Python Basic Information

A general purpose programming language
« can be used for many different things
A high level programming language

« abstracts away from machine code
« needs to run through a python interpreter

Here are the two repos that will be used as a reference in this
cheat sheet: https://github.com/iamshaunjp/python-3-playlist
https://github.com/Richard-Burd/python-3-sandbox

[m—— $ python
usereubuntu

eubuntu

honScript.py

This is the shell your python code is being
passed through in order to execute

This is the actual code being executed

Everything in Python is cnsidered to be an object, and objects have
attributes and functions; when we talk about these functions with
respect to these objects, we call them methods:--thus, objects can
have attributes and methods:

Numbers

Python has two types of numbers; integers and floats: You can
find the data type by using the built in type () method

e (500)
¥ <class 'int'> Integers

« are whole numbers

geeue—T——_
el e Floats (or floating point numlzers)

ype ('ey! « anything with a decemal in them

U <““5k> « needs to run through a python /Nterprcter
Pythonistas call « is always the result of division
this an ‘argument’ 5/ <—J
sy * unless you use the
i0%3  division remainder sis doulbe forward slash
#1 or “modulus" #1

Brackets OB ok
e iz VR
e s — Multiplication [
Addition =
i B oh

Subtraction  ase

This is a shorter way of
expressing what is to the

Strings & Lists
";\W}’ou can escape a character with the backslash

We start with O when counting string
elements from the front-and =1| when
greettnl counting string elements from the back

reet (0:41 44— 7

I We can start with O and count up to (but
not including) the & when grabbing a sequence
of elements in a string; we can also count

from the back

1
¥#=> 'hell”

greet = “Hallol"
o

Eooes 4 add (concatenate) & multiply strings
#=> 'Hellocat 4—7—Python has special methods for strings

D e Ghecses = srie, Chesder, seisen  you can split a string into
hecsen.epiit ()

EmE=® #=> [Bzie’, ‘cheaser', 'seiiten')  a list [in python, arrays

o are called “lists"] at a

specified character

noun. Lower ()
#=> rcat

a—

160 (noun) Length of a string or list can be found with len ()

=5

liee1 = w—ﬁvd the index of a list item

sisuia)

=

1iat2 = 1sst1 “1{11\ concatenate elements onto a list

#=> (500 | 'Ren’, rcat’]

Meezeppand(oun S .

#o [imen', zon', men', ‘cat', o T~—add at the end of a list

14882.p0p 0

e e, T, o, @O remoye [the last element in a hse
emoves I

1at2. remove (' Tom') M s O o s, o s o

#=> (1Bok., 'Ron', ‘Cat']

nest = 111, 21, 13, 41, (5, 611
remove a selected index from a list

sereiz1 @)
T find nested list element

List] Comprehension

Given a list of numbers we want to double; there are two
different methods for doing this shown below

Standard Method Comprehension Method
numbera = (5, 10, 50, 100, 1000] es = (5, 10, 50, 100, 1000]
double_numbers = (1 double_numbers = (nurbert? for number in nunbers]
fox munber in mumbers

doria mbacal ppan (mmbact2)

priat (double_numbers) print (double_numbers)
(5100, 200, 2000 e 51 M —mtos (10, 20,100, 200, 2000]

utput

Another example below squares all even numbers from 1 to 10
Standard Method Comprehension Method
nums = (1,2, 3, 4,5, 6,7, 8, 9, 10] nums = 11, 2, 3, 4, 5, 6, 7, 8, 9, 101
squared_even_nusbers = (] squared_even_mumbers =
‘numt+3 for mum in nums Sf (numt+2) § 2
for mum in numa: )
Se(numte2) 4 2 =
squared_even_nusbers .append (num++2)

print(squared aven_musbers) print(squared aven_mmbers)
#=> (4, 16, 36, 64 (4, 16, 36, 64, 100]

=g autput—/

The kind of comprehension method can be used (mutatis mutandis)
on dictionaries as well

List] & (Tuple) Manipulation

all code shown in this section is available here:
ithub. i 3.

& tuple_

Tuples are used for coordinates, colors, rectangles, & other mathy

stuff; they are similiar to lists

my_list L/stsd&d tuples can bzth con;am
ople = (s’ o - vge, ey Mixed data types and neste

SRS = (R N b e N Y lements; the slice () method

can be used on both of them,

print(my_tuple[slice(3, 5)1)
=> (4, Te’)

s1ice (3, 1) Tuples are immutable ﬂnd lists
are mutable; in exam),

ple.
& /\tup/es cannot be appeﬂded

my_list(-1] = vz but lists can be appended

my_list. append

print(ay_list)
#> (2 b, 3,

WARNING, this only removes the Tst instance of ‘Tom'

Decorators

Decorators extend the behavior of a function without modifying
the function itself; they are use extensively in web frameworks like
Django-

P y— Decorators are basically wrapper

T e functions; they are defined

with-an "@" symbol & the
decorator function name must
match the decorator istelf

print(* *couuugnt )

raturn function wrapper

print('can you give me a discount for that!?')

mestiond This code runs before the

#=> can you give me a aiscount for that!? function
| Dt

.

—— This code runs after the function

Conditionals

User inputs are always accepted as strings (e'g- "2") unless they
are type-casted with int () to become integers

s = ot (toput (Enter your age: 1)

ifage < 10:4————— Python uses colons and needs the
s o e £0) o )

B e B 110 208 £ o following line to be indented
prine(vou\'re & teanager 7

et age ==

iR ten e midite e

Python uses the and keyword instead
of && like in Ruby or JavaScript

els
print(That 1s ola")

ninjas = ('zryu', 'shu’, ‘sbu’, ‘moe’, 'bob', ‘dua']

for ninja in ninjas(L:31:

e ninte 1o ingesll 81 starts|with index 1 and goes up to,
Sl e )__/ but not including, index 3

cox ninje sn ninjes:

5 ninja = ‘mos’
print (¢ (ninja) - is the last ninja)
u‘:fﬂ\_/—a(‘bzr moe, break out of the loop
| _primetan and ignore the other elements
-
# = ahu
¥ = o

# => mos - is the last ninja
this will continue on with the
iteration after doing the stuff above

this will give us only even numbers

without these specific indentations,
the Python code will not work

. . python-3-sandbox/test.py
File Importing

To import relative from the top
level directory, use dot notation
like this python-3-sandbox/files/test.py

import sys
sys.path.append (.

£rom Lessons.space.planet inport Planet

print (Planet)

)
To import from beyond the top

level package, you will need
this block of code

£rom lessons.space.planst import Planet

print (Planet)

Reference: github.com/Richard-Burd/python-3-sandbox

Dictionaries

Python dictionaries are similiar to Ruby hashes or JavaScript objects

people_ages = ({EGH:12, 'bob':s, 'tom':36, 'dan'i4l, 'cat':3s, 'alf'i73)

print('zon’ Am see if key exists in the dictionary with in
#=> Trve

print (people_sges(156811)

~—— find the value of a specified key

grabbing the keys in a dictionary will give a value like this

=> dict_keys (I'xon’, 'bob', 'ton’, 'dan’, ‘cat’, 'alf ;,‘_/

rint (psople_ages.kess())
print(list (Gacple.sger GEDO)) either the dictionary
keys or values can be
returned as a list
(array) data type with
the 1ist keyword

Print (1ist (people_s
#=> 112, 5, 36, 41

my_names = list (people_ages.keys())

PN ("thora’s *, ny_namas Gount('ron'), "zon in the List")
¥#=> there’s 1 ron in the list

get-the number of times a given
key is found\in the dictionary
= with the [@ount]| method

aun’, ‘age': 27, 'height': 6}

person = dict(nane='shaun’, age=27, height=f)

This is an alternative syntax for declaring a dictionary,

when called, it uses ":" but uses "=" in the declaration
mimbeie = 0 This takes the user input from
while True

ninja_name = input (‘enter a ninja nane:') the console and sends it to the
ninja_belt = input ('enter a belt color:') e
dictionary

ninja belts[ninja_name] = ninja_belt-

another = input('add another? (y/n) ')

if another = 'y \_/—this keeps the code execution in
v the while loop when the user
enters in "y"
print (ninja_belts)
O fox way; val in dkerionsey.itens(): This function cycles
print (€' gotta key of. (key) and & vatue ot a1 1) through the dictionary
for...in

This function call starts the program in the console

ntro(ninja_belts)

Dictionary Comprehension

Reference: http: it

Dictionary zomprehznsmn is a powerful concept and can be used to
substitute for loops and lambda functions: However, not all for
loops can be written as a dictionary comprehension but all
dictionary comprehensions can be written with a for loop-

dictl = ('ati 1, b’ 2, ‘o' 3, i 4, te's 5]
Comprehension Method
double dict = (kivi2 for (k,v) in dictl items()}

double_dict if_even = (kivi2 for (k,v) in dictl.items() if vi2 = 0)

dicel_triplecond = (k:('even' if vizesO else 'odd') for (k,v) in dictl.items()}

print (double_dict)€———u . "
#o> ('ati 2, b4, c'i 6, A8, e Double each value in the dictionary

print(double diot st ovmlg 3 -
#=> ('b': 4, d'i 8] Double each value in the dictionary
only if the value is an even number
print (dict1_triplacond).
o> ('a': ‘odd’, 'b': ‘even’, TEigdd', 'd': 'even', 'e’: 'odd')
Identify odd and even entries
seetad dles - {'sizect
float_atet =
s Rt 2 (i, fme) D GERE)
£or” (outer_k, outer_v) in nested_dict.itens

1), *second':{'b':2})

)
print(£loat_dict)
= 0), ‘second’: (2.0))

people_dictionary = {'mesber_01':('age’:20, 'name':"Sal’), ‘member 02':('age':23, 'mame':'Tom"})
Lo nanes = (

ter_k: {(inner_v)

for (inner_k, Inner_v) in outer_v.items() if innerk == 'name’ }
(outer X, outer_v) in people_dictionary.items ()

)

)

¥#=> ('member 01': {'Sal'}, 'member_02': {'Tom'}}

Similarly, dictionaries can be
nested and thus their comprehensions can be nested as well

Classes, Modules, & Packages

Everything in Python is an object and all objects have a class type;
each of those class types in turn have methods that can be called
on them; num_var is based on the list class class type therefore it

inherits all methods for the list c/ass\

ay_value = 2rue my_var = 33 umb_var = [1, 6, 31

type (ny_value) type (ny_var) eype (num_vaz)
#=> <clags 'bool’> el anee> #=> <clazs 'list'>
People_ages = {'xon':7, 'bob':12, 'tom':12} another = "gerty"
‘type (people_ages) &ype (another)
#=> <class “dict'> #=> <class 'str'>

class Planet:

der _inic_(681D):
Self.name

The init function can be hardwired {Hardwized Planst Name'
like [Ehis| but is usually built to Cors b
accept linstance variables EDSEER B

files shown in the sections below are available here: github.com/Richard-Burd/python-3-sandbox
class name is capitalized & followed by *
This is where class attributes are defined

python-3-sandbox/lessons/space/planet.py NG @ G

instance avtributes

class Planet:

shape = ‘zound’

This function defines
the class attributes
& it ‘takes in a self
def orbit (§ElE) property

zeturn £'(self.nane] is obiting in the (self.system)’

\m-unmma

£ @Bifspoed = '2000 miles por hour')
it D FRTS e ) (et (5 (e

dnt _init_(GEIR, sane, sadiue, gravity, eysten):

2
}stat/c method . \&

=

\> classmetho
felasmmatied X0\ fike ‘sel£' but for the class }dm ‘method
ST £ a1 arats ace (el D) bectuse of gravity

These ‘are both instance methods, so they bath must take
python-3-sandbox/lessons/space/Minitiipy . N the SELE| parameter

You don't need ‘anything in this file; it's existence
alone is \enough to tell Python that the contents in
this direktory called space are a package of modules

Static methods
have no access

to class (cls)

or class intan-

ces (self)

python-3-sandbox/lessoris/space/_pycache_

This directory gets generated
automatically whef you create the
folder above| to setup a module

space is the folder hame; planet is the name of the class
file; this import is enabled by the| _init__.py file that
-python-3-sandbox/lessons/classes.py is in the space directory

£zon space planet import Planet
from space cale inport planet mass, planet_vol fuse 'import *' to import all

naboo = Planet('Nabog', 300000, 8, 'Naboo Syst
naboo_mass = planet_nass (naboo. -gravity. maboo. )
naboo_vol = planet_vol (naboo.

PRtz (naboo.namk) hae a nsss of (naboo_pass) and 2 volume of (naboo_vol)")
=> Naboo has 4 masslof a volune of

print (€' defavlt: (naboo GBEH0)
¥#=> default: The plhnet sjins apeGpins at 2000 miles per hour

) same as: print(s'custon: (Planet @BER("100 mph"))")
100 mph

print (naboo Gomisns())
#=> ALL planets are round because'gf gravity

a class instance called
.python-3-sandbox/lessons/space/cale.py ‘naboo’ is created
dof planet_mass (gravity, radiu above in

ity radiuees ) / ( 6.em00-11) Classes.py
return mass

print (naboo. shape)

def planet_vol (radius) : print (Planet. shape)
vol

=T 4r3.1020radiust2 ) / 3
return vol

¥#=> 'round

<this is a module #=> zoud

Console Inputs & Strings

User inputs are always accepted as strings (e'g- "2") unless they
are type-casted with int() to become integers

/project-path/mySeript.py

radius = input (“Enter the radius of your cirele (m):")

area = 3.142 * int(radius) *¥ 2
print('The area of your circle is:', int(area))

usereubunty

Up here we broke out of the string —
But now let's look at some string formatting

Py 0 )
e 0 in the list 7 in the list list = [numl, num2]

petnt('The tirst vartasie 10 (01454 the sncond cne 1e @) tormettoimt, mmf)
> The first variable is 3.1425 and the second one is 10,23

print(The first vasiable is (0:.3) and the second one ix (1 4) fomat(mml, mnd))
8044) and the second one is @OIED

— We could specify |8 or even [l digits in the number (precision)

priofherme fixet varsable o numl: @8) and the second one s (nun: 8) )
variable is 3.4 and the) second one is 10.8809

These are callzd F-5Strings & they don't require “. format ()

Or we could add the little [ffor float to specify
the deceimal number we want to see

Ranges

In Python, ranges generate a list of numbers for us that we can
then use to iterate over in for loops:

for n in range()ime______— bhis will go up to but not including 5
et

o> 1 4> 2 4> 3 o> 4
for n in range(s a0y this will start from and include 5 and
AR oA go through but not include 10
sor n in range (80,300, 80):

print (n)
¥ 20 #> 100 4> 180 4> 260

this will [s€art from and include 20 and go through but not |include.
300 in intervals of 80 I
en()

names = ['bo', 'bob', 'tom', ‘dan']

this len () method finds the
length of the names list and
cycles_throught the range

for n in range(
print(n + 1, *.)", names(n] capitalize())
#=> 1.) Bo #=> 2.) Bob #=> 3.) Tom—¥=> 4.) D

for n in range(len(names) &1, -1, <2):

s T A e for each_element in that
#=> 2.) bob names /ist

this =1 is the last item in the list and the [s€art position, this -1
is the position right before the start of the list because this value
tells us the looping end point and it is an up-to-but-not-included
value, finally, this -2 is the |increment amount, and it is negative

Zip Function

Reference: https://www.w3schools.com/python/ref_func_zip.asp

all code shown in this section is available here:
github. i 3. i

The zip () function returns a zip object, which is an iterator of
tuples where the first item in each passed iterator is paired
together, and then the second item in each passed iterator are
paired together etc: If the passed iterators have different
lengths, the iterator with the least items decides the length of
the new iterator:  .python-3-sandbox/zip.py

nanes “charles", "Mike")

ages = (25, 22, 34, 5T) use the tuple() function
e o (e, :"/ to display a readable version
prissmseume ) €T of the result-

print (sict (output) T

“-or use the dict()
function instead, but you can only run one or the other in the
same script on the same object

0
1A%
29U3sul ss0]5 b J0 Jjasal ssojs aya hq pajjos aq ups s2AM

Maps

Maps are a way to take a list, apply some kind of function to each
item within that list, and return a new list with the changes made
by the function to each item in the list

£ron xandon dmpore shuttle —— we need the random module from the

words = 'zon', ‘cat', 'pat')  Python Standard Library for this example:

e (7] https://docs.python.org/3/library/
dof Sumble (vord)
st o S the List() method takes a string and

return ''.join (anagram)

makes each character its own string in a
new list like: ['r', 'o', 'n']

the join() method will take elements of a
list and put them in the same string

-on map (function used, list being operated on)

words

Standard Method

for word i
i

Vanilla Map Method

peint(map (Jumble, worde))
ac Ox7£aad3897126>

pet=t (smngeema)
= ctar, tatp']

This doesn't quite work because it's
mapping the result onto an unusable object; to make it readable, it
myst be typecasted into a list

Comprehension Method Working Map Method

print ([jumble (word) for word in words]) print (List (nap (junble, words)))
1 reap']

Filters

The £ilter method is used to determine if a specified condition is
true or false for each element in a given list; if true, the element
remains in the filtered list, if not, it is dropped; The example
geades = (A1, ‘', ‘B0, e, 5, ne, a4 here filters out bad grades-

Using the Filter Method

det remove_bad_grades (my_grade)
return my_grade 1= 'F' and my_grade 1= ‘D'

Using a For Loop
£iltered grades = [1

print (£ilter (remove_bad. ades))
#o> <ilter abject ac Ox7EOaacoin7ats

Print(1ist (£ilter (remove_bad_grades, grades)))
#=> [an, B, Cl, A

filter (testing function, list being operated on)
ramve, bad gradas’ | 'gradas

Using Comprehension Wf"P’ehensmn is
peint(grade for grade in grades it grade 1= '¥' and grade 1= 1y 4 SEill the shortest
A e A

way to go

Collections

all code shown i) in !hls section is nvm/ab/e here:

github. 7 ions_deque.py

Why use a deque over a tradltmrml list? because it's faster in
terms of adding items to the beginning and end of the list, but if
you're going to want to randomally access elements within the
container, then it's better to use a traditional list:

£rom collections import deque.

@ocgmm) T~ e Deque must be imported

Deque

print(d)
#=> deque (['h

qeomn

d.append('5') it takes each element of a string and makes it an
alappendiete (1) element of a list-like data structure

o)

#=> deque([True, 1, '2', 'h', 'e’, '1', '1', ‘o', GUENNE])

items can be added to the
print(d) . front or|back| of a deque

#=> deque([1, '2 . o1, 4l

o cxnx()/\ﬁhls will destructively clear all contents

print(d)

#=> doque ([1) of the deque
: “N\—the extend() method takes in anything iterable,
e 0 such as a list or string, ant puts it at the end

#=> deque(['3', "2, '1', '4', '5', '€, 'h', 'e’, '1', 1!, 'o'l)

of the deque

x = deque ("123456")
print(x)
#=> deque(['1', '2', '3', ‘4, 15!, @)

The rotate () method shifts the
order of items as shown on the
x.rotata (1) \ left

#=> dogque (1@, '3', 4", 5

x.zotata(2)
print() 1
#=> deque(r's’, 10, @, '3, 4, '5°1)
Y
W = deque ("Interlochen”, maxlen=)

print (0

#=> deque(['o", 'c

The maxlen() method limits the
o' Jn'), maxien-sy NUMber of items in the deque
print v wl.n}J NOTE: you cannot reassign this
maxlen value after it's initially

S )
printo0 2R declared
I deque (e’ ‘n', 1, 2, 31, maxten=s)

you can only add to the deque with the extend() method, but
that will still mantain the original maxlen of 5

Sets/ [Lists] & Sorting

all code shown in this section is available here: github.

Python lists are similiar to JavaScnpe & Ruby arrays whereas

Python sets are essentially Python dictionaries with only keys, and

no values: Every element in a set must be immutable but the set

itself is mutable

ay_new_var = (14— this will be a dictionary, not a set because that

*’“““"""" pevvas)) is what an empty {} defaults to in Python
 iet = (1, 6,3, 2, 4, 4,1, 0,7, 2]

princ(ioted(oumber Jet)) «————— sorted() method sorts

numbers & strings---

number _set = (1, 6,3, 2, 4, 4, 1, 0, 7, 2}
print (forted (mumber_set))
=101, 2 3, 4

-+t will remove

people_list = ['xon', 'Scb!, 'Tom’, 'Dan', ‘eat’, 'alf', 'zon'] ! 5

print (sorced (peopl duplicates in a set
#=> ('5ob, 'Dan cact, ‘ron’, ‘zan']

people_set = (ro . 'Dant, ‘eat', 'alf, ‘ron'} ) )
o o) it will order items
#=> ['Bob

o with capital letters
first

set () will return a
set and thus, remove duplicates in a list of strings, but it will not
order the elements so the return value can change each time

B

c ions/2831212/python-sets-vs-lists/2831242
L/sbs are slightly faster than sets when you just want to iterate
over the values: Sets, however, are significantly faster than lists if
you want to check if an item is contained within it- They can only
contain unique items though- It turns out tuples perform in almost
exactly the same way as lists, except for their immutability-

set

»
1) 1 P .
eIt is possible to do comprehension on sets

Sets are mutable:--

-however, elements of a set
cannot be mutable objects

L 'e’, 'my string’, 'b')

e NOTE: this order will change
each time the code is ran because there is no true order to a set,
unlike a list

s s, (G (G (S
4 ges.values ()

_— ke ys
here we are typecasting the
ages into a set using the
set() method so that we
do not have duplicate ages
down here

det age_count (dictionary)
age.

iat (dictionary.values ()
for age in set(ages)
= ages. count (age)
print(f'There are (number) people aged (age)')

)

#=> There are 1 pecple aged 7

Try & Accept
all code shown in this secnan 15 avm/nble hele
github.com/Richard. imfiles/try_&_accept.py
Try & accept lets you run code that actually would crash if it is
falsey; Here | want my string to only be numbers:

print(‘Enter 3 ussrname that consists only of nusbers®)
text = input ("Username: ")

e o i Here the text is typecasted
P e 5 4 sk e st

into an integer

e e, e )

The except block will run if the [€y| block of code is either falsey,
or crashes

Functions & Variable Scope

Python uses colons to start a function body

We function body must

be indented or Python
gt S will not compile
To overide default values, |specify the variable that will have the
default overidden

4

def area (radius) : Here we are passing a function
return 3.142 * radius * radius
into a [function| (as a variable)
dot Golima(area, length) :
print (area + length) S
rediue azes
zadius = int (input (‘enter a ragius:’))
length = int (input (‘enter a length')) @ v/
volune (azea (radive) , length) volume

https://repl.it/@Richard_Burd/Variable-Scope#main.py

my_nane = "Dog" variables can be redefined in
et parent_scope(): a lower scope but still retain
R ey o o e e their original value in the
e ] higher scope; the global
B et sepaq i) fn e g seme ) value can be called with the
e y_nane) in the pot scopy [ GLOBAL| keyword in a lower
child function scope
pet_scope )
# call the child function

ehild scope()
# call the parent function

pazent_scope ()

#=> I see Mom in the parent scope.
I see Kid in the child scope.
#=> T see Dog in the pet scope.

Advanced Overview Features

Most of the code shown in this section is available here:
ithub. ich 3. imfil

Python is compiled into bytecode before it is interpreted-
Compilers take high-level code and translate it into a lower-level-
An interpreter takes some kind of code, in our case bytecode, and
interprets & runs that code: This is unique to Python because it
is a compiled language, here we have a class with an undefined
‘bark’ method:

class Dog:  en This is unique to Python because it is a compiled
s language, here we have a class with an undefined

‘bark' method that has not yet been defined; If | run the code at
this point there will be no errors: In other languages, the compiler
would detect this error and tell you to define what ‘bark’ is, but
here, this bit of code is executed at runtime instead of compile
time: All the compiler does for us is translate the Python into
bytecode, and it does not always check to see if the code is
actually valid-  Thus, the error above is said to be ‘only caught at
runtime' and not at compile time:

Let's look at another example in which the compiler doesn't care if

the code is valid or not, so long as you have valid syntax

dat nake_class(a):
class C
def _init_(self, name):
=elf ame

We can define a class inside a
function because that is how

dof print_value(self) :

print(x) Python works; we can nest
return Gat classes as deep as we want-
12 = make_class (10)
print (1)
¥=> <class '_main_.make_class.<loca

This returns the class Cat and
not an instance of the class; the
class is being created and stored
in memory

This cls variable is actually a class,
so it's another name for Cat

Here we're calling
the class method
the name of this instance of the Cat class is "Timmy"

for 1 in xange(10):
def show() Functions can be put inside of a for loop
print(1+2)
_m”‘\/ﬂus will run each time the loop runs
show (),

T This will only run once on the final item in the
range, but it is aware of the existence of show () inside a deeper
scope it is not a part of, but show() must be declared on a line
ABOVE wherever it is being called or it will not run and will
generate an 'is not defined’ error

all code shown in this tiny subsection is available here.
ithub. ichard. 3. imfil

oy 1_function_calls.py
def outer_function (x) ion insi i
P il A function inside of a function must
geint(figet inside with & ()1)  be accessed by nesting the function call
return inner_function like this
zelda = outer_tunction ("key")
ze1da(key”

#=> get inside with a key!

Everything in Python is an object so
print 4d zetan) each thing has its own unique memory

hing like "140175176829808

address
import inspect
Print(inspact. getnenbers (ze1da()))
¥#=> [('_bool_", <method-nrapper '_bool_’ of NoneType cbject at 0x9d4380>) et.al

print (inspect getsource (zelda))

opect G i The inspect module can show us
P et s it s (010 some pretty cool things because of
the fact that all of our Python objects are live; here we use the
getsource () method to get the sourcecode of a specific method,
function, class, or other object

Dictionary Iteration

code shown in the section below is available here:
github.com/Rich

def work_history_profession_finder (users, profession):
0:

ictionary_iteration.py

Print (£’ (user_value.get ("nane
server', work_history_profession_finder (usezs,
‘dentist! #=> "Dan’

for loops can be used to find values within

"hio': "I vas 3 server

and a dantists nested dictionaries

det bio_profession_finder (users, profession) :
= " value

"bio': "I vas a plumber

= o if Trve | False: if False | True: if False | False:

) > 2
D else: else:

eruthy #=> falsey

JavaScript & Ruby dlemen, £
pipes (||) are-replaced with-a_single pipe in Python —/

The iwalues()
method can be used R L e
to avoid using the #=> "pan

key, value in jtems.items () pattern in the very top example:
the .keys () method can be used to find specific key values as well

Collections Collections - NamedTuple

Standard Python Containers Collections Module Containers R b Ll A o i fons.. .
;j I’s: ;j ;‘"mt" The main difference between a regular tuple and a named tuple is
) se ) deque

2l chrtomeT () ) oo that with a named tuple you can access things by element and it's
4.) tuple < this one is immutable 4.) OrderedDict a lot nicer to read in your program
5.) defaultDict

—th dtuple must be imported
python-3-sandbox/test.py e namedtuple must be importe

£rom collsctions import Countar, daque, namedtuple, ordereddict £zom collections import namedtuple

subclass constructor
= Counter(‘gatiad’) Point = nanadtuple (EEIEE), GEENEED )/
e

— instantiator
#=> Counter(('a': 2, '1': 2, 'g': 1, 'd': 1)) newe = Point(3, 4, 5, '32:00pm')
)

print (neve

ey The Python data types above #=> Point(53, y=4, z=5, |tine='12:00pm’) a namedtuple subclass name

#=> deque(['h', ‘e’ 1%, "1, ‘o'l) must be imported via their must be a |capitalized string and the item names are declared in the
S S e, s ) commensurate module in order to Second string with each item seperated by a space

o s e o) be used as shown on the left

o DG ey (e the items can be put in a list
new_coor = Coor (20.213, 499.340) ]

print (new_coor) like this

I=> Coordinates (1at-20.213, long=499.34)

Data = nanedtuple(‘Data Set', {'x':0, 'y':0, '2':01)

(_data = Data(10, 20, 30) \_/—bhe items can also be stored
print (new_data)
in a dictionary

#=> Data_Set (xe10, y=20, 2=30)

print (new_data.x)
¥ 10

Named tuples allow for the use of dot notation, but
print oo cacateny regular tuples do not
- 10

Collections - Counter

allicodelshawnjinjthisisectionlislavallobiehere: " with Named tupels, items can be found by inded as well

Thls module impl t: ialized contait d. pes providing

alternatives to Python’s general purpose built-in containers

#rom collections import Counte the Counter must be imported
- comntar ‘guitaatyq_— 9 SETiNG a5 @ variable will return a letter count

values can be converted to a dictionary with

the _asdict() method
_fields()

0 S~ We can print out the keys

100, (y', 200, (2, 3001

"“"”,lm: a: 2, 27 g0 /a list will return a dictionary S — with the _£ields() method
SR GG Ty B s @ showing how many times each we can replace the valte of a specified ey,
#=> Counter(('a’ 2, brs item occurs in the dictionary P2 = Data._make(l'a’, 'b', ‘')

EoEs : with the _replace() method, but this is

FQUes e e B =0 ot destructive, in other words, we need
to assign a new value to the operation
because we cannot change the original
namedtuple in this way-

\e—— a dictionary will return a sorted dictionary

1 keys can be non-string variables:-+
commETE m,ﬂ,/-mbue must be called with a string
’3‘3“5"“""Whae doesn't exist will return 0
,,,,m.mum.v,,//fsemg elements will return a list of items
o Counter keys can be different data types

#=> Counter(('b': 2

The _make () method can be used to create a new instance of the
Data class and this new instance will have the specified values passed

ter(('x7:2, 'y'i7, 34:8, 3:1, fzt:45)) into the _make () method NOTE: the values are now strings, not
L= HE s '“'"""““ integers as in the original declaration above, because we can change
the data type

print (List (s elenents )))
,reats’, ‘cal cats', 'dogs', 'dogs', 'dogs', 'dogs', 'dogs’, 'dogs', 'dogs']

Yy ' 34, 30, 36, 34, 30, 36, 34, 30, 3, 2, et.al]
rins(e/the 60 sont comn oy value pases axe [ mant_comonti)))

he ek most comaon Kep-veise paire are [('s', 451, (34 most_common
[—

print(B)
#=> Counter(('z'n44, 34: 8, "

Counter has a most_common
7 2 5 1) method for returning items by
you can [SUBEFAGE| keys that are number of most common items

y

strings but not ones that are integers like these two

U=t tx, tx, w) 4= (s Counter keys can be updated o
S like EHE or like EHEE Queue Basics

all code 5hown in this section is available here.

Bl /—\ the Counter can be cleared of

all its contents

1_Threading_Series/queue_basics.py
Thzre are 3 types of queues: FIFO L/FO and Priority; FIFO is the
First In First Out (FIFO) default type when no other type is specified-

a = Counter(('x’
b = Counter ({'x"

When you subtract elements

print(a + b)

smport queve

:“;u::z 2 13, y's 12, xes 1)) on a counter, it will not . Tt The .get() method returns the next item
e Comnten ((1x12 Frag's 8, 'z ) show values of 0 or negative aputis) in the queue to be retrieved; in this case, it
prnce - » values Eggg"?’“, is 5 because the 5 was the first in, and is

h therefore the first out—-—the |l is next in line
R 0, o 8 Here we say that [Bl|is . W and thus, the [.get () method is destructive

“intersecting” with|a and this
gives the lowest comimon
values for the items in the counter, in this case, z has a value of 3 sein ey 4 e -empty() method returns a boolean
(in Counter a above) and a value of 10 (in Counter b above) so value

since 3 is the smallest, that is the intersect value e e D

princ(a.get(), end = ' © )

print(a | b)
#=> Counter(('x

) print (q.get0)
y': 10, 'xt: 105) > 1

A while loop can return all existing values,
we use empty () instead of get() because the latter will cause our
computer to lock up when there are no more items to actually
“get ()" in the queue - to solve that problem we can use an
advanced method called threading or the empty () method as shown

The opposite of intersecting is called “union” (X & y)
which is shown here: These are the maximum
values between the two Counters a and b above (x|y)

Last In First Out (LIFO)
@ = queve.Lifogueve )

92.put("Ron"
ety

Epeom &~ This is the last item put in the queue, and
DB A so it _is-the |first item to go out when the

Reading Files R

A get () method is called on the queue
Python allows you to open up files and read them then do

Priority Queue (Integers)

something with those files import time
i this opens an external file at: 43 = queve. PriorityQueve ()
j ipsum.txt g . .
ipsun_£ile = open('files/ipsun. txt'), Bt If the queue items are simply integers,
Pt () i
for my tine in spem tite: ___— this iterates through each line of Qe then the get() method will return the
print (ay_line) the file & reads each one 93.put (2)

integers from smallest to |largest
for tine in tprun cllei— for 4 in range(q3.qeize())
print (line.rstrip()) the rstrip() method removes print(a3.get()
empty spaces between lines. =

2 2
xpnh\ Ty ‘...km ‘/_\ w, "3
rage () this starts at the 6 character in -0

= e S i T the file and returns it in list 4 . - y
..nz::‘:;.::.;,.,m..m,us, brackets “[1" Eor Quene (ReyerTeties) If you need to assign a priority to a data

type, let's say, to a string, then you use a

qé = queue. PriorityQueus ()

this-starts from the seek ()

method starting point above (6 S G| Cuple e cach use of the put() methad
ipeum £ile.closa() and reads Bl characters of the file qe.put((4, 'Priority 41) wherein the first tuple item is an integer

at put((2, ‘Priority 21))
the file should always be closed to

(representing the priority value) and the
prevent any performance penalties oo

SRy : second tuple item is the string (or some
tac S other data type) - the first tuple item
must always be an integer

ot somacce flicerilicel:  _——— this checks to see if the “>"
return '>' not in line A B

character is in the line or not

xt') ae dna_fi

using with open() as: is
generally better than using the
Seperate open () & close ()
statements shown above; the
file remains open while code
:ﬁmm“mmmﬁm b beneath is lindented and closes
>SEQUENCE when the code_indentation ends

o ——— Writing Files

TPQASRKQLSDALKEARERIKEELKAGGKD. . ot.a1 '~ bhis finds all instances of the ">"
e srerssesve. e 1 ChAracter in the ldna_sequence.txt file
and filters them out of the printed

list in the console

python-3-sandbo/lessonsfie/dna_sequence.txt

When we open up a file, it is read-only by default unless the

open () method takes in-ta second variable, 'w' that permits

writing to the file or an [Y@' that permits appending the file
-python-3-sandbox/lessons/write.py

with open('files/write.txt!, ‘W) as write file
write_fila.write("I will be weitten only once in the fils and wipe out all previous content.”)

With open('files/urite txt!, (a) as write_ile
writs_file write("\al am being amended to the string sbove.”)

Lambdas

Lambda expressions (or lambda functions) are similar to anonymous
functions in JavaScript; they are suitable for situations in which
you're only gonna call the function once:

nums = [1, 2, 3, 4, 5, 61 This is a standard function that will square
e e a number with a map function typecasted

return nn

1ahga_arabiya_quotes = (

the 'w' method will open up

the file, look at what is inside,
and override whatever is inside
it; that means this string will
appear only once in that file and everything else in that file will be
deleted-  The 'a! method on the other hand will only add text to
into a list the end of the file and leave the existing text content alone

With open('files/writa.txt!, 'a’) as write_file:
write_file writelines (Lahja_arabiya_quotes)

peine (1ist (aap (squaze, nume)))
> (1, 4, 9, 16, 25, 36
python-3-sandbox/lessons/files/write.txt

nums = [1, 2, 3, 4, 5, 6] The lambda will automatically return

I will be written only once in the file and wips out all pravious content

pein i (b o e, sume))) the result to the right of the ":" T ueen et
- s without a return statement 2 e

3) Saba7 a1 7er
lanbda x, y, 2: ntn
lambda (first variable,second variable: calculation)

The writelines () method expects some kind of (Python) list

that it will t int 2/ t within it
You could pass in multiple arguments into a lambda like this hat it will go through as print each element within i

Dunder Magic

all code shown in this section is available here:
hi ithub. eherd! SR rrTy

ps:, P

class Dog:
£ _init_(self, name)
se1%.nams = name

d = Dog("Fido")
printi@

main__Person object at Ox7£60d1aas780>

class person:
der it (eert, nane)
selt.n:

timf u, r_magic.py
By default we get the memory
address location of this object
because we have not told the
object what to do when we print
it

To get meaningful information, we need

def _xepr_(as1s) to implement a ‘Dunder’ method AKA a
refan £y Person ({self.nane)) "
‘magic’ method
dof @EEINGo1E, )

i€ type(x) 1s not int

raise Exception("invalid argument, must be an integer!")

se1f.nane

AU 4 (147 4 self.name + "*) % x

der (UEATII(se1e, y)
print (‘called this function’, v The

e

_mul  data model method will

dot QUIRAINGo15) : tell Python how to handle multiplication
operations on an object that is of the
data type Person, e-g- an instance of the Person class
raise Exception
Whenever this Person class is called \as if it were a function, this
__call | method will handle that call for the Person class

return len(self.name)

These are all data model methods
P = rorsen('rist) The

print(p)

data model methods

_Ten " data model method will

e s (werims erimeeznesziney bell Python what to do when the

sen length

22,
#=> called this function 22

= Paxaon ("four")
Print (len (psn)) has @
Vo

(len) is called on the Person

class; in this example, the string "four"

items

£rom queue inport Quee this just returns an object address
smport Ansp-i/—
e

OK let's now let'

queu. Quetie objact at Ox7fbbSddaf240>

prin (inspect. getsource (Queue) )
queus. Queus object at Ox7£ds7ebac2d0>

1f maxsize is <= 0, the queue size is in

this goes on forever

£ron queve inport Queve as g
smpost inspect
class Queue(q):

def _repr_(self):

return £'Gueve size is: ({self. geize())"

def _add_(self, item):

self.putlivem ¥—0 7}, __add

sub_(sele, item):

a2 =

@

@+

a2 +

% G
print(a2)

#=> Queue size is: (3)

Without the

Print (list (42 quese)) =

would generat

& with a given maximum

's set things up so that when we
print the queue by
calling the print
method on the
declaration, we get
something meaningful to
print in the console
instead of this

L method will fire anytime

S something is added to the queue
p— \
The __sub__ i

method will fire anytime

something is subtracted from the queue

add__ method above, this
e this error:

TypeError: unsupported operand type(s) for +: 'Queue' and 'int'

In [Ehis case,| it doesn't matter what value you put here, because
this queue is (by default) a First-In-First-Out (FIFO) queue, and

the first item ("a") will be gotten

from the queue because the __sub__

perform a subtraction operation

Threa

all code shown in this section is available here:
ithub. i is

{get ()} and then subtracted
method is being called to

ding

_1py

Diagrams are from this video here on Python threading by Corey Schafer:

Threading enables concurrent code executian & requires the
- importing of the threading module

start = tine pere_counter()

daf do_something() :
print('Sleeping 1 second...') funcl)
tine. sleep(1)
print('Done Sleeping...')

15econd 15econd

A Iy

uﬁ,ﬂ_mwﬂk—\h’e‘m we are running code synchronously
do_something () first we run-HISNEOHB fropt start to finish
then we run EHIENEBAE-from start to finish

£inish = tine pere counter()
print (£ Finished synchronous processes in (round (finish-start, 2)) sscond(s)')

import threading

tl = threading.Thread(target=do_something) =
t2 = threading.Thread(target=do_something) A ™
o 4 = ) X

" =
S = Here we are running code v
camg | COnCUrrently; the 2" function )
18 = - A P —
w20 fires after the [ function

finiend\= cine.pert_comter) fires, but the

code is not ran simultaneously

EiBE(e Finished concurrent processes using threading in (round(finish2-start2, 2)} second(s)')

The [Join() method will ensure that

t1 and t2 finish running

before moving onto the next lines where the finish time is calculated

and {his statement gets printed out

threading.Thread (target=the function we want to run)
do_sanatning

Downloading Files

python-3-sandbox/projects/download_img.py

import urllib.requeste ~~ _—
e comiond o e I e e
£ul1_path = file path + file name
1T reqvest aTisetrieve orLs il puth)

url = input('Enter ing URL to downlosd:')
file nane = input('Enter file name to savé as:')

download_image (url, 'images/', file_name)

-python-3-sandbox/projects/images

Create this folder and leave
it empty; images will be
download to it

We need this module to be
imported in order to download

These receive input from the
(CLI) user & store their
answers as variables

Running thes commands in the
bash prompt will generate an
Airplane.jpg file inside the
images folder

References:

Python 3 Tutorial for Beginners by The Net Ninja
https://www.youtube.com/playlist?list=PL4cUxeGkcC9idu6GZ8EU_5B6WpKTdYZbK

Python Programming Tutorials by Tech With Tim
https://www.youtube.com/playlist?list=PLzMcBGfZo4-mFu00qxI/0a67RhjjZj3jXm

Intermediate Python Tutorials by Tech With Tim
https://www.youtube.com/playlist?list=PLzMcBGfZo4-nhWva-60VhlyKWHBs4o_tv

Expert Python Tutorials by Tech With Tim
https://www.youtube.com/playlist?list=PLzMcBGfZo4-kwmIcMDdXSuy_wSqtU-xDP

Mastering Python by Tech With Tim
https://www.youtube.com/watch?v=p15xzjzR9j0

Python Threading Tutorial by Corey Schafer
https://www.youtube.com/watch?v=IEEhzQoKtQU

Python Tutorials : Threading Beginners by PyMoondra
https://www.youtube.com/watch?v=bnm5_GHO04fM

last updated @ 9:51am on 21/July/2021 by Richard Burd

https://github.com/Richard-Burd/python-3-sandbox

rick.a.burd@gmail.com

AbOUt_\I/_

Python Illlustrated




