{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Nonlinear Program (NLP) Tutorial\n", "For instructions on how to run these tutorial notebooks, please see the [index](./index.ipynb).\n", "\n", "## Important Note\n", "Please refer to the [MathematicalProgram Tutorial](./mathematical_program.ipynb) for constructing and solving a general optimization program in Drake.\n", "\n", "## Nonlinear Program\n", "A Nonlinear Programming (NLP) problem is a special type of optimization problem. The cost and/or constraints in an NLP are nonlinear functions of decision variables. The mathematical formulation of a general NLP is\n", "\n", "$\\begin{aligned} \\min_x&\\; f(x)\\\\ \\text{subject to }& g_i(x)\\leq 0 \\end{aligned}$\n", "\n", "where $f(x)$ is the cost function, and $g_i(x)$ is the i'th constraint.\n", "\n", "An NLP is typically solved through gradient-based optimization (like gradient descent, SQP, interior point methods, etc). These methods rely on the gradient of the cost/constraints $\\partial f/\\partial x, \\partial g_i/\\partial x$. pydrake can compute the gradient of many functions through automatic differentiation, so very often the user doesn't need to manually provide the gradient.\n", "\n", "## Setting the objective\n", "The user can call `AddCost` function to add a nonlinear cost into the program. Note that the user can call `AddCost` repeatedly, and the program will evaluate the *summation* of each individual cost as the total cost." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Adding a cost through a python function\n", "We can define a cost through a python function, and then add this python function to the objective through `AddCost` function. When adding a cost, we should provide the variable associated with that cost, the syntax is `AddCost(cost_evaluator, vars=associated_variables)`, which means the cost is evaluated on the `associated_variables`.In the code example below, We first demonstrate how to construct an optimization program with 3 decision variables, then we show how to add a cost through a python function." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from pydrake.solvers import MathematicalProgram, Solve\n", "import numpy as np\n", "\n", "# Create an empty MathematicalProgram named prog (with no decision variables,\n", "# constraints or costs)\n", "prog = MathematicalProgram()\n", "# Add three decision variables x[0], x[1], x[2]\n", "x = prog.NewContinuousVariables(3, \"x\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def cost_fun(z):\n", " cos_z = np.cos(z[0] + z[1])\n", " sin_z = np.sin(z[0] + z[1])\n", " return cos_z**2 + cos_z + sin_z\n", "# Add the cost evaluated with x[0] and x[1].\n", "cost1 = prog.AddCost(cost_fun, vars=[x[0], x[1]])\n", "print(cost1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that by changing the argument `vars` in `AddCost` function, we can add the cost to a different set of variables. In the code example below, we use the same python function `cost_fun`, but impose this cost on the variable `x[0], x[2]`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cost2 = prog.AddCost(cost_fun, vars=[x[0], x[2]])\n", "print(cost2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Adding cost through a lambda function\n", "A more compact approach to add a cost is through a lambda function. For example, the code below adds a cost $x[1]^2 + x[0]$ to the optimization program." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Add a cost x[1]**2 + x[0] using a lambda function.\n", "cost3 = prog.AddCost(lambda z: z[0]**2 + z[1], vars = [x[1], x[0]])\n", "print(cost3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we change the associated variables, then it represents a different cost. For example, we can use the same lambda function, but add the cost $x[1]^2 + x[2]$ to the program by changing the argument to `vars`" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cost4 = prog.AddCost(lambda z: z[0]**2 + z[1], vars = x[1:])\n", "print(cost4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Adding quadratic cost\n", "In NLP, adding a quadratic cost $0.5x^TQx+ b'x+c$ is very common. pydrake provides multiple functions to add quadratic cost, including\n", "- `AddQuadraticCost`\n", "- `AddQuadraticErrorCost`\n", "- `Add2NormSquaredCost`\n", "\n", "### AddQuadraticCost\n", "We can add a simple quadratic expression as a cost." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cost4 = prog.AddQuadraticCost(x[0]**2 + 3 * x[1]**2 + 2*x[0]*x[1] + 2*x[1] * x[0] + 1)\n", "print(cost4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If the user knows the matrix form of `Q` and `b`, then it is faster to pass in these matrices to `AddQuadraticCost`, instead of using the symbolic quadratic expression as above." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Add a cost x[0]**2 + 2*x[1]**2 + x[0]*x[1] + 3*x[1] + 1.\n", "cost5 = prog.AddQuadraticCost(\n", " Q=np.array([[2., 1], [1., 4.]]),\n", " b=np.array([0., 3.]),\n", " c=1.,\n", " vars=x[:2])\n", "print(cost5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### AddQuadraticErrorCost\n", "This function adds a cost of the form $(x - x_{des})^TQ(x-x_{des})$." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cost6 = prog.AddQuadraticErrorCost(\n", " Q=np.array([[1, 0.5], [0.5, 1]]),\n", " x_desired=np.array([1., 2.]),\n", " vars=x[1:])\n", "print(cost6)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add2NormSquaredCost\n", "This function adds a quadratic cost of the form $(Ax-b)^T(Ax-b)$" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Add the L2 norm cost on (A*x[:2] - b).dot(A*x[:2]-b)\n", "cost7 = prog.Add2NormSquaredCost(\n", " A=np.array([[1., 2.], [2., 3], [3., 4]]),\n", " b=np.array([2, 3, 1.]),\n", " vars=x[:2])\n", "print(cost7)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Adding constraints\n", "\n", "Drake supports adding constraints in the following form\n", "$$\n", "\\begin{aligned}\n", "lower \\leq g(x) \\leq upper\n", "\\end{aligned}\n", "$$\n", "where $g(x)$ returns a numpy vector.\n", "\n", "The user can call `AddConstraint(g, lower, upper, vars=x)` to add the constraint. Here `g` must be a python function (or a lambda function)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "## Define a python function to add the constraint x[0]**2 + 2x[1]<=1, -0.5<=sin(x[1])<=0.5\n", "def constraint_evaluator1(z):\n", " return np.array([z[0]**2+2*z[1], np.sin(z[1])])\n", "\n", "constraint1 = prog.AddConstraint(\n", " constraint_evaluator1,\n", " lb=np.array([-np.inf, -0.5]),\n", " ub=np.array([1., 0.5]),\n", " vars=x[:2])\n", "print(constraint1)\n", "\n", "# Add another constraint using lambda function.\n", "constraint2 = prog.AddConstraint(\n", " lambda z: np.array([z[0]*z[1]]),\n", " lb=[0.],\n", " ub=[1.],\n", " vars=[x[2]])\n", "print(constraint2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Solving the nonlinear program\n", "\n", "Once all the constraints and costs are added to the program, we can call the `Solve` function to solve the program and call `GetSolution` to obtain the results. Solving an NLP requires an initial guess on all the decision variables. If the user doesn't specify an initial guess, we will use a zero vector by default." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "## Solve a simple nonlinear \n", "# min -x0\n", "# subject to x1 - exp(x0) >= 0\n", "# x2 - exp(x1) >= 0\n", "# 0 <= x0 <= 100\n", "# 0 <= x1 <= 100\n", "# 0 <= x2 <= 10\n", "prog = MathematicalProgram()\n", "x = prog.NewContinuousVariables(3)\n", "# The cost is a linear function, so we call AddLinearCost\n", "prog.AddLinearCost(-x[0])\n", "# Now add the constraint x1-exp(x0)>=0 and x2-exp(x1)>=0\n", "prog.AddConstraint(\n", " lambda z: np.array([z[1]-np.exp(z[0]), z[2]-np.exp(z[1])]),\n", " lb=[0, 0],\n", " ub=[np.inf, np.inf],\n", " vars=x)\n", "# Add the bounding box constraint 0<=x0<=100, 0<=x1<=100, 0<=x2<=10\n", "prog.AddBoundingBoxConstraint(0, 100, x[:2])\n", "prog.AddBoundingBoxConstraint(0, 10, x[2])\n", "\n", "# Now solve the program with initial guess x=[1, 2, 3]\n", "result = Solve(prog, np.array([1.,2.,3.]))\n", "print(f\"Is optimization successful? {result.is_success()}\")\n", "print(f\"Solution to x: {result.GetSolution(x)}\")\n", "print(f\"optimal cost: {result.get_optimal_cost()}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Setting the initial guess\n", "Some NLPs might have many decision variables. In order to set the initial guess for these decision variables, we provide a function `SetInitialGuess` to set the initial guess of a subset of decision variables. For example, in the problem below, we want to find the two closest points $p_1$ and $p_2$, where $p_1$ is on the unit circle, and $p_2$ is on the curve $y=x^2$, we can set the initial guess for these two variables separately by calling `SetInitialGuess`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "prog = MathematicalProgram()\n", "p1 = prog.NewContinuousVariables(2, \"p1\")\n", "p2 = prog.NewContinuousVariables(2, \"p2\")\n", "\n", "# Add the constraint that p1 is on the unit circle centered at (0, 2)\n", "prog.AddConstraint(\n", " lambda z: [z[0]**2 + (z[1]-2)**2],\n", " lb=np.array([1.]),\n", " ub=np.array([1.]),\n", " vars=p1)\n", "\n", "# Add the constraint that p2 is on the curve y=x*x\n", "prog.AddConstraint(\n", " lambda z: [z[1] - z[0]**2],\n", " lb=[0.],\n", " ub=[0.],\n", " vars=p2)\n", "\n", "# Add the cost on the distance between p1 and p2\n", "prog.AddQuadraticCost((p1-p2).dot(p1-p2))\n", "\n", "# Set the value of p1 in initial guess to be [0, 1]\n", "prog.SetInitialGuess(p1, [0., 1.])\n", "# Set the value of p2 in initial guess to be [1, 1]\n", "prog.SetInitialGuess(p2, [1., 1.])\n", "\n", "# Now solve the program\n", "result = Solve(prog)\n", "print(f\"Is optimization successful? {result.is_success()}\")\n", "p1_sol = result.GetSolution(p1)\n", "p2_sol = result.GetSolution(p2)\n", "print(f\"solution to p1 {p1_sol}\")\n", "print(f\"solution to p2 {p2_sol}\")\n", "print(f\"optimal cost {result.get_optimal_cost()}\")\n", "\n", "# Plot the solution.\n", "plt.figure()\n", "plt.plot(np.cos(np.linspace(0, 2*np.pi, 100)), 2+np.sin(np.linspace(0, 2*np.pi, 100)))\n", "plt.plot(np.linspace(-2, 2, 100), np.power(np.linspace(-2, 2, 100), 2))\n", "plt.plot(p1_sol[0], p1_sol[1], '*')\n", "plt.plot(p2_sol[0], p2_sol[1], '*')\n", "plt.axis('equal')\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 2 }