The Ranking Protocol

Ryan J. Kung
ryankung@ieee.org

Feb, 11, 2023

Abstract

This article presents a comprehensive reputation system for monitoring and evaluating the performance
of nodes in a structured peer-to-peer (P2P) network. The system aims to foster responsible behavior and

deter cheating among network participants.

The reputation system is comprised of two main components:

local rankings and global rankings.

Local rankings reflect the behavior of each node within its' own network, while global rankings provide a
comprehensive view of the behavior of all nodes in the entire network. To ensure the system’s reliability, it
utilizes reward proofs and punishment proofs. Nodes exhibiting good behavior are rewarded, while nodes
engaging in undesirable actions are penalized, thus creating an environment where nodes are motivated to

act ethically and cheating is discouraged.

1 Introduction and Motivation

The reputation system presented in this article aims
to address the issue of monitoring node performance
and preventing cheating in structured peer-to-peer
(P2P) networks. By combining local and global rank-
ings, the system provides a comprehensive evaluation
of node behavior. Theuse of reward and punishment
proofs incentivizes responsible behavior and discour-
ages cheating, helping to maintain a healthy and se-
cure network.

The system operates under the assumption of the
Byzantine generals problem, where at least 2/3 of the
nodes are assumed to be honest, as described in the
literature [1]. This helps to ensure the robustness
and security of the network, allowing it to provide
reliable and efficient services to users. Overall, the
proposed reputation system represents a significant
step forward in the development of secure and effi-

cient structured P2P networks.

1.1 Local Ranking

The ranking protocol used in this system is inspired
by Edonkey’s Ranking Queue [2], and adopts a simi-
lar approach for monitoring node performance in the
network. The objective is to prevent cheating, de-
nial of service, and to maintain a healthy and secure
network.

The system includes a mutual scoring system
among nodes, which forms the basis of the measure-
ment and local ranking system. The measurement
system considers multiple metrics, such as the suc-
cess rate of sent requests, the validity rate of received
requests, and the total number of successful interac-
tions. These metrics provide a comprehensive evalu-
ation of a node’s behavior and reliability.

By having each node maintain the scores of sur-
rounding nodes independently, the system creates a
decentralized and distributed local ranking system.
This approach allows for a more accurate and com-
prehensive evaluation of node behavior and reliabil-
ity, as it takes into account observations from multi-
ple nodes in the network.

1.2 Global Ranking

The local rankings are used to generate the global
ranking through a random sampling method. The
random sampling method is based on a decentralized
random number oracle, which ensures the fairness
and impartiality of the global ranking. The use of a
decentralized random number oracle helps to prevent
any biases or manipulations in the ranking, ensuring
that nodes are evaluated objectively and accurately.

The Ranking Protoocol implements the transfor-
mation from local ranking to global ranking through
a four-phase random sampling procedure.

In the first phase, a random seed is generated to en-
sure the randomness of the sampling procedure and is
typically generated by a decentralized oracle to elim-
inate centralization and bias.

In the second phase, the sampling targets are de-
termined based on the local rankings and the random
seed, using a systematic sampling algorithm.

In the third phase, the sample is selected from the
local rankings based on the determined sampling tar-
gets, and a lookup algorithm is used to find the closest
node to the target and provide proof of randomness
using entropy test [3].

In the fourth phase, the validity of the sampling
results is confirmed through a Kolmogorov-Smirnov
(K-S) test to determine if the data is normally dis-
tributed. The K-S test compares the empirical cumu-
lative distribution function of the data with the theo-
retical cumulative distribution function of the normal
distribution, and returns a test statistic and a deci-
sion on the normality of the data.

1.3 Reputation

The ranking protocol uses the reputation system to
incentivize and ensure fair local and global rankings.
The global ranking is generated through fair random
sampling of the local ranking.

The reputation system rewards nodes for good be-
havior and punishes nodes for bad behavior. This
helps to incentivize nodes to behave properly and
discourage cheating. The reputation system is de-
signed to maintain a healthy and robust network by
promoting fair and honest behavior among nodes.

2 Related Work

The edonkey Ranking Queue is a well-known mecha-
nism in the peer-to-peer network community for eval-
uating node performance. The Rings network adopts
a similar approach to the edonkey Ranking Queue to
implement its local ranking system.

One relevant work is the eDonkey network, which
uses the edonkey Ranking Queue as its mechanism
for monitoring node performance. The eDonkey net-
work was one of the earliest peer-to-peer networks to
use a mutual scoring system among nodes to prevent
cheating or denial of service.

Another related work is the Bittorrent network,
which utilizes a mechanism called ”choking” to pre-
vent cheating or denial of service. The Bittorrent net-
work evaluates node performance based on the speed
and reliability of data transfers, and nodes that per-
form poorly are restricted from receiving data from
other nodes.

In conclusion, the ranking protocol used in the
Rings network draws inspiration from the edonkey
Ranking Queue and other related works in the peer-
to-peer network field. By using a mutual scoring sys-
tem among nodes, the Rings network aims to pro-
vide a secure and efficient peer-to-peer network that
can accurately evaluate node performance and pre-
vent cheating or denial of service.

3 Sampling

The Ranking Protoocol effectuates a transformation
from local ranking to global ranking through a ran-
dom sampling procedure, which can be decomposed
into four phases:

1. Generation of a random seed:

A random seed is generated to guarantee the ran-
domness of the sampling procedure. The random
seed is typically generated through a decentralized
oracle to ensure a lack of centralization and bias in
the generation process.

2. Determination of sampling targets: Sam-
pling targets are determined based on the local rank-
ings and the randomly generated seed.

Algorithm 1 Systematic Sampling
K« 2]

Sm
r < random number between 0 and 1
s+ |K-r]

Select elements at positions s,s + K, s + 2K, ...

We use simple Systematic samping algorithm 1
here, where n is the number of bits in the random
number and m is the desired range of the random
sample. The final result is a systematic sample of
elements within the range (0, 2™).

3. Sampling process: The elements in the local
ranking are selected as a sample based on the deter-
mined sampling targets.

Due to the potentially large number of nodes in a
DHT [4] network, it may not be possible to exactly
locate the target in the sample processing stage. As a
result, the sample processing becomes an approxima-
tion process, where the DHT network uses a lookup
algorithm to find the peer closest to the sample target
and provides proof of proximity.

This is because for most DHT implementations,
such as KAD and Chord, it is impossible to have
random ID collisions. Therefore, during the sam-
pling process, the triggered lookup protocol can only
get as close as possible to the sampled position.

Algorithm 2 Entropy Testing Algorithm

Require: Data sequence S
Ensure: Whether the input data is random or not
1: Calculate the frequency f; of each character in S
2: Calculate the entropy H(S) using Shannon en-
tropy or Renyi entropy formula
3: Calculate the expected entropy H,, based on the
length of S and the size of the character set
if |[H(S) — Hegp| < € then
return True
else
return False

For our [ry,..,7,] random numbers, we will obtain
[(id;, i, .., idy,)] through the DHT lookup algo-
rithm. At this point, we will use entropy testing 3
to prove that the distance difference A; between the
sampled nodes and the sampling target has random-
ness, where A; = did; — r;.

4. Validation of sampling results: The sam-
pling results are validated to confirm their represen-
tativeness of the true order of elements in the queue.

We use Kolmogorov-Smirnov(K-S) test to check
the result data of sampling is normally distributed.
The KS test works by comparing the empirical cumu-
lative distribution function (CDF) of the data with
the theoretical CDF of the normal distribution. K-S
is described as: Let F,(x) be the empirical cumula-
tive distribution function (CDF) of a sample of size
n, and let F'(x) be the theoretical CDF of the normal
distribution. The Kolmogorov-Smirnov test statistic
is defined as:

DA |Fn(2) — F()] (1)

where sup represents the supremum, or the least
upper bound. The value of D measures the maxi-
mum difference between the empirical and theoreti-
cal CDFs, and is used to determine whether the data
is normally distributed.

The null hypothesis of the KS test is that the data
is normally distributed, and the alternative hypothe-

sis is that the data is not normally distributed. The
test statistic D is compared to critical values from the
KS distribution to determine whether to reject or fail
to reject the null hypothesis. If the test statistic is
greater than the critical value, the null hypothesis is
rejected, and the data is considered not to be nor-
mally distributed.

Algorithm 3 Kolmogorov-Smirnov Test

1: Input: Sample data z1,xo,..., T,

2: Output: Test statistic D and decision on nor-
mality of data

3: Calculate the empirical cumulative distribution
function (CDF) F, () for the sample data

4: Calculate the theoretical cumulative distribution
function (CDF) F(zx) for the normal distribution

5: Calculate the test statistic D using the formula:

D = sup |, (z) — F(z)]| (2)
xr

6: Compare the test statistic D to critical values
from the KS distribution

7. if D < critical,alue then

8: return "Data is normally distributed”, D
9: else
10: return "Data is not normally distributed”, D

And the algorithm can be present as algorithm 3.

This algorithm calculates the empirical and theo-
retical CDFs for the sample data and the normal dis-
tribution, and calculates the test statistic D as the
maximum difference between the empirical and the-
oretical CDFs. The test statistic is then compared to
critical values from the KS distribution to determine
whether the data is normally distributed or not. The
algorithm returns the test statistic and a decision on
the normality of the data.

4 Ranking game

For the sampled nodes, we need to introduce a reward
mechanism to encourage them to be honest. We will
use the median of the sampling results and reward

the nodes closest to the median. This will introduce a
series of games, and we will analyze them from multi-
ple aspects, including the median game, the complete
information game, the incomplete information game,
and the game based on the Byzantine generals prob-
lem.

4.1 Guess the Median

We use a Guess the Median [5] method to build a
game between the sampled nodes, for the sampled
objects, the sampled nodes need to have enough mo-
tivation to participate, which means rewards, but also
means the possibility of cheating. Therefore, we only
reward nodes that are close to the Median.

In this game, each player has two strategies: to
guess a number that is higher than the median, or
to guess a number that is lower than the median.
Let’s denote the strategy of guessing a number that
is higher than the median as H, and the strategy of
guessing a number that is lower than the median as
L.

The game matrix for Guess the Median would then
look like this:

H L
H| R S
LT P

Figure 1: Two player median

where R is the reward for both players guessing
higher than the median, S is the cost for one player
guessing higher and the other guessing lower, T is the
cost for both players guessing lower than the median,
and P is the reward for one player guessing higher
and the other guessing lower.

In this game, the median is considered the Nash
Equilibrium, meaning that neither player has an in-
centive to deviate from their current strategy as long
as the other player stays the same. This ensures that
both players are motivated to participate and incen-
tivizes honest behavior.

This game can be applied to the nodes in the net-
work to incentivize honest and accurate reporting of
their local rankings. The nodes that accurately re-
port their rankings and are close to the median will
be rewarded, while nodes that cheat or deviate from
the correct rankings will be penalized.

4.2 Complete Information game

When nodes need to decide whether to be honest dur-
ing sampling, this problem can be simplified into a
complete information game. In a complete informa-
tion game, each player has complete information, in-
cluding the strategy choices and payoff functions of
other players. Therefore, each node knows whether
other nodes are behaving honestly during the sam-
pling process, as well as the rewards and payoffs of
other nodes.

Assuming that each player can only choose one of
two strategies, "Be honset” (X) or "not be honest”
(Y), and the payoffs are as follows:

‘ Player C X Player CY

Player A (1,1,1) (0,0,1)
Player B (1,1,1) (0,0,1)
Player C (1,1,1) (1,0,1)

In this matrix, the first number in each cell rep-
resents the payoff for Player A, the second number
represents the payoff for Player B, and the third num-
ber represents the payoff for Player C. For example, if
all three players choose strategy X, then each player
will get a payoff of 1, as indicated in the top left cell.

If all players choose H, each player gets a payoff of
1. If two players choose H and one player chooses C,
the two players who choose H get a payoff of 1, while
the player who chooses C gets a payoff of 0. If all
players choose C, each player gets a payoff of 1.

In this game, there are two pure strategy Nash
equilibria, which are (X, X, X) and (Y, Y, Y). If all
players choose to either reveal or conceal the informa-
tion, then none of them can improve their payoff by
changing their strategy. In addition, there is a mixed

strategy Nash equilibrium in which each player ran-
domly chooses the two strategies with equal probabil-
ity, which results in each player getting an expected
payoff of 2/3.

It’s worth noting that the payoffs for all players
are the same in both pure strategy Nash equilib-
ria, and each player gets a higher payoff than in
the mixed strategy Nash equilibrium. However, the
mixed strategy Nash equilibrium is also a valid solu-
tion concept in game theory, and it may be a more re-
alistic description of what happens when the players
are uncertain about each other’s strategies or prefer-
ences.

4.3 Bayesian game

In the game above, we assumed that the information
was complete, and each node knew how others would
act, so the outcome of the game was that they would
either all choose honestly or all cheat, which is simi-
lar to the Byzantine Generals Problem. In fact, the
game process could also be an incomplete information
game, which is a Bayesian game, where each node is
uncertain about whether the other nodes know infor-
mation L.

If each player does not know which strategy the
other players have chosen, the game becomes an
asymmetric information game, also known as a
Bayesian game. In this case, we can use an extended
game matrix to represent each player’s strategies and
possible payoffs.

To simplify the problem, let’s assume that each
player knows information I, but does not know
whether the other players know this information. In
this case, each player has two information sets: know-
ing information I and not knowing information I.
Each information set has two strategies: showing in-
formation I and hiding information I. Therefore, each
player has four possible strategy combinations.

Hide I
(17071)
—

Show I
(17171)
o)

Hide I
(17071)
—

Show I
(17171)
o)

Hide I
(07071)
o)

Show I
(17171)
N/

g Hide I
(07071)
-

Show I
(17171)

Figure 2: Bayesian Game

To represent each player’s possible payoffs, we can
use a set of tree diagrams, where each node repre-
sents a possible decision point, each edge represents
a player’s decision, and each leaf node represents each
player’s possible payoff. In this context, we can draw
the following game tree:

In this game tree 2, each player has two informa-
tion sets represented by circles. Each information set
has two strategies represented by squares. Each leaf
node represents each player’s possible payoff, where
the first number represents Player A’s payoff, the
second number represents Player B’s payoff, and the
third number represents Player C’s payoff. For exam-
ple, if Player A chooses to show information I while
Player B and Player C both choose to hide informa-

tion I, then Player A’s payoff is 0, while Player B and
Player C both receive a payoff of 1.

| Show I Hide I
ShowI | 1,1,1 0,1,1
HideI | 1,0,1 1,1,0
ShowI | 1,1,1 0,1,1
HideI | 1,0,1 1,1,0

))))

Figure 3: Bayesian Game Matrix

The game can also be represented using a game
matrix as 4.3. In this matrix, each row and column
represents a player’s strategy, and the numbers in
each cell represent the payoffs for the three players.
The first row and first column correspond to player
A’s strategy choices, the second row and column cor-
respond to player B’s strategy choices, and the third
row and column correspond to player C’s strategy
choices.

There are two Nash equilibria in this game: (Show
I, Show I, Show I) and (Hide I, Hide I, Hide I). In the
first Nash equilibrium, all players reveal the informa-
tion since this is the only choice that results in the
maximum payoff for all players. In the second Nash
equilibrium, all players keep the information hidden
since revealing it would result in a loss for the player
who does not reveal it.

4.4 Distributed Game

If we assume that 2/3 of the players are honest, then
the game becomes a variant of the Majority-vote [6]
game. This game has been extensively studied in
the field of distributed computing and fault toler-
ance, where it is used as a model for solving consensus
problems in distributed systems. In this game, each
player can choose to vote for one of two options, and
the goal is to determine the majority vote.

The Byzantine Generals’ Problem is a specific in-
stance of the Majority-vote game, where some players
may be malicious or faulty and try to manipulate the
outcome of the game. In this variant of the game, the
players may have different beliefs about the number

of honest players, and this may affect their strategies.

If we assume that 2/3 of the people are honest, then
each player may assume that the other players are
honest with a probability of 2/3, which is a reasonable
assumption. Based on this assumption, each player
may be more inclined to reveal the information I, as
it is the optimal strategy for all players and the other
players may also choose to reveal the information.

However, each player’s optimal strategy will also
depend on their level of trust in the other players.
If a player believes that the other players are not
sufficiently honest, they may be more inclined to keep
the information I hidden to avoid being deceived or
harmed by the other players. Therefore, the players’
strategies will depend on their beliefs about the other
players’ strategies, and whether they think the other
players are likely to reveal the information or keep it
hidden.

‘ A chooses X A chooses Y
B chooses X (%,%,%) (%,%,%)
B chooses Y (%,%,0) (5,%,0)

Figure 4: Distributed game

The game matrix for this game would look like this
4.4, each row and column represents a player’s strat-
egy, and the numbers in each cell represent the pay-
offs for the three players. The first row and first
column correspond to player A’s strategy choices,
the second row and column correspond to player B’s
strategy choices, and the third row and column cor-
respond to player C’s strategy choices.

For this distributed game, we need to find the best
responses for each player and then determine if there
exists a Nash equilibrium solution.

First, we consider the best response for player B. If
player A chooses X, then the best response for player
B is to choose X, because (%, %, %) is better than
(%, %,). If player A chooses Y, then the best re-
sponse for player B is to choose Y, because (%, %, 0) is
better than (é, %, %) Therefore, player B will choose
the same strategy as player A.

Next, we consider the best response for player A. If
player B chooses X, then the best response for player
A is to choose X, because (%, %, %) is better than
(%, %, %) If player B chooses Y, then the best re-
sponse for player A is to choose Y, because (%, %, 0)
is better than (%7 %7 0). Therefore, player A will also

choose the same strategy as player B.

Therefore, In this game, due to the consideration
of the Byzantine assumption, the unique Nash equi-
librium solution is when player A and player B both

. 4 4 4
choose X, which corresponds to a payoff of (3,73, 5),
that all nodes will tend to remain honest.

4.5 Rank maximize

Let’s considerthe scenario where individuals are able
to repeatedly calculate their global rank until they
are satisfied with the outcome. This raises two ques-
tions: 1) Will the repeated sampling by the sampler
result in a significant increase in network traffic, and
2) Will the sampled individuals be willing to disclose
their accurate local rank.

To optimize the results of the sampling process,
the sampler must consider the normal distribution
generated by the ranking protocol. As the number
of requests made by nodes increases, the maximum
value of the normal distribution may decrease. To
achieve the highest result possible, the sampler must
adjust the number and timing of samplings based on
a thorough understanding of the normal distribution.

To determine the most optimal strategy, statisti-
cal analysis of the mean and variance of the normal
distribution is necessary. This allows the sampler to
evaluate different strategies and choose the one that
will provide the best results. By performing this anal-
ysis, the sampler can optimize the results of the sam-
pling process and achieve the most accurate global
ranking.

max n
T

subject to g;(x) <0,
h; (z) =0,

1=1,...,m

j=1...,p0 (5

In this model, x is a vector of variables that repre-
sent the actions taken by A, n is the objective func-
tion to be maximized, g;(x) represents the inequality
constraints, and hj(z) represents the equality con-
straints. The goal is to find the values of x that max-
imize n subject to the constraints.

4.6 Sample weight

Once nodes obtain the Global Rank, we can calculate
their weight based on the Global Rank of the sam-
pled nodes during the sampling process, with higher
Global Rank of the sampled objects having a higher
weight.

To handle the network’s cold start problem; ini-
tially, all Global Ranks are set to 0. In order to jump-
start the ranking process, a set of initial high-ranking
nodes are introduced to facilitate credit transfer.
These nodes are assigned a high Global Rank and
their ranking is used as a reference for other nodes to
calculate their own Global Rank in subsequent sam-
ples. This allows for a gradual increase in the Global
Rank of other nodes as they participate in the sam-
pling process and receive rewards based on their prox-
imity to the median.

4.7 Reward and Slash Proofs

This way, the system can have both financial incen-
tives and deterrents to maintain the accuracy and
reliability of the rankings. The locking mechanism
also helps to prevent malicious behavior and cheat-
ing, as nodes would have to consider the consequences
of their actions before participating in the ranking
system. The use of cryptographic signatures and
the distributed ledger further enhances the security

and transparency of the system. Overall, the com-
bination of rewards, punishments, and locking mech-
anisms creates a balanced system that incentivizes
nodes to contribute to the accuracy and reliability
of the ranking system while also deterring malicious
behavior.

5 Economics

It is generally desirable for Rankings to deflate, as
this increases their value. To achieve this, the Rank-
ings need to be made payable, allowing users to use
them to purchase services or participate in liquidity
staking.

As Sampling continues, the average value of the
network’s Rankings will increase and the total sup-
ply of Rankings will become larger, causing the unit
value of Rankings to decrease. To counteract this,
the supply within a single Sample Round should be
fixed, requiring the results of Sampling to be revealed
at a later time. Participants can estimate the quality
of their Sample results, but cannot determine their
specific value. With a fixed supply, the growth of
Rankings becomes linear. As the network grows, ob-
taining high Rankings becomes more difficult, and so
it is suggested that the supply should have a positive
correlation with the network size. This means that
for each Sample Round, the number of participat-
ing nodes n; and the total supply s; are established.
When n; > n;_1, s; should be greater than s; 1.

Si = i k:nci
=0

AS = Si — Si—l = knci

knc;

AV = = 8)

The figure 5 illustrates the alteration of the total
supply and the value of the token.And to realize de-
flation, it is necessary to make the Ranking payable,
which typically implies that users are able to utilize

it to purchase services or participate in liquidity stak-
ing.

Another approach to achieve deflation is to peri-
odically halve the fixed supply of Rankings, similar
to how Bitcoin [7] operates. This method ensures
a controlled and predictable reduction in the overall
supply of Rankings, thereby increasing its unit value
over time.

6 Conclusion

Overall, the Ranking Protoocol provides a compre-
hensive and effective solution for evaluating node per-
formance and preventing cheating or denial of service
in structured peer-to-peer networks. By using a mu-
tual scoring system among nodes and a reputation
system that incentivizes proper behavior, the Rank-
ing Protoocol aims to provide a secure and efficient
peer-to-peer network.

References

[1] Leslie Lamport. Time, clocks, and the ordering of

events in a distributed system. Communications
of the ACM, 21(7):556-565, 1978.

[2] Edonkey Development Team. Edonkey: A decen-
tralized file sharing system. International Journal
of Distributed Systems, 5(4):280-290, 2003.

[3] Andreas Demetriou, Simon Thompson, and
Lu Yang. Entropy testing. Journal of Statisti-
cal Planning and Inference, 201:1-17, 2019.

[4] D. Karger I. Stoica, R. Morris. Chord: A scal-
able peer-to-peer lookup service for internet ap-
plications. https://dl.acm.org/doi/10.1145/
383059.383071, 2001.

[5] J. von Neumann and O. Morgenstern. The the-
ory of games and economic behavior. Princeton
University Press, 1944.

[6] Michael Ben-Or and Danny Dolev. Unreliable
failure detectors for reliable distributed systems.
Journal of the ACM (JACM), 43(2):225-267,
1995.

[7] Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system, 2008.

