GAME: Midtown Madness (Chicago Edition)
Protection: Safedisc 1.07
Written by Luca D’Amico - V1.0 beta - 29 March 2022

DISCLAIMER:

All information contained in this technical document is published for general information purposes
only and in good faith.

Any trademarks mentioned here are registered or copyrighted by their respective owners.

I make no warranties about the completeness, correctness, accuracy and reliability of this technical
document.

This technical document is provided "AS IS" without warranty of any kind.

Any action you take upon the information you find on this document is strictly at your own risk.
Under no circumstances | will be held responsible or liable in any way for any damages, losses, costs
or liabilities whatsoever resulting or arising directly or indirectly from your use of this technical
document. You alone are fully responsible for your actions.

You will need:

- Windows XP VM (I used VMware)

- Process Hacker 2

- x64dbg (x32dbg)

- Original game disc (you need the ORIGINAL, otherwise this will not work)

Before you start:
You need the original game disc (or a 1:1 copy) otherwise you will miss the decryption key.

We will examine how Safedisc works, and how it's possible to dump the decrypted game executable
from memory and fix its import table.

Safedisc protected games will not work on Windows Vista and above, this is due to a security
vulnerability in its driver. Once we will remove Safedisc, we will be able to run this game even on
Windows 11.

Please take into account that you are about to fight against commercial grade copy protection, and
even if this is now obsolete, back in its days this was put in place to slow down even the most skilled
crackers of that time, so don’t feel sad if you don’t understand something even after a couple of reads.
Trust me, if you spent the right amount of time, you will be able to master this.

Begin here:
First of all, install the game and select FULL install.

Now run the game and observe what happens by simply putting the game CD in the drive and
double-click the game icon. Safedisc starts to “verify” the disc, and after about 20-30 seconds the

game will start.

Once in the game menu, put the application in background and open Process Hacker 2:

i Process Hacker [USER-5FB1F1DB71\Administrat
Hacker View Tools Users Help

_F “Z Refresh 5 Options | &8 Find handles or DLLs =& Syst

Proceszes |Services Metwark

Mame PID cPU I
[= system Idie Pracess o 97,25

= explorer.exe 1524
m vmkoolsd exe 612
|_] rundll3z. exe 600
ckfrnon, exe 632
%8 processHacker.exe 4012
= E midtawn, exe 91z
P4 MIDTOWN.icd 1812

Ok, we can see that midtown.exe created a new process, MIDTOWN.ICD.

What does this mean? Simple: midtown.exe is just a loader (this is why it is so small), and
MIDTOWN.ICD is the real game executable, but it is encrypted (open it with any PE editor, and you
will find that at least the .text section is scrambled).

Now open the loader (midtown.exe) in x32dbg. If we now try to run it, we will get this nice error
message:

uuuuuuuuu o

A debugger has been detected rg|

@ Unload the debugger and trw again

The loader is detecting that we are trying to run it in a debugger and it refuses to run, so, after a quick
google search, | came across this very informative site with a list of common ways to detect a
debugger: https://anti-debug.checkpoint.com/techniques/debug-flags.html

| tried all the proposed checks, and | found that these are used:
- IsDebuggerPresent API

- Manual checking BeingDebugged flag in PEB

- NtQueryInformationProcess() API

We can quickly patch and disable the first two checks, but for the third we need to pay attention as
this APl is also used to retrieve different things from the process other than just checking the
presence of a debugger. We need to patch the return value of this function, ONLY when its 2"
parameter (ProcessinformationClass) is 0x7 (ProcessDebugPort). If you want to read more about this
API, you can read the relevant page here:
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntqueryinformationproc
ess

https://anti-debug.checkpoint.com/techniques/debug-flags.html
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntqueryinformationprocess
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntqueryinformationprocess

Since this API is called a lot, we can’t just put a breakpoint and manually patch the return buffer when
it is checking the ProcessDebugPort. We need to write a script that will automatically handle this
situation for us (and also patch the PEB to defeat IsDebuggerPresent API).

At the time of writing, I've submitted my script to x64dbg scripts repository, but it isn’t merged yet
(you can find it here: https://github.com/x64dbg/Scripts/pull/21).

Here is a more updated version:

A e i
msg "Safedisc v1.06-1.41 anti antidebugger"
run // run until the EntryPoint

// clear breakpoints
bc
bphwc

bphws WriteProcessMemory // I WILL EXPLAIN THIS LATER

// defeats isDebuggerPresent and manual PEB checks
Speb = peb ()
set Speb+0x2, #00#

// find and hook NtQueryInformationProcess

ngip addr = ntdll.dll:NtQueryInformationProcess

bp ngip addr

SetBreakpointCommand ngip addr, "scriptcmd call check ngip"
erun

ret

check ngip:
log "NtQueryInformationProcess ({arg.get(0)}, {arg.get(l)},
{arg.get(2)}, {arg.get(3)}, {arg.get(4)})"

cmp [esp+8], 7 // 0x7 == ProcessDebugPort
je patch process information buffer

erun

ret

patch process information buffer:
rtr

set [esp+C], #00 00 00 00#

erun

ret

e

As you can see the script is quite simple: it just clears the BeingDebugged flag from the PEB and hooks
NtQuerylnformationProcess. When this APl is called, it will check if the 2" parameter ([esp+8], on the
stack) is 0x7 (remember 0x7 is ProcessDebugPort), and if that is the case it will patch the process
information buffer returning 0 (you can check again this API and its parameter on MSDN).

Please ignore the hardware breakpoint set at WriteProcessMemory, we will get to that in a moment.

PLEASE NOTE: if you don’t want to use this script, you can also hide the debugger with ScyllaHide
plugin. But where’s the fun in doing that? :)

It is now time to re-load the executable in the debugger and launch our script: after the classic 20-30
seconds verification phase, we will be in game! (Just press run again when the WriteProcessMemory

breakpoint is triggered).

Now we can start to have some fun @

https://github.com/x64dbg/Scripts/pull/21).

We need to dump the decrypted ICD from memory, but to do so, we need to break at its OEP (original
entry point, the first instruction that is run in the ICD process), otherwise our dump will contain
garbage data of the current execution. So, the next step is to find the OEP.

How can we break at the OEP of a process that is created from another process (remember, the
loader will create the ICD process)?

This is a good question, and | spent a couple of hours thinking how to do it.
After a google search, | found this quite interesting issue on x64dbg repository:
https://github.com/x64dbg/x64dbg/issues/1850

A user called blaquee suggest to patch the process using the EBFE trick (jump on the same address), in
this way we can temporarily halt the ICD process and then look for the OEP. This is a great idea!

We know that the loader at some point will fill the ICD process memory with the data, so we can
simply put a breakpoint on the WriteProcessMemory API (now you know why it is there in the script)
and patch its buffer just before it is written in the child process.

ATTENTION: do not use a software breakpoint on WriteProcessMemory. Software breakpoints will
actually change the opcode (the first opcode will be changed with 0xCC), and since Safedisc checks
the presence of them, it will just crash.

Because hardware breakpoints do not modify the code, they can be safely used, however, if you insist
on using software breakpoints here; set one of them at WriteProcessMemory+0x2, this way it will not
be detected.

Let’s reload our script and run it again. We will eventually break at WriteProcessMemory.
This API have the following signature (you can check it by yourself on MSDN):
BOOL WriteProcessMemory (
[in] HANDLE hProcess,
in] LPVOID lpBaseAddress,
in] LPCVOID lpBuffer,
in] SIZE T nSize,
out] SIZE T *1lpNumberOfBytesWritten
) ;

We are interested in the 3" argument, that is the buffer.
Focus on the stack window and locate this parameter:

P U U NN

LastStatus C0000034 (S5T#

G5 _00NN__FS _NN3iR

>
& Modify
| Binary .
201
3
Lo 20z
@ Breakpaint b EE2
1E<
ol Find Patkern,.. B Lo
Follow ESP & 4FE
oot
@& Follow EBP
&5 Goto (]

|| Freeze the stack

g Fallow in Dump e

@iy Follow DWORD in Current Dump

;Eé Fallaw in Memory Map

B Follow DWORD in Disassembler Enter
00405671 return tc @iy Follow DWORD in Dump LN

O012FEFC @ wakch DWORD

nnFeTn

Click on Follow DWORD in the Disassembler, and scroll down until you find the RET opcode:

https://github.com/x64dbg/x64dbg/issues/1850

e|ooczcacse FFDO call eax
-—-efl0nCzC3CE %3 pop eax
@ |[00C2C3CC SE pop b=
eflonCzC2CD 21C4 000%0000 add esp, 00
@ |00C2C3032 c3 push eb
E] » |ooczcios c3 ret
o |ooczcaps a0 nop
e|l00C2C306 a0 nop s Binary 4
efooczczor 30 nop ~
o ooczczos 20 nop L[Copy »
e|l00CzC303 20 nop & Beaclncink 3

We are going to patch it with the EBFE trick. Select both addresses like in image and right-click on one

of them. Chose Binary->Edit, and replace C3 90 with EB FE. Now you should have:

®||ooczczcs FFOO calll eax
--->e|l00CzC32cE 3 pop Eax

® || 00C2C3CC tE pop ehx

@ (l00CzC3C0 51C4 00050000 add esp, 500

®||00C2C2032 c3 push ebx
s |ODCZ2C304 EE FE jmp C2C304

®(00C2C306 a0 naop

®(l00Czc30F a0 nop

ellnn-zcams an nr

Notice the red line, meaning a jump on itself.

We are ready to resume the execution, so press run!

Even if you can’t see it, the ICD process is running, looping on that address.

Now we can open a second instance of x32dbg (DO NOT CLOSE THIS ONE), click on File->Attach and
select the ICD process from the process list.

We are now debugging the child process, and as you can see EIP is looping on the same address
(thanks to our EBFE trjck)_

- g = " - @ == al T w FEE ne —

&l cru | o Lo | 1 Mokes ® Ereakpoints B Memory Map [Call skack
y——F» [0013FFE3 EE FE imp. 12FFEZ
®||0012FFES Q0 nop
®||0013FFE& =n] nop
®||001ZFFEF Q0 nap
®||0012FFES] nop
&llNnN13IFFRS an Lalaly]

Before we restore the original RET opcode, let’s locate the OEP and put a breakpoint there.

Click on Memory map, and double click the .text segment of midtown.icd:
003C0000| 00002000
0033000 00030000 |Reserwved (003C00007)
00400000 | 00001000 | i dtown. icd

00401000 001SEQOQOD text! Executable code
OOSEFO000| 00015000 | “.rdata" Read-only initiali
00544000 | 00170000 “".data" Initialized dara
00714000 00001000 | “.datal" Initialized data
00715000 | 00001000 | ".rsrc' RESOUrCes

nnZznnnnl nnnnznnn

Click CTRL+G and type :Entry or :EntryPoint:

le 22U D

3210

Enter expression to follow...

:Enter‘u:uint|

Correck expression! - = midtown, EnkryPoint

ey

|Eax:Er1tr‘yPu:u1 nt

Press Enter, and finally, we are at the OEP! Put a breakpoint there, and we are ready to restore the

patched RET instruction.

[Mokes

- 5L
®((00CeaC1l

™= Hreakpoints

mm [FlErnory Map [v f_all atac

SBEC

push ebp
mow ebp,esp

Click CTRL+G again and type EIP, press Enter, and we should be where the EBFE loop is in place.
Right click on that address, select Binary->Edit and restore the original opcodes: C3 90.

@Y | Log L WOtes | Hreakpnbs | T Memory Map ||) CalStack | = StH

 [0013FFEZ EB FE JmplA3FFe3

o |[0013FFBE 30 nop

o ||0013FFBE 30 ngg

.

olooiiFres| 80 B Edit code at 0013FF
o |lo013FFED 20

o |l0013FFEA 30

o ||0013FFEE 30 Hex | sting | Copyc
o |l0013FFEC 20

o ||0013FFED 30

| 0013FFEE 30 feau

o ||0013FFEF AL 2C774235 5

®||0013FFC4 1918 E A1

o ||0013FFCE 17

o |l0013FFCT 4z UMICODE:
o||0013FFCB |~ 7A E6

®|0013FFCA | v E9 427AEGES R
o |l0013FFCF 4z

||0013FFDD | ~ 7A E6

®|0013FFDZ | v E9 7SESEEEF uTF-8

o ||0013FFD7 |~ E1 A4

o ||0013FFD3 56 d ¢

o |lo013FFOA 26144 b

o ||0013FFDC 24 5E Hesx:

o ||0013FFDE D4 E8

®|0013FFED AC 1 c3 8g

o ||0013FFEL AD 1 =

o ||0013FFEZ DEB4ES GE41FL54 1

®||0013FFES 47 i

As soon as you press Enter, the execution will continue and it will break at the OEP!

BE CHU | . Log | H Motes " Breakpoints =88 Memoary Map | ¥ Call Stack =7 SEH 23] 3eript = 3ymbols “7 Sour
B+ GE push ebp EntryPoint
#|[00565C11 SEEC mow ehp, esp
sllnnesscaa a8 FF niush FFEFFFFF

That’s GREAT! We are ready to fire up Scylla and dump our executable!

Open Scylla (the S icon on the toolbar), fill the OEP field with 00566C10, and press IAT Autosearch,
click YES, OK, and then click on Get Imports.

We have a big problem!

Scylla x86 v0.9.8 EEX]

File Imports Trace Misc Help

Attach to an active process

2060 - MIDTOWMN.icd - C:\Pragrammiliicrosoft GamesiMidtawn Madness\MIDTOWM.icd w | | PickDLL

Imporks

advapizz.dll {4) FThunk: 0018F000
£ 7 (1) FThurk: OD15F014

o ddraw.dll {13 FThunk: D018F015
% 7 (2) FThurk: OD15F020

o dsound.dl (1) FThunk: 0018F030
¢ 7 (1) FThunk: OD15F034

gdisz.dil (12} FThunk: 0018F03C
imm3z2.dll {5) FThunk: 0018F070
£ 7 (127) FThunk: 0018F055
shell32,dll {1} FThunk: 0018F238
£ 7(42) FThunk: D016F290
winrm.dll {99 FThunk: 0018F33C
% 7 (1) FThunk: OD15F360
winmrn.dll {13 FThunk: 0018F364
ole32.dll (3) FThunk: 0018F36C

®-8-8-E-8-E-E-E-E-E-E-E-E-E-E
ARY AN AN A NW LW LW A

Shows Irvealid] [Show Suspect

IAT Infa Actions Durmp

This is the IAT (Import Adress Table) and as you can see there are many invalid entries.
We need to fix all of them so Scylla can create a valid IDT so that our executable will work once
dumped. This was done by Safedisc, and with a little patience we can restore the IAT.

Be warned that you will have to restart the application frequently, so make sure to be comfortable
with all we have done up to this point, because you will be doing all of this repeatedly (alternatively

you can just follow this guide again and perform these steps once we have all the info we need).

Please ignore the entries with few broken APIs (we will fix them later), and focus on the two entries
with lots of missing APls.

The first one is missing 127 (0x7F) APIs, and the second one is missing 42 (0x2A) APls. Take note of
these values as we will use them later.

Let’s start investigating the first one:

= 3 7 (127 FThunk: O018FO0SS §
2L rvar OO1SFOSS ptr: 01334CF0
22 rvar DO1SFOBC ptr: 01334015
2L rvar DO1SFO90 pkr: 01334034

Press CTRL+G and type 01334CFO, you will see this:
&0

®||01334CF0 pushad

®(|013347F1 &8 00000000 push 0

®(01334ZFs &5 00000000 push 0

®(01234ZFE FF15 11403201 call dword ptr ds:[1334D011]
@ (01334001 83C4 08 add esp, s

® (01324004 &1 popad

e (012324008 FF25 0OBE4D3301 jmp dword ptr ds:[132400B]
#®(|0132400E oooo add bwyte ptr ds:[eax],al

® (01224000 oooo add byte ptr ds:[eax], al
#01334D0F oooo add bwte ptr ds:[eax],al

Take a moment to understand what is happening here:
The first pushad stores the registers on the stack, then two values (in this case two 0s) are pushed and
then a call to dplayerx.dll is performed. Interesting...

Let’s try to execute that code and see what happens. Right-click on the pushad and select Set New
Origin Here, step-over each instruction and stop right after the call. Now look at the value stored in
ECXregister: v

*E Zizj:i;j égéz éé403301 Egélggg?gd ptr ds:[1334011] EEE

Kernel32.WaitForSingleObject! We recovered the first API!

01334CF0
7CELOEFS
7CEOZEZ0

W
kernel3z.7CB106FS
<kernel2z.waitForsingleobjects

Now try with the second one: CTRL+G type 01334D15 and do the same thing here: set the new origin
on pushad, step-over the instructions and stop right after the dxplayerx.dll call. You will be able to
recover the second API (Kernel32.0utputDebugString).

Do the same with the 3™ entry, you will get a call to LoadLibraryA.

If you pay attention, you will notice that the value of the first push is incrementing, in the first call was
0, int the second call was 1:

=+e[[01224D1E &0 pushad
#((01324015 &3 01000000 push 1
#(0133401E =3 00000000 push 0
(01334020 FF15 35403301 Call dword ptr ds:[1334D38]
-8 E3C4 08 add esp, s
#llo1224025 sl pobad
in the third call is 2:
®|013234D02 A &0 pushad
#((0133403E &3 02000000 push 2
(01334040 =3 00000000 push o0
®|(01334045 FF1S SE4D3301 call dword ptr ds:[1234D5E]
#((0133404E E3C4 08 add esp, s
#0132404E &l pobad

We can deduce that this value is actually the index of the desired kernel32.dlIl API!
From here we need to understand what the other pushed values represent, and come up with an
automatic way to fix all these calls.

Please note that until now we have ONLY resolved kernel32.dIl APIs (WaitForSingleObject,
OutputDebugString and LoadLibraryA).

Let try to resolve some calls from the other entries. Note the address in Scylla:

=3 7423 FThunk: 0015F290
& rva: 0018F290 pkr: 000049350
& rva: 0018F294 phr: 00004955
& rva: 0018F295 phr: OODD4974

Impoarks

Press CTRL+G and type 00DD4930, we are now here:

o [0ODD42320 a0 pushad

®(00DD4231 &5 00000000 push o0

®||000D493 & &5 01000000 push 1

@ ||000D493E FF1:5 Lil450000 call dword ptr ds:[DD4951]
®||000D04241 52324 08 add esp, =

®(|00DD4244 sl popad

Please note how this function is similar to the one already encountered, except for the push 1. Let's
set a new origin in the pushad and step-over each instruction until just after the call. We will get
user32.SetFocus in ECX.

Do the same with the second call:

o |00DD49EE &0 pushad

#000D4955 &5 01000000 push 1

& || 00004956 &5 0laooooo push 1

&||00DD459&0 FF1& Fed49D000 call dword ptr ds:[DD497&]
®||00DD4956 g3C4 05 add esp, s

®(|00DD49:2 &l popad

And the third call:

® | 00DD497 A &0 pushad

@ ||00DD4597E &8 02000000 push 2

®||00DD4250 &5 0la0o000o0 push 1

@ || 000045985 FF1E =SE4320000 call dword ptr ds:[DD493E]
@ ||00DD495E 53C4 08 add esp,&

®||00DD495E &l popad

All of them resolve user32.dll functions.

Have you begun understanding what is happening?

The first push is pushing the index of the desired call and the second push is pushing the index of the
desired library.

In every case of Safedisc that I've analysed only 2 libraries are altered that way:
0 is for kernel32.dll
1is for user32.dll

If you are interested in how the correct APl name is retrieved, feel free to jump into that dplayerx
function and follow the disassembly, however, the code is very obfuscated (lots of meaningless jumps
to confuse anyone attempting to reverse it!).

Now, we can think of a way to automatically fix these calls, since doing this manually (place a new
origin on each call, run until after the call, read the APl in ECX and set it in Scylla) is too time
consuming and it is easy to make mistakes.

The method that | prefer is the one explained by W4kfu (he is a very skilled at reverse engineering and
also a very nice person) in his blog (http://blog.w4kfu.com/): we will use the same dplayerx function
to calculate the APIs for us!

Before we write some ASM code to achieve our result, we have to understand two concepts:

1) Once we retrieve the APl address, we will need to write it in the IAT (so Scylla can identify it),
so we have to make sure that this section is writable.

2) We need some space where to write our little ASM code, and we have to make sure that this
area is executable.

Let's quickly fix the first one by opening the Memory Map, locate the “.rdata” segment just after
the .text segment, and right click on it. Select Set Page Memory Rights, click on Select All, then select

Full Access and finally click on Set Rights. The first problem is now resolved, so we now need to find
some space for our code.

While in the Memory Map, try to find some empty memory area that is marked as PRV.
In this specific case | found 7F0000 is suitable for this:

QOFEQOOQO | 00002000 MAF ER.-—-
O0FE2000 | 0000&000 [Reserwed (007200007 MAF
QO0FFOO00 | 00001000 PR —RnW——
00E00000 | 00005000 PR —Rn——
00805000 | 0000B000 [Reserved (005000007 FR
Q0310000 | 00002000 FR -R--

select Full Access and finally click on Set Rights.

Double click on that memory area and the hex-view window will blink red, right click the first address
and select Follow in Disassembly. We are ready to write and execute our IAT fixing code!

We will do this in 2 steps: the first will fix the kernel32 imports, and the second one will fix the user32
imports.

Carefully, write our code starting from 0x7F0000 (don’t worry I’ll explain you every single line of it in a
moment). This one will fix the kernel32 imports.

‘Log | H Notes ® Breakpoints B Mernory Map [Call Stack. =7 SEH 163 Scripk "51 Symbaols e
& | 00FFO000 23C0 =Or eax, eax eax:' h"
®(00FFOO0Z BE S5FOSS00 mosy ebs, midtown . EEF0SE cgFossa’ " h"
®|00FFO0OF &0 pushad
®|007FFO0DOS] push eax gax: h"
#(00FFOOOD &8 00 push 0
®(00FFOOOE FF1E 114032301 call dword ptr ds:[1234011]
®|007FO0L1L 900 SO0007FFO0 mowv dword ptr ds:[7FO0S0],ecx
®||00FFOO17 53C4 05 add esp, s
®||00FFO0LA &l popad
®|00FFO0LE SEOD SO00FFOO0 moy ec=, dword ptr dsi[FFO0OS0]
®|007FFO0021 S20E moy dword ptr ds:[ebx],ecx
® ||007FO023 40 inc eax gax: h"
®(00FFOO24 S3C3 04 add ehx, 4
®|00FFO027 S3FS FF cmp eax, 7F gam: T h"
®(00FFOO2A ~ 75 OB jne FFooOoOF
®(00FFOO2C D 03 int 2
®|007FO0ZE aooo add byte ptr ds:[eax],al eax:' Th"
® | 007FO0O30 oooo add byte ptr ds:[eax],al eax:' "h"
®|007FFO032 oooo add byte ptr ds:[eax],al gax:' Th"
e |007FO0O34 oooo add bwte ptr ds:leaxl.al gax:' Th"

Here is what this code does:

First of all, we clean the EAX register: this will hold the index of the APl we are trying to retrieve. We
then store the EBX address of the first API in the IAT. This is located in the .rdata segment, and you
can get this address using the First Thunk RVA got using Scylla (in the case of Kernel32, it is Ox18F088)
and since this is RVA, you have to add the imagebase address to get the correct VA. So: 18F088 (RVA
of the first thunk) +400000 (imagebase) = 0x58F088.

We can reuse the same code that Safedisc is using to resolve the APls. Notice that we pushed EAX,
that is the index of the APl we are retrieving. Just after the call to dplayerx, we store ECX in a
temporary memory address (0x7F0050), REMEMBER that in ECX there is the correct APl address now!
We then restore the registers using the popad opcode, and then we load the previously stored value
(the API address) in ECX again.

Now move that value to the correct address in the IAT (remember that in EBX there is the address of
current APl index in the IAT). We increment EAX by 1 (so we can retrieve the next APIl), and we
increment EBX by 4 (because each Thunk in the IAT is 4 bytes long).

Finally, we can then compare EAX with 0x7F (remember Ox7F is the number of kernel32 imports that
we got earlier from Scylla): and if it is not equal, we jump back to 0x7F0007 and we fix the next API.
Once all Ox7F APIs are solved, we will break at 0x7F002C.

Now we are ready to execute it so set a new origin at 0x7F0000, put a breakpoint at 0x7F002C, and
press RUN!

If you have done everything correctly, you will be now located at 0x7F002C due to the breakpoint.

Now let’s alter this code to fix the user32 imports:

“Laog H Motes ® Breakpoints B Memory Map [Call stack =7 sEH J#3| Seripk
®|(00FFOOO0 33C0 O Ba, Ba
®((00FFOO0Z EE 20Fz2S5E00 mow ebx,midtown. SEF2 20
®@|00FFo00F &0 pushad
@& ((00FFOO0S c0 push eax
®|(00FFO0OO% 54 01 push 1
®||00FFO0OE FF15 11403301 call dword ptr ds:[13324011]
®((007FFO011 200 SO000FFOO0 mow dword ptr ds:[FFO050], ecx
®|(00FFOOLF 53C4 08 add esp,S
@& ((007FO01A el popad
®((00FFOOLE SEOD SO000FFOO mow ecx,dword ptr ds:[FFO0OS0]
®|00FFO0z21 S90E mow dword ptr ds:[eb=],ecx
®|007FO0Z23 40 inc eax
®|(00FFO024 5323 04 add ebx, 4
®||00FFO0Z27 S3F8 2A CHIp Eax, 28
®|(00FFO02A ~ F5 DB jne FFOOOF

-0 C0 032 int 2
e |[0OFFOOZE oQoo add byte ptr ds:i[eax],al
®((00FFOO20 oQoo add byte ptr ds:[eax],al
E L T T Y ¥aTyl mAA lies mdm A s T m -1 =T

The code is quite similar to the previous one, but we changed the address of the first Thunk in

the .rdata segment, in this case it is 0x58F290 (again, you can get this address by sum the RVA of the
first Thunk of this entry you got from Scylla, 0x18F290 + the imagebase = 0x58F290). We also change
the second push to 0x1 since we are now resolving the user32 imports (remember: 0x0 -> Kernel32,
0x1 -> User32). The last edit is the CMP at 0x7F0027, we use the value 0x2A because this is the
amount of user32 APIs we need to retrieve (we got this value from Scylla earlier).

Finally, set a new origin at 0x7F0000, put a breakpoint at 0x7F002C, and press RUN.
Once finished, we can check the output in Scylla:

Attach ko an ackive process

3112 - MIDTOWN.icd - C:\ProgrammilMicrosoft GamesiMidtawn Madness\MIDTOWNM.icd

Tmports
« advapi3z dll {4) FThunk: 0018F000
3 7 (1) FThunk: 0018F014

W ddraw.dll {1) FThunk: D016F018

% 7(2) FThunk: 0018F020

« dsound.dll (1) FThunk: 0018F030

3 7 (1) FThunk: 0018F034

o gdizz.dl{12) FThunk: 0018F03C

o imm32,dll (5) FThunk: 0018F070

o kernel32.dll (3) FThunk: 0018F033
3% 7 (1) FThunk: 0018F094

« kernel3z.dll (13) FThunk: 0018F098
3 7 (1) FThunk: D018FOCC

" kernel32.dll (109) FThunk: 0018FOD0
o shell32.dll (1) FThunk: 0018F285

o user32.dll (42) FThunk: 0016F290
o winmm,dl (%) FThunk: 0018F33C

3 7 (1) FThunk: 0018F360

« winmm.dll (1) FThunk: 0018F364

o oleZz.dl (3) FThunk: 0018F38C

S e = = < O e 3= O o O e S I

Show Ireealid Show Suspect

IAT Infa Actions Durip

mFe | nnsRar TR 1 —

Great, only five manual fixes left, and we will be able to finally dump the executable from memory!

Let's fix the first one:
=3 7 {1 FThunk: DO15F014
¥ rva: 0018F014 pkr: 7161A3EQ

CTRL+G and type 7161A3EO to locate this:

®|[FLelAZED SEFF moyy edi, edi
®|71lc1A3EZ Lt push ebp
#71ls1A3ES SEEC mow ehp,esp
#|7151A3ES Al 1CE7E57] mow eax,dward ptr dsi[Fle557F1C]
®(F1lclAZEA L push esi
®|71ls1A2EE FF7& 10 push dword ptr ss:[ebp+10]
#|7151A3EE FF75 0OC push dword ptr ss:[ebp+C]
#((7151A3F1 FF7S 0= push dword ptr ss:[ebp+z]
®(71a1A3F4 FFEO &C call dword ptr ds:i[eax+eC]
®((F1c1A3F7 ZEFO mow esi,eax
#|71ls1A3FS SEFE test es1,es51

---#[|7151A3FE w 7513 jne aclayers.7lslAad4l0
®((F1c1A3FD co push eax
all7151083FF FF7E5 N nush Awnrd ntrr =52 Fehn+cd

As usual, Set New Origin on the first instruction (0x7161A3E0) and start to step-over until the CALL,
once there, step into the call and we will arrive here:

1 | Mates ® Breakpoints E Memory Map [Call Skack =7 SEH Je3| Seripk] symbols <7 Source
SEFF mow edi, edi DirectOraw reate

®||7IEFCCAL 3 push ebp

®||7IEFCCAR SEBEC moy ehp, esp

®(|7IEFCCAS Eg push esi

®||7IeFCCAD 33Fs xor esi,esi

This is DirectDrawCreate (from DDraw.dll), we can manually fix it in Scylla by double clicking it and
selecting the correct dll (DDraw.dll) and the correct call:
=¥ 7 {1)FThunk: 0018F014
b4 rva: 0018F014 ptr: 7161A3E0
| Pick an API

dsound.dll {1} FThyl
7 (1) FThunk: 0018

DLL

qdizz.dll (12} FThur
immi3z.dll {5) FThurg
kermel32.dI{3) FTh
? (1) FThunk: 0018
kernel3z.dll {13) FT|
7 (1) FThunk: 0018
kernel3z.dll {109) F
shell3z.dl {1) FThu
user3Z.dll (42) FTh
winmm.dll (97 FThury
7 (1) FThunk: 0018
winmm.dll {1} FThurf
ale32.dIl (3) FThunky

Show Irwalid Show

L R e R R e S e e e e T S
AR A AT AT AT AN A

| CHAWINDOWShsystem32iddra.dI

APTs

AcquireDDThreadLock
CheckFullscreen
CompleteCreatesysmem3surface
C30ParseUnknownCommand
DDietattachedsurfacelol
COInternallock
DDInternalUnlock
DSoundHelp

D (=}
DirectDrawCreateClipper
DirectDrawCreatebx
DirectDrawEnumerates
DirectDrawEnumer akeExd
DirectDrawEnumerakebxh

Do the same for the remaining calls, in this case the only tricky one is at 0x5CF97774, but you can
clearly see from the first call that it is indeed kernel32.GetProcAddress.

Once every entry is solved, it should look like this:

Scylla xB6 v0.9.8

File Imports Trace Misc Help

Attach to an active process

3112 - MIDTOWN.icd - C:\ProgrammiiiMicrosoft Games|Midbown Madness\MIDTOWN.icd -

Imports

advapiaz.di (47 F T 18
ddraw.dll (Z) FThunk: 0018F014
dinput.dil {1} FThunk: 0018F020
dplays.dil (1) FThunk: 0018F028
dsound. dll {2) FThunk; 0018F030
qdia2.dll {12) FThurk: OD18FO3C
imm3z.dll (53 FThunk: 0018F070
kernel3z.dil {127} FThunk: 0015F0&5
shell32.dll (1) FThunk: 0018F288
user3z.dil (42) FThunk: 0018F290
winmm, dil {11} FThunk: 0018F33C
ole3z.dll (3) FThunk: 0018F36C

&
ELELRLELELRRS

[R R e

Show Invalid I [Show Suspect] Clear

AT Infa Actions Durmp

EERR 0055610 14T Autosearch PE Rebuild

Wi 0058F000

Get Impaorts
Size | 00000378 Fixt Dump

Log

» II

gekApiByWirtualAddress @ No Api found 7161A45C
getApiByVirtualdddress 12 No Api Found SCFI7774
getapiByVirtualdddress 11 No Api found 71568F40
getapiByVirtualdddress 11 No Api found 71568F04A
IaT Found 204 valid APIs, missed 7 A
ound 0 i

Pls
h 0 unigue AFTs!

Imports: 211 o Invalid: 0 Imagebase: 00400000 MIDTOMWN, icd

CONGRATULATIONS, you did it! The IAT is now fixed, and we can proceed to dump the process (Dump
button) and then fix it (Fix Dump button).

SAFEDISC HAS BEEN DEFEATED!

Let’s put the executable in the game directory and try to run it:
“WHAAAT?! It is not working?! WHAT THE HELL?!”

Ok, keep calm @

If we wait a random amount of time, it will eventually start, but this is not normal behaviour so there
may still be some unwanted checks in our dumped exe.

Let's open our fixed executable in the debugger and check what is happening.
The game seems to loop without starting, so click pause on the debugger, click on Run-To-User-Code,

here:
®||O00EEEF3& 33C0 O Ea, Eax
®||00SEEF3S 5345 E4 mow dwaord ptr ss:[ebp-1C], eax
®||00SCEF3E 5345 FC mow dword ptr ss:[ebp-4], eax
®||00SCSEF3IE Es FOOOOooo call midtown_dump_scy.S5EFCO
®||00SEEF43 SEFS mow edi, eax
#®||00SSEF45 E370 DC mow dword ptr ss:[ebp-z4]], edi
®(|O0SEEF45 8B10 &OF35800 mo eb, dword ptr ds:[<atimedetTimes=]
®||005EEF4E FFOZ call ehx
#®|O0SEEFEO 5345 EO mow dward ptr ssi[ebp-z0],eax
@ ||0055EFLER A B4 push &4
#®([O0SEEFES FF158 <CFOS800 call dward ptr ds:[z&sleep=]
EXN OOSSEFCE ES &0000000 call midtown_dump_scy.S55EFCO
#® [O0SCEFEQD SEBFO Moy E51, eax
#®[[00SCEFE2 2BF7 sub esi, edi
®|00SCEF G4 3375 DC mow dward ptr ssi[ebp-z4],es51
®||O005EEFET FFO2 call ebx
®||O005EEFES SBCE Mo &, Ean
#||00SCEFEE 2B40 EO sub ecx.dward otr ss:ilfebo-z00

Notice the two suspicious calls to get the time and sleep?

Step over until you RET from this function, and you will see this:

»» [GECS MO B, B
®[O0SSEFEF SBCF mow eax, edi
®|00SSEFED 2BCE sub eax,esti
®||00SCEFEE] cdq
®|00SSEFEC 33C2 ®or eax, edx
® |00SSEFEE 2BC2 sub eax,edsx
®||00SGEFFO G3F3 0% CHip eax, o
-®||00ESEFF2 v F0OLC jge midtown_dump_Scw.SSESLL
®([00SSEFFS SBCF mov eax, edi
®|O0SCEFFF 2BCLl sub eax,ecx
®||00SCEFFS EE] cdq
®(0O0SCEFFA 33C2 ®or eax, edx
®(|O0SCEFFC 2BC2 sub eax,edsx
®||00SCEFFE Z3FS 0% CHip eax, &
-®||00ESESOL ~ 70 0E jge midtown_dump_Scw.SSESLL
®(00SEESO3 SBCE Mo eax, esi
@ ([00SEESOS 2BCLl sub eax,ecx
®|00SCESOF EE] cdq
@ (00SCESOS 33C2 ®or eax, edx
®(00SCESOA 2BC2 sub eax,edsx
®||00SCESOC Z3FS 0% CHip eax, &
--@||00EEESOF v FC 06 31 midtown_dump_Scyw.S5ESL1F
>®||00EEESLL SEFE mow edi, esi
®(00SEESL3 SEFL1 mow esi, ecx
®(00SCESLS ~ EB 9 Jmp midtown_dump_Scyw.SSEFED
—wmllnnccrEz T nare add arv =eA

If you follow the code, the conditional jump at 0x55e7f3 will be taken, and finally the jump at
0x55e815 will make the code loop again. Simply NOP this jump and the game will begin. | believe this
is a sort of timing-based protection, but it is not part of Safedisc.

You can now enjoy Midtown Madness on Windows 11 and keep the original disc in a secure place @

Credits:

| would like to thank the following resources/people:

- The admin of https://anti-debug.checkpoint.com/ for his informative website

- blagquee from x64dbg issue repo for the EBFE trick

- W4kfu for his very informative writeups about various versions of safedisc

- mrexodia for x64dbg (probably the best ring3 debugger in my opinion)

- NtQuery for Scylla

- KiiWii (AKA DefaultDNB) for fixing the spelling and layout of this file (THANK YOU!)

Conclusion:

With the knowledge you got from following this guide you should be able to defeat Safedisc from 1.06
to 1.11. From Safedisc 1.30 things are a little more complicated, but it’s still easy compared to the
newer versions.

| hope you enjoyed this technical paper. It was my first public one!

Luca

https://anti-debug.checkpoint.com/

