
Prev
iew

Rings: A peer-to-peer network for sovereign age

Ryan J. Kung
ryankung@ieee.org

Feb, 10, 2023

Abstract

Rings Network is a decentralized peer-to-peer network that has built a more decentralized, anonymous
and privacy-oriented data sovereignty network based on Chord computation. Rings Network is built with
a communication layer based on WebAssembly, which allows it to run directly in the browser and connect
directly between browsers via the webRTC protocol, further solving the problem of the modern Internet
being controlled by centralized entities. Rings Network supports the use of elliptic curves as DIDs for
proofs, and its stability is sufficient to support a large number of nodes and efficient lookups, making the
connection and data exchange between sovereign entities more secure, efficient, and direct. This paper
introduces the four-layer architecture of Rings Network and analyzes Rings Network from various aspects,
including network, traffic, sequancer, security, and shows the unlimited possibilities of Rings Network itself
and as an application platform.

1 Introduction and Motivation

Centralized systems have long posed significant pri-
vacy and security risks to Internet users, as evidenced
by numerous studies [1–4]. The emergence of decen-
tralized technologies has therefore attracted consid-
erable interest as a means of mitigating these risks,
while moving towards a ”sovereign age” characterized
by increased user control and data ownership.

The Rings Network represents a decentralized
peer-to-peer alternative that aims to address these
privacy and security challenges, offering a secure and
private means of conducting online interactions. The
objective of this paper is to introduce the Rings Net-
work and demonstrate its potential for mitigating the
risks posed by centralized systems, thus advancing
the development of a sovereign age.

The technical specifications and architecture of the
Rings Network will be thoroughly analyzed and its
potential impact on personal privacy and the inter-
net will be explored. These findings will contribute
to the ongoing discussions about the future of the in-
ternet and the role of decentralized technologies in
enhancing privacy, security, and control for users.

This paper aims to make a meaningful contribution
to the discourse surrounding decentralized solutions
such as the Rings network and their ability to ad-
vance towards a more secure, private and sovereign
Internet.

1.1 Browser Native

The Rings Network is characterized as a browser na-
tive network, where all nodes have equal status and

1



Prev
iew

can run within a browser with full functionality. This
configuration enables decentralized communication
and data storage, as users can participate in the net-
work without relying on centralized infrastructure.

An important aspect of the Rings Network is its
communication layer, which is based on WebRTC [6]
and WebAssembly [7]. The use of these technologies
supports browser-based peer-to-peer networking, by-
passing the need for traffic to traverse a centralized
infrastructure. This eliminates concerns such as cen-
tralized control over domain and DNS systems and
censorship that exist in traditional web networks.

WebRTC, as a standard for real-time communica-
tion on the internet, offers a smooth user experience
for the Rings Network. Meanwhile, WebAssembly,
a low-level binary format for web-based applications,
provides the necessary performance for the network.
These technologies are widely supported by contem-
porary browsers, making the Rings Network accessi-
ble to a vast user base.

Moreover, the integration of WebRTC and We-
bAssembly allows for the development of decentral-
ized applications on Rings Network. This opens up
an array of possibilities for decentralized services,
including secure file sharing and decentralized ex-
changes. The Rings Network is versatile, providing
a platform for the development of a variety of decen-
tralized applications rather than being limited to a
specific use case.

1.2 Proof Based DID

Decentralized Identifiers (DIDs) are a form of decen-
tralized digital identity that are proof-based and can
be resolved into a DID document. The DID controller
proves its control over the DID document using cryp-
tographic algorithms.

The Rings Network supports DID proofs using any
cryptographic algorithm and enables better interac-
tion between DID subjects through a lookup algo-
rithm. DID subjects can refer to any entity, in-
cluding people, data, services, or abstract entities.
Rings Network allows the network to generate net-

work DIDs using a wide range of elliptic curve al-
gorithms. This flexibility in DID credentials im-
proves compatibility with a variety of blockchain sys-
tems, including Ethereum [9], Bitcoin [10], Aptos,
and Solana [11].

Incorporating DID proofs into the Rings network
facilitates the development of secure and trusted
methods for identifying and authenticating network
participants. This, in turn, promotes the establish-
ment of secure and confidential communications and
data exchange based on trusted relationships between
parties.

1.3 Lookup Protocol and Encryption

The Rings Network leverages the Chord algorithm
[12] for its lookup protocol, which allows for the effi-
cient and scalable mapping of network participants.
The network is organized as a ring topology, where
each node is linked to two other nodes, maximizing
the functionality of the Chord algorithm for quick
and effective participant lookup and location.

In conjunction with the lookup protocol, the Rings
Network employs end-to-end encryption utilizing the
ElGamal encryption scheme, ensuring privacy and
security in the transmission of information between
nodes. This implementation of ElGamal encryp-
tion [13] opens up the possibility for various crypto-
graphic techniques, such as secret sharing [14] mech-
anisms, interactive zero-knowledge proofs [15], and
the author-merlin protocol [16], among others.

These lookup protocol and encryption capabilities
provide a secure and efficient method of communica-
tion and data sharing in the Rings Network, surpass-
ing the privacy and security offerings of traditional
centralized networks.

1.4 Data and Service Provision

The Rings Network is particularly advantageous
for data and service provisioning because of its
anonymity and security properties. To enable the

2



Prev
iew

secure storage and exchange of sensitive information,
the network uses a scheme of virtual Decentralized
Identifiers (DIDs) to represent data and services. Vir-
tual DIDs can also be referred to as resource IDs, but
unlike resource IDs, they can refer not only to data,
but also to a service, an email address, or a decen-
tralized Web site. These virtual DIDs are derived
by a specific algorithm, such as a cryptographic hash
function, and are denoted as f(x) → DID, where
f(x) represents the algorithmic transformation.

The virtual DIDs are indexed and retrieved on the
network using the same lookup protocol, using the
Chord algorithm, as non-virtual DIDs. Unlike non-
virtual DIDs, virtual DIDs do not have their own
Decentralized Identifier proofs, but they do provide
a secure and anonymous mechanism for storing and
accessing data and services within the Rings net-
work. This expands the possibilities for decentralized
data storage and service delivery, including secure file
sharing and decentralized data marketplaces.

2 Related Work

In the field of decentralized networks, Rings Network
is not the sole option available. There are several
other decentralized networks, such as Tor, GnuNet,
Nym, and IPFS, that aim to provide users with pri-
vacy, security, and censorship resistance. In this
section, we will undertake a comparative analysis of
Rings Network with other peer-to-peer (P2P) net-
works.

In P2P networks, Distributed Hash Tables (DHTs
[?]) are commonly utilized. Many prominent decen-
tralized networks, such as Edonkey [17], Ethereum
[9], IPFS [18], and Libp2p [19], have adopted the
Kademlia [20] algorithm as their DHT solution. Nev-
ertheless, Rings Network employs the Chord proto-
col for P2P communication, offering an easier im-
plementation for broadcasting and gossip messages
in comparison to the Kademlia algorithm utilized by
IPFS and Ethereum. This discrepancy in protocols
accounts for the limitations in performance of IPFS
and Ethereum in transmitting broadcast and gossip

messages. To address this challenge, Ethereum has
incorporated the ENR protocol, which stores node
IP addresses within the DHT. While this enhance-
ment improves the network’s ability to transmit gos-
sip messages, it also creates a direct threat to node
privacy and security.

On the other hand, Rings Network belongs to the
category of structured P2P networks, while Nym,
Bitcoin, and BitTorrent networks are considered un-
structured P2P networks. Structured P2P networks,
such as Rings Network, have a well-defined topol-
ogy and routing mechanism, while unstructured P2P
networks rely on nodes to discover and connect with
each other in a random manner. This structured
architecture grants Rings Network a higher degree
of scalability, efficiency, and robustness compared to
unstructured P2P networks.

In terms of P2P communication protocols, the
Chord protocol is employed by Rings Network,
whereas IPFS and Ethereum utilize the Kademlia al-
gorithm. The Chord protocol is significantly easier to
implement for broadcasting and gossip messages than
the Kademlia algorithm, which explains the limita-
tions in performance for IPFS and Ethereum in these
areas. To counteract this limitation, Ethereum has
adopted the ENR [21] protocol, though this solution
creates a tradeoff between improved gossip capabili-
ties and compromised node privacy and security.

In contrast, Tor network and Nym network are
not structured P2P networks but rather relay net-
works that are decentralized but not P2P. This re-
sults in various security issues, such as spy attacks
and man-in-the-middle attacks, which are circum-
vented by Rings Network through its structured P2P
architecture.

Finally, it is worth noting that Rings Network is
a browser-native P2P network, a unique feature that
sets it apart from other existing network implementa-
tions. Rings Network can be executed on browsers,
mobile devices, or PCs, thus making it a true P2P
network that provides every individual with complete
control over their data sovereignty.

3



Prev
iew

3 The Rings Network Architec-
ture

The Rings Network architecture is modeled after the
well-established seven-layer structure of the TCP/IP
reference model [22]. However, to accommodate its
unique features and design goals, the Rings Network
architecture is streamlined into five distinct layers.

• Runtime Layer: This layer constitutes the under-
lying technical infrastructure of the Rings Net-
work, utilizing the WebAssembly (wasm) tech-
nology and wasm-bindgen to establish the frame-
work.

• Transport Layer: The transport layer imple-
ments secure, real-time communication between
network nodes through the implementation of
the WebRTC protocol.

• Network Layer: The network layer employs the
Chord algorithm to enable the distributed hash
table (DHT) and decentralized identifier (DID)
resolution functionalities.

• Protocol Layer: This layer outlines the utiliza-
tion of elliptic curve cryptography to generate
DIDs, DID sessions, and virtual DIDs for secure
data storage and the creation of sub-rings.

• Application Layer: This layer caters to the needs
of network developers, featuring two demonstra-
tion applications: Chatter and dWeb.

Runtime Layer

Transport Layer

Network Layer

Protocol Layer

Application Layer

Figure 1: Layers of Rings Network

3.1 Runtime Layer

The design goal of Rings Network is to enable nodes
to run in any environment, including browsers, mo-
bile devices, Linux, Mac, Windows, etc. To achieve
this, we have adopted a cross platform compile ap-
proach to build the code. For non-browser environ-
ments, we use pure Rust implementation that is in-
dependent of any system APIs, making our native
implementation system agnostic. For browser envi-
ronments, we compile the pure Rust implementation
to WebAssembly (Wasm) and use web-sys, js-sys, and
wasm-bindgen to glue it together, making our nodes
fully functional in the browser.

WebAssembly, or Wasm, is a low-level binary for-
mat for executing code in web browsers. It provides a
way for developers to write high-performance code in
languages such as C, C++, and Rust, and then run
that code in a browser with native performance. We-
bAssembly is designed to be fast and efficient, with a
compact binary format that is easy to parse and exe-
cute. It uses a low-level instruction set, which makes
it well-suited for demanding tasks such as cryptogra-
phy, compression, and image processing.

Browser Wasm Module Js Runtime

Download Module

Decode Binary

Compile

Execute

Call

Figure 2: How wasm module works

The Rings Network provides multiple options for
interacting with WebAssembly (Wasm) modules, al-
lowing developers to choose the method that best fits
their needs.

4



Prev
iew

1.Building Rings Network applications and
extensions using wasm-based frameworks: This
option provides the power and efficiency of developing
applications with WebAssembly (Wasm). Developers
can leverage the performance and security benefits
of Wasm to build scalable and secure applications
that run natively in the browser. 1. Building Rings
Network applications and extensions using WASM-
based frameworks such as Yew.

2.Loading WASM modules through the ex-
ported JavaScript module: This option is ideal
for developers who prefer to work in JavaScript and
want to take advantage of the benefits that WASM
modules can offer. The Rings Network provides a
JavaScript module that can be imported and utilized
in other projects, allowing developers to easily load
and utilize WASM modules within their own appli-
cations.

3.Interacting with WASM modules through
the Rings Network browser plugin: The Rings
Network browser plugin provides a convenient and
accessible way for developers to interact with WASM
modules. The plugin mounts the Rings Network
provider to the ”window.rings” object, allowing de-
velopers to interact with the Rings Network provider
directly within their browser. This option provides a
streamlined development experience, eliminating the
need to navigate through multiple layers of code or
configurations.

3.2 Transport layer

The implementation of WebRTC and WebAssembly
in Rings Network provides several advantages for
users. Firstly, the browser-based approach means
that users do not need to install any additional soft-
ware or plugins to participate in the network. Sec-
ondly, the use of WebRTC and WebAssembly enables
the network to have a low latency and high through-
put, making it suitable for real-time communication
and data transfer.

WebRTC, or Web Real-Time Communication, pro-
vides browsers and mobile apps with real-time com-

munication capabilities through simple APIs. With
WebRTC, users can easily send audio, video, and
data streams directly between browsers, without the
need for any plug-ins or extra software. At the same
time, the Rings Network has some special optimiza-
tions for the WebRTC handshakes process. Assuming
Node A and Node B want to create a WebRTC con-
nection, they would need to exchange a minimum of
three messages with each other:

• Node A gathers a list of ICE candidates and gen-
erates an SDP offer. The SDP offer includes in-
formation about the media streams and network
addresses that Node A is willing to receive or
transmit.

• Node A sends the SDP offer to Node B.
• Node B receives the SDP offer and starts gath-

ering its own list of ICE candidates.
• Node B generates an SDP answer in response

to the SDP offer received from Node A. The
SDP answer includes information about the me-
dia streams and network addresses that Node B
is willing to receive or transmit.

• Node B sends the SDP answer and its list of ICE
candidates back to Node A.

• Node A receives the SDP answer and the list of
ICE candidates from Node B.

• Node A and Node B use the ICE candidates and
SDP information to establish a connection and
establish a peer-to-peer communication channel.

By optimizing the WebRTC handshakes process,
the Rings Network reduces the latency and overhead
associated with establishing WebRTC connections.
This results in a more efficient and reliable commu-
nication experience for users.

• Gather ICE candidates and create an SDP offer,
which is sent to the other party.

• The recipient accepts the offer and generates an
SDP answer, which is sent back along with its
own list of ICE candidates.

• At this point, the connection is established and
the peer-to-peer communication channel is ready
for use.

5



Prev
iew

Node 1 Node 2

Offer

Answer

Accept Offer

Send ICE Candidate

Send ICE Candidate

Figure 3: Exchange SDP

At its core, WebRTC is based on the exchange of Ses-
sion Description Protocol (SDP) between browsers.
The SDP is used to negotiate the communication set-
tings and exchange cryptographic keys, allowing for
secure communication between browsers. The pro-
cess of exchanging SDP and establishing a secure con-
nection is known as the WebRTC handshake.

In Rings Network, the WebRTC handshake is op-
timized by generating both the ICE Candidates and
Offer simultaneously and exchanging them in a single
Request-Response transaction. This significantly im-
proves the efficiency of the handshake between nodes.

Once the WebRTC handshake is complete,
browsers can send and receive data streams directly,
with low latency and high bandwidth. This makes
WebRTC ideal for real-time communication applica-
tions, such as video conferencing, online gaming, and
live streaming.

Node 1 Node 2

Offer And ICE

Answer and ICE

Figure 4: Exchange SDP

3.3 Network Layer

The Rings Network is a structured peer-to-peer
network that incorporates a distributed hash table
(DHT) to facilitate efficient and scalable lookups.
The Chord algorithm is utilized to implement the
lookup function within the DHT, thereby enabling ef-
fective routing of messages and storage of key-value
pairs in a peer-to-peer setting. The use of a DHT,
incorporating the Chord algorithm, guarantees high
availability in the Rings Network, which is critical
for handling the substantial number of nodes and
requests typically present in large-scale peer-to-peer
networks.

Each node in the Rings Network is assigned a range
of keys and maintains a finger table containing infor-
mation about other nodes in the network. This allows
for quick determination of the node responsible for a
given key and facilitates the forwarding of queries to
the appropriate node. The nodes and keys within the
network are arranged in an identifier ring, which has
at most 2m nodes, ranging from 0 to 2m−1. The iden-
tifier ring provides a convenient method for mapping
keys to nodes, and each node in the identifier ring
has a successor and a predecessor. The successor of a
node is the next node in the identifier ring in a clock-
wise direction, while the predecessor is the previous
node in a counter-clockwise direction.

To maintain the robustness of the network in
the event of node failures or departures, each node
records a segment of the ring adjacent to it, includ-
ing the preceding and following nodes. This results
in a high probability that a node will be able to ac-
curately locate its successor or predecessor, even in
networks that experience a high failure rate. The in-
formation regarding the closest successor or predeces-
sor of a node is stored in the finger table maintained
by each node.

The Rings Network implements a more efficient
search method to reduce query times and improve
lookup efficiency. When a node seeks to look up
a key, it forwards the query to the closest succes-
sor or predecessor of the key, as determined by the
information stored in its finger table, until the key

6



Prev
iew

is found. This approach, similar to the approach
employed by The algorithm, reduces the number of
nodes that must be traversed to locate the responsi-
ble node, providing a scalable and efficient solution
for data storage and retrieval within a peer-to-peer
network.

In this way, the Chord algorithm provides a scal-
able and efficient way to store and retrieve data in
a peer-to-peer network. The use of the hash func-
tion and finger table allow for efficient routing of
queries and updates, while the decentralized nature
of the network ensures high availability and robust-
ness against node failures.

0 1

2

3

4

5

6

789

10

11

12

13

14

15

Figure 5: Chord algorithm, lookup protocol

In the DHT, as illustrated in Figure 3.3, all nodes
have the capability to perceive their own predecessor
and successor through the implementation of the join
algorithm and stabilizationization algorithm. The
predecessor of a node is determined as the node with
the largest identifier that precedes the identifier of
the current node in the identifier space. Conversely,
the successor of a node is defined as the node with
the smallest identifier that follows the identifier of
the current node in the identifier space. These two
nodes, the predecessor and the successor, are consid-
ered the immediate neighbor nodes of a particular

node within the network.

3.4 Protocol Layer

In the protocol layer, the central design concept re-
volves around the utilization of a Decentralized Iden-
tifier (DID), which constitutes a finite ring in abstract
algebra. The DID is a 2160-bit identifier that enables
the construction of a mathematical structure that en-
compasses the characteristics of both a group and a
field. It is comprised of a set of elements with two bi-
nary operations, addition and multiplication, which
satisfy a set of axioms such as associativity, commu-
tativity, and distributivity. The ring is deemed finite
due to its having a finite number of elements. Fi-
nite rings are widely employed in various domains of
mathematics and computer science, including cryp-
tography and coding theory.

The properties of a finite ring in abstract algebra
allow for the execution of addition and multiplication
operations on the DID and for the comparison of their
sizes. In certain cases, it can even be treated as a
finite field, which expands the scope of cryptographic
algorithms that can be utilized, such as the Secret
Sharing Scheme (SSSS). The DID can be represented
as (R,+, ·, 0, 1, N), where 0 represents the additive
identity, 1 represents the multiplicative identity, and
”N” indicates that the ring has 2160 finite elements.

However, elements in an abstract algebraic struc-
ture of a finite ring cannot be directly subjected to
greater than or less than operations. The BiasDID
algorithm has been developed to address this limita-
tion. The algorithm utilizes a fixed point to bias the
DIDs within the ring, thereby ordering the elements
in algebraic structures where direct greater than or
less than operations are not feasible, but ordering is
possible. In this manner, an element may always be
to the right or left of another element, but it is closer
to other elements. For instance, in the case of three
elements, A, B, and C, they are ordered in a ring as
A, B, C, A, B, etc. When treated as integers, A would
always be greater than B and less than B. However,
under the BiasDID algorithm, A is less than B since
it is to the left of B, as determined through the com-

7



Prev
iew

parison of the size of A−C and B−C using the fixed
point C.

Algorithm 1 Bias Order
Input: Elements A and B, and fixed point C. Out-
put: Result of comparison between A and B

1: calculate A− C and B − C
2: if A− C < B − C then
3: return A < B
4: else
5: if A− C > B − C then
6: return B < A
7: else
8: return A = B

The DID, as an element of a finite ring, enables
the computation of Virtual DIDs for data or message
storage purposes. Virtual DID is another design of
the protocol layer, which in principle can convert any
data or service with any properties into a component
of the network. This concept will be further elabo-
rated in the subsequent sections.

The DID architecture also encompasses two crit-
ical modules, the Session and Message Relay. The
former pertains to the generation of the DID and the
utilization of existing elliptic curve algorithms and
signatures of participants to establish and validate
it. The latter describes the handling of messages,
whether they be system messages or messages from
a chat application.

3.5 Application Layer

The nucleus of Rings Network is similar to the Actor
Model [23], and it requires that each message type
possess a Handler Trait. This allows for the sepa-
ration of processing system messages, network mes-
sages, internal messages, and application-layer mes-
sages.

Rings Network provides a comprehensive set of in-
terfaces for application-layer messages, which can be
accessed through Remote Procedure Calls (RPC) or
Foreign Function Interface (FFI). This implies that

application developers have the option to not only
control Rings Network through Rust or WebAssem-
bly (Wasm), but can also access it via RPC us-
ing lighter weight programming languages such as
Python or JavaScript. Furthermore, embedded de-
velopers can integrate Rings Network into microcon-
trollers through the use of FFI.

Additionally, applications can store data in the
Distributed Hash Table (DHT) or register services,
which depends on the credit of the participating
nodes. This will be discussed in a subsequent chapter
on the establishment of node credit.

Actor

Mailbox

Message

Figure 6: Actor Model

Several demonstration applications have been im-
plemented for the Rings Network, including a chat
demo which allows users to communicate in a decen-
tralized manner, and showcases the direct connection
between browsers via handshaking. Another demo,
similar to an onion network hidden service, enables
anonymous access to services. There is also a DID
demo referred to as BNS, which essentially serves as
a pseudonymity service, issuing domain names and
operable in conjunction with any blockchain.

4 Algebraic Network

In the Rings Network, DID is almost compatible with
all elliptic curve algorithms, because we only need to
use elliptic curve algorithms for DID proofs, which
can be implemented through secp256k1, ed25519, or
even RFID proof from hardware devices. We rely on
external proofs to claim DID ownership in the Rings
Network. In some simple cases, we can directly use
the hash of the pubkey, such as secp256k1, which

8



Prev
iew

benefits from its signature recover algorithm. For
ed25519, we use pubkey hash.

4.1 Albegraic DID

In Rings Network, the representation of Decentral-
ized Identifiers (DIDs) is achieved through the uti-
lization of Finite Ring mathematics. The Finite Ring,
not only serves as a ring-shaped topology in the net-
work, but also as an abstract mathematical structure.
The number of elements in this ring is represented
by 2160, which is an astronomically large number, far
surpassing the estimated number of ladders in the
known universe. This results in the ring being sparse
and discontinuous, and there is no direct relationship
between DIDn and DIDn+1. However, this mathe-
matical structure allows us to place any data on the
ring through the generation of appropriate Virtual
DID (VID) values.

The calculation of DIDs within the Rings Network
is performed in the context of the Finite Ring, includ-
ing operations such as size comparisons and arith-
metic operations like addition and subtraction. Ad-
ditionally, the generation of VIDs for Channels or
Data is also carried out using Finite Ring calcula-
tions. For example, the VID for a fixed participant
group is calculated as the sum of the individual DIDs,
while the VID for an unread Offline message is calcu-
lated as the recipient DID plus the message sequence
number, both of which are elements in the finite ring.
The DHT structure in Rings Network implements al-
gorithms such as Join, Lookup, and stabilization, all
of which are calculated within the confines of the fi-
nite ring.

4.2 Network DID

In a network topology, all the nodes form a ring struc-
ture and based on the Chord algorithm, we have im-
plemented algorithms including join, lookup, and sta-
bilization for the ring network.

When a participant joins the network, the node be-
ing joined will apply the Join algorithm, which will

Algorithm 2 DHT Join Algorithm
1: function Join(n, nodeid)
2: successor ← findsuccessor(nodeid)
3: predecessor ← successor.predecessor
4: n.predecessor ← predecessor
5: n.successor ← successor
6: predecessor.successor ← n
7: successor.predecessor ← n

query a hashmap stored on each node, known as the
Finger Table, and then determine whether it should
be added to its own Finger Table. If not, the ap-
propriate node is notified to construct a connection
using the lookup algorithm.

The join algorithm ensures that all nodes in the
network are aware of the new node’s presence and are
able to find it when necessary, allowing the network
to remain scalable and consistent.

Algorithm 3 DHT Lookup Algorithm
1: function Lookup(key, node)
2: finger ← node.successor
3: while finger.id /∈ (node.id, key) do
4: node← node.closestPrecedingNode(key)
5: finger ← node.successor

6: return finger

The lookup algorithm from Chord is used to lo-
cate a specific node or data in a Chord-based dis-
tributed hash table network. The algorithm starts
with the node making the lookup request, and it then
follows the ”fingers” in its Finger Table to determine
which node is responsible for the data or node being
searched for. If the responsible node is not the node
making the lookup request, it forwards the request
to the next node in its Finger Table until the respon-
sible node is found. The algorithm is designed to
be efficient and scalable, as it only requires O(logN)
hops to locate a node or data, where N is the number
of nodes in the network. Additionally, the algorithm
balances the load among the nodes in the network,
ensuring that no single node becomes a bottleneck.

The stabilization algorithm is a process that runs

9



Prev
iew

0 1

2

3

4

5

6

789

10

11

12

13

14

15 0 1

2

3

4

5

6

789

10

11

12

13

14

15

Figure 7: Chord algorithm, lookup protocol

Algorithm 4 DHT Stabilization
1: procedure Stabilize
2: n.predecessor ← n.successor.predecessor
3: if hash(n.predecessor) ∈

(hash(n), hash(n.successor)] then
4: n.predecessor ← n.successor.predecessor
5: n.successor.notify(n)

periodically in a Chord network to ensure the consis-
tency of the finger tables and the correct assignment
of keys to nodes. The stabilization algorithm checks
if a node’s immediate successor is still its successor,
and if not, it updates its successor to the node’s cur-
rent successor’s successor. Additionally, the stabilize
algorithm notifies the successor node that it is a po-
tential predecessor. The aim of this process is to
maintain the accuracy of the finger table and ensure
that all nodes in the network have up-to-date infor-
mation on the node responsible for a given key value.
This helps to prevent key value assignment errors and
reduces the number of lookups required to find the
node responsible for a key, improving the efficiency
of the network.

4.3 Virtual DID

In Rings Network, Virtual DID (VID) serves as a
digital identifier that resembles a DID in format, but
lacks the presence of DID Proofs within the limited
scope of the network. Unlike physical computing
nodes, VID manipulates the fingertable through al-
gorithms such as lookup, stabilize, and application
joining.

Various features within Rings Network, such as
data storage, mailbox, sub-public channel, sub-ring,
and hidden services, are all implemented through the
use of VID. Data is mapped to a function H on
the algebraic ring and stored within a distributed
hash table (DHT), with different types of data as-
signed different Operators, including Overwrite, Ex-
tend, Touch, and JoinSubRing.

Data storage is the foundation for advanced data
storage operations, and the Rings Network offers
both Native and WASM implementations based on
sled and indexDB, respectively. The storage capac-
ity is up to 1G of local data. When a node is ready to
store data, it generates a VID using the Hashing func-
tion H(D), and sends the data to its successor. The
network will then locate the closest node or nodes to
the data’s VID using the lookup algorithm, depend-
ing on the number of replicas set.

In cases where the data is too large, it will be
divided into chunks and assigned individual VIDs,
which are stored independently on the network. The
data’s VID serves as a reference to these chunk VIDs.
The lookup algorithm can be utilized to query and ex-
tend VIDs, as demonstrated by the implementation
of the MailBox feature.

The MailBox provides a more anonymous com-
munication channel, implemented for each DID by
generating a VID using the rule H(”mailto”)+DID.
The DID can retrieve messages from the MailBox
through DID Proofs even when offline, eliminating
the need for direct interaction with other nodes. Mes-
sages sent to the MailBox are encrypted using the
public key associated with the DID through the El-
gaml algorithm, ensuring that only the holder of the

10



Prev
iew

DID Proofs can access the message’s content.

Sub Ring is a special kind of Data that is a min-
imized implementation of FingerTable but supports
all algorithms that can be applied to Finger, includ-
ing the join operator and lookup derivation. Sub Ring
generates its VID through its name, with a very sim-
ple algorithm H(name). Sub Ring has its own Mail-
Box on DHT to receive messages from Main Ring,
and any member can choose to join Sub Ring, which
will update the fingertable stored on Sub Ring using
the join algorithm, while Sub Ring members will also
keep their own copy of the finger table. It is impor-
tant to note that the Finger table data stored on DHT
and the Finger table data of Sub Ring participants
are different, as their join algorithm and lookup algo-
rithm have different fixed points on the finite Ring.
For all DIDs, its fixed point is the DID itself.

5 Traffic

In Rings Network, the abstraction of traffic is divided
into two approaches: Hop-by-Hop and End-to-End.
Hop-by-Hop refers to a communication architecture
where data is transmitted from one device to another
through multiple intermediate systems in between.
On the other hand, End-to-End (E2E) refers to a
communication architecture where data is transmit-
ted directly from the sender’s device to the recipient’s
device without passing through any intermediate sys-
tems.

5.1 Hop by Hop

In Rings Network, a structured peer-to-peer network,
we generate DID and DID proofs using widely used
signature algorithms such as ECDSA or Ed25519.
Then, we generate sessions for permission control
based on the DID proofs. Our sessions are gener-
ated based on ECDSA, and can be seen as delegated
private keys of the DID proofs’ private keys. This is
done to minimize the exposure of the original private
keys and improve network security.

In order to better ensure message delivery and im-
prove network stability, Rings Network implements
its own MSRP based on the IETF draft. It is based
on the Session system described above and the mes-
sage types include Send and Report. It also caches
the DID Path of the messages, which does not expose
privacy and greatly enhances network robustness.

5.2 End to End

Rings Network places significant emphasis on End-
to-End Encryption as a means to ensure privacy and
security. Two main end-to-end encryption algorithms
are used: RSA and Elgamal. RSA is typically used
for lighter encryption needs while Elgamal is utilized
for homomorphic encryption and other specialized
scenarios.

Given an Elliptic curve cyclic group G, of order
with generator . For private key x, x ∈ Zq, the public
key is gx. The curve can be secp256k1, ed25519, or
other effeicent curves. We describe ElGamal encrypt
and decrypt algorithm as below:

Algorithm 5 ElGamal Encryption Algorithm
1: Input: Message m, private key x ∈ Zq, public

key h = gx, generator g
2: Output: Encrypted message (c1, c2)
3: procedure Encryption
4: Choose a random integer k ∈ Zq

5: Compute c1 = gk

6: Compute c2 = m · hk

7: return (c1, c2)

8: procedure Decryption
9: Compute m = c2 · (c1)−x

10: return m

Algorithm 6 ElGamal Decryption Algorithm
1: Input: Encrypted message (c1, c2), private key

x ∈ Zq

2: Output: Decrypted message m
3: procedure Decryption
4: Compute m = c2 · (c1)−x

5: return m

11



Prev
iew

The advantage of the ElGamal algorithm is that it
is a homomorphic encryption algorithm. This means
that it allows mathematical operations to be per-
formed on the ciphertext, and the result of the oper-
ations will be equivalent to the operations performed
on the plaintext. This property makes ElGamal use-
ful in various cryptographic applications, such as se-
cure multi-party computation, where multiple parties
can perform computations on encrypted data without
exposing the plaintext.

The ElGamal encryption algorithm can be used to
implement a secret sharing scheme (SSSS), where a
secret is divided into multiple shares that are dis-
tributed among multiple participants. The secret
can only be reconstructed if a sufficient number of
shares are combined. In this scheme, the secret is
encrypted under the public key of each participant
using ElGamal encryption, and the resulting cipher-
texts are used as shares. Decryption requires a suffi-
cient number of participants to combine their shares
and perform the decryption process using their pri-
vate keys. Because ElGamal is a public-key encryp-
tion algorithm, this approach ensures that each par-
ticipant’s share remains confidential, as it can only
be decrypted by the corresponding private key. This
makes ElGamal a useful tool for implementing secure
secret sharing schemes.

Algorithm 7 serves as an exemplification of the
utilization of the ElGamal algorithm to realize Se-
cret Sharing Schemes (SSSS). Given the fact that the
Decentralized IDs (DIDs) on the Chord Distributed
Hash Table (DHT) form a finite ring, it is feasible to
directly implement SSSS by leveraging this character-
istic. By executing the SSSS protocol over the Chord
DHT, the confidentiality and security of the secret
is ensured through its decentralized distribution and
storage. Each node within the DHT only assumes re-
sponsibility for retaining its respective share, which
remains encrypted and can only be accessed through
the usage of its corresponding private key. This at-
tributes the Chord DHT with a superior suitability
as a platform for implementing secure SSSS. The al-
gorithm for implementing a Secret Sharing Scheme
(SSSS) over a finite ring can be represented as lgo-
rithm 8

Algorithm 7 ElGamal Secret Sharing Scheme
1: Input: Secret s, public key h = gx, generator g,

number of shares n, minimum number of shares
required to reconstruct the secret k

2: Output: n shares
(c1,1, c1,2), (c2,1, c2,2), . . . , (cn,1, cn,2)

3: procedure Encrypt
4: for i = 1 to n do
5: Choose a random integer ri ∈ Zq
6: Compute ci, 1 = gri

7: Compute ci,2 = s · hri

8: return (c1,1, c1,2), (c2,1, c2,2), . . . , (cn,1, cn,2)

9: procedure Decrypt
10: Choose k shares

(ci1,1, ci1,2), (ci2,1, ci2,2), . . . , (cik,1, cik,2)

11: Compute s =
k∏

j=1

cij ,2 ·

(
k∏

j=1

cij ,1

)−x

12: return s

Algorithm 8 SSSS over a finite ring
1: procedure SSSS(s, p, g, t, n)
2: Choose a prime number p and a primitive el-

ement g in the ring Zp

3: Define a polynomial f(x) = s+ a1x+ a2x
2 +

· · ·+ at−1x
t−1 of degree t− 1

4: for i = 1, 2, . . . , n do
5: Compute si = f(gi) = s+a1g

i+a2(g
i)2+

· · ·+ at−1(g
i)t−1

6: return (s1, s2, . . . , sn)

5.3 Chunking

When the size of the message to be transferred ex-
ceeds the maximum transmission unit (MTU) of the
transport layer, chunking is employed to divide the
data into smaller parts, and each part is transmit-
ted in a smaller packet. This reduces the strain on
the network and increases the probability of success-
ful data transfer. There are two implementations of
chunking, end-to-end and hop-by-hop. End-to-end
chunking involves directly sending chunks through
one or multiple successors for each request, and the
receiver takes responsibility for reassembling and or-

12



Prev
iew

dering the chunks as well as requesting retransmission
when needed. Hop-by-hop chunking, on the other
hand, takes place at the transport layer and offers a
more robust way to transmit data, but its efficiency
may be lower due to the varying MTU of nodes. How-
ever, this implementation is usually more reliable.

Algorithm 9 End-to-End Chunking Algorithm
1: procedure E2E Chunking
2: Input: data, chunk size
3: Output: chunks
4: chunks ← []
5: total-chunks ← ceil(len(data)/chunk-size)
6: for i in range(total-chunks) do
7: chunk← data[i*chunk-size : (i+1)*chunk-

size]
8: append chunk to chunks
9: return chunks

Algorithm 9 shows how a common chunking algo-
rithm works. In this algorithm, the input data is
divided into a number of chunks equal to the ceiling
of the length of the data divided by the chunk size.
For each iteration of the loop, a chunk of the specified
size is extracted from the data and added to the list
of chunks. The list of chunks is then returned as the
output of the algorithm.

6 The sequancer

An sequancer in a distributed system is a compo-
nent responsible for determining the order in which
messages are delivered or transactions are executed.
In other words, the sequancer ensures that events in
the system occur in a predictable and consistent or-
der, even when they originate from different sources.
This is important for maintaining the integrity and
consistency of the system and avoiding conflicts or
inconsistencies.

Lamport described the order of messages as a re-
sult of time-stamping each message that is sent be-
tween nodes in a distributed system. This involves
assigning a unique logical timestamp to each mes-

sage, which represents the logical order in which the
messages were generated. The timestamps are used
to determine the order in which the messages should
be processed, so that the recipient node can ensure
that messages are processed in a consistent and re-
liable manner, regardless of the order in which they
were actually received.

6.1 Sidecar Sequancer

Lamport timestamps, as outlined in Algorithm 10,
can facilitate simple message ordering in distributed
systems. However, it is not secure and can be prone
to attacks. Hence, the Sidecar Sequancer mechanism
is introduced as a more secure alternative.

Algorithm 10 Lamport timestamp
1: Initialize local time localT ime← 0
2: On sending message m:
3: localT ime← localT ime+ 1
4: Set timestamp(m) = localT ime
5: On receiving message m:
6: localT ime← max(localT ime, timestamp(m))+

1

In a distributed system, the Sidecar Sequancer op-
erates as an external entity, not integrated into the
system itself. Instead of relying on an internal formal
algorithm for ordering, the system utilizes an exter-
nal witness to establish message ordering. In the con-
text of Rings Network, message ordering is achieved
through the utilization of a Sidecar Sequancer. This
can be a blockchain technology such as Ethereum,
Bitcoin, or any other. Messages requiring a deter-
mined order must prove, through the time-stamping
capabilities of the blockchain, that their transmis-
sion time was not earlier than a specified timestamp.
As a validator, Rings Network supports the order-
ing of messages from different sources. For instance,
Message A employs the hash σ of a Bitcoin block to
demonstrate that its time is not later than ta, while
Message B utilizes the hash β of a Solana block to
prove that its time is not later than tb. Given that
ta < tb, Message A precedes Message B.

13



Prev
iew

However, the Sidecar Sequancer is limited in its
capabilities as it can only provide proof of the lat-
est possible time for a message. For instance, when
Message A asserts time t0, it can only demonstrate
that its transmission time is not before t0, thus con-
stituting a proof of the latest time. Additionally, the
varying granularity of proofs from different witnesses
often results in a partial order of messages, which
may temporarily result in parallel timelines.

6.2 Byzantine fault tolerance

Although Rings Network supports Sidecar Se-
quancer, it does not aim to achieve Byzantine Fault
Tolerance (BFT). This is because the implementation
of the Rings Network Sequancer relies on an external
BFT, which means that it can run smoothly without
the need for implementing its own consensus system.
The use of an external BFT allows Rings Network to
focus on other aspects of its design, without the need
for in-depth expertise in consensus algorithms. This
also means that Rings Network can take advantage of
the security and robustness of existing BFT systems,
which have been widely tested and proven in various
applications. As a result, Rings Network can provide
a secure and efficient solution for message ordering in
distributed systems without having to deal with the
complex problems of consensus algorithms.

6.3 Ranking Protocol

The proposed ranking protocol aims to provide a
fair and accurate evaluation of nodes within a dis-
tributed network. The system operates by having
nodes rank each other based on a set of predefined
criteria, such as availability, response time, and data
transfer speed.

To ensure that the rankings are representative of
the network, a random sampling approach is em-
ployed. By using a random number generator or ran-
dom oracle, the sampling of nodes is performed in
a truly random fashion. The collected rankings are
then subjected to a median calculation to mitigate

Algorithm 11 Ranking Protocol Algorithm
1: procedure Rank(N , nodes)
2: rankings ← ∅
3: for i← 1 to N do
4: randomly sample a node j from nodes
5: nodeRankings ← getRankings(j)
6: rankings.add(nodeRankings)
7: for node ∈ nodes do
8: medianScore ←

calculateMedianScore(rankings, node)
9: node.setScore(medianScore)

10: procedure GetRankings(node)
11: rankings ← ∅
12: for otherNode ∈ nodes do
13: rank ← node.rank(otherNode)
14: rankings.add(rank)
15: return rankings

16: procedure CalculateMedi-
anScore(rankings, node)

17: medianScore ← median of all rankings for
node

18: return medianScore

the impact of outliers. To further enhance the accu-
racy of the rankings, the collected rankings can be
weighted based on the rank token of the node that
provided the ranking.

To prevent malicious nodes from providing false
rankings, the ranking protocol implements a proof-of-
ranking mechanism. This requires nodes to provide
proof of their rankings, such as by signing the random
seed used in the sampling and the rankings of other
nodes. Additionally, a punishment mechanism is im-
plemented to penalize nodes that misbehave, such as
by reducing their ranking score or rewarding other
nodes for reporting the misbehavior.

In order to prevent Sybil attacks, the ranking pro-
tocol considers a freeze period. After a node claims
its ranking score, its tokens are frozen for a certain
period to prevent it from claiming multiple rankings.
This protects the integrity of the ranking system and
ensures that it accurately reflects the behavior of
nodes within the network.

14



Prev
iew

The ranking score of a node i is represented by
ri. The rankings of a node i for other nodes in the
network are represented by Ri,j , where j is the index
of another node in the network. The median score of
a node i is represented by mi, which is calculated as:

mi = median(Ri,j) (1)

The weight of a ranking provided by a node i is
represented by wi, which is based on the rank token
of node i. The weighted median score of a node i is
represented by wmi„ which is calculated as:

wmi = median(wi ·Ri,j) (2)

7 Performance

We will discuss the performance of Rings Network
from two aspects: Latency, Reliability.

7.1 Latency

For Rings Network, latency mainly comes from the
lookup/routing process of the Chord algorithm. Dur-
ing this process, some redirects may occur due to the
influence of network instability. In the simulator of
the Chord algorithm, we can find that when the fail-
ure rate of the network is 50%, the average number
of hops in the lookup will reach about 5 on average.
We consider this level of latency to be acceptable.

Fraction of
failed nodes

Mean
routing hops

Mean num. of
lookup timeouts

0 3.84 0.0
0.1 4.03 0.60
0.2 4.22 1.17

Table 1: Latency on failed node rate of Chord [12]

According to the simulation results, when the num-
ber of nodes increases from 10 to 100K, the path

length only increases by about 3 times. The left side
of Figure 7.1 shows this scenario, and the right side
is the PDF (probability density function) of the path
length.

7.2 Reliablility

Rings Network allows full node functionality in
browsers, enabling nodes to easily connect with each
other. However, this also increases their join/leave
rate. Hence, the network’s performance with frequent
node join/leave events is crucial for evaluation.

join/leave rate
(per sec./stab.

period)

Mean
routing
hops

Mean
num. of
lookup
timeouts

Lookup
failures
per 10k

0.05/1.5 3.90 0.5 0
0.10/2 3.83 0.11 0
0.15/4.5 3.84 0.16 2
0.20/6 3.81 0.23 5
0.25/7.5 3.83 0.30 6
0.30/9 3.91 0.34 8
0.35/10.5 3.94 0.42 16
0.40/12 4.06 0.46 15

Table 2: Failure rate of Chord [12]

Figure 7.2 shows that in simulation, as the net-
work’s join/leave rate increases from 5% to 40%, the
availability of the network reaches 99.85% even un-
der the worst conditions (join/leave rate of 40% per
second).

8 Security

As a decentralized platform, Rings Network is suscep-
tible to various security risks and malicious attacks.
Therefore, it is crucial to implement robust security
measures to ensure the integrity and confidentiality
of the network.

• Sybil Attack: A Sybil attack represents a mali-
cious attempt to undermine the trust and con-
trol of a network by creating multiple fake iden-

15



Prev
iewFigure 8: Chord lookup path [12]

tities. To counter this threat, Rings Network im-
plements the Ranking protocol, which enhances
network security through local and global rank-
ing mechanisms. New nodes, which possess a low
ranking rate, find it challenging to swiftly earn
the credibility of neighboring nodes, thereby de-
terring Sybil attacks.

• Replay Attack: A replay attack constitutes a
malicious attempt to disrupt a network by in-
tercepting and retransmitting a legitimate net-
work transmission. To counteract such threats,
Rings Network employs digital signatures and
cryptographic hashes to guarantee the authen-
ticity of messages and prevent their repeat us-
age. Additionally, the Sidecar Sequancer serves
as an indispensable and dependable tool for or-
dering critical non-replayable messages in Rings
Network.

• Man-in-the-Middle Attack: A man-in-the-
middle (MITM) attack represents a malicious
attempt to intercept and potentially modify or
eavesdrop on communication between two par-
ties. To prevent such attacks in Rings Network,
the validation of elliptic curve signatures and the
implementation of end-to-end encryption render
such attacks entirely infeasible.

• Denial of Service Attack A denial-of-service
(DoS) attack is a type of cyberattack where an
attacker sends a large volume of requests to a
network to overwhelm it and disrupt its normal
functioning. In Rings Network, the implemen-
tation of rate limiting mechanisms and ranking
protocol can help to prevent DoS attacks and
ensure the stability of the network.

9 Conclusion

The Rings Network is a decentralized, peer-to-peer
network architecture optimized for the digital era of
sovereignty. It offers a secure and efficient solution
for communication, data storage, and service deliv-
ery, by leveraging cutting-edge technologies such as
WebRTC, WebAssembly, and decentralized identifier
(DID) proofs, along with a lookup protocol and en-
cryption scheme. Additionally, its support for virtual
DIDs makes the Rings Network a paradigm-shifting
solution in the realm of decentralized networks and
applications.

16



Prev
iew

References

[1] J. Kshetri. Data privacy and security risks of
cloud computing for consumers. International
Journal of Information Management, 34(6):607–
615, Dec 2014.

[2] E. Kokkonen and A. Porras. Data privacy
and security in cloud computing: a review of
the state-of-the-art. Computer Science Review,
28:21–38, Oct 2018.

[3] M. R. Grimaila. A comparison of data privacy
regulations: the eu and the us. Journal of In-
ternational Commerce, Economics and Policy,
7(3):1–27, 2016.

[4] Tim Berners-Lee. Internet is dying. [Online;
accessed 5-Feb-2023].

[5] James Dale Davidson and William Rees-Mogg.
The sovereign individual: Mastering the transi-
tion to the information age, 1997.

[6] Internet Engineering Task Force. WebRTC:
Real-Time Communications between Browsers,
2021. Work in Progress.

[7] WebAssembly Community Group. WebAssem-
bly, 2017.

[8] Decentralized identifiers (dids). Accessed: 2023-
02-05.

[9] Gavin Wood. A next-generation smart contract
and decentralized application platform, 2014.

[10] Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system, 2008.

[11] Solana Team. Solana: A high-performance
blockchain for decentralized applications, 2018.

[12] D. Karger M. F. Kaashoek I. Stoica, R. Mor-
ris and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet appli-
cations. https://dl.acm.org/doi/10.1145/
383059.383071, 2001.

[13] T. ElGamal. A public-key cryptosystem and
a signature scheme based on discrete loga-
rithms. https://ieeexplore.org/abstract/
4726576, 1985.

[14] A. Shamir. How to share a secret.
https://link.springer.com/article/10.
1007/BF00185039, 1979.

[15] S. Micali S. Goldwasser and C. Rackoff.
The knowledge complexity of interactive proof
systems. https://dl.acm.org/doi/10.1145/
74242.74243, 1989.

[16] D. Chaum and J. van Antwerpen. The author-
merlin protocol. https://link.springer.com/
article/10.1007/BF02577056, 1990.

[17] Edonkey Development Team. Edonkey: A de-
centralized file sharing system. International
Journal of Distributed Systems, 5(4):280–290,
2003.

[18] Juan Benet. Interplanetary file system: A p2p
file system for the next web. Proceedings of the
24th International Conference on World Wide
Web, pages 1149–1160, 2015.

[19] M. Castro J. R. Etheridge and I. Stoica. Libp2p:
A modular network stack for p2p systems.
USENIX Association Conference on Networked
Systems Design and Implementation, 14:1–15,
2017.

[20] Petar Maymounkov and David Mazières.
Kademlia: A peer-to-peer information system
based on the xor metric. International Work-
shop on Peer-to-Peer Systems, pages 53–65,
2002.

[21] Ethereum node records (enrs). https://eips.
ethereum.org/EIPS/eip-778, 2021. Accessed:
2023-02-05.

[22] W. Richard Stevens and Gary R. Wright.
TCP/IP Illustrated, Volume 1: The Proto-
cols. Addison-Wesley Professional, Reading,
MA, USA, 1994.

17



Prev
iew

[23] Carl Hewitt. A universal modular actor formal-
ism for artificial intelligence. IEEE Transactions
on Systems, Man, and Cybernetics, 3(1):70–80,
1973.

18


