 𝜙 (middle), each latent variable 𝑋𝑖

corresponding to a segment’s supposed state, and samples of pixel variants

led-pixels for each digit (bottom middle). 67

4.7 Log-likelihoods for the unpixelized led (a) and pixelized led-pixels (b)

datasets. 68

4.8 Log-likelihoods for the dota (a) and 10-choose-5 sushi (b) datasets. . . 69

xi

4.9 Log-likelihood for the sushi ranking (a) dataset and curves for mean aver-

age time (in seconds) of learning a single LearnPSDD circuit, one Strudel

circuit (CLT initialized), a mixture of 10 shared-structure Strudel com-

ponents, a single SamplePSDD PC and an ensemble of 100 SamplePSDD

circuits (b). 70

4.10 Impact of the structure of vtree (left) and number of bounded primes (right)

on the test log-likelihood for the 10-choose-5 sushi dataset. 71

4.11 Impact of the structure of vtree (left) and number of bounded primes (right)

on the consistency of sampled PSDDs with the original logical constraints

for the 10-choose-5 sushi dataset. 72

4.12 Impact of the structure of vtree (left) and number of bounded primes (right)

on circuit size (in number of nodes) and learning time (in seconds) for the

10-choose-5 sushi dataset. 73

5.1 Two partitionings induced by decision trees: (a) shows axis-aligned splits

and (b) random projection splits. Gray dots are datapoints, dashed lines

are (hyper)planes. 76

5.2 Example of space partitioning by RPTrees grown using different split rules

but the same random directions. 78

5.3 Given a cloud of points, LearnRP samples a hyperplane 𝐀(𝑥, 𝑦, 𝑧) (here

shown as the green plane on the left), dividing the dataset into two subsets

(in blue and red). A unit vector 𝑎 is uniformly sampled and the threshold

𝜃 is found by either SplitMax or SplitSID. The resulting partition is

represented in the circuit as a sum node + with two product nodes × and

× . Weights are then initialized as the proportions of each subset. 80

5.4 Products in LearnRP decompose according to a given vtree, meaning

subsequent recursive calls require projecting the data onto the space of

relevant variables. The subcircuit rooted at × decomposes into {𝑍} and

{𝑌 , 𝑋}, and so projects the blue datapoints first onto the 𝑍 line, resulting

in the  (3.76, 0.95) distribution in orange ; and then onto the 𝑋𝑌-plane.

As |{𝑌 , 𝑋}| > 1, LearnRP then recurses on + , producing a new hyperplane

𝐁(𝑥, 𝑦) (in this case a line) to partition the projected points. 81

5.5 Test log-likelihood performance of LearnRP shown as the curve in

under different iterations of minibatch EM, with the remaining curve in

corresponding to full EM iterations. Each horizontal line shows the

performance of a different competitor: for LearnSPN, for Strudel,

for LearnPSDD, for XPC and finally for Prometheus 84

xii

5.6 Test log-likelihood curve, shown in , of LearnRP with randomized

weights under different iterations of minibatch EM, with the remaining

curve in corresponding to full EM iterations. Each horizontal line

shows the performance of a different competitor: for LearnSPN, for

Strudel, for LearnPSDD, for XPC and finally for Prometheus 85

5.7 Table 5.3 benchmarks graphically visualized. Each datapoint corresponds

to an entry in Table 5.3. The abscissa shows the dataset complexity, here

defined as log(𝑛 ⋅ 𝑚), where 𝑛 and 𝑚 are the number of variables and

assignments in the dataset respectively; while the ordinate quantifies, in

seconds, how much time a learning algorithm took to produce a model.

The gray line at the top signals a 24 hours limit, in which case the job

that exceeds it is terminated. Competitors (in orange) were often orders

of magnitude slower compared to LearnRP. 86

5.8 Figure 5.7 when transforming the ordinate to log scale, where the difference

between XPC, LearnRP and the other more costly algorithms becomes

clearer. 87

A.1 (a) Log-likelihoods for the unpixelized led, (b) led-pixels, (c) sushi

10-choose-5, (d) sushi ranking, and (e) dota datasets. (f) Mean average

in seconds of each PSDD learning algorithm. 103

A.2 LED segment numbering (left), and the corresponding formula for that

digit (right). 105

List of Tables

3.1 Summary of all structure learning algorithms for probabilistic circuits

described so far. 56

4.1 Summary of all structure learning algorithms for probabilistic circuits

described so far. 74

5.1 Details for all binary and continuous benchmark datasets. 82

xiii

5.2 Performance of LearnRP in log-likelihood against state-of-the-art com-

petitors in the twenty binary datasets for density estimation. Entries in

bold correspond to best performance, underlined entries are second best,

and |barred| entries are third place. The last two rows refer to the average

ranking of each algorithm across all datasets; the first compares rankings of

all variants of LearnRP against competitors, while the last only compares

LearnRP-F against the state-of-the-art. 83

5.3 Learning time benchmarks for LearnSPN, Strudel, LearnPSDD, XPC

and LearnRP. We signal as LearnRP-𝑘 the process of running LearnRP

and then running 𝑘 iterations of minibatch EM. 88

5.4 Circuit size (in the number of nodes) comparison between LearnRP and

the state-of-the-art in the twenty binary datasets for density estimation. 89

5.5 Performance of LearnRP in log-likelihood against state-of-the-art com-

petitors in ten continuous datasets for density estimation and function

approximation. Entries in bold correspond to best performance, underlined

entries are second best, and |barred| entries are third place. Last column

shows size (in the number of nodes) of circuits learned with LearnRP. . 90

5.6 Summary of all structure learning algorithms for probabilistic circuits

described so far. 91

A.1 All results for the led dataset. 102

A.2 All results for the dota dataset. 103

A.3 All results for the sushi-ranking dataset. 104

A.4 All results for the sushi-top5 dataset. 105

A.5 All results for the led-pixels dataset. 105

List of Algorithms

1 EVI . 11

2 MAR . 12

3 MaxProduct . 14

4 EXP . 23

5 LearnSPN . 28

6 ExtendID . 31

7 ID-SPN . 32

8 Prometheus . 34

9 LearnPSDD . 40

10 InitialStrudel . 43

xiv

11 Strudel . 44

12 CompileRegionGraph . 48

13 RAT-SPN . 49

14 ExpandXPC . 53

15 XPC . 54

16 SamplePartialPartition . 62

17 SamplePSDD . 63

18 SplitSID . 77

19 SplitMax . 77

20 LearnRP . 79

21 FastSamplePSDD . 102

22 FastSamplePartialPartition . 104

List of Examples

2.1 Gaussian mixture models as probabilistic circuits 7

2.2 Factors as probabilistic circuits . 8

2.3 Density estimation trees as probabilistic circuits 13

2.4 Naïve Bayes as probabilistic circuits . 16

2.5 Hidden Markov models as probabilistic circuits 18

2.6 BDDs as logic circuits . 21

2.7 Embedding certain knowledge in probabilistic circuits 22

2.8 Computing the probability of logical events 24

List of Remarks

2.1 On operators and tractability . 9

2.2 On applications of probabilistic circuits 24

3.1 On variations of divide-and-conquer learning 35

3.2 On the choice of initial circuits . 45

3.3 On parameter learning of probabilistic circuits 50

xv

Contents

1 Introduction 1

1.1 Dissertation Outline . 3

1.2 Contributions . 3

2 Probabilistic Circuits 5

2.1 Distributions as Computational Graphs 5

2.2 Reasoning with Probabilistic Circuits . 10

2.3 Probabilistic Circuits as Knowledge Bases 19

2.3.1 From Certainty... 19

2.3.2 ...to Uncertainty . 21

3 Learning Probabilistic Circuits 27

3.1 Divide-and-Conquer Learning . 27

3.1.1 LearnSPN . 28

3.1.2 ID-SPN . 30

3.1.3 Prometheus . 32

3.2 Incremental Learning . 36

3.2.1 LearnPSDD . 36

3.2.2 Strudel . 41

3.3 Random Learning . 46

3.3.1 RAT-SPN . 47

3.3.2 XPC . 51

3.4 A Summary . 54

4 A Logical Perspective to Scalable Learning 57

4.1 Sampling PSDDs . 57

4.2 SamplePSDD . 59

4.3 Ensembles of SamplePSDDs . 64

4.4 Experiments . 66

xvi

4.4.1 LED Display . 67

4.4.2 Cardinality Constraints . 68

4.4.3 Preference Learning . 69

4.4.4 Scalability, Complexity and Learning Time 69

4.4.5 Performance and Sampling Bias 71

4.5 Summarizing SamplePSDD . 72

5 A Data Perspective to Scalable Learning 75

5.1 Probabilistic Circuits and Decision Trees 75

5.2 Random Projections . 77

5.3 LearnRP . 79

5.3.1 Complexity . 80

5.4 Experiments . 81

5.4.1 Binary data . 82

5.4.2 Continuous data . 89

5.5 Summarizing LearnRP . 90

6 Contributions, Discussion and Future Work 93

6.1 Contributions . 93

6.2 Discussion and Future Work . 94

6.2.1 SamplePSDD . 94

6.2.2 LearnRP . 94

A Appendices 97

A.1 Proofs . 97

A.2 SamplePSDD . 101

A.2.1 Fast implementation of SamplePSDD 101

A.2.2 Additional Experiments . 102

A.2.3 Tables with all results . 102

A.2.4 Logic constraints . 104

References 107

1

1
Introduction

Machine learning has become, without a doubt, ubiquitous in today’s technology. From

self-driving vehicles to bioinformatics, data-driven models have taken the center stage

when it comes to state-of-the-art prediction and modeling of real-world tasks (Grigorescu

et al., 2020; Lan et al., 2018; Li et al., 2019; Khan and Yairi, 2018; Sezer et al., 2020). In

many of these scenarios, such as system diagnosis of automated power plants or real-time

translation, timely decisions are crucial to the well-functioning of often critical systems

(Enshaei and Naderkhani, 2019; Niehues et al., 2018). In others, such as in medical

diagnostic systems or credit assessment, conclusions produced by the system must be

reliable or come with some measure of error of its estimates (Lou et al., 2019; Dastile

et al., 2020). Even more crucially, these predictive models often need to perform complex

reasoning tasks over hundreds if not thousands of variables, sometimes under known

constraints dependent on domain (Xu et al., 2018; Pogancic et al., 2020; Wong et al., 2012;

Lu et al., 2013); and yet prove expressive enough to learn from the possibly enormous

quantity of data available.

Fulfilling these requirements are Probabilistic Circuits (PCs), a class of probabilistic

models distinctly specified by recursive compositions of distributions through graphical

formalisms. Vaguely speaking, PCs are computational graphs akin to neural networks,

but whose network structure and computational units abide by special constraints. More

concretely, these structural and operational constraints lead to sufficient conditions for the

polynomial time computation of complex exact queries, providing a powerful toolbox for

probabilistic reasoning. Within these specific conditions span a wide range of subclasses,

each establishing a distinct set of restrictions on their structure in order to enable different

segments within the tractability spectrum. These specific families of PCs have been known

throughout literature by different names: Arithmetic Circuits (ACs, Darwiche, 2003),

Sum-Product Networks (SPNs, Poon and P. Domingos, 2011), Cutset Networks (CNets,

Rahman, Kothalkar, et al., 2014), Probabilistic Sentential Decision Diagrams (PSDDs,

Kisa et al., 2014), Probabilistic Decision Graphs (PDGs, Jaeger, 2004) and And/Or-Graphs

(AOGs, Dechter and Mateescu, 2007) are some of the more well-known formalisms

caught under the PC framework.

While inference in PCs is usually straightforward, learning their structure so that

they both obey the needed structural restrictions and prove expressive enough for the

2

1 | INTRODUCTION

task at hand has proven to be a challenging process. Even so, many techniques have

been proposed in the last decade, with encouraging results. These techniques however,

often do not scale up well when faced with higher dimensional data, as they require

either carefully handcrafted architectures (Poon and P. Domingos, 2011; Cheng et al.,

2014; Nath and P. M. Domingos, 2016) or usually involve running costly (in)dependence

tests over most (if not all) variables (Gens and P. Domingos, 2013; Jaini, Ghose, et al.,

2018; Vergari, Mauro, et al., 2015; Di Mauro et al., 2017). Alternatively, some learning

algorithms resort to structure preserving iterative methods to grow a PC that already

initially satisfies desired constraints, adding complexity to the underlying distribution at

each iteration (Liang, Bekker, et al., 2017; Dang, Vergari, et al., 2020). However, these can

take several iterations until visible improvement and often take several minutes for each

iteration when the circuit is big. Common techniques used in deep learning for generating

scalable architectures for neural network also pose a problem, as the nature of the needed

structural constraints make for sparse computational graphs. To circumvent these issues,

work on scaling PCs to higher dimensions has focused mainly on random architectures,

with competitive results (Peharz, Vergari, et al., 2020; Mauro et al., 2021; R. L. Geh

and Denis Deratani Mauá, 2021b; Peharz, Lang, et al., 2020). Apart from the scalability

side of random structure generation, usual structure learning algorithms often require

an extensive grid-search for hyperparameter tuning to achieve top quality performance,

which is usually not the case for random algorithms. For the usual data scientist or machine

learning practicioner, hyperparameter tuning can become time consuming and tedious,

especially if the goal is to analyze and infer from large data, and not to achieve top tier

performance on benchmark datasets.

The objectives of this research are two-fold. First, we seek to provide a concise literature

review on structure learning algorithms for probabilistic circuits, describing a few of the

most popular techniques for learning PCs. This particular contribution comes from a need

for a systematic comparison of the large body of techniques that have been developed so

far, each with different trade-offs of computational cost, accuracy and structural properties.

To this end, we compare and categorize structure learning algorithms with respect to time

and memory requirements, efficient queries enabled by the learned model and the overall

pros and cons brought by each.

Second, we present two new structural learning algorithms for PCs whose focus are

on efficiently learning from complex domains; we show that our approaches are scalable

and competitive against the state-of-the-art. They both take advantage of random circuit

generation to quickly construct PCs with little to no need for hyperparameter tuning.

The first approaches the problem of circuit construction through the lenses of symbolic

machine learning, effective for constructing PCs from highly structured binary data where

prior knowledge of the domain can be embedded into the model as a means to define its

support. We describe a randomized algorithm capable of taking background knowledge in

the form of logical constraints and produce PC samples whose support are relaxations of

the given logical formula. By taking advantage of known expert knowledge, the resulting

PC attributes mass to the more relevant portions of the sample space, resulting in a more

performant model, especially in data scarce regimes with abundant certain knowledge. We

show how this approach scales well to complex formulae and large amounts of data. From

a pure data point of view, we present a simple yet effective way to learn the structure

1.1 | DISSERTATION OUTLINE

3

of probabilistic circuits by exploiting a recently discovered connection between PCs and

random forests (Correia et al., 2020). We revisit a well-known inductive method of

hierarchically stacking oblique projections to learn decision trees (Freund et al., 2008;

Dasgupta and Freund, 2008) and transplant them into the context of probabilistic circuits,

adapting one of the more popular techniques for constructing PCs and proposing a simpler

and faster random version based on random oblique projections. We found that our

approach produced fairly competitive PC structures in a fraction of the time.

1.1 Dissertation Outline

We begin Chapter 2 by formally defining probabilistic circuits (Section 2.1), conducting

a review of some of the structural constraints that we might impose on PCs, as well as

what we may gain from them in terms of tractability. This is followed by a description

on how to algorithmically compute inference queries in PCs (Section 2.2). We then list

existing formalisms that may be viewed as instances of PCs, and what their structure entail

in terms of inference power. We finish the chapter by looking at a particular class of PCs

which allow the embedding of logical formulae within their support (Section 2.3).

In Chapter 3, we address existing PC structure learning algorithms dividing them into

three classes: divide-and-conquer learning (Section 3.1), incremental learning (Section 3.2)

and random learning (Section 3.3). For each, we give a brief analysis on their complexity and

discuss their advantages and disadvantages. We finish the chapter with with a summary

of all algorithms in Section 3.4.

In Chapter 4 and Chapter 5, we propose the two scalable structural learning algorithms

for probabilistic circuits that are especially suited for large data and fast deployment. The

final chapter (Chapter 6) is dedicated to summarizing our research contributions and

pointing to potential future work in learning PCs.

1.2 Contributions

Overall, our contributions throughout this dissertation address the following research

topics.

A concise review of literature on structure learning of PCs

Chapter 3 is dedicated to an extensive review of some of the existing techniques for

learning the structure of probabilistic circuits. We categorize them into three different

classes and analyze each in terms of their time requirements. We describe them in detail

and list insights on what seems to work and what could potentially be improved. Perhaps

more importantly, we provide a birds-eye view of what each learning algorithm guarantees

in terms of structural constraints, time requirement and number of hyperparameters

needed during learning.

Scalably learning PCs directly from background knowledge

In R. L. Geh and Denis Deratani Mauá (2021b), we provide a learning algorithm

4

1 | INTRODUCTION

for PSDDs that learns a PC directly from background knowledge in the form of logical

constraints. The algorithm samples a structure from a distribution of possible PSDDs that

are weakly consistent with the logical formula. How weak consistency is depends on a

parameter that trades permission of false statements as non zero probability events with

circuit complexity. We provide the algorithm and empirical results in Chapter 4.

Using ensembles to strengthen consistency

The PC sampler given by R. L. Geh and Denis Deratani Mauá (2021b) produces com-

petitive probabilistic models (in terms of likelihood), albeit weak logical models in the

sense that it possibly assigns non-zero probability to false variable assignments – as we

discuss in Chapter 4, it never assigns zero probability to true statements. By producing

many weak models, we not only gain in terms of data fitness, but also consistency: if any

one component in the ensemble returns an assignment to be impossible, the whole model

should return false.

Random projections to efficiently learn PCs

Usual methods often employ clustering algorithms for constructing convex combina-

tions of computational units. These can take many iterations to converge or require space

quadratic in the number of data points. Instead, in Chapter 5 we present linear alternatives

based on random projections (Freund et al., 2008; Dasgupta and Freund, 2008).

5

2
Probabilistic Circuits

As we briefly mentioned in the last chapter, Probabilistic Circuits (PCs) are conceptual-

ized as computational graphs under special conditions. In this chapter, we formally define

PCs and give an intuition on their syntax, viewing other probabilistic models through the

lenses of the PC framework and formalizing the many structural constraints that give

sufficient conditions for tractable inference. We then address PCs as knowledge bases,

representing logic formulae through circuits.

Before we formally introduce probabilistic circuits, we start with a brief preliminary on

notation and nomenclature. Call 𝐗 = {𝑋1, 𝑋2, … , 𝑋𝑚} a set of random variables (RVs); we

denote by 𝐱 = {𝑥1, 𝑥2, … , 𝑥𝑚} the assignment of each value 𝑥𝑖 to RV 𝑋𝑖. Let 𝑝 be a probability

distribution over variables 𝐗; we use the notation 𝑝(𝐗 = 𝐱) to represent the probability

of 𝐗 taking values 𝐱 according to 𝑝. On that note, if 𝐗 is the set of all RVs of probability

distribution 𝑝, then we say that 𝐗 is the scope of 𝑝, here denoted by the functional Sc(𝑝).
When an assignment 𝐲 over RVs 𝐘 covers only a portion of Sc(𝑝) = 𝐗, or in other words

𝐘 ⊂ 𝐗, then 𝐲 is called a partial assignment; otherwise, if it captures the entire scope, then

it is said to be a complete assignment.

We borrow a few concepts from graph theory and say that, for a graph  = (N, 𝐄),
where N is the set of nodes in  and 𝐄 the set of edges, the function Ch(N) maps a node

N ∈ N to the set of all children of N, that is, all nodes which have an edge coming from

N. Similarly, Pa(N) maps N to its parents: the set of nodes which have an edge going to

N. We assume that edge connections are unique, meaning that for two connected nodes

N1 and N2, there can only exist a single edge connecting them, denoting

−−−−→
N1 N2 the edge

coming from N1 to N2.

2.1 Distributions as Computational Graphs

Probabilistic circuits are computational graphs usually recursively defined in terms of

their computational units. We start with a broad definition of probabilistic circuits.

Definition 2.1.1 (Probabilistic circuit). A probabilistic circuit  is a rooted connected DAG

whose nodes describe non-negative functions: a sum node S represents a weighted summation

over its children S(𝐱) = ∑C∈Ch(S) 𝑤S,C ⋅ C(𝐱), a product node P multiplies all of its children

6

2 | PROBABILISTIC CIRCUITS

0.8

0.29

𝑥

𝑝(𝑥)

𝑝(𝑥) 𝑥

𝑋
.𝟐𝟗 .𝟖𝟎

(a)

+

.𝟕𝟓

.𝟔𝟓

.𝟑𝟓

.25

.30

.45

.𝟓𝟒 𝐱

(b)

×

.𝟒𝟎

.𝟖𝟎

.𝟓𝟎

.𝟏𝟔 𝐱

(c)

Figure 2.1: An input node as a Gaussian distribution (a), a sum node (b), and a product node (c), the

last two with three children each. Arrows in black signal (possibly weighted) edges in the computational

graph, while gray edges indicate the computational flow: given an assignment 𝐱 , the computation

flows the opposite direction, starting on inputs and going up to the root, resulting in the final value in

green .

P(𝐱) = ∏C∈Ch(P) C(𝐱), and input nodes, i.e. nodes with no outgoing edges, are defined as

univariate probability density functions. The size of  is the number of nodes and edges of its

graph, denoted by | |.

In its simplest form, a PC is a single input node annotated with an unnormalized

probability distribution over a single variable
1
. In practice, however, inputs are typically

portrayed as normalized parametric density (or mass) functions, and we shall assume

them as so throughout this dissertation unless explicitly stated otherwise. We also assume,

for purposes of simplifying analysis, that any query on an input node is computed in

(1) on the size of the input. To simplify notation, from here on out we shall use the

term distribution to mean a probability density (or mass) function and argue that input

nodes represent probability distributions. The semantics of this shall be clear given the

context.

Let L be a PC input node representing a distribution 𝑝 whose scope is over variable

𝑋 . For an assignment 𝑥 of variable 𝑋 , we use the notation L(𝑋 = 𝑥) to mean 𝑝(𝑋 = 𝑥),
often omitting 𝑋 when meaning is clear from context. We say that the value of input

node L with respect to some query is the value of 𝑝 with respect to that same query.

As an example, Figure 2.1a shows the case when L represents a Gaussian. If we were

to compute the probability of 𝑥 = 0.29 according to L, then we would have to perform

that same query on L’s distribution 𝑝, in this case 𝑝(𝑥 = 0.29) = 0.80. Similarly, the

values of inner nodes with respect to a query correspond to the resulting values of their

functions given an assignment (and the query). Figure 2.1b shows a sum node S taking

value S(𝐱) = 0.45 ⋅ 0.35 + 0.30 ⋅ 0.65 + 0.25 ⋅ 0.75 = 0.54, while Figure 2.1c shows the same,

but for a product P(𝐱) = 0.50 ⋅ 0.80 ⋅ 0.40 = 0.16. This concept of value of a node shall

become clearer when we talk about reasoning in Section 2.2 and how to compute queries

in PCs. For now, we assume that this value is simply the result of the computation of the

function it represents given an assignment and a query.

1
Although we define inputs as univariate, weaker definitions of PCs often permit inputs to be multivariate

as well, provided mild conditions are met. In general, there is not much loss of expressivity or generality in

assuming only univariate inputs, as multivariate inputs can often be represented as a PC instead.

2.1 | DISTRIBUTIONS AS COMPUTATIONAL GRAPHS

7

As previously mentioned, an inner node indicates an operation to be computed from

the value of its children. Although Definition 2.1.1 only references sums and products, the

subject of more general operations and their benefits in terms of inference is an interesting

question which we briefly touch in Remark 2.1, but otherwise remains out of the scope of

this work. In this dissertation, we restrict ourselves to the study of sums and products as

inner nodes. More precisely on the subject of sum nodes, we are interested in sums whose

weights are non-negative and sum to one, or in other words, nodes which correspond to

convex combinations of their children

Semantically, the root of a PC represents an unnormalized probability distribution

composed out of the functions of its descendant computational units. When all sums in

a PC are convex combinations and every one of its inputs are normalized probability

distributions, then the encompassing PC is also normalized, meaning that the distribution

it represents is normalized. Throughout this dissertation, we shall assume sums to

be convex combinations and inputs to be normalized
2
. Locally, sum nodes have the

semantic interpretation of a mixture model over its children, essentially acting as a latent

variable over the component distributions (Poon and P. Domingos, 2011; Peharz, Gens,

Pernkopf, et al., 2016). Example 2.1 shows a case of a Gaussian mixture model as a PC,

that is, a single sum node over Gaussian distributions as inputs.

Example 2.1: Gaussian mixture models as probabilistic circuits

A Gaussian Mixture Model (GMM) defines a mix-

ture over Gaussian components. Say we wish to

compute the probability of 𝑋 = 𝑥 for a GMM 
with three components  1(𝜇1 = 1, 𝜎1 = 0.65),
 2(𝜇2 = 2.5, 𝜎1 = 0.85) and  3(𝜇3 = 4, 𝜎2

3 =
0.6), and suppose we have weights set to 𝜙 =
(0.4, 0.25, 0.35). Computing the probability of 𝑥
according to  amounts to the weighted summa-

tion

(𝑋 = 𝑥) =0.4 ⋅ 1(𝑥; 𝜇1, 𝜎2) + 0.25 ⋅ 2(𝑥; 𝜇2, 𝜎2)+
0.35 ⋅ 3(𝑥; 𝜇3, 𝜎3),

which is equivalent to a computational graph (i.e.

a PC) with a sum node as root and whose weights

are set to 𝜙 and children to the components of

the mixture. The figure on the right shows  (top)

and its corresponding PC (middle). Given 𝑥 = 1.5
(in blue), input nodes are computed following

the computation flow (bottom, gray edges) up

to the root sum node + , where a weighted sum-

mation is computed to output the probability (in

green).

𝜇1 = 1

𝜇2 = 2.5

𝜇3 = 4

1.5

0.24

𝑥

𝑝(𝑥)

+
.40 .25 .35

 1(1, 0.65)  2(2.5, 0.85)  3(4, 0.6)

+
.40 .25 .35

𝟏.𝟓

𝟎.𝟐𝟒

𝟎.𝟒𝟓 𝟎.𝟐𝟑 𝟎.𝟎𝟎

2
This assumption incurs in no loss of generality, as Peharz, Tschiatschek, et al., 2015 show.

8

2 | PROBABILISTIC CIRCUITS

With the understanding that a PC determines a probability distribution, we may now

extend the notion of scope to PCs, discoverable in an inductive fashion: the scope of an

input node is the scope of its distribution, while the scope of an inner node N is the

union of the scopes of its children Sc(N) = ⋃C∈Ch(N) Sc(C). As an example, take the circuit

from Example 2.2. The scope of input nodes and are Sc() = Sc() = {𝑋}, while

Sc() = Sc() = {𝑌 }. Consequentially, their parent sum nodes will have the same scope

as their children Sc(+) = {𝑋} and Sc(+) = {𝑌 }, yet the root node’s scope is Sc(×) = {𝑋, 𝑌 },
since its childrens’ scopes are distinct. The notion of scope is essential to many structural

properties in PCs, many of which provide sufficient conditions for tractably computing

a wide range of inference queries on probabilistic circuits as feedforward passes on the

computational graph, as we detail in Section 2.2.

When computing the value of a node N, the domain of the function it computes N(𝐗 =
𝐱) is restricted to the node’s scope Sc(N) = 𝐗. For instance, in the case of Example 2.2, the

domain of × is over 𝑋 and 𝑌 , while + and + are only over 𝑋 and 𝑌 respectively. Having

said that, for simplification purposes we often abuse notation and assume that, given

an assignment 𝐱 of RVs 𝐗, the application of N(𝐱) is strictly over the variables in Sc(N),
meaning that the assignments of any RVs outside of N’s scope are simply ignored.

Example 2.2: Factors as probabilistic circuits

Say we have two GMMs 1 and 2. The first is a

mixture model over variable 𝑋 , with component

weights 𝜙1 = (0.3, 0.7) and gaussians  1(𝜇1 =
2, 𝜎1 = 0.5) and  2(𝜇2 = 4, 𝜎2 = 0.8). The second

is composed of 3(𝜇3 = 3, 𝜎2 = 0.7) and 4(𝜇4 =
5, 𝜎2 = 0.4), both distributions over variable 𝑌 and

with weights 𝜙2 = (0.6, 0.4).

Suppose 𝑋 ⟂⟂ 𝑌 , and we wish to com-

pute the joint probability of both 𝑥 and 𝑦. If

𝑋 ⟂⟂ 𝑌 , then 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦) = 1(𝑥)2(𝑦),
which corresponds to a factoring of mixtures.

This is represented as a product node × over

the two mixture models + and + . The re-

sulting joint of this circuit is shown below.

2

4

0.035

𝑥

𝑦

𝑝(𝑥, 𝑦)

𝜇1 = 2

𝜇2 = 4

2

0.25

𝑥

𝑝(𝑥)

𝜇3 = 3

𝜇4 = 5

4

0.14 𝑦

𝑝(𝑦)

×

+ +
.3 .7 .6 .4

 1(2, 0.5) 2(4, 0.8) 3(3, 0.7) 4(5, 0.4)

×

+ +
.3 .7 .6 .4

𝟎.𝟖𝟎 𝟎.𝟎𝟐 𝟎.𝟐𝟎 𝟎.𝟎𝟒

𝟎.𝟐𝟓 𝟎.𝟏𝟒

𝐱 = 𝟐 𝐲 = 𝟒

𝟎.𝟎𝟑𝟓

2.1 | DISTRIBUTIONS AS COMPUTATIONAL GRAPHS

9

+

× × ×

+ + + +

(a)

+

× × ×

+ + + +

(b)

+

× × ×

+ + + +

(c)

+

× × ×

+ + + +

(d)

Figure 2.2: A probabilistic circuit (a) and 3 of its 12 possible induced subcircuits (b-d).

Before we address reasoning in probabilistic circuits, we first describe indicator nodes,

subcircuits, circuit size, induced subcircuits, and standard circuits, all of which are basic

concepts of PCs that we shall need later throughout the text. We start with a special case

of an input node. An indicator node is an input node whose distribution is the indicator

function 𝑓 (𝑥) = v𝑥 = 𝑘w, i.e. a degenerate distribution with all of its mass on 𝑘 and zero

anywhere else. A special case is when 𝑋 is binary and 𝑘 = 1, in which case we say the

input node is a literal node, denoting by the usual propositional notation 𝑋 for when 𝑘 = 1
and ¬𝑋 for 𝑘 = 0. Graphically, we shall use either ○○○ or just the textual Iverson bracket v⋅w
representation for indicators, while literals will be denoted by their textual propositional

notation.

Let  be a probabilistic circuit and consider a node N ∈ . We say that N is a subcircuit

of  rooted at N if N ’s root is N, all nodes and edges in N are also in  and N is also a

probabilistic circuit.

Definition 2.1.2 (Induced subcircuit). Let  be a probabilistic circuit. An induced subcircuit

 of  is a subcircuit of  rooted at ’s root such that all edges coming out of product nodes

in  are also in  , and for each sum node, out of all edges coming out of it, only one is in  .

Examples of induced subcircuits are visualized in Figure 2.2. When the induced sub-

circuit is tree-shaped, as is the case in Figure 2.2, they are referred to as induced trees

(H. Zhao, Melibari, et al., 2015; H. Zhao, Adel, et al., 2016).

A probabilistic circuit  that contains no consecutive sums or products (i.e. for every

sum all of its children are either inputs or products, and for products their children are either

inputs or sums) is said to be in standard form circuit. Any PC can be efficiently transformed

into a standard circuit in a process we call standardization (see Theorem A.1.2).

Remark 2.1: On operators and tractability

Throughout this work we consider only products and convex combinations (apart

from the implicit operations contained within input nodes) as potential compu-

tational units. The subject of whether any other operator could be used to gain

expressivity without loss of tractability is without a doubt an interesting research

question, and one that is actively being pursued. However, this is certainly out of

the scope of this dissertation, and so we restrict discussion on this topic and only

give a brief comment on operator tractability here, pointing to existing literature in

this area of research.

10

2 | PROBABILISTIC CIRCUITS

A. Friesen and P. Domingos (2016) formalize the notion of replacing sums and

products in PCs with any pair of operators in a commutative semiring, giving results

on the conditions for marginalization to be tractable. They provide examples of

common semirings and to which known formalisms they correspond to. One such

example are PCs under the Boolean semiring ({0, 1}, ∨, ∧, 0, 1) for logical inference,

which are equivalent to Negation Normal Form (NNF, Barwise, 1982) and consti-

tute an instance of Logic Circuits (LCs), of which Sentential Decision Diagrams

(SDDs, Darwiche, 2011) and Binary Decision Diagrams (BDDs, Akers, 1978) are

a part of. Another less common semiring in PCs is the real min-sum semiring

(ℝ∞, min, +,∞, 0) for nonconvex optimization (Abram L. Friesen and P. Domingos,

2015).

Recently, Vergari, Y. Choi, et al. (2021) extensively covered tractability con-

ditions and complexity bounds for convex combinations, products, exp (and more

generally powers in both naturals and reals), quotients and logarithms, even giving

results for complex information-theoretic queries, such as entropies and diver-

gences. Notably, they analyze whether structural constraints (and thus, in a sense,

tractability) under these conditions are preserved.

Up to now, we have only considered summations as nonnegative weighted sums.

Indeed, in most literature the sum node is defined as a convex combination. However,

negative weights have appeared in Logistic Circuits (Liang and Van den Broeck,

2019) for discriminative modeling; and in Probabilistic Generating Circuits (Zhang

et al., 2021), a class of tractable probabilistic models that subsume PCs. Denis D.

Mauá et al. (2017) and Mattei, Antonucci, et al. (2020a) extend (nonnegative)

weights in sum nodes with probability intervals, effectively inducing a credal set

(Fabio G. Cozman, 2000) for measuring imprecision.

Other works include PCs with quotients (Sharir and Shashua, 2018), trans-

formations (Pevný et al., 2020), max (Melibari, Poupart, and Doshi, 2016), and

einsum (Peharz, Lang, et al., 2020) operations.

2.2 Reasoning with Probabilistic Circuits

Up to now, we have only vaguely touched on the issue of computing the value of a

probabilistic circuit. Throughout this section, we define some of the possible inference

tasks available to PCs, describe sufficient conditions for enabling these queries within this

framework, and algorithmically show how to tractably compute them in the computational

graph when these conditions are met. We start defining the four most basic probabilistic

queries in PCs: probability of evidence, marginal probability, conditional probability and

maximum a posteriori probability.

Consider a normalized probability distribution 𝑝 whose scope is Sc(𝑝) = 𝐗 and let 𝐱
be a complete assignment of 𝐗. We define the probability of evidence, shortened to EVI for

convenience, as the query 𝑝(𝐱), i.e. the probability of 𝐗 taking values 𝐱 according to 𝑝,

with 𝐗 being called the query variables. In a somewhat similar vein, given a set of variables

2.2 | REASONING WITH PROBABILISTIC CIRCUITS

11

Algorithm 1 EVI
Input A PC  and complete assignment 𝐱
Output Value (𝐱)

1: Let 𝑣 be a hash function mapping a node to its value

2: for each N in reverse topological order do

3: if N is an input then 𝑣(N) ← N(𝐱)
4: else if N is a sum then 𝑣(N) ← ∑C∈Ch(N) 𝑤N,C𝑣C
5: else if N is a product then 𝑣(N) ← ∏C∈Ch(N) 𝑣C
6: return 𝑣(𝑅), where R is ’s root

𝐘 such that 𝐘 ⊂ 𝐗, and calling 𝐲 a partial assignment of it, we say that the query 𝑝(𝐲) is

the marginal probability, here denoted by MAR, of query variables 𝐘 with the remaining

variables 𝐙 = 𝐗 ∩ 𝐘 marginalized. This corresponds to the summing out ∑𝐳 𝑝(𝐲, 𝐳) when

in the discrete, and the integral ∫𝐳 𝑝(𝐲, 𝐳) d𝐳 in the continuous. Aside from EVI and MAR,

prediction tasks such as classification often require computing the conditional probability

𝑝(𝐲|𝐳) = 𝑝(𝐲,𝐳)
𝑝(𝐳) , which we shall call by the shorthand CON, of query variables 𝐘 given

evidence variables 𝐙 in order to understand, for instance in the case of image classification,

the probability of a certain label given pixel values. A related yet more difficult task is to

compute the maximum a posteriori probability (MAP), which involves finding the most

probable assignment of a set of RVs 𝐘, said to be the query variables, conditioned on

evidence variables 𝐗, say for image reconstruction. To do so, we must compute the most

probable assignment 𝐲 (for instance, the missing pixels to be reconstructed) conditioned

on evidence 𝐱 (for example, values of the known pixels), or more formally

max
𝐲

𝑝(𝐲|𝐱) = max
𝐲

𝑝(𝐲, 𝐱)
𝑝(𝐱)

=
max𝐲 𝑝(𝐲, 𝐱)

𝑝(𝐱)
= max

𝐲
𝑝(𝐲, 𝐱). (2.1)

For this dissertation, we shall only consider the case of full MAP, i.e. when 𝐱 ∪ 𝐲 forms a

complete assignment of the scope, since computing the partial MAP, i.e. when 𝐱∪𝐲 forms a

partial assignment, is hard in most PCs (Peharz, Gens, Pernkopf, et al., 2016; De Campos,

2011). Unless explicitly stated, MAP shall mean full MAP. Full MAP also goes by the name

of most probable explanation (MPE, Darwiche, 2009) in literature. Although at first it

may seem like MAP should be no harder than computing a CON, it turns out that for

smooth and decomposable PCs MAP is NP-hard (Conaty et al., 2017; Mei et al., 2018). Now

that we have properly defined the queries we are interested in, we begin listing sufficient

conditions for their tractability in PCs and the algorithms that compute them.

As we have already (informally) seen in the previous section, computing the probability

of evidence for an assignment 𝐱 according to a PC  amounts to the computation of the

value of ’s root by a bottom-up computation of node values. Starting with inputs, we

compute their value by querying their distribution for their probability of evidence; this is

then followed by simply computing inner node values normally. Algorithm 1 shows this

procedure algorithmically, computing the EVI in linear time to the size of the circuit. Of

note is the fact that, if the PC is not normalized, then the result of this procedure must be

normalized by a constant, extractable in a similar way; however, since we assume all PCs

to be normalized, the value returned by Algorithm 1 is already normalized.

12

2 | PROBABILISTIC CIRCUITS

Algorithm 2 MAR
Input A smooth and decomposable PC  and partial assignment 𝐱
Output Value ∫𝐲 (𝐱, 𝐲) d𝐲 ⊳ Call 𝐘 the remaining variables not in 𝐗

1: Let 𝑣 be a hash function mapping a node to its value

2: for each N in reverse topological order do

3: if N is an input then 𝑣(N) ← ∫𝐲 N(𝐱, 𝐲) d𝐲
4: else if N is a sum then 𝑣(N) ← ∑C∈Ch(N) 𝑤N,C𝑣C
5: else if N is a product then 𝑣(N) ← ∏C∈Ch(N) 𝑣C
6: return 𝑣(𝑅), where R is ’s root

+

× × ×

𝐴 𝐵 𝐶
(a)

×

+ + + +

𝐴 𝐴 𝐵 𝐵
(b)

×
+ +

× × × ×

𝐴 𝐵 𝐶 𝐷
(c)

Figure 2.3: Decomposable but non-smooth (a), smooth but non-decomposable (b), and smooth and

decomposable (c) circuits. Labels below inputs indicate their scope.

By our definition of PCs, computing the EVI of a PC is always tractable. Computing

the MAR, on the other hand, does not always come for free. We now introduce the first

two structural constraints for probabilistic circuits which, together, enable tractable MAR
in PCs.

Definition 2.2.1 (Smoothness). A probabilistic circuit  is said to be smooth if for every

sum node S in , Sc(C1) = Sc(C2) for C1,C2 ∈ Ch(S).

Definition 2.2.2 (Decomposability). A probabilistic circuit  is said to be decomposable if

for every product node P in , Sc(C1) ∩ Sc(C2) = ∅ for any two C1,C2 ∈ Ch(P).

When a probabilistic circuit  is both smooth and decomposable, any marginal is

linear time computable in  (Poon and P. Domingos, 2011; Peharz, Tschiatschek, et al.,

2015). Although smoothness and decomposability are sufficient for tractably computing

marginals, they are not necessary. In fact, consistency is a weaker constraint on products

that, coupled with smoothness, confers efficient MAR (Poon and P. Domingos, 2011).

Figure 2.3 shows examples of smooth and decomposable circuits. Although there exist PCs

that are neither smooth nor decomposable (or consistent) and also have tractable MAR,

as is the case of Example 2.3, these two properties are often adopted during learning due

to their intuitive and uncomplicated syntax. In fact, all PCs shown throughout this

dissertation shall be at least smooth and decomposable unless explicitly stated

otherwise.

Theorem 2.2.1 (Poon and P. Domingos, 2011; Y. Choi, Vergari, and Van den Broeck,

2020; Vergari, Y. Choi, et al., 2021). Let  be a smooth and decomposable PC. Any one of

EVI, MAR or CON can be computed in linear time (in the size of ).

2.2 | REASONING WITH PROBABILISTIC CIRCUITS

13

Example 2.3: Density estimation trees as probabilistic circuits

A density estimation tree (DET) is a decision tree

for the task of density estimation (Ram and Gray,

2011). Briefly, a decision tree  partitions the data

space (usually ℝ𝑑
) into cells by laying out hyper-

planes usually orthogonal to the axes, creating a

latent variable for each node that essentially de-

termines in which region an observation should

fall into. The density function of a tree  given a

dataset 𝐃 of dimension 𝑑 is defined as the piece-

wise function

𝑝 (𝐱) = ∑
L∈Leaves()

|𝐃 ∈ L|
|𝐃|

⋅
v𝐱 ∈ Lw

Vol(L)
, (2.2)

where |𝐃 ∈ L| indicates the number of assign-

ments 𝐱 in the training dataset 𝐃 which fall in-

side the cell determined by leaf L, and Vol(L) re-

tuns the volume of the 𝑑-dimensional cell L. The

top figure on the right shows a two-dimensional

data space being partitioned, with the correspond-

ing decision tree below it. Each node in the tree

is a (hyper)plane partitioning data, with every

edge determining which cell the observation falls

into.

Equivalently, a smooth but nondecomposable

PC whose sum nodes are followed by products

which determine which side of the hyperplane an

assignment goes configures the same semantics

as a DET decision node. Inputs in this PC act as

the leaf nodes in the equivalent DET. The PC on

the right translates the DET on top of it, with

matching colors in the PC showing the equivalent

leaves and decision nodes in the DET. Because

products define disjoint restricted regions of the

data space, integration can be pushed to the leaves,

making marginalization tractable. This highlights

the sufficiency but not necessity of smoothness

and decomposability. An alternative smooth and

decomposable formulation of DETs is given by

Correia et al. (2020).

𝐀

𝐁
𝐂

L1 L2

𝐱

𝐀

𝐁

𝐂

𝐿1 𝐿2

⋮

𝐱 ∈ 𝐀+𝐱 ∈ 𝐀−

⋮

𝐱 ∈ 𝐁− 𝐱 ∈ 𝐁+

𝐱 ∈ 𝐂− 𝐱 ∈ 𝐂+

+
𝐀

× ×

○○○
v𝐱 ∈ 𝐀−w

○○○
v𝐱 ∈ 𝐀+w

⋮
+

𝐁

× ×

○○○
v𝐱 ∈ 𝐁−w

○○○
v𝐱 ∈ 𝐁+w

⋮
+

𝐂

× ×

○○○
v𝐱 ∈ 𝐂−w

○○○
v𝐱 ∈ 𝐂+wL1 L2

What Theorem 2.2.1’s proof on page 99 tells us is that, algorithmically, the only

difference between EVI, MAR and CON is what is done on the input nodes. This can be

seen in Algorithm 2, which shows how to compute marginals in PCs. With MAR available

14

2 | PROBABILISTIC CIRCUITS

Algorithm 3 MaxProduct

Input A smooth, decomposable and deterministic PC  and evidence assignment 𝐱
Output Value max𝐲 (𝐲|𝐱)

1: Let 𝑣 be a hash function mapping a node to its probability

2: for each N in reverse topological order do

3: if N is an input then 𝑣(N) ← max𝐲 N(𝐲, 𝐱)
4: else if N is a sum then 𝑣(N) ← maxC∈Ch(N) 𝑤N,C𝑣C
5: else if N is a product then 𝑣(N) ← ∏C∈Ch(N) 𝑣C
6: return 𝑣𝑅/(𝐱), where R is ’s root and (𝐱) is the EVI on 𝐱

1.5

0.07

𝑥

𝑝(𝑥)

(a)

+
.40 .25 .35

Ψ1(1, 0.65) Ψ2(2.5, 0.85) Ψ3(4, 0.6)

(b)

+
.40 .25 .35

𝟏.𝟓

𝟎.𝟎𝟕

𝟎.𝟎𝟎 𝟎.𝟑𝟏 𝟎.𝟎𝟎

(c)

Figure 2.4: A Gaussian mixture model is deterministic if the components do not overlap. Graph (a)

shows a deterministic Gaussian mixture model represented as a PC in (b) and whose components 𝜓1,
𝜓2 and 𝜓3 are Gaussians truncated in a way that they do not overlap. Given any valuation, at most

one of the components (sum node’s children) must have a positive value (c).

to us, querying for CON reduces to a simple two-pass evaluation over the circuit: the

first computes the numerator as the marginal 𝑝(𝐘, 𝐗), and the second the denominator

marginal 𝑝(𝐗).

Besides smoothness and decomposability, another structural constraint of interest is

determinism. Together with the first two, determinism provides sufficient conditions for

tractably computing the MAP. Figure 2.4 shows an example of a deterministic Gaussian

mixture model.

Definition 2.2.3 (Determinism). A probabilistic circuit  is said to be deterministic if for

every sum node S ∈  at most one child of S has positive value for any complete assignment.

Theorem 2.2.2 (Peharz, Gens, Pernkopf, et al., 2016). Let  be a smooth, decomposable

and deterministic PC. MaxProduct computes the MAP in  in linear time (on the size of ).

As Theorem 2.2.2’s proof on page 100 suggests, the MAP on a smooth, decomposable

and deterministic PC can be easily computed by simply replacing sum nodes with a max

operation and performing a bottom-up EVI pass. This is commonly called the Max-Product

algorithm, shown more formally in Algorithm 3 and visually exemplified in Figure 2.5. To

find the assignment 𝐲 that maximizes Equation (2.1) in a given circuit , we first compute

the MAP probabilities through the usual bottom-up pass, and then find the maximum

(in terms of probability) induced tree  rooted at  by backtracking the graph to the

most probable assignments. This maximum induced tree can be retrieved by a top-down

2.2 | REASONING WITH PROBABILISTIC CIRCUITS

15

+

× ×

○○○
v𝑥 ≤ 0w

○○○
v𝑥 > 0w

+ +

× ×

○○○
v𝑦 ≤ 0w

○○○
v𝑦 > 0w𝐴(1, 0.7) 𝐵(3, 0.5)

0.3 0.7

0.2
0.8 0.6

0.4

𝑥 = 1 𝑥 = 1

𝑦 = −1 𝑦 = −1𝑎 = 1.2 𝑏 = 3.6

.089

.54 .38
1 0

.21 0

.04 .12
0 1

0 .12

(a)

↑

× ×

○○○
v𝑥 ≤ 0w

○○○
v𝑥 > 0w

↑ ↑

× ×

○○○
v𝑦 ≤ 0w

○○○
v𝑦 > 0w𝐴(1, 0.7) 𝐵(3, 0.5)

0.3 0.7

0.2
0.8 0.6

0.4

𝑥 = 1 𝑥 = 1

max 𝑦 max 𝑦𝑎 = 1.2 max 𝑏

.183

.54 .79
1 1

.43 .43

.35 .26
0 1

0 .26

(b)

↑

× ×

○○○
v𝑥 ≤ 0w

○○○
v𝑥 > 0w

↑ ↑

× ×

○○○
v𝑦 ≤ 0w

○○○
v𝑦 > 0w𝐴(1, 0.7) 𝐵(3, 0.5)

0.3 0.7

0.2
0.8 0.6

0.4

𝑥 = 1

max 𝑦 ≤ 0 𝑎 = 1.2 max 𝑏 = 3

.54 .79
1

.43

.26
1

.26

(c)

Figure 2.5: The computation, on a smooth, decomposable and deterministic probabilistic circuit, of

EVI 𝑝(𝑎 = 1.2, 𝑏 = 3.6, 𝑥 = 1, 𝑦 = −1) ≈ 0.089 (a), MAP max𝑏,𝑦 𝑝(𝑏, 𝑦|𝑎 = 1.2, 𝑥 = 1) ≈ 0.183
via MaxProduct (b), and argmax𝑏,𝑦 𝑝(𝑏, 𝑦|𝑎 = 1.2, 𝑥 = 1) = {𝑏 = 3, 𝑦 ≤ 0} by backtracking the

values set by MaxProduct (c). ↑ nodes signal the replacement of sums with maximizations in

MaxProduct. The backtracking in (c) is done from the root down, finding a max induced tree by

propagating through all product children and only the highest valued child in ↑ nodes.

pass selecting the most probable sum child nodes according to the probabilities set by

MAP. Since  is decomposable, there cannot exist a node in  with more than one parent,

meaning it is by construction a tree whose leaves are input nodes with scopes whose union

is the scope of . This reduces the problem to a divide-and-conquer approach where each

input node is individually maximized.

Many known probabilistic models can be subsumed as smooth, decomposable and

deterministic PCs, such Markov networks (Lowd and Rooshenas, 2013), naïve Bayes,

thin junction trees (Bach and Jordan, 2001), and more generally low-treewidth Bayesian

networks (Darwiche, 2003). Example 2.4 shows a Gaussian naïve Bayes model as a

probabilistic circuit.

Although we have only covered the most basic queries so far, more complex tasks

involving information-theoretic measures, logical queries or distributional divergences are

also (tractably) computable in PCs under the right conditions. Particularly, we are interested

in a key component for tractability in all these tasks: the notion of vtrees and structured

decomposability, a stronger variant of decomposability where variable partitionings on

product nodes follow a hierarchy. This hierarchy is easily visualized through a vtree

(variable tree), a data structure that defines a (partial) ordering of variables.

Definition 2.2.4 (Vtree). A variable tree  = (, 𝜙), or vtree, over a set of variables 𝐗 is a

pair made out of a binary tree  whose number of leaf nodes is |𝐗|, and a one-to-one and

onto mapping 𝜙 of leaves of  with variables 𝐗.

We shall adopt the same scope definition and notation Sc(⋅) for vtrees as in PCs. Let

𝑣 be a vtree node from a vtree  . If 𝑣 is a leaf node of  , its scope is 𝜙(𝑣), i.e. the leaf’s

assigned variable; otherwise its scope is the union of the scope of its children. For an inner

16

2 | PROBABILISTIC CIRCUITS

node 𝑣, we shall call its left child 𝑣← and right child 𝑣→. Every inner node 𝑣 of a vtree 
defines a variable partitioning of the scope (Sc(𝑣←), Sc(𝑣→)), while the leaves of  define a

partial ordering of Sc(). We are especially interested in the scope partitioning aspect of

vtrees.

Example 2.4: Naïve Bayes as probabilistic circuits

Suppose we have samples of per capita census

measurements on three different features, say

age 𝐴, body mass index 𝐵 and average amount

of cheese consumed daily 𝐶 from three different

cities 𝑌 . Assuming 𝐴, 𝐵 and 𝐶 are independent,

given a sample 𝑥 = (𝑎, 𝑏, 𝑐) we can use Gaussian

naïve Bayes to predict 𝑥’s city

𝑝(𝑦|𝑎, 𝑏, 𝑐) = 𝑝(𝑦)𝑝(𝑎|𝑦)𝑝(𝑏|𝑦)𝑝(𝑐|𝑦). (2.3)

In PC terms, 𝑝(𝑦) are the prior probabilities, i.e.

sum weights, for each class and 𝑝(𝑧|𝑦) are Gaus-

sian input nodes corresponding to the distribu-

tions of each feature in each city. To make sure

that these are in fact conditional distributions, we

introduce indicator variables “selecting” 𝑌 ’s state.

Since the resulting PC is deterministic, we can

compute the MAP for classification in linear time

by simply replacing the root node with a max,

which is exactly equivalent to finding the highest

value of 𝑥 for each city 𝑦.

𝑌
𝑝(𝑌)

𝐴
𝑝(𝐴|𝑌)

𝐵
𝑝(𝐵|𝑌)

𝐶
𝑝(𝐶|𝑌)

Gaussian naïve Bayes

+

×

×

×

○○○
v𝑦 = 1w

○○○
v𝑦 = 2w

○○○
v𝑦 = 3w

𝐴
𝐵

𝐶

𝐴
𝐵

𝐶

𝐴
𝐵

𝐴

𝑝(𝑦 = 1)

𝑝(𝑦 = 2)

𝑝(𝑦 = 3)

Equivalent PC

Definition 2.2.5. A product node P respects a vtree node 𝑣 if P contains only two children

Ch(P) = {C1,C2}, and Sc(C1) = Sc(𝑣←) and Sc(C2) = Sc(𝑣→).

Obviously, the above definition is vague with regards to which child (e.g. graphically,

left or right) of P should respect the scope of which 𝑣 child. We therefore assume a fixed

order for P’s children and say that the (graphically) left child is called the prime and

(graphically) right child the sub, and refer to P as an element. This ultimately means that

the scope of the prime (resp. sub) of P must be the same as the scope of the left (resp. right)

child of 𝑣. Although the graphical concept of left and right is needed for easily visualizing

the scope partitioning of a product with respect to a vtree node, we do not use it strictly.

In fact, when the situation is unambiguous, we compactly represent the computational

graph without adhering to the left-right convention in favor of readability.

We say that a vtree is linear, if either it is left-linear or right-linear. A left- (resp. right)

linear vtree is a vtree whose inner nodes all have leaf nodes on their right (resp. left) child.

Similarly, a vtree is said to be left- (resp. right) leaning if the number of leaf nodes as

right (resp. left) children is much higher then left (resp. right) children. Otherwise, it is a

balanced vtree. The variable order of a vtree is the sequence of leaf nodes (i.e. variables)

2.2 | REASONING WITH PROBABILISTIC CIRCUITS

17

1

2 3

𝐴 𝐵 𝐶 𝐷

(a)

+

× ×

+ + +

× × × × × ×

𝐴 𝐵 𝐶 𝐷 𝐴 𝐵

(b)

+

× ×

𝐴
+ +

𝐷× × × ×

𝐶 𝐶 𝐶
+ +

× × × ×

𝐷 𝐵 𝐴

(c)

Figure 2.6: A vtree (a) defining an order (𝐴, 𝐵, 𝐶, 𝐷), a 2-standard structured decomposable proba-

bilistic circuit that respects the vtree (b), and a 2-standard decomposable probabilistic circuit that does

not (c).

read from left to right. Figure 2.6a shows a balanced vtree with order (𝐴, 𝐵, 𝐶, 𝐷).

Now that we understand what a vtree is, we can properly introduce structured decom-

posability, a stronger variant of decomposability. We say that a PC is 2-standard if it is

standard and all of its product nodes have exactly two children. Further, we call the 𝑖-th
layer of a PC or a vtree as the set of all nodes that are at depth 𝑖 (i.e. the shortest connected

path from the root to the node has size 𝑖).

Definition 2.2.6 (Structured decomposability). Let  be a 2-standard probabilistic circuit

and  a vtree with same scope as .  is said to be structured decomposable if every 𝑖-th
product layer of  respects every 𝑖-th inner node layer of  .

Although we assume a 2-standard PC in Definition 2.2.6, this assumption was only

for convenience, and does not imply in a loss of expressivity; as a matter of fact, any PC

can be 2-standardized (see Theorem A.1.3). Intuitively, structured decomposability merely

states that every two product nodes whose scopes are the same must partition their scopes

(between their two children) exactly the same (and according to their corresponding vtree

node). Semantically speaking, a vtree’s inner node 𝑣 defines a context-specific independence

relationship between Sc(𝑣←) and Sc(𝑣→) under the distribution encoded by its PC.

Figure 2.6 shows a vtree  and two probabilistic circuits, say 1 for the one in the

middle and 2 for the one on the right. Notice how 1 respects  , as each × respects the

split at vtree node 1 (namely {𝐴, 𝐵}). The primes are then + whose scopes are {𝐴, 𝐵}, while

the sub is the one with two parents and scope {𝐶, 𝐷}. For each of these, their children

× also respect  : they either encode the same split as 2 or as 3, depending on whether

they are descendants from the sub or prime of 1. Although 2 is decomposable, it does not

respect  , as × encode different variable partionings: ({𝐴}, {𝐵, 𝐶, 𝐷}) and ({𝐴, 𝐵, 𝐶}, {𝐷}).
In fact, it is not structured decomposable, as it does not respect any vtree. Example 2.5

shows a Hidden Markov model as a smooth, deterministic and structured decomposable

PC whose sums describe the latent variables and products partition observable variables

according to the vtree.

18

2 | PROBABILISTIC CIRCUITS

Example 2.5: Hidden Markov models as probabilistic circuits

Say we wish to model a sequential structured de-

pendence between three latent binary variables,

for example the presence of a subject 𝑋1, verb 𝑋2
and object 𝑋3 in a natural language phrase. Each

observation 𝑌𝑖 is a fragment (of 𝑋𝑖) taken from a

complete sentence 𝐲 = (𝑦1, 𝑦2, 𝑦3). The first-order

Hidden Markov Model (HMM) (on the right) mod-

els the joint probability of sentences

𝑝(𝑋1..3, 𝑌1..3) = 𝑝(𝑋1)
3

∏
𝑖=2

𝑝(𝑋𝑖|𝑋𝑖−1)
3

∏
𝑖=1

𝑝(𝑌𝑖|𝑋𝑖).

(2.4)

This is computationally equivalent to the PC on

the right. Each input node 𝑝(𝑌𝑖|𝑋𝑖) is a condi-

tional distribution model (possibly another PC)

for each assignment (here two) of 𝑋𝑖, meaning

that if 𝑝(𝑌𝑖|𝑋𝑖 = 0) > 0, then 𝑝(𝑌𝑖|𝑋𝑖 = 1) = 0 and

vice-versa. Root weights are exactly 𝑝(𝑋1), and

each 𝑝(𝑋𝑖|𝑋𝑖−1) translates into the other matched

color sum weights. Further, every product follows

the partitionings imposed by the vtree, with × de-

composing into (∅, {𝑌3}). This means that this PC

is not only smooth, but structured decomposable

and deterministic.

𝑋1 𝑋2 𝑋3

𝑌1 𝑌2 𝑌3
Hidden Markov Model

+

× ×

𝑝(𝑌1|𝑋1 = 0)

𝑝(𝑌1|𝑋1 = 1)

+ +

× ×

𝑝(𝑌2|𝑋2 = 0)

𝑝(𝑌2|𝑋2 = 1)

+ +

× ×

𝑝(𝑌3|𝑋3 = 0)

𝑝(𝑌3|𝑋3 = 1)

Equivalent PC

1

2 𝑌1

𝑌2 𝑌3
Vtree

Despite our structured decomposability definition relying on a vtree, there is at least one

alternative definition that defines it in terms of circuit compatibility. Essentially, a circuit

1 is compatible with 2 if they can be 2-standardized (in polynomial time) in such a way

that any two products with same scope, one from 1 and the other 2, partition the scope

into the same decompositions (Vergari, Y. Choi, et al., 2021). A structured decomposable

PC is then defined as a PC that is compatible with a copy of itself. In summary, the two

definitions of structured decomposability are equivalent, except compatibility implicitly

assumes an arrangement of product scopes that is analogous to a vtree.

Probabilistic circuits appear in literature under many names. A PC which is both

smooth and decomposable is often referred to as a Sum-Product Network (SPN, Poon and

P. Domingos, 2011), although definitions vary around the presence of the two structural

constraints as a requirement, with SPNs sometimes used as a synonym for probabilistic

circuits. Smooth, decomposable and deterministic PCs often appear as Arithmetic Circuits

(ACs, Darwiche, 2003) or Cutset Networks (CNets, Rahman, Kothalkar, et al., 2014).

Probabilistic Sentential Decision Diagrams (PSDDs, Kisa et al., 2014), Probabilistic Decision

Graphs (PDGs, Jaeger, 2004) and And/Or-Graphs (AOGs, Dechter and Mateescu, 2007)

can all be described as smooth, deterministic and structured decomposable PCs.

The notion of structured decomposability (or compatibility for that matter) is key to

2.3 | PROBABILISTIC CIRCUITS AS KNOWLEDGE BASES

19

more complex queries. For instance, given two probabilistic circuits 1 and 2, computing

cross entropy between the two is  (|1||2|) as long as both have the same vtree and the

circuit that needs to come inside the log is also deterministic. Likewise, computing the

Kullback-Leibler (KL) divergence between 1 and 2 requires that the two share the same

vtree and both be deterministic. Mutual Information (MI), in turn, calls for the circuit to

be smooth, structured decomposable and an even stronger version of determinism known

as marginal determinism where sums can only have one nonnegative valued child for any

partial assignment at a time. In fact, when a PC is smooth, decomposable and marginal

deterministic, marginal MAP, i.e. MAP over partial assignments becomes linear time

computable. For a more detailed insight on the tractability of these (and other) queries, as

well as proofs on these results, we point to the comprehensive study of Vergari, Y. Choi,

et al. (2021).

A particularly interesting class of queries that becomes tractable when circuits are

structured decomposable is the expectation (EXP) of a circuit with respect to another

(Y. Choi, Vergari, and Broeck, 2020), defined as

𝔼 [] = ∫
𝐱
(𝐱)(𝐱) d𝐱. (2.5)

One notable example from this class is computing the probability of logical events, which in

terms of a EXP query amounts to computing the probability of  when circuit  represents

a given logical query. This leads us to logic circuits, a parallel version of probabilistic

circuits for logical reasoning which we shall see next.

2.3 Probabilistic Circuits as Knowledge Bases

We superficially mentioned in Remark 2.1 that PCs under a Boolean semiring with

conjunctions and disjunctions as operators are known as Logic Circuits (LCs). In this

section, we formally yet briefly define LCs and more precisely show the connection

between PCs and LCs.

2.3.1 From Certainty...

Logic circuits are computational graphs just like PCs, but whose input are always

Booleans (and as such the scope is over propositional variables) and computational units

define either a conjunction, disjunction or literal of their inputs. While the computational

graph in PCs encodes uncertainty as a probability distribution, in LCs their computational

graph encodes certain knowledge as a propositional language. Similar to PCs, computing

the satisfiability of an assignment is done by a bottom-up feedforward evaluation of the

circuit. In terms of notation, we shall use for disjunction nodes, for conjunction nodes,

and 𝑋 and ¬𝑋 for literal nodes.

Definition 2.3.1 (Logic circuit). A logic circuit  is a rooted connected DAG whose inner

nodes compute either a conjunction or a disjunction of their children. Nodes with no outgoing

edges, i.e. literal nodes, are indicator functions of either a positive (true) or negative (false)

assignment. Computing the satisfiability of a world 𝐱 according to  amounts to a bottom-up

20

2 | PROBABILISTIC CIRCUITS

1

0 1

1 1

0 1 1 0 1 0

𝐶
1

¬𝐶 ¬𝐶 𝐴 𝐴 ¬𝐵
1

¬𝐴

¬𝐷 𝐷 𝐵 ¬𝐵

𝐀 = 𝟏 𝐁 = 𝟎 𝐂 = 𝟎 𝐃 = 𝟏

𝝓(𝐱) = 𝟏

(a)

𝐴

¬𝐴

𝐵 ¬𝐵

¬𝐶 𝐷 𝐵 ¬𝐵

𝐷

¬𝐶 𝐶

𝐷 ¬𝐷
(b)

Figure 2.7: Two smooth, structured decomposable and deterministic logic circuits encoding the same

logic constraint 𝜙 ≡ (𝐴 ∧ 𝐵) ∨ (¬𝐶 ∧ 𝐷) for a balanced (a) and a right-linear (b) vtree. In (a), a circuit

evaluation for an assignment, with each node value in the bottom-up evaluation pass shown inside

nodes.

pass where literal nodes are assigned values consistent with 𝐱 and values are propagated up

to the root.

Evidently, logic circuits are closely related to probabilistic circuits. The strikingly

similar definitions are not a product of coincidence: much of the literature on PCs have

their origins on LCs. In fact, most structural constraints in PCs are the exact same (up to

even their names
3
) as their LC analogues. In this dissertation, we are particularly interested

in a specific subset of smooth, structured decomposable and deterministic LCs, known

as Sentential Decision Diagrams (SDDs, Darwiche, 2011). Figure 2.7 shows two SDDs

encoding the same knowledge base but under different vtrees. The one on the left respects

a balanced vtree and the one on the right a right-linear vtree.

Logic circuits have appeared in computer science literature under many names, more

closely to the knowledge compilation community under the title of Negated Normal Form

(NNF) (Darwiche, 2001; Darwiche, 1999), a superset of other propositional compila-

tion languages such as Binary Decision Diagrams (BDDs, Bryant, 1986), Propositional

DAGs (PDAGs, Wachter and Haenni, 2006), Sentential Decision Diagrams (SDDs, Dar-

wiche, 2011), DNFs and CNFs. Example 2.6 shows a smooth, structured decomposable

and deterministic logic circuit as a BDD. Although no structural constraint is required

for model verification in logic circuits, the same properties defined in the past section

have come up in LCs to enable other more complex queries like equivalence, implication,

sentential entailment and model counting, as well as transformations such as closed

conditionings, forgetting, and conjunctions and disjunctions of circuits such that some

3
There are some exceptions. Smoothness is sometimes referred to as completeness in PCs, while determinism

has the alternative name of selectivity.

2.3 | PROBABILISTIC CIRCUITS AS KNOWLEDGE BASES

21

structural constraint is preserved during transformation (Darwiche and Marquis, 2002).

The succinctness (i.e. expressive efficiency) of LCs are also impacted by these structural

restrictions (Gogic et al., 1995; Papadimitriou, 1994; Darwiche and Marquis, 2002). See

Darwiche and Marquis (2002) and Darwiche (2020) for more on logic circuits.

Example 2.6: BDDs as logic circuits

A Binary Decision Diagram (BDD, Bryant,

1986) defines a Boolean function over binary

variables as a rooted DAG. BDDs are a subset

of smooth, structured decomposable and deter-

ministic LCs (i.e. SDDs) whose vtrees are always

right-linear.

𝐴

𝐵 𝐵𝐶

⊥ ⊤

In their usual notation, inner nodes are variables

and leaves are constants ⊥ and ⊤. Evaluating an

assignment 𝐱 ∈ {0, 1}𝑛 is equivalent to a path from

the root to a leaf where each variable 𝑋 deter-

mines a decision to go through the dashed line

when 𝑥 = 0 or solid line when 𝑥 = 1. If the path

ends at a ⊤, the function returns 1, otherwise it

must end at a ⊥ and therefore returns 0. The BDD

above encodes the following logic formula

𝜙(𝐴, 𝐵, 𝐶) = (𝐴 ∨ ¬𝐵) ∧ (¬𝐵 ∨ 𝐶), (2.6)

also shown as a truth table on the right, together

with a logic circuit that encodes the same truth

table and its vtree. Conjunctions take the role of

products, with each conjunction node determin-

ing a vtree node’s scope partition.

𝐴 𝐵 𝐶 𝜙(𝐱)
0 0 0 1

1 0 0 1

0 1 0 0

1 1 0 0

0 0 1 1

1 0 1 1

0 1 1 0

1 1 1 1

Truth Table

𝐴 ¬𝐴

𝐵 𝐶 ¬𝐵

𝐶 ¬𝐶
Equivalent LC

1

2𝐴

𝐵 𝐶

Vtree

2.3.2 ...to Uncertainty

Logic circuits are easily extensible to probabilistic circuits. In fact, if we think of an

LC as the support of a PC the connections between the two come naturally. Suppose a

2-standard smooth, structured decomposable and deterministic probabilistic circuit  over

binary variables. We can construct an identically structured logic circuit (up to input nodes)

 with same vtree as  whose underlying Boolean function encodes 𝜙(𝐱) = v(𝐱) > 0w.

22

2 | PROBABILISTIC CIRCUITS

Since sums act exactly like disjunctions and products like conjunctions under the Boolean

semiring, products in  are replaced with conjunctions in , and sums with disjunctions.

Input nodes from  are replaced with a literal node if the function is degenerate, or with a

disjunction over positive and negative literals otherwise. This makes sure  acts as the

support of , as each disjunction node S of  defines

S(𝐱) = ⋁
C∈Ch (S)

0

C𝑝(𝐱) > 0
8

∧ vC𝑠(𝐱) > 0w , (2.7)

where Ch(S) retrieves the children of S’s corresponding sum node in , with C𝑝(𝐱) and

C𝑠(𝐱) the probabilities of C’s prime and sub respectively. The corresponding sum node S
in  then only attributes a weight (i.e. probability) to each positive element as usual

S(𝐱, 𝐲) = ∑
C∈Ch(S)

𝑤S ,C ⋅ C𝑝(𝐱) ⋅ C𝑠(𝐲). (2.8)

When a deterministic sum (resp. disjunction) node has the above form, then this com-

position of a weighted sum (resp. disjunction) is known in PC and LC literature as a

partition.

Example 2.7: Embedding certain knowledge in probabilistic circuits

Recall the logic circuit  from Example 2.6.

Imagine we wish to model the uncertainty coming

from all assignments where (𝐱) = 1. In other

words, we want to assign a positive probability

to all true entries in the previous example’s truth

table, turning it into a probability table. The table

on the right shows the chosen probabilities for

each instance. Naturally, they all sum to one, with

logically impossible assignments set to zero.

Compiling an LC into a PC is straightforward:

replace conjunctions with product nodes and dis-

junctions with sum nodes. Input nodes are left

untouched, as literal nodes are just degenerate

probability distributions. Sum weights are what

ultimately define the probabilities in the proba-

bility table. The PC on the right is the result of

the compilation of  into a probabilistic circuit

whose distribution is defined by the probability

table above it. When we mean to say that a PC has

its support defined by its underlying LC, then we

use the logic gate notation with the added weights

on edges coming out from nodes.

𝐴 𝐵 𝐶 𝜙(𝐱) 𝑝(𝐱)
0 0 0 1 0.140

1 0 0 1 0.024

0 1 0 0 0.000

1 1 0 0 0.000

0 0 1 1 0.560

1 0 1 1 0.096

0 1 1 0 0.000

1 1 1 1 0.180

Probability Table

𝐴 ¬𝐴

𝐵 𝐶 ¬𝐵

𝐶 ¬𝐶

0.3 0.7

0.6 0.4

0.8 0.2

Probabilistic Circuit

This compatibility between logic and probabilistic circuits allows certain knowledge

2.3 | PROBABILISTIC CIRCUITS AS KNOWLEDGE BASES

23

Algorithm 4 EXP
Input A smooth, structured decomposable PC  and LC , both with vtree 
Output The expectation 𝔼 [] = ∫𝐱 (𝐱)(𝐱) d𝐱

1: Let  be a hash table mapping a pair of nodes to an expectation

2: function Traverse(N , N)

3: if (N ,N) ∈  then return (N ,N)
4: if N is an input then (N ,N) ← 𝔼N [N]
5: else if N is a product

6: 𝑣 ← 0
7: for each 𝑖-th children C(𝑖)

 and C(𝑖)
 of N and N respectively do

8: 𝑣 ← 𝑣 ⋅ Traverse(C(𝑖)
 ,C

(𝑖)
)

9: (N ,N) ← 𝑣
10: else if N is a sum

11: 𝑣 ← 0
12: for each child C ∈ Ch(N) do

13: for each child C ∈ Ch(N) do

14: 𝑣 ← 𝑣 + 𝑤N ,C ⋅ Traverse(C ,C)
15: (N ,N) ← 𝑣
16: return (N ,N)
17: return Traverse(,)

to be embedded into an uncertain model by constructing a computational graph whose

underlying logic circuit correctly attributes positive values only to the support of the

distribution. When such a computational graph is also smooth, structured decomposable

and deterministic, then it belongs to a special subclass of PCs called Probabilistic Sentential

Decision Diagrams (PSDDs, Kisa et al., 2014). An alternative use case for logic circuits

within the context of probabilistic reasoning is querying for the probability of logical

events, i.e. the expectation of a logic query with respect to a distribution, a special case of

the previously defined Equation (2.5), where the circuit to be queried  is a logic circuit

representing any logic query and  is the probabilistic interpretation

𝔼 [] = ∫
𝐱
(𝐱)(𝐱) d𝐱. (2.9)

This computation is known to be tractable when  and  both have the same vtree and 
is smooth, as Theorem 2.3.1 shows.

Theorem 2.3.1 (Y. Choi, Vergari, and Broeck, 2020). If  is a smooth and structured

decomposable probabilistic circuit with vtree  , and  a structured decomposable logic circuit

also respecting  , then 𝔼 [] is polynomial time computable (in the number of edges).

Let  be a smooth and structured decomposable circuit with vtree  , and  a logic

circuit representing a logical query whose vtree is also  . Computing the probability of 
with respect to the distribution encoded by  is done by a bottom-up evaluation over both

circuits at the same time. Algorithm 4 shows the procedure algorithmically. Importantly,

the procedure relies on evaluating the expectation of a node with respect to another, with

one coming from the probabilistic, and the other from the logical side. The algorithm runs

24

2 | PROBABILISTIC CIRCUITS

in polynomial time by caching expectation values to avoid recomputing already visited

nodes. Starting with inputs, where the expectation is delegated to the input’s distribution,

we go up to inner nodes, where both computation and node pairing is distinct depending

on the node’s computational unit. For product nodes, primes are paired with primes, and

subs with subs; for sums, each combination of PC child with LC child is paired up.

Example 2.8: Computing the probability of logical events

𝐴 ¬𝐴

¬𝐵

¬𝐵 𝐵 ¬𝐶 𝐶 ¬𝐶 𝐶

Say we have a PC en-

coding the distribution

shown in the table on the

right. Suppose we wish

to compute the probabil-

ity of a logical event, say

𝜙 ≡ 𝐴 ∨ ¬𝐵. A naïve ap-

proach would be to go

over each assignment 𝐱
where 𝜙(𝐱) = 1, and compute their sum. This

is obviously exponential on the number of vari-

ables. Instead, we may compile 𝜙 into the logic cir-

cuit above and run the EXP algorithm to (in poly-

nomial time) compute this otherwise intractable

marginalization. Running EXP gives us a proba-

bility of 0.6415 = 1.0 − (0.1365 + 0.2220), which is

exactly the desired probability.

¬𝐴 𝐴 ¬𝐴 𝐴

¬𝐵 𝐵 ¬𝐶 𝐶 ¬𝐵 𝐵 ¬𝐶 𝐶

.45 .55

.7
.3 .6

.4
.2

.8 .9
.1

.4
.6

.5 .5 .5 .5
.2

.8

𝐴 𝐵 𝐶 𝜙(𝐱) 𝑝(𝐱)
0 0 0 1 .1000

1 0 0 1 .0580

0 1 0 0 .1365

1 1 0 1 .0805

0 0 1 1 .1860

1 0 1 1 .0970

0 1 1 0 .2220

1 1 1 1 .1195

Remark 2.2: On applications of probabilistic circuits

So far, we have not yet addressed real-world applications of probabilistic circuits.

Although their usage has not yet gained popularity among the data science crowd,

they have been successfuly employed in a multitude of interdisciplinary tasks. Here,

we give a brief survey on the different use cases of probabilistic circuits present in

literature.

Computer vision is perhaps the most popular application for deep learning,

and this could not be different for probabilistic circuits. PCs have been used for

image classification (Gens and P. Domingos, 2012; Sguerra and F. G. Cozman, 2016;

Llerena and Deratani Mauá, 2017; R. Geh and D. Mauá, 2019; Peharz, Vergari,

et al., 2020), image reconstruction and sampling (Poon and P. Domingos, 2011;

Dennis and Ventura, 2017; Peharz, Lang, et al., 2020; Cory J Butz et al., 2019),

image segmentation and scene understanding (Abram L Friesen and P. Domingos,

2017; Yuan et al., 2016; Abram L Friesen and P. M. Domingos, 2018; Rathke et al.,

2017), and activity recognition (J. Wang and G. Wang, 2018; Amer and Todorovic,

2012; Nourani et al., 2020; Amer and Todorovic, 2016).

Probabilistic circuits have also been used for sequential data (Melibari, Poupart,

Doshi, and Trimponias, 2016), such as speech recognition and reconstruction

2.3 | PROBABILISTIC CIRCUITS AS KNOWLEDGE BASES

25

(Peharz, Kapeller, et al., 2014; Ratajczak et al., 2014; Ratajczak et al., 2018) and

natural language processing (Cheng et al., 2014).

Remarkably, probabilistic circuits have seen a recent boom in hardware-aware

research (Shah, Isabel Galindez Olascoaga, et al., 2019; Olascoaga et al., 2019)

and dedicated hardware for PCs in embedded systems (Sommer et al., 2018; Shah,

Olascoaga, Meert, et al., 2020; Shah, Olascoaga, S. Zhao, et al., 2021).

Some other applications include robotics (Sguerra and F. G. Cozman, 2016;

R. Geh and D. Mauá, 2019; Zheng et al., 2018; Pronobis et al., 2017), biology (Cory J.

Butz, Santos, et al., 2018; Abram L. Friesen and P. Domingos, 2015), probabilistic

programming (Stuhlmüller and Goodman, 2012; Saad et al., 2021), and fault

localization (Nath and P. M. Domingos, 2016).

27

3
Learning Probabilistic Circuits

As we have seen in Chapter 2, inference in probabilistic circuits is, for the most part,

straightforward. This is not so much the case when learning PCs. Despite the uncomplicated

syntax, learning sufficiently expressive PCs in a principled way is comparatively harder

than, say the usual neural network. For a start, we are usually required to comply with

smoothness and decomposability to ensure marginalization at the least. This restriction

excludes the possibility of adopting any of the most popular neural network patterns or

architectures used in deep learning today. To make matters worse, constructing a PC graph

more often than not involves costly statistical tests that make learning their structure a

challenge for high dimensional data.

In this chapter, we review the most popular PC structure learning algorithms, their

pros and cons, and more importantly, what can we learn from them to efficiently build

scalable probabilistic circuits. We broadly divide existing structure learners into three main

categories: divide-and-conquer (DIV, Section 3.1), incremental methods (INCR, Section 3.2)

and random approaches (RAND, Section 3.3).

3.1 Divide-and-Conquer Learning

Arguably the most popular approach to learning the structure of probabilistic circuits

are algorithms that follow a divide-and-conquer scheme
1
. This class of PC learning algo-

rithms, which here we denote by DIV, are characterized by recursive calls over (usually

mutually exclusive) subsets of data in true divide-and-conquer fashion. This kind of pro-

cedure is more clearly visualized by LearnSPN, the first, most well-known, and perhaps

most archetypal of its class.

Before we explain LearnSPN however, we must first address how we denote data.

Data is commonly represented as a matrix where rows are assignments (of all variables),

1
The algorithms we shall see in this class are sometimes classified as constraint-based (Spirtes and Meek,

1995) learners, as they learn the model by identifying independences within data. Although this is true

for the examples here mentioned, the two taxonomies are not equivalent. In fact, we describe a random

divide-and-conquer structure learning approach in Section 5.1 that does not (directly) rely on statistical

tests.

28

3 | LEARNING PROBABILISTIC CIRCUITS

Algorithm 5 LearnSPN

Input Data 𝐃, whose columns are indexed by variables 𝐗
Output A smooth and decomposable probabilistic circuit learned from 𝐃

1: if |𝐗| = 1 then return an input node learned from 𝐃
2: else

3: Find scope partitions 𝐗1, … , 𝐗𝑡 ⊆ 𝐗 st 𝐗𝑖 ⟂⟂ 𝐗𝑗 for 𝑖 ≠ 𝑗
4: if 𝑘 > 1 then return ∏𝑡

𝑗=1 LearnSPN(𝐃∶,𝐗𝑗 , 𝐗𝑗)
5: else

6: Find subsets of data 𝐱1, … , 𝐱𝑘 ⊆ 𝐃 st all assignments within 𝐱𝑖 are all similar

7: return ∑𝑘
𝑖=1

|𝐱𝑖 |
|𝐃| ⋅ LearnSPN(𝐱𝑖, 𝐗)

and columns are the values that each variable takes at each assignment. Let 𝐃 ∈ ℝ𝑛×𝑚
be

a matrix with 𝑛 rows and 𝑚 columns. We use 𝐃𝑖,𝑗 to access an element of 𝐃 at the 𝑖-th
row, 𝑗-th column of matrix 𝐃. We denote by 𝐃𝐢,𝐣, where 𝐢 ⊆ [1..𝑛] and 𝐣 ⊆ [1..𝑚] are sets of

indices, a submatrix from the extraction of the 𝐢 rows and 𝐣 columns of 𝐃. We use a colon

as a shorthand for selecting all rows or columns, e.g. 𝐃∶,∶ = 𝐃, 𝐃∶,𝑗 is the 𝑗-th column and

𝐃𝑖,∶ is the 𝑖-th row.

3.1.1 LearnSPN

Recall the semantics of sum and product nodes in a smooth and decomposable proba-

bilistic circuit. A sum node encodes a mixture of distributions 𝑝(𝐗) = ∑𝑚
𝑖=1 𝑤𝑖 ⋅ 𝑝𝑖(𝐗) whose

children scopes are all the same. A product node encodes a factorization 𝑝(𝐗1, … , 𝐗𝑚) =
∏𝑚

𝑖=1 𝑝(𝐗𝑖), implying that 𝐗𝑖 ⟂⟂ 𝐗𝑗 for 𝑖, 𝑗 ∈ [𝑚] and 𝑖 ≠ 𝑗 . LearnSPN (Gens and P.

Domingos, 2013) exploits these semantics in an intuitive and uncomplicated manner:

sum children are defined by sub-PCs learned from similar (by some arbitrary metric)

assignments, and product children are sub-PCs learned from data conditioned on the

variables defined by their scope. In practice, this means that, for a dataset 𝐃 ∈ ℝ𝑛×𝑚
, sums

assign rows to their children, while product children are assigned columns. This procedures

continues recursively until data are reduced to a 𝑘 × 1 matrix, in which case a univariate

distribution acting as input node is learned from it. This recursive procedure is shown

more formally in Algorithm 5.

Notably, Gens and P. Domingos (2013) purposely does not strictly specify which

techniques should be used for assigning rows and columns, although they do provide

empirical results on a particular form of LearnSPN where row assignments are computed

through EM clustering and products by pairwise G-testing. Instead, they call the algorithm

a schema that incorporates several actual learning algorithms whose concrete form depends

on the choice of how to split data.

Complexity

To be able to analyze the complexity of LearnSPN, we assume a common implemen-

tation where sums are learned from 𝑘-means clustering, and products through pairwise

G-testing. We know learning sums is efficient: 𝑘-means takes (𝑛 ⋅ 𝑘 ⋅ 𝑚 ⋅ 𝑐) time, where

𝑘 is the number of clusters and 𝑐 the number of iterations to be run. Products, on the

3.1 | DIVIDE-AND-CONQUER LEARNING

29

𝐴 𝐵 𝐶 𝐷 𝐸
0 1 0 0 1

1 0 1 1 1

1 1 0 1 1

0 0 1 0 0

1 1 0 1 0

0 1 1 0 1

1 0 1 1 1

1 1 0 0 0

0 1 1 0 1

+

× × ×

3
9 2

9

4
9

(a)

𝐴 𝐵 𝐶 𝐷 𝐸
0 1 0 0 1

1 0 1 1 1

1 1 0 1 1

0 0 1 0 0

1 1 0 1 0

0 1 1 0 1

1 0 1 1 1

1 1 0 0 0

0 1 1 0 1

×

+
{𝐴, 𝐸}

+
{𝐵, 𝐶}

+
{𝐷}

(b)

Figure 3.1: LearnSPN assigns either rows (a) or columns (b) for sum and product nodes respectively.

For sums, their edge weights are set proportionally to the assignments. For product children, scopes are

defined by which columns are assigned to them.

other hand, are much more costly. The naïve approach would be to find every possible

combination of variable partitions of any size and compute statistical independence tests

over these subsets of variables, which would take superexponential time on the number

of variables. Instead, LearnSPN proposes the faster approach of testing for pairwise

independence 𝑋𝑖 ⟂⟂ 𝑋𝑗 for every possible combination. This is clearly quadratic on the

number of variables ((
𝑚
2) =

𝑚!
2(𝑚−2)!) assuming an (1) oracle for independence testing.

In reality, G-test takes (𝑛 ⋅ 𝑚) time, as we must compute a ratio of observed versus

expected values for each cell in the contingency table. This brings the total runtime for

products to a whopping  (𝑛 ⋅ 𝑚3), prohibitive to any reasonably large dataset. In terms of

space, independence tests most commonly used require either a correlation (for continuous

data) or contingency (for discrete data) matrix that takes up (𝑚2) space, another barrier

for scaling up to high dimensional data.

Alternatively, instead of computing the G-test for every possible combination of vari-

ables, (Gens and P. Domingos, 2013) constructs an independence graph  whose nodes are

variables and edges indicate whether two variables are statistically dependent. Within this

context, the variable partitions we attribute to product children are exactly the connected

components of , meaning it suffices testing only some combinations. This is made clear

by the following example: suppose we have an incomplete independence graph  where,

at a certain point in the process of finding the (independent) variable partitions, we know

there to be two components 𝐗 and 𝐘; by hypothesis there is no edge connecting any

variable in 𝐗 to any other variable in 𝐘. The task of determining whether 𝐗 and 𝐘 are,

truly, a single component boils down to finding a pair of variables 𝑋 ∈ 𝐗 and 𝑌 ∈ 𝐘 such

that the independence tests on the two returns that 𝑋 ⟂̸⟂ 𝑌 . If, at the next iteration, we

luckily choose such a pair, no other pair of 𝐗 and 𝐘 needs to be tested any longer, as we

have already shown 𝐗 and 𝐘 to belong to the same component. Note that, had we not

used this heuristic, every pair would still need to be tested, even if they are known to be

in the same component. Even so, this heuristic is still cubic on the number of variables

in the worst case. Figure 3.2 shows , the spanning forest resulted from the connected

component heuristic, and the equivalent product node from this decomposition.

30

3 | LEARNING PROBABILISTIC CIRCUITS

𝐴𝐵

𝐶

𝐷

𝐸 𝐹

𝐺

𝐻

(a)

𝐴𝐵

𝐶

𝐷

𝐸 𝐹

𝐺

𝐻

(b)

×

+
{𝐴, 𝐵, 𝐶, 𝐷}

+
{𝐸, 𝐹 , 𝐺}

+
{𝐻}

(c)

Figure 3.2: The pairwise (in)dependence graph where each node is a variable. In (a) we show the

full graph, computing independence tests for each pair of variables in (𝑚2). However, it suffices to

compute for only the connected components (b), saving up pairwise computation time for reachable

nodes. The resulting product node and scope partitioning is shown in (c).

Pros and cons

Pros. Perhaps the main factor for LearnSPN’s popularity is how easily implementable,

intuitive and modular it is. Even more remarkably, it is an empirically competitive PC

learning algorithm despite its age, serving as a baseline for most subsequent works in PC

literature. Lastly, the fact that each recursive call from LearnSPN is completely independent

from each other makes it an attractive candidate for CPU parallelization.

Cons. Debatably, one of the key weakness of LearnSPN is its tree-shaped computational

graph, meaning that they are strictly less succint compared to non-tree DAG PCs (Martens

and Medabalimi, 2014). In terms of runtime efficiency, the algorithm struggles on high

dimensional data due to the complexity involved in computing costly statistical tests.

Despite Algorithm 5 giving the impression that no hyperparameter tuning is needed

for LearnSPN, in practice the modules for learning sums and products often take many

parameters, most of which (if not all) are exactly the same for every recursive call. This

can have a negative impact on the algorithm’s performance, since the same parameters

are repeatedly used even under completely different data.

3.1.2 ID-SPN

A subtle yet effective way of improving the performance of LearnSPN is to consider

tractable probabilistic models over many variables as input nodes instead of univariate

distributions. ID-SPN (Rooshenas and Lowd, 2014) does so by assuming that input nodes

are tractable Markov networks. Further, instead of blindly applying the recursion over

subsequent sub-data, it attempts to compute some metric of quality from each node. The

worst scored node is then replaced with a LearnSPN-like tree. This is repeated until no

significant increase in likelihood is observed. Algorithm 7 shows the ID-SPN pipeline,

where ExtendID is used in line 7 to grow the circuit in a divide-and-conquer fashion. The

name ID-SPN comes from direct variable interactions, meaning the relationships modeled

through the Markov networks as input nodes; and indirect interactions brought from the

latent variable interpretation of sum nodes. Figure 3.3 shows two hypothetical iterations

of ID-SPN, with each call expanding the probabilistic circuit into either a sum or product

over Markov networks.

3.1 | DIVIDE-AND-CONQUER LEARNING

31

Algorithm 6 ExtendID

Input Data 𝐃, whose columns are indexed by variables 𝐗, and memoization function 
Output A smooth and decomposable probabilistic circuit learned from 𝐃

1: Find scope partitions 𝐗1, … , 𝐗𝑡 ⊆ 𝐗 st

2: if 𝑘 > 1 then

3: for each 𝑗 ∈ [𝑡] do

4: N𝑗 ← LearnMarkov(𝐃∶,𝐗𝑗 , 𝐗𝑗)
5: Associate (N𝑗) with 𝐃∶,𝐗𝑗 and 𝐗𝑗
6: return ∏𝑡

𝑗=1N𝑗
7: else

8: Find subsets of data 𝐱1, … , 𝐱𝑘 ⊆ 𝐃 st all assignments within 𝐱𝑖 are all similar

9: for each 𝑖 ∈ [𝑘] do

10: N𝑖 ← LearnMarkov(𝐱𝑖, 𝐗)
11: Associate (N𝑖) with 𝐱𝑖 and 𝐗
12: return ∑𝑘

𝑖=1
|𝐱𝑖 |
|𝐃| ⋅ N𝑖

With respect to its implementation, ID-SPN is as modular as LearnSPN in the sense that

the data partitioning is left as a subroutine. Indeed, even the choice of input distributions

is customizable: although Rooshenas and Lowd recommend Markov networks, any

tractable distribution will do. Despite this seemingly small change compared to the original

LearnSPN algorithm, ID-SPN seems to perform better compared to its counterpart most

of the time (Rooshenas and Lowd, 2014; Jaini, Ghose, et al., 2018), although at a cost to

learning speed. Further, because of the enormous parameter space brought by having to

learn Markov networks as inputs and perform the optimizations from sums and products,

grid search hyperparameter tuning is infeasible. Rooshenas and Lowd (2014) recommend

random search (Bergstra and Bengio, 2012) as an alternative.

Complexity

As ID-SPN is a special case of LearnSPN, the analysis for the sums and products

subroutines holds. The only difference is on the runtime complexity for learning input

nodes and the convergence rate for ID-SPN. Assuming input nodes are learned from the

method suggested by Rooshenas and Lowd (2014), which involves learning a probabilistic

circuit from a Markov network (Lowd and Rooshenas, 2013), then each “input” node

takes time (𝑖 ⋅ 𝑐(𝑟 ⋅ 𝑛 + 𝑚)), where 𝑖 is the number of iterations to run, 𝑐 is the size of the

generated PC, and constant 𝑟 is a bound on the number of candidate improvements to the

circuit, which can grow exponentially for multi-valued variables. Importantly, opposite

from LearnSPN where we only learn input nodes once per call if data is univariate,

ID-SPN requires learning multiple multivariate inputs for every ExtendID call.

Pros and Cons

Pros. If we assume any multivariate distribution in place of Markov networks, PCs

learned from ID-SPN are strictly more expressive than ones learned from LearnSPN, as

input nodes could potentially be replaced with LearnSPN distributions. Additionally, the

modularity inherited from LearnSPN allows ID-SPN to adapt to data according to expert

32

3 | LEARNING PROBABILISTIC CIRCUITS

Algorithm 7 ID-SPN

Input Data 𝐃, whose columns are indexed by variables 𝐗
Output A smooth and decomposable probabilistic circuit learned from 𝐃

1: Create a single-node PC:  ← LearnMarkov(𝐃, 𝐗)
2: Let  be a memoization function associating a node with a dataset and scope

3: Call ′
a copy of 

4: while improving  yields better likelihood do

5: Pick worse node N from ′

6: Extract sub-data 𝐃′
and sub-scope 𝐗′

from (N)
7: Replace N with ExtendID(𝐃′, 𝐗′,)
8: if ′

has better likelihood than  then  ← 
9: return 

𝐴

𝐵

𝐶

𝐷

𝐸 𝐹

Initial Markov network

×

𝐴 𝐵

𝐶

𝐹𝐷

𝐸

Iteration 1

×
+

𝐵𝐴

𝐶
𝐴 𝐵

𝐶

𝐹𝐷

𝐸

Iteration 2

Figure 3.3: Two iterations of ID-SPN, where the contents inside the dashed line are Markov networks.

The red color indicates that a node has been chosen as the best candidate for an extension with

ExtendID. Although here we only extend input nodes, inner nodes can in fact be extended as well.

knowledge, bringing some flexibility to the algorithm.

Cons. Unfortunately, most of the disadvantages from LearnSPN also apply to ID-SPN.

Just like LearnSPN, independence tests are more often than not a bottleneck for most exe-

cutions with resonably large number of variables. However, ID-SPN relies on a likelihood

improvement for the computational graph to be extended, which ends up curbing the easy

parallelization aspect of LearnSPN. Besides, the complexity involved in learning Markov

networks (or any other complex multivariate distribution as input node) carries a heavy

weight during learning. This, coupled with the fact that hyperparameter tuning in the

huge parameter space of ID-SPN must be done by a random search method, can take a

heavy price in terms of learning time.

3.1.3 Prometheus

So far, we have only considered structure learning algorithms that produce tree-shaped

circuits. Even though ID-SPN might produce non-tree graphs at the input nodes depending

on the choice of families of multivariate distributions, it does not do so as a rule. We now

turn our attention to a PC learner that does generate non-tree computational graphs in a

divide-and-conquer manner.

Recall that in both LearnSPN and ID-SPN the scope partitioning is done greedily; we

define a graph encoding the pairwise (in)dependencies of variables and greedily search

3.1 | DIVIDE-AND-CONQUER LEARNING

33

𝐴

𝐵

𝐶 𝐷

𝐸

0.8

0.2 0.4

0.3

0.6 0.4

0.1

0.9

0.5
0.7

(a)

𝐴

𝐵

𝐶 𝐷

𝐸

𝟎.𝟖
𝑒2

𝟎.𝟔 𝑒4

𝟎.𝟗
𝑒1

𝟎.𝟕𝑒3

(b)

+

× × × ×

+
{𝐴, 𝐵, 𝐶}

+
{𝐷, 𝐸}

+
{𝐵, 𝐶}

+
{𝐴}

+
{𝐷}

+
{𝐸}

+
{𝐵}

+
{𝐶}

(c)

Figure 3.4: The fully connected correlation graph (a) with weights as the pairwise correlation mea-

surements for each pair of variables; the maximum spanning tree for determining decompositions (b);

and the mixture of decompositions (c). Colors in (b) match their partitionings in (c).

for connected components by comparing independence test results with some correlation

threshold, adding an edge if the correlation is sufficiently high. The choice of this threshold

is often arbitrary and subject to hyperparameter tuning during learning, which is especially

worrying when dealing with high dimensional data. In this section we review Prometheus

(Jaini, Ghose, et al., 2018), a divide-and-conquer LearnSPN-like PC learning algorithm

with two main features that stand out compared to the last two methods we have seen so

far: (1) it requires no hyperparameter tuning for variable partitionings, and (2) accepts a

more scalable alternative to computing all pairwise correlations.

Let  be the independence graph for scope 𝐗 = {𝑋1, 𝑋2, … , 𝑋𝑚}. Remember that ’s

vertices are 𝐗 and each (undirected) edge 𝑋𝑖𝑋𝑗 coming from 𝑋𝑖 to 𝑋𝑗 means that 𝑋𝑖 ⟂̸⟂ 𝑋𝑗 .

Previously, we constructed  by comparing the output of an independence test (such as

the G-test) against a threshold (e.g. a sufficiently low 𝑝-value). Instead, suppose  is fully

connected and that we attribute weights corresponding to a correlation metric of𝑋𝑖 against

𝑋𝑗 for each edge (e.g. Pearson’s correlation coefficient). The maximum spanning tree (MST)

of , here denoted by  , defines a graph where the removal of any edge in  partitions

the component into two subcomponents. Let 𝑒𝑖 be the 𝑖-th lowest (weight) valued edge;

Prometheus obtains a set of decompositions by iteratively removing edges from 𝑒1 to

𝑒|𝐗|−1. In other words, the algorithm constructs a product node for each decomposition,

assigning the scope of each child as the scope of each component at each edge removal.

These products are then joined together by a parent sum node that acts as a mixture of

decompositions. Figure 3.4 shows an example of  , the subsequent decompositions, and

the resulting mixture of decompositions.

Sum nodes are learned by clustering data into similar instances, just like in previous

cases. Since the previously mentioned procedure involving products creates a mixture of

decompositions (and thus a sum node), we can simply collapse the consecutive sum layers

into a single sum node. Algorithm 8 shows the algorithm in its entirety. CorrelationMST

computes the (fully connected) correlation graph, returning its MST. It is worth mentioning

that Prometheus makes sure each recursive call shares subcircuits whenever scopes are

the same (this is when the hash table  in Algorithm 8 comes into play). This avoids an

exponential growth from the 𝑘 ⋅ (|𝐗| − 1) potential recursive calls.

34

3 | LEARNING PROBABILISTIC CIRCUITS

Algorithm 8 Prometheus

Input Data 𝐃, whose columns are indexed by variables 𝐗
Output A smooth and decomposable probabilistic circuit learned from 𝐃

1: if |𝐗| is sufficiently small then return an input node learned from 𝐃
2: else

3: Find subsets of data 𝐱1, … , 𝐱𝑘 ⊆ 𝐃 st all assignments within 𝐱𝑖 are all similar

4: Create a sum node S with initially no children and uniform weights

5: for each 𝐱𝑖 do

6:  ← CorrelationMST(𝐱𝑖, 𝐗)
7: for each weighted edge 𝑒𝑗 in  in decreasing order do

8: Remove edge 𝑒𝑖 from 
9: Call 𝐒1, … , 𝐒𝑡 the scopes of each component in 

10: Create product node P𝑗 and associate it with 𝐒1, … , 𝐒𝑡
11: Associate P𝑗 with dataset 𝐱𝑖
12: Add P𝑗 as a child of S
13: Let  be a hash table (initially empty) associating scopes to sum nodes

14: for each P ∈ Ch(S) do

15: for each scope 𝐒 associated with P do

16: if 𝐒 ∉  then

17: Let 𝐱 be the dataset associated with P
18: N ← Prometheus(𝐱∶,𝐒, 𝐒)
19: Add N as a child of P
20: 𝐒 ← N
21: else

22: Add 𝐒 as a child of P
23: return S

Complexity

Up to now, the computation of decompositions is done by a (𝑚2) construction of

a fully connected correlation graph. This gives Prometheus no asymptotic advantage

over neither LearnSPN nor ID-SPN. To change this, Jaini, Ghose, et al. propose a more

scalable alternative: in place of constructing the entire correlation graph, sample 𝑚 log𝑚
variables and construct a correlation graph where only log𝑚 edges are added for each of

these sampled variables instead, bringing down complexity to (𝑚 (log𝑚)2).

The analysis of sum nodes is exactly the same as LearnSPN if we assume the same

clustering method. If Prometheus is implemented with the same multivariate distributions

as ID-SPN at the input nodes, the analysis for those also hold.

Pros and Cons

Pros. The notable achievements of Prometheus are evidently the absence of parameters

for computing scope partitionings, reducing the dimension of hyperparameters to tune; a

scalable alternative to partitionings that runs in sub-quadratic time; and (more debatably)

the fact that the algorithm produces non-tree shaped computational graphs. Further, since

product nodes are learned through correlation metrics, Prometheus is easily adaptable to

3.1 | DIVIDE-AND-CONQUER LEARNING

35

continuous data. To some extent, Prometheus also inherits the modularity of LearnSPN,

as the choice of how to cluster and what input nodes to use is open to the user.

Cons. Although the construction of the correlation graph in Prometheus is not done

greedily (at least in the quadratic version), selecting the decompositions (i.e. partitioning

the graph into maximal components) is; of course, this is not exactly a drawback but a

compromise, as graph partitioning is a known NP-hard problem (Feldmann and Foschini,

2015). Because Prometheus accounts for all decompositions yielded from components

after the removal of each edge from the MST, the circuit can grow considerably, even

if we reuse subcircuits at each recursive call. An alternative would be to globally reuse

subcircuits (i.e. share  among different recursive calls) throughout learning, although this

curbs expressivity somewhat, as these subcircuits are learned from possibly (completely)

different data. Another option would be to bound the number of decompositions, or in

other words remove only a bounded number of edges from the MST.

Remark 3.1: On variations of divide-and-conquer learning

Because of LearnSPN’s simplicity and modularity, there is a lot of room for im-

provement. This is reflected in the many works in literature on refining LearnSPN

to specific data, choosing the right parameters, producing non-tree shaped circuits,

and choice of input nodes. In this remark segment, we briefly discuss other advances

in divide-and-conquer PC learning.

As we have previously mentioned, one of the drawbacks of LearnSPN is the

possibly large number of hyperparameters involved, usually dependent on the

methods chosen for clustering and independence testing. Vergari, Mauro, et al.

(2015) suggest simplifying clustering to only binary row splits, while Y. Liu and

Luo (2019) propose clustering methods that automatically decide the number of

clusters from data. Together with Prometheus, the space of hyperparameters to

tune is greatly reduced.

We again go back to the issue of reducing the cost of learning variable partitions.

Apart from Prometheus, Di Mauro et al. (2017) also investigate more efficient

decompositions, proposing two approximate sub-quadratic methods to producing

variable splits: one by randomly sampling pairs of variables and running G-test, and

the other by a linear time entropy criterion.

Vergari, Mauro, et al. (2015) propose the use of Chow-Liu Trees as input nodes

instead of univariate distributions, while Molina, Natarajan, et al. (2017) recom-

mend Poisson distributions for modeling negative dependence. Bueff et al. (2018)

combine LearnSPN with weighted model integration by learning polynomials as

input nodes for continuous variables and counts for discrete data. Molina, Vergari,

et al. (2018) adapt LearnSPN to hybrid domains by employing the randomized

dependence coefficient for both clustering and variable partitioning, with pairwise

polynomial approximations for input nodes.

Other contributions include adapting LearnSPN to relational data (Nath and P.

Domingos, 2015), an empirical study comparing different techniques for clustering

36

3 | LEARNING PROBABILISTIC CIRCUITS

and partitioning in LearnSPN (Cory J. Butz, Oliveira, et al., 2018), and LearnSPN

post-processing strategies for deriving non-tree graphs (Rahman and Gogate,

2016).

3.2 Incremental Learning

Learning algorithms from the DIV class heavily rely on recursively constructing a

probabilistic circuit in a top-down fashion. This facilitates learning, as we need only to

greedily optimize at a local level. We now focus our attention to incremental
2

algorithms

that iteratively grow an initial circuit. These usually require a search over possible candidate

nodes to be extended, and as such involve evaluating the entire circuit to determine best

scores. For this reason, these are also sometimes classified as search-and-score methods

(Teyssier and Koller, 2005). In this section, we look at two examples of INCR class learning

algorithms: LearnPSDD and Strudel.

3.2.1 LearnPSDD

As the name suggests, LearnPSDD (Liang, Bekker, et al., 2017) learns a smooth,

structured decomposable and deterministic probabilistic circuit (see Section 2.3.2), meaning

its computational graph must respect a vtree. We therefore must address the issue of

learning the vtree before we turn to the PC learning algorithm per se.

Recall that for a vtree  , every inner node 𝑣 ∈  with 𝐗 = Sc(𝑣←) and 𝐘 = Sc(𝑣→)
determines that 𝐗 and 𝐘 are context independent, i.e. 𝑝(𝐗, 𝐘) = 𝑝(𝐗)𝑝(𝐘) for a PC .

This means that a PC’s vtree is pivotal in embedding the independencies of the circuit’s

distribution. With this in mind, Liang, Bekker, et al. (2017) propose two approaches to

inducing vtrees from data, both of which use mutual information

MI(𝐗, 𝐘) = ∑
𝐗=𝐱

∑
𝐘=𝐲

𝑝(𝐱, 𝐲) log
𝑝(𝐱, 𝐲)
𝑝(𝐱)𝑝(𝐲)

(3.1)

for deciding independence. To avoid computing an exponential number of MI terms, an

approximation based on the average pairwise MI is computed instead

pMI(𝐗, 𝐘) =
1

|𝐗||𝐘|
⋅ ∑
𝑋∈𝐗

∑
𝑌 ∈𝐘

MI(𝑋, 𝑌). (3.2)

The first approach learns vtrees in a top-down fashion, starting with a full scope and

recursively partitioning down to the unit set. The second learns bottom-up, starting with

singletons and joining sets of variables up to full scope.

Top-down vtree learning. Let  be a fully connected weighted graph where variables

are nodes. For each edge 𝑋𝑌 , attribute its weight as MI(𝑋, 𝑌). Learning the vtree top-down

amounts to partitioning  such that the cut-set that divides the two partitions 𝐗 and 𝐘

2
Despite the ambiguous name, we draw no connection to online learning.

3.2 | INCREMENTAL LEARNING

37

𝐴𝐵

𝐶

𝐷

𝐸 𝐹

𝐺

𝐻 1

2

{𝐴, 𝐵, 𝐶}
3

{𝐷, 𝐸, 𝐹 , 𝐺, 𝐻}

𝐴𝐵

𝐶

𝐷

𝐸 𝐹

𝐺

𝐻

1

2

{𝐴, 𝐵, 𝐶} 3

4

{𝐷, 𝐸}
5

{𝐹 , 𝐺, 𝐻}

𝐴𝐵

𝐶

𝐷

𝐸 𝐹

𝐺

𝐻

1

2

𝐶 6

{𝐴, 𝐵}

3

4

{𝐷, 𝐸}
5

{𝐹 , 𝐺, 𝐻}

𝐴𝐵

𝐶

𝐷

𝐸 𝐹

𝐺

𝐻

1

2

𝐶 6

𝐵 𝐴

3

4

{𝐷, 𝐸}
5

{𝐹 , 𝐺, 𝐻}

Figure 3.5: Snapshots of four iterations from running the vtree top-down learning strategy with

pairwise mutual information. Each iteration shows a variable partitioning, the cut-set that minimizes

the average pairwise mutual information as black edges, and the subsequent (partial) vtree. The

algorithm finishes when all partitions are singletons.

is minimal with respect to pMI. Liang, Bekker, et al. (2017) further argue that balanced

vtrees produce smaller PCs, and so they reduce learning to a balanced min-cut bipartition

problem. Although this is known to be NP-complete (Garey and Johnson, 1990), optimized

solvers are able to produce high quality bipartitions efficiently (Karypis and Kumar, 1998).

In a nutshell, the vtree construction goes as follows: find a balanced min-cut bipartition

(𝐗, 𝐘) in  minimizing the pMI of the edges; add a vtree inner node representing this

bipartition and connect it to the two vtrees produced by the recursive calls over 𝐗 and 𝐘;

if 𝐗 = {𝑋} (resp. 𝐘 = {𝑌 }), produce a leaf node 𝑋 (resp. 𝑌). Figure 3.5 shows four iterations

of this procedure.

Bottom-up vtree learning. Again, take  as the fully connected weighted graph from

computing the pairwise mutual information of variables. Now consider that every node of

 is a vtree whose only node is the variable itself. To learn a vtree bottom-up is to find

pairings of vtrees such that the mutual information between them is high, meaning that

the partitionings at higher levels are minimized (and so determine the “true” independence

relationships between subsets of variables). To produce balanced vtrees, the algorithm

attempts to join vtrees of same height whose pMI is maximal; this is equivalent to min-cost

perfect matching, which can be solved, in our case, in (𝑚4), where 𝑚 is the number of

variables (Edmonds, 1965; Kolmogorov, 2009). Figure 3.6 exemplifies the algorithm.

LearnPSDD is an incremental learning algorithm. This means that it takes an existing

PC and incrementally grows the circuit by some criterion, preserving the structural con-

straints from the PC in the process. Once a vtree  has been learned from data, we use it to

construct an initial circuit that respects  . The choice of circuit initialization is dependent

on our task. For example, within the context of PSDDs, we are mostly interested in starting

out with a PC induced from an LC encoding a certain knowledge base (see Section 2.3);

38

3 | LEARNING PROBABILISTIC CIRCUITS

𝐴𝐵

𝐶

𝐷

𝐸 𝐹

𝐺

𝐻

1 2

3 4

𝐴 𝐵 𝐶 𝐷

𝐸 𝐹 𝐺 𝐻

𝐴𝐵

𝐶

𝐷

𝐸 𝐹

𝐺

𝐻

1 2

3 4

5

𝐴 𝐵 𝐶 𝐷

𝐸 𝐹 𝐺 𝐻

𝐴𝐵

𝐶

𝐷

𝐸 𝐹

𝐺

𝐻

1 2

3 4

5

6

𝐴 𝐵 𝐶 𝐷

𝐸 𝐹 𝐺 𝐻

𝐴𝐵

𝐶

𝐷

𝐸 𝐹

𝐺

𝐻

1 2

3 4

5

6

7

𝐴 𝐵 𝐶 𝐷

𝐸 𝐹 𝐺 𝐻

Figure 3.6: Snapshots from running the vtree bottom-up learning strategy with pairwise mutual

information. Snapshots show pairings of two vtrees, with edges between partitions joined into a single

edge whose weight is the average pairwise mutual information of all collapsed edges. In black are

edges that correspond to the matchings that maximize the average pairwise mutual information. The

algorithm finishes when all vtrees have been joined together into a single tree.

this is usually done in a case-by-case basis, where LCs are compiled for a particular task

and then promoted to PCs (see Remark 3.2). However, if one does not require specifying

the distribution’s support, any PC will do.

How and where the circuit is grown – once we have acquired a vtree and an initial

circuit – are the main topics of interest now. We first address the matter of how, i.e. how

can we increase a PC’s expressivity such that we preserve a desired set of structural

constraints; and later of where, i.e. which portions of the circuit are eligible for growth

and how do we know they are good candidates.

Liang, Bekker, et al. (2017) propose two local transformations for growing a circuit :

Split and Clone. The first acts by multiplying a sum node’s product child P into P1, … ,P𝑘
products such that 𝜋1, … , 𝜋𝑘 (primes of P1, … ,P𝑘 respectively) are mutually exclusive. This

is done by attributing all possible values of a variable in Sc(P), say 𝐴, to each prime,

meaning that 𝜋𝑖 will contain the assignment 𝐴 = 𝑖 for every 𝑖 ∈ [𝑘]. This attribution

is done by partially copying P into 𝑘 circuits (1)
P , … ,(𝑘)

P up to some depth 𝑚 and then

conditioning (𝑖)
P on v𝐴 = 𝑖w. This is straightforward for the discrete case: at the appropriate

vtree node (i.e. one that contains 𝐴 as a leaf), replace the input node whose scope is 𝐴
into an indicator node, setting it to the appropriate assignment of 𝐴. Although Liang,

Bekker, et al. (2017) only considers the binary case, the transformation can be extended to

the continuous if we consider 𝑘 piecewise distributions whose support is over only a set

interval. Naturally, input nodes must then have their support truncated to the appropriate

𝑖-th interval, which is no easy feat in the general case. The left side of Figure 3.7 shows

Split for the binary case.

3.2 | INCREMENTAL LEARNING

39

𝛼

𝛽 𝛾

𝐴 ¬𝐴

Split on 𝐴
𝛼

𝛽 ∧ 𝐴𝛽 ∧ 𝐴 𝛾

𝐴 ¬𝐴

𝛼

Clone

𝛼 𝛼

Figure 3.7: Split (left) and Clone (right) operations for growing a circuit when𝑚 = 1. Nodes and edges

highlighted in red show the modified structure. In both cases smoothness, (structured) decomposability

and determinism are evidently preserved.

The other proposed transformation, Clone, does something similar for sum nodes.

Pick a sum node S whose children are C1, … ,C𝑘 and parents P1 and P2; double S and

C1, … ,C𝑘, producing clones S′ and C′
1, … ,C′

𝑘. Disconnect the edge coming from P2 to S
and instead connect it to S′. Connect all C′

1, … ,C′
𝑘 to the same children as their original

counterparts. This operation is visualized on the right side of Figure 3.7. One can further

extend Clone to apply this operation cloning nodes up to some depth 𝑚 and then joining

the last remaining deepest nodes similar to what was described for C′
1, … ,C′

𝑘.

It is easy to see that, in both cases, smoothness, structured decomposability and

determinism are preserved. In fact, if the original circuit encodes a particular support (i.e.

a knowledge base), the PC resulting from applying any of the two transformations must

also encode the same support, since we have only made the underlying logic circuit more

redundant. Probabilistically though, this “redudancy” only increases the parameterization

space and as such increases the expressiveness of the PC. However, not all applications of

Split or Clone are equal in terms of performance. While it is true that the application

of Split to any product node or Clone to any sum node strictly increases expressivity,

it is more meaningful to choose candidates whose growth carries a bigger impact on the

overall fit relative to the training data. LearnPSDD searches for reasonable candidates by

computing

Score(𝐃,,′) =
log′(𝐃) − log(𝐃)

|′| − | |
, (3.3)

where  and ′
are, respectively, the PCs before and after the application of any of the

two operations. In other words, the algorithm randomly evaluates applying Split and/or

Clone and ultimately chooses the one candidate that maximizes the log-likelihood of

training data penalized by the size of the resulting PC, iteratively growing the circuit until

there is no more improvement or reaches an iteration step or time limit, as Algorithm 9

shows.

Complexity

Although learning the vtree top-down reduces to an NP-complete min-cut graph parti-

tioning problem, there are approximate algorithms that provide high quality partitionings

40

3 | LEARNING PROBABILISTIC CIRCUITS

Algorithm 9 LearnPSDD

Input Data 𝐃, vtree  , initial PC , max depth 𝑚, scope 𝐗
Output A smooth, structured decomposable and deterministic PC learned from 𝐃

1: while there is score improvement or has not reached the iteration/time limit do

2: 𝑠S ← −∞
3: Let (S∗,P∗) be the best Split candidate seen so far, initially empty

4: for each candidate (S,P) of all possible Split candidates do

5: ′ ← Split(, S,P, , 𝑚)
6: 𝑠′ ← Score(𝐃,,′)
7: if 𝑠′ > 𝑠S then 𝑠S ← 𝑠′ and S∗,P∗ ← S,P
8: 𝑠C ← −∞
9: Let C∗

be the best Clone candidate seen so far, initially empty

10: for each candidate C of all possible Clone candidates do

11: ′ ← Clone(,C, , 𝑚)
12: 𝑠′ ← Score(𝐃,,′)
13: if 𝑠′ > 𝑠C then 𝑠C ← 𝑠′ and C∗ ← C
14: if 𝑠S > 𝑠C then  ← Split(, S∗,P∗, , 𝑚)
15: else  ← Clone(,C∗, , 𝑚)
16: return 

in (|𝐗|2) (Karypis and Kumar, 1998). Learning bottom-up is reduced to min-cost perfect

matching, which can be done in (|𝐗|4) via the Edmonds Blossom algorithm (Edmonds,

1965; Kolmogorov, 2009).

Split runs, for a given variable 𝑋 , in (𝑣 ⋅ | |) if unbounded by 𝑚, where 𝑣 is | Val(𝑋)|,
the number of possible assignments to 𝑋 if 𝑋 is discrete; or the number of intervals to

fragment Val(𝑋) if 𝑋 is continuous. Clone’s runtime is (| |) when 𝑚 is unbounded, as

it needs to produce an almost exact copy of the circuit. We say that a local transformation,

such as Split or Clone, is minimal when the copy depth is 𝑚 = 0. When Split and Clone

are minimal and 𝑋 is binary, then the transformation is done in constant time. In fact, any

non-minimal transformation can be composed out of minimal transformations (Liang,

Bekker, et al., 2017).

Perhaps the most costly routine of LearnPSDD is its score function. Although log-

likelihood is linear time computable on the number of edges of the circuit,  can grow

substantially as transformations pile up. Each score evaluation requires four passes on the

circuit: log-likelihoods and circuit sizes for both  and its updated circuit ′
. However,

since transformations are local, log-likelihood and circuit sizes only change for the nodes

affected in the transformation and their ancestors, allowing LearnPSDD to cache values.

The overall complexity of LearnPSDD at each iteration is therefore (| |2) if we assume

𝑚 = 0, with the first | | coming from the search of all candidates in , and the second

from the computation of Score. Each iteration further increases | |, slowing down the

algorithm’s runtime.

3.2 | INCREMENTAL LEARNING

41

Pros and Cons

Pros. The fact that LearnPSDD preserves smoothness, structured decomposability,

determinism and any logical semantic coming from its underlying LC is remarkable. On

top of that, in theory and under minor modifications to Split and Clone, any PC is eligible

as an initial circuit, even ones which do not respect any vtree. Besides, computing variable

splits beforehand through a separate process of learning the vtree relieves the learning

algorithm from having to compute costly statistical tests at each product node. Where

LearnPSDD really shines (and perhaps more fittingly PSDDs in general) is when the

support is explicitly defined through the initial circuit’s LC; because the PC attributes

non-zero probability only to events where the LC does not return false, the circuit wastes

no mass on impossible events.

Cons. In practice, LearnPSDD is very slow even with caching; even worse, it may

take several hours for only a minor (if any) improvement. Liang, Bekker, et al. (2017)

suggest improving performance by producing ensembles of LearnPSDDs, although this

negates determinism in the final model (as well as structured decomposability if different

vtrees are used at each component), denying the access to tractably computing queries

like divergences, MI and entropies, not to mention the time cost to learn all components.

Another issue is with the choice of the initial circuit. As previously mentioned, any circuit

will do, however the performance (and efficiency) of LearnPSDD is highly dependent on

it. Within the context of PSDDs and encoding their support, LearnPSDD requires that a

separate algorithm compiles an LC for a specific task without looking at data. Although

there are many ways of doing so, they are often not task agnostic (see Remark 3.2). More

importantly, because the process of learning the circuit (from data) is decoupled from

the task of encoding logical constraints imposed by a knowledge base, all variables that

do not appear in the logic formula are compiled into a trivial form (e.g. fully factorized

circuit). Lastly, although decoupling the process of learning the vtree from learning the PC

helps with scalability, the ability of identifying the proper vtree for the most expressive

PC given data is certainly desirable, and one which might be hindered by this separated

process.

3.2.2 Strudel

Dang, Vergari, et al. (2020) build upon the work of LearnPSDD and propose Strudel,

which mainly improves LearnPSDD on two fronts: (1) by providing a simple algorithm for

generating an initial circuit and vtree from data, and (2) proposing a heuristic for efficiently

searching for good transformation candidates.

We first address how to construct the initial circuit from data. Dang, Vergari, et al.

suggest doing so by compiling both a vtree and linear sized PC (in the number of variables)

from a Chow-Liu Tree (CLT, Chow and C. Liu, 1968). Let  be a CLT over variables

𝐗 = {𝑋1, … , 𝑋𝑚}. A vtree  is extracted from  by traversing  top-down. For each node

𝑋𝑖 ∈  , if 𝑋𝑖 is a leaf node in  , then create a vtree leaf node of 𝑋𝑖; otherwise create an

inner vtree node 𝑣, attach a vtree leaf node of 𝑋𝑖 as 𝑣← and assign 𝑣→ as a vtree built over

all the vtrees coming from the children of 𝑋𝑖. The construction of 𝑣← depends on how

balanced one wishes the vtree to be: if we want a more right-leaning vtree, it suffices to

42

3 | LEARNING PROBABILISTIC CIRCUITS

𝐷

𝐶

𝐵𝐴

𝑝(𝐷 = 0)
0.6

𝐷 𝑝(𝐶 = 0|𝐷)
0 0.2

1 0.7

𝐶 𝑝(𝐵 = 0|𝐶)
0 0.5

1 0.1

𝐶 𝑝(𝐴 = 0|𝐶)
0 0.3

1 0.6

1

2𝐷

3𝐶

𝐴 𝐵

+

× ×

𝐷 ¬𝐷+ +

× ×

𝐶 ¬𝐶+ +

× ×

+ ++ +

𝐴 ¬𝐴 𝐵 ¬𝐵

.4 .6

.3

.7 .8

.2

.4

.6 .7

.3 .9

.1 .5

.5

Figure 3.8: A vtree (middle) and probabilistic circuit (right) compiled from a Chow-Liu Tree (left).

Each conditional probability 𝑝(𝑌 |𝑋) is encoded as a (deterministic) sum node where each of the two

children sets 𝑌 to 0 or 1. Colors in the CLT indicate the variables in the PC, while vtree inner node colors

match with product nodes that respect them. Edges in red indicate the induced subcircuit activated on

assignment {𝐴 = 1, 𝐵 = 0, 𝐶 = 1, 𝐷 = 0}.

construct a right-linear vtree connecting all vtrees from each child 𝑋𝑗 ∈ Ch(𝑋𝑖). Likewise,

a balanced vtree is built by balancing the vtree connecting the recursive vtree calls from

each 𝑋𝑗 . Note that this does not necessarily mean that 𝑣→ is completely right-linear or

balanced, only that it is somewhat close to it, as the rest of the structure depends on the

recursive calls of each CLT node.

Strudel compiles an initial circuit by looking at the vtree bottom-up and caching

subcircuits. Let 𝑣 be a vtree node and 𝑌 ∈  a CLT node with conditional probability

𝑝(𝑌 |𝑋), where 𝑋 is the parent of 𝑌 . If 𝑣 is a leaf node in  and 𝑣’s variable is also a leaf

node in  , two sum nodes S0 and S1 over literal nodes ¬𝑌 and 𝑌 are created, each with

weights 𝑤S0,¬𝑌 = 𝑝(𝑌 = 0|𝑋 = 0), 𝑤S0,𝑌 = 𝑝(𝑌 = 1|𝑋 = 0) and 𝑤S1,¬𝑌 = 𝑝(𝑌 = 0|𝑋 = 1),
𝑤S1,𝑌 = 𝑝(𝑌 = 0|𝑋 = 1). The two sum nodes connecting 𝐵 and ¬𝐵 in the PC shown on the

right of Figure 3.8 show this exact case. The left sum node encodes 𝑝(𝐵|𝐶 = 1) and the

right one 𝑝(𝐵|𝐶 = 0). These circuits are then cached by associating them with 𝑣. When 𝑌 is

not a leaf node in  but 𝑣 is, we simply return literal nodes. If 𝑣 is an inner node, we must

define a scope partition, splitting 𝐗 = Sc(𝑣←) and 𝐘 = Sc(𝑣→) into product nodes P1, … ,P𝑘,
one for each cached value in 𝑣. Each prime is set to the cached circuits from 𝑣← and each

sub the cached circuits from 𝑣→. Finally, if two variables 𝑋 ∈ 𝐗 and 𝑌 ∈ 𝐘 are such that

their parents are the same variable, say 𝑍 , then 𝑋 and 𝑌 are independent when 𝑍 is given

(because of a divergent connection in ) and thus cannot be merged together into a single

sum because of the context-specific independence set by 𝑍 (Boutilier et al., 1996). This is

visualized in the × nodes; in this situation, 𝐴 and 𝐵 are siblings coming from 𝐶, and so

𝐴 ⟂⟂ 𝐵 | 𝐶 (redundant sum nodes are added for standardization). When the prior situation

is not true, then not only 𝑋 is the only variable in 𝐗, but 𝑋 must also be the parent of 𝑌
and so we must model 𝑝(𝐘|𝑋). This is the case for × , where 𝐶 is the parent of 𝐵 and so we

3.2 | INCREMENTAL LEARNING

43

Algorithm 10 InitialStrudel

Input Data 𝐃, whose columns are indexed by variables 𝐗
Output A smooth, structured decomposable and deterministic initial PC and vtree

1:  ← LearnCLT(𝐃, 𝐗)
2:  ← CompileVtree()
3: Let  be a hash table for caching circuits, initially empty

4: for each vtree node 𝑣 ∈  in reverse topological order do

5: if 𝑣 is a leaf node then

6: Let 𝑋 ∈  be the variable represented by 𝑣, and 𝑌 its parent

7: if 𝑋 is a leaf node in  then

8: S𝑗 ← ∑𝑖∈Val(𝑋) 𝑝(𝑋 = 𝑖|𝑌 = 𝑗) ⋅ v𝑋 = 𝑖w for each 𝑗 ∈ Val(𝑌)
9: (𝑣) ← (𝑣) ∪ {S𝑗 | ∀𝑗 ∈ Val(𝑌)}

10: else

11: (𝑣) ← (𝑣) ∪ {v𝑋 = 𝑖w | 𝑖 ∈ Val(𝑋)}
12: else

13: Attribute 𝐗 ← Sc(𝑣←) and 𝐘 ← Sc(𝑣→)
14: Let 𝑋 ∈ 𝐗 and 𝑌 ∈ 𝐘 subsets of each scope

15: Attribute N← ← (𝑣←) and N→ ← (𝑣→)
16: 𝑘 ← | Val(𝑋)|
17: Construct product nodes P = {N←

𝑖 ⋅N→
𝑖 | ∀𝑖 ∈ [𝑘]}

18: if Pa(𝑋) = Pa(𝑌) then

19: Create sum nodes S𝑖 each with only a single child P𝑖 ∈ P, for each 𝑖 ∈ [𝑘]
20: (𝑣) ← (𝑣) ∪ {S1, … , S𝑘}
21: else

22: S𝑗 ← ∑𝑖∈Val(𝑋) 𝑝(𝐘|𝑋 = 𝑗) ⋅ v𝑋 = 𝑖w, for each 𝑗 ∈ Val(𝑌)
23: (𝑣) ← (𝑣) ∪ {S𝑗 | ∀𝑗 ∈ Val(𝑌)}
24: return (𝑣𝑟), where 𝑣𝑟 is  ’s root node

have to join the two by sum nodes attributing the conditional probabilities 𝑝(𝐴, 𝐵|𝐶 = 0)
for the right-most × and 𝑝(𝐴, 𝐵|𝐶 = 1) for the left-most sibling. This procedure is shown

more formally in Algorithm 10.

Now that we have an initial PC constructed from InitialStrudel, we are ready to

discuss Strudel’s second contribution. To do so, we must first understand the notion

of circuit flows introduced in Dang, Vergari, et al. (2020). In short, the circuit flow of a

deterministic probabilistic circuit  with respect to a variable assignment 𝐱 is the induced

tree (see Definition 2.1.2) whose edges are all non-zero when  is evaluated under 𝐱. Such

an induced tree is unique in deterministic PCs because every sum node admits only one

non-zero valued child for 𝐱 (or any assignment for that matter). Note how circuit flows are

more specific in the sense they are intrinsically linked to an assignment, while induced

subcircuits specify a deterministic subcircuit within its supercircuit.

The circuit flow of deterministic PCs helps us understand how to efficiently compute

inference in circuits of that nature. As we briefly mentioned before, for any assignment 𝐱
in a smooth, decomposable and deterministic PC , there exists a unique circuit flow 

44

3 | LEARNING PROBABILISTIC CIRCUITS

Algorithm 11 Strudel

Input Data 𝐃, max depth 𝑚, scope 𝐗
Output A smooth, structured decomposable and deterministic PC learned from 𝐃

1: , ← InitialStrudel(𝐃, 𝐗)
2: while there is score improvement of has not reached the iteration/time limit do

3: Compute the aggregate flow over all edges

4: 𝑤∗
S,C ← argmax𝑤∈

ScoreeFlow(𝑤|, 𝐃)
5: 𝑋 ∗ ← argmax𝑋∈Sc(S) ScorevMI(𝑋, 𝑤∗

S,C|, 𝐃)
6:  ← Split(, S,C, , 𝑚)
7: return 

that encodes the log-likelihood computation

(𝐱) = (𝐱) = ∏
(S,C)∈Edges()

𝑤S,C ∏
L∈Inputs()

𝑝L(𝐱), (3.4)

where Inputs(⋅) returns the set of input nodes of a circuit. When inputs are all binary,

then one might encode  as a mapping 𝑓 ∶  → {0, 1}| |
, here  denoting the set

of all parameters (i.e. sum node weights) of , which “activates” edge 𝑤 ∈  under

assignment 𝐱. With this, the above operation under log-space is reduced to a vector

multiplication

log(𝐱) = 𝑓(𝐱)⊺ ⋅ log () . (3.5)

Importantly, by aggregating circuit flows through counting the number of activations

of each parameter 𝑤S,C in the entire training dataset 𝐃, we get a sense of the number of

samples 𝑤S,C impacts over 𝐃, and thus a sense of how meaningful that edge is on the

fitness of data. As we shall see briefly, this aggregated circuit flow shall then be used as a

score for a greedy search over the space of candidates for local transformations.

To overcome the scalability limitations of LearnPSDD, Strudel proposes using only

Split to reduce the search space, looking at performing the search greedily instead of

exhaustively and exploiting the efficiency of aggregate circuit flows as a fast heuristic in

place of computing the whole likelihood. Searching is done by finding the edge to Split

whose aggregate circuit flow is maximal

ScoreeFlow(𝑤S,C|, 𝐃) = ∑
𝐱∈𝐃

𝑓(𝐱) [𝑤S,C] , (3.6)

while the choice of which variable to condition Split on is done by selecting the variable 𝑋
that shares the most dependencies (and thus the higher pairwise mutual information) with

other variables within the scope of that edge, estimated from the aggregate flows

ScorevMI(𝑋, 𝑤S,C|, 𝐃) = ∑
𝑌 ∈Sc(S)
𝑌 ≠𝑋

MI(𝑋, 𝑌). (3.7)

The entire algorithm for Strudel is showcased in Algorithm 11.

3.2 | INCREMENTAL LEARNING

45

Complexity

Learning the Chow-Liu Tree is done in (|𝐗|2 ⋅ |𝐃|) through Chow-Liu’s algorithm

(Chow and C. Liu, 1968), while the vtree is compiled in time linear to the size of the CLT,

i.e. (|𝐗|) since the Bayesian network is a tree. Consequentially, InitialStrudel runs in

(|𝐗| ⋅ | Val(𝑋)|), or linear on |𝐗| if we assume binary variables as originally intended. The

bulk of the computation falls under Strudel, which runs in (|𝐗|2 ⋅ |𝐃| + 𝑖(| | ⋅ |𝐃| + |𝐗|2))
assuming a bounded max depth 𝑚 and binary variables. Term |𝐗|2 ⋅ |𝐃| corresponds to

learning the CLT, | | ⋅ |𝐃| to the computation of the aggregate circuit flows, |𝐗|2 to the

computation of ScorevMI which involves the pairwise mutual informations of 𝐗, and 𝑖 the

number of iterations of Strudel.

Pros and Cons

Pros. Arguably, the most valuable contribution of Strudel is its improvement on

LearnPSDD’s scalability. Compared to LearnPSDD, Strudel can take orders of magnitude

less time per iteration, which in practice means a higher number of transformations accom-

plished in the same range of time. In addition, the nature of circuit flows allows for easy

vectorization and thus CPU or GPU parallelization. In terms of data fitness, Dang, Vergari,

et al. (2020) empirically show that initial circuits constructed from StrudelInitial greatly

improve performance compared to fully factorized initial PCs from LearnPSDD. Similar

to LearnPSDD, one can learn an ensemble of Strudels to further boost performance at

the cost of losing determinism. Opposite to LearnPSDD however, Dang, Vergari, et al.

employ structure-sharing components so that the act of learning the circuit’s structure is

done once, greatly reducing learning time. Parameters are then learned through closed

form EM (see Remark 3.3) and bagging.

Cons. Although Strudel’s greedy heuristic search strategy translates into possibly

more accurate PCs, it also produces more sizable circuits when compared to the exhaustive

search of LearnPSDD. Indeed, Dang, Vergari, et al. (2020)’s empirical evaluation shows

Strudel PCs up to 12 times bigger than LearnPSDD’s with the two somewhat tied in

terms of fitness. This is especially worrying given that Strudel’s complexity grows with

its circuit size. In fact, experiments show a sharp increase in seconds per iterations for

the two INCR algorithms, with both reaching multiple digits for each iteration even in

smaller sized datasets; though LearnPSDD much sharper and sooner comparatively (Dang,

Vergari, et al., 2020).

Remark 3.2: On the choice of initial circuits

We only briefly mentioned in Section 3.2.1 how we might want to start out with

an initial PC conveying a specific support and then run an INCR class algorithm

to further boost its probabilistic expressiveness without changing the underlying

knowledge base. We devote this remark segment to discussing several works in

literature that construct a so-called canonical (i.e. minimal with respect to their size

without sacrificing its logical semantics) logic circuit, becoming perfect candidates

to be used as an initial circuit in INCR learners.

46

3 | LEARNING PROBABILISTIC CIRCUITS

Just like in probabilistic reasoning, the field of knowledge compilation and

symbolic reasoning is often interested in finding succinct representations capable of

tractably computing queries, a subject which we briefly touched in Section 2.3.1. For

this reason, smooth, structured decomposable and deterministic logic circuits, who

usually go by the name of Sentential Decision Diagrams (SDDs, Darwiche, 2011)

have proven to be a useful tool in several applications (Vlasselaer, Renkens, et al.,

2014; Vlasselaer, Broeck, et al., 2015; Lomuscio and Paquet, 2015; Herrmann

and Barros, 2013). Fortunately, both LearnPSDD and Strudel preserve all the

necessary structural constraints for both logical and probabilistic queries in (P)SDDs.

With this in mind, we highlight compilation of SDDs in this short remark.

For most cases, SDDs can be compiled directly from CNFs and DNFs. (A. Choi

and Darwiche, 2013) constructs SDDs bottom-up by first compiling C/DNF clauses

and then combining smaller SDDs by either conjoining or disjoining them. In

contrast, (Oztok and Darwiche, 2015) presents a faster compilation process which

recursively breaks down C/DNFs by decomposing the formula into components

according to a vtree, and then combines them into an SDD.

Although CNFs and DNFs are the most common form of encoding propositional

knowledge bases, they struggle under specific logical constraints such as cardinality

constraints (Nishino et al., 2016; Sinz, 2005). Interesting alternatives include BDDs

(see Example 2.6) which are also widely used in formal methods and program verifi-

cation, and for which efficient compilation from cardinality constraints are available

(Eén and Sörensson, 2006). Because BDDs are special case SDDs whose vtrees are

always right-linear (Darwiche, 2011; Bova, 2016), their reduced representations

(Bryant, 1986) are natural initial circuit candidates (see Section 4.2).

We now cover some of the existing literature on producing task specific (P)SDDs.

A. Choi, Tavabi, et al. (2016) analyze the feasibility of compiling LCs (and sub-

sequently producing a PC by parameterizing disjunction edges) from tic-tac-toe

game traces, and route planning within a city. Both involve exhaustively disjoining

all permutations of valid conjoined configurations and compiling the resulting

DNF through previously cited SDD compilers. A. Choi, Shen, et al. (2017) further

study route planning by compiling them into SDDs, but analyze the feasibility of

(P)SDDs in route planning in larger scale maps. A. Choi, Broeck, et al. (2015) explore

(P)SDDs in preference learning and rankings, providing an algorithm for compiling

an SDD from total or partial rankings. Similarly, Shen et al. (2017) investigate

(P)SDDs in probabilistic cardinality constraint tasks, also known as subset selection

or 𝑛-choose-𝑘 models.

3.3 Random Learning

We now explore random approaches to constructing probabilistic circuits, which we

classify as RAND class learning algorithms. Essentially, RAND class circuits are constructed

either by a completely random procedure (Section 3.3.1), or guided by data (Section 3.3.2).

We first look at RAT-SPN (Peharz, Vergari, et al., 2020), a connectionist PC structure

3.3 | RANDOM LEARNING

47

learning algorithm for randomly generating tensorized smooth and decomposable proba-

bilistic circuits. We then address XPC (Mauro et al., 2021), a flexible algorithm capable

of learning smooth and decomposable PCs as well as structured decomposable and/or

deterministic circuits through simple modifications to their method.

3.3.1 RAT-SPN

A key ingredient of RAT-SPN (Peharz, Vergari, et al., 2020) is the concept of region

graphs. First introduced in PC literature in Dennis and Ventura (2012), region graphs

are tensorized templates for PC construction. Informally, a region graph is composed out

of region nodes and partition nodes; the former is a set of sum or input nodes, and the

latter of products. Regions can be thought of sets of computational units explaining the

same interactions among variables (Dennis and Ventura, 2012), for instance semantically

similar pixel regions in an image; while partitions define independencies between these

regions. Edges coming out of region (resp. partition) nodes must necessarily connect to a

partition (resp. region) node.

Definition 3.3.1 (Region graph). A region graph is a rooted connected DAG whose nodes

are either regions or partitions. Children of regions are partitions, and children of partitions

are regions. The root is always a region node.

Region graphs simplify the process of constructing PCs by ensuring that they are at

the least smooth and decomposable. Call  a region graph;  is easily translated to a PC by

applying the procedure described in Algorithm 12. Every region is compiled into a set of

sums or inputs, fully connecting children; every partition into a set of products, producing

a distinct permutation of children. Evidently, the resulting PC is exponential on 𝑠 and 𝑙, as

products must ensure that they encode different permutations. To deal with this blow-up,

this number is often restricted to only two children per partition.

RAT-SPN works by randomly generating a region graph in a top-down divide-and-

conquer approach similar to LearnSPN, except that the learned structure eventually

produces non-tree shaped circuits and the procedure is done completely random (see

Algorithm 13). In fact, Peharz, Vergari, et al. (2020) argue that the parameterization of

the circuit by means of sum weights is as important as its structure, looking at probabilistic

circuits as a specific subclass of neural networks. Indeed, they show that this connectionist

approach heavily inspired by traditional deep learning produces very competitive PCs.

However, to do so requires extensive optimization of the circuit’s weights, which unsur-

prisingly is where RAT-SPN shines: because of the tensorized nature of region graphs, the

resulting PC is able to exploit the advantages of known deep learning frameworks, making

the most of efficient stochastic gradient descent optimizers and GPU parallelization.

To ensure that the compiled PC is smooth and decomposable, the region graph must

also be so. We extend the definition of scope function to region graphs. As long as leaf

region nodes are assigned the correct scope, the PC is by construction smooth (every region

is fully connected to their children) and decomposable (every partition splits variables

into two nonoverlapping regions). Function CreateLayer in Algorithm 13 does exactly

that, making sure each partition decomposes into two distinct variable splits down to leaf

region nodes. How deep the region graph (and consequentially the resulting PC) goes

48

3 | LEARNING PROBABILISTIC CIRCUITS

Algorithm 12 CompileRegionGraph

Input A region graph , parameters 𝑠 for sums and 𝑙 for inputs

Output A smooth and decomposable probabilistic circuit

1: Let  be a mapping of region nodes to PC nodes

2: for each node N in  except the root in reverse topological order do

3: if N is a region then

4: if N is a leaf node in  then

5: Construct L = {L1, … , L𝑙} input nodes over variables Sc(N)
6: Associate N with L
7: else

8: Construct S = {S1, … , S𝑠} sum nodes

9: for each partition node P ∈ Ch(N) do

10: Every sum in S connects with every product in (P)
11: else if N is a partition then

12: Let Ch(N) = {R1, … ,R𝑘} be regions and 𝑞 = ∏𝑘
𝑖=1 |(R𝑖)|

13: Construct P = {P1, … ,P𝑞} product nodes

14: for every product P ∈ P do

15: Connect P with a distinct combination of sums in (R1), … ,(R𝑗)
16: Construct a root node R
17: Connect R to all products in every child of ’s root

18: return R

depends on a parameter 𝑑, which corresponds to half the true depth, as each CreateLayer

call produces a partition and their children. After the region graph is randomly built, a

PC is then constructed through CompileRegionGraph, passing the random region graph

and number of nodes per region as parameters. The function ultimately produces a dense

probabilistic circuit from the region graph blueprint, as Figure 3.9 exemplifies.

Once the PC structure is successfully generated, Peharz, Vergari, et al. (2020) suggest

Expectation-Maximization (EM, Dempster et al., 1977; Peharz, Gens, Pernkopf, et al.,

2016; H. Zhao, Poupart, et al., 2016) for optimizing the circuit parameters (i.e. sum weights

and input node distributions). Although parameter learning of PCs is not the focus of this

dissertation, we briefly touch the subject in Remark 3.3.

Worthy of note is a discriminative version of RAT-SPN where instead of a single root

sum node, 𝑘 roots are learned, each connecting to every CreateLayer subcircuit. Each

𝑖-th root describes the conditional probability 𝑝(𝐗|𝑌 = 𝑖), where 𝑌 is the query variable

and 𝐗 evidence. Classification follows directly from Bayes Rule 𝑝(𝑌 |𝐗) = 𝑝(𝐗|𝑌)𝑝(𝑌)
∑𝑘
𝑖=1 𝑝(𝐗|𝑌 =𝑖)𝑝(𝑌 =𝑖)

,

where 𝑝(𝑌) is either estimated from the training data or assumed to be fixed. Accordingly,

a discriminative objective function is proposed involving cross-entropy and log-likelihood

for hybrid generative-discriminative optimization (Bouchard and Triggs, 2004) instead

of running EM.

Complexity

Although the procedure described in Algorithm 13 is  (𝑟 ⋅ 𝑑(𝑠 + 𝑙)) if 𝑑 < |𝐗| and

 (𝑟 ⋅ log2 |𝐗|(𝑠 + 𝑙)) otherwise, making the algorithm extremely fast, it does not paint

3.3 | RANDOM LEARNING

49

Algorithm 13 RAT-SPN

Input Data 𝐃, variables 𝐗, max depth 𝑑, 𝑟 # subcircuits, 𝑠 # sums, and 𝑙 # inputs

Output A smooth and decomposable probabilistic circuit

1: function CreateLayer(R, 𝑑, 𝐗)

2: Assign 𝐗 as Sc(R)
3: Sample a variable split (𝐘, 𝐙) from 𝐗
4: Create a partition P and add it as a child of R
5: if d>1 then

6: if |𝐘| > 1 then

7: Create a region R1
8: CreateLayer(R1, 𝑑 − 1, 𝐘)

9: if |𝐙| > 1 then

10: Create a region R2
11: CreateLayer(R2, 𝑑 − 1, 𝐙)

12: Start with a root region node R
13: for each 𝑖 ∈ [𝑟] do

14: CreateLayer(R, 𝑑, 𝐗)

15:  ← CompileRegionGraph(R, 𝑠, 𝑙)
16: return 

the whole picture. The main bulk of the complexity when learning RAT-SPN comes from

parameter learning. Peharz, Vergari, et al. (2020) calculate the number of sum weights

to be

| | =

{
𝑟 ⋅ 𝑘 ⋅ 𝑙2 if 𝑑 = 1,

𝑟 ⋅ (𝑘 ⋅ 𝑠2 + (2𝑑−1 − 2)𝑠3 + 2𝑑−1 ⋅ 𝑠 ⋅ 𝑙2) if 𝑑 > 1;
(3.8)

if we assume that the number of children of partitions is at most two. This

means that learning only the non-input parameters of RAT-SPN takes time

 ((𝑟 ⋅ 2𝑑 ⋅ (𝑠3 + 𝑠 ⋅ 𝑙2) + 𝑟 ⋅ 𝑘 ⋅ 𝑠2) ⋅ |𝐃|). However, given that most structure learning

algorithms covered in this dissertation also require parameter learning, one might argue

that the true cost of structure learning in RAT-SPN is indeed subquadratic.

Pros and Cons

Pros. As expected from RAND algorithms, the random, data-blind nature of RAT-SPN

makes for a very fast structure learning algorithm. More importantly, because the structure

is expected to have somewhat uniform layers with a fixed number of computational units

in each, the computations from parameter optimization can easily be brought to the GPU.

This not only helps with scalability in terms of speed, but also brings all the advantages

of deep learning frameworks to the table via well-studied stochastic gradient descent

optimizers and diagnostic tools.

Cons. Clearly, RAT-SPN is completely random with its structure generation. Particularly,

variable splits are done randomly, disregarding the independencies encoded by data,

meaning that certain factorizations may be assumed to be true when they would otherwise

not be. Although RAT-SPNs are certainly competitive against other learning algorithms

50

3 | LEARNING PROBABILISTIC CIRCUITS

+

{𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 , 𝐺}

× × × × × × × ×

+ + + +

{𝐴, 𝐷, 𝐹} {𝐵, 𝐶, 𝐸, 𝐺}

+ + + +

{𝐵, 𝐷, 𝐹 , 𝐺} {𝐴, 𝐶, 𝐸}

× × × × × × × × × × × × × × × ×

{𝐴, 𝐶} {𝐸}{𝐵, 𝐷} {𝐹 , 𝐺}{𝐵, 𝐸} {𝐶, 𝐺}{𝐴, 𝐹} {𝐷}

Figure 3.9: A RAT-SPN generated from parameters 𝑑 = 3, 𝑟 = 2, 𝑠 = 2 and 𝑙 = 2. Nodes within a

belong to inner region nodes, to partitions and to leaf regions; dashed lines (and node colors)

indicate different PC layers. Scope of region nodes are shown in curly braces.

for PCs, they only produce smooth and decomposable circuits, denying the access to more

complex queries.

Remark 3.3: On parameter learning of probabilistic circuits

Literature in probabilistic circuits often divides learning into two (often distinct)

tasks: structure learning and parameter learning. Although in this dissertation we

almost exclusively cover structure learning algorithms, it is worth also going through

(even if superficially) some of the works on parameter optimization in PCs, as most

structure learning algorithms assume this as a post-processing procedure.

Expectation-Maximization (EM, Dempster et al., 1977) is perhaps the most com-

mon maximum likelihood estimation (MLE) optimization procedure for probabilistic

circuits. Poon and P. Domingos (2011), Peharz, Tschiatschek, et al. (2015) and

H. Zhao, Poupart, et al. (2016) derived EM for generative learning in PCs, while

Rashwan, Poupart, et al. (2018) formulated a discriminative EM version for PCs

through Extended Baum-Welch (Gopalakrishnan et al., 1991).

Notably, when a circuit is smooth, decomposable and deterministic, MLE can

be easily computed through closed-form by counting (Kisa et al., 2014; Peharz,

Gens, and P. Domingos, 2014). Indeed, this is an attractive feature that extends to

discriminative PCs (Liang and Van den Broeck, 2019).

Following other more traditional deep learning models, PCs learned with stochas-

tic gradient descent (SGD) have also appeared in literature, especially under convo-

lutional and tensorial extensions (Sharir, Tamari, et al., 2018; Peharz, Vergari,

3.3 | RANDOM LEARNING

51

et al., 2020; Peharz, Lang, et al., 2020; Gens and P. Domingos, 2012).

Bayesian approaches have also received some attention by the PC community.

Jaini, Rashwan, et al. (2016) and Rashwan, H. Zhao, et al. (2016) developed online

Bayesian moment matching algorithms to learn from streaming data; H. Zhao, Adel,

et al. (2016) showed a variational optimization procedure that leverages inference

tractability in PCs to efficiently compute the ELBO; Trapp, Peharz, Ge, et al. (2019)

propose learning both structure and parameters by Gibbs sampling from a generative

model on a (restricted) space of PCs; finally Vergari, Molina, et al. (2019) propose

PCs for automatic Bayesian density analysis.

3.3.2 XPC

While RAT-SPN produces a data-blind PC architecture and then relies on parameter

optimization to learn from data, the algorithm that we shall see next does the exact

opposite: XPC (Mauro et al., 2021) randomly samples a structure from data and requires

no parameter learning. To do this, it restricts the circuit sampling space to a particular

class of PCs whose primes are logical restrictions and inputs are CLTs. By assigning a fixed

number 𝑘 + 1 of (product) children per sum node and assuming that the 𝑘 first primes are

(random) conjunctions of literals of a fixed length 𝑡, with the last 𝑘+1 prime their negation,

the resulting PC is naturally deterministic, as CLTs are themselves deterministic. In more

practical terms, both the conjunctions of literals as well as the (𝑘 + 1)-th prime derived

from the negation of the first 𝑘 conjunctions are translated into products of (degenerate)

Bernoullis. Determinism can be relaxed by applying any form of regularization, for instance

Laplace smoothing, both on CLTs and on the products of Bernoullis.

Following the footsteps of RAT-SPN, they generate a tree-shaped random region graph

and produce a PC from it. Despite both employing region graphs, the graph in Mauro

et al. (2021) is only used as an artifice for formalizing the structure construction: their

process for reconstructing a PC from a region graph boils down to replacing an inner

region with a single sum, a leaf region with a single input and a partition with a single

product. Although one could generate a non-tree shaped PC by setting 𝑠 > 1 and 𝑙 > 1 (i.e.

number of sums and inputs per inner and leaf region respectively), the resulting circuit

could be reduced to a tree, since both sums (and inputs) coming from the same region

would be syntatically the same
3
.

A critical step to efficiently ensuring consistency with the logical restrictions is to

assign only consistent subsets of data to subcircuits. Just like in DIV class algorithms,

partition (i.e. product) nodes in the region graph define column splits over data and regions

(i.e. sums and inputs) correspond to row splits. The algorithm then associates a node with

a portion of data according to its scope and logical constraint. More specifically, when

the 𝑖-th prime defines a conjunction of literals 𝛼𝑖, only assignments 𝐱 whose application

𝛼𝑖(𝐱) are true are transferred down, effectively splitting data row-wise. To ensure that the

3
Whether this “expanded” circuit could have its performance improved if one were to run, say EM, to exploit

this increase in capacity is an interesting question that unfortunately was left unexplored in Mauro et al.

(2021).

52

3 | LEARNING PROBABILISTIC CIRCUITS

+

× × ×

|𝐃𝛼1 |
|𝐃| |𝐃𝛼2 |

|𝐃|

|𝐃𝛼3 |
|𝐃|

𝐴 ∧ 𝐵 𝐴 ∧ ¬𝐵 ¬⋁𝑖 𝛼𝑖

𝛼1 𝛼2 𝛼3CLT CLT CLT

    

𝐴 𝐵 𝐶 𝐷
0 0 1 0

1 1 0 1

1 0 1 0

0 1 0 1

1 1 1 1

1 0 0 0

𝐴 𝐵 𝐶 𝐷
0 0 1 0

1 1 0 1

1 0 1 0

0 1 0 1

1 1 1 1

1 0 0 0

×
𝐴 ∧ ¬𝐵

+

𝐴 ¬𝐴

+

𝐵 ¬𝐵
1 0 0 1

Figure 3.10: The first iteration of XPC, where 𝑡 = 2 variables are selected, 𝐴 and 𝐵; 𝑘 = 2 conjunctions

of literals are sampled, 𝛼1 = 𝐴 ∧ 𝐵, 𝛼2 = 𝐴 ∧ ¬𝐵 and 𝛼3 = ¬(𝛼1 ∨ 𝛼2); with primes set to a product of

Bernoullis corresponding to each 𝛼𝑖 and subs to CLTs. Leaf region nodes  are candidates for expansion.

Sums, products and CLT input nodes are the resulting probabilistic circuit from the sampled region

graph. Conjunctions of literals are expanded into product of Bernoullis whose weights are inferred

from data, as the circuit on right shows; if no smoothing is applied, the circuit is deterministic.

resulting circuit is also decomposable, only Sc(𝛼𝑖) variables are passed to primes, with

the remaining variables going to the subs. This way, sum weights can be estimated as

the subdata size ratios just like in LearnSPN, as Figure 3.10 shows. Each subdata 𝐃𝛼𝑖
corresponds to joining all assignments consistent with 𝛼𝑖, as shown through matching

colors on the table on the right. Data is divided by rows according to the satisfiability of

each prime 𝛼𝑖 and by column according to the scope of each prime.

At each iteration of Algorithm 15, sub leaf region nodes, denoted here as  regions,

are randomly selected for further expansion. Algorithm 14 takes a candidate region R and

samples 𝑘 conjunctions 𝛼1, … , 𝛼𝑘 of length 𝑡 that appear at least 𝛿 times in the subdata

associated with R. If no such constraint has been found, R is discarded as a candidate for

expansion. Otherwise, another layer of partitions and regions similar to Figure 3.10 is

constructed, making sure that data splits obey both scope and constraints 𝛼𝑖. Once no

more candidates are available or a limit on the number of expansions has been reached,

the region graph is translated into a probabilistic circuit by replacing leaf region nodes of

type  into products of Bernoullis, type  ’s into CLTs and inner regions as sums whose

weights are the proportions of (row-wise) split data; partitions are replaced with product

nodes.

Determinism is not the only constraint that can be enforced. In fact, since every product

is by construction 2-standardized, the circuit is structured decomposable if not only the

scopes of  regions follow a vtree, but the CLTs in  regions do as well. This forces the

sampling done in line 3 to instead deterministically assign 𝐘 the scope of Sc(𝑣←), where 𝑣
is the vtree node associated with the product splitting 𝐗.

Complexity

To simplify, we assume that all 𝑘 distinct logical constraints pass the condition of

containing at least 𝛿 samples in the dataset. With this, the complexity of ExpandXPC is

(𝑡 + 𝑘 ⋅ |𝐃|), where the first term comes from sampling a subset of size 𝑡 from 𝐗 and the

3.3 | RANDOM LEARNING

53

Algorithm 14 ExpandXPC

Input Region R, data 𝐃, variables 𝐗, min. # of assignments per partition 𝛿, # of conjunc-

tions of literals 𝑘, length of conjunctions 𝑡
1: Let 𝐀 be a set of logical constraints initially empty

2: Copy all data from 𝐃 to 𝐒
3: Sample a subset 𝐘 of size 𝑡 from 𝐗
4: while |𝐀| < 𝑘 do

5: Sample a conjunction of literals 𝛼 over 𝐘 distinct from any in 𝐀
6: 𝐐 ← {𝐱 | ∀𝐱 ∈ 𝐒 ∧ 𝛼(𝐱) = 1}
7: if |𝐐| ≥ 𝛿 and |𝐒 ⧵ 𝐐| ≥ 𝛿 then

8: Append 𝛼 to 𝐀
9: 𝐒 ← 𝐃 ⧵ 𝐐

10: Create a partition node P as a child of R

11: Create a region R
′
𝑝 of type  and assign it as a prime of P

12: Assign scope 𝐘 and data 𝐐 to R
′
𝑝

13: Create a region R
′
𝑠 of type  and assign it as a sub of P

14: Assign scope 𝐗 ⧵ 𝐘 and data 𝐒 ⧵ 𝐐 to R
′
𝑠

15: if no constraint is suitable then unset R as a candidate and return

16: else

17: Create a partition node P as a child of R

18: Create a region R
′
𝑝 of type  and assign it as a prime of P

19: Assign scope 𝐘 and data 𝐒 to R
′
𝑝

20: Create a region R
′
𝑠 of type  and assign it as a sub of P

21: Assign scope 𝐗 ⧵ 𝐘 to R
′
𝑠

second from selecting all assignments in 𝐃 that agree with the constraint 𝛼. Sampling

conjunctions of literals can be done in constant time by representing 𝛼 as a bit vector

where a 1 indicates a positive literal and 0 a negative literal; sampling a number in [0, 2|𝐘|−1]
(here assumed to be done in (1)) is equivalent to producing 𝛼.

The analysis for XPC relies on either the number of maximum iterations or available

candidates. At every call to ExpandXPC, we create at least 3(𝑘+1) new PC nodes, of which

𝑘 + 1 of them are  regions. Assuming that we let the algorithm run a fixed number of

iterations 𝑖, we get a total runtime of  (𝑖 ⋅ (𝑡 + 𝑘 ⋅ |𝐃|)). for the main loop in XPC. We then

need to compile the PC and learn CLTs for every  leaf. Because we ran for 𝑖 iterations,

we should have 𝑖 ⋅ 𝑘 CLTs to learn, which is done in (|𝐗|2 ⋅ 𝐃), bringing the total runtime

to  (𝑖 ⋅ (𝑡 + 𝑘 ⋅ |𝐃|) + 𝑖 ⋅ 𝑘 ⋅ |𝐗|2 ⋅ |𝐃|). Note, however, that this is a rough upper bound on

the true complexity, as both scope and data shrink considerably at each depth.

Pros and Cons

Pros. XPC is flexible in the sense that it can produce both deterministic and structured

decomposable circuits with little change to the algorithm. More importantly, because it

essentially divides data in a DIV approach, the most costly operation, i.e. learning CLTs at

the leaves, is done extremely fast, since the optimization is done only on a fraction of the

data and scope. As an example, learning XPCs from binary datasets of hundreds of variables

54

3 | LEARNING PROBABILISTIC CIRCUITS

Algorithm 15 XPC

Input Dataset 𝐃, variables 𝐗, min. # of assignments per partition 𝛿, # of conjunctions of

literals 𝑘, length of conjunctions 𝑡
Output A smooth, decomposable and deterministic probabilistic circuit

1: Start with a region graph  with a single region node as root

2: while there are candidate region nodes of type  do

3: Select a random region R of type 
4: Let 𝐐 be the subdata associated with R

5: ExpandXPC(R, 𝐐, Sc(R), 𝛿, 𝑘, 𝑡)
6: for each node N ∈  in reverse topological order do

7: Let 𝐃N be the data associated with N
8: if N is a leaf region node of type  then

9: Replace N with a product of Bernoullis according to 𝐃
10: else if N is a leaf region node of type  then

11: Replace N with a CLT learned from 𝐃
12: else if N is a region node then

13: Replace N with a sum node whose weights are 𝑤N,C = 𝐃C
𝐃N

for each C ∈ Ch(N)
14: else

15: Replace N with a product node

16: return ’s root sum node

and tens of thousands of instances takes a matter of seconds, while most competitors

usually take hours for learning from the same data. In terms of performance, although

single circuit XPCs rarely beat state-of-the-art competitors, Mauro et al. (2021) showed

that by merely aggregating sampled circuits into a simple mixture boosts performance

considerably, reaching competitive results.

Cons. When it comes to circuit size, although a single XPC generated circuit has com-

parable size to other state-of-the-art structure learning competitors, only when a few

dozens of these single circuits are ensembled together into a mixture do they become

competitive against state-of-the-art, meaning that in their final form, they can be tens

of times the size of PCs generated from other structure learning algorithms. Moreover,

because of the number of parameters involved in sampling these PCs (𝛿, 𝑘, 𝑡, number

of components per ensemble, and whether to produce deterministic and/or structured

decomposable PCs), a grid-search over parameters is necessary to produce optimal results.

Although this is generally faster than other structure learning algorithms, the sheer size

of all generated circuits from every hyperparameter combination can easily overwhelm

memory space.

3.4 A Summary

We finish this review of structure learning algorithms in probabilistic circuits by

summarizing some of the more important points raised throughout this chapter. We list

each algorithm seen in Chapter 3, describing their class, time complexity of learning the

probabilistic circuit and any other auxiliary data structure, number of hyperparameters

3.4 | A SUMMARY

55

needed during learning, whether they accept any kind of expert knowledge in the form of

logical constraints, which structural constraints are guaranteed to hold in the resulting

PCs, and which data (binary {0, 1}, discrete ℕ or continuous ℝ) are supported. We use

the same notation used throughout this section for data dimensions: 𝑛 is the number of

examples in a dataset and 𝑚 is the number of variables of dataset. Other variable names

differ in their meaning depending on each learning technique. We next describe some

of the assumptions made in order to more concisely summarize the information set in

Table 3.1.

For LearnSPN, we assume sums to be learned by 𝑐 iterations of 𝑘-means and products

through the G-test. We call 𝑘 the number of clusters to be learned, and only assume the

bare minimum as hyperparameters: 𝑘 and the G-test 𝑝-value, giving a lower bound of 2
on the number of hyperparameters. LearnSPN is easily extensible to continuous data by

replacing the G-test with any other continuous alternative, such as mutual information,

and learning continuous univariate distributions as inputs.

Recall that ID-SPN learns Markov networks as inputs. If we assume this process to

follow the same procedure proposed in Rooshenas and Lowd (2014), then the number

of hyperparameters needed for just learning the structure of the Markov network inputs

is at least three (per-edge penalty, per-split penalty and score tolerance heuristic
4
). Just

like in LearnSPN, we also assume sums and products to be learned from 𝑘-means and the

G-test for ID-SPN, raising the number of hyperparameters to 5, 2 for sums and products

and 3 for inputs. We use the same notation as Section 3.1.2: 𝑖 is the number of iterations

for learning the Markov networks, 𝑐 is the size of the Markov network being learned, 𝑟 is

a constant bounding the number of improvements, and 𝑘 is the number of clusters used

for sums.

We assume Prometheus to use its more scalable version of learning products by

sampling edges from the correlation graph and sums learned from 𝑘-means. Because the

procedure for learning products is parameterless, we are left with only 𝑘 as a hyperparam-

eter for sums. We use the same variable notation as the other DIV algorithms.

For both LearnPSDD and Strudel, we consider only the maximum depth 𝑚 when

partially copying the circuit during a local transformation as a hyperparameter. We do not

consider the maximum number of iterations 𝑖 as a hyperparameter, as it acts more like a

time constraint rather than a parameter to be optimized. We denote  as the probabilistic

circuit being learned.

When describing RAT-SPN, we denote 𝑟 , 𝑑, 𝑠 and 𝑙 as the number of subcircuits learned,

maximum depth of the generated region graph, number of sums per inner region node,

and number of inputs per leaf region node, all of which are accounted as hyperparameters

in Table 3.1.

In the case of XPC, we call 𝑖 the number of expansions to carry out in total, 𝑡 the length

of sampled conjunctions of literals and 𝑘 the number of conjunctions to be sampled per

region. Of these, 𝑡 and 𝑘, together with the number of assignments per partition 𝛿, are

considered XPC hyperparameters, bringing the total number to three.

4
See the Libra Toolkit manual for more information (Lowd and Rooshenas, 2015).

56

3 | LEARNING PROBABILISTIC CIRCUITS

N
a

m
e

C
l
a

s
s

T
i
m

e
C

o
m

p
l
e
x

i
t
y

#
h

y
p

e
r
p

a
r
a

m
s

A
c
c
e
p

t
s

l
o

g
i
c
?

S
m

o
o

t
h

?
D

e
c
?

D
e
t
?

S
t
r

D
e
c
?

{𝟎
,𝟏
}?

ℕ
?

ℝ
?

R
e
f
e
r
e
n

c
e

L
e
a
r
n
S
P
N

DI
V

{

(𝑛
𝑘𝑚

𝑐)
,
i
f

s
u

m


(𝑛
𝑚

3)
,
i
f

p
r
o

d
u

c
t

≥
2

✗
✓

✓
✗

✗
✓

✓
✓

S
e
c
t
i
o

n
3
.1

.1

I
D
-
S
P
N

DI
V

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩


(𝑛
𝑘𝑚

𝑐)
,
i
f

s
u

m


(𝑛
𝑚

3)
,
i
f

p
r
o

d
u

c
t


(𝑖𝑐

(𝑟
𝑛
+
𝑚
))

,
i
f

i
n

p
u

t

≥
2
+
3

✗
✓

✓
✗

✗
✓

✓
✗

S
e
c
t
i
o

n
3
.1

.2

P
r
o
m
e
t
h
e
u
s

DI
V

{

(𝑛
𝑘𝑚

𝑐)
,
i
f

s
u

m


(𝑚

(lo
g
𝑚
)2
)

,
i
f

p
r
o

d
u

c
t

≥
1

✗
✓

✓
✗

✗
✓

✓
✓

S
e
c
t
i
o

n
3
.1

.3

L
e
a
r
n
P
S
D
D

IN
CR

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩


(𝑚

2)
,
t
o

p
-
d

o
w

n
v
t
r
e
e


(𝑚

4)
,
b

o
t
t
o

m
-
u

p
v
t
r
e
e


(𝑖
|
|2)

,
c
i
r
c
u

i
t

s
t
r
u

c
t
u

r
e

1
✓

✓
✓

✓
✓

✓
✗

✗
S
e
c
t
i
o

n
3
.2

.1

S
t
r
u
d
e
l

IN
CR

{

(𝑚

2 𝑛
)

,
C

L
T

+
v
t
r
e
e


(𝑖
(|
|
𝑛
+
𝑚

2)
)

,
c
i
r
c
u

i
t

s
t
r
u

c
t
u

r
e

1
✓

✓
✓

✓
✓

✓
✗

✗
S
e
c
t
i
o

n
3
.2

.2

R
A
T
-
S
P
N

RA
ND


(𝑟
𝑑(
𝑠+

𝑙))
4

✗
✓

✓
✗

✗
✓

✓
✓

S
e
c
t
i
o

n
3
.3

.1

X
P
C

RA
ND


(𝑖
(𝑡
+
𝑘𝑛
)+

𝑖𝑘
𝑚

2 𝑛
)

3
✗

✓
✓

✓
✓

✓
✗

✗
S
e
c
t
i
o

n
3
.3

.2

T
a

b
l
e

3
.
1

:
S
u

m
m

a
r
y

o
f

a
l
l

s
t
r
u

c
t
u

r
e

l
e
a
r
n

i
n

g
a
l
g
o
r
i
t
h

m
s

f
o
r

p
r
o
b
a
b
i
l
i
s
t
i
c

c
i
r
c
u

i
t
s

d
e
s
c
r
i
b
e
d

s
o

f
a
r
.

57

4
A Logical Perspective to Scalable Learning

Considering the many benefits and drawbacks of the current state-of-the-art learning

algorithms addressed in Chapter 3, and emphasizing the need for scalability and accessi-

bility, we now present the main contributions of this dissertation, proposing the first of

two novel structure learning algorithms for probabilistic circuits. In this chapter, we are

interested in PCs whose support encodes a given logical constraint as certain knowledge;

we show how both the probabilistic issue of data fitness, as well as the logical question

of whether the circuit successfully compiles a knowledge base can be accomplished by

aggregating PC samples into ensembles of models. The contents of this chapter come from

our contributions in R. L. Geh and Denis Deratani Mauá (2021b).

4.1 Sampling PSDDs

Remark 3.2 briefly mentioned the question of compiling logical constraints into smooth,

structured decomposable and deterministic logic circuits (i.e. (P)SDDs Darwiche, 2011;

Kisa et al., 2014). Indeed, although there are many existing approaches to learning circuits

from logical formulae, most are only useful for specific tasks (A. Choi, Tavabi, et al., 2016;

A. Choi, Broeck, et al., 2015; Shen et al., 2017; A. Choi, Shen, et al., 2017). Although there

are more generalistic ways of producing circuits, namely from CNFs and DNFs (Oztok

and Darwiche, 2015; A. Choi and Darwiche, 2013); logic formulae which incorporate

more complex relationships such as cardinality constraints either have no tractable rep-

resentation (Nishino et al., 2016) or require the addition of latent variables (Sinz, 2005).

More importantly, because variables which do not play a role in the logical formulae

are completely discarded in the compilation process, translating these logic circuits into

probabilistic circuits involves naïve assumptions on the discarded variables, such as fully

factorizing them.

Surprisingly, to our knowledge there have been next to no work on learning the

structure of PCs from scratch by looking at both logical formulae and data. Even worse,

the couple that do are restricted to very preliminary work: Mattei, Soares, et al. (2019)

came up with a DIV prototype for a top-down approach to sampling a special class of PSDDs

whose primes are conjunctions of literals in a similar manner to XPCs, proposing a Bayesian

information criterion to searching the sample space, yet no practical algorithm was fully

58

4 | A LOGICAL PERSPECTIVE TO SCALABLE LEARNING

formulated; R. Geh, D. Mauá, and Antonucci (2020) expanded on Mattei, Soares, et al.’s

work by formalizing an algorithm and introducing a BDD to guide sampling, however the

generated circuits suffered from an exponential blow-up in size.

In this section, we propose a solution inspired by R. Geh, D. Mauá, and Antonucci

(2020) and Mattei, Soares, et al. (2019), yet without the previously mentioned problems

that come with them. In summary, we propose a sampling procedure to efficiently generat-

ing PSDDs whose primes are always conjunctions of literals; to overcome the exponential

blow-up, these PSDDs only partially encode their prior logical restrictions. To diversify

sampling, local transformations similar in spirit to INCR algorithms are used. Of worth,

we found that not only is this process incredibly fast even under intricate logical formulae,

but by combining samples into an ensemble we achieve competitive results against the

state-of-the-art.

Before we address our contributions, we should first fix some notation on the issue of

propositional logic. We treat propositional variables as 0/1-valued random variables and

use them interchangeably. Given a Boolean formula, we write ⟨𝑓 ⟩ to denote its semantics,

i.e. the Boolean function represented by 𝑓 . For Boolean formulas 𝑓 and 𝑔 , we write 𝑓 ≡ 𝑔
if they are logically equivalent, i.e. if ⟨𝑓 ⟩ = ⟨𝑔⟩; we abuse notation and write 𝜙 ≡ 𝑓 to

indicate that 𝜙 = ⟨𝑓 ⟩ for a Boolean function 𝜙. We overload the scope function once again

for logical formulae: Sc(𝑓) denotes the set of variables that appear in 𝑓 . We say that the

restriction of 𝑓 to an assignment 𝐗 = 𝐱, where 𝐗 ⊆ Sc(𝑓), is a Boolean function resulting

from setting all literal nodes to the corresponding values of 𝐱; we denote this operation

as 𝑓 |𝐱. As an example, consider 𝑓 (𝐴, 𝐵, 𝐶, 𝐷) = (𝐴 ∨ ¬𝐵) ∧ (¬𝐶 ∨ ¬𝐷) and say we wish to

restrict 𝑓 to 𝐱 = {𝐴 = 0, 𝐶 = 1}, then 𝑓 |𝐱 = 𝐵 ∧ ¬𝐷. At times, we might wish to restrict a

function to a conjunction of literals consistent with an assignment. When this happens, we

overload the function to return the restriction to the equivalent assignment. For instance,

given the same function as the previous example, and calling 𝑔(𝐴, 𝐶) = ¬𝐴 ∧ 𝐶, we use

𝑓 |𝑔 to mean the restriction of 𝑓 to 𝑔’s equivalent assignment (𝐴 = 0, 𝐶 = 1), that is, the

only assignment where 𝑔 would return true.

Because we are only interested in smooth, structured decomposable and deterministic

PCs whose support is defined by a logical formula, we shall adopt the usual notation of

PSDDs, which we present next.

Definition 4.1.1 (Partition). Let 𝜙(𝐱, 𝐲) be a Boolean function over disjoint sets of variables

𝐗 and 𝐘, and  = {(𝑝𝑖, 𝑠𝑖)}𝑘𝑖=1 be a set of tuples where 𝑝𝑖 (the prime) and 𝑠𝑖 (the sub) are

formulae over 𝐗 and 𝐘 respectively, satisfying 𝑝𝑖 ∧ 𝑝𝑗 ≡ ⊥ for each 𝑖 ≠ 𝑗 and ⋁𝑘
𝑖=1 𝑝𝑖 ≡ ⊤. We

say that  is an (𝐗, 𝐘)-partition of 𝜙 if and only if 𝜙 ≡ ⋁𝑘
𝑖=1(𝑝𝑖 ∧ 𝑠𝑖).

An (exact) partition
1

is no more than a smooth, structured decomposable and deter-

ministic circuit rooted at a sum (or disjunction) node whose children are products (or

conjunctions); the primes of these products must necessarily be mutual exclusive (formally,

𝑝𝑖 ∧ 𝑝𝑗 ≡ ⊥) and exhaustive (formally, ⋁𝑘
𝑖=1 𝑝𝑖 ≡ ⊤). Semantically, a partition states that a

1
The naming partition is unfortunate. The nomenclature in probabilistic circuits is full of many other

partitions, either using the term to conjure meaning from set theory when dealing with data splits (see

Section 3.1), partition nodes in region graphs (see Section 3.3) or in PSDD literature in this section. Here

(and only here), partitions will mean stricly the latter.

4.2 | SAMPLEPSDD

59

𝐴 𝐵 𝐶 𝑝(𝐱)
0 0 0 0.1

0 1 0 0.1

1 0 0 0.2

1 0 1 0.6

𝜙(𝐴, 𝐵, 𝐶) = (𝐴 → ¬𝐵) ∧ (𝐶 → 𝐴)

1

𝐴 2

𝐵 𝐶

1

2 2𝐴 ¬𝐴

¬𝐵
¬𝐵 ¬𝐶 𝐵 ¬𝐶

𝐶 ¬𝐶

.8 .2

.75 .25

1.0
.5 .5

𝑝1
𝑠1

𝑝2
𝑠2

Figure 4.1: A PSDD encoding the logical constraint 𝜙(𝐴, 𝐵, 𝐶) = (𝐴 → ¬𝐵) ∧ (𝐶 → 𝐴), following the

distribution set by the probability table on the top left corner and whose structure is defined by the

vtree pictured on the bottom left corner.

logical formula decomposes into 𝑘 exact conjunctions of pairs of prime and sub. The

box in Figure 4.1 shows a partition whose primes are 𝑝1 = 𝐴 and 𝑝2 = ¬𝐴, and subs are

𝑠1 = ¬𝐵 (represented as a PC rooted at
2
) and 𝑠2 = ¬𝐶 (represented as the PC rooted at

2
).

Recall that the conjunction between a prime and sub is called an element, here shown as

and .

4.2 SamplePSDD

We now describe how to efficiently learn PSDDs by sampling and averaging. The

procedure takes inspiration from DIV algorithms in the sense that we construct a PSDD

structure top-down by recursively decomposing a logical formula (instead of data). At the

same time, we employ local transformations similar to INCR approaches on a partially

constructed circuit to diversify samples. All this procedure is done randomly in a similar

fashion to XPCs, where we restrict primes to be random conjunctions of literals and

sample variables according to a previously learned or randomly sampled vtree. To better

understand how this is done, we must first consider a naïve approach.

Let 𝜙 be a logical formula acting as our knowledge base, and assume that a vtree 
is given beforehand. To obtain a PSDD whose support is 𝜙, we decompose it down to

a disjunction of prime and sub conjunctions. This is a non-trivial problem, as primes

must not only be mutual exclusive (to ensure determinism) but exhaustive (to make sure

the circuit is coherent with 𝜙 in all possible assignments). If we assume primes to be

conjunctions of literals, then to adhere to Definition 4.1.1 there will be, in the worst case,

an exponential number of elements 2| Sc(𝑣←)|
, where 𝑣 is the vtree node that corresponds to

the partition. Subs, however, are easy to retrieve as they correspond to the restriction of 𝜙
under the assignment induced by the prime. Figure 4.2 shows a partition whose primes are

60

4 | A LOGICAL PERSPECTIVE TO SCALABLE LEARNING

𝜙(𝐴, 𝐵, 𝐶, 𝐷) = (𝐴 ∧ ¬𝐵 ∧ ¬𝐷) ∨ (𝐵 ∧ ¬𝐶 ∧ 𝐷)

1

𝑒1 𝑒2 𝑒3 𝑒4

𝐴 ∧ 𝐵 𝐴 ∧ ¬𝐵 ¬𝐴 ∧ 𝐵 ¬𝐴 ∧ ¬𝐵
¬𝐶 ∧ 𝐷 ¬𝐷 ¬𝐶 ∧ 𝐷 ⊥

𝑠𝑖 = 𝜙|𝑝𝑖

1

2 3

𝐴 𝐵 4 𝐶

𝐷 𝐸

Figure 4.2: A(n exact) partition of 𝜙 where we assume that primes are conjunctions of literals. Primes

must be exhaustive, mutually exclusive, and have to follow the vtree’s scope, here Sc(1←) = {𝐴, 𝐵}.
The subs are then the restriction of 𝜙 under the assignment induced by the primes.

conjunctions over 𝐴 and 𝐵. This problem is the same as the one faced by R. Geh, D. Mauá,

and Antonucci (2020): under the assumption of conjunctions of literals as primes, 𝜙 can

only be faithfully represented as a PSDD if the circuit is exponential in the number of

variables.

To overcome this exponential blow-up, we might restrict the number of primes at each

partition. Unfortunately, if we upper bound this number by a constant, say 𝑘, and randomly

sample primes from the space of all possible conjunctions of literals, then we face yet

another problem: the scope of subs might contain variables not in their corresponding vtree

node. Take the top circuit in Figure 4.3 as an example. Note that the scope for primes is

defined by Sc(1←) = {𝐴, 𝐵, 𝐶}, with Sc(1→) = {𝐷, 𝐸} for subs; so sampled primes 𝑝1 = 𝐴∧𝐵,

𝑝2 = 𝐴 ∧ ¬𝐵 and 𝑝3 = ¬𝐴 must come from Sc(1←). However, because 𝑠1 = 𝜙|𝑝1 = ¬𝐶 ∧ 𝐷
and 𝑠3 = 𝜙|𝑝3 = 𝐵 ∧¬𝐶 ∧𝐷, meaning that Sc(𝑠1) ⊈ Sc(1→) and Sc(𝑠3) ⊈ Sc(1→), subs violate

the factorization imposed by the vtree  , making the circuit non-structured decomposable

(albeit decomposable). Here, we point out that the scope of the formula needs to be a

subset of the scope of its corresponding vtree for the PC to be structured decomposable,

and not necessarily the set itself, as variables that do not appear in the formula yet are

part of the vtree’s scope play a probabilistic role in the PSDD.

For these circuits to both preserve structured decomposability and have tractable

representation, we resort to a weaker definition of a partition that relaxes the logical

constraints.

Definition 4.2.1 (Partial partition). Let 𝜙(𝐱, 𝐲) be a Boolean function over disjoint sets of

variables 𝐗 and 𝐘, and  = {(𝑝𝑖, 𝑠𝑖)}𝑘𝑖=1 be a set of tuples where 𝑝𝑖 (the prime) and and 𝑠𝑖
(the sub) are formulae over 𝐗 and 𝐘 respectively, satisfying 𝑝𝑖 ∧ 𝑝𝑗 ≡ ⊥ for each 𝑖 ≠ 𝑗 and

⋁𝑘
𝑖=1 𝑝𝑖 ≡ ⊤. We say that  is a partial partition of 𝜙 if

⟨

𝑘

⋁
𝑖=1

(𝑝𝑖 ∧ 𝑠𝑖)⟩
≥ 𝜙, (4.1)

where the inequality is taken coordinate-wise.

Definition 4.2.1 essentially states that the disjunction over elements has to only encode

4.2 | SAMPLEPSDD

61

𝜙(𝐴, 𝐵, 𝐶, 𝐷) = (𝐴 ∧ ¬𝐵 ∧ ¬𝐷) ∨ (𝐵 ∧ ¬𝐶 ∧ 𝐷)

1

𝑒1 𝑒2 𝑒3

𝐴 ∧ 𝐵 𝐴 ∧ ¬𝐵 ¬𝐴
¬𝐶 ∧ 𝐷 ¬𝐷 𝐵 ∧ ¬𝐶 ∧ 𝐷

𝑠𝑖 = 𝜙|𝑝𝑖

Sc(𝑠3) ⊈ 𝐒

1

2 3

𝐷 𝐸4 𝐶

𝐴 𝐵

𝐒

𝐒 = {𝐷, 𝐸}

(a) Partially constructed PSDD with vtree infracting subs

1

𝑒1 𝑒2 𝑒3

𝐴 ∧ 𝐵 𝐴 ∧ ¬𝐵 ¬𝐴
𝐷 ¬𝐷 𝐷

A 𝜙=(𝐴 ∧ ¬𝐵 ∧ ¬𝐷) ∨ (𝐵 ∧ ¬𝐶 ∧ 𝐷)

B
B 𝜙|𝐴

C
C

−+

−+

Forget(𝜙|¬𝐴, {𝐵, 𝐶}) = 𝐷

Forget(𝜙|𝐴∧¬𝐵, 𝐶) = ¬𝐷
Forget(𝜙|𝐴∧𝐵, 𝐶) = 𝐷

(b) Partial partition where subs are relaxed

Figure 4.3: An example of an invalid partition (a) due to subs disrespecting the vtree’s right branch,

here shown as the box with scope 𝐒. To fix this infraction, variables who do not belong to 𝐒 are

forgotten, as (b) shows.

a relaxation of the original formula 𝜙. This is somewhat similar to what Gatterbauer

and Suciu (2014) propose in probabilistic databases, where they relax a formula in such a

way that the approximate probabilities provide an upper bound independent of the actual

probabilities.

Looking back to the issue of bounding the number of elements per partition, a solution

to the problem of tractability and structured decomposability comes by employing partial

partitions instead of exact partitions. Let S be a sum node, and call 𝑠𝑖 one of its sub and 𝑣
the vtree node for S; denote by 𝐅 = Sc(𝑠𝑖) ⧵ Sc(𝑣→), that is, the variables in 𝑠𝑖 which should

not have been in the sub. We already know that S cannot be turned into an exact partition

unless it has an exponential number of elements, and so we look to partial partitions. The

forget operation takes a formula 𝜓 and marginalizes variable 𝑋 : Forget(𝜓, 𝑋) = 𝜓|𝑋 ∨𝜓|¬𝑋 ;

by construction Forget(𝜓, 𝑋) ≥ 𝜓. By forgetting all variables in 𝐅, we secure structured

decomposability and produce a relaxation of the original formula. To do this efficiently, we

make use of a BDD for representing formulae, as reduced BDDs are canonical and permit

polynomial time restricting and forgetting.

In more practical terms, the overall process of sampling a PSDD starts with a logical

formula 𝜙, a vtree  and scope 𝐗. We recursively construct partial partitions by first

sampling a fixed number of 𝑘 primes and evaluating subs with restrictions and Forgets.

Elements whose subs are ⊥ are removed, as their probability is always zero. For each

prime and sub, we recursively call the same procedure on their formulae. Just like in most

62

4 | A LOGICAL PERSPECTIVE TO SCALABLE LEARNING

Algorithm 16 SamplePartialPartition

Input BDD 𝜙, vtree node 𝑣, number of primes 𝑘
Output A set of pairs of primes and subs

1: Define 𝐄 as an empty collection of pairs

2: Sample an ordering 𝑋1, … , 𝑋𝑚 of Sc(𝑣←) ∩ Sc(𝜙)
3: Let 𝐐 be a queue initially containing (𝜙, 1, {})
4: 𝑗 ← 1 ⊳ Counter of sampled elements

5: while |𝐄| < 𝑘 do

6: Pop top item (𝜓, 𝑖, 𝑝) from 𝐐
7: if 𝑗 ≥ 𝑘 or 𝑖 > 𝑚 or 𝜓 ≡ ⊤ then

8: Add (𝑝, Forget(𝜙|𝑝, Sc(𝑣←))) to 𝐄
9: continue

10: 𝛼 ← 𝜓|𝑋𝑖 , 𝛽 ← 𝜓|¬𝑋𝑖
11: if 𝛼 ≡ 𝛽 then enqueue (𝜓, 𝑖 + 1, 𝑝) into 𝐐
12: else

13: if 𝛼 ≢ ⊥ then enqueue (𝛼, 𝑖 + 1, 𝑝 ∧ 𝑋𝑖) into 𝐐
14: if 𝛽 ≢ ⊥ then enqueue (𝛽, 𝑖 + 1, 𝑝 ∧ ¬𝑋𝑖) into 𝐐
15: 𝑗 ← 𝑗 + 1
16: return 𝐄

DIV class algorithms, if |𝐗| = 1, then we either return a literal node consistent with 𝜙, or

a Bernoulli distribution input node over 𝐗’s only variable. Another special case arises

when 𝜙 ≡ ⊤, in which case any smooth, structured decomposable and deterministic PC

will do. This PC can either be learned purely from data or generated from a template.

Alternatively, we might even choose to continue sampling partitions as before, except

in this case all partial partitions are also exact partitions. Algorithm 17 shows the entire

recursive procedure of SamplePSDD.

The sampling process of generating primes and their subs is shown in Algorithm 16

and goes as follows. To produce primes (and subs), we must look at the space of all possible

variable assignments coming from Sc(𝑣←), where 𝑣 is the relevant vtree node. If we fix

a variable ordering to Sc(𝑣←), say an 𝑚-uple 𝐎 = {𝑋1, … , 𝑋𝑚}, then we might structure

this space as a binary decision tree whose nodes are labeled as variables and whose edges

denote positive or negative literals over that variable. The path coming from a node to

a leaf in this decision tree represents a conjunction of literals in a prime. An example of

such a tree is shown as the right tree in Figure 4.3b. We efficiently generate 𝑘 primes by

starting from the root node labeled as variable 𝑋1 and repeatedly expanding a leaf labeled

𝑋𝑖 with two children 𝑋𝑖+1 until the number of leaves is between 𝑘 − 1 and 𝑘 (expanding

further would mean violating the bound on the number of primes). Every time we expand

a leaf, we must generate the restrictions 𝜓|𝑋𝑖 and 𝜓|¬𝑋𝑖 , where 𝜓 is the formula up to that

path, and associate them with the left and right children respectively. If 𝜓|𝑋𝑖 ≡ 𝜓|¬𝑋𝑖 , or in

other words the assignment of 𝑋𝑖 does not change 𝜓’s semantics, then we relabel the node

as 𝑋𝑖+1 and re-expand it with children 𝑋𝑖+2, effectively ignoring 𝑋𝑖+1. When this process

terminates, we have at most 𝑘 conjunctive primes represented by all the paths coming

from the root down to the leaves, each of these with an associated formula equivalent to

restricting 𝜙 to all assignments 𝜙|𝐱. Now, to obtain valid subs as previously mentioned, we

4.2 | SAMPLEPSDD

63

Algorithm 17 SamplePSDD

Input BDD 𝜙, vtree node 𝑣, number of primes 𝑘
Output A sampled PSDD structure

1: if | Sc(𝑣)| = 1 then

2: if 𝜙 is a literal then return 𝜙 as a literal node

3: else return a Bernoulli distribution input node over variable Sc(𝑣)
4: else if 𝜙 ≡ ⊤ then

5: return any smooth, structured decomposable and deterministic PC over Sc(𝑣)
6: 𝐄 ← SamplePartialPartition(𝜙, Sc(𝑣←), 𝑘)
7: Create a sum node S
8: Randomly compress elements in 𝐄 with equal subs

9: Randomly merge elements in 𝐄 with equal subs

10: for each element (𝑝, 𝑠) ∈ 𝐄 do

11: 𝑙 ← SampleExactPSDD(𝑝, 𝑣←, 𝑘)
12: 𝑟 ← SamplePSDD(𝑠, 𝑣→, 𝑘)
13: Add a product node with children 𝑙 and 𝑟 as a child of S
14: return S

apply the Forget operation to each sub over the scope of Sc(𝑣←), removing any variables

from the wrong side of the vtree.

Once primes and subs are generated, SamplePSDD randomly applies local transforma-

tions to add diversity to sampled circuits and reduce their size. Here we introduce two

shrinking local transformations, directly opposed to INCR’s growing local transformations.

We borrow the concept of compression, used to minimize a logic circuit down to a canonical

representation (Darwiche, 2011), and use it to join multiple elements into a single one

during learning. Let 𝑒1, … , 𝑒𝑞 be elements whose subs 𝑠1, … , 𝑠𝑞 are all equivalent to 𝑠, or

more formally 𝑠 ≡ 𝑠𝑖 ≡ 𝑠𝑗 , 𝑖 ≠ 𝑗 ; in this case, the disjunction over these elements factorizes

over 𝑠
𝑞

⋁
𝑖=1

(𝑝𝑖 ∧ 𝑠𝑖) =
𝑞

⋁
𝑖=1

(𝑝𝑖 ∧ 𝑠) = 𝑠 ∧
(

𝑞

⋁
𝑖=1

𝑝𝑖)
. (4.2)

Figure 4.4a shows a compression of elements 𝑒1 and 𝑒3 whose subs are both 𝐷. The

resulting compressed element 𝑒′ is equivalent to the disjunction of the primes with no

change to the sub. Compression is the exact inverse of Split, seen in Section 3.2 (cf.

Figure 3.7). Apart from compression, we propose merging two equivalent subs into the

same circuit as shown in Figure 4.4b. Merging is a common (previously nameless) operation

in PC literature and is the inverse of Clone (cf. Figure 3.7). In both cases, shrinking local

transformations preserve smoothness, structured decomposability, determinism and the

circuit’s formula, although they change the PSDD’s underlying distribution by reducing

the number of parameters.

To ensure that elements are mutual exclusive (and by consequence the partition is

deterministic), we need to disallow relaxations in recursive calls to primes. For instance, if

we had not imposed this restriction, a possible relaxation of 𝑒1’s prime 𝐴 ∧ 𝐵 into, say 𝐵,

in Figure 4.3b might contradict prime mutual exclusivity, as 𝐵 conflicts with 𝑒3’s prime ¬𝐵

64

4 | A LOGICAL PERSPECTIVE TO SCALABLE LEARNING

1

𝐞𝟏 𝑒2 𝐞𝟑

𝐴 ∧ 𝐵 𝐴 ∧ ¬𝐵 ¬𝐴
𝐷 ¬𝐷 𝐷

Compress

1

𝑒2 𝐞′

𝐴 ∧ ¬𝐵 ¬𝐴 ∨ (𝐴 ∧ 𝐵)
¬𝐷 𝐷

(a) Compressing elements 𝑒1 and 𝑒3 into 𝑒′

1

𝑒1 𝑒2 𝐞𝟑

𝐴 ∧ 𝐵 𝐴 ∧ ¬𝐵 ¬𝐴
𝐷 ¬𝐷 𝐷

Merge

1

𝐞𝟏 𝑒2 𝐞𝟑

𝐴 ∧ 𝐵 𝐴 ∧ ¬𝐵 ¬𝐴

𝐷

¬𝐷

(b) Merging subs 𝑠1 and 𝑠3 into a single sub

Figure 4.4: Examples of compression (a) and merging (b) as local transformations for reducing the

size of PSDDs. Both act on elements whose subs are logically equivalent.

(because 𝐵 ∧ ¬𝐴 ≢ ⊥). This is trivially solved by making sure that every partition in sub-

circuits rooted at primes is exact (here denoted by the function SampleExactPartition).

If we bound the number of primes to a constant 𝑘, these exact subcircuits will never suffer

from an exponential blow-up, as all subsequent (exact) partitions contain primes with at

most ⌈log2(𝑘)⌉ variables and thus at most 2⌈log2(𝑘)⌉ elements are constructed at each call.

Note that this analysis is only true if we assume primes to be sampled with Algorithm 16.

The nature of SamplePartialPartition, where we expand variables in a breadth-first

search fashion, makes sure that no one conjunction of literals has length much greater

than the other primes, and so the number of literals will be at most ⌈log2(𝑘)⌉. Nonetheless,

even if we sample primes by a depth-first search-like expansion, the total number of literals

in a prime will still be bounded to at most 𝑘 − 1, as Figure 4.5 shows.

4.3 Ensembles of SamplePSDDs

Just like in Strudel and LearnPSDD, to boost the performance of our approach we

resort to mixtures of PSDDs. We separately sample 𝑡 models in parallel with SamplePSDD,

learn their parameters through closed-form smoothed MLE (Kisa et al., 2014) and then

aggregate the 𝑡 components as a sum node whose weights are exactly the weights of the

mixture model. We then learn only mixture weights in five different approaches. In the first,

simplest approach, we set all weights uniformly among all components, calling this the

SamplePSDD Uniform strategy. For a second approach, we assign weights as proportional

to the training dataset likelihood, calling this SamplePSDD LLW (for likelihood weighting);

4.3 | ENSEMBLES OF SAMPLEPSDDS

65

1

𝑒1
𝑒2

𝑒3
𝑒4

𝑒5

𝐴 ∧ 𝐵
𝐴 ∧ ¬𝐵 ∧ 𝐶

¬𝐴 ∧ 𝐵
𝐴 ∧ ¬𝐵 ∧ ¬𝐶

¬𝐴 ∧ ¬𝐵
⋮

⋮
⋮

⋮
⋮

A

BB

CC CC

𝐷𝐷

−+

−+ −+

−+𝐴 ∧ 𝐵 ¬𝐴 ∧ ¬𝐵¬𝐴 ∧ 𝐵

𝐴 ∧ ¬𝐵 ∧ ¬𝐶𝐴 ∧ ¬𝐵 ∧ 𝐶

(a) Breadth-first search-like expansion

1

𝑒1 𝑒2
𝑒3

𝑒4
𝑒5

¬𝐴 𝐴 ∧ ¬𝐵
𝐴 ∧ 𝐵 ∧ ¬𝐶

𝐴 ∧ 𝐵 ∧ 𝐶 ∧ ¬𝐷
𝐴 ∧ 𝐵 ∧ 𝐶 ∧ 𝐷

⋯ ⋯
⋯

⋯
⋯

A B

B

−

+
¬𝐴

C

C

−

+
𝐴 ∧ ¬𝐵

D

D

−

+
𝐴 ∧ 𝐵 ∧ ¬𝐶

∅

∅

−

+
𝐴 ∧ 𝐵 ∧ 𝐶 ∧ ¬𝐷

𝐴 ∧ 𝐵 ∧ 𝐶 ∧ 𝐷
(b) Depth-first search-like expansion

Figure 4.5: When expanding variables breadth-wise (a), there can be at most ⌈log2(𝑘)⌉ variables in

each conjunction of primes; whereas in depth-wise expansion (b), we can have primes with at most

𝑘 − 1 literals.

let 𝑖(𝐃) the likelihood of component 𝑖 on dataset 𝐃, we set each component weight 𝑤𝑖 in

{𝑤𝑖}𝑡𝑖=1 as the ratio

𝑤𝑖 =
𝑖(𝐃)

∑𝑡
𝑖=1 𝑖(𝐃)

. (4.3)

Our third strategy employs Expectation-Maximization (SamplePSDD EM), only optimizing

the component weights.

As a forth strategy, we implement stacking for density estimation (Smyth andWolpert,

1998). This is done by first partitioning the training dataset 𝐃 into 𝑘 parts, exactly like in

𝑘-fold cross-validation. Then, for each 𝑖-th fold (𝐓𝑖, 𝐑𝑖) holding ⌈ |𝐃|
𝑘 ⌉ assignments in 𝐑𝑖 and

|𝐃| − ⌈ |𝐃|
𝑘 ⌉ in 𝐓𝑖, we learn the parameters of the 𝑡 sampled PSDDs by closed-form MLE on

data 𝐑𝑖, followed by evaluating and storing the likelihood of each data point in 𝐓𝑖. This

gives us a matrix 𝐎 of size 𝑛 × 𝑡, where 𝑛 = |𝐑𝑖| and each entry in the matrix 𝐎𝑖𝑗 is the

likelihood of the 𝑗-th model on data point 𝑖 stored for each of the 𝐓𝑖 portions of each fold.

With this, we then learn the mixture weights 𝑤𝑖 through EM, using 𝐎 as the component

log-likelihoods. Finally, we re-train the parameters of each of the 𝑡 PSDDs, this time using

all of the training dataset 𝐃.

Lastly, we implement Bayesian Model Combination (BMC, Monteith et al., 2011) to

construct 𝑐 combinations of ℎ PSDDs each. Our BMC is constructed as follows. First, we

construct 𝑐 mixtures of ℎ components each and whose component weights are sampled

from a Dirichlet distribution initially with uniform 𝛼 values. For each of these 𝑐 mixtures,

66

4 | A LOGICAL PERSPECTIVE TO SCALABLE LEARNING

we compute their likelihood over the entire training dataset, which gives us the quantity

𝑝(S𝑖 |𝐃), where S𝑖 is the 𝑖-th mixture out of the 𝑐 we construct. We then assume a uniform

prior so that the maximization equivalence

max 𝑝(S𝑖 |𝐃)𝑝(S𝑖) = max 𝑝(S𝑖 |𝐃) (4.4)

holds, meaning that it suffices to take the best combination in terms of likelihood 𝑝(S𝑖 |𝐃)
out of all the 𝑐 for updating the new Dirichlet 𝛼 values

𝛼 ← 𝛼 + 𝐰∗, (4.5)

where 𝐰∗
is a vector of the mixture weights whose likelihood was the highest. We iterate

through this process of sampling mixtures and updating 𝛼 up to a number of maximum

iterations 𝑡. Once we are done, we select the last 𝑐 mixture samples and construct a mixture

out of these mixtures, setting their weights proportional to their likelihoods in the training

dataset.

4.4 Experiments

We compare our results against Strudel, mixtures of 10 Strudels, LearnPSDD and

LearnSPN. We used existing implementations coming from the Juice probabilistic circuits

library (Dang, Khosravi, et al., 2021) for the first two, while LearnPSDD and SamplePSDD

were implemented into the library. For LearnSPN, we used the PySPN library
2

whose

implementation uses 𝑘-means for learning sums and G-test for products. We look at four

different domains that contain some kind of logical structure to them, modeling them as

logical formulae. We observe the impact of this prior knowledge by learning PCs both

under low data regimes and abundant data. For Strudel, as proposed in Dang, Vergari,

et al. (2020), we used an initial PC compiled from a CLT learned purely from data (see

Section 3.2.2). Initial circuits for LearnPSDD were compiled into canonical logic circuits

from either a CNF or DNF when the logical restrictions permitted a tractable representation

in such forms; when this was not the case, a BDD was compiled into a circuit instead. For

the resulting initial circuit to contain variables not present in the formula, a product node

whose two children are the compiled PC and a fully factorized circuit over absent variables

was created and set as root.

In all runs of SamplePSDD, we randomly generate vtrees instead of optimizing them

through the vtree learning algorithms mentioned in Section 3.2. We found that, not only was

the overall process of learning much faster when randomly generating them, but sampling

from a much more diverse space of vtrees proved to produce PSDD ensembles just as good,

if not better, compared to vtrees learned from data. In all but a few settings throughout this

section, vtrees are uniformly generated by randomly choosing a variable decomposition

at each vtree node. The only exception to this rule are the vtrees in Section 4.4.5, whose

sampling is explicitly defined with some bias for purposes of empirical analysis.

All experiments were run on an Intel i7-8700K 3.70 GHz machine with 12 cores and

64GB. We limited LearnPSDD and Strudel both to 100 iterations, although runs with

2 https://gitlab.com/pgm-usp/pyspn

https://gitlab.com/pgm-usp/pyspn

4.4 | EXPERIMENTS

67

𝜙3 = 𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ ¬𝑋5 ∧ ¬𝑋6 ∧ 𝑋7
𝜙4 = ¬𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ ¬𝑋4 ∧ ¬𝑋5 ∧ 𝑋6 ∧ 𝑋7
𝜙5 = 𝑋1 ∧ ¬𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ ¬𝑋5 ∧ 𝑋6 ∧ 𝑋7
𝜙6 = 𝑋1 ∧ ¬𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ 𝑋5 ∧ 𝑋6 ∧ 𝑋7

𝜙 = ⋁9
𝑖=0 𝜙𝑖

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7

Figure 4.6: Seven-segment LED digits for 3, 4, 5 and 6 (left), the logical constraints for each of these

digit 𝜙𝑖 (top middle) and the resulting formula derived from listing all valid configurations 𝜙 (middle),

each latent variable 𝑋𝑖 corresponding to a segment’s supposed state, and samples of pixel variants

led-pixels for each digit (bottom middle).

1000 iterations can be found in Appendix A.2. For all experiments with SamplePSDD, when

𝜙 ≡ ⊤ (line 5 of Algorithm 17) we produced a fully factorized circuit. In the remaining part

of this section, we first address the performance of our proposed approach compared to

the state-of-the-art and then provide an empirical analysis on the impact of vtrees and

parameter choice for ensembles of SamplePSDD

4.4.1 LED Display

A seven-segment LCD display consists of seven opaque segments behind a light

background which are separately turned on or off in order to represent a digit. Figure 4.6

shows some digits represented by a seven-segment display. Each digit is associated with

a local constraint on the values of each segment. We adapt the approach by Mattei,

Antonucci, et al. (2020b) and generate a led dataset of faulty observations of the segments

as follows. Each segment is represented by a pair of variables (𝑋𝑖, 𝑌𝑖), where 𝑌𝑖 is the

observable state of segment 𝑖 (i.e. whether the segment is on or off) and 𝑋𝑖 is the latent

state of 𝑖. We randomly sampled a PSDD over variables 𝑋𝑖 and 𝑌𝑖 whose support are the

valid configurations of segments 𝑋𝑖 representing the digits, and use that model to generate

a dataset of 5,000 training instances and 10,000 test instances.

A more complex alternative configuration for the LED setting, led-pixels, is the

interpretation of digits as images and segments as pixel regions. The segment constraints

remain unchanged, but now pixel regions act as the latent variables. Figure 4.6 (bottom)

shows ten samples for each the ten digits; each instance from the dataset is a 10 × 15
black-and-white image. In this pixelized version, we do not explicitly describe, in the form

of logical constraints, a one-to-one mapping of pixel regions as segments; instead, we

visually identify key points where pixels most often activated given a segment’s value.

Let 𝐑𝑠 be pixel variables which are most often set to 1 when a segment 𝑠 is on. We build

a constraint for each segment: 𝜓(𝑠) = 𝑠 → ⋁𝑟∈𝐑𝑠 𝑟 . We futher recognize which pixels

are always off given a valid digit segment configuraton: 𝜙(𝐬) = (⋀𝑝∶𝑝=0|𝐬 ¬𝑝) ∧ (⋀𝑠∈𝐬 𝑠).

The full logic formula encoding all constraints is the conjunction of every possible 𝜙 and

𝜓.

Figure 4.7 shows how our approach fairs against competitors using different percent-

68

4 | A LOGICAL PERSPECTIVE TO SCALABLE LEARNING

(a) (b)

Figure 4.7: Log-likelihoods for the unpixelized led (a) and pixelized led-pixels (b) datasets.

ages of available training data on the unpixelized and pixelized versions of the dataset. The

labels on the 𝑥-axis indicate percentage and number of training instances. We sampled

𝑡 = 100 circuits for both settings, with 𝑘 = 32 and 𝑘 = 8 for led and led-pixels
respectively. Note how the use of logical constraints greatly improves performance even

under extremely scarce data (with 1 or 2 datapoints). Most of the SamplePSDD approaches

obtain the best performance with the full dataset, and ranks among the best when data

size is small.

4.4.2 Cardinality Constraints

The dota dataset contains the result of 102,944 online matches of the Dota 2 videogame,

made available at the UCI Repository. In this game, each team is composed of 5 players

players, with each one controlling a single character out of a pool of 113. Each character

can be controlled by at most one single player in a match. We represent the domain by

2 groups of 113 Boolean variables 𝐶(𝑖)
1 and 𝐶(𝑖)

2 , denoting whether the 𝑖-th character was

selected by the first or second team, respectively. We then encode 113-choose-5 cardinality

constraints on the selection of each team (i.e. ∑1
𝑖=1 13𝐶

(𝑖)
𝑗 = 5 for 𝑗 ∈ {1, 2}). Unfortunately,

adding the constraint that no character can be selected by both teams ¬(𝐶(𝑖)
1 ∧ 𝐶(𝑖)

2) made

the BDD representation of the formula intractable, and so was ignored. Since the CNF

representation of cardinality constraints is intractable, we used a PSDD compiled from

a BDD to generate an initial circuit for LearnPSDD (as BDDs can efficiently encode

such restrictions (Eén and Sörensson, 2006)). We set the number of components for

SamplePSDD to 𝑡 = 30 and bound the number of sampled elements to 𝑘 = 3.

The plot in Figure 4.8a shows the test log-likelihood of the tested approaches. Despite

accurately encoding logical constraints, LearnPSDD initially obtains worse performance

when compared to SamplePSDD, but quickly picks up, outperforming other models by

a large margin. SamplePSDD ranks first for small data regimes, and is comparable to

Strudel (and mixtures of) for large training datasets. LearnSPN encountered problems

scaling to more than 50,000 instances due to intensive memory usage in both clustering

4.4 | EXPERIMENTS

69

(a) (b)

Figure 4.8: Log-likelihoods for the dota (a) and 10-choose-5 sushi (b) datasets.

and pairwise independence testing.

We also compared methods on the sushi dataset (Kamishima, 2003), using the setting

proposed in Shen et al. (2017). The data contains a collection of 5,000 rankings of 10

different types of sushi. For each ranking, we create 10 Boolean variables denoting whether

an item was ranked among the top 5, and ignore their relative position. The logical

constraints represent the selection of 5 out of 10 items. We split the dataset into 3,500

instances for training and 1,500 for the test set and evaluated the log-likelihood on both

tasks. The plot in Figure 4.8b shows the log-likelihood for this data. For this dataset, we set

𝑡 = 30 and 𝑘 = 3 for ensembles of SamplePSDD. LearPSDD obtains superior performance

accross some of the low sample sizes, but our approaches were able to quickly pick up and

tie with LearnPSDD when using the LLW, stacking and EM strategies.

4.4.3 Preference Learning

We also evaluated performance on the original task of ranking items on the sushi
dataset. We adopt the same encoding and methodology as (A. Choi, Broeck, et al., 2015),

where each ranking is encoded by a set of Boolean variables 𝑋𝑖𝑗 indicating whether the

𝑖-th item was ranked in the 𝑗-th position. We use same parameters for ensembles of

SamplePSDD as the previous dataset and set 𝑡 = 30 and 𝑘 = 3. The test log-likelihood

performance of each different method is shown in Figure 4.9a. The results are qualitatively

similar to the previous experiments: SamplePSDD performed better than pure data ap-

proaches under low data yet achieved competitive results when given the full data. In this

case, however, we found that LearnPSDD ranked first by a large margin compared to

others.

4.4.4 Scalability, Complexity and Learning Time

The major advantage of SamplePSDD compared to other PSDD learning algorithms

comes from its ability to learn from both data and a logical formula 𝜙 even when 𝜙 defines

70

4 | A LOGICAL PERSPECTIVE TO SCALABLE LEARNING

(a) (b)

Figure 4.9: Log-likelihood for the sushi ranking (a) dataset and curves for mean average time (in

seconds) of learning a single LearnPSDD circuit, one Strudel circuit (CLT initialized), a mixture of 10

shared-structure Strudel components, a single SamplePSDD PC and an ensemble of 100 SamplePSDD

circuits (b).

an intricate Boolean formula over many variables. Interestingly, how capable SamplePSDD

is of learning from 𝜙 comes not only from the algorithm itself, but how 𝜙 is represented.

In fact, any data structure with tractable restriction and reduction (to a canonical form)

can be used in place of the BDD shown in Algorithm 17. We do not require forgetting

to be tractable due to an implementational “trick” in SamplePSDD that allows a fast

implementation to ignore variables not in the scope of the vtree. More details can be found

in Appendix A.2. Consequently, how scalable our proposed algorithm is depends on the

representational power of the tool used for manipulating logical formulae. This is shown

more concretely when we learn from the constraints set by the dota dataset: had we tried

to manipulate formulae with a CNF, the intractability of cardinality constraints would

unfortunately impede any progress.

We now provide an analysis on the complexity of SamplePSDD. We start with the

SamplePartialPartition subroutine. If we choose a BDD for manipulating formulae,

then restrictions are done in (𝑐 log 𝑐), where 𝑐 is the size of the BDD’s graph. At every

iteration of the main loop in line 5 of Algorithm 16, a leaf of the binary decision tree

is split into two, increasing the number of leaves (and therefore primes) by one. This is

repeated until 𝑘 leaves of the decision tree have been expanded, bringing SamplePar-

tialPartition’s complexity to (𝑘 ⋅ 𝑐 log 𝑐). Every call of SamplePSDD (apart from base

cases) produces a new partition and randomly compress and merge elements. Compression

requires applying a disjunction over two primes, both of which are conjunctions of literals,

represented in BDDs as a graph of size linear to the number of terms. Because primes

can have at most ⌈log2(𝑘)⌉, the disjunction of two such conjunctions is done in (log22 𝑘).
Merging (or compressing) 𝑛 elements essentially subtracts the number of recursive calls

for each merge (or compression) by 𝑛 − 1. Therefore, every SamplePSDD recursive call is

 (𝑘 ⋅ 𝑐 log 𝑐 + log22 𝑘).

We empirically evaluate the time it takes to learn a single circuit from each of

4.4 | EXPERIMENTS

71

(a) (b)

Figure 4.10: Impact of the structure of vtree (left) and number of bounded primes (right) on the test

log-likelihood for the 10-choose-5 sushi dataset.

LearnPSDD, Strudel and SamplePSDD. We also measure running times for learning 10

structure-sharing circuits as components of a mixture of Strudels and 100 (structurally)

distinct PCs sampled from SamplePSDD, each with parameters learned from closed-form

MLE. Figure 4.9b shows the time it takes to run each of these settings on the sushi ranking

dataset. On average, Strudel took approximately 15 seconds, LearnPSDD 13 minutes

and 25 seconds, and SamplePSDD about 2.76 seconds for learning a single PSDD.

4.4.5 Performance and Sampling Bias

The approximation quality of SamplePSDD is highly dependent on both the vtree and

maximum number of primes. In this section, we compare the impact of both in terms of

performance and circuit complexity. We assess performance by the log-likelihoods in the

test set, as well as consistency with the original logical constraints. The latter is measured

by randomly sampling 5,000 (possibly invalid) instances and evaluating whether the circuit

correctly decides their value. A set of the top 100 sampled PSDDs (in terms of log-likelihood

in the train set) are selected out of 500 circuits learned on the 10-choose-5 sushi dataset

to compose the ensemble. Circuit complexity is estimated in terms of both time taken to

sample all 500 circuits and graph size (i.e. number of nodes) of each individually generated

PSDD.

It is quite clear that the structure of the vtree is tightly linked to the structure of a

PSDD, especially given the graphical constraints imposed by SamplePSDD and the fact

that subs need to obey a vtree’s scope (and thus its structure). For instance, (near) right

vtrees keep the number of primes fixed and require no approximation, while (near) left

vtrees discard a large number of primes. In order to evaluate the effect of the type of vtree

on the quality of sampled structures, we compared the performance of SamplePSDD as

we vary the bias towards generation of right-leaning vtrees. Given a parameter 𝑝, we

grow a vtree in a top-down manner where at each node we independently assign each

variable to the right child with probability 𝑝. Small values of 𝑝 produce left-leaning vtrees,

72

4 | A LOGICAL PERSPECTIVE TO SCALABLE LEARNING

(a) (b)

Figure 4.11: Impact of the structure of vtree (left) and number of bounded primes (right) on the

consistency of sampled PSDDs with the original logical constraints for the 10-choose-5 sushi dataset.

while vtrees are more likely to lean to the right when 𝑝 > 0.5. Left leaning vtrees produce

especially small circuits compared to other vtrees, as more variables are left unmentioned

because of relaxations coming from the need for a bounded number of primes. To produce

decently sized circuits, we increase the number of sampled primes 𝑘 when 𝑝 is low and

decrease 𝑘 when 𝑝 is high.

Figure 4.10 shows the log-likelihood, Figure 4.11 shows consistency and Figure 4.12

shows circuit complexity when varying the bound on the number of primes (left) and

the type of vtrees used for guiding the PSDD construction (right). The blue shaded area

represents the interval of values (worse to best ranked) for individual circuits. To verify

consistency, we evaluate the PSDDs in terms of satisfiability of a given example. An

ensemble returned a configuration as satisfiable if any of its models attributed some nonzero

probability to it; and unsatisfiable if all models gave zero probability. This evaluation gives

a lower bound to consistency, which means all models eventually unanimously agreed on

satisfiability when vtree right bias ≥ 0.65. Alternatively, since SamplePSDD is a relaxation

of the original formula, an upper bound on consistency could be achieved by evaluating

whether any model within the ensemble gave a zero probability to the example; this

upper bound curve on consistency would be equivalent to the top side of the shaded

area. Interestingly, we note that the likelihood weighting strategy (LLW) dominates over

others on consistency. This is because LLW often degenerates to a few models, giving zero

probability to lower scoring PSDDs, which means only a small subset of circuits decide on

satisfiability, and thus a more relaxed model is less likely to disagree with the consensus.

On the other hand, this does not translate to better data fitness on the general case, as we

clearly see in Figures 4.7 to 4.9.

4.5 Summarizing SamplePSDD

In this chapter, we proposed a new approach for learning PSDDs from logical con-

straints and data by a random top-down expansion on a propositional formula. Our method

4.5 | SUMMARIZING SAMPLEPSDD

73

(a) (b)

Figure 4.12: Impact of the structure of vtree (left) and number of bounded primes (right) on circuit

size (in number of nodes) and learning time (in seconds) for the 10-choose-5 sushi dataset.

trades-off complexity and goodness-of-fit by learning a relaxation of the formula. We

then leverage the diversity of samples by employing several different ensemble strategies.

We empirically showed that this approach achieves state-of-the-art performance, often

surpassing competitors when under very low data regimes. Finally, we reveal that PSDDs

sampled from right leaning vtrees are better formula approximators and have increased

log-likelihood performance, albeit at an increase of circuit complexity.

To conclude this chapter, we add a new entry for SamplePSDD to Table 3.1 distiling the

information described in this chapter. Table 4.1 shows the new SamplePSDD row added to

Table 3.1. Recall that 𝑐 is the size of the logical formula in the canonical BDD format and 𝑘
is the number of primes to be sampled at each recursive call. We do not consider neither

the vtree nor the vtree sampling bias as hyperparameters, as all experiments in Section 4.4

assumed uniformly sampled vtrees. Further, although SamplePSDD takes inspiration from

key components from algorithms from the DIV and INCR classes, it is mostly a RAND class

algorithm, and so we classify it as such.

74

4 | A LOGICAL PERSPECTIVE TO SCALABLE LEARNING

N
a

m
e

C
l
a

s
s

T
i
m

e
C

o
m

p
l
e
x

i
t
y

#
h

y
p

e
r
p

a
r
a

m
s

A
c
c
e
p

t
s

l
o

g
i
c
?

S
m

o
o

t
h

?
D

e
c
?

D
e
t
?

S
t
r

D
e
c
?

{𝟎
,𝟏
}?

ℕ
?

ℝ
?

R
e
f
e
r
e
n

c
e

L
e
a
r
n
S
P
N

DI
V

{

(𝑛
𝑘𝑚

𝑐)
,
i
f

s
u

m


(𝑛
𝑚

3)
,
i
f

p
r
o

d
u

c
t

≥
2

✗
✓

✓
✗

✗
✓

✓
✓

S
e
c
t
i
o

n
3
.1

.1

I
D
-
S
P
N

DI
V

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩


(𝑛
𝑘𝑚

𝑐)
,
i
f

s
u

m


(𝑛
𝑚

3)
,
i
f

p
r
o

d
u

c
t


(𝑖𝑐

(𝑟
𝑛
+
𝑚
))

,
i
f

i
n

p
u

t

≥
2
+
3

✗
✓

✓
✗

✗
✓

✓
✗

S
e
c
t
i
o

n
3
.1

.2

P
r
o
m
e
t
h
e
u
s

DI
V

{

(𝑛
𝑘𝑚

𝑐)
,
i
f

s
u

m


(𝑚

(lo
g
𝑚
)2
)

,
i
f

p
r
o

d
u

c
t

≥
1

✗
✓

✓
✗

✗
✓

✓
✓

S
e
c
t
i
o

n
3
.1

.3

L
e
a
r
n
P
S
D
D

IN
CR

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩


(𝑚

2)
,
t
o

p
-
d

o
w

n
v
t
r
e
e


(𝑚

4)
,
b

o
t
t
o

m
-
u

p
v
t
r
e
e


(𝑖
|
|2)

,
c
i
r
c
u

i
t

s
t
r
u

c
t
u

r
e

1
✓

✓
✓

✓
✓

✓
✗

✗
S
e
c
t
i
o

n
3
.2

.1

S
t
r
u
d
e
l

IN
CR

{

(𝑚

2 𝑛
)

,
C

L
T

+
v
t
r
e
e


(𝑖
(|
|
𝑛
+
𝑚

2)
)

,
c
i
r
c
u

i
t

s
t
r
u

c
t
u

r
e

1
✓

✓
✓

✓
✓

✓
✗

✗
S
e
c
t
i
o

n
3
.2

.2

R
A
T
-
S
P
N

RA
ND


(𝑟
𝑑(
𝑠+

𝑙))
4

✗
✓

✓
✗

✗
✓

✓
✓

S
e
c
t
i
o

n
3
.3

.1

X
P
C

RA
ND


(𝑖
(𝑡
+
𝑘𝑛
)+

𝑖𝑘
𝑚

2 𝑛
)

3
✗

✓
✓

✓
✓

✓
✗

✗
S
e
c
t
i
o

n
3
.3

.2

S
a
m
p
l
e
P
S
D
D

RA
ND

{

(𝑚

)
,
r
a
n

d
o

m
v
t
r
e
e


(𝑘
𝑐l
og

𝑐+
lo
g2 2
𝑘)

,
p

e
r

c
a
l
l

1
✓

✓
✓

✓
✓

✓
✗

✗
C

h
a
p

t
e
r

4

T
a

b
l
e

4
.
1

:
S
u

m
m

a
r
y

o
f

a
l
l

s
t
r
u

c
t
u

r
e

l
e
a
r
n

i
n

g
a
l
g
o
r
i
t
h

m
s

f
o
r

p
r
o
b
a
b
i
l
i
s
t
i
c

c
i
r
c
u

i
t
s

d
e
s
c
r
i
b
e
d

s
o

f
a
r
.

75

5
A Data Perspective to Scalable Learning

We now turn our attention to scalably learning a PC purely from data. In this chapter,

we look at PCs solely from the perspective of data fitness; we exploit the connection

between PCs and generative random forests (Correia et al., 2020; Ho, 1995) and revisit a

well-known technique based on random projections for constructing random trees (Freund

et al., 2008; Dasgupta and Freund, 2008), presenting a simple and fast yet effective way

of learning PCs. This approach learns smooth and structured decomposable circuits by

randomly partitioning the data space with random projections in a DIV class fashion. We

show that our method produces competitive PCs at a fraction of the time. The contributions

in this chapter come, in part, from R. L. Geh and Denis Deratani Mauá (2021a).

5.1 Probabilistic Circuits and Decision Trees

Before we go through with our proposal in detail, we must first lay the groundwork

and motivate the decisions behind our structure learning algorithm. We begin by re-

emphasizing the connection between probabilistic circuits and density estimation trees

briefly discussed in Example 2.3. We follow by revisiting random projections (Freund

et al., 2008; Dasgupta and Freund, 2008), a well-known technique for hierarchically

partitioning data through oblique hyperplanes. Next, we present in detail a very fast

structure learning algorithm for quickly generating smooth and structured decomposable

circuits. Despite their simplicity, we empirically show their competitive performance

compared to state-of-the-art.

Recently, Correia et al. (2020) showed that (ensembles of) decision trees (DTs) learned

for prediction tasks can be easily extended into full probabilistic models represented as

probabilistic circuits. Besides equipping decision forests with more principled approaches

to handling missing data and diagnosing outliers, this bridge between decision trees and

PCs suggests an interesting alternative to learning the latter using the efficient inductive

algorithms available for the former (Correia et al., 2020; Ram and Gray, 2011; Khosravi

et al., 2020). Despite this, most works addressing such a connection have focused on the

discriminative side of DTs, with much of the effort put onto classification rather than

generative tasks such as density estimation. Here, we explore the generative side of DTs,

often referred as density estimation trees (DETs, Ram and Gray, 2011; Hang and Wen,

76

5 | A DATA PERSPECTIVE TO SCALABLE LEARNING

𝐀

𝐁
𝐂

𝐃

𝐄

(a) Axis-aligned projections

𝐀

𝐁
𝐂

𝐃 𝐄

(b) Random projections

Figure 5.1: Two partitionings induced by decision trees: (a) shows axis-aligned splits and (b) random

projection splits. Gray dots are datapoints, dashed lines are (hyper)planes.

2019; Smyth, Gray, et al., 1995), within the framework of PCs, taking inspiration from

known algorithms for building DTs and DETs, and transplanting them to PCs.

As only shortly discussed in Example 2.3, yet better formalized by Correia et al. (2020),

a DET can be represented as a smooth and deterministic tree-shaped PC with only sums

and input nodes by interpreting sum nodes as latent variables describing the partitioning

of data, and making sure that the supports of input nodes are restricted to the data cells

induced by all the partitionings done by the sums. The resulting density of this DET PC is

given by

𝑝(𝐱) = ∑
L∈Inputs()

𝑤L ⋅ L(𝐱) ⋅ v𝐱 ∈ Lw, (5.1)

where v𝐱 ∈ Lw is an indicator function that returns 1 if 𝐱 is within L’s cell and 0 otherwise.

The above formula comes from collapsing a circuit with only sum layers, where each sum

corresponds to a latent variable representing a partitioning of the data, into a single-layer

shallow PC. These latent variables usually consist of partitioning data through hyperplanes,

dividing data into two parts, each represented as the subcircuit rooted at each child of the

sum node.

A 𝑘-d tree is a subclass of decision trees which hierarchically partitions data into

more or less equally sized parts, usually by splitting the data according to the value of

a single variable at a time (Bentley, 1975; Hang and Wen, 2019; Ho, 1995), essentially

producing axis-aligned hyperplanes. Dasgupta and Freund (2008) noted that such an

approach cannot ensure that the resulting partitioning of the input space approximates the

intrinsic dimensionality of data (roughly understood as a manifold of low dimension). In

contrast, they provide a simple strategy for space partitioning that consists in recursively

partitioning the space according to a random separating hyperplane. This approximates a

random projection of the data and has the following theoretical guarantee (Dasgupta and

Freund, 2008):

If the data has intrinsic dimension 𝑑, then with constant probability the part

of the data at level 𝑑 or higher of the tree has average diameter less than half

of the data.

5.2 | RANDOM PROJECTIONS

77

Algorithm 18 SplitSID

Input Dataset 𝐃 ⊂ ℝ𝑚

Output A partition (𝐒1, 𝐒2) of 𝐃
1: Let 𝑛 be the number of examples in 𝐃
2: Sample a random unit direction 𝐚
3: Sort 𝐛 = 𝐚 ⋅ 𝐱 for 𝐱 ∈ 𝐃 s.t. 𝑏1 ≤ 𝑏2 ≤ ⋯ ≤ 𝑏𝑛
4: for each 𝑖 ∈ [𝑛 − 1] do

5: 𝜇1 = 1
𝑖 ∑

𝑖
𝑗=1 𝑏𝑖, 𝜇2 = 1

𝑛−𝑖 ∑
𝑛
𝑗=𝑖+1 𝑏𝑖

6: 𝑐𝑖 = ∑𝑖
𝑗=1(𝑏𝑗 − 𝜇1)2 +∑𝑛

𝑗+1(𝑏𝑗 − 𝜇2)2
7: Find 𝑖 that minimizes 𝑐𝑖 and set 𝜃 = (𝑏𝑖 + 𝑏𝑖+1)/2
8: 𝐒1 ← {𝐱 | ∀𝐱 ∈ 𝐃 ∧ 𝐚 ⋅ 𝐱 ≤ 𝜃}
9: return (𝐒1, 𝐃 ⧵ 𝐒1)

Algorithm 19 SplitMax

Input Dataset 𝐃 ⊂ ℝ𝑚

Output A partition (𝐒1, 𝐒2) of 𝐃
1: Sample a random unit direction 𝐚
2: Pick any two datapoints 𝐱, 𝐲 ∈ 𝐃
3: Sample 𝛿 uniformly in [−𝑐, 𝑐], where 𝑐 = dist(𝐱,𝐲)

2
√
𝑚

4: 𝐒1 ← {𝐱 | ∀𝐱 ∈ 𝐃 ∧ 𝐚 ⋅ 𝐱 ≤ median({𝐚 ⋅ 𝐳 | 𝐳 ∈ 𝐃}) + 𝛿}
5: return (𝐒1, 𝐃 ⧵ 𝐒1)

Accordingly, the depth of the tree needs only to grow proportionally to the intrinsic

dimension and not to the number of variables. In addition to that and to other theoretical

insurances (Dhesi and Kar, 2010), the recursive partitioning scheme proposed is extremely

fast, taking linearithmic time in the dataset size (number of instances and variables).

Freund et al. (2008) further empirically show that employing random projections boosts

performance significantly compared to regular axis-aligned projections.

5.2 Random Projections

Let 𝐃 be a dataset with 𝐗 variables. A function 𝑓 ∶  → {0, 1} describes a binary split

of the joint space of variable configurations over variables 𝐗 and is here called a rule. A

rule partitions data by assigning observations to either 𝐒1 = {𝐱 | ∀𝐱 ∈ 𝐃 ∧ 𝑓 (𝐱) = 0}, or

𝐒2 = {𝐱 | ∀𝐱 ∈ 𝐃 ∧ 𝑓 (𝐱 = 1)}. This partitioning proceeds recursively until |𝐃| is sufficiently

small. When employing axis-aligned partitions, 𝑓 typically selects the variable with the

largest variance (or some other measure of spread) in 𝐃 and separates instances according

to the median value of that variable. The process is similar to the induction of decision

trees, except that in this case the rules discriminate against a target variable (Breiman,

2001).

The statistical properties of estimates obtained from the instances at the leaves of

a 𝑘-d tree depend on the rate at which the diameter of the partitions are reduced once

we move down the tree. For a space of dimension 𝑚, a 𝑘-d tree induced by the process

78

5 | A DATA PERSPECTIVE TO SCALABLE LEARNING

SplitMax SplitSID

Figure 5.2: Example of space partitioning by RPTrees grown using different split rules but the same

random directions.

described might require 𝑚 levels to halve the diameter of the original data (Dasgupta

and Freund, 2008). This is true even for datasets of low intrinsic dimension. The latter

is variously defined, and different definitions lead to different theoretical properties. A

common surrogate metric is the doubling dimension of the dataset 𝐃 ⊂ ℝ𝑚
, given by the

smallest integer 𝑑 such that the intersection of 𝐃 and any ball of radius 𝑟 centered at 𝐱 ∈ 𝐃
can be covered by at most 2𝑑 balls of radius

𝑟
2 (Dhesi and Kar, 2010).

Random Projection Trees (RPTrees) are a special type of 𝑘-d trees that split along a

random direction of the space. Two such splitting rules are given by Algorithm 18 (Freund

et al., 2008) and 19 (Dasgupta and Freund, 2008), where in the latter dist(𝐱, 𝐲) refers to the

Euclidean distance. We slightly modify SplitMax in two ways: first, instead of picking 𝐲 as

the farthest point in𝐃, we simply pick any two data points at random, which we empirically

found to not have much impact in performance and yet provided a significant boost to

learning speed; second, we multiply 𝑐 by
1
2 instead of 6, as we found that this yielded

better quality splits. The intuition behind either rule is to generate a random hyperplane

(unit direction) and then find a threshold projection value that roughly divides dataset 𝐃
into two approximately equal sized subsets. More concretely, we wish to find a mapping

𝑓 ∶ 𝐱 ↦
1

∑𝑑
𝑖=1 𝑥𝑖 ⋅ 𝑎𝑖 > 𝜃

9

that discriminates an assignment 𝐱 to one or the other side of a

hyperplane described as the random unit vector 𝐚 = (𝑎1, … , 𝑎𝑑). Algorithm 18 attempts at

finding the projection threshold 𝜃 by minimizing the average squared interpoint distance

(SID), while Algorithm 19 uses a random noise proportional to the average diameter of

𝐃. As discussed by Dasgupta and Freund (2008) and by Freund et al. (2008), either

optimizing or randomizing the threshold leads to better separation of data than simply

selecting the median point. Figure 5.1 shows the difference between axis-aligned and

random projections, while Figure 5.2 shows an example of space partitioning induced by

2-level RPTrees using each of the rules with the same direction vectors 𝑤. Note that the

rules produce quite different splits despite using the same random directions.

Unlike standard 𝑘-d trees, RPTrees ensure that, for a data with doubling dimension

𝑑, with high probability at most 𝑑 levels are necessary to half the diameter of the data.

5.3 | LEARNRP

79

Algorithm 20 LearnRP

Input Dataset 𝐃, variables 𝐗, vtree  and 𝑘 projection tryouts

Output A smooth and structured decomposable probabilistic circuit

1: if |𝐗| = 1 then return an input node learned from 𝐃
2: else

3: Sample 𝑘 projections and call 𝑓 the one which minimizes the avg. diameter of 𝐃
4: 𝐒1 ← {𝐱 | ∀𝐱 ∈ 𝐃 ∧ 𝑓 (𝐱) = 1}, 𝐒2 ← {𝐱 | ∀𝐱 ∈ 𝐃 ∧ 𝑓 (𝐱) = 0}
5: Let 𝑣 the root of 
6: C(1)

1 ← LearnRP(𝐒1, Sc(𝑣←), 𝑣←, 𝑘)
7: C(1)

2 ← LearnRP(𝐒1, Sc(𝑣→), 𝑣→, 𝑘)
8: C(2)

1 ← LearnRP(𝐒2, Sc(𝑣←), 𝑣←, 𝑘)
9: C(2)

2 ← LearnRP(𝐒2, Sc(𝑣→), 𝑣→, 𝑘)
10: Construct products P1 ← C(1)

1 ⋅C(1)
2 and P2 ← C(2)

1 ⋅C(2)
2

11: return sum node
|𝐒1 |
|𝐃| ⋅ P1 + |𝐒2 |

|𝐃| ⋅ P2

This leads to improved statistical properties that are connected to that notion of low

intrinsic dimensionality (Dasgupta and Freund, 2008; Dhesi and Kar, 2010). Inspired by

these findings, we propose a fast randomized structure learning algorithm for learning

probabilistic circuits by recursively stacking random projections in a divide-and-conquer

manner similar to what is done in LearnSPN. Albeit our contributions are minor, we

found that our approach is extremely fast and reaches competitive performance in binary

benchmark datasets.

5.3 LearnRP

A random projection (RP) naturally induces clusterings of data: given a rule 𝑓 , two

clusters are formed from the partitions induced by 𝑓 ’s hyperplane. We use this simple

yet extremely fast clustering method to replace clustering techniques in LearnSPN. We

justify this move from a theoretical and practical aspect. From a theoretical perspective,

every sum node created this way defines a latent variable corresponding to a hyperplane,

giving some interpretability (akin to decision trees) to the model. From a more practical

point of view, we point to the work of Vergari, Mauro, et al. (2015), showing that binary

partitions (both row-wise and column-wise) favor a deeper architecture and produce

smaller models. We further strengthen this last point by restricting the learned structure

to a vtree, effectively constructing smooth and structured decomposable PCs.

Of note is the fact that DETs are deterministic by nature, as the leaves of the binary

tree are constrained to the corresponding cells, meaning that only one path from leaf

to root is active at a time. Determinism could be enforced in RPTrees if, for every input

node (line 1 in Algorithm 20) their support were truncated to the cells induced by all

random projections above them, similar to what is done when representing DETs as

PCs. For the discrete case, we might attribute zero mass to assignments outside their

cell, normalizing the distribution with the remaining mass. However, apart from the fact

that doing so is not so trivial in the general case (i.e. in continuous domains) as the

projections are oblique and the resulting truncated distributions (essentially polytopes of

80

5 | A DATA PERSPECTIVE TO SCALABLE LEARNING

0 1 2 3 4 5
1

2
3

4
51

2
3
4
5

𝐀

𝑋
𝑌

𝑍

𝐀(𝑥, 𝑦, 𝑧) = [𝑥 𝑦 𝑧] ⋅
⎡
⎢
⎢
⎣

−0.31
−0.40
0.85

⎤
⎥
⎥
⎦⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑎

+ 1⏟⏟⏟
𝜃

1

𝑍 2

𝑌 𝑋

+
𝐀

×
𝐀(𝐱) > 0

×
𝐀(𝐱) ≤ 0

𝑤𝐀 = 16
36 𝑤𝐀 = 20

36

𝑤𝐀: probability of 𝐀(𝐱) > 0

Figure 5.3: Given a cloud of points, LearnRP samples a hyperplane 𝐀(𝑥, 𝑦, 𝑧) (here shown as the

green plane on the left), dividing the dataset into two subsets (in blue and red). A unit vector 𝑎
is uniformly sampled and the threshold 𝜃 is found by either SplitMax or SplitSID. The resulting

partition is represented in the circuit as a sum node + with two product nodes × and × . Weights are

then initialized as the proportions of each subset.

possibly high dimension) must have tractable marginalization, this process also violates

decomposability: by truncating inputs, we are essentially turning the previously univariate

inputs from line 1 into multivariate distributions covering the entire scope, making products

learned in line 10 nondecomposable. This comes from the fact that each hyperplane is a

function 𝑓 (𝐱) =
1

∑𝑑
𝑖=1 𝑥𝑖 ⋅ 𝑎𝑖 > 𝜃

9

with Sc(𝑓) = Sc(𝑣), where 𝑣 is the vtree node of line 5.

Further, because each variable 𝑋 ∈ Sc(𝑣) contributes (linearly) to 𝑓 , marginalization in this

multivariate distribution is not as straightforward. We therefore choose not to constraint

inputs.

LearnRP constructs the circuit recursively. At each call, it samples a hyperplane 𝑓 (𝐱)
which then produces a sum node + encoding the partitioning of the data 𝐃 by 𝑓 (𝐱); it then

creates two product nodes × and × , which are set as + ’s children and who are semantically

linked to the dataset partitions 𝐒1 = {𝐱 | ∀𝐱 ∈ 𝐃∧ 𝑓 (𝐱) = 1} and 𝐒2 = {𝐱 | ∀𝐱 ∈ 𝐃∧ 𝑓 (𝐱) = 0}
respectively. Children nodes of both × and × are then constructed by recursively calling

LearnRP over their corresponding subdata, each following the right scope decomposition

according to the vtree. Figure 5.3 and Figure 5.4 show the first and second recursive calls

to LearnRP.

5.3.1 Complexity

The complexity analysis for both SplitSID (Algorithm 18) and SplitMax (Algorithm 19)

is straightforward. The first is (𝑛(𝑚 + log 𝑛)) on the number of assignments 𝑛 and number

of variables𝑚, since line 3 sorts over all {𝑏𝑖}𝑛𝑖=1 and line 8 requires computing the dot product

of every instance in 𝐃. Similarly, SplitMax is (𝑛 ⋅ 𝑚) because of the computation of the

dot product, with the rest linear on either 𝑛 or 𝑚.

As for LearnRP, its complexity mainly relies on the complexity of its random projection

sampler. If we assume it to be SplitMax, then each LearnRP call is  (𝑘 ⋅ 𝑛 ⋅ 𝑚), where 𝑘
is the number of random projection trials.

5.4 | EXPERIMENTS

81

0 1 2 3 4 5
1

2
3

4
51

2
3
4
5

𝐀

𝐁

𝑋
𝑌

𝑍

𝐁
 (𝜇 = 3.76, 𝜎 = 0.95)

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

𝑍

𝑝(𝑍)

𝐁(𝑥, 𝑦) = [𝑥 𝑦] ⋅ [
1.10

−1.00]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑏

− 2.43⏟⏞⏞⏟⏞⏞⏟
𝛾

1

𝑍 2

𝑌 𝑋

+
𝐀

×
𝐀(𝐱) > 0

×
𝐀(𝐱) ≤ 0

+
𝐁

 (3.76, 0.95)

×
𝐁(𝐱) > 0

×
𝐁(𝐱) ≤ 0

⋮

16
36

20
36

8
16

8
16

Figure 5.4: Products in LearnRP decompose according to a given vtree, meaning subsequent recursive

calls require projecting the data onto the space of relevant variables. The subcircuit rooted at ×

decomposes into {𝑍} and {𝑌 , 𝑋}, and so projects the blue datapoints first onto the 𝑍 line, resulting

in the  (3.76, 0.95) distribution in orange ; and then onto the 𝑋𝑌-plane. As |{𝑌 , 𝑋}| > 1, LearnRP

then recurses on + , producing a new hyperplane 𝐁(𝑥, 𝑦) (in this case a line) to partition the projected

points.

5.4 Experiments

For binary data, we evaluate LearnRP on the 20 well-known binary datasets for density

estimation (Lowd and Davis, 2010; Van Haaren and Davis, 2012)
1

and compare against

reported results from LearnSPN (Gens and P. Domingos, 2013), Strudel, LearnPSDD

(both from the benchmarks reported in Dang, Vergari, et al., 2020), Prometheus (Jaini,

Ghose, et al., 2018) and XPC (Mauro et al., 2021). To measure performance in continuous

domains, we compare LearnRP against the reported performance of Prometheus, deep

Boltzmann machines (SRBMs, Salakhutdinov and Hinton, 2009), an offline version of

Hsu et al.’s online structure learning with Gaussian leaves (oSLRAU, Hsu et al., 2017),

Gaussian mixture models with Bayesian moment matching (GBMMs, Jaini, Rashwan,

et al., 2016), infinite Gaussian mixture models (iGMMs, Rasmussen, 2000), standard GMMs

and infinite sum-product trees (iSPTs, Trapp, Peharz, Skowron, et al., 2016) all of which

are reported in Jaini, Ghose, et al. (2018). We used the same 10 continuous datasets

as Jaini, Ghose, et al. (2018)
2
, which although are reported as coming from the UCI

Machine Learning Repository (Dua and Graff, 2017) and Bilkent University’s Function

Approximation Repository (Güvenir and Uysal, 2000), are numerically distinct from the

ones found in these repositories. Table 5.1 shows detailed information of every dataset

evaluated.

1
Taken from https://github.com/UCLA-StarAI/Density-Estimation-Datasets.

2
Which we compiled to https://github.com/RenatoGeh/CDEBD.

https://github.com/UCLA-StarAI/Density-Estimation-Datasets
https://github.com/RenatoGeh/CDEBD

82

5 | A DATA PERSPECTIVE TO SCALABLE LEARNING

Dataset Vars Train Test Domain Dataset Vars Train Test Domain

accidents 111 12758 2551 {0, 1} nltcs 16 16181 3236 {0, 1}
ad 1556 2461 491 {0, 1} plants 69 17412 3482 {0, 1}

audio 100 15000 3000 {0, 1} pumsb-star 163 12262 2452 {0, 1}
bbc 1058 1670 330 {0, 1} eachmovie 500 4524 591 {0, 1}

netflix 100 15000 3000 {0, 1} retail 135 22041 4408 {0, 1}
book 500 8700 1739 {0, 1} abalone 8 3760 417 ℝ

20-newsgrp 910 11293 3764 {0, 1} ca 22 7373 819 ℝ
reuters-52 889 6532 1540 {0, 1} quake 4 1961 217 ℝ
webkb 839 2803 838 {0, 1} sensorless 48 52659 5850 ℝ
dna 180 1600 1186 {0, 1} banknote 4 1235 137 ℝ
jester 100 9000 4116 {0, 1} flowsize 3 1358674 150963 ℝ
kdd 65 180092 34955 {0, 1} kinematics 8 7373 819 ℝ

kosarek 190 33375 6675 {0, 1} iris 4 90 10 ℝ
msnbc 17 291326 58265 {0, 1} oldfaith 2 245 27 ℝ
msweb 294 29441 5000 {0, 1} chemdiabet 3 131 14 ℝ

Table 5.1: Details for all binary and continuous benchmark datasets.

When evaluating the performance of LearnRP, we did not see a significant difference

between SplitSID and SplitMax, and so we only report figures for the latter. We set the

number of projection tryouts 𝑘 to 100 and, when the domain is discrete, learn the vtree

by the top-down pairwise mutual information algorithm discussed in Section 3.2.1; when

the domain is continuous, we replace mutual information with Pearson’s correlation. We

use Gaussian mixture models as input nodes and fine-tune the parameters of the resulting

structure by minibatch EM. Experiments were carried out on a single computer with a

12-core Intel i7 3.7GHz processor and 64GB RAM.

LearnRP was implemented in Julia
3
. Measurements for both Strudel

4
and

LearnPSDD
5

were based on the original code repositories. For fairness, when comparing

runtimes for speed benchmarking we reran similar setups as originally reported for

XPC, Strudel and LearnPSDD in the same machine used for running LearnRP, setting

the number of iterations to 1000 for the two INCR algorithms. Similarly, we compare

runtimes of a Rust implementation
6

of LearnSPN on the same machine; we use 𝑘-means

for learning sums and G-test for products, setting 𝑘 = 2 for a shorter learning time. We do

not report running times for the original Prometheus code since, as far as we know, the

source code was not made public and no working implementation could be found.

5.4.1 Binary data

Table 5.2 shows benchmark results for binary data. For fairness, we report results

for best ensembles of XPC, Strudel and LearnPSDD so that all models compared are

smooth and structured decomposable (with the exception of LearnSPN and Prometheus

which are only decomposable) but nondeterministic. Columns LearnRP-10, LearnRP-

20, LearnRP-30, LearnRP-100 and LearnRP-F correspond to runs of a single LearnRP

3
The source code can be found at https://github.com/RenatoGeh/RPCircuits.jl.

4
https://github.com/UCLA-StarAI/Strudel

5
https://github.com/YitaoLiang/Scala-LearnPsdd

6
Source code found at https://gitlab.com/marcheing/spn-rs.

https://github.com/RenatoGeh/RPCircuits.jl
https://gitlab.com/marcheing/spn-rs

5.4 | EXPERIMENTS

83

D
a

t
a

s
e
t

L
e
a
r
n
S
P
N

S
t
r
u
d
e
l

L
e
a
r
n
P
S
D
D

X
P
C

P
r
o
m
e
t
h
e
u
s

L
e
a
r
n
R
P

-
F

L
e
a
r
n
R
P

-
1

0
0

L
e
a
r
n
R
P

-
3

0
L
e
a
r
n
R
P

-
2

0
L
e
a
r
n
R
P

-
1

0

a
c
c
i
d
e
n
t
s

-
3
0
.0

3
|-2

8
.7

3
|

-
3
0
.1

6
-
3
1
.0

2
-
2

7
.
9

1
-
2
8
.6

6
-
2
8
.8

1
-
2
9
.2

7
-
2
9
.4

4
-
2
9
.9

9

a
d

-
1
9
.7

3
-
1
6
.3

8
-
3
1
.7

8
-
1

5
.
5

0
-
2
3
.9

6
|-1

9
.2

6
|

-
1
9
.9

9
-
2
0
.4

0
-
2
0
.6

8
-
2
1
.7

1

a
u
d
i
o

-
4
0
.5

0
-
4
1
.5

0
-
3
9
.9

4
-
4
0
.9

1
-
3

9
.
8

0
|-4

0
.2

7
|

-
4
0
.3

0
-
4
0
.4

7
-
4
0
.5

7
-
4
0
.8

9

b
b
c

|-2
5
0
.6

8
|

-
2
5
4
.4

1
-
2
5
3
.1

9
-
2

4
8

.
3

4
-
2
4
8
.5

0
-
2
5
4
.1

5
-
2
5
1
.5

7
-
2
5
3
.7

3
-
2
5
6
.4

7
-
2
5
4
.6

0

n
e
t
f
l
i
x

|-5
7
.0

2
|

-
5
8
.6

9
-
5

5
.
7

1
-
5
7
.5

8
-
5
6
.4

7
-
5
7
.0

2
-
5
7
.0

3
-
5
7
.2

6
-
5
7
.4

7
-
5
7
.7

2

b
o
o
k

-
3
5
.8

8
-
3
4
.9

9
-
3
4
.9

7
-
3
4
.7

5
-
3
4
.4

0
-
3
3
.5

6
-
3

3
.
4

1
|-3

3
.9

1
|

-
3
4
.2

9
-
3
4
.6

3

2
0
-
n
e
w
s
g
r
p

-
1
5
5
.9

2
-
1
5
4
.4

7
-
1
5
5
.9

7
|-1

5
3
.7

5
|

-
1
5
4
.1

7
-
1
5
2
.6

3
-
1

5
2

.
3

4
-
1
5
3
.8

2
-
1
5
4
.6

4
-
1
5
6
.5

2

r
e
u
t
e
r
s
-
5
2

|-8
5
.0

6
|

-
8
6
.2

2
-
8
9
.6

1
-
8
4
.7

0
-
8

4
.
5

9
-
8
5
.6

9
-
8
5
.7

6
-
8
7
.2

4
-
8
7
.0

4
-
8
8
.1

5

w
e
b
k
b

-
1
5
8
.2

0
-
1
5
5
.3

3
-
1
6
1
.0

9
-
1
5
3
.6

7
-
1
5
5
.2

1
|-1

5
3
.5

2
|

-
1

5
1

.
8

0
-
1
5
2
.7

6
-
1
5
3
.8

6
-
1
5
4
.4

8

d
n
a

-
8

2
.
5

2
-
8
6
.2

2
-
8
8
.0

1
-
8
6
.6

1
-
8
4
.4

5
-
8
3
.5

7
|-8

3
.6

2
|

-
8
3
.9

2
-
8
5
.2

4
-
8
5
.1

3

j
e
s
t
e
r

-
7
5
.9

8
-
5
5
.0

3
-
5

1
.
2

9
-
5
3
.4

3
-
5
2
.8

0
-
5
2
.9

2
|-5

2
.8

6
|

-
5
3
.0

5
-
5
3
.2

0
-
5
3
.4

5

k
d
d

-
2
.1

8
|-2

.1
3
|

-
2

.
1

1
-
2
.1

5
-
2
.1

2
-
2
.1

4
-
2
.1

4
-
2
.1

9
-
2
.1

6
-
2
.2

0

k
o
s
a
r
e
k

-
1
0
.9

8
-
1
0
.6

8
-
1

0
.
5

2
-
1
0
.7

7
-
1
0
.5

9
|-1

0
.6

2
|

-
1
0
.6

6
-
1
0
.8

0
-
1
0
.8

4
-
1
1
.0

2

m
s
n
b
c

-
6
.1

1
-
6

.
0

4
-
6

.
0

4
|-6

.1
8
|

-
6

.
0

4
-
6
.3

3
-
6
.3

5
-
6
.3

5
-
6
.4

0
-
6
.4

8

m
s
w
e
b

-
1
0
.2

5
-
9

.
7

1
|-9

.8
9
|

-
9
.9

3
-
9
.8

6
-
9
.9

0
-
9
.9

3
-
1
0
.0

3
-
1
0
.1

1
-
1
0
.2

1

n
l
t
c
s

-
6
.1

1
-
6
.0

6
-
5

.
9

9
|-6

.0
5
|

-
6
.0

1
-
6
.2

2
-
6
.2

7
-
6
.2

5
-
6
.2

6
-
6
.3

1

p
l
a
n
t
s

-
1
2
.9

7
|-1

2
.9

8
|

-
1
3
.0

2
-
1
4
.1

9
-
1

2
.
8

1
-
1
3
.7

7
-
1
3
.8

1
-
1
4
.0

1
-
1
4
.1

8
-
1
4
.4

6

p
u
m
s
b
-
s
t
a
r

|-2
4
.7

8
|

-
2
4
.1

2
-
2
6
.1

2
-
2
6
.0

6
-
2

2
.
7

5
-
2
6
.1

2
-
2
6
.3

3
-
2
6
.9

9
-
2
7
.1

4
-
2
7
.6

0

e
a
c
h
m
o
v
i
e

-
5
2
.4

8
-
5
3
.6

7
-
5
8
.0

1
-
5
4
.8

2
|-5

1
.4

9
|

-
5
1
.4

1
-
5

0
.
9

5
-
5
4
.4

3
-
5
7
.4

9
-
6
2
.4

4

r
e
t
a
i
l

-
1
1
.0

4
-
1
0
.8

1
-
1

0
.
7

2
-
1
0
.9

4
-
1
0
.8

7
|-1

0
.8

4
|

-
1
0
.8

6
-
1
0
.9

4
-
1
0
.9

7
-
1
1
.0

8

A
v

g
.
R

a
n

k

5
.9

7
±

3
.0

3
5
.3

0
±

3
.0

3
5
.1

2
±

3
.8

1
5
.6

5
±

2
.7

2
3

.
0

0
±

2
.
2

5
3
.7

3
±

1
.5

3
|4

.2
2
±

2
.2

1
|

5
.9

5
±

1
.7

7
7
.3

0
±

1
.3

8
8
.7

5
±

1
.4

8

4
.8

3
±

1
.8

9
4
.3

0
±

1
.9

2
|4

.0
3
±

2
.5

7
|

4
.6

2
±

1
.8

8
2

.
5

0
±

1
.
4

3
3
.6

2
±

1
.4

7
4
.1

0
±

1
.9

8

T
a

b
l
e

5
.
2

:
P
e
r
f
o
r
m

a
n

c
e

o
f
L
e
a
r
n
R
P

i
n

l
o
g
-
l
i
k
e
l
i
h

o
o
d

a
g
a
i
n

s
t

s
t
a
t
e
-
o
f
-
t
h

e
-
a
r
t

c
o
m

p
e
t
i
t
o
r
s

i
n

t
h

e
t
w

e
n

t
y

b
i
n

a
r
y

d
a
t
a
s
e
t
s

f
o
r

d
e
n

s
i
t
y

e
s
t
i
m

a
t
i
o
n

.
E

n
t
r
i
e
s

i
n

b
o

l
d

c
o
r
r
e
s
p
o
n

d
t
o

b
e
s
t

p
e
r
f
o
r
m

a
n

c
e
,
u

n
d

e
r
l
i
n

e
d

e
n

t
r
i
e
s

a
r
e

s
e
c
o
n

d
b
e
s
t
,
a
n

d
|b

a
r
r
e
d
|e

n
t
r
i
e
s

a
r
e

t
h

i
r
d

p
l
a
c
e
.
T

h
e

l
a
s
t

t
w

o
r
o
w

s
r
e
f
e
r

t
o

t
h

e
a
v
e
r
a
g
e

r
a
n

k
i
n

g
o
f

e
a
c
h

a
l
g
o
r
i
t
h

m
a
c
r
o
s
s

a
l
l

d
a
t
a
s
e
t
s
;
t
h

e
fi

r
s
t

c
o
m

p
a
r
e
s

r
a
n

k
i
n

g
s

o
f

a
l
l

v
a
r
i
a
n

t
s

o
f
L
e
a
r
n
R
P

a
g
a
i
n

s
t

c
o
m

p
e
t
i
t
o
r
s
,
w

h
i
l
e

t
h

e
l
a
s
t

o
n

l
y

c
o
m

p
a
r
e
s
L
e
a
r
n
R
P
-
F

a
g
a
i
n

s
t

t
h

e

s
t
a
t
e
-
o
f
-
t
h

e
-
a
r
t
.

84

5 | A DATA PERSPECTIVE TO SCALABLE LEARNING

Figure 5.5: Test log-likelihood performance of LearnRP shown as the curve in under different

iterations of minibatch EM, with the remaining curve in corresponding to full EM iterations. Each

horizontal line shows the performance of a different competitor: for LearnSPN, for Strudel,

for LearnPSDD, for XPC and finally for Prometheus

circuit where we optimize the learned structure with 10, 20, 30, and for the last two, 100

iterations of minibatch EM with a batch size of 500 instances. After this, for LearnRP-F,

we proceed to run 30 iterations of full EM, a regularization strategy suggested by A. Liu

and Van den Broeck (2021). The last two rows of Table 5.2 correspond to the average rank

of each algorithm followed by their standard deviation, with the last row ignoring the

ranks for LearnRP-10, LearnRP-20 and LearnRP-30. We note that our approach, when

run with 100 iterations of minibatch EM and later 30 iterations of full EM, was able to

reach competitive results against the state-of-the-art, reaching second place overall in

terms of average rank, with LearnRP-100 closely behind. We also note how LearnRP

is consistent in its ranking, as the rank standard deviation shows. Figure 5.5 shows how

much minibatch and full EM improve LearnRP and how many iterations are needed for it

to match the performance of competitors. Notably, it also shows how full EM may degrade

the model’s performance depending on the dataset.

5.4 | EXPERIMENTS

85

Figure 5.6: Test log-likelihood curve, shown in , of LearnRP with randomized weights under

different iterations of minibatch EM, with the remaining curve in corresponding to full EM

iterations. Each horizontal line shows the performance of a different competitor: for LearnSPN,

for Strudel, for LearnPSDD, for XPC and finally for Prometheus

As a superficial ablation study of the impact of random projections on the initial

parameterization of probabilistic circuits, we verify and compare the performance of

LearnRP under random weights without modifying the structure. To be more precise,

for each of the structures generated in Figure 5.5, we completely randomize all sum node

weights without altering the PC structure by uniformly sampling numbers in the [0, 1] ⊂ ℝ
interval, setting these as weights, and then normalizing sum edges such that the sum of

all weights equal to one. Once all weights have been randomized this way, we retrain with

minibatch EM for 100 iterations. Figure 5.6 shows the test log-likelihood curves for this

random initialization. We found that using the proportions of the random projection splits

as sum weights provided a better initial parameterization compared to random weight

initialization, with the former getting a significant boost to performance when compared

to the randomized approach.

Table 5.3 shows average running times for each learning algorithm to construct either

86

5 | A DATA PERSPECTIVE TO SCALABLE LEARNING

Figure 5.7: Table 5.3 benchmarks graphically visualized. Each datapoint corresponds to an entry in

Table 5.3. The abscissa shows the dataset complexity, here defined as log(𝑛 ⋅ 𝑚), where 𝑛 and 𝑚 are

the number of variables and assignments in the dataset respectively; while the ordinate quantifies,

in seconds, how much time a learning algorithm took to produce a model. The gray line at the top

signals a 24 hours limit, in which case the job that exceeds it is terminated. Competitors (in orange)

were often orders of magnitude slower compared to LearnRP.

a single circuit (as is the case for LearnSPN, LearnPSDD and LearnRP) or an ensemble

(mixtures of 10 circuits in the case of Strudel and XPC) for each dataset. Figure 5.7

provides a more visual comparison on the orders of magnitude difference between learning

times. Figure 5.8 shows the same data but at log scale for better visualization. As average

log-likelihoods for Strudel, LearnPSDD and XPC as reported in Table 5.2 are a result

of an extensive grid-search on the number of components in the ensemble (among other

hyperparameters), our measurement of their running time performance is surely inaccurate.

Instead of attempting to accurately quantify their learning time, we instead claim that

the measurements we take are a rough experimental lower bound on their running time

performance, as we fix and run only for a relatively small number of components per

ensemble. We also draw attention to the fact that, not only does LearnRP-100 have a

very competitive performance, but it is also orders of magnitude faster when compared to

LearnSPN, Strudel or LearnPSDD, even if we were to consider the values reported here

as their true running time benchmarks instead of lower bounds. When put against XPC,

we note that LearnRP-100 is consistently slower, albeit with better overall log-likelihood

performance as evidenced in Table 5.2. Further, running 30 iterations of full EM sometimes

provided a small boost to performance at a mild cost to learning time, putting LearnRP in

a competitive place compared to more sophisticated learning algorithms. We also note

that, even though our EM implementation makes use of CPU parallelization, there is much

room for improvement, such as bringing most of the computations to the GPU.

Table 5.4 shows circuit sizes for each learning algorithm. All except for LearnSPN

5.4 | EXPERIMENTS

87

Figure 5.8: Figure 5.7 when transforming the ordinate to log scale, where the difference between XPC,

LearnRP and the other more costly algorithms becomes clearer.

are reported as in their original works to better reflect the log-likelihood results shown

in Table 5.2. Because Gens and P. Domingos (2013) do not report circuit sizes, we report

values from our own runs. We do not show circuit sizes for Prometheus since we could

not find the source code and Jaini, Ghose, et al. (2018) do not report circuit sizes.

Overall, we found LearnRP to be competitive against the state-of-the-art, often reach-

ing second or first place in the case of LearnRP-F and LearnRP-100. Even though it is

such a simple learning algorithm, it was capable of, on average, outperforming all other

structured-decomposable learning algorithms, even producing somewhat competitive

models under few EM iterations. LearnRP came only behind Prometheus, a sophisticated

learning algorithm for producing a more relaxed kind of (non tree-shaped) circuit that

only depends on decomposability, as opposed to the stronger restrictions imposed by

structured-decomposability. Arguably, LearnRP’s strengths come from its speed, learning

circuits via minibatch EM in a fraction of the time when compared to LearnSPN, Strudel

and LearnPSDD. Perhaps the more direct competitor of LearnRP in terms of scalability

is XPC, showing the power of RAND-type learners when it comes to speed. Recall from

Section 3.3.2, however that XPC requires an extensive grid search on the hyperparameters,

while the performance of LearnRP mainly depends on how much time one is willing to

spend to fine-tune weights with parameter learning. Notably, we found that LearnRP

performs worse on data with fewer variables (e.g. nltcs, msnbc, kdd) and better on data

with more variables (e.g. 20-newsgrp, book, webkb), which is perhaps correlated with

the smaller, and respectively larger, circuits from Table 5.4.

88

5 | A DATA PERSPECTIVE TO SCALABLE LEARNING

D
a

t
a

s
e
t

L
e
a
r
n
S
P
N

S
t
r
u
d
e
l

L
e
a
r
n
P
S
D
D

X
P
C

L
e
a
r
n
R
P
-
F

L
e
a
r
n
R
P
-
1
0
0

L
e
a
r
n
R
P
-
3
0

L
e
a
r
n
R
P
-
2
0

L
e
a
r
n
R
P
-
1
0

L
e
a
r
n
R
P
-
0

a
c
c
i
d
e
n
t
s

4
9
m

2
7
s

2
h

4
6
m

3
s

4
h

1
4
m

2
1
s

1
m

4
7
s

7
m

1
9
s

2
m

1
6
s

1
m

0
s

4
5
s

3
0
s

1
0
s

a
d

1
h

6
m

3
0
s

1
h

3
m

3
2
s

3
6
m

3
4
s

3
m

1
5
s

2
9
m

1
4
s

1
8
m

2
7
s

6
m

3
s

4
m

8
s

2
m

1
6
s

2
1
s

a
u
d
i
o

1
h

4
6
m

3
8
s

8
h

1
8
m

4
8
s

6
h

5
3
m

9
s

1
m

5
8
s

6
m

3
5
s

2
m

9
s

5
2
s

3
6
s

1
9
s

4
s

b
b
c

3
9
m

1
6
s

3
h

1
7
m

3
6
s

3
5
m

5
s

4
m

0
s

5
7
m

2
2
s

3
7
m

3
4
s

1
1
m

3
7
s

7
m

3
7
s

3
m

5
9
s

3
3
s

n
e
t
f
l
i
x

5
0
m

1
s

5
h

4
8
m

3
7
s

1
0
h

3
3
m

3
8
s

2
m

8
s

7
m

1
1
s

2
m

2
5
s

1
m

0
s

4
2
s

2
3
s

4
s

b
o
o
k

4
h

5
7
m

5
7
s

3
h

9
m

9
s

3
h

3
4
m

6
s

2
m

2
6
s

3
2
m

4
3
s

1
4
m

4
7
s

5
m

4
s

3
m

2
2
s

1
m

4
5
s

1
1
s

2
0
n
e
w
s

2
4
h

0
m

0
s

4
h

3
3
m

1
0
s

3
h

3
5
m

2
7
s

3
9
m

3
9
s

4
h

3
2
m

2
6
s

1
h

5
m

3
6
s

2
6
m

2
6
s

1
7
m

3
8
s

9
m

3
8
s

5
2
s

r
e
u
t
5
2

3
h

5
3
m

3
1
s

3
h

3
4
m

1
s

2
4
h

0
m

0
s

7
m

2
6
s

1
h

2
5
m

1
2
s

4
6
m

3
3
s

1
7
m

3
9
s

1
2
m

4
4
s

8
m

4
0
s

3
m

3
5
s

w
e
b
k
b

1
h

4
3
m

3
3
s

2
h

4
7
m

5
3
s

4
9
m

4
1
s

3
m

2
1
s

1
h

1
m

4
8
s

3
7
m

4
6
s

1
3
m

2
0
s

9
m

3
0
s

6
m

2
4
s

2
m

3
4
s

d
n
a

6
m

1
1
s

1
h

0
m

4
7
s

1
h

2
m

2
3
s

1
7
s

6
m

4
7
s

4
m

3
1
s

1
m

1
9
s

5
3
s

2
9
s

0
s

j
e
s
t
e
r

3
3
m

5
1
s

1
0
h

1
9
m

3
3
s

4
h

3
9
m

1
7
s

1
m

2
0
s

6
m

2
4
s

3
m

6
s

1
m

2
s

4
2
s

2
3
s

2
s

k
d
d

2
4
h

0
m

0
s

3
h

3
0
m

3
s

2
3
m

5
8
s

7
m

1
6
s

1
3
m

3
3
s

1
m

1
s

1
m

8
s

5
4
s

3
9
s

2
5
s

k
o
s
a
r
e
k

8
h

2
8
m

4
6
s

4
h

4
8
m

1
6
s

5
h

5
2
m

2
2
s

2
m

1
2
s

2
1
m

5
9
s

4
m

4
5
s

2
m

6
s

1
m

2
5
s

4
9
s

1
5
s

m
s
n
b
c

2
4
h

0
m

0
s

5
h

1
9
m

5
1
s

2
h

2
8
m

5
7
s

6
m

4
6
s

3
m

1
0
s

1
5
s

1
8
s

1
5
s

1
4
s

9
s

m
s
w
e
b

7
h

4
4
m

5
s

1
0
m

3
1
s

2
3
h

1
2
m

5
8
s

4
m

5
0
s

3
2
m

5
9
s

7
m

2
6
s

2
m

5
3
s

2
m

4
s

1
m

1
2
s

1
8
s

n
l
t
c
s

8
m

2
8
s

1
h

4
0
m

3
6
s

2
m

5
s

1
7
s

1
7
s

3
s

2
s

1
s

1
s

0
s

p
l
a
n
t
s

3
8
m

1
4
s

2
3
h

8
m

4
0
s

5
h

1
2
m

4
7
s

1
m

3
s

4
m

5
8
s

1
m

4
0
s

3
0
s

2
1
s

1
2
s

3
s

p
u
m
s
b
-
s
t
a
r

3
9
m

3
2
s

3
h

2
0
m

2
4
s

7
h

2
4
m

0
s

1
m

3
9
s

1
0
m

1
5
s

4
m

1
7
s

1
m

2
2
s

5
8
s

3
2
s

5
s

e
a
c
h
m
o
v
i
e

3
0
m

5
7
s

2
h

5
1
m

1
7
s

2
h

2
m

5
5
s

2
m

3
8
s

1
7
m

3
5
s

1
0
m

2
3
s

3
m

1
0
s

2
m

8
s

1
m

7
s

5
s

r
e
t
a
i
l

3
h

9
m

8
s

3
3
m

4
6
s

3
h

7
m

4
4
s

1
m

3
0
s

1
3
m

0
s

3
m

2
5
s

1
m

1
3
s

5
1
s

3
1
s

7
s

T
a

b
l
e

5
.
3

:
L

e
a
r
n

i
n

g
t
i
m

e
b
e
n

c
h

m
a
r
k
s

f
o
r
L
e
a
r
n
S
P
N

,
S
t
r
u
d
e
l
,
L
e
a
r
n
P
S
D
D

,
X
P
C

a
n

d
L
e
a
r
n
R
P
.
W

e
s
i
g
n

a
l

a
s
L
e
a
r
n
R
P
-
𝑘

t
h

e
p
r
o
c
e
s
s

o
f

r
u

n
n

i
n

g
L
e
a
r
n
R
P

a
n

d

t
h

e
n

r
u

n
n

i
n

g
𝑘

i
t
e
r
a
t
i
o
n

s
o
f

m
i
n

i
b
a
t
c
h

E
M

.

5.4 | EXPERIMENTS

89

Dataset LearnSPN Strudel LearnPSDD XPC LearnRP

accidents 32708 75363 8418 11921 19077

ad 40901 13152 12238 22093 100939

audio 50130 55675 18208 29317 19283

bbc 39389 29532 12335 14578 236973

netflix 36286 27173 10997 39868 21879

book 51493 54839 10978 13678 101331

20-newsgrp 119060 58749 15793 65881 471609

reuters-52 155191 36343 10410 36440 288638

webkb 223847 25406 11033 17122 239006

dna 12180 17507 3068 2616 37971

jester 25076 27713 11322 20273 23347

kdd 8755 6572 2915 13040 4343

kosarek 19512 37583 7173 20938 28729

msnbc 11606 20795 5465 4887 789

msweb 10743 2347 6581 12135 46535

nltcs 1855 4373 1304 4401 511

plants 36596 119194 11583 13960 10423

pumsb-star 26206 108876 8298 8866 31779

eachmovie 54184 123996 20648 21369 70325

retail 2158 3979 2989 6651 21747

Table 5.4: Circuit size (in the number of nodes) comparison between LearnRP and the state-of-the-art

in the twenty binary datasets for density estimation.

5.4.2 Continuous data

Table 5.5 shows results for continuous data. Note that some entries are positive since the

log-likelihood of continuous variables can be positive. As previously mentioned, reported

performance of SRBMs, oSLRAU, GBMMs, and Prometheus come from Jaini, Ghose,

et al. (2018), while iGMM and iSPT reports come from Trapp, Peharz, Skowron, et al.

(2016). For comparison, we trained standard GMMs with 5 Gaussians as components and

diagonal covariances through the GaussianMixtures.jl library
7
. Component centers

were initialized with 𝑘-means, with GMM weights and Gaussian variances learned through

EM. Because the evaluated continuous datasets were small in size, we only show results

for LearnRP under 100 iterations of EM. We also do not run full EM after the batch variant

as we found performance to degrade after doing so. When constructing the circuit with

LearnRP, we use mixtures of three Gaussians as input nodes. We learn both sum weights

and input GMMs through EM. The last column of Table 5.5 shows the circuit sizes of

LearnRP.

We found that LearnRP behaves poorly on continuous datasets, which goes against

our intuition of random projections. This could possibly be due to the smaller number

of variables in these datasets (as evidenced by the reduced circuit sizes in Table 5.5’s last

column), causing LearnRP to produce very small models. We also point to the fact that

7
Available at https://github.com/davidavdav/GaussianMixtures.jl.

https://github.com/davidavdav/GaussianMixtures.jl

90

5 | A DATA PERSPECTIVE TO SCALABLE LEARNING

Dataset Vars SRBMs oSLRAU GBMMs iGMMs GMMs Prometheus iSPTs LearnRP Size

abalone 8 -2.28 -0.94 |-1.17| — -4.65 -0.85 — -3.58 317

banknote 4 |-2.76| -1.39 -4.64 — -4.32 -1.96 — -4.27 79

ca 22 -4.95 21.19 3.42 — -7.33 27.82 — |9.48| 2675

kinematics 8 -5.55 -11.13 -11.20 — -11.15 |-11.12| — -10.16 319

quake 4 -2.38 -1.21 -3.76 — -4.09 -1.50 — |-1.63| 79

sensorless 48 -26.91 60.72 8.56 — -34.14 62.03 — |17.52| 12650

chemdiabet 3 — — — |-3.02| -18.49 -2.59 -2.88 -19.06 47

flowsize 3 -0.79 15.32 |5.72| — 2.27 18.03 — 2.83 49

oldfaith 2 — — — |-1.73| -4.18 -1.48 -1.70 -4.26 19

iris 4 — — — -3.94 -2.26 -1.06 -3.74 |-3.14| 79

Table 5.5: Performance of LearnRP in log-likelihood against state-of-the-art competitors in ten

continuous datasets for density estimation and function approximation. Entries in bold correspond to

best performance, underlined entries are second best, and |barred| entries are third place. Last column

shows size (in the number of nodes) of circuits learned with LearnRP.

full EM was degrading the performance of LearnRP which is a possible indication that

our EM implementation may suffer from numerical issues and/or perhaps that the learned

circuit is overfitting the training data.

5.5 Summarizing LearnRP

By taking inspiration from the decision tree literature, we have proposed in this

chapter an efficient and effective way of constructing probabilistic circuits through random

projections. Our approach generates random smooth and structured decomposable PCs in

a manner similar to LearnSPN. Contrastively to LearnSPN, however, instead of running

clustering algorithms to divide data instances as a means to learn sum nodes, we resort to a

faster and simpler alternative: we randomly sample a hyperplane in order to linearly divide

the data in two. This, coupled with the fact that products are derived from the partitioning

induced by a vtree, accelerates learning to the point that, even after optimizing weights

through minibatch EM, our technique is orders of magnitude faster than most popular PC

learning algorithms.

We summarize LearnRP by adding it as a new entry in Table 5.6. We note that,

although the number of projection trials 𝑘 is set as a parameter, we do not classify it as a

hyperparameter, as the quality of partitions only increases with a higher valued 𝑘.

5.5 | SUMMARIZING LEARNRP

91

N
a

m
e

C
l
a

s
s

T
i
m

e
C

o
m

p
l
e
x

i
t
y

#
h

y
p

e
r
p

a
r
a

m
s

A
c
c
e
p

t
s

l
o

g
i
c
?

S
m

o
o

t
h

?
D

e
c
?

D
e
t
?

S
t
r

D
e
c
?

{𝟎
,𝟏
}?

ℕ
?

ℝ
?

R
e
f
e
r
e
n

c
e

L
e
a
r
n
S
P
N

DI
V

{

(𝑛
𝑘𝑚

𝑐)
,
i
f

s
u

m


(𝑛
𝑚

3)
,
i
f

p
r
o

d
u

c
t

≥
2

✗
✓

✓
✗

✗
✓

✓
✓

S
e
c
t
i
o

n
3
.1

.1

I
D
-
S
P
N

DI
V

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩


(𝑛
𝑘𝑚

𝑐)
,
i
f

s
u

m


(𝑛
𝑚

3)
,
i
f

p
r
o

d
u

c
t


(𝑖𝑐

(𝑟
𝑛
+
𝑚
))

,
i
f

i
n

p
u

t

≥
2
+
3

✗
✓

✓
✗

✗
✓

✓
✗

S
e
c
t
i
o

n
3
.1

.2

P
r
o
m
e
t
h
e
u
s

DI
V

{

(𝑛
𝑘𝑚

𝑐)
,
i
f

s
u

m


(𝑚

(lo
g
𝑚
)2
)

,
i
f

p
r
o

d
u

c
t

≥
1

✗
✓

✓
✗

✗
✓

✓
✓

S
e
c
t
i
o

n
3
.1

.3

L
e
a
r
n
P
S
D
D

IN
CR

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩


(𝑚

2)
,
t
o

p
-
d

o
w

n
v
t
r
e
e


(𝑚

4)
,
b

o
t
t
o

m
-
u

p
v
t
r
e
e


(𝑖
|
|2)

,
c
i
r
c
u

i
t

s
t
r
u

c
t
u

r
e

1
✓

✓
✓

✓
✓

✓
✗

✗
S
e
c
t
i
o

n
3
.2

.1

S
t
r
u
d
e
l

IN
CR

{

(𝑚

2 𝑛
)

,
C

L
T

+
v
t
r
e
e


(𝑖
(|
|
𝑛
+
𝑚

2)
)

,
c
i
r
c
u

i
t

s
t
r
u

c
t
u

r
e

1
✓

✓
✓

✓
✓

✓
✗

✗
S
e
c
t
i
o

n
3
.2

.2

R
A
T
-
S
P
N

RA
ND


(𝑟
𝑑(
𝑠+

𝑙))
4

✗
✓

✓
✗

✗
✓

✓
✓

S
e
c
t
i
o

n
3
.3

.1

X
P
C

RA
ND


(𝑖
(𝑡
+
𝑘𝑛
)+

𝑖𝑘
𝑚

2 𝑛
)

3
✗

✓
✓

✓
✓

✓
✗

✗
S
e
c
t
i
o

n
3
.3

.2

S
a
m
p
l
e
P
S
D
D

RA
ND

{

(𝑚

)
,
r
a
n

d
o

m
v
t
r
e
e


(𝑘
𝑐l
og

𝑐+
lo
g2 2
𝑘)

,
p

e
r

c
a
l
l

1
✓

✓
✓

✓
✓

✓
✗

✗
C

h
a
p

t
e
r

4

L
e
a
r
n
R
P

RA
ND

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩


(𝑚

2)
,
t
o

p
-
d

o
w

n
v
t
r
e
e


(𝑚

4)
,
b

o
t
t
o

m
-
u

p
v
t
r
e
e


(𝑘
𝑛𝑚

)
,
p

e
r

c
a
l
l

0
✗

✓
✓

✗
✓

✓
✓

✓
C

h
a
p

t
e
r

5

T
a

b
l
e

5
.
6

:
S
u

m
m

a
r
y

o
f

a
l
l

s
t
r
u

c
t
u

r
e

l
e
a
r
n

i
n

g
a
l
g
o
r
i
t
h

m
s

f
o
r

p
r
o
b
a
b
i
l
i
s
t
i
c

c
i
r
c
u

i
t
s

d
e
s
c
r
i
b
e
d

s
o

f
a
r
.

93

6
Contributions, Discussion and Future Work

In this chapter we conclude this dissertation and provide a brief discussion on the topics

touched throughout this work, highlighting our contributions and pointing to possible

future work on scalably learning probabilistic circuits.

6.1 Contributions

The objectives of this dissertation were two-fold: to provide a concise review of state-

of-the-art literature on the subject of structure learning of probabilistic circuits; and

propose two ideas for scalably learning the structure of PCs. For the former, we classified

learning algorithms into three classes (Chapter 3): divide-and-conquer (DIV) learning,

where we recursively divide available knowledge (data or logical formula) into smaller

partitions, eventually joining them together (Section 3.1); incremental learning (INCR),

where we iteratively grow a circuit through local transformations usually guided by a

score (Section 3.2); and finally random learning, based around the concept of sampling

circuits either from knowledge or completely random (Section 3.3).

We follow this literature review and taxonomy on structure learning by addressing two

cases of RAND algorithms, both of which draw inspiration from DIV and INCR (Chapters 4

and 5). Each tackles the problem of learning PCs from two distinct point of views: we first

propose SamplePSDD to learn a circuit from certain knowledge, constructing a smooth,

structure decomposable and deterministic PC (i.e. a PSDD) from both logical formula and

data. To scale up to the hundreds of variables we restrict the PSDD’s support to only a

relaxation of the formula, showing that by aggregating several sampled circuits into an en-

semble we achieve competitive performance against the state-of-the-art (Chapter 4). Next,

we describe a very simple RAND structure learning algorithm based on random projections,

which we call LearnRP, for producing smooth and structure decomposable PCs solely from

data. We show that our approach is orders of magnitude faster compared to competitors,

achieving relatively competitive performance on binary data (Chapter 5).

94

6 | CONTRIBUTIONS, DISCUSSION AND FUTURE WORK

6.2 Discussion and Future Work

Despite the interesting results reported in Chapters 4 and 5, there is much room for

improvement. We end this dissertation by addressing the flaws of both SamplePSDD

and LearnRP, pointing to their weaknesses and suggesting possible ideas for further

work.

6.2.1 SamplePSDD

We now explore some interesting paths to take for further work on SamplePSDD.

We summarize them through the topics below, providing a short discussion on future

work.

Smooth, structured decomposable and deterministic decompositions. The exact

partitions constructed by decomposing formulae as conjunctions of literals and their

restriction are, in a sense, a generalization of Shannon’s decomposition. As discussed in

Chapter 4, the main drawback of this approach is the exponential number of terms required

for completely encoding this expansion. This kind of decomposition also limits primes to

only conjunctions of literals, which possibly hinders expressivity. Finding decompositions

whose disjunction terms are smooth, structured decomposable and deterministic would

allow possibly more expressibly PSDDs to be sampled.

Search-based sampling. SamplePSDD blindly samples circuits from a logical formula

regardless of how well it models data. Guiding which variables are sampled as primes and

which primes are compressed or merged could provide a better data fit model.

Simultaneously learning the vtree. Our proposed algorithm for SamplePSDD is

completely decoupled from the process of learning a vtree. Learning the vtree during

sampling could potentially provide a better fit to the overall model.

6.2.2 LearnRP

In this section, we provide a discussion on LearnRP and possible paths from both a

theoretical as well as a more practical point of view.

Extending the theoretical works from random projections. As mentioned in Sec-

tion 5.2, there are several interesting theoretical results coming primarily from the decision

tree literature. Now that Correia et al. (2020) have made clear the connection between

decision trees and PCs, it would be interesting to understand whether the results from

Dasgupta and Freund (2008) also extend to more general PCs learned from random

projections.

Enforcing determinism. Random projection trees are naturally deterministic, however

circuits learned through LearnRP are not. This means LearnRP PCs are not as interpretable

as, say density estimation trees, where each assignment produces a clear path “explaining”

the decisions taken by the model. We thus pose the following question: is it possible

6.2 | DISCUSSION AND FUTURE WORK

95

to enforce determinism to LearnRP while at the same time retaining smoothness and

decomposability?

Simultaneously learning the vtree. Similar to SamplePSDD, LearnRP fixes a learned

vtree and produces a PC from it. The choice of which variables to partition deeply impacts

how the random projections are sampled. Choosing a partitioning according to some score

could greatly enhance data fitness.

97

A
Appendices

A.1 Proofs

Theorem A.1.1. Let  a probabilistic circuit whose first 𝑙 layers are composed solely of sum

nodes. Call N the set of all nodes in layer 𝑙 + 1.  is equivalent to a PC ′
whose root is a sum

node with N as children.

Proof. We adapt a similar proof due to Jaini, Poupart, et al. (2018). Every sum node is of

the form

S(𝐱) = ∑
C∈Ch(S)

𝑤S,C ⋅ C(𝐱).

Particularly, every child C in a sum node in layer 1 ≤ 𝑖 ≤ 𝑙 − 1, is a sum node, and so for

the first layer we have that

S(𝐱) = ∑
C1∈Ch(S)

𝑤S,C1 ∑
C2∈Ch(C1)

𝑤C1,C2 C2(𝐱)

= ∑
C1∈Ch(S)

∑
C2∈Ch(C1)

𝑤S,C1𝑤C1,C2 C2(𝐱).

Define a one-to-one mapping that takes a tuple (C1,C2) where C1 ∈ Ch(S) and C2 ∈ Ch(C1)
and returns a (unique) path from S to every grandchild C2 of S. Call 𝐊 the set of all paths,

and 𝑤S,C1 and 𝑤C1,C2 the weights for one such path. We can merge these two weights into

a single weight 𝑤′
S,C2

= 𝑤S,C1 ⋅ 𝑤C1,C2 , yielding

S(𝐱) = ∑
(𝑤S,C1 ,𝑤C1,C2)∈𝐊

𝑤′
S,C2

C2(𝐱).

This ensures that two consecutive sum layers can be collapsed into a single layer. Particu-

larly, for the first (root) and second layers, the above transformation generates a circuit

with one fewer layer and whose root has (𝑛𝑚) edges, where 𝑛 and 𝑚 are the number

of edges coming from the original root and its children respectively. We can apply this

98

APPENDIX A

procedure until there are no more consecutive sum nodes. This results in a PC of the form

S(𝐱) = ∑
C∈Ch(𝑆)

𝑤S,CN(𝐱),

where N ∈ N. The number of children of the resulting root sum node will be exponential

on the number of edges of its children.

Theorem A.1.2 (Standardization). Any probabilistic circuit  can be reduced to a circuit

where every sum node contains only products or inputs and every product node contains only

sums or inputs.

Proof. If  is already standard we are done. Otherwise, there exists either (i) a sum node S
with a sum S′ as child; or (ii) a product node P with a product P′

as child. We first address

(i): let 𝑤 be the weight of edge

−−→
S S′ and 𝜃𝑖 the weights from all edges coming out from S′.

+
S

×
+

S′ ×

× × ×

𝑤

𝜃1 𝜃2 𝜃3

Standardize

+
S

× ×

× × ×

𝑤 ⋅ 𝜃1 𝑤 ⋅ 𝜃2 𝑤 ⋅ 𝜃3

Connect S with every child of S′, assigning as weight 𝑤 ⋅ 𝜃𝑖 for each child 𝑖. Delete S′ and

all edges coming out from it. The resulting circuit is computationally equivalent but now

without a consecutive pair of sums. This transformation is visualized by the figure above.

We do a similar procedure in (ii), but now instead remove P′
and connect all children of P′

to P, as we show below.

×
P

+
×

P′ +

+ + +

Standardize

×
P

+ +

+ + +

Theorem A.1.3 (2-Standardization). Any probabilistic circuit  can be transformed into

a circuit where every sum node contains only products or inputs and every product node

contains only two sums or inputs.

Proof. For sums, apply the same standardization procedure as Theorem A.1.2. Let P a

product and call 𝑛 = | Ch(P)|. If 𝑛 = 1 and Ch(P) is a product, then remove P and connect

A.1 | PROOFS

99

all previous parents of P with its child. If 𝑛 = 1 and Ch(P) is not a product, remove P and

apply the standardization procedure for sums on all of Pa(P).

For 𝑛 > 2, we simply need to split into 2-products recursively. We prove this by

induction. The base case is when 𝑛 = 2, which is already done, or 𝑛 = 3, in which case we

need apply the transformation below.

×

+ + +

2-Standardize
×

+ +

×

+ +

Where + and × are newly introduced nodes. When 𝑛 > 3, we create two products P1
and P2, each connected with a sum and product, and with ⌊ 𝑛2⌋ and ⌈ 𝑛2⌉ potential children.

By the induction hypothesis, we can recursively binarize the subsequent grandchildren

products.

×

+ + + + +

2-Standardize
×

+ +

× ×

+ + + + +

As an example, we have 𝑛 = 5 in the figure above. We introduce the sums + and products

× and then recursively apply the transformation again on the × s.

When Ch(P) are product nodes we do the same procedure as before, but with the added

post-process addition of a sum node connecting × to every Ch(P).

Theorem 2.2.1 (Poon and P. Domingos, 2011; Y. Choi, Vergari, and Van den Broeck,

2020; Vergari, Y. Choi, et al., 2021). Let  be a smooth and decomposable PC. Any one of

EVI, MAR or CON can be computed in linear time (in the size of ).

Proof. For a sum node S and query variables 𝐗, we have the following marginalization of

variables 𝐘

∫ S(𝐱, 𝐲) d𝐲 = ∫ ∑
C∈Ch(S)

𝑤S,C C(𝐱, 𝐲) d𝐲

= ∑
C∈Ch(S)

𝑤S,C ∫ C(𝐱, 𝐲) d𝐲.

100

APPENDIX A

Analogously, for a product node

∫ P(𝐱, 𝐲) d𝐲 = ∫ ∏
C∈Ch(P)

C(𝐱, 𝐲) d𝐲

= ∏
C∈Ch(P)

∫ C(𝐱, 𝐲) d𝐲.

This ensures that marginals are pushed down to children. This can be done recursively

until C is an input node L𝑝, in which case we marginalize 𝐲 according to 𝑝, which by

definition should be tractable and here we assume can be done in (1). We have proved

the case for MAR. For EVI, we simply assign 𝐲 = ∅ with input nodes acting as probability

density functions. Conditionals can easily be computed by an EVI or MAR followed by a

second pass marginalizing the conditional variables 𝑝(𝐱|𝐲) = 𝑝(𝐱,𝐲)
𝑝(𝐲) which are both done in

linear time as we have seen here.

Theorem 2.2.2 (Peharz, Gens, Pernkopf, et al., 2016). Let  be a smooth, decomposable

and deterministic PC. MaxProduct computes the MAP in  in linear time (on the size of ).

Proof. For a sum node S, we want to compute the following query

max
𝐲

S(𝐲|𝐱) =
1

S(𝐱)
max

𝐲
S(𝐲, 𝐱) =

1
S(𝐱)

max
𝐲

∑
C∈Ch(S)

𝑤S,C C(𝐲, 𝐱),

yet notice that for any assignment of 𝐱 and 𝐲 only one C ∈ Ch(S) must have a nonneg-

ative value by the definition of determinism, so we may replace the summation with a

maximization over the children, giving

max
𝐲

S(𝐲|𝐱) =
1

S(𝐱)
max

𝐲
max
C∈Ch(S)

𝑤S,C C(𝐲, 𝐱) =
1

S(𝐱)
max
C∈Ch(S)

max
𝐲

𝑤S,C C(𝐲, 𝐱).

For a product node P, we compute

max
𝐲

P(𝐲|𝐱) =
1

P(𝐱)
max

𝐲
P(𝐲, 𝐱) =

1
P(𝐱)

max
𝐲

∏
C∈Ch(P)

C(𝐲, 𝐱) =
1

P(𝐱)
∏

C∈Ch(P)

max
𝐲

C(𝐲, 𝐱).

This is equivalent to an inductive top-down pass where we maximize instead of sum until

we reach all input nodes, in which case we simply maximize the supposedly tractable

functions. Once these are computed, we unroll the induction, maximizing over all values.

Theorem 2.3.1 (Y. Choi, Vergari, and Broeck, 2020). If  is a smooth and structured

decomposable probabilistic circuit with vtree  , and  a structured decomposable logic circuit

also respecting  , then 𝔼 [] is polynomial time computable (in the number of edges).

Proof. For completeness, we show the proof of this claim as stated in Y. Choi, Vergari,

and Broeck, 2020. We assume, without loss of generality, that the layers of both  and 
are compatible, i.e. they both have the same number of layers and if the 𝑖-th layer of 
is made out of sums (resp. products), then the 𝑖-th layer of  is made out of disjunctions

A.2 | SAMPLEPSDD

101

(resp. conjunctions). The expectation 𝔼 [] has the following form when the root of  is

a product

𝔼 [] = ∫ (𝐱)(𝐱) d𝐱 = ∫ (𝑝(𝐱)𝑠(𝐱)) (𝑝(𝐱)𝑠(𝐱)) d𝐱

= ∫ (𝑝(𝐱)𝑝(𝐱)) (𝑠(𝐱)𝑠(𝐱)) d𝐱 = ∫ (𝑝(𝐱)𝑝(𝐱)) d𝐱 ∫ (𝑠(𝐱)𝑠(𝐱)) d𝐱

= 𝔼𝑝 [𝑝] ⋅ 𝔼𝑠 [𝑠] ,

where the subscript 𝑝 and 𝑠 indicate the prime and sub of a node. When the root is a sum

𝔼 [] = ∫ (𝐱)(𝐱) d𝐱 = ∫ (
∑

C′∈Ch()

𝑤,C′ C′(𝐱)
)(

∑
C′′∈Ch()

C′′(𝐱)
)
d𝐱

= ∫ ∑
C′∈Ch()

∑
C′′∈Ch()

𝑤,C′ ⋅ C′(𝐱) ⋅ C′′(𝐱) d𝐱 = ∑
C′∈Ch()

∑
C′′∈Ch()

𝑤,C′ ∫ C′(𝐱)C′′(𝐱) d𝐱

= ∑
C′∈Ch()

∑
C′′∈Ch()

𝑤,C′ ⋅ 𝔼C′ [C′′] .

Therefore, if expectation is tractable for input nodes, then expectation is tractable for the

whole circuit.

A.2 SamplePSDD

We now transcribe the supplemental material found in R. L. Geh and Denis Deratani

Mauá (2021b). In this section, we describe a fast implementation of SamplePSDD that

avoids the use of the costly Forget operation. We then show additional experiments with

1,000 iterations of LearnPSDD and Strudel, followed by the complete log-likelihood

results in table form. Finally, we list in more detail the logical constraints used in each of

the domains described in Section 4.4.

A.2.1 Fast implementation of SamplePSDD

In order to produce valid (partial) partitions, SamplePSDD requires that the Forget

operation be called for every sub lest the scope of the formula contradicts the respective

scope in vtree. Despite Forget taking polynomial time in the size of the BDD, we can

make sampling more efficient by directly “forgetting” a variable when returning a PSDD

structure. Algorithm 21 modifies Algorithm 17 to handle variables not appearing in the

formula 𝜙. Lines 2 – 7 ensure that the formula correctly accounts for the forgetting of

variables not in the scope of the vtree. Hence, we can omit the Forget operation in

Algorithm 16, resulting in Algorithm 22. Since the restricion 𝜓|𝑋 is linearithmic in the size

of the BDD, and constructing a conjunction of literals 𝛼 is linear in | Sc(𝛼)|, the algorithm

is highly efficient.

102

APPENDIX A

Algorithm 21 FastSamplePSDD

Input BDD 𝜙, vtree node 𝑣, number of primes 𝑘
Output A sampled PSDD structure

1: if 𝑣 is a leaf then

2: if 𝑣 ∈ 𝜙 then

3: if 𝜙 is a literal then return 𝜙 as a literal node

4: if 𝜙|𝑣 ≡ ⊤ then return 𝑣 as a literal node

5: if 𝜙|¬𝑣 ≡ ⊤ then return ¬𝑣 as a literal node

6: return a Bernoulli over 𝑣
7: else if 𝜙 ≡ ⊤ then

8: return a fully factorized circuit over Sc(𝑣)
9: 𝐄 ← FastSamplePartialPartition(𝜙, Sc(𝑣←), 𝑘)

10: Create an OR gate S
11: Randomly compress elements in 𝐄 with equal subs

12: Randomly merge elements in 𝐄 with equal subs

13: for each element (𝑝, 𝑠) ∈ 𝐄 do

14: 𝑙 ← SampleExactPSDD(𝑝, 𝑣←, 𝑘)
15: 𝑟 ← FastSamplePSDD(𝑠, 𝑣→, 𝑘)
16: Add an AND gate with inputs 𝑙 and 𝑟 as a child of S
17: return S

A.2.2 Additional Experiments

We repeat the accuracy vs. sample size plots including the results of running Strudel

and MixStrudel for 1000 iterations, as used in the original paper. Figure A.1 shows all

results with the added Strudel and MixStrudel with 1000 iterations curves.

A.2.3 Tables with all results

Tables A.1 through A.5 show all log-likelihood values for all learned circuits mentioned

in the article.

Train % LLW Uniform EM Stacking BMC Strudel MixStrudel CNF BDD LearnSPN Strudel 1000 MixStrudel 1000

0.02 -76270.12 -75787.23 -84437.88 -Inf -76188.67 -111934.70 -108848.94 -63491.43 -79214.25 -95691.57 -97544.40 -93539.76

0.05 -73497.69 -73346.26 -73749.15 -80090.00 -73134.93 -98263.88 -90720.27 -63601.97 -79214.25 -92723.15 -97544.40 -93539.76

0.10 -71874.12 -70645.43 -78218.27 -72887.26 -71279.73 -95780.74 -86851.08 -61695.59 -78972.30 -87784.83 -100241.28 -89465.54

0.25 -68850.67 -65765.90 -74079.05 -67914.35 -66355.85 -82308.32 -78892.63 -64301.48 -75181.47 -77728.44 -101371.88 -95533.46

0.50 -71908.34 -63836.00 -67574.64 -65669.59 -64123.61 -79503.19 -75601.22 -63489.18 -75120.22 -73147.62 -100880.62 -100880.62

0.75 -68764.98 -62672.24 -66423.16 -63291.72 -63591.08 -73509.03 -71312.21 -61786.42 -73306.98 -71405.55 -98628.08 -98628.08

1.00 -64046.13 -62690.14 -63900.15 -62744.10 -62962.83 -71170.68 -68344.86 -63567.95 -71121.15 -71979.82 -97986.81 -97986.81

2.50 -64606.12 -60058.62 -64606.01 -59435.88 -59623.46 -61670.14 -61527.77 -61817.41 -68781.20 -66602.53 -87585.31 -83696.90

5.00 -59126.68 -59295.69 -58950.44 -58466.21 -58723.25 -60542.42 -59623.12 -62142.91 -64901.41 -63540.15 -70519.08 -69183.37

7.50 -60206.00 -59243.14 -59451.17 -58280.74 -58667.93 -60474.21 -59302.01 -63779.07 -65295.23 -63461.16 -65143.38 -64492.63

10.00 -58082.24 -58990.91 -58218.28 -57876.12 -58603.25 -59258.70 -58335.49 -62272.04 -63449.87 -62230.84 -64059.13 -62980.20

25.00 -58127.23 -58977.09 -57827.87 -57777.27 -58589.02 -59116.05 -58116.16 -62649.53 -61490.03 -60435.37 -59619.32 -59663.81

50.00 -57683.16 -58687.88 -57526.56 -57512.01 -58189.97 -59084.32 -57654.38 -63760.85 -61614.24 -59703.44 -58395.85 -58447.46

75.00 -57731.25 -58900.85 -57564.91 -57514.10 -58416.90 -59160.69 -57480.32 -63656.23 -61716.55 -59227.08 -57947.51 -58162.58

100.00 -57533.82 -58777.85 -57444.14 -57432.12 -58217.43 -59140.02 -57421.31 -63717.25 -61823.57 -58923.36 -57727.95 -57921.16

Table A.1: All results for the led dataset.

A.2 | SAMPLEPSDD

103

0
.0

2
%

 (
1
)

0
.0

5
%

 (
2
)

0
.1

%
 (
5
)

0
.2

5
%

 (
1
2
)

0
.5

%
 (
2
5
)

0
.7

5
%

 (
3
7
)

1
%

 (
5
0
)

2
.5

%
 (
1
2
5
)

5
%

 (
2
5
0
)

7
.5

%
 (
3
7
5
)

1
0
%

 (
5
0
0
)

2
5
%

 (
1
2
5
0
)

5
0
%

 (
2
5
0
0
)

7
5
%

 (
3
7
5
0
)

1
0
0
%

 (
5
0
0
0
)

-1
.1

0
×

1
0
⁵

-1
.0

0
×

1
0
⁵

-9
.0

0
×

1
0
⁴

-8
.0

0
×

1
0
⁴

-7
.0

0
×

1
0
⁴

-6
.0

0
×

1
0
⁴

SamplePSDD LLW

SamplePSDD Uniform

SamplePSDD EM

SamplePSDD Stacking

SamplePSDD BMC

Strudel 100

MixStrudel 100

CNF + LearnPSDD

BDD + LearnPSDD

LearnSPN

Strudel 1000

 MixStrudel 1000

Train data percentage

T
e
s
t
 l
o
g
-
li
k
e
li
h
o
o
d

(a)

5
%

 (
1
0
)

7
.5

%
 (
1
5
)

1
0
%

 (
2
0
)

1
5
%

 (
3
0
)

2
0
%

 (
4
0
)

2
5
%

 (
5
0
)

3
0
%

 (
6
0
)

4
0
%

 (
8
0
)

5
0
%

 (
1
0
0
)

7
5
%

 (
1
5
0
)

1
0
0
%

 (
2
0
0
)

-4
.0

0
×

1
0
⁴

-3
.5

0
×

1
0
⁴

-3
.0

0
×

1
0
⁴

-2
.5

0
×

1
0
⁴

Train data percentage

T
e
s
t
 l
o
g
-
li
k
e
li
h
o
o
d

(b)

0
.5

%
 (
1
7
)

1
%

 (
3
5
)

2
.5

%
 (
8
7
)

5
%

 (
1
7
5
)

1
0
%

 (
3
5
0
)

1
5
%

 (
5
2
5
)

2
0
%

 (
7
0
0
)

2
5
%

 (
8
7
5
)

5
0
%

 (
1
7
5
0
)

7
5
%

 (
2
6
2
5
)

1
0
0
%

 (
3
5
0
0
)

-1
4
0
0
0

-1
3
0
0
0

-1
2
0
0
0

-1
1
0
0
0

-1
0
0
0
0

-9
0
0
0

-8
0
0
0

-7
0
0
0

Train data percentage

T
e
s
t
 l
o
g
-
li
k
e
li
h
o
o
d

(c)

0
.5

%
 (
1
7
)

1
%

 (
3
5
)

2
.5

%
 (
8
7
)

5
%

 (
1
7
5
)

1
0
%

 (
3
5
0
)

1
5
%

 (
5
2
5
)

2
0
%

 (
7
0
0
)

2
5
%

 (
8
7
5
)

5
0
%

 (
1
7
5
0
)

7
5
%

 (
2
6
2
5
)

1
0
0
%

 (
3
5
0
0
)

-7
.0

×
1
0
⁴

-6
.0

×
1
0
⁴

-5
.0

×
1
0
⁴

-4
.0

×
1
0
⁴

-3
.0

×
1
0
⁴

-2
.0

×
1
0
⁴

Train data percentage

T
e
s
t
 l
o
g
-
li
k
e
li
h
o
o
d

(d)

0
.0

5
%

 (
4
6
)

0
.1

%
 (
9
2
)

0
.5

%
 (
4
6
3
)

1
%

 (
9
2
6
)

5
%

 (
4
6
3
2
)

1
0
%

 (
9
2
6
5
)

2
5
%

 (
2
3
1
6
2
)

5
0
%

 (
4
6
3
2
5
)

7
5
%

 (
6
9
4
8
7
)

1
0
0
%

 (
9
2
6
5
0
)

-6
.5

0
×

1
0
⁵-6

.0
0
×

1
0
⁵-5

.5
0
×

1
0
⁵-5

.0
0
×

1
0
⁵-4

.5
0
×

1
0
⁵-4

.0
0
×

1
0
⁵-3

.5
0
×

1
0
⁵

Train data percentage

T
e
s
t
 l
o
g
-
li
k
e
li
h
o
o
d

(e) (f)

Figure A.1: (a) Log-likelihoods for the unpixelized led, (b) led-pixels, (c) sushi 10-choose-5, (d)

sushi ranking, and (e) dota datasets. (f) Mean average in seconds of each PSDD learning algorithm.

Train % LLW Uniform EM Stacking BMC Strudel MixStrudel CNF BDD LearnSPN Strudel 1000 MixStrudel 1000

0.05 -422502.57 -421390.69 -422148.83 -421743.46 -421503.71 -522994.12 -511269.34 – -541716.99 -448310.30 -680217.64 -511269.34

0.10 -416764.85 -412215.39 -413252.45 -412497.30 -413309.05 -482048.24 -470524.47 – -476355.45 -436929.97 -595314.50 -470524.47

0.50 -401852.30 -401428.03 -401651.98 -401342.48 -401639.60 -413893.71 -417290.26 – -412120.93 -429491.77 -443999.07 -420096.18

1.00 -401399.54 -400217.55 -400304.56 -400241.36 -400415.36 -404177.25 -410592.47 – -393893.11 -428727.36 -424539.00 -410274.56

5.00 -399210.71 -399209.46 -398999.00 -398995.65 -399170.53 -395999.62 -397754.60 – -368214.89 -424401.59 -399534.98 -396268.43

10.00 -399308.46 -399114.38 -399111.18 -399101.08 -399139.16 -394996.70 -395111.24 – -360499.20 -423240.08 -396642.23 -395462.40

25.00 -398759.03 -398967.54 -398809.05 -398789.22 -398884.48 -394338.42 -393943.77 – -360817.30 -422176.41 -393840.34 -393563.40

50.00 -398818.59 -398947.09 -398781.72 -398803.82 -398825.88 -394185.68 -393086.71 – -359123.74 -421069.29 -393395.77 -392753.17

75.00 -398935.65 -398983.57 -398955.77 -398956.10 -398958.45 -394144.51 -392858.52 – -357708.97 0.00 -393130.99 -392476.99

100.00 -398814.38 -398946.54 -398847.74 -398851.61 -398903.84 -394104.98 -392767.17 – -357820.05 0.00 -393080.77 -392305.31

Table A.2: All results for the dota dataset.

104

APPENDIX A

Algorithm 22 FastSamplePartialPartition

Input BDD 𝜙, vtree node 𝑣, number of primes 𝑘
Output A set of sampled elements

1: Define 𝐄 as an empty collection of sampled elements

2: Sample an ordering 𝑋1, … , 𝑋𝑚 of Sc(𝑣←) ∩ Sc(𝜙)
3: Let 𝐐 be a queue initially containing (𝜙, 1, {})
4: 𝑗 ← 1 ⊳ Counter of sampled elements

5: while |𝐄| < 𝑘 do

6: Pop top item (𝜓, 𝑖, 𝑝) from 𝐐
7: if 𝑗 ≥ 𝑘 or 𝑖 > 𝑚 or 𝜓 ≡ ⊤ then

8: Add (𝑝, 𝜙|𝑝) to 𝐄
9: continue

10: 𝛼 ← 𝜓|𝑋𝑖 , 𝛽 ← 𝜓|¬𝑋𝑖
11: if 𝛼 ≡ 𝛽 then enqueue (𝜓, 𝑖 + 1, 𝑝) in 𝐐
12: else

13: if 𝛼 ≢ ⊥ then push (𝛼, 𝑖 + 1, 𝑝 ∧ 𝑋𝑖) to 𝐐
14: if 𝛽 ≢ ⊥ then push (𝛽, 𝑖 + 1, 𝑝 ∧ ¬𝑋𝑖) to 𝐐
15: 𝑗 ← 𝑗 + 1
16: return 𝐄

Train % LLW Uniform EM Stacking BMC Strudel MixStrudel CNF BDD LearnSPN Strudel 1000 MixStrudel 1000

0.50 -10071.51 -9281.12 -10241.60 -9375.70 -9476.25 -67065.20 -63836.65 – -25300.02 -51765.32 -14452.67 -14452.67

1.00 -10178.28 -8954.16 -9927.91 -9271.89 -8919.37 -62498.23 -57767.33 – -24760.09 -50882.04 -13046.79 -13046.79

2.50 -7551.81 -8362.66 -7494.87 -7498.91 -7985.90 -51036.17 -51070.28 – -23990.52 -49625.57 -10259.14 -10259.14

5.00 -7480.58 -7979.85 -7454.45 -7221.24 -7545.54 -47444.71 -47699.34 – -23393.66 -48465.94 -9538.90 -9285.30

10.00 -7330.72 -8105.71 -7222.63 -7216.68 -7583.54 -44289.65 -44785.08 – -22534.80 -47881.50 -8210.50 -8035.49

15.00 -7196.89 -8067.99 -7129.28 -7099.35 -7450.98 -42929.19 -43793.82 – -22336.59 -47350.66 -7989.75 -7828.43

20.00 -7230.35 -8228.08 -7230.35 -7230.13 -7889.98 -42692.17 -42998.28 – -21918.48 -46898.91 -7693.88 -7598.46

25.00 -7140.91 -8068.33 -7140.90 -7140.75 -7872.47 -42384.75 -42544.64 – -21738.22 -46700.17 -7577.25 -7461.51

50.00 -7111.22 -7884.88 -7054.73 -7031.96 -7131.19 -41938.09 -41373.59 – -21169.19 -46031.00 -7286.91 -7210.35

75.00 -7091.82 -8125.42 -7043.95 -7036.04 -7493.26 -41931.85 -41055.14 – -20951.09 -45576.38 -7187.18 -7115.33

100.00 -6995.82 -7859.13 -6972.82 -6970.53 -7439.17 -41931.72 -40550.63 – -20824.09 -44999.66 -7135.58 -7055.88

Table A.3: All results for the sushi-ranking dataset.

A.2.4 Logic constraints

We next show all the logic constraints used for each dataset.

LED

Let 𝑌1, 𝑌2, … , 𝑌7 be the observable segments of a 7-segment LED display, with each 𝑌𝑖
representing whether the 𝑖-th segment (read from the top segment clockwise with the

middle segment last) is observably on (true/1) or off (false/0). We assign a latent variable for

each segment 𝑖 and call it 𝑋𝑖. The latent variable indicates the true intent of the segment (i.e.

whether it was supposed to be on or off regardless of technical problems). For each digit

𝑑𝑖, we add a positive literal if it is supposedly on, and a negative literal if it is supposedly

off. Observable variables are free variables with no constraints. The final formula is given

by a disjunction over all digits, as shown below.

A.2 | SAMPLEPSDD

105

Train % LLW Uniform EM Stacking BMC Strudel MixStrudel CNF BDD LearnSPN Strudel 1000 MixStrudel 1000

0.50 -73738.04 -51933.84 -58925.72 -52070.48 -54347.08 -11170.18 -10393.62 – -8998.46 -9806.06 -74782.40 -74245.00

1.00 -67295.90 -48998.01 -53225.82 -49112.97 -50140.36 -10733.47 -10010.65 – -8615.35 -9419.33 -73557.43 -70504.16

2.50 -64222.40 -47191.60 -48124.73 -47171.38 -48649.17 -9054.54 -8814.77 – -7859.15 -9097.40 -64196.67 -65531.31

5.00 -57715.96 -46215.44 -46757.26 -46121.74 -47099.80 -8587.40 -8262.15 – -7692.06 -8709.09 -56744.91 -53619.79

10.00 -53029.28 -45182.87 -45582.79 -45096.27 -46157.73 -8428.53 -7779.55 – -7303.22 -8435.54 -44767.54 -45684.07

15.00 -48359.59 -44776.85 -45173.90 -44696.40 -45732.28 -8346.72 -7630.41 – -7212.20 -8272.97 -40815.68 -42453.92

20.00 -49352.41 -44503.85 -44841.65 -44375.66 -45316.36 -8382.45 -7553.45 – -7213.00 -8118.19 -39514.08 -40466.87

25.00 -48837.90 -44320.47 -44473.52 -44232.87 -45147.34 -8366.84 -7558.48 – -7126.86 -8031.02 -38959.38 -40067.63

50.00 -49715.52 -43810.03 -44236.83 -43679.79 -44361.31 -8129.12 -7274.86 – -7047.23 -7733.97 -38055.99 -37387.91

75.00 -47155.99 -43439.89 -43385.69 -43236.88 -44080.44 -8261.48 -7280.35 – -7050.77 -7571.72 -37245.72 -37239.73

100.00 -46253.45 -43146.33 -43017.12 -42836.74 -43796.68 -8181.48 -7227.68 – -7022.86 -7475.26 -37761.35 -36269.11

Table A.4: All results for the sushi-top5 dataset.

Train % LLW Uniform EM Stacking BMC Strudel MixStrudel CNF BDD LearnSPN Strudel 1000 MixStrudel 1000

5.00 -41467.80 -34709.51 -38580.12 -36250.22 -38865.10 -38681.10 -38833.61 – -35379.58 -35577.04 -40016.81 -37480.79

7.50 -43131.74 -33541.11 -37933.14 -34661.19 -35984.88 -37486.80 -34728.47 – -34287.35 -34802.33 -37560.84 -35873.42

10.00 -43778.51 -32372.82 -33907.77 -33312.05 -34414.20 -34325.42 -34019.61 – -33669.67 -34144.75 -37146.60 -37146.60

15.00 -40846.42 -31125.19 -34049.79 -31674.03 -33368.23 -32755.51 -32434.84 – -33155.99 -33261.28 -35019.44 -35019.44

20.00 -39009.42 -30139.82 -31209.07 -30876.98 -31708.73 -31474.09 -30675.72 – -32038.90 -32636.76 -33453.36 -33453.36

25.00 -35170.26 -29158.72 -30278.57 -29505.30 -30811.56 -29808.79 -29856.29 – -31056.47 -30501.52 -31443.56 -31443.56

30.00 -40254.35 -28374.13 -29166.40 -28524.61 -31150.31 -28229.82 -28293.39 – -29796.42 -29515.66 -29824.86 -29824.86

40.00 -37346.83 -27532.89 -28033.83 -27784.87 -30386.84 -27267.30 -27504.01 – -29904.46 -28468.36 -27865.87 -27815.05

50.00 -36404.20 -26711.99 -27047.65 -26693.77 -30428.74 -26734.57 -26579.84 – -28127.06 -27274.67 -26863.06 -26913.21

75.00 -40223.88 -25846.50 -26300.40 -25801.80 -28806.88 -26494.04 -25744.18 – -27665.63 -26064.91 -25733.69 -25780.46

100.00 -32780.47 -24858.39 -25031.07 -24687.48 -27260.98 -26133.39 -25549.14 – -26379.98 -25684.45 -24818.43 -24478.19

Table A.5: All results for the led-pixels dataset.

1

2

3

4

5

6 7 𝑑4 = ¬𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ ¬𝑋4 ∧ ¬𝑋5 ∧ 𝑋6 ∧ 𝑋7

𝜙 = ⋁9
𝑖=0 𝑑𝑖

Figure A.2: LED segment numbering (left), and the corresponding formula for that digit (right).

𝜙 = 𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ 𝑋5 ∧ 𝑋6 ∧ ¬𝑋7∨
¬𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ ¬𝑋4 ∧ ¬𝑋5 ∧ ¬𝑋6 ∧ ¬𝑋7∨
𝑋1 ∧ 𝑋2 ∧ ¬𝑋3 ∧ 𝑋4 ∧ 𝑋5 ∧ ¬𝑋6 ∧ 𝑋7∨
𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ ¬𝑋5 ∧ ¬𝑋6 ∧ 𝑋7∨

¬𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ ¬𝑋4 ∧ ¬𝑋5 ∧ 𝑋6 ∧ 𝑋7∨
𝑋1 ∧ ¬𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ ¬𝑋5 ∧ 𝑋6 ∧ 𝑋7∨
𝑋1 ∧ ¬𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ 𝑋5 ∧ 𝑋6 ∧ 𝑋7∨
𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ ¬𝑋4 ∧ ¬𝑋5 ∧ ¬𝑋6 ∧ ¬𝑋7∨
𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ 𝑋5 ∧ 𝑋6 ∧ 𝑋7∨
𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ ¬𝑋5 ∧ 𝑋6 ∧ 𝑋7

LED Pixels

The LED with pixels dataset follows the same idea as LED, but with added pixels as

latent variables instead of observable segments. We manually observed critical key pixels

106

APPENDIX A

for each segment (i.e. pixels which are often set to true/1 if the segment is on. We count

pixels row-wise from top left to bottom right. The following are the critical key pixels for

each segment:

𝑆1 = {24, 25, 26, 27, 15, 16, 28, 35, 36}
𝑆2 = {27, 28, 37, 38, 47, 48, 57, 58, 49, 59, 69}
𝑆3 = {77, 78, 87, 88, 109, 98, 99, 108, 118}
𝑆4 = {124, 125, 126, 127, 128, 135, 136, 114, 115, 116}
𝑆5 = {93, 94, 103, 104, 113, 114, 124, 82, 92, 83}
𝑆6 = {33, 34, 43, 53, 52, 63, 73}
𝑆7 = {64, 65, 66, 67, 75, 76, 85, 86, 95, 96, 94}

Each 𝑆𝑖 corresponds to the critical key pixels of segment 𝑖. The formula for the key

pixels is then set to

𝛼 =
7

⋁
𝑖=1 (

⋀
𝑝∈𝑆𝑖

𝑝
)

∧ 𝑋𝑖.

We also add a constraint for pixels which are never on for a given digit. Let 𝑓 (𝑖) a

function that maps a digit 𝑖 to the set of all pixels which are always off when 𝑑𝑖 is true. We

set

𝛽 =
9

⋁
𝑖=0

𝑑𝑖 ∧ (
⋀
𝑝∈𝑓 (𝑖)

¬𝑝
)
.

The final constraint is then 𝜙 = 𝛼 ∧ 𝛽.

Sushi

For the sushi ranking dataset, we used the same constraints as (A. Choi, Broeck, et al.,

2015). For the sushi 10-choose-5, we used the same constraints as (Shen et al., 2017).

Dota 2

To model the constraints, we used a cardinality constraint of Exactly(5, 113) for the

first and equivalently for the second team. To do this, each character 𝑖 had a pair of

variables (𝑋𝑖, 𝑌𝑖), where 𝑋𝑖 attributed the character for the first team, and 𝑌𝑖 to the second. A

cardinality constraint∑𝑋𝑖 𝑥𝑖 = 5was set to the first team, and∑𝑌𝑖 𝑦𝑖 = 5 to the second.

107

References

[Akers 1978] S. B. Akers. “Binary decision diagrams”. In: IEEE Transactions on Com-

puters 27.6 (1978), pp. 509–516 (cit. on p. 10).

[Amer and Todorovic 2012] Mohamed R. Amer and Sinisa Todorovic. “Sum-product

networks for modeling activities with stochastic structure”. In: 2012 IEEE Con-

ference on Computer Vision and Pattern Recognition. 2012, pp. 1314–1321. doi:

10.1109/CVPR.2012.6247816 (cit. on p. 24).

[Amer and Todorovic 2016] Mohamed R. Amer and Sinisa Todorovic. “Sum product

networks for activity recognition”. In: IEEE Transactions on Pattern Analysis and

Machine Intelligence 38.4 (2016), pp. 800–813. doi: 10.1109/TPAMI.2015.2465955
(cit. on p. 24).

[Bach and Jordan 2001] Francis R. Bach and Michael I. Jordan. “Thin junction trees”.

In: Proceedings of the 14th International Conference on Neural Information Processing

Systems. NeurIPS. 2001, pp. 569–576 (cit. on p. 15).

[Barwise 1982] Jon Barwise. Handbook of Mathematical Logic. 1982 (cit. on p. 10).

[Bentley 1975] Jon Louis Bentley. “Multidimensional binary search trees used for

associative searching”. In: Commun. ACM 18.9 (Sept. 1975), pp. 509–517. issn:

0001-0782. doi: 10.1145/361002.361007. url: https://doi.org/10.1145/361002.361007
(cit. on p. 76).

[Bergstra and Bengio 2012] James Bergstra and Yoshua Bengio. “Random search

for hyper-parameter optimization”. In: Journal of Machine Learning Research 13.10

(2012), pp. 281–305. url: http://jmlr.org/papers/v13/bergstra12a.html (cit. on

p. 31).

[Bouchard and Triggs 2004] Guillaume Bouchard and Bill Triggs. “The Tradeoff

Between Generative and Discriminative Classifiers”. In: 16th IASC International

Symposium on Computational Statistics (COMPSTAT ’04). Prague, Czech Republic,

Aug. 2004, pp. 721–728. url: https://hal.inria.fr/inria-00548546 (cit. on p. 48).

[Boutilier et al. 1996] Craig Boutilier, Nir Friedman, Moises Goldszmidt, and

Daphne Koller. “Context-specific independence in bayesian networks”. In: Pro-

ceedings of the Twelfth International Conference on Uncertainty in Artificial Intelli-

gence. UAI’96. Portland, OR: Morgan Kaufmann Publishers Inc., 1996, pp. 115–123.

isbn: 155860412X (cit. on p. 42).

[Bova 2016] Simone Bova. “Sdds are exponentially more succinct than obdds”. In:

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI’16.

Phoenix, Arizona: AAAI Press, 2016, pp. 929–935 (cit. on p. 46).

https://doi.org/10.1109/CVPR.2012.6247816
https://doi.org/10.1109/TPAMI.2015.2465955
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
http://jmlr.org/papers/v13/bergstra12a.html
https://hal.inria.fr/inria-00548546

108

REFERENCES

[Breiman 2001] Leo Breiman. “Random forests”. In: Machine Learning 45 (2001), pp. 5–

32 (cit. on p. 77).

[Bryant 1986] Randal E. Bryant. “Graph-based algorithms for boolean function ma-

nipulation”. In: IEEE Transactions on Computers 35.8 (1986), pp. 677–691 (cit. on

pp. 20, 21, 46).

[Bueff et al. 2018] Andreas Bueff, Stefanie Speichert, and Vaishak Belle. “Tractable

querying and learning in hybrid domains via sum-product networks”. In: CoRR

abs/1807.05464 (2018). arXiv: 1807.05464. url: http://arxiv.org/abs/1807.05464
(cit. on p. 35).

[Cory J Butz et al. 2019] Cory J Butz, Jhonatan S Oliveira, André E dos Santos, and

André L Teixeira. “Deep convolutional sum-product networks”. In: Proceedings of

the AAAI Conference on Artificial Intelligence. Vol. 33. 2019, pp. 3248–3255 (cit. on

p. 24).

[Cory J. Butz, Oliveira, et al. 2018] Cory J. Butz, Jhonatan S. Oliveira, et al. “An

empirical study of methods for spn learning and inference”. In: Proceedings of the

Ninth International Conference on Probabilistic Graphical Models. Ed. by Václav Kra-

tochvíl and Milan Studený. Vol. 72. Proceedings of Machine Learning Research.

PMLR, Nov. 2018, pp. 49–60. url: https://proceedings.mlr.press/v72/butz18a.html
(cit. on p. 36).

[Cory J. Butz, Santos, et al. 2018] Cory J. Butz, André E. dos Santos, Jhonatan S.

Oliveira, and John Stavrinides. “Efficient examination of soil bacteria using

probabilistic graphical models”. In: Recent Trends and Future Technology in Applied

Intelligence. Ed. by Malek Mouhoub, Samira Sadaoui, Otmane Ait Mohamed,

and Moonis Ali. Cham: Springer International Publishing, 2018, pp. 315–326. isbn:

978-3-319-92058-0 (cit. on p. 25).

[Cheng et al. 2014] Wei-Chen Cheng, Stanley Kok, Hoai Vu Pham, Hai Leong Chieu,

and Kian Ming A. Chai. “Language modeling with sum-product networks”. In:

Fifteenth Annual Conference of the International Speech Communication Association.

2014 (cit. on pp. 2, 25).

[A. Choi, Broeck, et al. 2015] Arthur Choi, Guy Van den Broeck, and Adnan Dar-

wiche. “Tractable learning for structured probability spaces: A case study in

learning preference distributions”. In: Proceedings of the Twenty-Fourth Interna-

tional Joint Conference on Artificial Intelligence. 2015, pp. 2861–2868 (cit. on pp. 46,

57, 69, 106).

[A. Choi and Darwiche 2013] Arthur Choi and Adnan Darwiche. “Dynamic mini-

mization of sentential decision diagrams”. In: Proceedings of the Twenty-Seventh

AAAI Conference on Artificial Intelligence. 2013, pp. 187–194 (cit. on pp. 46, 57).

https://arxiv.org/abs/1807.05464
http://arxiv.org/abs/1807.05464
https://proceedings.mlr.press/v72/butz18a.html

REFERENCES

109

[A. Choi, Shen, et al. 2017] Arthur Choi, Yujia Shen, and Adnan Darwiche.

“Tractability in structured probability spaces”. In: Advances in Neural Information

Processing Systems. Vol. 30. 2017, pp. 3477–3485 (cit. on pp. 46, 57).

[A. Choi, Tavabi, et al. 2016] Arthur Choi, Nazgol Tavabi, and Adnan Darwiche.

“Structured features in naive Bayes classification”. In: Proceedings of the Thirtieth

AAAI Conference on Artificial Intelligence. 2016, pp. 3233–3240 (cit. on pp. 46, 57).

[Y. Choi, Vergari, and Broeck 2020] YooJung Choi, Antonio Vergari, and Guy Van

den Broeck. “Probabilistic circuits: a unifying framework for tractable probabilis-

tic models”. In: (2020). In preparation (cit. on pp. 19, 23, 100).

[Y. Choi, Vergari, and Van den Broeck 2020] YooJung Choi, Antonio Vergari, and

Guy Van den Broeck. “Lecture notes: probabilistic circuits: representation and

inference”. In: (Feb. 2020). url: http://starai.cs.ucla.edu/papers/LecNoAAAI20.pdf
(cit. on pp. 12, 99).

[Chow and C. Liu 1968] C. Chow and C. Liu. “Approximating discrete probability

distributions with dependence trees”. In: IEEE Transactions on Information Theory

14.3 (1968), pp. 462–467. doi: 10.1109/TIT.1968.1054142 (cit. on pp. 41, 45).

[Conaty et al. 2017] Diarmaid Conaty, Cassio Polpo de Campos, and Denis Deratani

Mauá. “Approximation complexity of maximum A posteriori inference in sum-

product networks”. In: Proceedings of the Thirty-Third Conference on Uncertainty

in Artificial Intelligence. 2017 (cit. on p. 11).

[Correia et al. 2020] Alvaro H. C. Correia, Robert Peharz, and Cassio de Campos.

“Joints in random forests”. In: Advances in Neural Information Processing Systems

33 (NeurIPS). 2020 (cit. on pp. 3, 13, 75, 76, 94).

[Fabio G. Cozman 2000] Fabio G. Cozman. “Credal networks”. In: Artificial Intelligence

120.2 (2000), pp. 199–233. issn: 0004-3702. doi: https://doi.org/10.1016/S0004-
3702(00)00029 - 1. url: https : / /www.sciencedirect . com/science /article /pii /
S0004370200000291 (cit. on p. 10).

[Dang, Khosravi, et al. 2021] Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio

Vergari, and Guy Van den Broeck. “Juice: a julia package for logic and probabilis-

tic circuits”. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence

(Demo Track). 2021 (cit. on p. 66).

[Dang, Vergari, et al. 2020] Meihua Dang, Antonio Vergari, and Guy Van den

Broeck. “Strudel: learning structured-decomposable probabilistic circuits”. In:

Proceedings of the 10th International Conference on Probabilistic Graphical Models.

PGM. 2020 (cit. on pp. 2, 41, 43, 45, 66, 81).

[Darwiche 1999] Adnan Darwiche. “Compiling knowledge into decomposable nega-

tion normal form”. In: IJCAI. Vol. 99. 1999, pp. 284–289 (cit. on p. 20).

http://starai.cs.ucla.edu/papers/LecNoAAAI20.pdf
https://doi.org/10.1109/TIT.1968.1054142
https://doi.org/https://doi.org/10.1016/S0004-3702(00)00029-1
https://doi.org/https://doi.org/10.1016/S0004-3702(00)00029-1
https://www.sciencedirect.com/science/article/pii/S0004370200000291
https://www.sciencedirect.com/science/article/pii/S0004370200000291

110

REFERENCES

[Darwiche 2001] Adnan Darwiche. “Decomposable negation normal form”. In: J.

ACM 48.4 (July 2001), pp. 608–647. issn: 0004-5411. doi: 10.1145/502090.502091.

url: https://doi.org/10.1145/502090.502091 (cit. on p. 20).

[Darwiche 2003] Adnan Darwiche. “A differential approach to inference in bayesian

networks”. In: Journal of the ACM 50.3 (2003), pp. 280–305 (cit. on pp. 1, 15, 18).

[Darwiche 2009] Adnan Darwiche. Modeling and Reasoning with Bayesian Networks.

Cambridge University Press, 2009. doi: 10.1017/CBO9780511811357 (cit. on p. 11).

[Darwiche 2011] Adnan Darwiche. “SDD: a new canonical representation of propo-

sitional knowledge bases”. In: Proceedings of the Twenty-Second International Joint

Conference on Artificial Intelligence. 2011, pp. 819–826 (cit. on pp. 10, 20, 46, 57, 63).

[Darwiche 2020] Adnan Darwiche. “Three modern roles for logic in ai”. In: Proceed-

ings of the 39th Symposium on Principles of Database Systems (PODS). 2020 (cit. on

p. 21).

[Darwiche and Marquis 2002] Adnan Darwiche and Pierre Marquis. “A knowledge

compilation map”. In: J. Artif. Int. Res. 17.1 (Sept. 2002), pp. 229–264. issn: 1076-9757

(cit. on p. 21).

[Dasgupta and Freund 2008] Sanjoy Dasgupta and Yoav Freund. “Random projec-

tion trees and low dimensional manifolds”. In: Proceedings of the fortieth annual

ACM symposium on Theory of computing. STOC. 2008, pp. 537–546 (cit. on pp. 3, 4,

75, 76, 78, 79, 94).

[Dastile et al. 2020] Xolani Dastile, Turgay Celik, and Moshe Potsane. “Statistical

and machine learning models in credit scoring: a systematic literature survey”. In:

Applied Soft Computing 91 (2020), p. 106263. issn: 1568-4946. doi: https://doi.org/
10.1016/j.asoc.2020.106263. url: https://www.sciencedirect.com/science/article/
pii/S1568494620302039 (cit. on p. 1).

[De Campos 2011] Cassio P. De Campos. “New complexity results for map in bayesian

networks”. In: Proceedings of the Twenty-Second International Joint Conference on

Artificial Intelligence - Volume Volume Three. IJCAI’11. Barcelona, Catalonia, Spain,

2011, pp. 2100–2106. isbn: 9781577355151 (cit. on p. 11).

[Dechter and Mateescu 2007] Rina Dechter and Robert Mateescu. “And/or search

spaces for graphical models”. In: Artificial Intelligence 171.2 (2007), pp. 73–106.

issn: 0004-3702. doi: https://doi.org/10.1016/j.artint.2006.11.003. url: https:
//www.sciencedirect.com/science/article/pii/S000437020600138X (cit. on pp. 1, 18).

[Dempster et al. 1977] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum

likelihood from incomplete data via the em algorithm”. In: Journal of the Royal

Statistical Society. Series B (Methodological) 39.1 (1977), pp. 1–38. issn: 00359246.

url: http://www.jstor.org/stable/2984875 (cit. on pp. 48, 50).

https://doi.org/10.1145/502090.502091
https://doi.org/10.1145/502090.502091
https://doi.org/10.1017/CBO9780511811357
https://doi.org/https://doi.org/10.1016/j.asoc.2020.106263
https://doi.org/https://doi.org/10.1016/j.asoc.2020.106263
https://www.sciencedirect.com/science/article/pii/S1568494620302039
https://www.sciencedirect.com/science/article/pii/S1568494620302039
https://doi.org/https://doi.org/10.1016/j.artint.2006.11.003
https://www.sciencedirect.com/science/article/pii/S000437020600138X
https://www.sciencedirect.com/science/article/pii/S000437020600138X
http://www.jstor.org/stable/2984875

REFERENCES

111

[Dennis and Ventura 2012] Aaron Dennis and Dan Ventura. “Learning the archi-

tecture of sum-product networks using clustering on variables”. In: Advances in

Neural Information Processing Systems 25. NIPS, 2012, pp. 2033–2041 (cit. on p. 47).

[Dennis and Ventura 2017] Aaron Dennis and Dan Ventura. “Autoencoder-

enhanced sum-product networks”. In: 2017 16th IEEE International Conference

on Machine Learning and Applications (ICMLA). 2017, pp. 1041–1044. doi:

10.1109/ICMLA.2017.00-13 (cit. on p. 24).

[Dhesi and Kar 2010] Aman Dhesi and Purushottam Kar. “Random projection trees

revisited”. In: Advances in Neural Information Processing Systems. Vol. 23. NeurIPS.

2010 (cit. on pp. 77–79).

[Di Mauro et al. 2017] Nicola Di Mauro, Floriana Esposito, Fabrizio G. Ventola, and

Antonio Vergari. “Alternative variable splitting methods to learn sum-product

networks”. In: AI*IA 2017 Advances in Artificial Intelligence. Ed. by Floriana Es-

posito, Roberto Basili, Stefano Ferilli, and Francesca A. Lisi. Cham: Springer

International Publishing, 2017, pp. 334–346. isbn: 978-3-319-70169-1 (cit. on pp. 2,

35).

[Dua and Graff 2017] Dheeru Dua and Casey Graff. UCI Machine Learning Repository.

2017. url: http://archive.ics.uci.edu/ml (cit. on p. 81).

[Edmonds 1965] Jack Edmonds. “Paths, trees, and flowers”. In: Canadian Journal of

Mathematics 17 (1965), pp. 449–467. doi: 10.4153/CJM-1965-045-4 (cit. on pp. 37,

40).

[Eén and Sörensson 2006] Niklas Eén and Niklas Sörensson. “Translating pseudo-

boolean constraints into SAT”. In: Journal on Satisfiability, Boolean Modeling and

Computation (2006) (cit. on pp. 46, 68).

[Enshaei and Naderkhani 2019] Nastaran Enshaei and Farnoosh Naderkhani. “Ap-

plication of deep learning for fault diagnostic in induction machine’s bearings”. In:

2019 IEEE International Conference on Prognostics and Health Management (ICPHM).

2019, pp. 1–7. doi: 10.1109/ICPHM.2019.8819421 (cit. on p. 1).

[Feldmann and Foschini 2015] Andreas Emil Feldmann and Luca Foschini. “Bal-

anced partitions of trees and applications”. In: Algorithmica 71.2 (Feb. 2015),

pp. 354–376. issn: 0178-4617. doi: 10 . 1007 / s00453 - 013 - 9802 - 3. url: https :
//doi.org/10.1007/s00453-013-9802-3 (cit. on p. 35).

[Freund et al. 2008] Yoav Freund, Sanjoy Dasgupta, Mayank Kabra, and Nakul

Verma. “Learning the structure of manifolds using random projections”. In: Ad-

vances in Neural Information Processing Systems. Vol. 20. NeurIPS. 2008 (cit. on

pp. 3, 4, 75, 77, 78).

https://doi.org/10.1109/ICMLA.2017.00-13
http://archive.ics.uci.edu/ml
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1109/ICPHM.2019.8819421
https://doi.org/10.1007/s00453-013-9802-3
https://doi.org/10.1007/s00453-013-9802-3
https://doi.org/10.1007/s00453-013-9802-3

112

REFERENCES

[A. Friesen and P. Domingos 2016] Abram Friesen and Pedro Domingos. “The sum-

product theorem: a foundation for learning tractable models”. In: Proceedings

of The 33rd International Conference on Machine Learning. Ed. by Maria Florina

Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning

Research. New York, New York, USA: PMLR, June 2016, pp. 1909–1918. url: https:
//proceedings.mlr.press/v48/friesen16.html (cit. on p. 10).

[Abram L Friesen and P. Domingos 2017] Abram L Friesen and Pedro Domingos.

“Unifying sum-product networks and submodular fields”. In: Proceedings of the

Workshop on Principled Approaches to Deep Learning at ICML. 2017 (cit. on p. 24).

[Abram L Friesen and P. M. Domingos 2018] Abram L Friesen and Pedro M Domin-

gos. “Submodular field grammars: representation, inference, and application to

image parsing”. In: Advances in Neural Information Processing Systems. Ed. by

S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018. url: https://proceedings.
neurips.cc/paper/2018/file/c5866e93cab1776890fe343c9e7063fb-Paper.pdf (cit. on

p. 24).

[Abram L. Friesen and P. Domingos 2015] Abram L. Friesen and Pedro Domingos.

“Recursive decomposition for nonconvex optimization”. In: Proceedings of the

24th International Conference on Artificial Intelligence. IJCAI’15. Buenos Aires,

Argentina: AAAI Press, 2015, pp. 253–259. isbn: 9781577357384 (cit. on pp. 10, 25).

[Garey and Johnson 1990] Michael R. Garey and David S. Johnson. Computers and

Intractability; A Guide to the Theory of NP-Completeness. USA: W. H. Freeman Co.,

1990. isbn: 0716710455 (cit. on p. 37).

[Gatterbauer and Suciu 2014] Wolfgang Gatterbauer and Dan Suciu. “Oblivious

bounds on the probability of boolean functions”. In: ACM Transactions on Database

Systems 39.1 (2014) (cit. on p. 61).

[R. Geh and D. Mauá 2019] Renato Geh and Denis Mauá. “End-to-end imitation learn-

ing of lane following policies using sum-product networks”. In: Anais do XVI

Encontro Nacional de Inteligência Artificial e Computacional. Salvador: SBC, 2019,

pp. 297–308. doi: 10.5753/eniac.2019.9292. url: https://sol.sbc.org.br/index.php/
eniac/article/view/9292 (cit. on pp. 24, 25).

[R. Geh, D. Mauá, and Antonucci 2020] Renato Geh, Denis Mauá, and Alessandro

Antonucci. “Learning probabilistic sentential decision diagrams by sampling”. In:

Proceedings of the VIII Symposium on Knowledge Discovery, Mining and Learning.

SBC, 2020 (cit. on pp. 58, 60).

[R. L. Geh and Denis Deratani Mauá 2021a] Renato Lui Geh and Denis DerataniMauá.

“Fast and accurate learning of probabilistic circuits by random projections”. In:

The 4th Tractable Probabilistic Modeling Workshop. 2021 (cit. on p. 75).

https://proceedings.mlr.press/v48/friesen16.html
https://proceedings.mlr.press/v48/friesen16.html
https://proceedings.neurips.cc/paper/2018/file/c5866e93cab1776890fe343c9e7063fb-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c5866e93cab1776890fe343c9e7063fb-Paper.pdf
https://doi.org/10.5753/eniac.2019.9292
https://sol.sbc.org.br/index.php/eniac/article/view/9292
https://sol.sbc.org.br/index.php/eniac/article/view/9292

REFERENCES

113

[R. L. Geh and Denis Deratani Mauá 2021b] Renato Lui Geh and Denis DerataniMauá.

“Learning probabilistic sentential decision diagrams under logic constraints by

sampling and averaging”. In: Proceedings of the Thirty-Seventh Conference on

Uncertainty in Artificial Intelligence. Ed. by Cassio de Campos and Marloes H.

Maathuis. Vol. 161. Proceedings of Machine Learning Research. PMLR, July 2021,

pp. 2039–2049. url: https://proceedings.mlr.press/v161/geh21a.html (cit. on

pp. 2–4, 57, 101).

[Gens and P. Domingos 2012] Robert Gens and Pedro Domingos. “Discriminative

learning of sum-product networks”. In: Advances in Neural Information Processing

Systems 25. NIPS, 2012, pp. 3239–3247 (cit. on pp. 24, 51).

[Gens and P. Domingos 2013] Robert Gens and Pedro Domingos. “Learning the struc-

ture of sum-product networks”. In: Proceedings of the 30th International Conference

on Machine Learning. ICML. 2013, pp. 873–880 (cit. on pp. 2, 28, 29, 81, 87).

[Gogic et al. 1995] Goran Gogic, Henry Kautz, Christos Papadimitriou, and Bart Sel-

man. “The comparative linguistics of knowledge representation”. In: Proceedings of

the 14th International Joint Conference on Artificial Intelligence - Volume 1. IJCAI’95.

Montreal, Quebec, Canada, 1995, pp. 862–869. isbn: 1558603638 (cit. on p. 21).

[Gopalakrishnan et al. 1991] P.S. Gopalakrishnan, D. Kanevsky, A. Nadas, and

D. Nahamoo. “An inequality for rational functions with applications to some

statistical estimation problems”. In: IEEE Transactions on Information Theory 37.1

(1991), pp. 107–113. doi: 10.1109/18.61108 (cit. on p. 50).

[Grigorescu et al. 2020] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and

Gigel Macesanu. “A survey of deep learning techniques for autonomous driving”.

In: Journal of Field Robotics 37.3 (2020), pp. 362–386 (cit. on p. 1).

[Güvenir and Uysal 2000] Halil Altay Güvenir and İlhan Uysal. Bilkent University

Function Approximation Repository. Jan. 2000 (cit. on p. 81).

[Hang and Wen 2019] Hanyuan Hang and Hongwei Wen. Best-scored Random Forest

Density Estimation. 2019. arXiv: 1905.03729 [stat.ML] (cit. on pp. 75, 76).

[Herrmann and Barros 2013] Ricardo G. Herrmann and Leliane N. de Barros. “Al-

gebraic sentential decision diagrams in symbolic probabilistic planning”. In: 2013

Brazilian Conference on Intelligent Systems. 2013, pp. 175–181. doi: 10.1109/BRACIS.
2013.37 (cit. on p. 46).

[Ho 1995] Tin Kam Ho. “Random decision forests”. In: Proceedings of 3rd International

Conference on Document Analysis and Recognition. Vol. 1. 1995, 278–282 vol.1. doi:

10.1109/ICDAR.1995.598994 (cit. on pp. 75, 76).

[Hsu et al. 2017] Wilson Hsu, Agastya Kalra, and Pascal Poupart. Online Structure

Learning for Sum-Product Networks with Gaussian Leaves. 2017. arXiv: 1701.05265
[stat.ML] (cit. on p. 81).

https://proceedings.mlr.press/v161/geh21a.html
https://doi.org/10.1109/18.61108
https://arxiv.org/abs/1905.03729
https://doi.org/10.1109/BRACIS.2013.37
https://doi.org/10.1109/BRACIS.2013.37
https://doi.org/10.1109/ICDAR.1995.598994
https://arxiv.org/abs/1701.05265
https://arxiv.org/abs/1701.05265

114

REFERENCES

[Jaeger 2004] Manfred Jaeger. “Probabilistic decision graphs-combining verification

and ai techniques for probabilistic inference”. In: Int. J. Uncertain. Fuzziness

Knowl.-Based Syst. 12.1 supp (Jan. 2004), pp. 19–42. issn: 0218-4885. doi: 10 .
1142/S0218488504002564. url: https://doi.org/10.1142/S0218488504002564 (cit. on

pp. 1, 18).

[Jaini, Ghose, et al. 2018] Priyank Jaini, Amur Ghose, and Pascal Poupart.

“Prometheus: directly learning acyclic directed graph structures for sum-product

networks”. In: International Conference on Probabilistic Graphical Models. PGM.

2018, pp. 181–192 (cit. on pp. 2, 31, 33, 34, 81, 87, 89).

[Jaini, Poupart, et al. 2018] Priyank Jaini, Pascal Poupart, and Yaoliang Yu. “Deep

homogeneous mixture models: representation, separation, and approximation”. In:

Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31.

Curran Associates, Inc., 2018. url: https://proceedings.neurips.cc/paper/2018/file/
c5f5c23be1b71adb51ea9dc8e9d444a8-Paper.pdf (cit. on p. 97).

[Jaini, Rashwan, et al. 2016] Priyank Jaini, Abdullah Rashwan, et al. “Online algo-

rithms for sum-product networks with continuous variables”. In: Proceedings

of the Eighth International Conference on Probabilistic Graphical Models. Ed. by

Alessandro Antonucci, Giorgio Corani, and Cassio Polpo Campos. Vol. 52. Pro-

ceedings of Machine Learning Research. Lugano, Switzerland: PMLR, June 2016,

pp. 228–239. url: https://proceedings.mlr.press/v52/jaini16.html (cit. on pp. 51,

81).

[Kamishima 2003] Toshihiro Kamishima. “Nantonac collaborative filtering: recommen-

dation based on order responses”. In: Proceedings of the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. Association

for Computing Machinery, 2003 (cit. on p. 69).

[Karypis and Kumar 1998] George Karypis and Vipin Kumar. “A fast and high quality

multilevel scheme for partitioning irregular graphs”. In: SIAM Journal on Scientific

Computing 20.1 (1998), pp. 359–392. doi: 10.1137/S1064827595287997 (cit. on

pp. 37, 40).

[Khan and Yairi 2018] Samir Khan and Takehisa Yairi. “A review on the application

of deep learning in system health management”. In: Mechanical Systems and Signal

Processing 107 (2018), pp. 241–265. issn: 0888-3270. doi: https://doi.org/10.1016/
j.ymssp.2017.11.024. url: https://www.sciencedirect.com/science/article/pii/
S0888327017306064 (cit. on p. 1).

[Khosravi et al. 2020] Pasha Khosravi, Antonio Vergari, YooJung Choi, Yitao Liang,

and Guy Van den Broeck. Handling Missing Data in Decision Trees: A Probabilistic

Approach. 2020 (cit. on p. 75).

[Kisa et al. 2014] Doga Kisa, Guy Van den Broeck, Arthur Choi, and AdnanDarwiche.

“Probabilistic sentential decision diagrams”. In: Knowledge Representation and

Reasoning Conference (2014) (cit. on pp. 1, 18, 23, 50, 57, 64).

https://doi.org/10.1142/S0218488504002564
https://doi.org/10.1142/S0218488504002564
https://doi.org/10.1142/S0218488504002564
https://proceedings.neurips.cc/paper/2018/file/c5f5c23be1b71adb51ea9dc8e9d444a8-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c5f5c23be1b71adb51ea9dc8e9d444a8-Paper.pdf
https://proceedings.mlr.press/v52/jaini16.html
https://doi.org/10.1137/S1064827595287997
https://doi.org/https://doi.org/10.1016/j.ymssp.2017.11.024
https://doi.org/https://doi.org/10.1016/j.ymssp.2017.11.024
https://www.sciencedirect.com/science/article/pii/S0888327017306064
https://www.sciencedirect.com/science/article/pii/S0888327017306064

REFERENCES

115

[Kolmogorov 2009] Vladimir Kolmogorov. “Blossom v: a new implementation of

a minimum cost perfect matching algorithm”. In: Mathematical Programming

Computation 1.1 (July 2009), pp. 43–67. issn: 1867-2957. doi: 10.1007/s12532-009-
0002-8. url: https://doi.org/10.1007/s12532-009-0002-8 (cit. on pp. 37, 40).

[Lan et al. 2018] Kun Lan et al. “A survey of data mining and deep learning in bioin-

formatics”. In: Journal of Medical Systems 42.8 (June 2018), p. 139. issn: 1573-689X.

doi: 10.1007/s10916-018-1003-9 (cit. on p. 1).

[Li et al. 2019] Yu Li et al. “Deep learning in bioinformatics: introduction, application,

and perspective in the big data era”. In: Methods 166 (2019). Deep Learning in

Bioinformatics, pp. 4–21. issn: 1046-2023 (cit. on p. 1).

[Liang, Bekker, et al. 2017] Yitao Liang, Jessa Bekker, and Guy Van den Broeck.

“Learning the structure of probabilistic sentential decision diagrams”. In: Proceed-

ings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence. 2017

(cit. on pp. 2, 36–38, 40, 41).

[Liang and Van den Broeck 2019] Yitao Liang and Guy Van den Broeck. “Learning

logistic circuits”. In: Proceedings of the AAAI Conference on Artificial Intelligence

33.01 (July 2019), pp. 4277–4286. doi: 10.1609/aaai.v33i01.33014277. url: https:
//ojs.aaai.org/index.php/AAAI/article/view/4336 (cit. on pp. 10, 50).

[A. Liu and Van den Broeck 2021] Anji Liu and Guy Van den Broeck. “Tractable

regularization of probabilistic circuits”. In: Advances in Neural Information Pro-

cessing Systems 35 (NeurIPS). Dec. 2021. url: http://starai.cs.ucla.edu/papers/
LiuNeurIPS21.pdf (cit. on p. 84).

[Y. Liu and Luo 2019] Yang Liu and Tiejian Luo. “The optimization of sum-product

network structure learning”. In: Journal of Visual Communication and Image

Representation 60 (2019), pp. 391–397. issn: 1047-3203. doi: https://doi.org/10.
1016/j.jvcir.2019.02.012. url: https://www.sciencedirect.com/science/article/pii/
S1047320319300653 (cit. on p. 35).

[Llerena and Deratani Mauá 2017] Julissa Villanueva Llerena and Denis Deratani

Mauá. “On using sum-product networks for multi-label classification”. In: 2017

Brazilian Conference on Intelligent Systems (BRACIS). 2017, pp. 25–30. doi: 10.1109/
BRACIS.2017.34 (cit. on p. 24).

[Lomuscio and Paquet 2015] Alessio Lomuscio and Hugo Paquet. “Verification of

multi-agent systems via sdd-based model checking”. In: Proceedings of the 2015

International Conference on Autonomous Agents and Multiagent Systems. AAMAS

’15. Istanbul, Turkey: International Foundation for Autonomous Agents and Mul-

tiagent Systems, 2015, pp. 1713–1714. isbn: 9781450334136 (cit. on p. 46).

[Lou et al. 2019] Bin Lou et al. “An image-based deep learning framework for individu-

alising radiotherapy dose: a retrospective analysis of outcome prediction”. In: The

Lancet Digital Health 1.3 (2019), e136–e147. issn: 2589-7500 (cit. on p. 1).

https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1007/s10916-018-1003-9
https://doi.org/10.1609/aaai.v33i01.33014277
https://ojs.aaai.org/index.php/AAAI/article/view/4336
https://ojs.aaai.org/index.php/AAAI/article/view/4336
http://starai.cs.ucla.edu/papers/LiuNeurIPS21.pdf
http://starai.cs.ucla.edu/papers/LiuNeurIPS21.pdf
https://doi.org/https://doi.org/10.1016/j.jvcir.2019.02.012
https://doi.org/https://doi.org/10.1016/j.jvcir.2019.02.012
https://www.sciencedirect.com/science/article/pii/S1047320319300653
https://www.sciencedirect.com/science/article/pii/S1047320319300653
https://doi.org/10.1109/BRACIS.2017.34
https://doi.org/10.1109/BRACIS.2017.34

116

REFERENCES

[Lowd and Davis 2010] Daniel Lowd and Jesse Davis. “Learning markov network

structure with decision trees”. In: 2010 IEEE International Conference on Data

Mining. 2010 (cit. on p. 81).

[Lowd and Rooshenas 2013] Daniel Lowd and Amirmohammad Rooshenas. “Learn-

ing markov networks with arithmetic circuits”. In: Proceedings of the Sixteenth

International Conference on Artificial Intelligence and Statistics. Ed. by Carlos M.

Carvalho and Pradeep Ravikumar. Vol. 31. Proceedings of Machine Learning

Research. Scottsdale, Arizona, USA: PMLR, Apr. 2013, pp. 406–414. url: https:
//proceedings.mlr.press/v31/lowd13a.html (cit. on pp. 15, 31).

[Lowd and Rooshenas 2015] Daniel Lowd and Amirmohammad Rooshenas. “The

libra toolkit for probabilistic models”. In: Journal of Machine Learning Research 16

(2015), pp. 2459–2463 (cit. on p. 55).

[Lu et al. 2013] Wei-Lwun Lu, Jo-Anne Ting, James J. Little, and Kevin P. Murphy.

“Learning to track and identify players from broadcast sports videos”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 35.7 (2013), pp. 1704–1716.

doi: 10.1109/TPAMI.2012.242 (cit. on p. 1).

[Martens and Medabalimi 2014] James Martens and Venkatesh Medabalimi. “On

the expressive efficiency of sum product networks”. In: CoRR abs/1411.7717 (2014).

arXiv: 1411.7717. url: http://arxiv.org/abs/1411.7717 (cit. on p. 30).

[Mattei, Antonucci, et al. 2020a] Lilith Mattei, Alessandro Antonucci, Denis Der-

atani Mauá, Alessandro Facchini, and Julissa Villanueva Llerena. “Tractable

inference in credal sentential decision diagrams”. In: International Journal of

Approximate Reasoning 125 (2020), pp. 26–48. issn: 0888-613X. doi: https://doi.
org/10.1016/j.ijar.2020.06.005. url: https://www.sciencedirect.com/science/article/
pii/S0888613X20301845 (cit. on p. 10).

[Mattei, Antonucci, et al. 2020b] Lilith Mattei, Alessandro Antonucci, Denis Der-

atani Mauá, Alessandro Facchini, and Julissa Villanueva Llerena. “Tractable

inference in credal sentential decision diagrams”. In: International Journal of

Approximate Reasoning 125 (2020), pp. 26–48 (cit. on p. 67).

[Mattei, Soares, et al. 2019] Lilith Mattei, Décio L. Soares, Alessandro Antonucci,

Denis D. Mauá, and Alessandro Facchini. “Exploring the space of probabilistic

sentential decision diagrams”. In: 3rd Workshop of Tractable Probabilistic Modeling.

2019 (cit. on pp. 57, 58).

[Denis D. Mauá et al. 2017] Denis D. Mauá, Fabio G. Cozman, Diarmaid Conaty, and

Cassio P. Campos. “Credal sum-product networks”. In: Proceedings of the Tenth

International Symposium on Imprecise Probability: Theories and Applications. Ed. by

Alessandro Antonucci, Giorgio Corani, Inés Couso, and Sébastien Destercke.

Vol. 62. Proceedings of Machine Learning Research. PMLR, Oct. 2017, pp. 205–216.

url: https://proceedings.mlr.press/v62/mau%C3%A117a.html (cit. on p. 10).

https://proceedings.mlr.press/v31/lowd13a.html
https://proceedings.mlr.press/v31/lowd13a.html
https://doi.org/10.1109/TPAMI.2012.242
https://arxiv.org/abs/1411.7717
http://arxiv.org/abs/1411.7717
https://doi.org/https://doi.org/10.1016/j.ijar.2020.06.005
https://doi.org/https://doi.org/10.1016/j.ijar.2020.06.005
https://www.sciencedirect.com/science/article/pii/S0888613X20301845
https://www.sciencedirect.com/science/article/pii/S0888613X20301845
https://proceedings.mlr.press/v62/mau%C3%A117a.html

REFERENCES

117

[Mauro et al. 2021] Nicola Di Mauro, Gennaro Gala, Marco Iannotta, and Teresa

M. A. Basile. “Random probabilistic circuits”. In: Proceedings of the Thirty-Seventh

Conference on Uncertainty in Artificial Intelligence. 2021 (cit. on pp. 2, 47, 51, 54,

81).

[Mei et al. 2018] Jun Mei, Yong Jiang, and Kewei Tu. “Maximum a posteriori inference

in sum-product networks”. In: AAAI Conference on Artificial Intelligence. 2018

(cit. on p. 11).

[Melibari, Poupart, and Doshi 2016] Mazen Melibari, Pascal Poupart, and

Prashant Doshi. “Sum-product-max networks for tractable decision making”.

In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial

Intelligence. IJCAI’16. New York, New York, USA: AAAI Press, 2016, pp. 1846–1852.

isbn: 9781577357704 (cit. on p. 10).

[Melibari, Poupart, Doshi, and Trimponias 2016] Mazen Melibari, Pascal

Poupart, Prashant Doshi, and George Trimponias. “Dynamic sum product

networks for tractable inference on sequence data”. In: Probabilistic Graphical

Models. Vol. 52. JMLR Workshop and Conference Proceedings. JMLR.org, 2016,

pp. 345–355 (cit. on p. 24).

[Molina, Natarajan, et al. 2017] Alejandro Molina, Sriraam Natarajan, and Kris-

tian Kersting. “Poisson sum-product networks: a deep architecture for tractable

multivariate poisson distributions”. In: Proceedings of the AAAI Conference on

Artificial Intelligence 31.1 (Feb. 2017). url: https://ojs.aaai.org/index.php/AAAI/
article/view/10844 (cit. on p. 35).

[Molina, Vergari, et al. 2018] AlejandroMolina, Antonio Vergari, et al. “Mixed sum-

product networks: a deep architecture for hybrid domains”. In: (2018). url: https:
//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16865 (cit. on p. 35).

[Monteith et al. 2011] Kristine Monteith, James L. Carroll, Kevin Seppi, and Tony

Martinez. “Turning bayesian model averaging into bayesian model combination”.

In: The 2011 International Joint Conference on Neural Networks. 2011 (cit. on p. 65).

[Nath and P. Domingos 2015] Aniruddh Nath and Pedro Domingos. “Learning rela-

tional sum-product networks”. In: Proceedings of the AAAI Conference on Artificial

Intelligence 29.1 (Feb. 2015). url: https://ojs.aaai.org/index.php/AAAI/article/view/
9538 (cit. on p. 35).

[Nath and P. M. Domingos 2016] Aniruddh Nath and Pedro M Domingos. “Learning

tractable probabilistic models for fault localization”. In: Thirtieth AAAI Conference

on Artificial Intelligence. 2016 (cit. on pp. 2, 25).

https://ojs.aaai.org/index.php/AAAI/article/view/10844
https://ojs.aaai.org/index.php/AAAI/article/view/10844
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16865
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16865
https://ojs.aaai.org/index.php/AAAI/article/view/9538
https://ojs.aaai.org/index.php/AAAI/article/view/9538

118

REFERENCES

[Niehues et al. 2018] Jan Niehues, Ngoc-Quan Pham, Thanh-Le Ha, Matthias Sperber,

and Alex Waibel. “Low-latency neural speech translation”. In: Interspeech 2018,

19th Annual Conference of the International Speech Communication Association,

Hyderabad, India, 2-6 September 2018. Ed. by B. Yegnanarayana. ISCA, 2018,

pp. 1293–1297. doi: 10.21437/Interspeech.2018-1055 (cit. on p. 1).

[Nishino et al. 2016] Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and

Masaaki Nagata. “Zero-suppressed sentential decision diagrams”. In: AAAI Con-

ference on Artificial Intelligence. 2016 (cit. on pp. 46, 57).

[Nourani et al. 2020] Mahsan Nourani et al. Don’t Explain without Verifying Veracity:

An Evaluation of Explainable AI with Video Activity Recognition. 2020. arXiv:

2005.02335 [cs.HC] (cit. on p. 24).

[Olascoaga et al. 2019] Laura Isabel Galindez Olascoaga, Wannes Meert, Nimish

Shah, Marian Verhelst, and Guy Van den Broeck. “Towards hardware-aware

tractable learning of probabilistic models”. In: NeurIPS. 2019, pp. 13726–13736

(cit. on p. 25).

[Oztok and Darwiche 2015] Umut Oztok and Adnan Darwiche. “A top-down com-

piler for sentential decision diagrams”. In: Proceedings of the 24th International

Conference on Artificial Intelligence. 2015, pp. 3141–3148 (cit. on pp. 46, 57).

[Papadimitriou 1994] C.H. Papadimitriou. Computational Complexity. Theoretical

computer science. Addison-Wesley, 1994. isbn: 9780201530827 (cit. on p. 21).

[Peharz, Gens, and P. Domingos 2014] Robert Peharz, Robert Gens, and Pedro

Domingos. “Learning selective sum-product networks”. In: Workshop on Learning

Tractable Probabilistic Models. 2014 (cit. on p. 50).

[Peharz, Gens, Pernkopf, et al. 2016] Robert Peharz, Robert Gens, Franz Pernkopf,

and Pedro Domingos. “On the latent variable interpretation in sum-product

networks”. In: IEEE transactions on pattern analysis and machine intelligence 39.10

(2016), pp. 2030–2044 (cit. on pp. 7, 11, 14, 48, 100).

[Peharz, Kapeller, et al. 2014] Robert Peharz, Georg Kapeller, Pejman Mowlaee,

and Franz Pernkopf. “Modeling speech with sum-product networks: application

to bandwidth extension”. In: 2014 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE. 2014, pp. 3699–3703 (cit. on p. 25).

[Peharz, Lang, et al. 2020] Robert Peharz, Steven Lang, et al. “Einsum networks: fast

and scalable learning of tractable probabilistic circuits”. In: Proceedings of the

37th International Conference on Machine Learning. Ed. by Hal Daumé III and

Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR, July

2020, pp. 7563–7574. url: https://proceedings.mlr.press/v119/peharz20a.html
(cit. on pp. 2, 10, 24, 51).

https://doi.org/10.21437/Interspeech.2018-1055
https://arxiv.org/abs/2005.02335
https://proceedings.mlr.press/v119/peharz20a.html

REFERENCES

119

[Peharz, Tschiatschek, et al. 2015] Robert Peharz, Sebastian Tschiatschek, Franz

Pernkopf, and Pedro Domingos. “On theoretical properties of sum-product net-

works”. In: Proceedings of the Eighteenth International Conference on Artificial

Intelligence and Statistics. 2015, pp. 744–752 (cit. on pp. 7, 12, 50).

[Peharz, Vergari, et al. 2020] Robert Peharz, Antonio Vergari, et al. “Random sum-

product networks: a simple and effective approach to probabilistic deep learning”.

In: Proceedings of The 35th Uncertainty in Artificial Intelligence Conference. Ed. by

Ryan P. Adams and Vibhav Gogate. Vol. 115. Proceedings of Machine Learning

Research. PMLR, July 2020, pp. 334–344. url: https://proceedings.mlr.press/v115/
peharz20a.html (cit. on pp. 2, 24, 46–50).

[Pevný et al. 2020] Tomáš Pevný, Václav Smídl, Martin Trapp, Ondřej Poláček, and

Tomáš Oberhuber. “Sum-product-transform networks: exploiting symmetries

using invertible transformations”. In: Proceedings of the 10th International Confer-

ence on Probabilistic Graphical Models. Ed. by Manfred Jaeger and Thomas Dyhre

Nielsen. Vol. 138. Proceedings of Machine Learning Research. PMLR, Sept. 2020,

pp. 341–352. url: https://proceedings.mlr.press/v138/pevny20a.html (cit. on p. 10).

[Pogancic et al. 2020] Marin Vlastelica Pogancic, Anselm Paulus, Vit Musil, Georg

Martius, and Michal Rolinek. “Differentiation of blackbox combinatorial solvers”.

In: 8th International Conference on Learning Representations, ICLR 2020, Addis

Ababa, Ethiopia, April 26-30, 2020. 2020 (cit. on p. 1).

[Poon and P. Domingos 2011] Hoifung Poon and Pedro Domingos. “Sum-product net-

works: a new deep architecture”. In: Proceedings of the Twenty-Seventh Conference

on Uncertainty in Artificial Intelligence. 2011, pp. 337–346 (cit. on pp. 1, 2, 7, 12, 18,

24, 50, 99).

[Pronobis et al. 2017] Andrzej Pronobis, Francesco Riccio, and Rajesh PN Rao. “Deep

spatial affordance hierarchy: spatial knowledge representation for planning in

large-scale environments”. In: ICAPS 2017 Workshop on Planning and Robotics.

2017 (cit. on p. 25).

[Rahman and Gogate 2016] Tahrima Rahman and Vibhav Gogate. “Merging strate-

gies for sum-product networks: from trees to graphs”. In: Proceedings of the Thirty-

Second Conference on Uncertainty in Artificial Intelligence. UAI’16. Jersey City, New

Jersey, USA: AUAI Press, 2016, pp. 617–626. isbn: 9780996643115 (cit. on p. 36).

[Rahman, Kothalkar, et al. 2014] Tahrima Rahman, Prasanna Kothalkar, and Vib-

hav Gogate. “Cutset networks: a simple, tractable, and scalable approach for

improving the accuracy of chow-liu trees”. In: Proceedings of the 2014th European

Conference on Machine Learning and Knowledge Discovery in Databases. 2014,

pp. 630–645 (cit. on pp. 1, 18).

https://proceedings.mlr.press/v115/peharz20a.html
https://proceedings.mlr.press/v115/peharz20a.html
https://proceedings.mlr.press/v138/pevny20a.html

120

REFERENCES

[Ram and Gray 2011] Parikshit Ram and Alexander G. Gray. “Density estimation trees”.

In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. KDD ’11. San Diego, California, USA: Association

for Computing Machinery, 2011, pp. 627–635. isbn: 9781450308137. doi: 10.1145/
2020408.2020507. url: https://doi.org/10.1145/2020408.2020507 (cit. on pp. 13, 75).

[Rashwan, Poupart, et al. 2018] Abdullah Rashwan, Pascal Poupart, and Chen Zhi-

tang. “Discriminative training of sum-product networks by extended baum-

welch”. In: Proceedings of the Ninth International Conference on Probabilistic Graph-

ical Models. Vol. 72. Proceedings of Machine Learning Research. 2018, pp. 356–367

(cit. on p. 50).

[Rashwan, H. Zhao, et al. 2016] Abdullah Rashwan, Han Zhao, and Pascal Poupart.

“Online and distributed bayesian moment matching for parameter learning in

sum-product networks”. In: Proceedings of the 19th International Conference on Ar-

tificial Intelligence and Statistics. Ed. by Arthur Gretton and Christian C. Robert.

Vol. 51. Proceedings of Machine Learning Research. Cadiz, Spain: PMLR, Sept.

2016, pp. 1469–1477. url: http://proceedings.mlr.press/v51/rashwan16.html
(cit. on p. 51).

[Rasmussen 2000] Carl Rasmussen. “The infinite gaussian mixture model”. In: Ad-

vances in Neural Information Processing Systems. Ed. by S. Solla, T. Leen, and

K. Müller. Vol. 12. MIT Press, 2000. url: https://proceedings.neurips.cc/paper/
1999/file/97d98119037c5b8a9663cb21fb8ebf47-Paper.pdf (cit. on p. 81).

[Ratajczak et al. 2014] Martin Ratajczak, Sebastian Tschiatschek, and Franz

Pernkopf. “Sum-product networks for structured prediction: context-specific

deep conditional random fields”. In: International Conference on Machine Learning

(ICML) Workshop on Learning Tractable Probabilistic Models Workshop. 2014 (cit. on

p. 25).

[Ratajczak et al. 2018] Martin Ratajczak, Sebastian Tschiatschek, and Franz

Pernkopf. “Sum-product networks for sequence labeling”. In: arXiv preprint

arXiv:1807.02324 (2018) (cit. on p. 25).

[Rathke et al. 2017] Fabian Rathke, Mattia Desana, and Christoph Schnörr. “Locally

adaptive probabilistic models for global segmentation of pathological oct scans”.

In: International Conference on Medical Image Computing and Computer-Assisted

Intervention. Springer. 2017, pp. 177–184 (cit. on p. 24).

[Rooshenas and Lowd 2014] Amirmohammad Rooshenas and Daniel Lowd. “Learn-

ing sum-product networks with direct and indirect variable interactions”. In:

Proceedings of the 31st International Conference on Machine Learning. Ed. by Eric P.

Xing and Tony Jebara. Vol. 32. Proceedings of Machine Learning Research 1.

Bejing, China: PMLR, June 2014, pp. 710–718. url: https://proceedings.mlr.press/
v32/rooshenas14.html (cit. on pp. 30, 31, 55).

https://doi.org/10.1145/2020408.2020507
https://doi.org/10.1145/2020408.2020507
https://doi.org/10.1145/2020408.2020507
http://proceedings.mlr.press/v51/rashwan16.html
https://proceedings.neurips.cc/paper/1999/file/97d98119037c5b8a9663cb21fb8ebf47-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/97d98119037c5b8a9663cb21fb8ebf47-Paper.pdf
https://proceedings.mlr.press/v32/rooshenas14.html
https://proceedings.mlr.press/v32/rooshenas14.html

REFERENCES

121

[Saad et al. 2021] Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. “SPPL:

probabilistic programming with fast exact symbolic inference”. In: Proceedings of

the 42nd ACM SIGPLAN International Conference on Programming Language Design

and Implementation. Virtual, Canada: Association for Computing Machinery, 2021,

pp. 804–819. isbn: 9781450383912. doi: 10.1145/3453483.3454078 (cit. on p. 25).

[Salakhutdinov and Hinton 2009] Ruslan Salakhutdinov and Geoffrey Hinton.

“Deep boltzmann machines”. In: Proceedings of the Twelth International Conference

on Artificial Intelligence and Statistics. Ed. by David van Dyk and Max Welling.

Vol. 5. Proceedings of Machine Learning Research. Hilton Clearwater Beach

Resort, Clearwater Beach, Florida USA: PMLR, Apr. 2009, pp. 448–455. url: https:
//proceedings.mlr.press/v5/salakhutdinov09a.html (cit. on p. 81).

[Sezer et al. 2020] Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat

Ozbayoglu. “Financial time series forecasting with deep learning : a systematic

literature review: 2005–2019”. In: Applied Soft Computing 90 (2020), p. 106181.

issn: 1568-4946. doi: https://doi.org/10.1016/j.asoc.2020.106181. url: https:
//www.sciencedirect.com/science/article/pii/S1568494620301216 (cit. on p. 1).

[Sguerra and F. G. Cozman 2016] B. M. Sguerra and F. G. Cozman. “Image classifica-

tion using sum-product networks for autonomous flight of micro aerial vehicles”.

In: 2016 5th Brazilian Conference on Intelligent Systems (BRACIS). 2016, pp. 139–144

(cit. on pp. 24, 25).

[Shah, Isabel Galindez Olascoaga, et al. 2019] Nimish Shah, Laura Isabel Galin-

dez Olascoaga, Wannes Meert, and Marian Verhelst. “Problp: a framework

for low-precision probabilistic inference”. In: DAC 2019. ACM, 2019, p. 190. doi:

10.1145/3316781.3317885. url: https://doi.org/10.1145/3316781.3317885 (cit. on

p. 25).

[Shah, Olascoaga, Meert, et al. 2020] Nimish Shah, Laura Isabel Galindez Olasco-

aga, Wannes Meert, and Marian Verhelst. “Acceleration of probabilistic rea-

soning through custom processor architecture”. In: DATE. IEEE, 2020, pp. 322–325

(cit. on p. 25).

[Shah, Olascoaga, S. Zhao, et al. 2021] Nimish Shah, Laura Isabel Galindez Olas-

coaga, Shirui Zhao, Wannes Meert, and Marian Verhelst. “Piu: a 248gop-

s/w stream-based processor for irregular probabilistic inference networks using

precision-scalable posit arithmetic in 28nm”. In: 2021 IEEE International Solid- State

Circuits Conference (ISSCC). Vol. 64. 2021, pp. 150–152. doi: 10.1109/ISSCC42613.
2021.9366061 (cit. on p. 25).

[Sharir and Shashua 2018] Or Sharir and Amnon Shashua. “Sum-product-quotient

networks”. In: Proceedings of the Twenty-First International Conference on Artificial

Intelligence and Statistics. Ed. by Amos Storkey and Fernando Perez-Cruz. Vol. 84.

Proceedings of Machine Learning Research. PMLR, Sept. 2018, pp. 529–537. url:

https://proceedings.mlr.press/v84/sharir18a.html (cit. on p. 10).

https://doi.org/10.1145/3453483.3454078
https://proceedings.mlr.press/v5/salakhutdinov09a.html
https://proceedings.mlr.press/v5/salakhutdinov09a.html
https://doi.org/https://doi.org/10.1016/j.asoc.2020.106181
https://www.sciencedirect.com/science/article/pii/S1568494620301216
https://www.sciencedirect.com/science/article/pii/S1568494620301216
https://doi.org/10.1145/3316781.3317885
https://doi.org/10.1145/3316781.3317885
https://doi.org/10.1109/ISSCC42613.2021.9366061
https://doi.org/10.1109/ISSCC42613.2021.9366061
https://proceedings.mlr.press/v84/sharir18a.html

122

REFERENCES

[Sharir, Tamari, et al. 2018] Or Sharir, Ronen Tamari, Nadav Cohen, and Amnon

Shashua. Tensorial Mixture Models. 2018. arXiv: 1610.04167 [cs.LG] (cit. on p. 50).

[Shen et al. 2017] Yujia Shen, Arthur Choi, and Adnan Darwiche. “A tractable proba-

bilistic model for subset selection”. In: Proceedings of the Thirty-Third Conference

on Uncertainty in Artificial Intelligence. 2017 (cit. on pp. 46, 57, 69, 106).

[Sinz 2005] Carsten Sinz. “Towards an optimal CNF encoding of boolean cardinality

constraints”. In: Proceedings of the 11th International Conference on Principles and

Practice of Constraint Programming. 2005 (cit. on pp. 46, 57).

[Smyth, Gray, et al. 1995] Padhraic Smyth, Alexander G. Gray, and Usama M. Fayyad.

“Retrofitting decision tree classifiers using kernel density estimation”. In: Machine

Learning, Proceedings of the Twelfth International Conference on Machine Learning,

Tahoe City, California, USA, July 9-12, 1995. Ed. by Armand Prieditis and Stuart J.

Russell. Morgan Kaufmann, 1995, pp. 506–514. doi: 10.1016/b978-1-55860-377-
6.50069-4. url: https://doi.org/10.1016/b978-1-55860-377-6.50069-4 (cit. on p. 76).

[Smyth and Wolpert 1998] Padhraic Smyth and David Wolpert. “Stacked density

estimation”. In: Advances in Neural Information Processing Systems. Ed. by M.

Jordan, M. Kearns, and S. Solla. Vol. 10. MIT Press, 1998 (cit. on p. 65).

[Sommer et al. 2018] Lukas Sommer et al. “Automatic mapping of the sum-product

network inference problem to fpga-based accelerators”. In: ICCD. IEEE Computer

Society, 2018, pp. 350–357 (cit. on p. 25).

[Spirtes and Meek 1995] Peter Spirtes and Christopher Meek. “Learning bayesian

networks with discrete variables from data”. In: Proceedings of the First Interna-

tional Conference on Knowledge Discovery and Data Mining. KDD’95. Montréal,

Québec, Canada: AAAI Press, 1995, pp. 294–299 (cit. on p. 27).

[Stuhlmüller and Goodman 2012] Andreas Stuhlmüller and Noah D Goodman.

“A dynamic programming algorithm for inference in recursive probabilistic pro-

grams”. In: Workshop of Statistical and Relational AI (StarAI) (2012) (cit. on p. 25).

[Teyssier and Koller 2005] Marc Teyssier and Daphne Koller. “Ordering-based

search: a simple and effective algorithm for learning bayesian networks”. In:

Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence.

UAI’05. Edinburgh, Scotland: AUAI Press, 2005, pp. 584–590. isbn: 0974903914

(cit. on p. 36).

[Trapp, Peharz, Ge, et al. 2019] Martin Trapp, Robert Peharz, Hong Ge, Franz

Pernkopf, and Zoubin Ghahramani. “Bayesian learning of sum-product

networks”. In: Advances in Neural Information Processing Systems 32. 2019,

pp. 6347–6358 (cit. on p. 51).

https://arxiv.org/abs/1610.04167
https://doi.org/10.1016/b978-1-55860-377-6.50069-4
https://doi.org/10.1016/b978-1-55860-377-6.50069-4
https://doi.org/10.1016/b978-1-55860-377-6.50069-4

REFERENCES

123

[Trapp, Peharz, Skowron, et al. 2016] Martin Trapp, Robert Peharz, M. Skowron,

et al. “Structure inference in sum-product networks using infinite sum-product

trees”. In: Neural Information Processing Systems workshop. 2016 (cit. on pp. 81, 89).

[Van Haaren and Davis 2012] Jan Van Haaren and Jesse Davis. “Markov network

structure learning: a randomized feature generation approach”. In: Proceedings of

the Twenty-Sixth AAAI Conference on Artificial Intelligence. 2012 (cit. on p. 81).

[Vergari, Y. Choi, et al. 2021] Antonio Vergari, YooJung Choi, Anji Liu, Stefano

Teso, and Guy Van den Broeck. “A compositional atlas of tractable circuit opera-

tions: from simple transformations to complex information-theoretic queries”. In:

CoRR abs/2102.06137 (2021). arXiv: 2102.06137 (cit. on pp. 10, 12, 18, 19, 99).

[Vergari, Mauro, et al. 2015] Antonio Vergari, Nicola Di Mauro, and Floriana Espos-

ito. “Simplifying, regularizing and strengthening sum-product network structure

learning”. In: ECML/PKDD. 2015 (cit. on pp. 2, 35, 79).

[Vergari, Molina, et al. 2019] Antonio Vergari, Alejandro Molina, et al. “Automatic

bayesian density analysis”. In: Proceedings of the AAAI Conference on Artificial

Intelligence 33.01 (July 2019), pp. 5207–5215. doi: 10.1609/aaai.v33i01.33015207.

url: https://ojs.aaai.org/index.php/AAAI/article/view/4977 (cit. on p. 51).

[Vlasselaer, Broeck, et al. 2015] Jonas Vlasselaer, Guy Van den Broeck, Angelika

Kimmig, Wannes Meert, and Luc De Raedt. “Anytime inference in probabilistic

logic programs with tp-compilation”. In: (2015). url: https://www.aaai.org/ocs/
index.php/IJCAI/IJCAI15/paper/view/11005 (cit. on p. 46).

[Vlasselaer, Renkens, et al. 2014] Jonas Vlasselaer, Joris Renkens, Guy Van den

Broeck, and Luc De Raedt. “Compiling probabilistic logic programs into senten-

tial decision diagrams”. eng. In: 2014, pp. 1–10 (cit. on p. 46).

[Wachter and Haenni 2006] Michael Wachter and Rolf Haenni. “Propositional dags:

a new graph-based language for representing boolean functions”. In: Proceedings

of the Tenth International Conference on Principles of Knowledge Representation

and Reasoning. KR’06. Lake District, UK, 2006, pp. 277–285. isbn: 9781577352716

(cit. on p. 20).

[J. Wang and G. Wang 2018] Jinghua Wang and Gang Wang. “Hierarchical spatial

sum–product networks for action recognition in still images”. In: IEEE Transactions

on Circuits and Systems for Video Technology 28.1 (2018), pp. 90–100. doi: 10.1109/
TCSVT.2016.2586853 (cit. on p. 24).

[Wong et al. 2012] Lawson L.S. Wong, Leslie Pack Kaelbling, and Tomás Lozano-

Pérez. “Collision-free state estimation”. In: 2012 IEEE International Conference

on Robotics and Automation. 2012, pp. 223–228. doi: 10.1109/ICRA.2012.6225309
(cit. on p. 1).

https://arxiv.org/abs/2102.06137
https://doi.org/10.1609/aaai.v33i01.33015207
https://ojs.aaai.org/index.php/AAAI/article/view/4977
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/11005
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/11005
https://doi.org/10.1109/TCSVT.2016.2586853
https://doi.org/10.1109/TCSVT.2016.2586853
https://doi.org/10.1109/ICRA.2012.6225309

124

REFERENCES

[Xu et al. 2018] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den

Broeck. “A semantic loss function for deep learning with symbolic knowledge”.

In: Proceedings of the 35th International Conference on Machine Learning. Ed. by

Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning

Research. PMLR, Oct. 2018, pp. 5502–5511. url: https://proceedings.mlr.press/
v80/xu18h.html (cit. on p. 1).

[Yuan et al. 2016] Zehuan Yuan et al. “Modeling spatial layout for scene image under-

standing via a novel multiscale sum-product network”. In: Expert Syst. Appl. 63.C

(Nov. 2016), pp. 231–240. issn: 0957-4174. doi: 10.1016/j.eswa.2016.07.015. url:

https://doi.org/10.1016/j.eswa.2016.07.015 (cit. on p. 24).

[Zhang et al. 2021] Honghua Zhang, Brendan Juba, and Guy Van Den Broeck. “Prob-

abilistic generating circuits”. In: Proceedings of the 38th International Conference on

Machine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings

of Machine Learning Research. PMLR, July 2021, pp. 12447–12457. url: https:
//proceedings.mlr.press/v139/zhang21i.html (cit. on p. 10).

[H. Zhao, Adel, et al. 2016] Han Zhao, Tameem Adel, Geoff Gordon, and Brandon

Amos. “Collapsed variational inference for sum-product networks”. In: Proceedings

of The 33rd International Conference on Machine Learning. Ed. by Maria Florina

Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning

Research. New York, New York, USA: PMLR, June 2016, pp. 1310–1318. url: http:
//proceedings.mlr.press/v48/zhaoa16.html (cit. on pp. 9, 51).

[H. Zhao, Melibari, et al. 2015] Han Zhao, Mazen Melibari, and Pascal Poupart.

“On the relationship between sum-product networks and Bayesian networks”.

In: Proceedings of the 32nd International Conference on Machine Learning. Vol. 37.

Proceedings of Machine Learning Research. 2015, pp. 116–124 (cit. on p. 9).

[H. Zhao, Poupart, et al. 2016] Han Zhao, Pascal Poupart, and Geoffrey J Gordon.

“A unified approach for learning the parameters of sum-product networks”. In:

Advances in Neural Information Processing Systems. NeurIPS. 2016 (cit. on pp. 48,

50).

[Zheng et al. 2018] Kaiyu Zheng, Andrzej Pronobis, and Rajesh PN Rao. “Learning

graph-structured sum-product networks for probabilistic semantic maps”. In:

Thirty-Second AAAI Conference on Artificial Intelligence. 2018 (cit. on p. 25).

https://proceedings.mlr.press/v80/xu18h.html
https://proceedings.mlr.press/v80/xu18h.html
https://doi.org/10.1016/j.eswa.2016.07.015
https://doi.org/10.1016/j.eswa.2016.07.015
https://proceedings.mlr.press/v139/zhang21i.html
https://proceedings.mlr.press/v139/zhang21i.html
http://proceedings.mlr.press/v48/zhaoa16.html
http://proceedings.mlr.press/v48/zhaoa16.html

	Introduction
	Dissertation Outline
	Contributions

	Probabilistic Circuits
	Distributions as Computational Graphs
	Reasoning with Probabilistic Circuits
	Probabilistic Circuits as Knowledge Bases
	From Certainty...
	...to Uncertainty

	Learning Probabilistic Circuits
	Divide-and-Conquer Learning
	LearnSPN
	ID-SPN
	Prometheus

	Incremental Learning
	LearnPSDD
	Strudel

	Random Learning
	RAT-SPN
	XPC

	A Summary

	A Logical Perspective to Scalable Learning
	Sampling PSDDs
	SamplePSDD
	Ensembles of SamplePSDDs
	Experiments
	LED Display
	Cardinality Constraints
	Preference Learning
	Scalability, Complexity and Learning Time
	Performance and Sampling Bias

	Summarizing SamplePSDD

	A Data Perspective to Scalable Learning
	Probabilistic Circuits and Decision Trees
	Random Projections
	LearnRP
	Complexity

	Experiments
	Binary data
	Continuous data

	Summarizing LearnRP

	Contributions, Discussion and Future Work
	Contributions
	Discussion and Future Work
	SamplePSDD
	LearnRP

	Appendices
	Proofs
	SamplePSDD
	Fast implementation of SamplePSDD
	Additional Experiments
	Tables with all results
	Logic constraints

	References

