
https://github.com/Richard-Burd/python-3-sandbox/blob/master/timfiles/collections_namedtuple.py

https://github.com/Richard-Burd/python-3-sandbox/blob/master/misc_tutorials/PyMoondra_Threading_Series/queue_basics.py

https://github.com/Richard-Burd/python-3-sandbox/blob/master/timfiles/expert.py

https://github.com/Richard-Burd/python-3-sandbox/blob/master/timfiles/nested_function_calls.py

https://github.com/Richard-Burd/python-3-sandbox/blob/master/zip.py

https://github.com/Richard-Burd/python-3-sandbox/blob/master/timfiles/dunder_magic.py

https://github.com/Richard-Burd/python-3-sandbox/blob/master/misc_tutorials/corey_threading/vid_1.py

https://github.com/Richard-Burd/python-3-sandbox/blob/master/timfiles/collections_deque.py

https://github.com/Richard-Burd/python-3-sandbox/blob/master/timfiles/try_%26_accept.py

https://github.com/Richard-Burd/python-3-sandbox/blob/master/timfiles/collections_deque.py

https://github.com/Richard-Burd/python-3-sandbox/blob/master/sets.py

https://github.com/Richard-Burd/python-3-sandbox/blob/master/dictionary_iteration.py

https://github.com/Richard-Burd/python-3-sandbox

 Sets L ists & Sorting

Python lists are similiar to JavaScript & Ruby arrays whereas
Python sets are essentially Python dictionaries with only keys, and
no values. Every element in a set must be immutable but the set
itself is mutable

keys values
here we are typecasting the

ages into a set using the
set() method so that we
do not have duplicate ages

down here

people_ages = {'ron':7, 'bob':12, 'tom':12, 'dan':1, 'cat':1, 'alf':1}
print(set(people_ages.values()))
#=> {1, 12, 7}
set(people_ages.keys())
#=> {'alf', 'tom', 'cat', 'dan', 'ron', 'bob'}

 def age_count(dictionary):
 ages = list(dictionary.values())
 for age in set(ages):
 number = ages.count(age)
 print(f'There are {number} people aged {age}')

age_count(people_ages)
#=> There are 3 people aged 1
#=> There are 2 people aged 12
#=> There are 1 people aged 7

this will be a dictionary, not a set because that
is what an empty {} defaults to in Python

my_new_var = {}
print(type(my_new_var))
#=> <class 'dict'>

number_list = [1, 6, 3, 2, 4, 4, 1, 0, 7, 2]
print(sorted(number_list))
#=> [0, 1, 1, 2, 2, 3, 4, 4, 6, 7]

number_set = {1, 6, 3, 2, 4, 4, 1, 0, 7, 2}
print(sorted(number_set))
#=> [0, 1, 2, 3, 4, 6, 7]

people_list = ['ron', 'Bob', 'Tom', 'Dan', 'cat', 'alf', 'ron']
print(sorted(people_list))
#=> ['Bob', 'Dan', 'Tom', 'alf', 'cat', 'ron', 'ron']

people_set = {'ron', 'Bob', 'Tom', 'Dan', 'cat', 'alf', 'ron'}
print(sorted(people_set))
#=> ['Bob', 'Dan', 'Tom', 'alf', 'cat', 'ron']

print(set(number_set))
#=> {0, 1, 2, 3, 4, 6, 7}

print(set(people_list))
#=> {'Tom', 'alf', 'ron', 'cat', 'Dan', 'Bob'}

...it will remove
duplicates in a set

sorted() method sorts
numbers & strings...

 set() will return a
set and thus, remove duplicates in a list of strings, but it will not

order the elements so the return value can change each time

my_set = {5, 'a', '3', 6, 'Q', 2}
print([elem for elem in my_set])
#=> [2, 5, 6, '3', 'Q', 'a']

a_new_set = set("abcdef")
print(a_new_set)
#=> {'f', 'd', 'b', 'c', 'e', 'a'}

a_new_set.add("my string")
print(a_new_set)
#=> {'e', 'a', 'f', 'd', 'c', 'my string', 'b'}

mutable_thing = [1, 2, 7]
a_new_set.add(mutable_thing)
#=> TypeError: unhashable type: 'list'

del a_new_set

https://stackoverflow.com/questions/2831212/python-sets-vs-lists/2831242
Lists are slightly faster than sets when you just want to iterate
over the values. Sets, however, are significantly faster than lists if
you want to check if an item is contained within it. They can only
contain unique items though. It turns out tuples perform in almost
exactly the same way as lists, except for their immutability.

It is possible to do comprehension on sets

...it will order items
with capital letters

first

Sets are mutable...

...however, elements of a set
cannot be mutable objects

 NOTE: this order will change
each time the code is ran because there is no true order to a set,
unlike a list

all code shown in this section is available here: github.com/Richard-Burd/python-3-sandbox/sets.py

Reading Fi les
Python allows you to open up files and read them then do
something with those files

Maps
Maps are a way to take a list, apply some kind of function to each
item within that list, and return a new list with the changes made
by the function to each item in the list

[List] Comprehension

area

volume

Functions & Variable Scope
Python uses colons to start a function body

greet = "Hello!"
greet[0]
#=> 'H'

greet[-1]
#=> '!'

greet[0:4]
#=> 'Hell'

greet[0:-2]
#=> 'Hell'

Python Basic Information

Here are the two repos that will be used as a reference in this
cheat sheet:

A general purpose programming language
• can be used for many different things

A high level programming language
• abstracts away from machine code
• needs to run through a python interpreter

https://github.com/Richard-Burd/python-3-sandbox

https://github.com/iamshaunjp/python-3-playlist

user@ubuntu ~/any/path/here $ python -V
// => This is the default version of Python installed; make sure you use a capital 'V', not 'v'

user@ubuntu ~/any/path/here $ python
// => This starts the python shell where you can type in Python code directly (press "Ctrl+Z" to exit the shell)

user@ubuntu ~/any/path/here $ python3
=> This starts the Python version 3 shell and since Ubuntu uses Python 2.7 you have to have 2.7 installed

This is the shell your python code is being
passed through in order to execute

This is the actual code being executed

user@ubuntu ~/any/path/here $ python3 myPythonScript.py
=> This will run a Python file called "myPythonScript.py" through the Python version 3 interpreter

Everything in Python is cnsidered to be an object, and objects have
attributes and functions; when we talk about these functions with
respect to these objects, we call them methods...thus, objects can
have attributes and methods.

"Strings" & [Lists]

you can split a string into
a list [in python, arrays
are called "lists"] at a
specified character

You can escape a character with the backslash "I'm doing good!"
'I\'m doing good!"

We start with 0 when counting string
elements from the front and -1 when
counting string elements from the back

We can start with 0 and count up to (but
not including) the 4 when grabbing a sequence
of elements in a string; we can also count
from the back

greet = "Hello!"
noun = "Cat"
greet + noun
#=> 'HelloCat'

noun * 3
#=> 'CatCatCat'

noun.upper()
#=> 'CAT'

noun.lower()
#=> 'cat'

len(noun)
#=> 5

add (concatenate) & multiply strings
 Python has special methods for strings

.upper()

cheeses = "Brie, Chedder, Stilton"
cheeses.split(',')
#=> ['Brie', 'Chedder', 'Stilton']

.split()
Length of a string or list can be found with len()

find the index of a list item

remove a selected index from a list
find nested list element

remove the last element in a list

add at the end of a list

concatenate elements onto a list

.pop()

del([])

sl icing

.pop() removes last element from object

.pop() returns the last element, not the object

list1 = ['Bob', 'Tom', 'Ron']
list1[1]
#=> 'Tom'

list2 = list1 + ["Cat"]
#=> ['Bob', 'Tom', 'Ron', 'Cat']

list2.append('Dan')
#=> ['Bob', 'Tom', 'Ron', 'Cat', 'Dan']

list2.pop()
#=> 'Dan'
list2 = ['Bob', 'Tom', 'Ron', 'Cat']

list2.remove('Tom')
#=> ['Bob', 'Ron', 'Cat']

del(list2[0])
#=> ['Ron', 'Cat']

nest = [[1, 2], [3, 4], [5, 6]]

nest[2][1]
#=> 6

.append()

WARNING, this only removes the 1st instance of 'Tom'

Console Inputs & Strings

int()
type casting

User inputs are always accepted as strings (e.g. "2") unless they
are type-casted with int() to become integers

radius = input("Enter the radius of your circle (m):")

area = 3.142 * int(radius) ** 2
print('The area of your circle is:', int(area))

print()

user@ubuntu ~/project-path $ python3 myScript.py
=> Enter the radius of your circle (m): 4
=> The area of your circle is: 50

./project-path/myScript.py

This will get printed out and prompt the user for an input

list = [num1, num2]

.format()

0 in the list 1 in the list
0 1

Up here we broke out of the string
But now let's look at some string formatting

We could specify 3 or even 4 digits in the number (precision)

num1 = 3.1425
num2 = 10.2903

print('The first variable is {0} and the second one is {1}'.format(num1, num2))
#=> The first variable is 3.1425 and the second one is 10.2903

print('The first variable is {0:.3} and the second one is {1:.4}'.format(num1, num2))
#=> The first variable is 3.14 and the second one is 10.29

f - s t r i n g s
print(f'The first variable is {num1:.2f} and the second one is {num2:.4f}')
#=> The first variable is 3.14 and the second one is 10.2903

Or we could add the little f for float to specify
the deceimal number we want to see

These are called F-Strings & they don't require ".format()"

The function body must
be indented or Python
will not compile

def greet(name = "Moe", time = "12:30pm"):
 print(f"Hey {name} it's {time} right now!")

greet(name = "Ron")
#=> "Hey Ron it's 12:30pm right now!"

To overide default values, specify the variable that will have the
default overidden

radius

length

Here we are passing a function
into a function (as a variable)

def area(radius):
 return 3.142 * radius * radius

def volume(area, length):
 print(area * length)

radius = int(input('enter a radius:'))
length = int(input('enter a length'))

volume(area(radius), length)

global

my_name = "Dog"

def parent_scope():
 my_name = "Mom"
 print(f"I see {my_name} in the parent scope.")
 def child_scope():
 my_name = "Kid"
 print(f"I see {my_name} in the child scope.")
 def pet_scope():
 global my_name
 print(f"I see {my_name} in the pet scope.")

 # call the child function:
 pet_scope()

 # call the child function:
 child_scope()

call the parent function:
parent_scope()

#=> I see Mom in the parent scope.
#=> I see Kid in the child scope.
#=> I see Dog in the pet scope.

variables can be redefined in
a lower scope but still retain
their original value in the
higher scope; the global
value can be called with the
global keyword in a lower
scope

https://repl.it/@Richard_Burd/Variable-Scope#main.py

from random import shuffle

words = ['ron', 'cat', 'pat']

anagrams = []

def jumble(word):
 anagram = list(word)
 shuffle(anagram)
 return ''.join(anagram)

Given a list of numbers we want to double; there are two
different methods for doing this shown below

Standard Method

numbers = [5, 10, 50, 100, 1000]
double_numbers = []

for number in numbers:
 double_numbers.append(number*2)

print(double_numbers)
#=> [10, 20, 100, 200, 2000]

Comprehension Method

numbers = [5, 10, 50, 100, 1000]
double_numbers = [number*2 for number in numbers]

print(double_numbers)
#=> [10, 20, 100, 200, 2000]

Another example below squares all even numbers from 1 to 10

sameoutput

Standard Method Comprehension Method

nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

squared_even_numbers = [
 num**2 for num in nums if(num**2) % 2 == 0
]

print(squared_even_numbers)
#=> [4, 16, 36, 64, 100]

nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

squared_even_numbers = []

for num in nums:
 if(num**2) % 2 == 0:
 squared_even_numbers.append(num**2)

print(squared_even_numbers)
#=> [4, 16, 36, 64, 100]

same output

Standard Method

Working Map Method

print(list(map(jumble, words)))
#=> ['nor', 'tca', 'tap']

for word in words:
 anagrams.append(jumble(word))

print(anagrams)
#=> ['orn', 'cta', 'atp']

Comprehension Method

print([jumble(word) for word in words])
#=> ['nor', 'tca', 'tap']

we need the random module from the
Python Standard Library for this example:

https://docs.python.org/3/library/

random

the list() method takes a string and
makes each character its own string in a
new list like: ['r', 'o', 'n']

l ist

the join() method will take elements of a
list and put them in the same string

''.join(['r', 'o', 'n'])
#=> 'ron'

'-'.join(['r', 'o', 'n'])
#=> 'r-o-n'

join

map() print(map(jumble, words))
#=> <map object at 0x7faa43897128>

Vanilla Map Method

 This doesn't quite work because it's
mapping the result onto an unusable object; to make it readable, it
myst be typecasted into a list

'words''jumble'

map (function used, list being operated on)

F i lters

filtered_grades = []
for grade in grades:
 if grade != 'F' and grade != 'D':
 filtered_grades.append(grade)
print(filtered_grades)
#=> ['A', 'B', 'C', 'A']

Using a For Loop

print([grade for grade in grades if grade != 'F' and grade != 'D'])
#=> ['A', 'B', 'C', 'A']

Using Comprehension
comprehension is
still the shortest
way to go

f i lter()
grades = ['A', 'B', 'F', 'C', 'F', 'D', 'A']

def remove_bad_grades(my_grade):
 return my_grade != 'F' and my_grade != 'D'

print(filter(remove_bad_grades, grades))
#=> <filter object at 0x7f0aaf84b780>

print(list(filter(remove_bad_grades, grades)))
#=> ['A', 'B', 'C', 'A']

Using the Filter Method

The filter method is used to determine if a specified condition is
true or false for each element in a given list; if true, the element
remains in the filtered list, if not, it is dropped; The example
 here filters out bad grades.

'grades''remove_bad_grades'

filter (testing function, list being operated on)

Dictionaries

people_ages = {'ron':12, 'bob':5, 'tom':36, 'dan':41, 'cat':39, 'alf':73}

my_names = list(people_ages.keys())
print("there's ", my_names.count('ron'), "ron in the list!")
#=> there's 1 ron in the list!

person = dict(name='shaun', age=27, height=6)

print(person)
#=> {'name': 'shaun', 'age': 27, 'height': 6}

see if key exists in the dictionary with in

find the value of a specified key

Python dictionaries are similiar to Ruby hashes or JavaScript objects

print('ron' in people_ages)
#=> True

print(people_ages['ron'])
#=> 12

grabbing the keys in a dictionary will give a value like this

l ist

in

get the number of times a given
key is found in the dictionary
with the count method

This is an alternative syntax for declaring a dictionary,
when called, it uses ":" but uses "=" in the declaration

ninja_belts = {}

while True:
 ninja_name = input('enter a ninja name:')
 ninja_belt = input('enter a belt color:')

 ninja_belts[ninja_name] = ninja_belt

 another = input('add another? (y/n)')
 if another == 'y':
 continue
 else:
 break

print(ninja_belts)

def ninja_intro(dictionary):
 for key, val in dictionary.items():
 print(f'I gotta key of: {key} and a value of: {val} !')

ninja_intro(ninja_belts)

This takes the user input from
the console and sends it to the
dictionary

this keeps the code execution in
the while loop when the user
enters in "y"

This function cycles
through the dictionary

This function call starts the program in the console

items

continue

for.. . in

print(people_ages.keys())
#=> dict_keys(['ron', 'bob', 'tom', 'dan', 'cat', 'alf'])

print(list(people_ages.keys()))
#=> ['ron', 'bob', 'tom', 'dan', 'cat', 'alf']

print(list(people_ages.values()))
#=> [12, 5, 36, 41, 39, 73]

either the dictionary
keys or values can be
returned as a list
(array) data type with
the list keyword

.python-3-sandbox/lessons/read.py
.python-3-sandbox/lessons/files/ipsum.txt

1 2 3 4 5 6

1 2 3 4 5

.python-3-sandbox/lessons/files/dna_sequence.txt

this opens an external file at:
ipsum_file = open('files/ipsum.txt')

for my_line in ipsum_file:
 print(my_line)

for line in ipsum_file:
 print(line.rstrip())

ipsum_file.seek(6)
#=> Lorem ipsum dolor sit...(et.al.)
#=> [ipsum dolor sit...(et.al.)]

selected_text = ipsum_file.read(5)
print(selected_text)
#=> ipsum

ipsum_file.close()

def sequence_filter(line):
 return '>' not in line

with open('files/dna_sequence.txt') as dna_file:
 lines = dna_file.readlines()
 print(list(filter(sequence_filter, lines)))

>SEQUENCE_1
MTEITAAMVKELRESTGAGMMDCKNALSETNG...et.al
>SEQUENCE_2
AEGLVSVKVSDDFTIAAMRPSYLSYEDLDMTF...et.al
>SEQUENCE_3
IPQFASRKQLSDAILKEAEEKIKEELKAQGKP...et.al
>SEQUENCE_4
MGQFYVMDDKKTVEQVIAEKEKEFGGKIKIVE...et.al

this finds all instances of the ">"
character in the dna_sequence.txt file
and filters them out of the printed
list in the console

this checks to see if the ">"
character is in the line or not

Downloading Fi les

We need this module to be
imported in order to download

Conditionals
User inputs are always accepted as strings (e.g. "2") unless they
are type-casted with int() to become integers

Python has two types of numbers; integers and floats. You can
find the data type by using the built in type() method

Numbers

Integers
• are whole numbers

Floats (or floating point numbers)
• anything with a decemal in them
• needs to run through a python interpreter
• is always the result of division

type(500)
<class 'int'>

type(5.1)
<class 'float'>

type("Hey!")
<class 'str'>

Pythonistas call
this an 'argument' 5 / 5

1.0

5 // 5
1

... unless you use the
doulbe forward slash//10 % 3

1
division remainder
or "modulus"

(5 + 3) * 2 + 2**3 - 6
18

BIDMAS stacking order
Brackets
Indicies
Multiplication
Addition
Subtraction

age = 5
age = age + 5
age => 10

age = 5
age += 5
age => 10

+=
This is a shorter way of
expressing what is to the
left; these also exist

age *= 5
age /= 5
age -= 5

Python uses colons and needs the
following line to be indented

Python uses the and keyword instead
of && like in Ruby or JavaScript

i f : e l i f : e l s e :age = int(input('Enter your age:'))

if age < 10:
 print('you are under 10')
elif age >= 10 and age <= 20:
 print('You\'re a teenager ')
elif age == 33:
 print("You're middle aged")
else:
 print("That is old")

starts with index 1 and goes up to,
but not including, index 3

ninjas = ['ryu', 'shu', 'snu', 'moe', 'bob', 'dua']

for ninja in ninjas[1:3]:
 print(f'we have: {ninja}')
=> we have: shu
=> we have: snu

for ninja in ninjas:
 if ninja == 'moe':
 print(f'{ninja} - is the last ninja')
 break
 else:
 print(ninja)
=> ryu
=> shu
=> snu
=> moe - is the last ninja

0 1 2 3 4 5

after moe, break out of the loop
and ignore the other elements

this will continue on with the
iteration after doing the stuff above

this will give us only even numbers

age = 25
num = 0

while num < age:
 if num == 4:
 print("That's number 4! OK, let's continue on...")
 num += 1
 continue
 if num % 2 == 0:
 print(num)
 num += 1

without these specific indentations,
the Python code will not work

i f

for in :

while

continue

break

user@ubuntu ~/python-3-sandbox/projects $ python3 download_image.py
Enter img URL to download: https://i.imgur.com/K4h9aD4.jpg
Enter file name to save as: Airplane

.python-3-sandbox/projects/download_img.py

.python-3-sandbox/projects/images

These receive input from the
(CLI) user & store their
answers as variables

import urllib.request

def download_image(url, file_path, file_name):
 full_path = file_path + file_name + '.jpg'
 urllib.request.urlretrieve(url, full_path)

url = input('Enter img URL to download:')
file_name = input('Enter file name to save as:')

download_image(url, 'images/', file_name)

Running thes commands in the
bash prompt will generate an
Airplane.jpg file inside the
images folder

Create this folder and leave

it empty; images will be

download to it

Collections
Standard Python Containers

1.)

2.)

3.)

4.)

l i s t

s e t

d i c t i o n a r y (d i c t)

t u p l e

Col lections Module Containers
1.)

2.)

3.)

4.)

5.)

co u nte r

d e q u e

n a m e d Tu p l e

O r d e r e d D i c t

d e f a u l t D i c t
this one is immutable

from collections import Counter, deque, namedtuple, orderedDict

a = Counter('gallad')
print(a)
#=> Counter({'a': 2, 'l': 2, 'g': 1, 'd': 1})

d = deque("hello")
print(d)
#=> deque(['h', 'e', 'l', 'l', 'o'])

Point = namedtuple('Point', 'x y z time')
newP = Point(3, 4, 5, '12:00pm')
print(newP)
#=> Point(x=3, y=4, z=5, time='12:00pm')

.python-3-sandbox/test.py

The Python data types above
must be imported via their
commensurate module in order to
be used as shown on the left

Collections - Counter

This module implements specialized container datatypes providing
alternatives to Python’s general purpose built-in containers

the Counter must be imported
a string as a variable will return a letter count

a list will return a dictionary
showing how many times each
item occurs in the dictionary

a dictionary will return a sorted dictionary
keys can be non-string variables...
...but must be called with a string

a key that doesn't exist will return 0
listing elements will return a list of items
Counter keys can be different data types

most_common

all code shown in this section is available here:
https://github.com/Richard-Burd/python-3-sandbox/timfiles/collections_counter.py

from collections import Counter

a = Counter('gallad')
print(a)
#=> Counter({'a': 2, 'l': 2, 'g': 1, 'd': 1})

a = Counter(['a', 'a', 'b', 'c', 'c'])
print(a)
#=> Counter({'a': 2, 'c': 2, 'b': 1})

a = Counter({'a':1, 'b':2})
print(a)
#=> Counter({'b': 2, 'a': 1})

a = Counter(cats=4, dogs=7)
print(a['cats'])
#=> 4

print(a['lizards'])
#=> 0

print(list(a.elements()))
#=> ['cats', 'cats', 'cats', 'cats', 'dogs', 'dogs', 'dogs', 'dogs', 'dogs', 'dogs', 'dogs']

b = Counter({'x':2, 'y':7, 34:8, 3:1, 'z':45})
print(list(b.elements()))
#=> ['x', 'x', 'y', 'y', 'y', 'y', 'y', 'y', 'y', 34, 34, 34, 34, 34, 34, 34, 34, 3, 'z', et.al]

print(f'The two most common key-value pairs are {b.most_common(2)}')
#=> The two most common key-value pairs are [('z', 45), (34, 8)]

b.subtract('z')
print(b)
#=> Counter({'z': 44, 34: 8, 'y': 7, 'x': 2, 3: 1})

d = ({'x':4})

(x & y)
(x | y)

Counter has a most_common
method for returning items by
number of most common itemsyou can subtract keys that are

strings but not ones that are integers like these two
d = ['x', 'x', 'x', 'x']
b.update(d)
print(b)
#=> Counter({'z': 44, 34: 8, 'y': 7, 'x': 6, 3: 1})

b.clear()
print(b)
#=> Counter()

a = Counter({'x':1, 'y':2, 'z':3})
b = Counter({'x':10, 'y':10, 'z':10})

print(a + b)
#=> Counter({'z': 13, 'y': 12, 'x': 11})

print(b - a)
#=> Counter({'x': 9, 'y': 8, 'z': 7})

print(a - b)
#=> Counter()

print(b & a)
#=> Counter({'z': 3, 'y': 2, 'x': 1})

print(a | b)
#=> Counter({'x': 10, 'y': 10, 'z': 10})

Counter keys can be updated
like this or like this

intersection & union of Counters

values for the items in the counter, in this case, z has a value of 3
(in Counter a above) and a value of 10 (in Counter b above) so
since 3 is the smallest, that is the intersect value

The opposite of intersecting is called "union"
which is shown here: These are the maximum
values between the two Counters a and b above

Collections - Deque

Why use a deque over a traditional list? because it's faster in
terms of adding items to the beginning and end of the list, but if
you're going to want to randomally access elements within the
container, then it's better to use a traditional list.

all code shown in this section is available here:
github.com/Richard-Burd/python-3-sandbox/timfiles/collections_deque.py

from collections import deque

d = deque("hello")
print(d)
#=> deque(['h', 'e', 'l', 'l', 'o'])

d.append('4')
d.append('5')
d.appendleft('2')
d.appendleft(1)
d.appendleft(True)
print(d)
#=> deque([True, 1, '2', 'h', 'e', 'l', 'l', 'o', '4', '5'])

d.pop()
d.popleft()
print(d)
#=> deque([1, '2', 'h', 'e', 'l', 'l', 'o', '4'])

d.clear()
print(d)
#=> deque([])

d.extend('456')
d.extend('hello')
d.extendleft('123')
print(d)
#=> deque(['3', '2', '1', '4', '5', '6', 'h', 'e', 'l', 'l', 'o'])

it takes each element of a string and makes it an
element of a list-like data structure

the Deque must be imported

items can be added to the
front or back of a deque

appendleft

pop

clear this will destructively clear all contents
of the deque

the extend() method takes in anything iterable,
such as a list or string, ant puts it at the end
 of the deque

extend

The rotate() method shifts the
order of items as shown on the
left

1 2

-1

rotate

you can only add to the deque with the extend() method, but
that will still mantain the original maxlen of 5

x = deque("123456")
print(x)
#=> deque(['1', '2', '3', '4', '5', '6'])

x.rotate(-1)
print(x)
#=> deque(['2', '3', '4', '5', '6', '1'])

x.rotate(2)
print(x)
#=> deque(['6', '1', '2', '3', '4', '5'])

w = deque("Interlochen", maxlen=5)
print(w)
#=> deque(['o', 'c', 'h', 'e', 'n'], maxlen=5)

print(w.maxlen)
#=> 5

w.extend([1, 2, 3])
print(w)
#=> deque(['e', 'n', 1, 2, 3], maxlen=5)

1 2 3 4 5

The maxlen() method limits the
number of items in the deque
NOTE: you cannot reassign this
maxlen value after it's initially
declared maxlen

[List] & (Tuple) Manipulation

https://github.com/Richard-Burd/python-3-sandbox/blob/master/timfiles/list_%26_tuple_manipulation.py

Collections - NamedTuple

The main difference between a regular tuple and a named tuple is
that with a named tuple you can access things by element and it's
a lot nicer to read in your program

all code shown in this section is available here:
 github.com/Richard-Burd/python-3-sandbox/timfiles/collections_namedtuple.py

the namedtuple must be imported

Coor = namedtuple('Coordinates', ['lat', 'long'])
new_coor = Coor(20.213, 499.340)
print(new_coor)
#=> Coordinates(lat=20.213, long=499.34)

Data = namedtuple('Data_Set', {'x':0, 'y':0, 'z':0})
new_data = Data(10, 20, 30)
print(new_data)
#=> Data_Set(x=10, y=20, z=30)

print(new_data.x)
#=> 10

print(new_data[0])
#=> 10

a namedtuple subclass name

instantiator

subclass constructorfrom collections import namedtuple

Point = namedtuple('Point', 'x y z time')

newP = Point(3, 4, 5, '12:00pm')
print(newP)

#=> Point(x=3, y=4, z=5, time='12:00pm')

must be a capitalized string and the item names are declared in the
second string with each item seperated by a space

the items can be put in a list
like this

the items can also be stored
in a dictionary

Named tuples allow for the use of dot notation, but
regular tuples do not

print(new_data._asdict())
#=> OrderedDict([('x', 10), ('y', 20), ('z', 30)])

print(new_data._fields)
#=> ('x', 'y', 'z')

my_new_value = new_data._replace(y=88)
print(my_new_value)
#=> Data_Set(x=10, y=88, z=30)

p2 = Data._make(['a', 'b', 'c'])
print(p2)
#=> Data_Set(x='a', y='b', z='c')

with Named tupels, items can be found by inded as well

values can be converted to a dictionary with
 the _asdict() method

_asdict()

We can print out the keys
with the _fields() method

we can replace the value of a specified key,
with the _replace() method, but this is
not destructive, in other words, we need
to assign a new value to the operation
because we cannot change the original
namedtuple in this way.

_replace()

_fields()

The _make() method can be used to create a new instance of the
Data class and this new instance will have the specified values passed
into the _make() method. NOTE: the values are now strings, not
integers as in the original declaration above, because we can change
the data type

_make()

Dunder Magic
all code shown in this section is available here:
https://github.com/Richard-Burd/python-3-sandbox/timfiles/dunder_magic.py

Threading

Queue Basics
all code shown in this section is available here:
 github.com/Richard-Burd/python-3-sandbox/misc_tutorials/PyMoondra_Threading_Series/queue_basics.py

class Dog:
 def __init__(self, name):
 self.name = name

d = Dog("Fido")

print(d)
#=> <__main__.Person object at 0x7f60d1aa5780>

By default we get the memory
address location of this object
because we have not told the
object what to do when we print
it __repr__

__mul__

__call__

To get meaningful information, we need
to implement a 'Dunder' method AKA a
'magic' method

class Person:
 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return f"My Person({self.name})"

 def __mul__(self, x):
 if type(x) is not int:
 raise Exception("invalid argument, must be an integer!")

 self.name = "^" + ("*" + self.name + "*") * x + "^"

 def __call__(self, y):
 print("called this function", y)

 def __len__(self):
 return len(self.name)

__len__

p = Person("Tim")
p * 4
print(p)
#=> My Person(^*Tim**Tim**Tim**Tim*^)

p(22)
#=> called this function 22

psn = Person("four")
print(len(psn))
#=> 4

These are all data model methods

The __mul__ data model method will
tell Python how to handle multiplication
operations on an object that is of the

Queue

The __len__ data model method will
tell Python what to do when the
length (len) is called on the Person
class; in this example, the string "four"
has 4 items

raise Exception
data type Person, e.g. an instance of the Person class

Whenever this Person class is called as if it were a function, this
__call__ method will handle that call for the Person class

from queue import Queue
import inspect

q1 = Queue()
print(q1)
#=> <queue.Queue object at 0x7fbb5ddaf240>

print(inspect.getsource(Queue))
#=> <queue.Queue object at 0x7fd87ebac240>
#=> class Queue:
#=> '''Create a queue object with a given maximum
#=>
#=> If maxsize is <= 0, the queue size is infinite.
#=> '''
#=> etc...this goes on forever

this just returns an object address

data model methods

OK let's now let's set things up so that when we
print the queue by
calling the print
method on the
declaration, we get
something meaningful to
print in the console
instead of this__add__

__sub__
The __add__ method will fire anytime
something is added to the queue

The __sub__ method will fire anytime
something is subtracted from the queue

First In First Out (FIFO)

There are 3 types of queues: FIFO, LIFO, and Priority; FIFO is the
 default type when no other type is specified.

The .empty() method returns a boolean
value

import queue

q = queue.Queue()

q.put(5)
q.put(1)
q.put("three")
q.put("7")

print(q.get())
#=> 5

print(q.get())
#=> 1

print(q.empty())
#=> False

while not q.empty():
 print(q.get(), end = ' ^ ')
#=> three ^ 7 ^ A while loop can return all existing values,

get empty

from queue import Queue as q
import inspect

class Queue(q):
 def __repr__(self):
 return f"Queue size is: ({self._qsize()})"

 def __add__(self, item):
 self.put(item)

 def __sub__(self, item):
 self.get()

q2 = Queue()

q2 + "a"
q2 + 8
q2 + True
q2 - [2, 3, 1]
print(q2)
#=> Queue size is: (3)

print(list(q2.queue))
#=> [8, True]

Without the __add__ method above, this
would generate this error:

TypeError: unsupported operand type(s) for +: 'Queue' and 'int'

In this case, it doesn't matter what value you put here, because
this queue is (by default) a First-In-First-Out (FIFO) queue, and
the first item ("a") will be gotten {get()} and then subtracted
from the queue because the __sub__ method is being called to
perform a subtraction operation

The .get() method returns the next item
in the queue to be retrieved; in this case, it
is 5 because the 5 was the first in, and is
therefore the first out - the 1 is next in line
and thus, the .get() method is destructive

Last In First Out (LIFO)

L ifoQueueq2 = queue.LifoQueue()

q2.put("Ron")
q2.put("Tom")
q2.put("Dan")

while not q2.empty():
 print(q2.get(), end = ' ^ ')
#=> Dan ^ Tom ^ Ron ^

This is the last item put in the queue, and
so it is the first item to go out when the
get() method is called on the queue

Priority Queue (Integers) PriorityQueueimport time

q3 = queue.PriorityQueue()

q3.put(1)
q3.put(3)
q3.put(4)
q3.put(2)

for i in range(q3.qsize()):
 print(q3.get())
#=> 1
#=> 2
#=> 3
#=> 4

If the queue items are simply integers,
then the get() method will return the
integers from smallest to largest

Priority Queue (Keys+Values) If you need to assign a priority to a data
type, let's say, to a string, then you use a
tuple for each use of the put() method
wherein the first tuple item is an integer
(representing the priority value) and the
second tuple item is the string (or some
other data type) - the first tuple item
must always be an integer

q4 = queue.PriorityQueue()

q4.put((1, 'Priority 1'))
q4.put((3, 'Priority 3'))
q4.put((4, 'Priority 4'))
q4.put((2, 'Priority 2'))

for i in range(q4.qsize()):
 print(q4.get())
#=> (1, 'Priority 1')
#=> (2, 'Priority 2')
#=> (3, 'Priority 3')
#=> (4, 'Priority 4')

func() func() Done

all code shown in this section is available here:
github.com/Richard-Burd/python-3-sandbox/misc_tutorials/corey_threading/vid_1.py

Threading enables concurrent code execution & requires the
 importing of the threading module

Diagrams are from this video here on Python threading by Corey Schafer:
https://www.youtube.com/watch?v=IEEhzQoKtQU

t i m e

1 Second 1 Second

func()

func() Done

t i m e

Here we are running code synchronously
• first we run this code from start to finish
• then we run this code from start to finish

1 Second

1 Second

fires, but the code is not ran simultaneously

'do_something'

threading.Thread (target=the function we want to run)

Here we are running code
concurrently; the 2nd function
fires after the 1st function

The join() method will ensure that t1 and t2 finish running
before moving onto the next lines where the finish time is calculated
and this statement gets printed out

import threading

t1 = threading.Thread(target=do_something)
t2 = threading.Thread(target=do_something)

start2 = time.perf_counter()

t1.start()
t2.start()

t1.join()
t2.join()

finish2 = time.perf_counter()

print(f'Finished concurrent processes using threading in {round(finish2-start2, 2)} second(s)')

join

import time

start = time.perf_counter()

def do_something():
 print('Sleeping 1 second...')
 time.sleep(1)
 print('Done Sleeping...')

do_something()
do_something()

finish = time.perf_counter()

print(f'Finished synchronous processes in {round(finish-start, 2)} second(s)')

my_list = ["a", "b", 3, "d", "e", "f", "g", "h"]

my_tuple = ("a", "b", "c", 4, "e", "f", "g", "h")

print(my_tuple[slice(3, 5)])
#=> (4, 'e')

print(my_list[slice(3, 5)])
#=> ['d', 'e']

my_list.append("i")

my_list[-1] = "z"

print(my_list)
#=> ['a', 'b', 3, 'd', 'e', 'f', 'g', 'h', 'z']

tuples cannot be appended
but lists can be appended

Lists & tuples can both contain
mixed data types and nested
elements; the slice()method
can be used on both of them,

Tuples are immutable and lists
are mutable; in example:

Try & Accept

Try & accept lets you run code that actually would crash if it is
falsey; Here I want my string to only be numbers:

all code shown in this section is available here:
github.com/Richard-Burd/python-3-sandbox/timfiles/try_&_accept.py

Here the text is typecasted
into an integer

print("Enter a username that consists only of numbers")
text = input("Username: ")

try:
 number = int(text)
 print(f'So, {number} is in fact a legit username!')
except:
 print("Invalid username, access denied :(")

The except block will run if the try block of code is either falsey,
or crashes

Writing Fi les

write() writel ines()

When we open up a file, it is read-only by default unless the
open() method takes in ta second variable, 'w' that permits
writing to the file or an 'a' that permits appending the file

the 'w' method will open up
the file, look at what is inside,
and override whatever is inside
it; that means this string will

.python-3-sandbox/lessons/write.py

with open('files/write.txt', 'w') as write_file:
 write_file.write("I will be written only once in the file and wipe out all previous content.")

with open('files/write.txt', 'a') as write_file:
 write_file.write("\nI am being amended to the string above.")

lahja_arabiya_quotes = [
"\n1.) Marhaba ya a7",
"\n2.) 3ni alek",
"\n3.) Saba7 al 7er"
]

with open('files/write.txt', 'a') as write_file:
 write_file.writelines(lahja_arabiya_quotes)

The writelines()method expects some kind of (Python) list
that it will go through as print each element within it

I will be written only once in the file and wipe out all previous content.
I am being amended to the string above.
1.) Marhaba ya a7
2.) 3ni alek
3.) Saba7 al 7er

.python-3-sandbox/lessons/files/write.txt

appear only once in that file and everything else in that file will be
deleted. The 'a' method on the other hand will only add text to
the end of the file and leave the existing text content alone

Advanced Overview Features

Python is compiled into bytecode before it is interpreted.
Compilers take high-level code and translate it into a lower-level.
An interpreter takes some kind of code, in our case bytecode, and
interprets & runs that code. This is unique to Python because it
is a compiled language, here we have a class with an undefined
'bark' method:

Most of the code shown in this section is available here:
github.com/Richard-Burd/python-3-sandbox/timfiles/expert.py

class Dog:
 def __init__(self):
 self.bark()

for i in range(10):

 def show():

 print(i*2)

 show()

show()

This is unique to Python because it is a compiled
language, here we have a class with an undefined

'bark' method that has not yet been defined; If I run the code at
this point there will be no errors. In other languages, the compiler
would detect this error and tell you to define what 'bark' is, but
here, this bit of code is executed at runtime instead of compile
time. All the compiler does for us is translate the Python into
bytecode, and it does not always check to see if the code is
actually valid. Thus, the error above is said to be 'only caught at
runtime' and not at compile time.

Let's look at another example in which the compiler doesn't care if
the code is valid or not, so long as you have valid syntax

We can define a class inside a
function because that is how
Python works; we can nest
classes as deep as we want.

def make_class(x):
 class Cat:
 def __init__(self, name):
 self.name = name

 def print_value(self):
 print(x)

 return Cat

cls = make_class(10)
print(cls)
#=> <class '__main__.make_class.<locals>.Cat'>

d = cls("Timmy")
d.print_value()
#=> 10

print(d.name)
#=> Timmy

This returns the class Cat and
not an instance of the class; the
class is being created and stored
in memory

Here we're calling
the class method

the name of this instance of the Cat class is "Timmy"

This cls variable is actually a class,
so it's another name for Cat

Functions can be put inside of a for loop

This will run each time the loop runs

 This will only run once on the final item in the
range, but it is aware of the existence of show() inside a deeper
scope it is not a part of, but show() must be declared on a line
ABOVE wherever it is being called or it will not run and will
generate an 'is not defined' error

A function inside of a function must
be accessed by nesting the function call
like this

def outer_function(x):
 def inner_function(x):

print(f'get inside with a {x}!')

 return inner_function

zelda = outer_function("key")
zelda("key")
#=> get inside with a key!

print(id(zelda))
#=> s.thing like "140175176829808"

import inspect

print(inspect.getmembers(zelda()))
#=> [('__bool__', <method-wrapper '__bool__' of NoneType object at 0x9d4380>),et.al

print(inspect.getsource(zelda))
#=> def inner_function(x):
#=> print(f'get inside with a {x}!')

all code shown in this tiny subsection is available here:
github.com/Richard-Burd/python-3-sandbox/timfiles/nested_function_calls.py

Everything in Python is an object so
each thing has its own unique memory
address

inspect

The inspect module can show us
some pretty cool things because of

the fact that all of our Python objects are live; here we use the
getsource() method to get the sourcecode of a specific method,
function, class, or other object

getsource

Python Illustrated

rick.a.burd@gmail.com

https://github.com/Richard-Burd/python-3-sandbox

https://richard-burd.github.io/python-illustrated/
About

https://www.youtube.com/playlist?l ist=PL4cUxeGkcC9idu6GZ8EU_5B6WpKTdYZbK

https://www.youtube.com/playlist?l ist=PLzMcBGfZo4-mFu00qxl0a67RhjjZj3jXm

https://www.youtube.com/playlist?l ist=PLzMcBGfZo4-nhWva-6OVh1yKWHBs4o_tv

https://www.youtube.com/playlist?l ist=PLzMcBGfZo4-kwmIcMDdXSuy_wSqtU-xDP

https://www.youtube.com/watch?v=p15xzjzR9j0

Python 3 Tutorial for Beginners by The Net Ninja

Python Programming Tutorials by Tech With Tim

Intermediate Python Tutorials by Tech With Tim

Expert Python Tutorials by Tech With Tim

Mastering Python by Tech With Tim

https://www.youtube.com/watch?v=IEEhzQoKtQU
Python Threading Tutorial by Corey Schafer

https://www.youtube.com/watch?v=bnm5_GH04fM
Python Tutorials : Threading Beginners by PyMoondra

Classes, Modules, & Packages
Everything in Python is an object and all objects have a class type;
each of those class types in turn have methods that can be called
on them; num_var is based on the list class class type therefore it
inherits all methods for the list class
my_value = True
type(my_value)
#=> <class 'bool'>

my_var = 33
type(my_var)
#=> <class 'int'>

numb_var = [1, 6, 3]
type(num_var)
#=> <class 'list'>

people_ages = {'ron':7, 'bob':12, 'tom':12}
type(people_ages)
#=> <class 'dict'>

another = "Qwerty"
type(another)
#=> <class 'str'>

static method

class method

def planet_mass(gravity, radius):
 mass = (gravity*radius**2) / (6.67*10**-11)
 return mass

def planet_vol(radius):
 vol = (4*3.142*radius**2) / 3
 return vol

.python-3-sandbox/lessons/space/calc.py

a class instance called
 'naboo' is created
 above in
 classes.py

the init function
The init function can be hardwired
like this but is usually built to
accept instance variables

class Planet:

 def __init__(self):
 self.name = 'Hardwired Planet Name'
 self.radius = 3.14
 self.gravity = 5.5
 self.system = "Hoth System"

These are the
instance attributes

print(naboo.shape)
print(Planet.shape)
#=> 'round'
#=> 'round'

 The class attributes can be called by the class itse lf or a class instance

cls

Static methods
have no access
to class (cls)
or class intan-
ces (self)

this is a module

Decorators
Decorators extend the behavior of a function without modifying
the function itself; they are use extensively in web frameworks like
Django.

Decorators are basically wrapper
functions; they are defined
with an " " symbol & the
decorator function name must
match the decorator istelf

This code runs before the
function

This code runs after the function

def cough_discount(function):
 def function_wrapper():
 print('*cough*')
 function()
 print('*couuugh*')

 return function_wrapper

@cough_discount
def question():
 print('can you give me a discount for that!?')

question()
#=> *cough*
#=> can you give me a discount for that!?
#=> *couuugh*

This function defines
the class attributes

& it takes in a self
property

files shown in the sections below are available here: github.com/Richard-Burd/python-3-sandbox

class name is capitalized & followed by ":"
This is where class attributes are defined
.python-3-sandbox/lessons/space/planet.py

F i le Importing
.python-3-sandbox/test.py

.python-3-sandbox/files/test.py

import sys
sys.path.append("..")

from lessons.space.planet import Planet

print(Planet)
#=> <class 'lessons.space.planet.Planet'>

To import relative from the top
level directory, use dot notation
like this

To import from beyond the top
level package, you will need
this block of code

https://github.com/Richard-Burd/python-3-sandbox/blob/master/test.pyReference: github.com/Richard-Burd/python-3-sandbox

from lessons.space.planet import Planet

print(Planet)
#=> <class 'lessons.space.planet.Planet'>

These are both instance methods, so they both must take
in the self parameter.python-3-sandbox/lessons/space/__init__.py

.python-3-sandbox/lessons/space/__pycache__

.python-3-sandbox/lessons/classes.py

class Planet:

 shape = 'round'

 def __init__(self, name, radius, gravity, system):
 self.name = name
 self.radius = radius
 self.gravity = gravity
 self.system = system

 def orbit(self):
 return f'{self.name} is orbiting in the {self.system}'

 @staticmethod
 def spin(speed = '2000 miles per hour'):
 return f'The planet spins and spins at {speed}'

 @classmethod
 def commons(cls):
 return f'All planets are {cls.shape} because of gravity'

like 'self' but for the class

This directory gets generated
automatically when you create the
folder above to setup a module

You don't need anything in this file; it's existence
alone is enough to tell Python that the contents in
this directory called space are a package of modules

space is the folder name, planet is the name of the class
file; this import is enabled by the __init__.py file that
 is in the space directory
from space.planet import Planet
from space.calc import planet_mass, planet_vol #use "import *" to import all

naboo = Planet('Naboo', 300000, 8, 'Naboo System')
naboo_mass = planet_mass(naboo.gravity, naboo.radius)
naboo_vol = planet_vol(naboo.radius)

print(f'{naboo.name} has a mass of {naboo_mass} and a volume of {naboo_vol}')
#=> Naboo has a mass of 1.0794602698650675e+22 and a volume of 377040000000.0

print(f'default: {naboo.spin()}')
#=> default: The planet spins and spins at 2000 miles per hour

print(f'custom: {naboo.spin("100 mph")}') same as: print(f'custom: {Planet.spin("100 mph")}')
#=> custom: The planet spins and spins at 100 mph

print(naboo.commons())
#=> All planets are round because of gravity

{Dictionary} Comprehension

Dictionary comprehension is a powerful concept and can be used to
substitute for loops and lambda functions. However, not all for
loops can be written as a dictionary comprehension but all
dictionary comprehensions can be written with a for loop.

Comprehension Method

Reference: https://www.datacamp.com/community/tutorials/python-dictionary-comprehension

.python-3-sandbox/dictionary_comprehension.py

The kind of comprehension method can be used (mutatis mutandis)
on dictionaries as well

Double each value in the dictionary

Double each value in the dictionary
only if the value is an even number

Ranges
In Python, ranges generate a list of numbers for us that we can
then use to iterate over in for loops.

this will go up to but not including 5

this will start from and include 5 and
go through but not include 10

this will start from and include 20 and go through but not include
300 in intervals of 80

for n in range(5):
 print(n)
#=> 0 #=> 1 #=> 2 #=> 3 #=> 4

for n in range(5,10):
 print(n)
#=> 5 #=> 6 #=> 7 #=> 8 #=> 9

for n in range(20,300, 80):
 print(n)
#=> 20 #=> 100 #=> 180 #=> 260

len()
names = ['bo', 'bob', 'tom', 'dan']

for n in range(len(names)):
 print(n + 1, ".)", names[n].capitalize())
#=> 1.) Bo #=> 2.) Bob #=> 3.) Tom #=> 4.) Dan

for n in range(len(names) -1, -1, -2):
 print(n + 1, ".)", names[n])
#=> 4.) dan
#=> 2.) bob

this -1 is the last item in the list and the start position, this -1
is the position right before the start of the list because this value
tells us the looping end point and it is an up-to-but-not-included
value, finally, this -2 is the increment amount, and it is negative

this len()method finds the
length of the names list and
cycles throught the range
for each element in that
names list

Identify odd and even entries

 Similarly, dictionaries can be
nested and thus their comprehensions can be nested as well

Lambdas
Lambda expressions (or lambda functions) are similar to anonymous
functions in JavaScript; they are suitable for situations in which
you're only gonna call the function once.
nums = [1, 2, 3, 4, 5, 6]

def square(n):
 return n*n

print(list(map(square, nums)))
#=> [1, 4, 9, 16, 25, 36]

nums = [1, 2, 3, 4, 5, 6]

print(list(map(lambda n: n*n, nums)))
#=> [1, 4, 9, 16, 25, 36]

This is a standard function that will square
a number with a map function typecasted
into a list

The lambda will automatically return
the result to the right of the ":"
without a return statement

lambda x, y, z: n*n

You could pass in multiple arguments into a lambda like this
'n*n''n' (not in example)

lambda (first variable,second variable: calculation)

lambda

Zip Function

The zip() function returns a zip object, which is an iterator of
tuples where the first item in each passed iterator is paired
together, and then the second item in each passed iterator are
paired together etc. If the passed iterators have different
lengths, the iterator with the least items decides the length of
the new iterator.

https://www.w3schools.com/python/ref_func_zip.aspReference:

all code shown in this section is available here:
github.com/Richard-Burd/python-3-sandbox/zip.py

.python-3-sandbox/zip.py

names = ("John", "Charles", "Mike")
ages = (25, 22, 34, 57)

output = zip(names, ages)

print(tuple(output))
#=> (('John', 25), ('Charles', 22), ('Mike', 34))

print(dict(output))
#=> {'John': 25, 'Charles': 22, 'Mike': 34}

use the tuple() function
to display a readable version
of the result...

...or use the dict()
function instead, but you can only run one or the other in the
same script on the same object

dict1 = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}

double_dict = {k:v*2 for (k,v) in dict1.items()}

double_dict_if_even = {k:v*2 for (k,v) in dict1.items() if v%2 == 0}

dict1_tripleCond = {k:('even' if v%2==0 else 'odd') for (k,v) in dict1.items()}

print(double_dict)
#=> {'a': 2, 'b': 4, 'c': 6, 'd': 8, 'e': 10}

print(double_dict_if_even)
#=> {'b': 4, 'd': 8}

print(dict1_tripleCond)
#=> {'a': 'odd', 'b': 'even', 'c': 'odd', 'd': 'even', 'e': 'odd'}

nested_dict = {'first':{'a':1}, 'second':{'b':2}}
float_dict = {
 outer_k: {float(inner_v) for (inner_k, inner_v) in outer_v.items()}
 for (outer_k, outer_v) in nested_dict.items()
}
print(float_dict)
#=> {'first': {1.0}, 'second': {2.0}}

people_dictionary = {'member_01':{'age':20, 'name':"Sal"}, 'member_02':{'age':23, 'name':"Tom"}}
people_names = {
 outer_k: {(inner_v)
 for (inner_k, inner_v) in outer_v.items() if inner_k == 'name' }
 for (outer_k, outer_v) in people_dictionary.items()
}

print(people_names)
#=> {'member_01': {'Sal'}, 'member_02': {'Tom'}}

Dictionary Iteration

def work_history_profession_finder(users, profession):
 for user_key, user_value in users.items():
 for category_key, category_value in user_value.items():
 if category_key == 'bio' and profession in category_value:
 print(f'{user_value.get("name")} was a {profession}')
work_history_profession_finder(users, 'doctor')
#=> 'Dan'

def bio_profession_finder(users, profession):
 for user_key, user_value in users.items():
 for category_key, category_value in user_value.items():
 if category_key == 'work-history':
 for job_key, job_value in category_value.items():
 if profession in job_value:
 print(f'{user_value.get("name")} was a {profession}')
bio_profession_finder(users, 'dentist')
#=> 'Sam'

code shown in the section below is available here:
 github.com/Richard-Burd/python-3-sandbox/dictionary_iteration.py

for loops can be used to find values within
nested dictionaries and in

if True | False:
 print("truthy")
else:
 print("falsey")
#=> truthy

if False | True:
 print("truthy")
else:
 print("falsey")
#=> truthy

if False | False:
 print("truthy")
else:
 print("falsey")
#=> falsey

key, value in items.items() pattern in the very top example.
the .keys() method can be used to find specific key values as well

@

we use empty() instead of get() because the latter will cause our
computer to lock up when there are no more items to actually
"get()" in the queue - to solve that problem we can use an
advanced method called threading or the empty() method as shown

the Counter can be cleared of
all its contents

When you subtract elements
on a counter, it will not
show values of 0 or negative
values

Here we say that b is
"intersecting" with a and this
gives the lowest common

the rstrip() method removes
empty spaces between lines

this iterates through each line of
the file & reads each one

this starts at the 6 character in
the file and returns it in list
brackets "[]"

this starts from the seek()
method starting point above (6)
and reads 5 characters of the file

th

the file should always be closed to
prevent any performance penalties

using with open() as: is
generally better than using the
seperate open() & close()
statements shown above; the
file remains open while code
beneath is indented and closes
when the code indentation ends

Tuples are used for coordinates, colors, rectangles, & other mathy
stuff; they are similiar to lists

all code shown in this section is available here:
github.com/Richard-Burd/python-3-sandbox/timfiles/list_&_tuple_manipulation.py

References: https://github.com/Richard-Burd/python-3-sandbox
users = {
 'user-1': {
 'name':"Sam",

 'work-history' : {
 'job-1' : 'server',
 'job-2' : 'dentist'
 },

 'bio': "I was a server
 and a dentist"
 },

 'user-2': {
 'name':"Dan",

 'work-history' : {
 'job-1' : 'plumber',
 'job-2' : 'doctor'
 },

 'bio': "I was a plumber
 and a doctor"
 },
}

The .values()
method can be used
to avoid using the

def work_history_profession_finder(users, profession):
 for user_value in users.values():
 for work_value in user_value['work-history'].values():
 if work_value == profession:
 print(f'{user_value.get("name")} was a {profession}')
work_history_profession_finder(users, 'doctor')
#=> 'Dan'

JavaScript & Ruby
pipes (||) are replaced with a single pipe in Python

last updated @ 9:51am on 21/July/2021 by Richard Burd

